Memory controller: make charging gfp mask aware
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
8a9f3ccd 24#include <linux/page-flags.h>
66e1707b 25#include <linux/backing-dev.h>
8a9f3ccd
BS
26#include <linux/bit_spinlock.h>
27#include <linux/rcupdate.h>
66e1707b
BS
28#include <linux/swap.h>
29#include <linux/spinlock.h>
30#include <linux/fs.h>
8cdea7c0 31
8697d331
BS
32#include <asm/uaccess.h>
33
8cdea7c0 34struct cgroup_subsys mem_cgroup_subsys;
66e1707b 35static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0
BS
36
37/*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
8cdea7c0
BS
47 */
48struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
78fb7466
PE
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
66e1707b
BS
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
8697d331 65 unsigned long control_type; /* control RSS or RSS+Pagecache */
8cdea7c0
BS
66};
67
8a9f3ccd
BS
68/*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73#define PAGE_CGROUP_LOCK_BIT 0x0
74#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
8cdea7c0
BS
76/*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
8cdea7c0
BS
86};
87
8697d331
BS
88enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
94};
95
96static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
97
98static inline
99struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
100{
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
104}
105
78fb7466
PE
106static inline
107struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
108{
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
111}
112
bed7161a
BS
113inline struct mem_cgroup *mm_cgroup(struct mm_struct *mm)
114{
115 return rcu_dereference(mm->mem_cgroup);
116}
117
78fb7466
PE
118void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
119{
120 struct mem_cgroup *mem;
121
122 mem = mem_cgroup_from_task(p);
123 css_get(&mem->css);
124 mm->mem_cgroup = mem;
125}
126
127void mm_free_cgroup(struct mm_struct *mm)
128{
129 css_put(&mm->mem_cgroup->css);
130}
131
8a9f3ccd
BS
132static inline int page_cgroup_locked(struct page *page)
133{
134 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
135 &page->page_cgroup);
136}
137
78fb7466
PE
138void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
139{
8a9f3ccd
BS
140 int locked;
141
142 /*
143 * While resetting the page_cgroup we might not hold the
144 * page_cgroup lock. free_hot_cold_page() is an example
145 * of such a scenario
146 */
147 if (pc)
148 VM_BUG_ON(!page_cgroup_locked(page));
149 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
150 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
151}
152
153struct page_cgroup *page_get_page_cgroup(struct page *page)
154{
8a9f3ccd
BS
155 return (struct page_cgroup *)
156 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
157}
158
8697d331 159static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
160{
161 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
162 VM_BUG_ON(!page_cgroup_locked(page));
163}
164
8697d331 165static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
166{
167 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
168}
169
8697d331 170static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b
BS
171{
172 if (active)
173 list_move(&pc->lru, &pc->mem_cgroup->active_list);
174 else
175 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
176}
177
178/*
179 * This routine assumes that the appropriate zone's lru lock is already held
180 */
181void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
182{
183 struct mem_cgroup *mem;
184 if (!pc)
185 return;
186
187 mem = pc->mem_cgroup;
188
189 spin_lock(&mem->lru_lock);
190 __mem_cgroup_move_lists(pc, active);
191 spin_unlock(&mem->lru_lock);
192}
193
194unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
195 struct list_head *dst,
196 unsigned long *scanned, int order,
197 int mode, struct zone *z,
198 struct mem_cgroup *mem_cont,
199 int active)
200{
201 unsigned long nr_taken = 0;
202 struct page *page;
203 unsigned long scan;
204 LIST_HEAD(pc_list);
205 struct list_head *src;
206 struct page_cgroup *pc;
207
208 if (active)
209 src = &mem_cont->active_list;
210 else
211 src = &mem_cont->inactive_list;
212
213 spin_lock(&mem_cont->lru_lock);
214 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
215 pc = list_entry(src->prev, struct page_cgroup, lru);
216 page = pc->page;
217 VM_BUG_ON(!pc);
218
219 if (PageActive(page) && !active) {
220 __mem_cgroup_move_lists(pc, true);
221 scan--;
222 continue;
223 }
224 if (!PageActive(page) && active) {
225 __mem_cgroup_move_lists(pc, false);
226 scan--;
227 continue;
228 }
229
230 /*
231 * Reclaim, per zone
232 * TODO: make the active/inactive lists per zone
233 */
234 if (page_zone(page) != z)
235 continue;
236
237 /*
238 * Check if the meta page went away from under us
239 */
240 if (!list_empty(&pc->lru))
241 list_move(&pc->lru, &pc_list);
242 else
243 continue;
244
245 if (__isolate_lru_page(page, mode) == 0) {
246 list_move(&page->lru, dst);
247 nr_taken++;
248 }
249 }
250
251 list_splice(&pc_list, src);
252 spin_unlock(&mem_cont->lru_lock);
253
254 *scanned = scan;
255 return nr_taken;
256}
257
8a9f3ccd
BS
258/*
259 * Charge the memory controller for page usage.
260 * Return
261 * 0 if the charge was successful
262 * < 0 if the cgroup is over its limit
263 */
e1a1cd59
BS
264int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
265 gfp_t gfp_mask)
8a9f3ccd
BS
266{
267 struct mem_cgroup *mem;
268 struct page_cgroup *pc, *race_pc;
66e1707b
BS
269 unsigned long flags;
270 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd
BS
271
272 /*
273 * Should page_cgroup's go to their own slab?
274 * One could optimize the performance of the charging routine
275 * by saving a bit in the page_flags and using it as a lock
276 * to see if the cgroup page already has a page_cgroup associated
277 * with it
278 */
66e1707b 279retry:
8a9f3ccd
BS
280 lock_page_cgroup(page);
281 pc = page_get_page_cgroup(page);
282 /*
283 * The page_cgroup exists and the page has already been accounted
284 */
285 if (pc) {
66e1707b
BS
286 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
287 /* this page is under being uncharged ? */
288 unlock_page_cgroup(page);
289 cpu_relax();
290 goto retry;
291 } else
292 goto done;
8a9f3ccd
BS
293 }
294
295 unlock_page_cgroup(page);
296
e1a1cd59 297 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
298 if (pc == NULL)
299 goto err;
300
301 rcu_read_lock();
302 /*
303 * We always charge the cgroup the mm_struct belongs to
304 * the mm_struct's mem_cgroup changes on task migration if the
305 * thread group leader migrates. It's possible that mm is not
306 * set, if so charge the init_mm (happens for pagecache usage).
307 */
308 if (!mm)
309 mm = &init_mm;
310
311 mem = rcu_dereference(mm->mem_cgroup);
312 /*
313 * For every charge from the cgroup, increment reference
314 * count
315 */
316 css_get(&mem->css);
317 rcu_read_unlock();
318
319 /*
320 * If we created the page_cgroup, we should free it on exceeding
321 * the cgroup limit.
322 */
0eea1030 323 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
e1a1cd59
BS
324 bool is_atomic = gfp_mask & GFP_ATOMIC;
325 /*
326 * We cannot reclaim under GFP_ATOMIC, fail the charge
327 */
328 if (is_atomic)
329 goto noreclaim;
330
331 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
332 continue;
333
334 /*
335 * try_to_free_mem_cgroup_pages() might not give us a full
336 * picture of reclaim. Some pages are reclaimed and might be
337 * moved to swap cache or just unmapped from the cgroup.
338 * Check the limit again to see if the reclaim reduced the
339 * current usage of the cgroup before giving up
340 */
341 if (res_counter_check_under_limit(&mem->res))
342 continue;
343 /*
344 * Since we control both RSS and cache, we end up with a
345 * very interesting scenario where we end up reclaiming
346 * memory (essentially RSS), since the memory is pushed
347 * to swap cache, we eventually end up adding those
348 * pages back to our list. Hence we give ourselves a
349 * few chances before we fail
350 */
351 else if (nr_retries--) {
352 congestion_wait(WRITE, HZ/10);
353 continue;
354 }
e1a1cd59 355noreclaim:
8a9f3ccd 356 css_put(&mem->css);
e1a1cd59
BS
357 if (!is_atomic)
358 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
8a9f3ccd
BS
359 goto free_pc;
360 }
361
362 lock_page_cgroup(page);
363 /*
364 * Check if somebody else beat us to allocating the page_cgroup
365 */
366 race_pc = page_get_page_cgroup(page);
367 if (race_pc) {
368 kfree(pc);
369 pc = race_pc;
370 atomic_inc(&pc->ref_cnt);
0eea1030 371 res_counter_uncharge(&mem->res, PAGE_SIZE);
8a9f3ccd
BS
372 css_put(&mem->css);
373 goto done;
374 }
375
376 atomic_set(&pc->ref_cnt, 1);
377 pc->mem_cgroup = mem;
378 pc->page = page;
379 page_assign_page_cgroup(page, pc);
380
66e1707b
BS
381 spin_lock_irqsave(&mem->lru_lock, flags);
382 list_add(&pc->lru, &mem->active_list);
383 spin_unlock_irqrestore(&mem->lru_lock, flags);
384
8a9f3ccd
BS
385done:
386 unlock_page_cgroup(page);
387 return 0;
388free_pc:
389 kfree(pc);
8a9f3ccd 390err:
8a9f3ccd
BS
391 return -ENOMEM;
392}
393
8697d331
BS
394/*
395 * See if the cached pages should be charged at all?
396 */
e1a1cd59
BS
397int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
398 gfp_t gfp_mask)
8697d331
BS
399{
400 struct mem_cgroup *mem;
401 if (!mm)
402 mm = &init_mm;
403
404 mem = rcu_dereference(mm->mem_cgroup);
405 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
e1a1cd59 406 return mem_cgroup_charge(page, mm, gfp_mask);
8697d331
BS
407 else
408 return 0;
409}
410
8a9f3ccd
BS
411/*
412 * Uncharging is always a welcome operation, we never complain, simply
413 * uncharge.
414 */
415void mem_cgroup_uncharge(struct page_cgroup *pc)
416{
417 struct mem_cgroup *mem;
418 struct page *page;
66e1707b 419 unsigned long flags;
8a9f3ccd 420
8697d331
BS
421 /*
422 * This can handle cases when a page is not charged at all and we
423 * are switching between handling the control_type.
424 */
8a9f3ccd
BS
425 if (!pc)
426 return;
427
428 if (atomic_dec_and_test(&pc->ref_cnt)) {
429 page = pc->page;
430 lock_page_cgroup(page);
431 mem = pc->mem_cgroup;
432 css_put(&mem->css);
433 page_assign_page_cgroup(page, NULL);
434 unlock_page_cgroup(page);
0eea1030 435 res_counter_uncharge(&mem->res, PAGE_SIZE);
66e1707b
BS
436
437 spin_lock_irqsave(&mem->lru_lock, flags);
438 list_del_init(&pc->lru);
439 spin_unlock_irqrestore(&mem->lru_lock, flags);
8a9f3ccd
BS
440 kfree(pc);
441 }
78fb7466
PE
442}
443
0eea1030
BS
444int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
445{
446 *tmp = memparse(buf, &buf);
447 if (*buf != '\0')
448 return -EINVAL;
449
450 /*
451 * Round up the value to the closest page size
452 */
453 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
454 return 0;
455}
456
457static ssize_t mem_cgroup_read(struct cgroup *cont,
458 struct cftype *cft, struct file *file,
459 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
460{
461 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
462 cft->private, userbuf, nbytes, ppos,
463 NULL);
8cdea7c0
BS
464}
465
466static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
467 struct file *file, const char __user *userbuf,
468 size_t nbytes, loff_t *ppos)
469{
470 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
471 cft->private, userbuf, nbytes, ppos,
472 mem_cgroup_write_strategy);
8cdea7c0
BS
473}
474
8697d331
BS
475static ssize_t mem_control_type_write(struct cgroup *cont,
476 struct cftype *cft, struct file *file,
477 const char __user *userbuf,
478 size_t nbytes, loff_t *pos)
479{
480 int ret;
481 char *buf, *end;
482 unsigned long tmp;
483 struct mem_cgroup *mem;
484
485 mem = mem_cgroup_from_cont(cont);
486 buf = kmalloc(nbytes + 1, GFP_KERNEL);
487 ret = -ENOMEM;
488 if (buf == NULL)
489 goto out;
490
491 buf[nbytes] = 0;
492 ret = -EFAULT;
493 if (copy_from_user(buf, userbuf, nbytes))
494 goto out_free;
495
496 ret = -EINVAL;
497 tmp = simple_strtoul(buf, &end, 10);
498 if (*end != '\0')
499 goto out_free;
500
501 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
502 goto out_free;
503
504 mem->control_type = tmp;
505 ret = nbytes;
506out_free:
507 kfree(buf);
508out:
509 return ret;
510}
511
512static ssize_t mem_control_type_read(struct cgroup *cont,
513 struct cftype *cft,
514 struct file *file, char __user *userbuf,
515 size_t nbytes, loff_t *ppos)
516{
517 unsigned long val;
518 char buf[64], *s;
519 struct mem_cgroup *mem;
520
521 mem = mem_cgroup_from_cont(cont);
522 s = buf;
523 val = mem->control_type;
524 s += sprintf(s, "%lu\n", val);
525 return simple_read_from_buffer((void __user *)userbuf, nbytes,
526 ppos, buf, s - buf);
527}
528
8cdea7c0
BS
529static struct cftype mem_cgroup_files[] = {
530 {
0eea1030 531 .name = "usage_in_bytes",
8cdea7c0
BS
532 .private = RES_USAGE,
533 .read = mem_cgroup_read,
534 },
535 {
0eea1030 536 .name = "limit_in_bytes",
8cdea7c0
BS
537 .private = RES_LIMIT,
538 .write = mem_cgroup_write,
539 .read = mem_cgroup_read,
540 },
541 {
542 .name = "failcnt",
543 .private = RES_FAILCNT,
544 .read = mem_cgroup_read,
545 },
8697d331
BS
546 {
547 .name = "control_type",
548 .write = mem_control_type_write,
549 .read = mem_control_type_read,
550 },
8cdea7c0
BS
551};
552
78fb7466
PE
553static struct mem_cgroup init_mem_cgroup;
554
8cdea7c0
BS
555static struct cgroup_subsys_state *
556mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
557{
558 struct mem_cgroup *mem;
559
78fb7466
PE
560 if (unlikely((cont->parent) == NULL)) {
561 mem = &init_mem_cgroup;
562 init_mm.mem_cgroup = mem;
563 } else
564 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
565
566 if (mem == NULL)
567 return NULL;
8cdea7c0
BS
568
569 res_counter_init(&mem->res);
8a9f3ccd
BS
570 INIT_LIST_HEAD(&mem->active_list);
571 INIT_LIST_HEAD(&mem->inactive_list);
66e1707b 572 spin_lock_init(&mem->lru_lock);
8697d331 573 mem->control_type = MEM_CGROUP_TYPE_ALL;
8cdea7c0
BS
574 return &mem->css;
575}
576
577static void mem_cgroup_destroy(struct cgroup_subsys *ss,
578 struct cgroup *cont)
579{
580 kfree(mem_cgroup_from_cont(cont));
581}
582
583static int mem_cgroup_populate(struct cgroup_subsys *ss,
584 struct cgroup *cont)
585{
586 return cgroup_add_files(cont, ss, mem_cgroup_files,
587 ARRAY_SIZE(mem_cgroup_files));
588}
589
67e465a7
BS
590static void mem_cgroup_move_task(struct cgroup_subsys *ss,
591 struct cgroup *cont,
592 struct cgroup *old_cont,
593 struct task_struct *p)
594{
595 struct mm_struct *mm;
596 struct mem_cgroup *mem, *old_mem;
597
598 mm = get_task_mm(p);
599 if (mm == NULL)
600 return;
601
602 mem = mem_cgroup_from_cont(cont);
603 old_mem = mem_cgroup_from_cont(old_cont);
604
605 if (mem == old_mem)
606 goto out;
607
608 /*
609 * Only thread group leaders are allowed to migrate, the mm_struct is
610 * in effect owned by the leader
611 */
612 if (p->tgid != p->pid)
613 goto out;
614
615 css_get(&mem->css);
616 rcu_assign_pointer(mm->mem_cgroup, mem);
617 css_put(&old_mem->css);
618
619out:
620 mmput(mm);
621 return;
622}
623
8cdea7c0
BS
624struct cgroup_subsys mem_cgroup_subsys = {
625 .name = "memory",
626 .subsys_id = mem_cgroup_subsys_id,
627 .create = mem_cgroup_create,
628 .destroy = mem_cgroup_destroy,
629 .populate = mem_cgroup_populate,
67e465a7 630 .attach = mem_cgroup_move_task,
78fb7466 631 .early_init = 1,
8cdea7c0 632};
This page took 0.076484 seconds and 5 git commands to generate.