mm: fix the TLB range flushed when __tlb_remove_page() runs out of slots
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
1da177e4 62
6952b61d 63#include <asm/io.h>
1da177e4
LT
64#include <asm/pgalloc.h>
65#include <asm/uaccess.h>
66#include <asm/tlb.h>
67#include <asm/tlbflush.h>
68#include <asm/pgtable.h>
69
42b77728
JB
70#include "internal.h"
71
75980e97
PZ
72#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74#endif
75
d41dee36 76#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
77/* use the per-pgdat data instead for discontigmem - mbligh */
78unsigned long max_mapnr;
79struct page *mem_map;
80
81EXPORT_SYMBOL(max_mapnr);
82EXPORT_SYMBOL(mem_map);
83#endif
84
85unsigned long num_physpages;
86/*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93void * high_memory;
1da177e4
LT
94
95EXPORT_SYMBOL(num_physpages);
96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
120
121/*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124static int __init init_zero_pfn(void)
125{
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128}
129core_initcall(init_zero_pfn);
a62eaf15 130
d559db08 131
34e55232
KH
132#if defined(SPLIT_RSS_COUNTING)
133
ea48cf78 134void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
135{
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
34e55232
KH
142 }
143 }
05af2e10 144 current->rss_stat.events = 0;
34e55232
KH
145}
146
147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148{
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155}
156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159/* sync counter once per 64 page faults */
160#define TASK_RSS_EVENTS_THRESH (64)
161static void check_sync_rss_stat(struct task_struct *task)
162{
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 166 sync_mm_rss(task->mm);
34e55232 167}
9547d01b 168#else /* SPLIT_RSS_COUNTING */
34e55232
KH
169
170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173static void check_sync_rss_stat(struct task_struct *task)
174{
175}
176
9547d01b
PZ
177#endif /* SPLIT_RSS_COUNTING */
178
179#ifdef HAVE_GENERIC_MMU_GATHER
180
181static int tlb_next_batch(struct mmu_gather *tlb)
182{
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
53a59fc6
MH
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
9547d01b
PZ
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
53a59fc6 198 tlb->batch_count++;
9547d01b
PZ
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207}
208
209/* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215{
216 tlb->mm = mm;
217
218 tlb->fullmm = fullmm;
1de14c3c 219 tlb->need_flush_all = 0;
597e1c35
AS
220 tlb->start = -1UL;
221 tlb->end = 0;
9547d01b 222 tlb->need_flush = 0;
9547d01b
PZ
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
53a59fc6 227 tlb->batch_count = 0;
9547d01b
PZ
228
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231#endif
232}
233
234void tlb_flush_mmu(struct mmu_gather *tlb)
235{
236 struct mmu_gather_batch *batch;
237
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242#ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
34e55232
KH
244#endif
245
9547d01b
PZ
246 for (batch = &tlb->local; batch; batch = batch->next) {
247 free_pages_and_swap_cache(batch->pages, batch->nr);
248 batch->nr = 0;
249 }
250 tlb->active = &tlb->local;
251}
252
253/* tlb_finish_mmu
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
256 */
257void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258{
259 struct mmu_gather_batch *batch, *next;
260
597e1c35
AS
261 tlb->start = start;
262 tlb->end = end;
9547d01b
PZ
263 tlb_flush_mmu(tlb);
264
265 /* keep the page table cache within bounds */
266 check_pgt_cache();
267
268 for (batch = tlb->local.next; batch; batch = next) {
269 next = batch->next;
270 free_pages((unsigned long)batch, 0);
271 }
272 tlb->local.next = NULL;
273}
274
275/* __tlb_remove_page
276 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277 * handling the additional races in SMP caused by other CPUs caching valid
278 * mappings in their TLBs. Returns the number of free page slots left.
279 * When out of page slots we must call tlb_flush_mmu().
280 */
281int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282{
283 struct mmu_gather_batch *batch;
284
f21760b1 285 VM_BUG_ON(!tlb->need_flush);
9547d01b 286
9547d01b
PZ
287 batch = tlb->active;
288 batch->pages[batch->nr++] = page;
289 if (batch->nr == batch->max) {
290 if (!tlb_next_batch(tlb))
291 return 0;
0b43c3aa 292 batch = tlb->active;
9547d01b
PZ
293 }
294 VM_BUG_ON(batch->nr > batch->max);
295
296 return batch->max - batch->nr;
297}
298
299#endif /* HAVE_GENERIC_MMU_GATHER */
300
26723911
PZ
301#ifdef CONFIG_HAVE_RCU_TABLE_FREE
302
303/*
304 * See the comment near struct mmu_table_batch.
305 */
306
307static void tlb_remove_table_smp_sync(void *arg)
308{
309 /* Simply deliver the interrupt */
310}
311
312static void tlb_remove_table_one(void *table)
313{
314 /*
315 * This isn't an RCU grace period and hence the page-tables cannot be
316 * assumed to be actually RCU-freed.
317 *
318 * It is however sufficient for software page-table walkers that rely on
319 * IRQ disabling. See the comment near struct mmu_table_batch.
320 */
321 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
322 __tlb_remove_table(table);
323}
324
325static void tlb_remove_table_rcu(struct rcu_head *head)
326{
327 struct mmu_table_batch *batch;
328 int i;
329
330 batch = container_of(head, struct mmu_table_batch, rcu);
331
332 for (i = 0; i < batch->nr; i++)
333 __tlb_remove_table(batch->tables[i]);
334
335 free_page((unsigned long)batch);
336}
337
338void tlb_table_flush(struct mmu_gather *tlb)
339{
340 struct mmu_table_batch **batch = &tlb->batch;
341
342 if (*batch) {
343 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
344 *batch = NULL;
345 }
346}
347
348void tlb_remove_table(struct mmu_gather *tlb, void *table)
349{
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 tlb->need_flush = 1;
353
354 /*
355 * When there's less then two users of this mm there cannot be a
356 * concurrent page-table walk.
357 */
358 if (atomic_read(&tlb->mm->mm_users) < 2) {
359 __tlb_remove_table(table);
360 return;
361 }
362
363 if (*batch == NULL) {
364 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
365 if (*batch == NULL) {
366 tlb_remove_table_one(table);
367 return;
368 }
369 (*batch)->nr = 0;
370 }
371 (*batch)->tables[(*batch)->nr++] = table;
372 if ((*batch)->nr == MAX_TABLE_BATCH)
373 tlb_table_flush(tlb);
374}
375
9547d01b 376#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 377
1da177e4
LT
378/*
379 * If a p?d_bad entry is found while walking page tables, report
380 * the error, before resetting entry to p?d_none. Usually (but
381 * very seldom) called out from the p?d_none_or_clear_bad macros.
382 */
383
384void pgd_clear_bad(pgd_t *pgd)
385{
386 pgd_ERROR(*pgd);
387 pgd_clear(pgd);
388}
389
390void pud_clear_bad(pud_t *pud)
391{
392 pud_ERROR(*pud);
393 pud_clear(pud);
394}
395
396void pmd_clear_bad(pmd_t *pmd)
397{
398 pmd_ERROR(*pmd);
399 pmd_clear(pmd);
400}
401
402/*
403 * Note: this doesn't free the actual pages themselves. That
404 * has been handled earlier when unmapping all the memory regions.
405 */
9e1b32ca
BH
406static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
407 unsigned long addr)
1da177e4 408{
2f569afd 409 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 410 pmd_clear(pmd);
9e1b32ca 411 pte_free_tlb(tlb, token, addr);
e0da382c 412 tlb->mm->nr_ptes--;
1da177e4
LT
413}
414
e0da382c
HD
415static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
416 unsigned long addr, unsigned long end,
417 unsigned long floor, unsigned long ceiling)
1da177e4
LT
418{
419 pmd_t *pmd;
420 unsigned long next;
e0da382c 421 unsigned long start;
1da177e4 422
e0da382c 423 start = addr;
1da177e4 424 pmd = pmd_offset(pud, addr);
1da177e4
LT
425 do {
426 next = pmd_addr_end(addr, end);
427 if (pmd_none_or_clear_bad(pmd))
428 continue;
9e1b32ca 429 free_pte_range(tlb, pmd, addr);
1da177e4
LT
430 } while (pmd++, addr = next, addr != end);
431
e0da382c
HD
432 start &= PUD_MASK;
433 if (start < floor)
434 return;
435 if (ceiling) {
436 ceiling &= PUD_MASK;
437 if (!ceiling)
438 return;
1da177e4 439 }
e0da382c
HD
440 if (end - 1 > ceiling - 1)
441 return;
442
443 pmd = pmd_offset(pud, start);
444 pud_clear(pud);
9e1b32ca 445 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
446}
447
e0da382c
HD
448static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
449 unsigned long addr, unsigned long end,
450 unsigned long floor, unsigned long ceiling)
1da177e4
LT
451{
452 pud_t *pud;
453 unsigned long next;
e0da382c 454 unsigned long start;
1da177e4 455
e0da382c 456 start = addr;
1da177e4 457 pud = pud_offset(pgd, addr);
1da177e4
LT
458 do {
459 next = pud_addr_end(addr, end);
460 if (pud_none_or_clear_bad(pud))
461 continue;
e0da382c 462 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
463 } while (pud++, addr = next, addr != end);
464
e0da382c
HD
465 start &= PGDIR_MASK;
466 if (start < floor)
467 return;
468 if (ceiling) {
469 ceiling &= PGDIR_MASK;
470 if (!ceiling)
471 return;
1da177e4 472 }
e0da382c
HD
473 if (end - 1 > ceiling - 1)
474 return;
475
476 pud = pud_offset(pgd, start);
477 pgd_clear(pgd);
9e1b32ca 478 pud_free_tlb(tlb, pud, start);
1da177e4
LT
479}
480
481/*
e0da382c
HD
482 * This function frees user-level page tables of a process.
483 *
1da177e4
LT
484 * Must be called with pagetable lock held.
485 */
42b77728 486void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
487 unsigned long addr, unsigned long end,
488 unsigned long floor, unsigned long ceiling)
1da177e4
LT
489{
490 pgd_t *pgd;
491 unsigned long next;
e0da382c
HD
492
493 /*
494 * The next few lines have given us lots of grief...
495 *
496 * Why are we testing PMD* at this top level? Because often
497 * there will be no work to do at all, and we'd prefer not to
498 * go all the way down to the bottom just to discover that.
499 *
500 * Why all these "- 1"s? Because 0 represents both the bottom
501 * of the address space and the top of it (using -1 for the
502 * top wouldn't help much: the masks would do the wrong thing).
503 * The rule is that addr 0 and floor 0 refer to the bottom of
504 * the address space, but end 0 and ceiling 0 refer to the top
505 * Comparisons need to use "end - 1" and "ceiling - 1" (though
506 * that end 0 case should be mythical).
507 *
508 * Wherever addr is brought up or ceiling brought down, we must
509 * be careful to reject "the opposite 0" before it confuses the
510 * subsequent tests. But what about where end is brought down
511 * by PMD_SIZE below? no, end can't go down to 0 there.
512 *
513 * Whereas we round start (addr) and ceiling down, by different
514 * masks at different levels, in order to test whether a table
515 * now has no other vmas using it, so can be freed, we don't
516 * bother to round floor or end up - the tests don't need that.
517 */
1da177e4 518
e0da382c
HD
519 addr &= PMD_MASK;
520 if (addr < floor) {
521 addr += PMD_SIZE;
522 if (!addr)
523 return;
524 }
525 if (ceiling) {
526 ceiling &= PMD_MASK;
527 if (!ceiling)
528 return;
529 }
530 if (end - 1 > ceiling - 1)
531 end -= PMD_SIZE;
532 if (addr > end - 1)
533 return;
534
42b77728 535 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
536 do {
537 next = pgd_addr_end(addr, end);
538 if (pgd_none_or_clear_bad(pgd))
539 continue;
42b77728 540 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 541 } while (pgd++, addr = next, addr != end);
e0da382c
HD
542}
543
42b77728 544void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 545 unsigned long floor, unsigned long ceiling)
e0da382c
HD
546{
547 while (vma) {
548 struct vm_area_struct *next = vma->vm_next;
549 unsigned long addr = vma->vm_start;
550
8f4f8c16 551 /*
25d9e2d1 552 * Hide vma from rmap and truncate_pagecache before freeing
553 * pgtables
8f4f8c16 554 */
5beb4930 555 unlink_anon_vmas(vma);
8f4f8c16
HD
556 unlink_file_vma(vma);
557
9da61aef 558 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 559 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 560 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
561 } else {
562 /*
563 * Optimization: gather nearby vmas into one call down
564 */
565 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 566 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
567 vma = next;
568 next = vma->vm_next;
5beb4930 569 unlink_anon_vmas(vma);
8f4f8c16 570 unlink_file_vma(vma);
3bf5ee95
HD
571 }
572 free_pgd_range(tlb, addr, vma->vm_end,
573 floor, next? next->vm_start: ceiling);
574 }
e0da382c
HD
575 vma = next;
576 }
1da177e4
LT
577}
578
8ac1f832
AA
579int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
580 pmd_t *pmd, unsigned long address)
1da177e4 581{
2f569afd 582 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 583 int wait_split_huge_page;
1bb3630e
HD
584 if (!new)
585 return -ENOMEM;
586
362a61ad
NP
587 /*
588 * Ensure all pte setup (eg. pte page lock and page clearing) are
589 * visible before the pte is made visible to other CPUs by being
590 * put into page tables.
591 *
592 * The other side of the story is the pointer chasing in the page
593 * table walking code (when walking the page table without locking;
594 * ie. most of the time). Fortunately, these data accesses consist
595 * of a chain of data-dependent loads, meaning most CPUs (alpha
596 * being the notable exception) will already guarantee loads are
597 * seen in-order. See the alpha page table accessors for the
598 * smp_read_barrier_depends() barriers in page table walking code.
599 */
600 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601
c74df32c 602 spin_lock(&mm->page_table_lock);
8ac1f832
AA
603 wait_split_huge_page = 0;
604 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 605 mm->nr_ptes++;
1da177e4 606 pmd_populate(mm, pmd, new);
2f569afd 607 new = NULL;
8ac1f832
AA
608 } else if (unlikely(pmd_trans_splitting(*pmd)))
609 wait_split_huge_page = 1;
c74df32c 610 spin_unlock(&mm->page_table_lock);
2f569afd
MS
611 if (new)
612 pte_free(mm, new);
8ac1f832
AA
613 if (wait_split_huge_page)
614 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 615 return 0;
1da177e4
LT
616}
617
1bb3630e 618int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 619{
1bb3630e
HD
620 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
621 if (!new)
622 return -ENOMEM;
623
362a61ad
NP
624 smp_wmb(); /* See comment in __pte_alloc */
625
1bb3630e 626 spin_lock(&init_mm.page_table_lock);
8ac1f832 627 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 628 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 629 new = NULL;
8ac1f832
AA
630 } else
631 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 632 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
633 if (new)
634 pte_free_kernel(&init_mm, new);
1bb3630e 635 return 0;
1da177e4
LT
636}
637
d559db08
KH
638static inline void init_rss_vec(int *rss)
639{
640 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
641}
642
643static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 644{
d559db08
KH
645 int i;
646
34e55232 647 if (current->mm == mm)
05af2e10 648 sync_mm_rss(mm);
d559db08
KH
649 for (i = 0; i < NR_MM_COUNTERS; i++)
650 if (rss[i])
651 add_mm_counter(mm, i, rss[i]);
ae859762
HD
652}
653
b5810039 654/*
6aab341e
LT
655 * This function is called to print an error when a bad pte
656 * is found. For example, we might have a PFN-mapped pte in
657 * a region that doesn't allow it.
b5810039
NP
658 *
659 * The calling function must still handle the error.
660 */
3dc14741
HD
661static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
662 pte_t pte, struct page *page)
b5810039 663{
3dc14741
HD
664 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
665 pud_t *pud = pud_offset(pgd, addr);
666 pmd_t *pmd = pmd_offset(pud, addr);
667 struct address_space *mapping;
668 pgoff_t index;
d936cf9b
HD
669 static unsigned long resume;
670 static unsigned long nr_shown;
671 static unsigned long nr_unshown;
672
673 /*
674 * Allow a burst of 60 reports, then keep quiet for that minute;
675 * or allow a steady drip of one report per second.
676 */
677 if (nr_shown == 60) {
678 if (time_before(jiffies, resume)) {
679 nr_unshown++;
680 return;
681 }
682 if (nr_unshown) {
1e9e6365
HD
683 printk(KERN_ALERT
684 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
685 nr_unshown);
686 nr_unshown = 0;
687 }
688 nr_shown = 0;
689 }
690 if (nr_shown++ == 0)
691 resume = jiffies + 60 * HZ;
3dc14741
HD
692
693 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
694 index = linear_page_index(vma, addr);
695
1e9e6365
HD
696 printk(KERN_ALERT
697 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
698 current->comm,
699 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
700 if (page)
701 dump_page(page);
1e9e6365 702 printk(KERN_ALERT
3dc14741
HD
703 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
704 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
705 /*
706 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
707 */
708 if (vma->vm_ops)
071361d3
JP
709 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
710 vma->vm_ops->fault);
3dc14741 711 if (vma->vm_file && vma->vm_file->f_op)
071361d3
JP
712 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
713 vma->vm_file->f_op->mmap);
b5810039 714 dump_stack();
373d4d09 715 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
716}
717
2ec74c3e 718static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
719{
720 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
721}
722
ee498ed7 723/*
7e675137 724 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 725 *
7e675137
NP
726 * "Special" mappings do not wish to be associated with a "struct page" (either
727 * it doesn't exist, or it exists but they don't want to touch it). In this
728 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 729 *
7e675137
NP
730 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
731 * pte bit, in which case this function is trivial. Secondly, an architecture
732 * may not have a spare pte bit, which requires a more complicated scheme,
733 * described below.
734 *
735 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
736 * special mapping (even if there are underlying and valid "struct pages").
737 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 738 *
b379d790
JH
739 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
740 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
741 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
742 * mapping will always honor the rule
6aab341e
LT
743 *
744 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
745 *
7e675137
NP
746 * And for normal mappings this is false.
747 *
748 * This restricts such mappings to be a linear translation from virtual address
749 * to pfn. To get around this restriction, we allow arbitrary mappings so long
750 * as the vma is not a COW mapping; in that case, we know that all ptes are
751 * special (because none can have been COWed).
b379d790 752 *
b379d790 753 *
7e675137 754 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
755 *
756 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
757 * page" backing, however the difference is that _all_ pages with a struct
758 * page (that is, those where pfn_valid is true) are refcounted and considered
759 * normal pages by the VM. The disadvantage is that pages are refcounted
760 * (which can be slower and simply not an option for some PFNMAP users). The
761 * advantage is that we don't have to follow the strict linearity rule of
762 * PFNMAP mappings in order to support COWable mappings.
763 *
ee498ed7 764 */
7e675137
NP
765#ifdef __HAVE_ARCH_PTE_SPECIAL
766# define HAVE_PTE_SPECIAL 1
767#else
768# define HAVE_PTE_SPECIAL 0
769#endif
770struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
771 pte_t pte)
ee498ed7 772{
22b31eec 773 unsigned long pfn = pte_pfn(pte);
7e675137
NP
774
775 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
776 if (likely(!pte_special(pte)))
777 goto check_pfn;
a13ea5b7
HD
778 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
779 return NULL;
62eede62 780 if (!is_zero_pfn(pfn))
22b31eec 781 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
782 return NULL;
783 }
784
785 /* !HAVE_PTE_SPECIAL case follows: */
786
b379d790
JH
787 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
788 if (vma->vm_flags & VM_MIXEDMAP) {
789 if (!pfn_valid(pfn))
790 return NULL;
791 goto out;
792 } else {
7e675137
NP
793 unsigned long off;
794 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
795 if (pfn == vma->vm_pgoff + off)
796 return NULL;
797 if (!is_cow_mapping(vma->vm_flags))
798 return NULL;
799 }
6aab341e
LT
800 }
801
62eede62
HD
802 if (is_zero_pfn(pfn))
803 return NULL;
22b31eec
HD
804check_pfn:
805 if (unlikely(pfn > highest_memmap_pfn)) {
806 print_bad_pte(vma, addr, pte, NULL);
807 return NULL;
808 }
6aab341e
LT
809
810 /*
7e675137 811 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 812 * eg. VDSO mappings can cause them to exist.
6aab341e 813 */
b379d790 814out:
6aab341e 815 return pfn_to_page(pfn);
ee498ed7
HD
816}
817
1da177e4
LT
818/*
819 * copy one vm_area from one task to the other. Assumes the page tables
820 * already present in the new task to be cleared in the whole range
821 * covered by this vma.
1da177e4
LT
822 */
823
570a335b 824static inline unsigned long
1da177e4 825copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 826 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 827 unsigned long addr, int *rss)
1da177e4 828{
b5810039 829 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
830 pte_t pte = *src_pte;
831 struct page *page;
1da177e4
LT
832
833 /* pte contains position in swap or file, so copy. */
834 if (unlikely(!pte_present(pte))) {
835 if (!pte_file(pte)) {
0697212a
CL
836 swp_entry_t entry = pte_to_swp_entry(pte);
837
570a335b
HD
838 if (swap_duplicate(entry) < 0)
839 return entry.val;
840
1da177e4
LT
841 /* make sure dst_mm is on swapoff's mmlist. */
842 if (unlikely(list_empty(&dst_mm->mmlist))) {
843 spin_lock(&mmlist_lock);
f412ac08
HD
844 if (list_empty(&dst_mm->mmlist))
845 list_add(&dst_mm->mmlist,
846 &src_mm->mmlist);
1da177e4
LT
847 spin_unlock(&mmlist_lock);
848 }
b084d435
KH
849 if (likely(!non_swap_entry(entry)))
850 rss[MM_SWAPENTS]++;
9f9f1acd
KK
851 else if (is_migration_entry(entry)) {
852 page = migration_entry_to_page(entry);
853
854 if (PageAnon(page))
855 rss[MM_ANONPAGES]++;
856 else
857 rss[MM_FILEPAGES]++;
858
859 if (is_write_migration_entry(entry) &&
860 is_cow_mapping(vm_flags)) {
861 /*
862 * COW mappings require pages in both
863 * parent and child to be set to read.
864 */
865 make_migration_entry_read(&entry);
866 pte = swp_entry_to_pte(entry);
867 set_pte_at(src_mm, addr, src_pte, pte);
868 }
0697212a 869 }
1da177e4 870 }
ae859762 871 goto out_set_pte;
1da177e4
LT
872 }
873
1da177e4
LT
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
67121172 878 if (is_cow_mapping(vm_flags)) {
1da177e4 879 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 880 pte = pte_wrprotect(pte);
1da177e4
LT
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
6aab341e
LT
890
891 page = vm_normal_page(vma, addr, pte);
892 if (page) {
893 get_page(page);
21333b2b 894 page_dup_rmap(page);
d559db08
KH
895 if (PageAnon(page))
896 rss[MM_ANONPAGES]++;
897 else
898 rss[MM_FILEPAGES]++;
6aab341e 899 }
ae859762
HD
900
901out_set_pte:
902 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 903 return 0;
1da177e4
LT
904}
905
71e3aac0
AA
906int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
908 unsigned long addr, unsigned long end)
1da177e4 909{
c36987e2 910 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 911 pte_t *src_pte, *dst_pte;
c74df32c 912 spinlock_t *src_ptl, *dst_ptl;
e040f218 913 int progress = 0;
d559db08 914 int rss[NR_MM_COUNTERS];
570a335b 915 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
916
917again:
d559db08
KH
918 init_rss_vec(rss);
919
c74df32c 920 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
921 if (!dst_pte)
922 return -ENOMEM;
ece0e2b6 923 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 924 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 925 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
926 orig_src_pte = src_pte;
927 orig_dst_pte = dst_pte;
6606c3e0 928 arch_enter_lazy_mmu_mode();
1da177e4 929
1da177e4
LT
930 do {
931 /*
932 * We are holding two locks at this point - either of them
933 * could generate latencies in another task on another CPU.
934 */
e040f218
HD
935 if (progress >= 32) {
936 progress = 0;
937 if (need_resched() ||
95c354fe 938 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
939 break;
940 }
1da177e4
LT
941 if (pte_none(*src_pte)) {
942 progress++;
943 continue;
944 }
570a335b
HD
945 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
946 vma, addr, rss);
947 if (entry.val)
948 break;
1da177e4
LT
949 progress += 8;
950 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 951
6606c3e0 952 arch_leave_lazy_mmu_mode();
c74df32c 953 spin_unlock(src_ptl);
ece0e2b6 954 pte_unmap(orig_src_pte);
d559db08 955 add_mm_rss_vec(dst_mm, rss);
c36987e2 956 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 957 cond_resched();
570a335b
HD
958
959 if (entry.val) {
960 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
961 return -ENOMEM;
962 progress = 0;
963 }
1da177e4
LT
964 if (addr != end)
965 goto again;
966 return 0;
967}
968
969static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
971 unsigned long addr, unsigned long end)
972{
973 pmd_t *src_pmd, *dst_pmd;
974 unsigned long next;
975
976 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
977 if (!dst_pmd)
978 return -ENOMEM;
979 src_pmd = pmd_offset(src_pud, addr);
980 do {
981 next = pmd_addr_end(addr, end);
71e3aac0
AA
982 if (pmd_trans_huge(*src_pmd)) {
983 int err;
14d1a55c 984 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
985 err = copy_huge_pmd(dst_mm, src_mm,
986 dst_pmd, src_pmd, addr, vma);
987 if (err == -ENOMEM)
988 return -ENOMEM;
989 if (!err)
990 continue;
991 /* fall through */
992 }
1da177e4
LT
993 if (pmd_none_or_clear_bad(src_pmd))
994 continue;
995 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
996 vma, addr, next))
997 return -ENOMEM;
998 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
999 return 0;
1000}
1001
1002static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1004 unsigned long addr, unsigned long end)
1005{
1006 pud_t *src_pud, *dst_pud;
1007 unsigned long next;
1008
1009 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1010 if (!dst_pud)
1011 return -ENOMEM;
1012 src_pud = pud_offset(src_pgd, addr);
1013 do {
1014 next = pud_addr_end(addr, end);
1015 if (pud_none_or_clear_bad(src_pud))
1016 continue;
1017 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1018 vma, addr, next))
1019 return -ENOMEM;
1020 } while (dst_pud++, src_pud++, addr = next, addr != end);
1021 return 0;
1022}
1023
1024int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 struct vm_area_struct *vma)
1026{
1027 pgd_t *src_pgd, *dst_pgd;
1028 unsigned long next;
1029 unsigned long addr = vma->vm_start;
1030 unsigned long end = vma->vm_end;
2ec74c3e
SG
1031 unsigned long mmun_start; /* For mmu_notifiers */
1032 unsigned long mmun_end; /* For mmu_notifiers */
1033 bool is_cow;
cddb8a5c 1034 int ret;
1da177e4 1035
d992895b
NP
1036 /*
1037 * Don't copy ptes where a page fault will fill them correctly.
1038 * Fork becomes much lighter when there are big shared or private
1039 * readonly mappings. The tradeoff is that copy_page_range is more
1040 * efficient than faulting.
1041 */
4b6e1e37
KK
1042 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1043 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1044 if (!vma->anon_vma)
1045 return 0;
1046 }
1047
1da177e4
LT
1048 if (is_vm_hugetlb_page(vma))
1049 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1050
b3b9c293 1051 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1052 /*
1053 * We do not free on error cases below as remove_vma
1054 * gets called on error from higher level routine
1055 */
5180da41 1056 ret = track_pfn_copy(vma);
2ab64037 1057 if (ret)
1058 return ret;
1059 }
1060
cddb8a5c
AA
1061 /*
1062 * We need to invalidate the secondary MMU mappings only when
1063 * there could be a permission downgrade on the ptes of the
1064 * parent mm. And a permission downgrade will only happen if
1065 * is_cow_mapping() returns true.
1066 */
2ec74c3e
SG
1067 is_cow = is_cow_mapping(vma->vm_flags);
1068 mmun_start = addr;
1069 mmun_end = end;
1070 if (is_cow)
1071 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1072 mmun_end);
cddb8a5c
AA
1073
1074 ret = 0;
1da177e4
LT
1075 dst_pgd = pgd_offset(dst_mm, addr);
1076 src_pgd = pgd_offset(src_mm, addr);
1077 do {
1078 next = pgd_addr_end(addr, end);
1079 if (pgd_none_or_clear_bad(src_pgd))
1080 continue;
cddb8a5c
AA
1081 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1082 vma, addr, next))) {
1083 ret = -ENOMEM;
1084 break;
1085 }
1da177e4 1086 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1087
2ec74c3e
SG
1088 if (is_cow)
1089 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1090 return ret;
1da177e4
LT
1091}
1092
51c6f666 1093static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1094 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1095 unsigned long addr, unsigned long end,
97a89413 1096 struct zap_details *details)
1da177e4 1097{
b5810039 1098 struct mm_struct *mm = tlb->mm;
d16dfc55 1099 int force_flush = 0;
d559db08 1100 int rss[NR_MM_COUNTERS];
97a89413 1101 spinlock_t *ptl;
5f1a1907 1102 pte_t *start_pte;
97a89413 1103 pte_t *pte;
e6c495a9 1104 unsigned long range_start = addr;
d559db08 1105
d16dfc55 1106again:
e303297e 1107 init_rss_vec(rss);
5f1a1907
SR
1108 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1109 pte = start_pte;
6606c3e0 1110 arch_enter_lazy_mmu_mode();
1da177e4
LT
1111 do {
1112 pte_t ptent = *pte;
51c6f666 1113 if (pte_none(ptent)) {
1da177e4 1114 continue;
51c6f666 1115 }
6f5e6b9e 1116
1da177e4 1117 if (pte_present(ptent)) {
ee498ed7 1118 struct page *page;
51c6f666 1119
6aab341e 1120 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1121 if (unlikely(details) && page) {
1122 /*
1123 * unmap_shared_mapping_pages() wants to
1124 * invalidate cache without truncating:
1125 * unmap shared but keep private pages.
1126 */
1127 if (details->check_mapping &&
1128 details->check_mapping != page->mapping)
1129 continue;
1130 /*
1131 * Each page->index must be checked when
1132 * invalidating or truncating nonlinear.
1133 */
1134 if (details->nonlinear_vma &&
1135 (page->index < details->first_index ||
1136 page->index > details->last_index))
1137 continue;
1138 }
b5810039 1139 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1140 tlb->fullmm);
1da177e4
LT
1141 tlb_remove_tlb_entry(tlb, pte, addr);
1142 if (unlikely(!page))
1143 continue;
1144 if (unlikely(details) && details->nonlinear_vma
1145 && linear_page_index(details->nonlinear_vma,
1146 addr) != page->index)
b5810039 1147 set_pte_at(mm, addr, pte,
1da177e4 1148 pgoff_to_pte(page->index));
1da177e4 1149 if (PageAnon(page))
d559db08 1150 rss[MM_ANONPAGES]--;
6237bcd9
HD
1151 else {
1152 if (pte_dirty(ptent))
1153 set_page_dirty(page);
4917e5d0
JW
1154 if (pte_young(ptent) &&
1155 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1156 mark_page_accessed(page);
d559db08 1157 rss[MM_FILEPAGES]--;
6237bcd9 1158 }
edc315fd 1159 page_remove_rmap(page);
3dc14741
HD
1160 if (unlikely(page_mapcount(page) < 0))
1161 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1162 force_flush = !__tlb_remove_page(tlb, page);
1163 if (force_flush)
1164 break;
1da177e4
LT
1165 continue;
1166 }
1167 /*
1168 * If details->check_mapping, we leave swap entries;
1169 * if details->nonlinear_vma, we leave file entries.
1170 */
1171 if (unlikely(details))
1172 continue;
2509ef26
HD
1173 if (pte_file(ptent)) {
1174 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1175 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1176 } else {
1177 swp_entry_t entry = pte_to_swp_entry(ptent);
1178
1179 if (!non_swap_entry(entry))
1180 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1181 else if (is_migration_entry(entry)) {
1182 struct page *page;
1183
1184 page = migration_entry_to_page(entry);
1185
1186 if (PageAnon(page))
1187 rss[MM_ANONPAGES]--;
1188 else
1189 rss[MM_FILEPAGES]--;
1190 }
b084d435
KH
1191 if (unlikely(!free_swap_and_cache(entry)))
1192 print_bad_pte(vma, addr, ptent, NULL);
1193 }
9888a1ca 1194 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1195 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1196
d559db08 1197 add_mm_rss_vec(mm, rss);
6606c3e0 1198 arch_leave_lazy_mmu_mode();
5f1a1907 1199 pte_unmap_unlock(start_pte, ptl);
51c6f666 1200
d16dfc55
PZ
1201 /*
1202 * mmu_gather ran out of room to batch pages, we break out of
1203 * the PTE lock to avoid doing the potential expensive TLB invalidate
1204 * and page-free while holding it.
1205 */
1206 if (force_flush) {
1207 force_flush = 0;
597e1c35
AS
1208
1209#ifdef HAVE_GENERIC_MMU_GATHER
e6c495a9
VG
1210 tlb->start = range_start;
1211 tlb->end = addr;
597e1c35 1212#endif
d16dfc55 1213 tlb_flush_mmu(tlb);
e6c495a9
VG
1214 if (addr != end) {
1215 range_start = addr;
d16dfc55 1216 goto again;
e6c495a9 1217 }
d16dfc55
PZ
1218 }
1219
51c6f666 1220 return addr;
1da177e4
LT
1221}
1222
51c6f666 1223static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1224 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1225 unsigned long addr, unsigned long end,
97a89413 1226 struct zap_details *details)
1da177e4
LT
1227{
1228 pmd_t *pmd;
1229 unsigned long next;
1230
1231 pmd = pmd_offset(pud, addr);
1232 do {
1233 next = pmd_addr_end(addr, end);
71e3aac0 1234 if (pmd_trans_huge(*pmd)) {
1a5a9906 1235 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1236#ifdef CONFIG_DEBUG_VM
1237 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1238 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1239 __func__, addr, end,
1240 vma->vm_start,
1241 vma->vm_end);
1242 BUG();
1243 }
1244#endif
e180377f 1245 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1246 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1247 goto next;
71e3aac0
AA
1248 /* fall through */
1249 }
1a5a9906
AA
1250 /*
1251 * Here there can be other concurrent MADV_DONTNEED or
1252 * trans huge page faults running, and if the pmd is
1253 * none or trans huge it can change under us. This is
1254 * because MADV_DONTNEED holds the mmap_sem in read
1255 * mode.
1256 */
1257 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1258 goto next;
97a89413 1259 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1260next:
97a89413
PZ
1261 cond_resched();
1262 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1263
1264 return addr;
1da177e4
LT
1265}
1266
51c6f666 1267static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1268 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1269 unsigned long addr, unsigned long end,
97a89413 1270 struct zap_details *details)
1da177e4
LT
1271{
1272 pud_t *pud;
1273 unsigned long next;
1274
1275 pud = pud_offset(pgd, addr);
1276 do {
1277 next = pud_addr_end(addr, end);
97a89413 1278 if (pud_none_or_clear_bad(pud))
1da177e4 1279 continue;
97a89413
PZ
1280 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1281 } while (pud++, addr = next, addr != end);
51c6f666
RH
1282
1283 return addr;
1da177e4
LT
1284}
1285
038c7aa1
AV
1286static void unmap_page_range(struct mmu_gather *tlb,
1287 struct vm_area_struct *vma,
1288 unsigned long addr, unsigned long end,
1289 struct zap_details *details)
1da177e4
LT
1290{
1291 pgd_t *pgd;
1292 unsigned long next;
1293
1294 if (details && !details->check_mapping && !details->nonlinear_vma)
1295 details = NULL;
1296
1297 BUG_ON(addr >= end);
569b846d 1298 mem_cgroup_uncharge_start();
1da177e4
LT
1299 tlb_start_vma(tlb, vma);
1300 pgd = pgd_offset(vma->vm_mm, addr);
1301 do {
1302 next = pgd_addr_end(addr, end);
97a89413 1303 if (pgd_none_or_clear_bad(pgd))
1da177e4 1304 continue;
97a89413
PZ
1305 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1306 } while (pgd++, addr = next, addr != end);
1da177e4 1307 tlb_end_vma(tlb, vma);
569b846d 1308 mem_cgroup_uncharge_end();
1da177e4 1309}
51c6f666 1310
f5cc4eef
AV
1311
1312static void unmap_single_vma(struct mmu_gather *tlb,
1313 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1314 unsigned long end_addr,
f5cc4eef
AV
1315 struct zap_details *details)
1316{
1317 unsigned long start = max(vma->vm_start, start_addr);
1318 unsigned long end;
1319
1320 if (start >= vma->vm_end)
1321 return;
1322 end = min(vma->vm_end, end_addr);
1323 if (end <= vma->vm_start)
1324 return;
1325
cbc91f71
SD
1326 if (vma->vm_file)
1327 uprobe_munmap(vma, start, end);
1328
b3b9c293 1329 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1330 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1331
1332 if (start != end) {
1333 if (unlikely(is_vm_hugetlb_page(vma))) {
1334 /*
1335 * It is undesirable to test vma->vm_file as it
1336 * should be non-null for valid hugetlb area.
1337 * However, vm_file will be NULL in the error
1338 * cleanup path of do_mmap_pgoff. When
1339 * hugetlbfs ->mmap method fails,
1340 * do_mmap_pgoff() nullifies vma->vm_file
1341 * before calling this function to clean up.
1342 * Since no pte has actually been setup, it is
1343 * safe to do nothing in this case.
1344 */
24669e58
AK
1345 if (vma->vm_file) {
1346 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1347 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1348 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1349 }
f5cc4eef
AV
1350 } else
1351 unmap_page_range(tlb, vma, start, end, details);
1352 }
1da177e4
LT
1353}
1354
1da177e4
LT
1355/**
1356 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1357 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1358 * @vma: the starting vma
1359 * @start_addr: virtual address at which to start unmapping
1360 * @end_addr: virtual address at which to end unmapping
1da177e4 1361 *
508034a3 1362 * Unmap all pages in the vma list.
1da177e4 1363 *
1da177e4
LT
1364 * Only addresses between `start' and `end' will be unmapped.
1365 *
1366 * The VMA list must be sorted in ascending virtual address order.
1367 *
1368 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1369 * range after unmap_vmas() returns. So the only responsibility here is to
1370 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1371 * drops the lock and schedules.
1372 */
6e8bb019 1373void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1374 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1375 unsigned long end_addr)
1da177e4 1376{
cddb8a5c 1377 struct mm_struct *mm = vma->vm_mm;
1da177e4 1378
cddb8a5c 1379 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1380 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1381 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1382 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1383}
1384
1385/**
1386 * zap_page_range - remove user pages in a given range
1387 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1388 * @start: starting address of pages to zap
1da177e4
LT
1389 * @size: number of bytes to zap
1390 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1391 *
1392 * Caller must protect the VMA list
1da177e4 1393 */
7e027b14 1394void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1395 unsigned long size, struct zap_details *details)
1396{
1397 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1398 struct mmu_gather tlb;
7e027b14 1399 unsigned long end = start + size;
1da177e4 1400
1da177e4 1401 lru_add_drain();
d16dfc55 1402 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1403 update_hiwater_rss(mm);
7e027b14
LT
1404 mmu_notifier_invalidate_range_start(mm, start, end);
1405 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1406 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1407 mmu_notifier_invalidate_range_end(mm, start, end);
1408 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1409}
1410
f5cc4eef
AV
1411/**
1412 * zap_page_range_single - remove user pages in a given range
1413 * @vma: vm_area_struct holding the applicable pages
1414 * @address: starting address of pages to zap
1415 * @size: number of bytes to zap
1416 * @details: details of nonlinear truncation or shared cache invalidation
1417 *
1418 * The range must fit into one VMA.
1da177e4 1419 */
f5cc4eef 1420static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1421 unsigned long size, struct zap_details *details)
1422{
1423 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1424 struct mmu_gather tlb;
1da177e4 1425 unsigned long end = address + size;
1da177e4 1426
1da177e4 1427 lru_add_drain();
d16dfc55 1428 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1429 update_hiwater_rss(mm);
f5cc4eef 1430 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1431 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1432 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1433 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1434}
1435
c627f9cc
JS
1436/**
1437 * zap_vma_ptes - remove ptes mapping the vma
1438 * @vma: vm_area_struct holding ptes to be zapped
1439 * @address: starting address of pages to zap
1440 * @size: number of bytes to zap
1441 *
1442 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1443 *
1444 * The entire address range must be fully contained within the vma.
1445 *
1446 * Returns 0 if successful.
1447 */
1448int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1449 unsigned long size)
1450{
1451 if (address < vma->vm_start || address + size > vma->vm_end ||
1452 !(vma->vm_flags & VM_PFNMAP))
1453 return -1;
f5cc4eef 1454 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1455 return 0;
1456}
1457EXPORT_SYMBOL_GPL(zap_vma_ptes);
1458
142762bd 1459/**
240aadee 1460 * follow_page_mask - look up a page descriptor from a user-virtual address
142762bd
JW
1461 * @vma: vm_area_struct mapping @address
1462 * @address: virtual address to look up
1463 * @flags: flags modifying lookup behaviour
240aadee 1464 * @page_mask: on output, *page_mask is set according to the size of the page
142762bd
JW
1465 *
1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467 *
1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469 * an error pointer if there is a mapping to something not represented
1470 * by a page descriptor (see also vm_normal_page()).
1da177e4 1471 */
240aadee
ML
1472struct page *follow_page_mask(struct vm_area_struct *vma,
1473 unsigned long address, unsigned int flags,
1474 unsigned int *page_mask)
1da177e4
LT
1475{
1476 pgd_t *pgd;
1477 pud_t *pud;
1478 pmd_t *pmd;
1479 pte_t *ptep, pte;
deceb6cd 1480 spinlock_t *ptl;
1da177e4 1481 struct page *page;
6aab341e 1482 struct mm_struct *mm = vma->vm_mm;
1da177e4 1483
240aadee
ML
1484 *page_mask = 0;
1485
deceb6cd
HD
1486 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1487 if (!IS_ERR(page)) {
1488 BUG_ON(flags & FOLL_GET);
1489 goto out;
1490 }
1da177e4 1491
deceb6cd 1492 page = NULL;
1da177e4
LT
1493 pgd = pgd_offset(mm, address);
1494 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1495 goto no_page_table;
1da177e4
LT
1496
1497 pud = pud_offset(pgd, address);
ceb86879 1498 if (pud_none(*pud))
deceb6cd 1499 goto no_page_table;
8a07651e 1500 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1501 BUG_ON(flags & FOLL_GET);
1502 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1503 goto out;
1504 }
1505 if (unlikely(pud_bad(*pud)))
1506 goto no_page_table;
1507
1da177e4 1508 pmd = pmd_offset(pud, address);
aeed5fce 1509 if (pmd_none(*pmd))
deceb6cd 1510 goto no_page_table;
71e3aac0 1511 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1512 BUG_ON(flags & FOLL_GET);
1513 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1514 goto out;
deceb6cd 1515 }
0b9d7052
AA
1516 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1517 goto no_page_table;
71e3aac0 1518 if (pmd_trans_huge(*pmd)) {
500d65d4 1519 if (flags & FOLL_SPLIT) {
e180377f 1520 split_huge_page_pmd(vma, address, pmd);
500d65d4
AA
1521 goto split_fallthrough;
1522 }
71e3aac0
AA
1523 spin_lock(&mm->page_table_lock);
1524 if (likely(pmd_trans_huge(*pmd))) {
1525 if (unlikely(pmd_trans_splitting(*pmd))) {
1526 spin_unlock(&mm->page_table_lock);
1527 wait_split_huge_page(vma->anon_vma, pmd);
1528 } else {
b676b293 1529 page = follow_trans_huge_pmd(vma, address,
71e3aac0
AA
1530 pmd, flags);
1531 spin_unlock(&mm->page_table_lock);
240aadee 1532 *page_mask = HPAGE_PMD_NR - 1;
71e3aac0
AA
1533 goto out;
1534 }
1535 } else
1536 spin_unlock(&mm->page_table_lock);
1537 /* fall through */
1538 }
500d65d4 1539split_fallthrough:
aeed5fce
HD
1540 if (unlikely(pmd_bad(*pmd)))
1541 goto no_page_table;
1542
deceb6cd 1543 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1544
1545 pte = *ptep;
5117b3b8
HD
1546 if (!pte_present(pte)) {
1547 swp_entry_t entry;
1548 /*
1549 * KSM's break_ksm() relies upon recognizing a ksm page
1550 * even while it is being migrated, so for that case we
1551 * need migration_entry_wait().
1552 */
1553 if (likely(!(flags & FOLL_MIGRATION)))
1554 goto no_page;
1555 if (pte_none(pte) || pte_file(pte))
1556 goto no_page;
1557 entry = pte_to_swp_entry(pte);
1558 if (!is_migration_entry(entry))
1559 goto no_page;
1560 pte_unmap_unlock(ptep, ptl);
1561 migration_entry_wait(mm, pmd, address);
1562 goto split_fallthrough;
1563 }
0b9d7052
AA
1564 if ((flags & FOLL_NUMA) && pte_numa(pte))
1565 goto no_page;
deceb6cd
HD
1566 if ((flags & FOLL_WRITE) && !pte_write(pte))
1567 goto unlock;
a13ea5b7 1568
6aab341e 1569 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1570 if (unlikely(!page)) {
1571 if ((flags & FOLL_DUMP) ||
62eede62 1572 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1573 goto bad_page;
1574 page = pte_page(pte);
1575 }
1da177e4 1576
deceb6cd 1577 if (flags & FOLL_GET)
70b50f94 1578 get_page_foll(page);
deceb6cd
HD
1579 if (flags & FOLL_TOUCH) {
1580 if ((flags & FOLL_WRITE) &&
1581 !pte_dirty(pte) && !PageDirty(page))
1582 set_page_dirty(page);
bd775c42
KM
1583 /*
1584 * pte_mkyoung() would be more correct here, but atomic care
1585 * is needed to avoid losing the dirty bit: it is easier to use
1586 * mark_page_accessed().
1587 */
deceb6cd
HD
1588 mark_page_accessed(page);
1589 }
a1fde08c 1590 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1591 /*
1592 * The preliminary mapping check is mainly to avoid the
1593 * pointless overhead of lock_page on the ZERO_PAGE
1594 * which might bounce very badly if there is contention.
1595 *
1596 * If the page is already locked, we don't need to
1597 * handle it now - vmscan will handle it later if and
1598 * when it attempts to reclaim the page.
1599 */
1600 if (page->mapping && trylock_page(page)) {
1601 lru_add_drain(); /* push cached pages to LRU */
1602 /*
e6c509f8
HD
1603 * Because we lock page here, and migration is
1604 * blocked by the pte's page reference, and we
1605 * know the page is still mapped, we don't even
1606 * need to check for file-cache page truncation.
110d74a9 1607 */
e6c509f8 1608 mlock_vma_page(page);
110d74a9
ML
1609 unlock_page(page);
1610 }
1611 }
deceb6cd
HD
1612unlock:
1613 pte_unmap_unlock(ptep, ptl);
1da177e4 1614out:
deceb6cd 1615 return page;
1da177e4 1616
89f5b7da
LT
1617bad_page:
1618 pte_unmap_unlock(ptep, ptl);
1619 return ERR_PTR(-EFAULT);
1620
1621no_page:
1622 pte_unmap_unlock(ptep, ptl);
1623 if (!pte_none(pte))
1624 return page;
8e4b9a60 1625
deceb6cd
HD
1626no_page_table:
1627 /*
1628 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1629 * has touched so far, we don't want to allocate unnecessary pages or
1630 * page tables. Return error instead of NULL to skip handle_mm_fault,
1631 * then get_dump_page() will return NULL to leave a hole in the dump.
1632 * But we can only make this optimization where a hole would surely
1633 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1634 */
8e4b9a60
HD
1635 if ((flags & FOLL_DUMP) &&
1636 (!vma->vm_ops || !vma->vm_ops->fault))
1637 return ERR_PTR(-EFAULT);
deceb6cd 1638 return page;
1da177e4
LT
1639}
1640
95042f9e
LT
1641static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1642{
a09a79f6
MP
1643 return stack_guard_page_start(vma, addr) ||
1644 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1645}
1646
0014bd99
HY
1647/**
1648 * __get_user_pages() - pin user pages in memory
1649 * @tsk: task_struct of target task
1650 * @mm: mm_struct of target mm
1651 * @start: starting user address
1652 * @nr_pages: number of pages from start to pin
1653 * @gup_flags: flags modifying pin behaviour
1654 * @pages: array that receives pointers to the pages pinned.
1655 * Should be at least nr_pages long. Or NULL, if caller
1656 * only intends to ensure the pages are faulted in.
1657 * @vmas: array of pointers to vmas corresponding to each page.
1658 * Or NULL if the caller does not require them.
1659 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1660 *
1661 * Returns number of pages pinned. This may be fewer than the number
1662 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1663 * were pinned, returns -errno. Each page returned must be released
1664 * with a put_page() call when it is finished with. vmas will only
1665 * remain valid while mmap_sem is held.
1666 *
1667 * Must be called with mmap_sem held for read or write.
1668 *
1669 * __get_user_pages walks a process's page tables and takes a reference to
1670 * each struct page that each user address corresponds to at a given
1671 * instant. That is, it takes the page that would be accessed if a user
1672 * thread accesses the given user virtual address at that instant.
1673 *
1674 * This does not guarantee that the page exists in the user mappings when
1675 * __get_user_pages returns, and there may even be a completely different
1676 * page there in some cases (eg. if mmapped pagecache has been invalidated
1677 * and subsequently re faulted). However it does guarantee that the page
1678 * won't be freed completely. And mostly callers simply care that the page
1679 * contains data that was valid *at some point in time*. Typically, an IO
1680 * or similar operation cannot guarantee anything stronger anyway because
1681 * locks can't be held over the syscall boundary.
1682 *
1683 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1684 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1685 * appropriate) must be called after the page is finished with, and
1686 * before put_page is called.
1687 *
1688 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1689 * or mmap_sem contention, and if waiting is needed to pin all pages,
1690 * *@nonblocking will be set to 0.
1691 *
1692 * In most cases, get_user_pages or get_user_pages_fast should be used
1693 * instead of __get_user_pages. __get_user_pages should be used only if
1694 * you need some special @gup_flags.
1695 */
28a35716
ML
1696long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1697 unsigned long start, unsigned long nr_pages,
1698 unsigned int gup_flags, struct page **pages,
1699 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 1700{
28a35716 1701 long i;
58fa879e 1702 unsigned long vm_flags;
240aadee 1703 unsigned int page_mask;
1da177e4 1704
28a35716 1705 if (!nr_pages)
900cf086 1706 return 0;
58fa879e
HD
1707
1708 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1709
1da177e4
LT
1710 /*
1711 * Require read or write permissions.
58fa879e 1712 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1713 */
58fa879e
HD
1714 vm_flags = (gup_flags & FOLL_WRITE) ?
1715 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1716 vm_flags &= (gup_flags & FOLL_FORCE) ?
1717 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
0b9d7052
AA
1718
1719 /*
1720 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1721 * would be called on PROT_NONE ranges. We must never invoke
1722 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1723 * page faults would unprotect the PROT_NONE ranges if
1724 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1725 * bitflag. So to avoid that, don't set FOLL_NUMA if
1726 * FOLL_FORCE is set.
1727 */
1728 if (!(gup_flags & FOLL_FORCE))
1729 gup_flags |= FOLL_NUMA;
1730
1da177e4
LT
1731 i = 0;
1732
1733 do {
deceb6cd 1734 struct vm_area_struct *vma;
1da177e4
LT
1735
1736 vma = find_extend_vma(mm, start);
e7f22e20 1737 if (!vma && in_gate_area(mm, start)) {
1da177e4 1738 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1739 pgd_t *pgd;
1740 pud_t *pud;
1741 pmd_t *pmd;
1742 pte_t *pte;
b291f000
NP
1743
1744 /* user gate pages are read-only */
58fa879e 1745 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1746 return i ? : -EFAULT;
1747 if (pg > TASK_SIZE)
1748 pgd = pgd_offset_k(pg);
1749 else
1750 pgd = pgd_offset_gate(mm, pg);
1751 BUG_ON(pgd_none(*pgd));
1752 pud = pud_offset(pgd, pg);
1753 BUG_ON(pud_none(*pud));
1754 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1755 if (pmd_none(*pmd))
1756 return i ? : -EFAULT;
f66055ab 1757 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1758 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1759 if (pte_none(*pte)) {
1760 pte_unmap(pte);
1761 return i ? : -EFAULT;
1762 }
95042f9e 1763 vma = get_gate_vma(mm);
1da177e4 1764 if (pages) {
de51257a
HD
1765 struct page *page;
1766
95042f9e 1767 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1768 if (!page) {
1769 if (!(gup_flags & FOLL_DUMP) &&
1770 is_zero_pfn(pte_pfn(*pte)))
1771 page = pte_page(*pte);
1772 else {
1773 pte_unmap(pte);
1774 return i ? : -EFAULT;
1775 }
1776 }
6aab341e 1777 pages[i] = page;
de51257a 1778 get_page(page);
1da177e4
LT
1779 }
1780 pte_unmap(pte);
240aadee 1781 page_mask = 0;
95042f9e 1782 goto next_page;
1da177e4
LT
1783 }
1784
b291f000
NP
1785 if (!vma ||
1786 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1787 !(vm_flags & vma->vm_flags))
1da177e4
LT
1788 return i ? : -EFAULT;
1789
2a15efc9
HD
1790 if (is_vm_hugetlb_page(vma)) {
1791 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1792 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1793 continue;
1794 }
deceb6cd 1795
1da177e4 1796 do {
08ef4729 1797 struct page *page;
58fa879e 1798 unsigned int foll_flags = gup_flags;
240aadee 1799 unsigned int page_increm;
1da177e4 1800
462e00cc 1801 /*
4779280d 1802 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1803 * pages and potentially allocating memory.
462e00cc 1804 */
1c3aff1c 1805 if (unlikely(fatal_signal_pending(current)))
4779280d 1806 return i ? i : -ERESTARTSYS;
462e00cc 1807
deceb6cd 1808 cond_resched();
240aadee
ML
1809 while (!(page = follow_page_mask(vma, start,
1810 foll_flags, &page_mask))) {
deceb6cd 1811 int ret;
53a7706d
ML
1812 unsigned int fault_flags = 0;
1813
a09a79f6
MP
1814 /* For mlock, just skip the stack guard page. */
1815 if (foll_flags & FOLL_MLOCK) {
1816 if (stack_guard_page(vma, start))
1817 goto next_page;
1818 }
53a7706d
ML
1819 if (foll_flags & FOLL_WRITE)
1820 fault_flags |= FAULT_FLAG_WRITE;
1821 if (nonblocking)
1822 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1823 if (foll_flags & FOLL_NOWAIT)
1824 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1825
d26ed650 1826 ret = handle_mm_fault(mm, vma, start,
53a7706d 1827 fault_flags);
d26ed650 1828
83c54070
NP
1829 if (ret & VM_FAULT_ERROR) {
1830 if (ret & VM_FAULT_OOM)
1831 return i ? i : -ENOMEM;
69ebb83e
HY
1832 if (ret & (VM_FAULT_HWPOISON |
1833 VM_FAULT_HWPOISON_LARGE)) {
1834 if (i)
1835 return i;
1836 else if (gup_flags & FOLL_HWPOISON)
1837 return -EHWPOISON;
1838 else
1839 return -EFAULT;
1840 }
1841 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1842 return i ? i : -EFAULT;
1843 BUG();
1844 }
e7f22e20
SW
1845
1846 if (tsk) {
1847 if (ret & VM_FAULT_MAJOR)
1848 tsk->maj_flt++;
1849 else
1850 tsk->min_flt++;
1851 }
83c54070 1852
53a7706d 1853 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1854 if (nonblocking)
1855 *nonblocking = 0;
53a7706d
ML
1856 return i;
1857 }
1858
a68d2ebc 1859 /*
83c54070
NP
1860 * The VM_FAULT_WRITE bit tells us that
1861 * do_wp_page has broken COW when necessary,
1862 * even if maybe_mkwrite decided not to set
1863 * pte_write. We can thus safely do subsequent
878b63ac
HD
1864 * page lookups as if they were reads. But only
1865 * do so when looping for pte_write is futile:
1866 * in some cases userspace may also be wanting
1867 * to write to the gotten user page, which a
1868 * read fault here might prevent (a readonly
1869 * page might get reCOWed by userspace write).
a68d2ebc 1870 */
878b63ac
HD
1871 if ((ret & VM_FAULT_WRITE) &&
1872 !(vma->vm_flags & VM_WRITE))
deceb6cd 1873 foll_flags &= ~FOLL_WRITE;
83c54070 1874
7f7bbbe5 1875 cond_resched();
1da177e4 1876 }
89f5b7da
LT
1877 if (IS_ERR(page))
1878 return i ? i : PTR_ERR(page);
1da177e4 1879 if (pages) {
08ef4729 1880 pages[i] = page;
03beb076 1881
a6f36be3 1882 flush_anon_page(vma, page, start);
08ef4729 1883 flush_dcache_page(page);
240aadee 1884 page_mask = 0;
1da177e4 1885 }
95042f9e 1886next_page:
240aadee 1887 if (vmas) {
1da177e4 1888 vmas[i] = vma;
240aadee
ML
1889 page_mask = 0;
1890 }
1891 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1892 if (page_increm > nr_pages)
1893 page_increm = nr_pages;
1894 i += page_increm;
1895 start += page_increm * PAGE_SIZE;
1896 nr_pages -= page_increm;
9d73777e
PZ
1897 } while (nr_pages && start < vma->vm_end);
1898 } while (nr_pages);
1da177e4
LT
1899 return i;
1900}
0014bd99 1901EXPORT_SYMBOL(__get_user_pages);
b291f000 1902
2efaca92
BH
1903/*
1904 * fixup_user_fault() - manually resolve a user page fault
1905 * @tsk: the task_struct to use for page fault accounting, or
1906 * NULL if faults are not to be recorded.
1907 * @mm: mm_struct of target mm
1908 * @address: user address
1909 * @fault_flags:flags to pass down to handle_mm_fault()
1910 *
1911 * This is meant to be called in the specific scenario where for locking reasons
1912 * we try to access user memory in atomic context (within a pagefault_disable()
1913 * section), this returns -EFAULT, and we want to resolve the user fault before
1914 * trying again.
1915 *
1916 * Typically this is meant to be used by the futex code.
1917 *
1918 * The main difference with get_user_pages() is that this function will
1919 * unconditionally call handle_mm_fault() which will in turn perform all the
1920 * necessary SW fixup of the dirty and young bits in the PTE, while
1921 * handle_mm_fault() only guarantees to update these in the struct page.
1922 *
1923 * This is important for some architectures where those bits also gate the
1924 * access permission to the page because they are maintained in software. On
1925 * such architectures, gup() will not be enough to make a subsequent access
1926 * succeed.
1927 *
1928 * This should be called with the mm_sem held for read.
1929 */
1930int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1931 unsigned long address, unsigned int fault_flags)
1932{
1933 struct vm_area_struct *vma;
1934 int ret;
1935
1936 vma = find_extend_vma(mm, address);
1937 if (!vma || address < vma->vm_start)
1938 return -EFAULT;
1939
1940 ret = handle_mm_fault(mm, vma, address, fault_flags);
1941 if (ret & VM_FAULT_ERROR) {
1942 if (ret & VM_FAULT_OOM)
1943 return -ENOMEM;
1944 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1945 return -EHWPOISON;
1946 if (ret & VM_FAULT_SIGBUS)
1947 return -EFAULT;
1948 BUG();
1949 }
1950 if (tsk) {
1951 if (ret & VM_FAULT_MAJOR)
1952 tsk->maj_flt++;
1953 else
1954 tsk->min_flt++;
1955 }
1956 return 0;
1957}
1958
1959/*
d2bf6be8 1960 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1961 * @tsk: the task_struct to use for page fault accounting, or
1962 * NULL if faults are not to be recorded.
d2bf6be8
NP
1963 * @mm: mm_struct of target mm
1964 * @start: starting user address
9d73777e 1965 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1966 * @write: whether pages will be written to by the caller
1967 * @force: whether to force write access even if user mapping is
1968 * readonly. This will result in the page being COWed even
1969 * in MAP_SHARED mappings. You do not want this.
1970 * @pages: array that receives pointers to the pages pinned.
1971 * Should be at least nr_pages long. Or NULL, if caller
1972 * only intends to ensure the pages are faulted in.
1973 * @vmas: array of pointers to vmas corresponding to each page.
1974 * Or NULL if the caller does not require them.
1975 *
1976 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1977 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1978 * were pinned, returns -errno. Each page returned must be released
1979 * with a put_page() call when it is finished with. vmas will only
1980 * remain valid while mmap_sem is held.
1981 *
1982 * Must be called with mmap_sem held for read or write.
1983 *
1984 * get_user_pages walks a process's page tables and takes a reference to
1985 * each struct page that each user address corresponds to at a given
1986 * instant. That is, it takes the page that would be accessed if a user
1987 * thread accesses the given user virtual address at that instant.
1988 *
1989 * This does not guarantee that the page exists in the user mappings when
1990 * get_user_pages returns, and there may even be a completely different
1991 * page there in some cases (eg. if mmapped pagecache has been invalidated
1992 * and subsequently re faulted). However it does guarantee that the page
1993 * won't be freed completely. And mostly callers simply care that the page
1994 * contains data that was valid *at some point in time*. Typically, an IO
1995 * or similar operation cannot guarantee anything stronger anyway because
1996 * locks can't be held over the syscall boundary.
1997 *
1998 * If write=0, the page must not be written to. If the page is written to,
1999 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2000 * after the page is finished with, and before put_page is called.
2001 *
2002 * get_user_pages is typically used for fewer-copy IO operations, to get a
2003 * handle on the memory by some means other than accesses via the user virtual
2004 * addresses. The pages may be submitted for DMA to devices or accessed via
2005 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2006 * use the correct cache flushing APIs.
2007 *
2008 * See also get_user_pages_fast, for performance critical applications.
2009 */
28a35716
ML
2010long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2011 unsigned long start, unsigned long nr_pages, int write,
2012 int force, struct page **pages, struct vm_area_struct **vmas)
b291f000 2013{
58fa879e 2014 int flags = FOLL_TOUCH;
b291f000 2015
58fa879e
HD
2016 if (pages)
2017 flags |= FOLL_GET;
b291f000 2018 if (write)
58fa879e 2019 flags |= FOLL_WRITE;
b291f000 2020 if (force)
58fa879e 2021 flags |= FOLL_FORCE;
b291f000 2022
53a7706d
ML
2023 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2024 NULL);
b291f000 2025}
1da177e4
LT
2026EXPORT_SYMBOL(get_user_pages);
2027
f3e8fccd
HD
2028/**
2029 * get_dump_page() - pin user page in memory while writing it to core dump
2030 * @addr: user address
2031 *
2032 * Returns struct page pointer of user page pinned for dump,
2033 * to be freed afterwards by page_cache_release() or put_page().
2034 *
2035 * Returns NULL on any kind of failure - a hole must then be inserted into
2036 * the corefile, to preserve alignment with its headers; and also returns
2037 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2038 * allowing a hole to be left in the corefile to save diskspace.
2039 *
2040 * Called without mmap_sem, but after all other threads have been killed.
2041 */
2042#ifdef CONFIG_ELF_CORE
2043struct page *get_dump_page(unsigned long addr)
2044{
2045 struct vm_area_struct *vma;
2046 struct page *page;
2047
2048 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2049 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2050 NULL) < 1)
f3e8fccd 2051 return NULL;
f3e8fccd
HD
2052 flush_cache_page(vma, addr, page_to_pfn(page));
2053 return page;
2054}
2055#endif /* CONFIG_ELF_CORE */
2056
25ca1d6c 2057pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2058 spinlock_t **ptl)
c9cfcddf
LT
2059{
2060 pgd_t * pgd = pgd_offset(mm, addr);
2061 pud_t * pud = pud_alloc(mm, pgd, addr);
2062 if (pud) {
49c91fb0 2063 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2064 if (pmd) {
2065 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2066 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2067 }
c9cfcddf
LT
2068 }
2069 return NULL;
2070}
2071
238f58d8
LT
2072/*
2073 * This is the old fallback for page remapping.
2074 *
2075 * For historical reasons, it only allows reserved pages. Only
2076 * old drivers should use this, and they needed to mark their
2077 * pages reserved for the old functions anyway.
2078 */
423bad60
NP
2079static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2080 struct page *page, pgprot_t prot)
238f58d8 2081{
423bad60 2082 struct mm_struct *mm = vma->vm_mm;
238f58d8 2083 int retval;
c9cfcddf 2084 pte_t *pte;
8a9f3ccd
BS
2085 spinlock_t *ptl;
2086
238f58d8 2087 retval = -EINVAL;
a145dd41 2088 if (PageAnon(page))
5b4e655e 2089 goto out;
238f58d8
LT
2090 retval = -ENOMEM;
2091 flush_dcache_page(page);
c9cfcddf 2092 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2093 if (!pte)
5b4e655e 2094 goto out;
238f58d8
LT
2095 retval = -EBUSY;
2096 if (!pte_none(*pte))
2097 goto out_unlock;
2098
2099 /* Ok, finally just insert the thing.. */
2100 get_page(page);
34e55232 2101 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2102 page_add_file_rmap(page);
2103 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2104
2105 retval = 0;
8a9f3ccd
BS
2106 pte_unmap_unlock(pte, ptl);
2107 return retval;
238f58d8
LT
2108out_unlock:
2109 pte_unmap_unlock(pte, ptl);
2110out:
2111 return retval;
2112}
2113
bfa5bf6d
REB
2114/**
2115 * vm_insert_page - insert single page into user vma
2116 * @vma: user vma to map to
2117 * @addr: target user address of this page
2118 * @page: source kernel page
2119 *
a145dd41
LT
2120 * This allows drivers to insert individual pages they've allocated
2121 * into a user vma.
2122 *
2123 * The page has to be a nice clean _individual_ kernel allocation.
2124 * If you allocate a compound page, you need to have marked it as
2125 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2126 * (see split_page()).
a145dd41
LT
2127 *
2128 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2129 * took an arbitrary page protection parameter. This doesn't allow
2130 * that. Your vma protection will have to be set up correctly, which
2131 * means that if you want a shared writable mapping, you'd better
2132 * ask for a shared writable mapping!
2133 *
2134 * The page does not need to be reserved.
4b6e1e37
KK
2135 *
2136 * Usually this function is called from f_op->mmap() handler
2137 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2138 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2139 * function from other places, for example from page-fault handler.
a145dd41 2140 */
423bad60
NP
2141int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2142 struct page *page)
a145dd41
LT
2143{
2144 if (addr < vma->vm_start || addr >= vma->vm_end)
2145 return -EFAULT;
2146 if (!page_count(page))
2147 return -EINVAL;
4b6e1e37
KK
2148 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2149 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2150 BUG_ON(vma->vm_flags & VM_PFNMAP);
2151 vma->vm_flags |= VM_MIXEDMAP;
2152 }
423bad60 2153 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2154}
e3c3374f 2155EXPORT_SYMBOL(vm_insert_page);
a145dd41 2156
423bad60
NP
2157static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2158 unsigned long pfn, pgprot_t prot)
2159{
2160 struct mm_struct *mm = vma->vm_mm;
2161 int retval;
2162 pte_t *pte, entry;
2163 spinlock_t *ptl;
2164
2165 retval = -ENOMEM;
2166 pte = get_locked_pte(mm, addr, &ptl);
2167 if (!pte)
2168 goto out;
2169 retval = -EBUSY;
2170 if (!pte_none(*pte))
2171 goto out_unlock;
2172
2173 /* Ok, finally just insert the thing.. */
2174 entry = pte_mkspecial(pfn_pte(pfn, prot));
2175 set_pte_at(mm, addr, pte, entry);
4b3073e1 2176 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2177
2178 retval = 0;
2179out_unlock:
2180 pte_unmap_unlock(pte, ptl);
2181out:
2182 return retval;
2183}
2184
e0dc0d8f
NP
2185/**
2186 * vm_insert_pfn - insert single pfn into user vma
2187 * @vma: user vma to map to
2188 * @addr: target user address of this page
2189 * @pfn: source kernel pfn
2190 *
c462f179 2191 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2192 * they've allocated into a user vma. Same comments apply.
2193 *
2194 * This function should only be called from a vm_ops->fault handler, and
2195 * in that case the handler should return NULL.
0d71d10a
NP
2196 *
2197 * vma cannot be a COW mapping.
2198 *
2199 * As this is called only for pages that do not currently exist, we
2200 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2201 */
2202int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2203 unsigned long pfn)
e0dc0d8f 2204{
2ab64037 2205 int ret;
e4b866ed 2206 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2207 /*
2208 * Technically, architectures with pte_special can avoid all these
2209 * restrictions (same for remap_pfn_range). However we would like
2210 * consistency in testing and feature parity among all, so we should
2211 * try to keep these invariants in place for everybody.
2212 */
b379d790
JH
2213 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215 (VM_PFNMAP|VM_MIXEDMAP));
2216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2218
423bad60
NP
2219 if (addr < vma->vm_start || addr >= vma->vm_end)
2220 return -EFAULT;
5180da41 2221 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2222 return -EINVAL;
2223
e4b866ed 2224 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2225
2ab64037 2226 return ret;
423bad60
NP
2227}
2228EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2229
423bad60
NP
2230int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2231 unsigned long pfn)
2232{
2233 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2234
423bad60
NP
2235 if (addr < vma->vm_start || addr >= vma->vm_end)
2236 return -EFAULT;
e0dc0d8f 2237
423bad60
NP
2238 /*
2239 * If we don't have pte special, then we have to use the pfn_valid()
2240 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2241 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2242 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2243 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2244 */
2245 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2246 struct page *page;
2247
2248 page = pfn_to_page(pfn);
2249 return insert_page(vma, addr, page, vma->vm_page_prot);
2250 }
2251 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2252}
423bad60 2253EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2254
1da177e4
LT
2255/*
2256 * maps a range of physical memory into the requested pages. the old
2257 * mappings are removed. any references to nonexistent pages results
2258 * in null mappings (currently treated as "copy-on-access")
2259 */
2260static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2261 unsigned long addr, unsigned long end,
2262 unsigned long pfn, pgprot_t prot)
2263{
2264 pte_t *pte;
c74df32c 2265 spinlock_t *ptl;
1da177e4 2266
c74df32c 2267 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2268 if (!pte)
2269 return -ENOMEM;
6606c3e0 2270 arch_enter_lazy_mmu_mode();
1da177e4
LT
2271 do {
2272 BUG_ON(!pte_none(*pte));
7e675137 2273 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2274 pfn++;
2275 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2276 arch_leave_lazy_mmu_mode();
c74df32c 2277 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2278 return 0;
2279}
2280
2281static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2282 unsigned long addr, unsigned long end,
2283 unsigned long pfn, pgprot_t prot)
2284{
2285 pmd_t *pmd;
2286 unsigned long next;
2287
2288 pfn -= addr >> PAGE_SHIFT;
2289 pmd = pmd_alloc(mm, pud, addr);
2290 if (!pmd)
2291 return -ENOMEM;
f66055ab 2292 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2293 do {
2294 next = pmd_addr_end(addr, end);
2295 if (remap_pte_range(mm, pmd, addr, next,
2296 pfn + (addr >> PAGE_SHIFT), prot))
2297 return -ENOMEM;
2298 } while (pmd++, addr = next, addr != end);
2299 return 0;
2300}
2301
2302static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2303 unsigned long addr, unsigned long end,
2304 unsigned long pfn, pgprot_t prot)
2305{
2306 pud_t *pud;
2307 unsigned long next;
2308
2309 pfn -= addr >> PAGE_SHIFT;
2310 pud = pud_alloc(mm, pgd, addr);
2311 if (!pud)
2312 return -ENOMEM;
2313 do {
2314 next = pud_addr_end(addr, end);
2315 if (remap_pmd_range(mm, pud, addr, next,
2316 pfn + (addr >> PAGE_SHIFT), prot))
2317 return -ENOMEM;
2318 } while (pud++, addr = next, addr != end);
2319 return 0;
2320}
2321
bfa5bf6d
REB
2322/**
2323 * remap_pfn_range - remap kernel memory to userspace
2324 * @vma: user vma to map to
2325 * @addr: target user address to start at
2326 * @pfn: physical address of kernel memory
2327 * @size: size of map area
2328 * @prot: page protection flags for this mapping
2329 *
2330 * Note: this is only safe if the mm semaphore is held when called.
2331 */
1da177e4
LT
2332int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2333 unsigned long pfn, unsigned long size, pgprot_t prot)
2334{
2335 pgd_t *pgd;
2336 unsigned long next;
2d15cab8 2337 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2338 struct mm_struct *mm = vma->vm_mm;
2339 int err;
2340
2341 /*
2342 * Physically remapped pages are special. Tell the
2343 * rest of the world about it:
2344 * VM_IO tells people not to look at these pages
2345 * (accesses can have side effects).
6aab341e
LT
2346 * VM_PFNMAP tells the core MM that the base pages are just
2347 * raw PFN mappings, and do not have a "struct page" associated
2348 * with them.
314e51b9
KK
2349 * VM_DONTEXPAND
2350 * Disable vma merging and expanding with mremap().
2351 * VM_DONTDUMP
2352 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2353 *
2354 * There's a horrible special case to handle copy-on-write
2355 * behaviour that some programs depend on. We mark the "original"
2356 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2357 * See vm_normal_page() for details.
1da177e4 2358 */
b3b9c293
KK
2359 if (is_cow_mapping(vma->vm_flags)) {
2360 if (addr != vma->vm_start || end != vma->vm_end)
2361 return -EINVAL;
fb155c16 2362 vma->vm_pgoff = pfn;
b3b9c293
KK
2363 }
2364
2365 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2366 if (err)
3c8bb73a 2367 return -EINVAL;
fb155c16 2368
314e51b9 2369 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2370
2371 BUG_ON(addr >= end);
2372 pfn -= addr >> PAGE_SHIFT;
2373 pgd = pgd_offset(mm, addr);
2374 flush_cache_range(vma, addr, end);
1da177e4
LT
2375 do {
2376 next = pgd_addr_end(addr, end);
2377 err = remap_pud_range(mm, pgd, addr, next,
2378 pfn + (addr >> PAGE_SHIFT), prot);
2379 if (err)
2380 break;
2381 } while (pgd++, addr = next, addr != end);
2ab64037 2382
2383 if (err)
5180da41 2384 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2385
1da177e4
LT
2386 return err;
2387}
2388EXPORT_SYMBOL(remap_pfn_range);
2389
b4cbb197
LT
2390/**
2391 * vm_iomap_memory - remap memory to userspace
2392 * @vma: user vma to map to
2393 * @start: start of area
2394 * @len: size of area
2395 *
2396 * This is a simplified io_remap_pfn_range() for common driver use. The
2397 * driver just needs to give us the physical memory range to be mapped,
2398 * we'll figure out the rest from the vma information.
2399 *
2400 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2401 * whatever write-combining details or similar.
2402 */
2403int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2404{
2405 unsigned long vm_len, pfn, pages;
2406
2407 /* Check that the physical memory area passed in looks valid */
2408 if (start + len < start)
2409 return -EINVAL;
2410 /*
2411 * You *really* shouldn't map things that aren't page-aligned,
2412 * but we've historically allowed it because IO memory might
2413 * just have smaller alignment.
2414 */
2415 len += start & ~PAGE_MASK;
2416 pfn = start >> PAGE_SHIFT;
2417 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2418 if (pfn + pages < pfn)
2419 return -EINVAL;
2420
2421 /* We start the mapping 'vm_pgoff' pages into the area */
2422 if (vma->vm_pgoff > pages)
2423 return -EINVAL;
2424 pfn += vma->vm_pgoff;
2425 pages -= vma->vm_pgoff;
2426
2427 /* Can we fit all of the mapping? */
2428 vm_len = vma->vm_end - vma->vm_start;
2429 if (vm_len >> PAGE_SHIFT > pages)
2430 return -EINVAL;
2431
2432 /* Ok, let it rip */
2433 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2434}
2435EXPORT_SYMBOL(vm_iomap_memory);
2436
aee16b3c
JF
2437static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2438 unsigned long addr, unsigned long end,
2439 pte_fn_t fn, void *data)
2440{
2441 pte_t *pte;
2442 int err;
2f569afd 2443 pgtable_t token;
94909914 2444 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2445
2446 pte = (mm == &init_mm) ?
2447 pte_alloc_kernel(pmd, addr) :
2448 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2449 if (!pte)
2450 return -ENOMEM;
2451
2452 BUG_ON(pmd_huge(*pmd));
2453
38e0edb1
JF
2454 arch_enter_lazy_mmu_mode();
2455
2f569afd 2456 token = pmd_pgtable(*pmd);
aee16b3c
JF
2457
2458 do {
c36987e2 2459 err = fn(pte++, token, addr, data);
aee16b3c
JF
2460 if (err)
2461 break;
c36987e2 2462 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2463
38e0edb1
JF
2464 arch_leave_lazy_mmu_mode();
2465
aee16b3c
JF
2466 if (mm != &init_mm)
2467 pte_unmap_unlock(pte-1, ptl);
2468 return err;
2469}
2470
2471static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2472 unsigned long addr, unsigned long end,
2473 pte_fn_t fn, void *data)
2474{
2475 pmd_t *pmd;
2476 unsigned long next;
2477 int err;
2478
ceb86879
AK
2479 BUG_ON(pud_huge(*pud));
2480
aee16b3c
JF
2481 pmd = pmd_alloc(mm, pud, addr);
2482 if (!pmd)
2483 return -ENOMEM;
2484 do {
2485 next = pmd_addr_end(addr, end);
2486 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2487 if (err)
2488 break;
2489 } while (pmd++, addr = next, addr != end);
2490 return err;
2491}
2492
2493static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2494 unsigned long addr, unsigned long end,
2495 pte_fn_t fn, void *data)
2496{
2497 pud_t *pud;
2498 unsigned long next;
2499 int err;
2500
2501 pud = pud_alloc(mm, pgd, addr);
2502 if (!pud)
2503 return -ENOMEM;
2504 do {
2505 next = pud_addr_end(addr, end);
2506 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2507 if (err)
2508 break;
2509 } while (pud++, addr = next, addr != end);
2510 return err;
2511}
2512
2513/*
2514 * Scan a region of virtual memory, filling in page tables as necessary
2515 * and calling a provided function on each leaf page table.
2516 */
2517int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2518 unsigned long size, pte_fn_t fn, void *data)
2519{
2520 pgd_t *pgd;
2521 unsigned long next;
57250a5b 2522 unsigned long end = addr + size;
aee16b3c
JF
2523 int err;
2524
2525 BUG_ON(addr >= end);
2526 pgd = pgd_offset(mm, addr);
2527 do {
2528 next = pgd_addr_end(addr, end);
2529 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2530 if (err)
2531 break;
2532 } while (pgd++, addr = next, addr != end);
57250a5b 2533
aee16b3c
JF
2534 return err;
2535}
2536EXPORT_SYMBOL_GPL(apply_to_page_range);
2537
8f4e2101
HD
2538/*
2539 * handle_pte_fault chooses page fault handler according to an entry
2540 * which was read non-atomically. Before making any commitment, on
2541 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2542 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2543 * must check under lock before unmapping the pte and proceeding
2544 * (but do_wp_page is only called after already making such a check;
a335b2e1 2545 * and do_anonymous_page can safely check later on).
8f4e2101 2546 */
4c21e2f2 2547static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2548 pte_t *page_table, pte_t orig_pte)
2549{
2550 int same = 1;
2551#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2552 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2553 spinlock_t *ptl = pte_lockptr(mm, pmd);
2554 spin_lock(ptl);
8f4e2101 2555 same = pte_same(*page_table, orig_pte);
4c21e2f2 2556 spin_unlock(ptl);
8f4e2101
HD
2557 }
2558#endif
2559 pte_unmap(page_table);
2560 return same;
2561}
2562
9de455b2 2563static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2564{
2565 /*
2566 * If the source page was a PFN mapping, we don't have
2567 * a "struct page" for it. We do a best-effort copy by
2568 * just copying from the original user address. If that
2569 * fails, we just zero-fill it. Live with it.
2570 */
2571 if (unlikely(!src)) {
9b04c5fe 2572 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2573 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2574
2575 /*
2576 * This really shouldn't fail, because the page is there
2577 * in the page tables. But it might just be unreadable,
2578 * in which case we just give up and fill the result with
2579 * zeroes.
2580 */
2581 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2582 clear_page(kaddr);
9b04c5fe 2583 kunmap_atomic(kaddr);
c4ec7b0d 2584 flush_dcache_page(dst);
0ed361de
NP
2585 } else
2586 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2587}
2588
1da177e4
LT
2589/*
2590 * This routine handles present pages, when users try to write
2591 * to a shared page. It is done by copying the page to a new address
2592 * and decrementing the shared-page counter for the old page.
2593 *
1da177e4
LT
2594 * Note that this routine assumes that the protection checks have been
2595 * done by the caller (the low-level page fault routine in most cases).
2596 * Thus we can safely just mark it writable once we've done any necessary
2597 * COW.
2598 *
2599 * We also mark the page dirty at this point even though the page will
2600 * change only once the write actually happens. This avoids a few races,
2601 * and potentially makes it more efficient.
2602 *
8f4e2101
HD
2603 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2604 * but allow concurrent faults), with pte both mapped and locked.
2605 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2606 */
65500d23
HD
2607static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2608 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2609 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2610 __releases(ptl)
1da177e4 2611{
2ec74c3e 2612 struct page *old_page, *new_page = NULL;
1da177e4 2613 pte_t entry;
b009c024 2614 int ret = 0;
a200ee18 2615 int page_mkwrite = 0;
d08b3851 2616 struct page *dirty_page = NULL;
1756954c
DR
2617 unsigned long mmun_start = 0; /* For mmu_notifiers */
2618 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2619
6aab341e 2620 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2621 if (!old_page) {
2622 /*
2623 * VM_MIXEDMAP !pfn_valid() case
2624 *
2625 * We should not cow pages in a shared writeable mapping.
2626 * Just mark the pages writable as we can't do any dirty
2627 * accounting on raw pfn maps.
2628 */
2629 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2630 (VM_WRITE|VM_SHARED))
2631 goto reuse;
6aab341e 2632 goto gotten;
251b97f5 2633 }
1da177e4 2634
d08b3851 2635 /*
ee6a6457
PZ
2636 * Take out anonymous pages first, anonymous shared vmas are
2637 * not dirty accountable.
d08b3851 2638 */
9a840895 2639 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2640 if (!trylock_page(old_page)) {
2641 page_cache_get(old_page);
2642 pte_unmap_unlock(page_table, ptl);
2643 lock_page(old_page);
2644 page_table = pte_offset_map_lock(mm, pmd, address,
2645 &ptl);
2646 if (!pte_same(*page_table, orig_pte)) {
2647 unlock_page(old_page);
ab967d86
HD
2648 goto unlock;
2649 }
2650 page_cache_release(old_page);
ee6a6457 2651 }
b009c024 2652 if (reuse_swap_page(old_page)) {
c44b6743
RR
2653 /*
2654 * The page is all ours. Move it to our anon_vma so
2655 * the rmap code will not search our parent or siblings.
2656 * Protected against the rmap code by the page lock.
2657 */
2658 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2659 unlock_page(old_page);
2660 goto reuse;
2661 }
ab967d86 2662 unlock_page(old_page);
ee6a6457 2663 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2664 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2665 /*
2666 * Only catch write-faults on shared writable pages,
2667 * read-only shared pages can get COWed by
2668 * get_user_pages(.write=1, .force=1).
2669 */
9637a5ef 2670 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2671 struct vm_fault vmf;
2672 int tmp;
2673
2674 vmf.virtual_address = (void __user *)(address &
2675 PAGE_MASK);
2676 vmf.pgoff = old_page->index;
2677 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2678 vmf.page = old_page;
2679
9637a5ef
DH
2680 /*
2681 * Notify the address space that the page is about to
2682 * become writable so that it can prohibit this or wait
2683 * for the page to get into an appropriate state.
2684 *
2685 * We do this without the lock held, so that it can
2686 * sleep if it needs to.
2687 */
2688 page_cache_get(old_page);
2689 pte_unmap_unlock(page_table, ptl);
2690
c2ec175c
NP
2691 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2692 if (unlikely(tmp &
2693 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2694 ret = tmp;
9637a5ef 2695 goto unwritable_page;
c2ec175c 2696 }
b827e496
NP
2697 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2698 lock_page(old_page);
2699 if (!old_page->mapping) {
2700 ret = 0; /* retry the fault */
2701 unlock_page(old_page);
2702 goto unwritable_page;
2703 }
2704 } else
2705 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2706
9637a5ef
DH
2707 /*
2708 * Since we dropped the lock we need to revalidate
2709 * the PTE as someone else may have changed it. If
2710 * they did, we just return, as we can count on the
2711 * MMU to tell us if they didn't also make it writable.
2712 */
2713 page_table = pte_offset_map_lock(mm, pmd, address,
2714 &ptl);
b827e496
NP
2715 if (!pte_same(*page_table, orig_pte)) {
2716 unlock_page(old_page);
9637a5ef 2717 goto unlock;
b827e496 2718 }
a200ee18
PZ
2719
2720 page_mkwrite = 1;
1da177e4 2721 }
d08b3851
PZ
2722 dirty_page = old_page;
2723 get_page(dirty_page);
9637a5ef 2724
251b97f5 2725reuse:
9637a5ef
DH
2726 flush_cache_page(vma, address, pte_pfn(orig_pte));
2727 entry = pte_mkyoung(orig_pte);
2728 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2729 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2730 update_mmu_cache(vma, address, page_table);
72ddc8f7 2731 pte_unmap_unlock(page_table, ptl);
9637a5ef 2732 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2733
2734 if (!dirty_page)
2735 return ret;
2736
2737 /*
2738 * Yes, Virginia, this is actually required to prevent a race
2739 * with clear_page_dirty_for_io() from clearing the page dirty
2740 * bit after it clear all dirty ptes, but before a racing
2741 * do_wp_page installs a dirty pte.
2742 *
a335b2e1 2743 * __do_fault is protected similarly.
72ddc8f7
ML
2744 */
2745 if (!page_mkwrite) {
2746 wait_on_page_locked(dirty_page);
2747 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2748 /* file_update_time outside page_lock */
2749 if (vma->vm_file)
2750 file_update_time(vma->vm_file);
72ddc8f7
ML
2751 }
2752 put_page(dirty_page);
2753 if (page_mkwrite) {
2754 struct address_space *mapping = dirty_page->mapping;
2755
2756 set_page_dirty(dirty_page);
2757 unlock_page(dirty_page);
2758 page_cache_release(dirty_page);
2759 if (mapping) {
2760 /*
2761 * Some device drivers do not set page.mapping
2762 * but still dirty their pages
2763 */
2764 balance_dirty_pages_ratelimited(mapping);
2765 }
2766 }
2767
72ddc8f7 2768 return ret;
1da177e4 2769 }
1da177e4
LT
2770
2771 /*
2772 * Ok, we need to copy. Oh, well..
2773 */
b5810039 2774 page_cache_get(old_page);
920fc356 2775gotten:
8f4e2101 2776 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2777
2778 if (unlikely(anon_vma_prepare(vma)))
65500d23 2779 goto oom;
a13ea5b7 2780
62eede62 2781 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2782 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2783 if (!new_page)
2784 goto oom;
2785 } else {
2786 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2787 if (!new_page)
2788 goto oom;
2789 cow_user_page(new_page, old_page, address, vma);
2790 }
2791 __SetPageUptodate(new_page);
2792
2c26fdd7 2793 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2794 goto oom_free_new;
2795
6bdb913f 2796 mmun_start = address & PAGE_MASK;
1756954c 2797 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2798 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2799
1da177e4
LT
2800 /*
2801 * Re-check the pte - we dropped the lock
2802 */
8f4e2101 2803 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2804 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2805 if (old_page) {
920fc356 2806 if (!PageAnon(old_page)) {
34e55232
KH
2807 dec_mm_counter_fast(mm, MM_FILEPAGES);
2808 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2809 }
2810 } else
34e55232 2811 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2812 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2813 entry = mk_pte(new_page, vma->vm_page_prot);
2814 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2815 /*
2816 * Clear the pte entry and flush it first, before updating the
2817 * pte with the new entry. This will avoid a race condition
2818 * seen in the presence of one thread doing SMC and another
2819 * thread doing COW.
2820 */
828502d3 2821 ptep_clear_flush(vma, address, page_table);
9617d95e 2822 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2823 /*
2824 * We call the notify macro here because, when using secondary
2825 * mmu page tables (such as kvm shadow page tables), we want the
2826 * new page to be mapped directly into the secondary page table.
2827 */
2828 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2829 update_mmu_cache(vma, address, page_table);
945754a1
NP
2830 if (old_page) {
2831 /*
2832 * Only after switching the pte to the new page may
2833 * we remove the mapcount here. Otherwise another
2834 * process may come and find the rmap count decremented
2835 * before the pte is switched to the new page, and
2836 * "reuse" the old page writing into it while our pte
2837 * here still points into it and can be read by other
2838 * threads.
2839 *
2840 * The critical issue is to order this
2841 * page_remove_rmap with the ptp_clear_flush above.
2842 * Those stores are ordered by (if nothing else,)
2843 * the barrier present in the atomic_add_negative
2844 * in page_remove_rmap.
2845 *
2846 * Then the TLB flush in ptep_clear_flush ensures that
2847 * no process can access the old page before the
2848 * decremented mapcount is visible. And the old page
2849 * cannot be reused until after the decremented
2850 * mapcount is visible. So transitively, TLBs to
2851 * old page will be flushed before it can be reused.
2852 */
edc315fd 2853 page_remove_rmap(old_page);
945754a1
NP
2854 }
2855
1da177e4
LT
2856 /* Free the old page.. */
2857 new_page = old_page;
f33ea7f4 2858 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2859 } else
2860 mem_cgroup_uncharge_page(new_page);
2861
6bdb913f
HE
2862 if (new_page)
2863 page_cache_release(new_page);
65500d23 2864unlock:
8f4e2101 2865 pte_unmap_unlock(page_table, ptl);
1756954c 2866 if (mmun_end > mmun_start)
6bdb913f 2867 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2868 if (old_page) {
2869 /*
2870 * Don't let another task, with possibly unlocked vma,
2871 * keep the mlocked page.
2872 */
2873 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2874 lock_page(old_page); /* LRU manipulation */
2875 munlock_vma_page(old_page);
2876 unlock_page(old_page);
2877 }
2878 page_cache_release(old_page);
2879 }
f33ea7f4 2880 return ret;
8a9f3ccd 2881oom_free_new:
6dbf6d3b 2882 page_cache_release(new_page);
65500d23 2883oom:
66521d5a 2884 if (old_page)
920fc356 2885 page_cache_release(old_page);
1da177e4 2886 return VM_FAULT_OOM;
9637a5ef
DH
2887
2888unwritable_page:
2889 page_cache_release(old_page);
c2ec175c 2890 return ret;
1da177e4
LT
2891}
2892
97a89413 2893static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2894 unsigned long start_addr, unsigned long end_addr,
2895 struct zap_details *details)
2896{
f5cc4eef 2897 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2898}
2899
6b2dbba8 2900static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2901 struct zap_details *details)
2902{
2903 struct vm_area_struct *vma;
1da177e4
LT
2904 pgoff_t vba, vea, zba, zea;
2905
6b2dbba8 2906 vma_interval_tree_foreach(vma, root,
1da177e4 2907 details->first_index, details->last_index) {
1da177e4
LT
2908
2909 vba = vma->vm_pgoff;
d6e93217 2910 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2911 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2912 zba = details->first_index;
2913 if (zba < vba)
2914 zba = vba;
2915 zea = details->last_index;
2916 if (zea > vea)
2917 zea = vea;
2918
97a89413 2919 unmap_mapping_range_vma(vma,
1da177e4
LT
2920 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2921 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2922 details);
1da177e4
LT
2923 }
2924}
2925
2926static inline void unmap_mapping_range_list(struct list_head *head,
2927 struct zap_details *details)
2928{
2929 struct vm_area_struct *vma;
2930
2931 /*
2932 * In nonlinear VMAs there is no correspondence between virtual address
2933 * offset and file offset. So we must perform an exhaustive search
2934 * across *all* the pages in each nonlinear VMA, not just the pages
2935 * whose virtual address lies outside the file truncation point.
2936 */
6b2dbba8 2937 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2938 details->nonlinear_vma = vma;
97a89413 2939 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2940 }
2941}
2942
2943/**
72fd4a35 2944 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2945 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2946 * @holebegin: byte in first page to unmap, relative to the start of
2947 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2948 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2949 * must keep the partial page. In contrast, we must get rid of
2950 * partial pages.
2951 * @holelen: size of prospective hole in bytes. This will be rounded
2952 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2953 * end of the file.
2954 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2955 * but 0 when invalidating pagecache, don't throw away private data.
2956 */
2957void unmap_mapping_range(struct address_space *mapping,
2958 loff_t const holebegin, loff_t const holelen, int even_cows)
2959{
2960 struct zap_details details;
2961 pgoff_t hba = holebegin >> PAGE_SHIFT;
2962 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2963
2964 /* Check for overflow. */
2965 if (sizeof(holelen) > sizeof(hlen)) {
2966 long long holeend =
2967 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2968 if (holeend & ~(long long)ULONG_MAX)
2969 hlen = ULONG_MAX - hba + 1;
2970 }
2971
2972 details.check_mapping = even_cows? NULL: mapping;
2973 details.nonlinear_vma = NULL;
2974 details.first_index = hba;
2975 details.last_index = hba + hlen - 1;
2976 if (details.last_index < details.first_index)
2977 details.last_index = ULONG_MAX;
1da177e4 2978
1da177e4 2979
3d48ae45 2980 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2981 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2982 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2983 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2984 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2985 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2986}
2987EXPORT_SYMBOL(unmap_mapping_range);
2988
1da177e4 2989/*
8f4e2101
HD
2990 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2991 * but allow concurrent faults), and pte mapped but not yet locked.
2992 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2993 */
65500d23
HD
2994static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2995 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2996 unsigned int flags, pte_t orig_pte)
1da177e4 2997{
8f4e2101 2998 spinlock_t *ptl;
56f31801 2999 struct page *page, *swapcache;
65500d23 3000 swp_entry_t entry;
1da177e4 3001 pte_t pte;
d065bd81 3002 int locked;
56039efa 3003 struct mem_cgroup *ptr;
ad8c2ee8 3004 int exclusive = 0;
83c54070 3005 int ret = 0;
1da177e4 3006
4c21e2f2 3007 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 3008 goto out;
65500d23
HD
3009
3010 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
3011 if (unlikely(non_swap_entry(entry))) {
3012 if (is_migration_entry(entry)) {
3013 migration_entry_wait(mm, pmd, address);
3014 } else if (is_hwpoison_entry(entry)) {
3015 ret = VM_FAULT_HWPOISON;
3016 } else {
3017 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3018 ret = VM_FAULT_SIGBUS;
d1737fdb 3019 }
0697212a
CL
3020 goto out;
3021 }
0ff92245 3022 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
3023 page = lookup_swap_cache(entry);
3024 if (!page) {
02098fea
HD
3025 page = swapin_readahead(entry,
3026 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
3027 if (!page) {
3028 /*
8f4e2101
HD
3029 * Back out if somebody else faulted in this pte
3030 * while we released the pte lock.
1da177e4 3031 */
8f4e2101 3032 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3033 if (likely(pte_same(*page_table, orig_pte)))
3034 ret = VM_FAULT_OOM;
0ff92245 3035 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3036 goto unlock;
1da177e4
LT
3037 }
3038
3039 /* Had to read the page from swap area: Major fault */
3040 ret = VM_FAULT_MAJOR;
f8891e5e 3041 count_vm_event(PGMAJFAULT);
456f998e 3042 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 3043 } else if (PageHWPoison(page)) {
71f72525
WF
3044 /*
3045 * hwpoisoned dirty swapcache pages are kept for killing
3046 * owner processes (which may be unknown at hwpoison time)
3047 */
d1737fdb
AK
3048 ret = VM_FAULT_HWPOISON;
3049 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 3050 swapcache = page;
4779cb31 3051 goto out_release;
1da177e4
LT
3052 }
3053
56f31801 3054 swapcache = page;
d065bd81 3055 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 3056
073e587e 3057 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3058 if (!locked) {
3059 ret |= VM_FAULT_RETRY;
3060 goto out_release;
3061 }
073e587e 3062
4969c119 3063 /*
31c4a3d3
HD
3064 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3065 * release the swapcache from under us. The page pin, and pte_same
3066 * test below, are not enough to exclude that. Even if it is still
3067 * swapcache, we need to check that the page's swap has not changed.
4969c119 3068 */
31c4a3d3 3069 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
3070 goto out_page;
3071
cbf86cfe
HD
3072 page = ksm_might_need_to_copy(page, vma, address);
3073 if (unlikely(!page)) {
3074 ret = VM_FAULT_OOM;
3075 page = swapcache;
cbf86cfe 3076 goto out_page;
5ad64688
HD
3077 }
3078
2c26fdd7 3079 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3080 ret = VM_FAULT_OOM;
bc43f75c 3081 goto out_page;
8a9f3ccd
BS
3082 }
3083
1da177e4 3084 /*
8f4e2101 3085 * Back out if somebody else already faulted in this pte.
1da177e4 3086 */
8f4e2101 3087 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3088 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3089 goto out_nomap;
b8107480
KK
3090
3091 if (unlikely(!PageUptodate(page))) {
3092 ret = VM_FAULT_SIGBUS;
3093 goto out_nomap;
1da177e4
LT
3094 }
3095
8c7c6e34
KH
3096 /*
3097 * The page isn't present yet, go ahead with the fault.
3098 *
3099 * Be careful about the sequence of operations here.
3100 * To get its accounting right, reuse_swap_page() must be called
3101 * while the page is counted on swap but not yet in mapcount i.e.
3102 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3103 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3104 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3105 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3106 * in page->private. In this case, a record in swap_cgroup is silently
3107 * discarded at swap_free().
8c7c6e34 3108 */
1da177e4 3109
34e55232 3110 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3111 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3112 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3113 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3114 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3115 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3116 ret |= VM_FAULT_WRITE;
ad8c2ee8 3117 exclusive = 1;
1da177e4 3118 }
1da177e4
LT
3119 flush_icache_page(vma, page);
3120 set_pte_at(mm, address, page_table, pte);
56f31801 3121 if (page == swapcache)
af34770e 3122 do_page_add_anon_rmap(page, vma, address, exclusive);
56f31801
HD
3123 else /* ksm created a completely new copy */
3124 page_add_new_anon_rmap(page, vma, address);
03f3c433
KH
3125 /* It's better to call commit-charge after rmap is established */
3126 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3127
c475a8ab 3128 swap_free(entry);
b291f000 3129 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3130 try_to_free_swap(page);
c475a8ab 3131 unlock_page(page);
56f31801 3132 if (page != swapcache) {
4969c119
AA
3133 /*
3134 * Hold the lock to avoid the swap entry to be reused
3135 * until we take the PT lock for the pte_same() check
3136 * (to avoid false positives from pte_same). For
3137 * further safety release the lock after the swap_free
3138 * so that the swap count won't change under a
3139 * parallel locked swapcache.
3140 */
3141 unlock_page(swapcache);
3142 page_cache_release(swapcache);
3143 }
c475a8ab 3144
30c9f3a9 3145 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3146 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3147 if (ret & VM_FAULT_ERROR)
3148 ret &= VM_FAULT_ERROR;
1da177e4
LT
3149 goto out;
3150 }
3151
3152 /* No need to invalidate - it was non-present before */
4b3073e1 3153 update_mmu_cache(vma, address, page_table);
65500d23 3154unlock:
8f4e2101 3155 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3156out:
3157 return ret;
b8107480 3158out_nomap:
7a81b88c 3159 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3160 pte_unmap_unlock(page_table, ptl);
bc43f75c 3161out_page:
b8107480 3162 unlock_page(page);
4779cb31 3163out_release:
b8107480 3164 page_cache_release(page);
56f31801 3165 if (page != swapcache) {
4969c119
AA
3166 unlock_page(swapcache);
3167 page_cache_release(swapcache);
3168 }
65500d23 3169 return ret;
1da177e4
LT
3170}
3171
320b2b8d 3172/*
8ca3eb08
LT
3173 * This is like a special single-page "expand_{down|up}wards()",
3174 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3175 * doesn't hit another vma.
320b2b8d
LT
3176 */
3177static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3178{
3179 address &= PAGE_MASK;
3180 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3181 struct vm_area_struct *prev = vma->vm_prev;
3182
3183 /*
3184 * Is there a mapping abutting this one below?
3185 *
3186 * That's only ok if it's the same stack mapping
3187 * that has gotten split..
3188 */
3189 if (prev && prev->vm_end == address)
3190 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3191
d05f3169 3192 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3193 }
8ca3eb08
LT
3194 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3195 struct vm_area_struct *next = vma->vm_next;
3196
3197 /* As VM_GROWSDOWN but s/below/above/ */
3198 if (next && next->vm_start == address + PAGE_SIZE)
3199 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3200
3201 expand_upwards(vma, address + PAGE_SIZE);
3202 }
320b2b8d
LT
3203 return 0;
3204}
3205
1da177e4 3206/*
8f4e2101
HD
3207 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3208 * but allow concurrent faults), and pte mapped but not yet locked.
3209 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3210 */
65500d23
HD
3211static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3212 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3213 unsigned int flags)
1da177e4 3214{
8f4e2101
HD
3215 struct page *page;
3216 spinlock_t *ptl;
1da177e4 3217 pte_t entry;
1da177e4 3218
11ac5524
LT
3219 pte_unmap(page_table);
3220
3221 /* Check if we need to add a guard page to the stack */
3222 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3223 return VM_FAULT_SIGBUS;
3224
11ac5524 3225 /* Use the zero-page for reads */
62eede62
HD
3226 if (!(flags & FAULT_FLAG_WRITE)) {
3227 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3228 vma->vm_page_prot));
11ac5524 3229 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3230 if (!pte_none(*page_table))
3231 goto unlock;
3232 goto setpte;
3233 }
3234
557ed1fa 3235 /* Allocate our own private page. */
557ed1fa
NP
3236 if (unlikely(anon_vma_prepare(vma)))
3237 goto oom;
3238 page = alloc_zeroed_user_highpage_movable(vma, address);
3239 if (!page)
3240 goto oom;
52f37629
MK
3241 /*
3242 * The memory barrier inside __SetPageUptodate makes sure that
3243 * preceeding stores to the page contents become visible before
3244 * the set_pte_at() write.
3245 */
0ed361de 3246 __SetPageUptodate(page);
8f4e2101 3247
2c26fdd7 3248 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3249 goto oom_free_page;
3250
557ed1fa 3251 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3252 if (vma->vm_flags & VM_WRITE)
3253 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3254
557ed1fa 3255 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3256 if (!pte_none(*page_table))
557ed1fa 3257 goto release;
9ba69294 3258
34e55232 3259 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3260 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3261setpte:
65500d23 3262 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3263
3264 /* No need to invalidate - it was non-present before */
4b3073e1 3265 update_mmu_cache(vma, address, page_table);
65500d23 3266unlock:
8f4e2101 3267 pte_unmap_unlock(page_table, ptl);
83c54070 3268 return 0;
8f4e2101 3269release:
8a9f3ccd 3270 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3271 page_cache_release(page);
3272 goto unlock;
8a9f3ccd 3273oom_free_page:
6dbf6d3b 3274 page_cache_release(page);
65500d23 3275oom:
1da177e4
LT
3276 return VM_FAULT_OOM;
3277}
3278
3279/*
54cb8821 3280 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3281 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3282 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3283 * the next page fault.
1da177e4
LT
3284 *
3285 * As this is called only for pages that do not currently exist, we
3286 * do not need to flush old virtual caches or the TLB.
3287 *
8f4e2101 3288 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3289 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3290 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3291 */
54cb8821 3292static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3293 unsigned long address, pmd_t *pmd,
54cb8821 3294 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3295{
16abfa08 3296 pte_t *page_table;
8f4e2101 3297 spinlock_t *ptl;
d0217ac0 3298 struct page *page;
1d65f86d 3299 struct page *cow_page;
1da177e4 3300 pte_t entry;
1da177e4 3301 int anon = 0;
d08b3851 3302 struct page *dirty_page = NULL;
d0217ac0
NP
3303 struct vm_fault vmf;
3304 int ret;
a200ee18 3305 int page_mkwrite = 0;
54cb8821 3306
1d65f86d
KH
3307 /*
3308 * If we do COW later, allocate page befor taking lock_page()
3309 * on the file cache page. This will reduce lock holding time.
3310 */
3311 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3312
3313 if (unlikely(anon_vma_prepare(vma)))
3314 return VM_FAULT_OOM;
3315
3316 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3317 if (!cow_page)
3318 return VM_FAULT_OOM;
3319
3320 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3321 page_cache_release(cow_page);
3322 return VM_FAULT_OOM;
3323 }
3324 } else
3325 cow_page = NULL;
3326
d0217ac0
NP
3327 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3328 vmf.pgoff = pgoff;
3329 vmf.flags = flags;
3330 vmf.page = NULL;
1da177e4 3331
3c18ddd1 3332 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3333 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3334 VM_FAULT_RETRY)))
1d65f86d 3335 goto uncharge_out;
1da177e4 3336
a3b947ea
AK
3337 if (unlikely(PageHWPoison(vmf.page))) {
3338 if (ret & VM_FAULT_LOCKED)
3339 unlock_page(vmf.page);
1d65f86d
KH
3340 ret = VM_FAULT_HWPOISON;
3341 goto uncharge_out;
a3b947ea
AK
3342 }
3343
d00806b1 3344 /*
d0217ac0 3345 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3346 * locked.
3347 */
83c54070 3348 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3349 lock_page(vmf.page);
54cb8821 3350 else
d0217ac0 3351 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3352
1da177e4
LT
3353 /*
3354 * Should we do an early C-O-W break?
3355 */
d0217ac0 3356 page = vmf.page;
54cb8821 3357 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3358 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3359 page = cow_page;
54cb8821 3360 anon = 1;
d0217ac0 3361 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3362 __SetPageUptodate(page);
9637a5ef 3363 } else {
54cb8821
NP
3364 /*
3365 * If the page will be shareable, see if the backing
9637a5ef 3366 * address space wants to know that the page is about
54cb8821
NP
3367 * to become writable
3368 */
69676147 3369 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3370 int tmp;
3371
69676147 3372 unlock_page(page);
b827e496 3373 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3374 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3375 if (unlikely(tmp &
3376 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3377 ret = tmp;
b827e496 3378 goto unwritable_page;
d0217ac0 3379 }
b827e496
NP
3380 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3381 lock_page(page);
3382 if (!page->mapping) {
3383 ret = 0; /* retry the fault */
3384 unlock_page(page);
3385 goto unwritable_page;
3386 }
3387 } else
3388 VM_BUG_ON(!PageLocked(page));
a200ee18 3389 page_mkwrite = 1;
9637a5ef
DH
3390 }
3391 }
54cb8821 3392
1da177e4
LT
3393 }
3394
8f4e2101 3395 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3396
3397 /*
3398 * This silly early PAGE_DIRTY setting removes a race
3399 * due to the bad i386 page protection. But it's valid
3400 * for other architectures too.
3401 *
30c9f3a9 3402 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3403 * an exclusive copy of the page, or this is a shared mapping,
3404 * so we can make it writable and dirty to avoid having to
3405 * handle that later.
3406 */
3407 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3408 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3409 flush_icache_page(vma, page);
3410 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3411 if (flags & FAULT_FLAG_WRITE)
1da177e4 3412 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3413 if (anon) {
34e55232 3414 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3415 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3416 } else {
34e55232 3417 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3418 page_add_file_rmap(page);
54cb8821 3419 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3420 dirty_page = page;
d08b3851
PZ
3421 get_page(dirty_page);
3422 }
4294621f 3423 }
64d6519d 3424 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3425
3426 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3427 update_mmu_cache(vma, address, page_table);
1da177e4 3428 } else {
1d65f86d
KH
3429 if (cow_page)
3430 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3431 if (anon)
3432 page_cache_release(page);
3433 else
54cb8821 3434 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3435 }
3436
8f4e2101 3437 pte_unmap_unlock(page_table, ptl);
d00806b1 3438
b827e496
NP
3439 if (dirty_page) {
3440 struct address_space *mapping = page->mapping;
41c4d25f 3441 int dirtied = 0;
8f7b3d15 3442
b827e496 3443 if (set_page_dirty(dirty_page))
41c4d25f 3444 dirtied = 1;
b827e496 3445 unlock_page(dirty_page);
d08b3851 3446 put_page(dirty_page);
41c4d25f 3447 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3448 /*
3449 * Some device drivers do not set page.mapping but still
3450 * dirty their pages
3451 */
3452 balance_dirty_pages_ratelimited(mapping);
3453 }
3454
3455 /* file_update_time outside page_lock */
41c4d25f 3456 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3457 file_update_time(vma->vm_file);
3458 } else {
3459 unlock_page(vmf.page);
3460 if (anon)
3461 page_cache_release(vmf.page);
d08b3851 3462 }
d00806b1 3463
83c54070 3464 return ret;
b827e496
NP
3465
3466unwritable_page:
3467 page_cache_release(page);
3468 return ret;
1d65f86d
KH
3469uncharge_out:
3470 /* fs's fault handler get error */
3471 if (cow_page) {
3472 mem_cgroup_uncharge_page(cow_page);
3473 page_cache_release(cow_page);
3474 }
3475 return ret;
54cb8821 3476}
d00806b1 3477
54cb8821
NP
3478static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3480 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3481{
3482 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3483 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3484
16abfa08
HD
3485 pte_unmap(page_table);
3486 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3487}
3488
1da177e4
LT
3489/*
3490 * Fault of a previously existing named mapping. Repopulate the pte
3491 * from the encoded file_pte if possible. This enables swappable
3492 * nonlinear vmas.
8f4e2101
HD
3493 *
3494 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3495 * but allow concurrent faults), and pte mapped but not yet locked.
3496 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3497 */
d0217ac0 3498static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3499 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3500 unsigned int flags, pte_t orig_pte)
1da177e4 3501{
65500d23 3502 pgoff_t pgoff;
1da177e4 3503
30c9f3a9
LT
3504 flags |= FAULT_FLAG_NONLINEAR;
3505
4c21e2f2 3506 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3507 return 0;
1da177e4 3508
2509ef26 3509 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3510 /*
3511 * Page table corrupted: show pte and kill process.
3512 */
3dc14741 3513 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3514 return VM_FAULT_SIGBUS;
65500d23 3515 }
65500d23
HD
3516
3517 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3518 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3519}
3520
9532fec1
MG
3521int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3522 unsigned long addr, int current_nid)
3523{
3524 get_page(page);
3525
3526 count_vm_numa_event(NUMA_HINT_FAULTS);
3527 if (current_nid == numa_node_id())
3528 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3529
3530 return mpol_misplaced(page, vma, addr);
3531}
3532
d10e63f2
MG
3533int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3534 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3535{
4daae3b4 3536 struct page *page = NULL;
d10e63f2 3537 spinlock_t *ptl;
cbee9f88
PZ
3538 int current_nid = -1;
3539 int target_nid;
b8593bfd 3540 bool migrated = false;
d10e63f2
MG
3541
3542 /*
3543 * The "pte" at this point cannot be used safely without
3544 * validation through pte_unmap_same(). It's of NUMA type but
3545 * the pfn may be screwed if the read is non atomic.
3546 *
3547 * ptep_modify_prot_start is not called as this is clearing
3548 * the _PAGE_NUMA bit and it is not really expected that there
3549 * would be concurrent hardware modifications to the PTE.
3550 */
3551 ptl = pte_lockptr(mm, pmd);
3552 spin_lock(ptl);
4daae3b4
MG
3553 if (unlikely(!pte_same(*ptep, pte))) {
3554 pte_unmap_unlock(ptep, ptl);
3555 goto out;
3556 }
3557
d10e63f2
MG
3558 pte = pte_mknonnuma(pte);
3559 set_pte_at(mm, addr, ptep, pte);
3560 update_mmu_cache(vma, addr, ptep);
3561
3562 page = vm_normal_page(vma, addr, pte);
3563 if (!page) {
3564 pte_unmap_unlock(ptep, ptl);
3565 return 0;
3566 }
3567
4daae3b4 3568 current_nid = page_to_nid(page);
9532fec1 3569 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
d10e63f2 3570 pte_unmap_unlock(ptep, ptl);
4daae3b4
MG
3571 if (target_nid == -1) {
3572 /*
3573 * Account for the fault against the current node if it not
3574 * being replaced regardless of where the page is located.
3575 */
3576 current_nid = numa_node_id();
3577 put_page(page);
3578 goto out;
3579 }
3580
3581 /* Migrate to the requested node */
b8593bfd
MG
3582 migrated = migrate_misplaced_page(page, target_nid);
3583 if (migrated)
4daae3b4
MG
3584 current_nid = target_nid;
3585
3586out:
9532fec1 3587 if (current_nid != -1)
b8593bfd 3588 task_numa_fault(current_nid, 1, migrated);
d10e63f2
MG
3589 return 0;
3590}
3591
3592/* NUMA hinting page fault entry point for regular pmds */
3593#ifdef CONFIG_NUMA_BALANCING
3594static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3595 unsigned long addr, pmd_t *pmdp)
3596{
3597 pmd_t pmd;
3598 pte_t *pte, *orig_pte;
3599 unsigned long _addr = addr & PMD_MASK;
3600 unsigned long offset;
3601 spinlock_t *ptl;
3602 bool numa = false;
03c5a6e1 3603 int local_nid = numa_node_id();
d10e63f2
MG
3604
3605 spin_lock(&mm->page_table_lock);
3606 pmd = *pmdp;
3607 if (pmd_numa(pmd)) {
3608 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3609 numa = true;
3610 }
3611 spin_unlock(&mm->page_table_lock);
3612
3613 if (!numa)
3614 return 0;
3615
3616 /* we're in a page fault so some vma must be in the range */
3617 BUG_ON(!vma);
3618 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3619 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3620 VM_BUG_ON(offset >= PMD_SIZE);
3621 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3622 pte += offset >> PAGE_SHIFT;
3623 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3624 pte_t pteval = *pte;
3625 struct page *page;
9532fec1
MG
3626 int curr_nid = local_nid;
3627 int target_nid;
b8593bfd 3628 bool migrated;
d10e63f2
MG
3629 if (!pte_present(pteval))
3630 continue;
3631 if (!pte_numa(pteval))
3632 continue;
3633 if (addr >= vma->vm_end) {
3634 vma = find_vma(mm, addr);
3635 /* there's a pte present so there must be a vma */
3636 BUG_ON(!vma);
3637 BUG_ON(addr < vma->vm_start);
3638 }
3639 if (pte_numa(pteval)) {
3640 pteval = pte_mknonnuma(pteval);
3641 set_pte_at(mm, addr, pte, pteval);
3642 }
3643 page = vm_normal_page(vma, addr, pteval);
3644 if (unlikely(!page))
3645 continue;
cbee9f88
PZ
3646 /* only check non-shared pages */
3647 if (unlikely(page_mapcount(page) != 1))
3648 continue;
cbee9f88 3649
9532fec1
MG
3650 /*
3651 * Note that the NUMA fault is later accounted to either
3652 * the node that is currently running or where the page is
3653 * migrated to.
3654 */
3655 curr_nid = local_nid;
3656 target_nid = numa_migrate_prep(page, vma, addr,
3657 page_to_nid(page));
3658 if (target_nid == -1) {
3659 put_page(page);
3660 continue;
3661 }
cbee9f88 3662
9532fec1
MG
3663 /* Migrate to the requested node */
3664 pte_unmap_unlock(pte, ptl);
b8593bfd
MG
3665 migrated = migrate_misplaced_page(page, target_nid);
3666 if (migrated)
9532fec1 3667 curr_nid = target_nid;
b8593bfd 3668 task_numa_fault(curr_nid, 1, migrated);
03c5a6e1 3669
cbee9f88 3670 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
d10e63f2
MG
3671 }
3672 pte_unmap_unlock(orig_pte, ptl);
3673
3674 return 0;
3675}
3676#else
3677static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678 unsigned long addr, pmd_t *pmdp)
3679{
3680 BUG();
b3dd2070 3681 return 0;
d10e63f2
MG
3682}
3683#endif /* CONFIG_NUMA_BALANCING */
3684
1da177e4
LT
3685/*
3686 * These routines also need to handle stuff like marking pages dirty
3687 * and/or accessed for architectures that don't do it in hardware (most
3688 * RISC architectures). The early dirtying is also good on the i386.
3689 *
3690 * There is also a hook called "update_mmu_cache()" that architectures
3691 * with external mmu caches can use to update those (ie the Sparc or
3692 * PowerPC hashed page tables that act as extended TLBs).
3693 *
c74df32c
HD
3694 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3695 * but allow concurrent faults), and pte mapped but not yet locked.
3696 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3697 */
71e3aac0
AA
3698int handle_pte_fault(struct mm_struct *mm,
3699 struct vm_area_struct *vma, unsigned long address,
3700 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3701{
3702 pte_t entry;
8f4e2101 3703 spinlock_t *ptl;
1da177e4 3704
8dab5241 3705 entry = *pte;
1da177e4 3706 if (!pte_present(entry)) {
65500d23 3707 if (pte_none(entry)) {
f4b81804 3708 if (vma->vm_ops) {
3c18ddd1 3709 if (likely(vma->vm_ops->fault))
54cb8821 3710 return do_linear_fault(mm, vma, address,
30c9f3a9 3711 pte, pmd, flags, entry);
f4b81804
JS
3712 }
3713 return do_anonymous_page(mm, vma, address,
30c9f3a9 3714 pte, pmd, flags);
65500d23 3715 }
1da177e4 3716 if (pte_file(entry))
d0217ac0 3717 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3718 pte, pmd, flags, entry);
65500d23 3719 return do_swap_page(mm, vma, address,
30c9f3a9 3720 pte, pmd, flags, entry);
1da177e4
LT
3721 }
3722
d10e63f2
MG
3723 if (pte_numa(entry))
3724 return do_numa_page(mm, vma, address, entry, pte, pmd);
3725
4c21e2f2 3726 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3727 spin_lock(ptl);
3728 if (unlikely(!pte_same(*pte, entry)))
3729 goto unlock;
30c9f3a9 3730 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3731 if (!pte_write(entry))
8f4e2101
HD
3732 return do_wp_page(mm, vma, address,
3733 pte, pmd, ptl, entry);
1da177e4
LT
3734 entry = pte_mkdirty(entry);
3735 }
3736 entry = pte_mkyoung(entry);
30c9f3a9 3737 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3738 update_mmu_cache(vma, address, pte);
1a44e149
AA
3739 } else {
3740 /*
3741 * This is needed only for protection faults but the arch code
3742 * is not yet telling us if this is a protection fault or not.
3743 * This still avoids useless tlb flushes for .text page faults
3744 * with threads.
3745 */
30c9f3a9 3746 if (flags & FAULT_FLAG_WRITE)
61c77326 3747 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3748 }
8f4e2101
HD
3749unlock:
3750 pte_unmap_unlock(pte, ptl);
83c54070 3751 return 0;
1da177e4
LT
3752}
3753
3754/*
3755 * By the time we get here, we already hold the mm semaphore
3756 */
83c54070 3757int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3758 unsigned long address, unsigned int flags)
1da177e4
LT
3759{
3760 pgd_t *pgd;
3761 pud_t *pud;
3762 pmd_t *pmd;
3763 pte_t *pte;
3764
3765 __set_current_state(TASK_RUNNING);
3766
f8891e5e 3767 count_vm_event(PGFAULT);
456f998e 3768 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3769
34e55232
KH
3770 /* do counter updates before entering really critical section. */
3771 check_sync_rss_stat(current);
3772
ac9b9c66 3773 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3774 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3775
1f1d06c3 3776retry:
1da177e4 3777 pgd = pgd_offset(mm, address);
1da177e4
LT
3778 pud = pud_alloc(mm, pgd, address);
3779 if (!pud)
c74df32c 3780 return VM_FAULT_OOM;
1da177e4
LT
3781 pmd = pmd_alloc(mm, pud, address);
3782 if (!pmd)
c74df32c 3783 return VM_FAULT_OOM;
71e3aac0
AA
3784 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3785 if (!vma->vm_ops)
3786 return do_huge_pmd_anonymous_page(mm, vma, address,
3787 pmd, flags);
3788 } else {
3789 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3790 int ret;
3791
71e3aac0
AA
3792 barrier();
3793 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3794 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3795
e53289c0
LT
3796 /*
3797 * If the pmd is splitting, return and retry the
3798 * the fault. Alternative: wait until the split
3799 * is done, and goto retry.
3800 */
3801 if (pmd_trans_splitting(orig_pmd))
3802 return 0;
3803
3d59eebc 3804 if (pmd_numa(orig_pmd))
4daae3b4 3805 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3806 orig_pmd, pmd);
3807
3d59eebc 3808 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3809 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3810 orig_pmd);
3811 /*
3812 * If COW results in an oom, the huge pmd will
3813 * have been split, so retry the fault on the
3814 * pte for a smaller charge.
3815 */
3816 if (unlikely(ret & VM_FAULT_OOM))
3817 goto retry;
3818 return ret;
a1dd450b
WD
3819 } else {
3820 huge_pmd_set_accessed(mm, vma, address, pmd,
3821 orig_pmd, dirty);
1f1d06c3 3822 }
d10e63f2 3823
71e3aac0
AA
3824 return 0;
3825 }
3826 }
3827
d10e63f2
MG
3828 if (pmd_numa(*pmd))
3829 return do_pmd_numa_page(mm, vma, address, pmd);
3830
71e3aac0
AA
3831 /*
3832 * Use __pte_alloc instead of pte_alloc_map, because we can't
3833 * run pte_offset_map on the pmd, if an huge pmd could
3834 * materialize from under us from a different thread.
3835 */
4fd01770
MG
3836 if (unlikely(pmd_none(*pmd)) &&
3837 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3838 return VM_FAULT_OOM;
71e3aac0
AA
3839 /* if an huge pmd materialized from under us just retry later */
3840 if (unlikely(pmd_trans_huge(*pmd)))
3841 return 0;
3842 /*
3843 * A regular pmd is established and it can't morph into a huge pmd
3844 * from under us anymore at this point because we hold the mmap_sem
3845 * read mode and khugepaged takes it in write mode. So now it's
3846 * safe to run pte_offset_map().
3847 */
3848 pte = pte_offset_map(pmd, address);
1da177e4 3849
30c9f3a9 3850 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3851}
3852
3853#ifndef __PAGETABLE_PUD_FOLDED
3854/*
3855 * Allocate page upper directory.
872fec16 3856 * We've already handled the fast-path in-line.
1da177e4 3857 */
1bb3630e 3858int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3859{
c74df32c
HD
3860 pud_t *new = pud_alloc_one(mm, address);
3861 if (!new)
1bb3630e 3862 return -ENOMEM;
1da177e4 3863
362a61ad
NP
3864 smp_wmb(); /* See comment in __pte_alloc */
3865
872fec16 3866 spin_lock(&mm->page_table_lock);
1bb3630e 3867 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3868 pud_free(mm, new);
1bb3630e
HD
3869 else
3870 pgd_populate(mm, pgd, new);
c74df32c 3871 spin_unlock(&mm->page_table_lock);
1bb3630e 3872 return 0;
1da177e4
LT
3873}
3874#endif /* __PAGETABLE_PUD_FOLDED */
3875
3876#ifndef __PAGETABLE_PMD_FOLDED
3877/*
3878 * Allocate page middle directory.
872fec16 3879 * We've already handled the fast-path in-line.
1da177e4 3880 */
1bb3630e 3881int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3882{
c74df32c
HD
3883 pmd_t *new = pmd_alloc_one(mm, address);
3884 if (!new)
1bb3630e 3885 return -ENOMEM;
1da177e4 3886
362a61ad
NP
3887 smp_wmb(); /* See comment in __pte_alloc */
3888
872fec16 3889 spin_lock(&mm->page_table_lock);
1da177e4 3890#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3891 if (pud_present(*pud)) /* Another has populated it */
5e541973 3892 pmd_free(mm, new);
1bb3630e
HD
3893 else
3894 pud_populate(mm, pud, new);
1da177e4 3895#else
1bb3630e 3896 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3897 pmd_free(mm, new);
1bb3630e
HD
3898 else
3899 pgd_populate(mm, pud, new);
1da177e4 3900#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3901 spin_unlock(&mm->page_table_lock);
1bb3630e 3902 return 0;
e0f39591 3903}
1da177e4
LT
3904#endif /* __PAGETABLE_PMD_FOLDED */
3905
1da177e4
LT
3906#if !defined(__HAVE_ARCH_GATE_AREA)
3907
3908#if defined(AT_SYSINFO_EHDR)
5ce7852c 3909static struct vm_area_struct gate_vma;
1da177e4
LT
3910
3911static int __init gate_vma_init(void)
3912{
3913 gate_vma.vm_mm = NULL;
3914 gate_vma.vm_start = FIXADDR_USER_START;
3915 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3916 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3917 gate_vma.vm_page_prot = __P101;
909af768 3918
1da177e4
LT
3919 return 0;
3920}
3921__initcall(gate_vma_init);
3922#endif
3923
31db58b3 3924struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3925{
3926#ifdef AT_SYSINFO_EHDR
3927 return &gate_vma;
3928#else
3929 return NULL;
3930#endif
3931}
3932
cae5d390 3933int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3934{
3935#ifdef AT_SYSINFO_EHDR
3936 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3937 return 1;
3938#endif
3939 return 0;
3940}
3941
3942#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3943
1b36ba81 3944static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3945 pte_t **ptepp, spinlock_t **ptlp)
3946{
3947 pgd_t *pgd;
3948 pud_t *pud;
3949 pmd_t *pmd;
3950 pte_t *ptep;
3951
3952 pgd = pgd_offset(mm, address);
3953 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3954 goto out;
3955
3956 pud = pud_offset(pgd, address);
3957 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3958 goto out;
3959
3960 pmd = pmd_offset(pud, address);
f66055ab 3961 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3962 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3963 goto out;
3964
3965 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3966 if (pmd_huge(*pmd))
3967 goto out;
3968
3969 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3970 if (!ptep)
3971 goto out;
3972 if (!pte_present(*ptep))
3973 goto unlock;
3974 *ptepp = ptep;
3975 return 0;
3976unlock:
3977 pte_unmap_unlock(ptep, *ptlp);
3978out:
3979 return -EINVAL;
3980}
3981
1b36ba81
NK
3982static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3983 pte_t **ptepp, spinlock_t **ptlp)
3984{
3985 int res;
3986
3987 /* (void) is needed to make gcc happy */
3988 (void) __cond_lock(*ptlp,
3989 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3990 return res;
3991}
3992
3b6748e2
JW
3993/**
3994 * follow_pfn - look up PFN at a user virtual address
3995 * @vma: memory mapping
3996 * @address: user virtual address
3997 * @pfn: location to store found PFN
3998 *
3999 * Only IO mappings and raw PFN mappings are allowed.
4000 *
4001 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4002 */
4003int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4004 unsigned long *pfn)
4005{
4006 int ret = -EINVAL;
4007 spinlock_t *ptl;
4008 pte_t *ptep;
4009
4010 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4011 return ret;
4012
4013 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4014 if (ret)
4015 return ret;
4016 *pfn = pte_pfn(*ptep);
4017 pte_unmap_unlock(ptep, ptl);
4018 return 0;
4019}
4020EXPORT_SYMBOL(follow_pfn);
4021
28b2ee20 4022#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4023int follow_phys(struct vm_area_struct *vma,
4024 unsigned long address, unsigned int flags,
4025 unsigned long *prot, resource_size_t *phys)
28b2ee20 4026{
03668a4d 4027 int ret = -EINVAL;
28b2ee20
RR
4028 pte_t *ptep, pte;
4029 spinlock_t *ptl;
28b2ee20 4030
d87fe660 4031 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4032 goto out;
28b2ee20 4033
03668a4d 4034 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4035 goto out;
28b2ee20 4036 pte = *ptep;
03668a4d 4037
28b2ee20
RR
4038 if ((flags & FOLL_WRITE) && !pte_write(pte))
4039 goto unlock;
28b2ee20
RR
4040
4041 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4042 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4043
03668a4d 4044 ret = 0;
28b2ee20
RR
4045unlock:
4046 pte_unmap_unlock(ptep, ptl);
4047out:
d87fe660 4048 return ret;
28b2ee20
RR
4049}
4050
4051int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4052 void *buf, int len, int write)
4053{
4054 resource_size_t phys_addr;
4055 unsigned long prot = 0;
2bc7273b 4056 void __iomem *maddr;
28b2ee20
RR
4057 int offset = addr & (PAGE_SIZE-1);
4058
d87fe660 4059 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4060 return -EINVAL;
4061
4062 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4063 if (write)
4064 memcpy_toio(maddr + offset, buf, len);
4065 else
4066 memcpy_fromio(buf, maddr + offset, len);
4067 iounmap(maddr);
4068
4069 return len;
4070}
4071#endif
4072
0ec76a11 4073/*
206cb636
SW
4074 * Access another process' address space as given in mm. If non-NULL, use the
4075 * given task for page fault accounting.
0ec76a11 4076 */
206cb636
SW
4077static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4078 unsigned long addr, void *buf, int len, int write)
0ec76a11 4079{
0ec76a11 4080 struct vm_area_struct *vma;
0ec76a11
DH
4081 void *old_buf = buf;
4082
0ec76a11 4083 down_read(&mm->mmap_sem);
183ff22b 4084 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4085 while (len) {
4086 int bytes, ret, offset;
4087 void *maddr;
28b2ee20 4088 struct page *page = NULL;
0ec76a11
DH
4089
4090 ret = get_user_pages(tsk, mm, addr, 1,
4091 write, 1, &page, &vma);
28b2ee20
RR
4092 if (ret <= 0) {
4093 /*
4094 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4095 * we can access using slightly different code.
4096 */
4097#ifdef CONFIG_HAVE_IOREMAP_PROT
4098 vma = find_vma(mm, addr);
fe936dfc 4099 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4100 break;
4101 if (vma->vm_ops && vma->vm_ops->access)
4102 ret = vma->vm_ops->access(vma, addr, buf,
4103 len, write);
4104 if (ret <= 0)
4105#endif
4106 break;
4107 bytes = ret;
0ec76a11 4108 } else {
28b2ee20
RR
4109 bytes = len;
4110 offset = addr & (PAGE_SIZE-1);
4111 if (bytes > PAGE_SIZE-offset)
4112 bytes = PAGE_SIZE-offset;
4113
4114 maddr = kmap(page);
4115 if (write) {
4116 copy_to_user_page(vma, page, addr,
4117 maddr + offset, buf, bytes);
4118 set_page_dirty_lock(page);
4119 } else {
4120 copy_from_user_page(vma, page, addr,
4121 buf, maddr + offset, bytes);
4122 }
4123 kunmap(page);
4124 page_cache_release(page);
0ec76a11 4125 }
0ec76a11
DH
4126 len -= bytes;
4127 buf += bytes;
4128 addr += bytes;
4129 }
4130 up_read(&mm->mmap_sem);
0ec76a11
DH
4131
4132 return buf - old_buf;
4133}
03252919 4134
5ddd36b9 4135/**
ae91dbfc 4136 * access_remote_vm - access another process' address space
5ddd36b9
SW
4137 * @mm: the mm_struct of the target address space
4138 * @addr: start address to access
4139 * @buf: source or destination buffer
4140 * @len: number of bytes to transfer
4141 * @write: whether the access is a write
4142 *
4143 * The caller must hold a reference on @mm.
4144 */
4145int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4146 void *buf, int len, int write)
4147{
4148 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4149}
4150
206cb636
SW
4151/*
4152 * Access another process' address space.
4153 * Source/target buffer must be kernel space,
4154 * Do not walk the page table directly, use get_user_pages
4155 */
4156int access_process_vm(struct task_struct *tsk, unsigned long addr,
4157 void *buf, int len, int write)
4158{
4159 struct mm_struct *mm;
4160 int ret;
4161
4162 mm = get_task_mm(tsk);
4163 if (!mm)
4164 return 0;
4165
4166 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4167 mmput(mm);
4168
4169 return ret;
4170}
4171
03252919
AK
4172/*
4173 * Print the name of a VMA.
4174 */
4175void print_vma_addr(char *prefix, unsigned long ip)
4176{
4177 struct mm_struct *mm = current->mm;
4178 struct vm_area_struct *vma;
4179
e8bff74a
IM
4180 /*
4181 * Do not print if we are in atomic
4182 * contexts (in exception stacks, etc.):
4183 */
4184 if (preempt_count())
4185 return;
4186
03252919
AK
4187 down_read(&mm->mmap_sem);
4188 vma = find_vma(mm, ip);
4189 if (vma && vma->vm_file) {
4190 struct file *f = vma->vm_file;
4191 char *buf = (char *)__get_free_page(GFP_KERNEL);
4192 if (buf) {
2fbc57c5 4193 char *p;
03252919 4194
cf28b486 4195 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
4196 if (IS_ERR(p))
4197 p = "?";
2fbc57c5 4198 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4199 vma->vm_start,
4200 vma->vm_end - vma->vm_start);
4201 free_page((unsigned long)buf);
4202 }
4203 }
51a07e50 4204 up_read(&mm->mmap_sem);
03252919 4205}
3ee1afa3 4206
662bbcb2 4207#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
4208void might_fault(void)
4209{
95156f00
PZ
4210 /*
4211 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4212 * holding the mmap_sem, this is safe because kernel memory doesn't
4213 * get paged out, therefore we'll never actually fault, and the
4214 * below annotations will generate false positives.
4215 */
4216 if (segment_eq(get_fs(), KERNEL_DS))
4217 return;
4218
3ee1afa3
NP
4219 /*
4220 * it would be nicer only to annotate paths which are not under
4221 * pagefault_disable, however that requires a larger audit and
4222 * providing helpers like get_user_atomic.
4223 */
662bbcb2
MT
4224 if (in_atomic())
4225 return;
4226
4227 __might_sleep(__FILE__, __LINE__, 0);
4228
4229 if (current->mm)
3ee1afa3
NP
4230 might_lock_read(&current->mm->mmap_sem);
4231}
4232EXPORT_SYMBOL(might_fault);
4233#endif
47ad8475
AA
4234
4235#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4236static void clear_gigantic_page(struct page *page,
4237 unsigned long addr,
4238 unsigned int pages_per_huge_page)
4239{
4240 int i;
4241 struct page *p = page;
4242
4243 might_sleep();
4244 for (i = 0; i < pages_per_huge_page;
4245 i++, p = mem_map_next(p, page, i)) {
4246 cond_resched();
4247 clear_user_highpage(p, addr + i * PAGE_SIZE);
4248 }
4249}
4250void clear_huge_page(struct page *page,
4251 unsigned long addr, unsigned int pages_per_huge_page)
4252{
4253 int i;
4254
4255 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4256 clear_gigantic_page(page, addr, pages_per_huge_page);
4257 return;
4258 }
4259
4260 might_sleep();
4261 for (i = 0; i < pages_per_huge_page; i++) {
4262 cond_resched();
4263 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4264 }
4265}
4266
4267static void copy_user_gigantic_page(struct page *dst, struct page *src,
4268 unsigned long addr,
4269 struct vm_area_struct *vma,
4270 unsigned int pages_per_huge_page)
4271{
4272 int i;
4273 struct page *dst_base = dst;
4274 struct page *src_base = src;
4275
4276 for (i = 0; i < pages_per_huge_page; ) {
4277 cond_resched();
4278 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4279
4280 i++;
4281 dst = mem_map_next(dst, dst_base, i);
4282 src = mem_map_next(src, src_base, i);
4283 }
4284}
4285
4286void copy_user_huge_page(struct page *dst, struct page *src,
4287 unsigned long addr, struct vm_area_struct *vma,
4288 unsigned int pages_per_huge_page)
4289{
4290 int i;
4291
4292 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4293 copy_user_gigantic_page(dst, src, addr, vma,
4294 pages_per_huge_page);
4295 return;
4296 }
4297
4298 might_sleep();
4299 for (i = 0; i < pages_per_huge_page; i++) {
4300 cond_resched();
4301 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4302 }
4303}
4304#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 1.839742 seconds and 5 git commands to generate.