Merge git://git.infradead.org/battery-2.6
[deliverable/linux.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
5a0e3ad6 36#include <linux/gfp.h>
b20a3503
CL
37
38#include "internal.h"
39
b20a3503
CL
40#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41
b20a3503 42/*
742755a1 43 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
b20a3503
CL
46 */
47int migrate_prep(void)
48{
b20a3503
CL
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58}
59
748446bb
MG
60/* Do the necessary work of migrate_prep but not if it involves other CPUs */
61int migrate_prep_local(void)
62{
63 lru_add_drain();
64
65 return 0;
66}
67
b20a3503 68/*
894bc310
LS
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 71 */
e13861d8 72void putback_lru_pages(struct list_head *l)
b20a3503
CL
73{
74 struct page *page;
75 struct page *page2;
b20a3503
CL
76
77 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 78 list_del(&page->lru);
a731286d 79 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 80 page_is_file_cache(page));
894bc310 81 putback_lru_page(page);
b20a3503 82 }
b20a3503
CL
83}
84
0697212a
CL
85/*
86 * Restore a potential migration pte to a working pte entry
87 */
e9995ef9
HD
88static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
0697212a
CL
90{
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
290408d4
NH
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
0697212a 108
290408d4
NH
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
0697212a 112
290408d4
NH
113 pmd = pmd_offset(pud, addr);
114 if (!pmd_present(*pmd))
115 goto out;
0697212a 116
290408d4 117 ptep = pte_offset_map(pmd, addr);
0697212a 118
290408d4
NH
119 if (!is_swap_pte(*ptep)) {
120 pte_unmap(ptep);
121 goto out;
122 }
123
124 ptl = pte_lockptr(mm, pmd);
125 }
0697212a 126
0697212a
CL
127 spin_lock(ptl);
128 pte = *ptep;
129 if (!is_swap_pte(pte))
e9995ef9 130 goto unlock;
0697212a
CL
131
132 entry = pte_to_swp_entry(pte);
133
e9995ef9
HD
134 if (!is_migration_entry(entry) ||
135 migration_entry_to_page(entry) != old)
136 goto unlock;
0697212a 137
0697212a
CL
138 get_page(new);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
3ef8fd7f 142#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
143 if (PageHuge(new))
144 pte = pte_mkhuge(pte);
3ef8fd7f 145#endif
97ee0524 146 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 147 set_pte_at(mm, addr, ptep, pte);
04e62a29 148
290408d4
NH
149 if (PageHuge(new)) {
150 if (PageAnon(new))
151 hugepage_add_anon_rmap(new, vma, addr);
152 else
153 page_dup_rmap(new);
154 } else if (PageAnon(new))
04e62a29
CL
155 page_add_anon_rmap(new, vma, addr);
156 else
157 page_add_file_rmap(new);
158
159 /* No need to invalidate - it was non-present before */
4b3073e1 160 update_mmu_cache(vma, addr, ptep);
e9995ef9 161unlock:
0697212a 162 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
163out:
164 return SWAP_AGAIN;
0697212a
CL
165}
166
04e62a29
CL
167/*
168 * Get rid of all migration entries and replace them by
169 * references to the indicated page.
170 */
171static void remove_migration_ptes(struct page *old, struct page *new)
172{
e9995ef9 173 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
174}
175
0697212a
CL
176/*
177 * Something used the pte of a page under migration. We need to
178 * get to the page and wait until migration is finished.
179 * When we return from this function the fault will be retried.
180 *
181 * This function is called from do_swap_page().
182 */
183void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
185{
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
190
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
195
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
199
200 page = migration_entry_to_page(entry);
201
e286781d
NP
202 /*
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
208 */
209 if (!get_page_unless_zero(page))
210 goto out;
0697212a
CL
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215out:
216 pte_unmap_unlock(ptep, ptl);
217}
218
b20a3503 219/*
c3fcf8a5 220 * Replace the page in the mapping.
5b5c7120
CL
221 *
222 * The number of remaining references must be:
223 * 1 for anonymous pages without a mapping
224 * 2 for pages with a mapping
266cf658 225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 226 */
2d1db3b1
CL
227static int migrate_page_move_mapping(struct address_space *mapping,
228 struct page *newpage, struct page *page)
b20a3503 229{
e286781d 230 int expected_count;
7cf9c2c7 231 void **pslot;
b20a3503 232
6c5240ae 233 if (!mapping) {
0e8c7d0f 234 /* Anonymous page without mapping */
6c5240ae
CL
235 if (page_count(page) != 1)
236 return -EAGAIN;
237 return 0;
238 }
239
19fd6231 240 spin_lock_irq(&mapping->tree_lock);
b20a3503 241
7cf9c2c7
NP
242 pslot = radix_tree_lookup_slot(&mapping->page_tree,
243 page_index(page));
b20a3503 244
edcf4748 245 expected_count = 2 + page_has_private(page);
e286781d 246 if (page_count(page) != expected_count ||
7cf9c2c7 247 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 248 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 249 return -EAGAIN;
b20a3503
CL
250 }
251
e286781d 252 if (!page_freeze_refs(page, expected_count)) {
19fd6231 253 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
254 return -EAGAIN;
255 }
256
b20a3503
CL
257 /*
258 * Now we know that no one else is looking at the page.
b20a3503 259 */
7cf9c2c7 260 get_page(newpage); /* add cache reference */
b20a3503
CL
261 if (PageSwapCache(page)) {
262 SetPageSwapCache(newpage);
263 set_page_private(newpage, page_private(page));
264 }
265
7cf9c2c7
NP
266 radix_tree_replace_slot(pslot, newpage);
267
e286781d 268 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
269 /*
270 * Drop cache reference from old page.
271 * We know this isn't the last reference.
272 */
b20a3503 273 __put_page(page);
7cf9c2c7 274
0e8c7d0f
CL
275 /*
276 * If moved to a different zone then also account
277 * the page for that zone. Other VM counters will be
278 * taken care of when we establish references to the
279 * new page and drop references to the old page.
280 *
281 * Note that anonymous pages are accounted for
282 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 * are mapped to swap space.
284 */
285 __dec_zone_page_state(page, NR_FILE_PAGES);
286 __inc_zone_page_state(newpage, NR_FILE_PAGES);
4b02108a
KM
287 if (PageSwapBacked(page)) {
288 __dec_zone_page_state(page, NR_SHMEM);
289 __inc_zone_page_state(newpage, NR_SHMEM);
290 }
19fd6231 291 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
292
293 return 0;
294}
b20a3503 295
290408d4
NH
296/*
297 * The expected number of remaining references is the same as that
298 * of migrate_page_move_mapping().
299 */
300int migrate_huge_page_move_mapping(struct address_space *mapping,
301 struct page *newpage, struct page *page)
302{
303 int expected_count;
304 void **pslot;
305
306 if (!mapping) {
307 if (page_count(page) != 1)
308 return -EAGAIN;
309 return 0;
310 }
311
312 spin_lock_irq(&mapping->tree_lock);
313
314 pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 page_index(page));
316
317 expected_count = 2 + page_has_private(page);
318 if (page_count(page) != expected_count ||
319 (struct page *)radix_tree_deref_slot(pslot) != page) {
320 spin_unlock_irq(&mapping->tree_lock);
321 return -EAGAIN;
322 }
323
324 if (!page_freeze_refs(page, expected_count)) {
325 spin_unlock_irq(&mapping->tree_lock);
326 return -EAGAIN;
327 }
328
329 get_page(newpage);
330
331 radix_tree_replace_slot(pslot, newpage);
332
333 page_unfreeze_refs(page, expected_count);
334
335 __put_page(page);
336
337 spin_unlock_irq(&mapping->tree_lock);
338 return 0;
339}
340
b20a3503
CL
341/*
342 * Copy the page to its new location
343 */
290408d4 344void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 345{
290408d4
NH
346 if (PageHuge(page))
347 copy_huge_page(newpage, page);
348 else
349 copy_highpage(newpage, page);
b20a3503
CL
350
351 if (PageError(page))
352 SetPageError(newpage);
353 if (PageReferenced(page))
354 SetPageReferenced(newpage);
355 if (PageUptodate(page))
356 SetPageUptodate(newpage);
894bc310
LS
357 if (TestClearPageActive(page)) {
358 VM_BUG_ON(PageUnevictable(page));
b20a3503 359 SetPageActive(newpage);
418b27ef
LS
360 } else if (TestClearPageUnevictable(page))
361 SetPageUnevictable(newpage);
b20a3503
CL
362 if (PageChecked(page))
363 SetPageChecked(newpage);
364 if (PageMappedToDisk(page))
365 SetPageMappedToDisk(newpage);
366
367 if (PageDirty(page)) {
368 clear_page_dirty_for_io(page);
3a902c5f
NP
369 /*
370 * Want to mark the page and the radix tree as dirty, and
371 * redo the accounting that clear_page_dirty_for_io undid,
372 * but we can't use set_page_dirty because that function
373 * is actually a signal that all of the page has become dirty.
374 * Wheras only part of our page may be dirty.
375 */
376 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
377 }
378
b291f000 379 mlock_migrate_page(newpage, page);
e9995ef9 380 ksm_migrate_page(newpage, page);
b291f000 381
b20a3503 382 ClearPageSwapCache(page);
b20a3503
CL
383 ClearPagePrivate(page);
384 set_page_private(page, 0);
385 page->mapping = NULL;
386
387 /*
388 * If any waiters have accumulated on the new page then
389 * wake them up.
390 */
391 if (PageWriteback(newpage))
392 end_page_writeback(newpage);
393}
b20a3503 394
1d8b85cc
CL
395/************************************************************
396 * Migration functions
397 ***********************************************************/
398
399/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
400int fail_migrate_page(struct address_space *mapping,
401 struct page *newpage, struct page *page)
1d8b85cc
CL
402{
403 return -EIO;
404}
405EXPORT_SYMBOL(fail_migrate_page);
406
b20a3503
CL
407/*
408 * Common logic to directly migrate a single page suitable for
266cf658 409 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
410 *
411 * Pages are locked upon entry and exit.
412 */
2d1db3b1
CL
413int migrate_page(struct address_space *mapping,
414 struct page *newpage, struct page *page)
b20a3503
CL
415{
416 int rc;
417
418 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
419
2d1db3b1 420 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
421
422 if (rc)
423 return rc;
424
425 migrate_page_copy(newpage, page);
b20a3503
CL
426 return 0;
427}
428EXPORT_SYMBOL(migrate_page);
429
9361401e 430#ifdef CONFIG_BLOCK
1d8b85cc
CL
431/*
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
434 * exist.
435 */
2d1db3b1
CL
436int buffer_migrate_page(struct address_space *mapping,
437 struct page *newpage, struct page *page)
1d8b85cc 438{
1d8b85cc
CL
439 struct buffer_head *bh, *head;
440 int rc;
441
1d8b85cc 442 if (!page_has_buffers(page))
2d1db3b1 443 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
444
445 head = page_buffers(page);
446
2d1db3b1 447 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
448
449 if (rc)
450 return rc;
451
452 bh = head;
453 do {
454 get_bh(bh);
455 lock_buffer(bh);
456 bh = bh->b_this_page;
457
458 } while (bh != head);
459
460 ClearPagePrivate(page);
461 set_page_private(newpage, page_private(page));
462 set_page_private(page, 0);
463 put_page(page);
464 get_page(newpage);
465
466 bh = head;
467 do {
468 set_bh_page(bh, newpage, bh_offset(bh));
469 bh = bh->b_this_page;
470
471 } while (bh != head);
472
473 SetPagePrivate(newpage);
474
475 migrate_page_copy(newpage, page);
476
477 bh = head;
478 do {
479 unlock_buffer(bh);
480 put_bh(bh);
481 bh = bh->b_this_page;
482
483 } while (bh != head);
484
485 return 0;
486}
487EXPORT_SYMBOL(buffer_migrate_page);
9361401e 488#endif
1d8b85cc 489
04e62a29
CL
490/*
491 * Writeback a page to clean the dirty state
492 */
493static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 494{
04e62a29
CL
495 struct writeback_control wbc = {
496 .sync_mode = WB_SYNC_NONE,
497 .nr_to_write = 1,
498 .range_start = 0,
499 .range_end = LLONG_MAX,
500 .nonblocking = 1,
501 .for_reclaim = 1
502 };
503 int rc;
504
505 if (!mapping->a_ops->writepage)
506 /* No write method for the address space */
507 return -EINVAL;
508
509 if (!clear_page_dirty_for_io(page))
510 /* Someone else already triggered a write */
511 return -EAGAIN;
512
8351a6e4 513 /*
04e62a29
CL
514 * A dirty page may imply that the underlying filesystem has
515 * the page on some queue. So the page must be clean for
516 * migration. Writeout may mean we loose the lock and the
517 * page state is no longer what we checked for earlier.
518 * At this point we know that the migration attempt cannot
519 * be successful.
8351a6e4 520 */
04e62a29 521 remove_migration_ptes(page, page);
8351a6e4 522
04e62a29 523 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 524
04e62a29
CL
525 if (rc != AOP_WRITEPAGE_ACTIVATE)
526 /* unlocked. Relock */
527 lock_page(page);
528
bda8550d 529 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
530}
531
532/*
533 * Default handling if a filesystem does not provide a migration function.
534 */
535static int fallback_migrate_page(struct address_space *mapping,
536 struct page *newpage, struct page *page)
537{
538 if (PageDirty(page))
539 return writeout(mapping, page);
8351a6e4
CL
540
541 /*
542 * Buffers may be managed in a filesystem specific way.
543 * We must have no buffers or drop them.
544 */
266cf658 545 if (page_has_private(page) &&
8351a6e4
CL
546 !try_to_release_page(page, GFP_KERNEL))
547 return -EAGAIN;
548
549 return migrate_page(mapping, newpage, page);
550}
551
e24f0b8f
CL
552/*
553 * Move a page to a newly allocated page
554 * The page is locked and all ptes have been successfully removed.
555 *
556 * The new page will have replaced the old page if this function
557 * is successful.
894bc310
LS
558 *
559 * Return value:
560 * < 0 - error code
561 * == 0 - success
e24f0b8f 562 */
3fe2011f
MG
563static int move_to_new_page(struct page *newpage, struct page *page,
564 int remap_swapcache)
e24f0b8f
CL
565{
566 struct address_space *mapping;
567 int rc;
568
569 /*
570 * Block others from accessing the page when we get around to
571 * establishing additional references. We are the only one
572 * holding a reference to the new page at this point.
573 */
529ae9aa 574 if (!trylock_page(newpage))
e24f0b8f
CL
575 BUG();
576
577 /* Prepare mapping for the new page.*/
578 newpage->index = page->index;
579 newpage->mapping = page->mapping;
b2e18538
RR
580 if (PageSwapBacked(page))
581 SetPageSwapBacked(newpage);
e24f0b8f
CL
582
583 mapping = page_mapping(page);
584 if (!mapping)
585 rc = migrate_page(mapping, newpage, page);
586 else if (mapping->a_ops->migratepage)
587 /*
588 * Most pages have a mapping and most filesystems
589 * should provide a migration function. Anonymous
590 * pages are part of swap space which also has its
591 * own migration function. This is the most common
592 * path for page migration.
593 */
594 rc = mapping->a_ops->migratepage(mapping,
595 newpage, page);
596 else
597 rc = fallback_migrate_page(mapping, newpage, page);
598
3fe2011f 599 if (rc) {
e24f0b8f 600 newpage->mapping = NULL;
3fe2011f
MG
601 } else {
602 if (remap_swapcache)
603 remove_migration_ptes(page, newpage);
604 }
e24f0b8f
CL
605
606 unlock_page(newpage);
607
608 return rc;
609}
610
611/*
612 * Obtain the lock on page, remove all ptes and migrate the page
613 * to the newly allocated page in newpage.
614 */
95a402c3 615static int unmap_and_move(new_page_t get_new_page, unsigned long private,
62b61f61 616 struct page *page, int force, int offlining)
e24f0b8f
CL
617{
618 int rc = 0;
742755a1
CL
619 int *result = NULL;
620 struct page *newpage = get_new_page(page, private, &result);
3fe2011f 621 int remap_swapcache = 1;
989f89c5 622 int rcu_locked = 0;
ae41be37 623 int charge = 0;
e00e4316 624 struct mem_cgroup *mem = NULL;
3f6c8272 625 struct anon_vma *anon_vma = NULL;
95a402c3
CL
626
627 if (!newpage)
628 return -ENOMEM;
e24f0b8f 629
894bc310 630 if (page_count(page) == 1) {
e24f0b8f 631 /* page was freed from under us. So we are done. */
95a402c3 632 goto move_newpage;
894bc310 633 }
e24f0b8f 634
e8589cc1 635 /* prepare cgroup just returns 0 or -ENOMEM */
e24f0b8f 636 rc = -EAGAIN;
01b1ae63 637
529ae9aa 638 if (!trylock_page(page)) {
e24f0b8f 639 if (!force)
95a402c3 640 goto move_newpage;
e24f0b8f
CL
641 lock_page(page);
642 }
643
62b61f61
HD
644 /*
645 * Only memory hotplug's offline_pages() caller has locked out KSM,
646 * and can safely migrate a KSM page. The other cases have skipped
647 * PageKsm along with PageReserved - but it is only now when we have
648 * the page lock that we can be certain it will not go KSM beneath us
649 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
650 * its pagecount raised, but only here do we take the page lock which
651 * serializes that).
652 */
653 if (PageKsm(page) && !offlining) {
654 rc = -EBUSY;
655 goto unlock;
656 }
657
01b1ae63 658 /* charge against new page */
ac39cf8c 659 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63
KH
660 if (charge == -ENOMEM) {
661 rc = -ENOMEM;
662 goto unlock;
663 }
664 BUG_ON(charge);
665
e24f0b8f
CL
666 if (PageWriteback(page)) {
667 if (!force)
01b1ae63 668 goto uncharge;
e24f0b8f
CL
669 wait_on_page_writeback(page);
670 }
e24f0b8f 671 /*
dc386d4d
KH
672 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
673 * we cannot notice that anon_vma is freed while we migrates a page.
674 * This rcu_read_lock() delays freeing anon_vma pointer until the end
675 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
676 * File Caches may use write_page() or lock_page() in migration, then,
677 * just care Anon page here.
dc386d4d 678 */
989f89c5
KH
679 if (PageAnon(page)) {
680 rcu_read_lock();
681 rcu_locked = 1;
67b9509b 682
3fe2011f
MG
683 /* Determine how to safely use anon_vma */
684 if (!page_mapped(page)) {
685 if (!PageSwapCache(page))
686 goto rcu_unlock;
67b9509b 687
3fe2011f
MG
688 /*
689 * We cannot be sure that the anon_vma of an unmapped
690 * swapcache page is safe to use because we don't
691 * know in advance if the VMA that this page belonged
692 * to still exists. If the VMA and others sharing the
693 * data have been freed, then the anon_vma could
694 * already be invalid.
695 *
696 * To avoid this possibility, swapcache pages get
697 * migrated but are not remapped when migration
698 * completes
699 */
700 remap_swapcache = 0;
701 } else {
702 /*
703 * Take a reference count on the anon_vma if the
704 * page is mapped so that it is guaranteed to
705 * exist when the page is remapped later
706 */
707 anon_vma = page_anon_vma(page);
76545066 708 get_anon_vma(anon_vma);
3fe2011f 709 }
989f89c5 710 }
62e1c553 711
dc386d4d 712 /*
62e1c553
SL
713 * Corner case handling:
714 * 1. When a new swap-cache page is read into, it is added to the LRU
715 * and treated as swapcache but it has no rmap yet.
716 * Calling try_to_unmap() against a page->mapping==NULL page will
717 * trigger a BUG. So handle it here.
718 * 2. An orphaned page (see truncate_complete_page) might have
719 * fs-private metadata. The page can be picked up due to memory
720 * offlining. Everywhere else except page reclaim, the page is
721 * invisible to the vm, so the page can not be migrated. So try to
722 * free the metadata, so the page can be freed.
e24f0b8f 723 */
62e1c553 724 if (!page->mapping) {
266cf658 725 if (!PageAnon(page) && page_has_private(page)) {
62e1c553
SL
726 /*
727 * Go direct to try_to_free_buffers() here because
728 * a) that's what try_to_release_page() would do anyway
729 * b) we may be under rcu_read_lock() here, so we can't
730 * use GFP_KERNEL which is what try_to_release_page()
731 * needs to be effective.
732 */
733 try_to_free_buffers(page);
abfc3488 734 goto rcu_unlock;
62e1c553 735 }
abfc3488 736 goto skip_unmap;
62e1c553
SL
737 }
738
dc386d4d 739 /* Establish migration ptes or remove ptes */
14fa31b8 740 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 741
abfc3488 742skip_unmap:
e6a1530d 743 if (!page_mapped(page))
3fe2011f 744 rc = move_to_new_page(newpage, page, remap_swapcache);
e24f0b8f 745
3fe2011f 746 if (rc && remap_swapcache)
e24f0b8f 747 remove_migration_ptes(page, page);
dc386d4d 748rcu_unlock:
3f6c8272
MG
749
750 /* Drop an anon_vma reference if we took one */
76545066
RR
751 if (anon_vma)
752 drop_anon_vma(anon_vma);
3f6c8272 753
989f89c5
KH
754 if (rcu_locked)
755 rcu_read_unlock();
01b1ae63
KH
756uncharge:
757 if (!charge)
758 mem_cgroup_end_migration(mem, page, newpage);
e24f0b8f
CL
759unlock:
760 unlock_page(page);
95a402c3 761
e24f0b8f 762 if (rc != -EAGAIN) {
aaa994b3
CL
763 /*
764 * A page that has been migrated has all references
765 * removed and will be freed. A page that has not been
766 * migrated will have kepts its references and be
767 * restored.
768 */
769 list_del(&page->lru);
a731286d 770 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 771 page_is_file_cache(page));
894bc310 772 putback_lru_page(page);
e24f0b8f 773 }
95a402c3
CL
774
775move_newpage:
894bc310 776
95a402c3
CL
777 /*
778 * Move the new page to the LRU. If migration was not successful
779 * then this will free the page.
780 */
894bc310
LS
781 putback_lru_page(newpage);
782
742755a1
CL
783 if (result) {
784 if (rc)
785 *result = rc;
786 else
787 *result = page_to_nid(newpage);
788 }
e24f0b8f
CL
789 return rc;
790}
791
290408d4
NH
792/*
793 * Counterpart of unmap_and_move_page() for hugepage migration.
794 *
795 * This function doesn't wait the completion of hugepage I/O
796 * because there is no race between I/O and migration for hugepage.
797 * Note that currently hugepage I/O occurs only in direct I/O
798 * where no lock is held and PG_writeback is irrelevant,
799 * and writeback status of all subpages are counted in the reference
800 * count of the head page (i.e. if all subpages of a 2MB hugepage are
801 * under direct I/O, the reference of the head page is 512 and a bit more.)
802 * This means that when we try to migrate hugepage whose subpages are
803 * doing direct I/O, some references remain after try_to_unmap() and
804 * hugepage migration fails without data corruption.
805 *
806 * There is also no race when direct I/O is issued on the page under migration,
807 * because then pte is replaced with migration swap entry and direct I/O code
808 * will wait in the page fault for migration to complete.
809 */
810static int unmap_and_move_huge_page(new_page_t get_new_page,
811 unsigned long private, struct page *hpage,
812 int force, int offlining)
813{
814 int rc = 0;
815 int *result = NULL;
816 struct page *new_hpage = get_new_page(hpage, private, &result);
817 int rcu_locked = 0;
818 struct anon_vma *anon_vma = NULL;
819
820 if (!new_hpage)
821 return -ENOMEM;
822
823 rc = -EAGAIN;
824
825 if (!trylock_page(hpage)) {
826 if (!force)
827 goto out;
828 lock_page(hpage);
829 }
830
831 if (PageAnon(hpage)) {
832 rcu_read_lock();
833 rcu_locked = 1;
834
835 if (page_mapped(hpage)) {
836 anon_vma = page_anon_vma(hpage);
837 atomic_inc(&anon_vma->external_refcount);
838 }
839 }
840
841 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
842
843 if (!page_mapped(hpage))
844 rc = move_to_new_page(new_hpage, hpage, 1);
845
846 if (rc)
847 remove_migration_ptes(hpage, hpage);
848
849 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
850 &anon_vma->lock)) {
851 int empty = list_empty(&anon_vma->head);
852 spin_unlock(&anon_vma->lock);
853 if (empty)
854 anon_vma_free(anon_vma);
855 }
856
857 if (rcu_locked)
858 rcu_read_unlock();
859out:
860 unlock_page(hpage);
861
862 if (rc != -EAGAIN) {
863 list_del(&hpage->lru);
864 put_page(hpage);
865 }
866
867 put_page(new_hpage);
868
869 if (result) {
870 if (rc)
871 *result = rc;
872 else
873 *result = page_to_nid(new_hpage);
874 }
875 return rc;
876}
877
b20a3503
CL
878/*
879 * migrate_pages
880 *
95a402c3
CL
881 * The function takes one list of pages to migrate and a function
882 * that determines from the page to be migrated and the private data
883 * the target of the move and allocates the page.
b20a3503
CL
884 *
885 * The function returns after 10 attempts or if no pages
886 * are movable anymore because to has become empty
aaa994b3 887 * or no retryable pages exist anymore. All pages will be
e9534b3f 888 * returned to the LRU or freed.
b20a3503 889 *
95a402c3 890 * Return: Number of pages not migrated or error code.
b20a3503 891 */
95a402c3 892int migrate_pages(struct list_head *from,
62b61f61 893 new_page_t get_new_page, unsigned long private, int offlining)
b20a3503 894{
e24f0b8f 895 int retry = 1;
b20a3503
CL
896 int nr_failed = 0;
897 int pass = 0;
898 struct page *page;
899 struct page *page2;
900 int swapwrite = current->flags & PF_SWAPWRITE;
901 int rc;
902
903 if (!swapwrite)
904 current->flags |= PF_SWAPWRITE;
905
e24f0b8f
CL
906 for(pass = 0; pass < 10 && retry; pass++) {
907 retry = 0;
b20a3503 908
e24f0b8f 909 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 910 cond_resched();
2d1db3b1 911
95a402c3 912 rc = unmap_and_move(get_new_page, private,
62b61f61 913 page, pass > 2, offlining);
2d1db3b1 914
e24f0b8f 915 switch(rc) {
95a402c3
CL
916 case -ENOMEM:
917 goto out;
e24f0b8f 918 case -EAGAIN:
2d1db3b1 919 retry++;
e24f0b8f
CL
920 break;
921 case 0:
e24f0b8f
CL
922 break;
923 default:
2d1db3b1 924 /* Permanent failure */
2d1db3b1 925 nr_failed++;
e24f0b8f 926 break;
2d1db3b1 927 }
b20a3503
CL
928 }
929 }
95a402c3
CL
930 rc = 0;
931out:
b20a3503
CL
932 if (!swapwrite)
933 current->flags &= ~PF_SWAPWRITE;
934
aaa994b3 935 putback_lru_pages(from);
b20a3503 936
95a402c3
CL
937 if (rc)
938 return rc;
b20a3503 939
95a402c3 940 return nr_failed + retry;
b20a3503 941}
95a402c3 942
290408d4
NH
943int migrate_huge_pages(struct list_head *from,
944 new_page_t get_new_page, unsigned long private, int offlining)
945{
946 int retry = 1;
947 int nr_failed = 0;
948 int pass = 0;
949 struct page *page;
950 struct page *page2;
951 int rc;
952
953 for (pass = 0; pass < 10 && retry; pass++) {
954 retry = 0;
955
956 list_for_each_entry_safe(page, page2, from, lru) {
957 cond_resched();
958
959 rc = unmap_and_move_huge_page(get_new_page,
960 private, page, pass > 2, offlining);
961
962 switch(rc) {
963 case -ENOMEM:
964 goto out;
965 case -EAGAIN:
966 retry++;
967 break;
968 case 0:
969 break;
970 default:
971 /* Permanent failure */
972 nr_failed++;
973 break;
974 }
975 }
976 }
977 rc = 0;
978out:
979
980 list_for_each_entry_safe(page, page2, from, lru)
981 put_page(page);
982
983 if (rc)
984 return rc;
985
986 return nr_failed + retry;
987}
988
742755a1
CL
989#ifdef CONFIG_NUMA
990/*
991 * Move a list of individual pages
992 */
993struct page_to_node {
994 unsigned long addr;
995 struct page *page;
996 int node;
997 int status;
998};
999
1000static struct page *new_page_node(struct page *p, unsigned long private,
1001 int **result)
1002{
1003 struct page_to_node *pm = (struct page_to_node *)private;
1004
1005 while (pm->node != MAX_NUMNODES && pm->page != p)
1006 pm++;
1007
1008 if (pm->node == MAX_NUMNODES)
1009 return NULL;
1010
1011 *result = &pm->status;
1012
6484eb3e 1013 return alloc_pages_exact_node(pm->node,
769848c0 1014 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1015}
1016
1017/*
1018 * Move a set of pages as indicated in the pm array. The addr
1019 * field must be set to the virtual address of the page to be moved
1020 * and the node number must contain a valid target node.
5e9a0f02 1021 * The pm array ends with node = MAX_NUMNODES.
742755a1 1022 */
5e9a0f02
BG
1023static int do_move_page_to_node_array(struct mm_struct *mm,
1024 struct page_to_node *pm,
1025 int migrate_all)
742755a1
CL
1026{
1027 int err;
1028 struct page_to_node *pp;
1029 LIST_HEAD(pagelist);
1030
1031 down_read(&mm->mmap_sem);
1032
1033 /*
1034 * Build a list of pages to migrate
1035 */
742755a1
CL
1036 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1037 struct vm_area_struct *vma;
1038 struct page *page;
1039
742755a1
CL
1040 err = -EFAULT;
1041 vma = find_vma(mm, pp->addr);
0dc952dc 1042 if (!vma || !vma_migratable(vma))
742755a1
CL
1043 goto set_status;
1044
1045 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
1046
1047 err = PTR_ERR(page);
1048 if (IS_ERR(page))
1049 goto set_status;
1050
742755a1
CL
1051 err = -ENOENT;
1052 if (!page)
1053 goto set_status;
1054
62b61f61
HD
1055 /* Use PageReserved to check for zero page */
1056 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1057 goto put_and_set;
1058
1059 pp->page = page;
1060 err = page_to_nid(page);
1061
1062 if (err == pp->node)
1063 /*
1064 * Node already in the right place
1065 */
1066 goto put_and_set;
1067
1068 err = -EACCES;
1069 if (page_mapcount(page) > 1 &&
1070 !migrate_all)
1071 goto put_and_set;
1072
62695a84 1073 err = isolate_lru_page(page);
6d9c285a 1074 if (!err) {
62695a84 1075 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1076 inc_zone_page_state(page, NR_ISOLATED_ANON +
1077 page_is_file_cache(page));
1078 }
742755a1
CL
1079put_and_set:
1080 /*
1081 * Either remove the duplicate refcount from
1082 * isolate_lru_page() or drop the page ref if it was
1083 * not isolated.
1084 */
1085 put_page(page);
1086set_status:
1087 pp->status = err;
1088 }
1089
e78bbfa8 1090 err = 0;
742755a1
CL
1091 if (!list_empty(&pagelist))
1092 err = migrate_pages(&pagelist, new_page_node,
62b61f61 1093 (unsigned long)pm, 0);
742755a1
CL
1094
1095 up_read(&mm->mmap_sem);
1096 return err;
1097}
1098
5e9a0f02
BG
1099/*
1100 * Migrate an array of page address onto an array of nodes and fill
1101 * the corresponding array of status.
1102 */
1103static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1104 unsigned long nr_pages,
1105 const void __user * __user *pages,
1106 const int __user *nodes,
1107 int __user *status, int flags)
1108{
3140a227 1109 struct page_to_node *pm;
5e9a0f02 1110 nodemask_t task_nodes;
3140a227
BG
1111 unsigned long chunk_nr_pages;
1112 unsigned long chunk_start;
1113 int err;
5e9a0f02
BG
1114
1115 task_nodes = cpuset_mems_allowed(task);
1116
3140a227
BG
1117 err = -ENOMEM;
1118 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1119 if (!pm)
5e9a0f02 1120 goto out;
35282a2d
BG
1121
1122 migrate_prep();
1123
5e9a0f02 1124 /*
3140a227
BG
1125 * Store a chunk of page_to_node array in a page,
1126 * but keep the last one as a marker
5e9a0f02 1127 */
3140a227 1128 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1129
3140a227
BG
1130 for (chunk_start = 0;
1131 chunk_start < nr_pages;
1132 chunk_start += chunk_nr_pages) {
1133 int j;
5e9a0f02 1134
3140a227
BG
1135 if (chunk_start + chunk_nr_pages > nr_pages)
1136 chunk_nr_pages = nr_pages - chunk_start;
1137
1138 /* fill the chunk pm with addrs and nodes from user-space */
1139 for (j = 0; j < chunk_nr_pages; j++) {
1140 const void __user *p;
5e9a0f02
BG
1141 int node;
1142
3140a227
BG
1143 err = -EFAULT;
1144 if (get_user(p, pages + j + chunk_start))
1145 goto out_pm;
1146 pm[j].addr = (unsigned long) p;
1147
1148 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1149 goto out_pm;
1150
1151 err = -ENODEV;
6f5a55f1
LT
1152 if (node < 0 || node >= MAX_NUMNODES)
1153 goto out_pm;
1154
5e9a0f02
BG
1155 if (!node_state(node, N_HIGH_MEMORY))
1156 goto out_pm;
1157
1158 err = -EACCES;
1159 if (!node_isset(node, task_nodes))
1160 goto out_pm;
1161
3140a227
BG
1162 pm[j].node = node;
1163 }
1164
1165 /* End marker for this chunk */
1166 pm[chunk_nr_pages].node = MAX_NUMNODES;
1167
1168 /* Migrate this chunk */
1169 err = do_move_page_to_node_array(mm, pm,
1170 flags & MPOL_MF_MOVE_ALL);
1171 if (err < 0)
1172 goto out_pm;
5e9a0f02 1173
5e9a0f02 1174 /* Return status information */
3140a227
BG
1175 for (j = 0; j < chunk_nr_pages; j++)
1176 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1177 err = -EFAULT;
3140a227
BG
1178 goto out_pm;
1179 }
1180 }
1181 err = 0;
5e9a0f02
BG
1182
1183out_pm:
3140a227 1184 free_page((unsigned long)pm);
5e9a0f02
BG
1185out:
1186 return err;
1187}
1188
742755a1 1189/*
2f007e74 1190 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1191 */
80bba129
BG
1192static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1193 const void __user **pages, int *status)
742755a1 1194{
2f007e74 1195 unsigned long i;
2f007e74 1196
742755a1
CL
1197 down_read(&mm->mmap_sem);
1198
2f007e74 1199 for (i = 0; i < nr_pages; i++) {
80bba129 1200 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1201 struct vm_area_struct *vma;
1202 struct page *page;
c095adbc 1203 int err = -EFAULT;
2f007e74
BG
1204
1205 vma = find_vma(mm, addr);
742755a1
CL
1206 if (!vma)
1207 goto set_status;
1208
2f007e74 1209 page = follow_page(vma, addr, 0);
89f5b7da
LT
1210
1211 err = PTR_ERR(page);
1212 if (IS_ERR(page))
1213 goto set_status;
1214
742755a1
CL
1215 err = -ENOENT;
1216 /* Use PageReserved to check for zero page */
62b61f61 1217 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1218 goto set_status;
1219
1220 err = page_to_nid(page);
1221set_status:
80bba129
BG
1222 *status = err;
1223
1224 pages++;
1225 status++;
1226 }
1227
1228 up_read(&mm->mmap_sem);
1229}
1230
1231/*
1232 * Determine the nodes of a user array of pages and store it in
1233 * a user array of status.
1234 */
1235static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1236 const void __user * __user *pages,
1237 int __user *status)
1238{
1239#define DO_PAGES_STAT_CHUNK_NR 16
1240 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1241 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1242
87b8d1ad
PA
1243 while (nr_pages) {
1244 unsigned long chunk_nr;
80bba129 1245
87b8d1ad
PA
1246 chunk_nr = nr_pages;
1247 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1248 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1249
1250 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1251 break;
80bba129
BG
1252
1253 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1254
87b8d1ad
PA
1255 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1256 break;
742755a1 1257
87b8d1ad
PA
1258 pages += chunk_nr;
1259 status += chunk_nr;
1260 nr_pages -= chunk_nr;
1261 }
1262 return nr_pages ? -EFAULT : 0;
742755a1
CL
1263}
1264
1265/*
1266 * Move a list of pages in the address space of the currently executing
1267 * process.
1268 */
938bb9f5
HC
1269SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1270 const void __user * __user *, pages,
1271 const int __user *, nodes,
1272 int __user *, status, int, flags)
742755a1 1273{
c69e8d9c 1274 const struct cred *cred = current_cred(), *tcred;
742755a1 1275 struct task_struct *task;
742755a1 1276 struct mm_struct *mm;
5e9a0f02 1277 int err;
742755a1
CL
1278
1279 /* Check flags */
1280 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1281 return -EINVAL;
1282
1283 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1284 return -EPERM;
1285
1286 /* Find the mm_struct */
1287 read_lock(&tasklist_lock);
228ebcbe 1288 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
1289 if (!task) {
1290 read_unlock(&tasklist_lock);
1291 return -ESRCH;
1292 }
1293 mm = get_task_mm(task);
1294 read_unlock(&tasklist_lock);
1295
1296 if (!mm)
1297 return -EINVAL;
1298
1299 /*
1300 * Check if this process has the right to modify the specified
1301 * process. The right exists if the process has administrative
1302 * capabilities, superuser privileges or the same
1303 * userid as the target process.
1304 */
c69e8d9c
DH
1305 rcu_read_lock();
1306 tcred = __task_cred(task);
b6dff3ec
DH
1307 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1308 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1309 !capable(CAP_SYS_NICE)) {
c69e8d9c 1310 rcu_read_unlock();
742755a1 1311 err = -EPERM;
5e9a0f02 1312 goto out;
742755a1 1313 }
c69e8d9c 1314 rcu_read_unlock();
742755a1 1315
86c3a764
DQ
1316 err = security_task_movememory(task);
1317 if (err)
5e9a0f02 1318 goto out;
86c3a764 1319
5e9a0f02
BG
1320 if (nodes) {
1321 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1322 flags);
1323 } else {
2f007e74 1324 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1325 }
1326
742755a1 1327out:
742755a1
CL
1328 mmput(mm);
1329 return err;
1330}
742755a1 1331
7b2259b3
CL
1332/*
1333 * Call migration functions in the vma_ops that may prepare
1334 * memory in a vm for migration. migration functions may perform
1335 * the migration for vmas that do not have an underlying page struct.
1336 */
1337int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1338 const nodemask_t *from, unsigned long flags)
1339{
1340 struct vm_area_struct *vma;
1341 int err = 0;
1342
1001c9fb 1343 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1344 if (vma->vm_ops && vma->vm_ops->migrate) {
1345 err = vma->vm_ops->migrate(vma, to, from, flags);
1346 if (err)
1347 break;
1348 }
1349 }
1350 return err;
1351}
83d1674a 1352#endif
This page took 0.473797 seconds and 5 git commands to generate.