ksm: make !merge_across_nodes migration safe
[deliverable/linux.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
b20a3503 39
0d1836c3
MN
40#include <asm/tlbflush.h>
41
7b2a2d4a
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/migrate.h>
44
b20a3503
CL
45#include "internal.h"
46
b20a3503 47/*
742755a1 48 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
b20a3503
CL
51 */
52int migrate_prep(void)
53{
b20a3503
CL
54 /*
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
59 */
60 lru_add_drain_all();
61
62 return 0;
63}
64
748446bb
MG
65/* Do the necessary work of migrate_prep but not if it involves other CPUs */
66int migrate_prep_local(void)
67{
68 lru_add_drain();
69
70 return 0;
71}
72
b20a3503 73/*
894bc310
LS
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 76 */
e13861d8 77void putback_lru_pages(struct list_head *l)
b20a3503
CL
78{
79 struct page *page;
80 struct page *page2;
b20a3503 81
5733c7d1
RA
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
87 }
88}
89
90/*
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
93 *
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
96 */
97void putback_movable_pages(struct list_head *l)
98{
99 struct page *page;
100 struct page *page2;
101
b20a3503 102 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 103 list_del(&page->lru);
a731286d 104 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 105 page_is_file_cache(page));
bf6bddf1
RA
106 if (unlikely(balloon_page_movable(page)))
107 balloon_page_putback(page);
108 else
109 putback_lru_page(page);
b20a3503 110 }
b20a3503
CL
111}
112
0697212a
CL
113/*
114 * Restore a potential migration pte to a working pte entry
115 */
e9995ef9
HD
116static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 unsigned long addr, void *old)
0697212a
CL
118{
119 struct mm_struct *mm = vma->vm_mm;
120 swp_entry_t entry;
0697212a
CL
121 pmd_t *pmd;
122 pte_t *ptep, pte;
123 spinlock_t *ptl;
124
290408d4
NH
125 if (unlikely(PageHuge(new))) {
126 ptep = huge_pte_offset(mm, addr);
127 if (!ptep)
128 goto out;
129 ptl = &mm->page_table_lock;
130 } else {
6219049a
BL
131 pmd = mm_find_pmd(mm, addr);
132 if (!pmd)
290408d4 133 goto out;
500d65d4
AA
134 if (pmd_trans_huge(*pmd))
135 goto out;
0697212a 136
290408d4 137 ptep = pte_offset_map(pmd, addr);
0697212a 138
486cf46f
HD
139 /*
140 * Peek to check is_swap_pte() before taking ptlock? No, we
141 * can race mremap's move_ptes(), which skips anon_vma lock.
142 */
290408d4
NH
143
144 ptl = pte_lockptr(mm, pmd);
145 }
0697212a 146
0697212a
CL
147 spin_lock(ptl);
148 pte = *ptep;
149 if (!is_swap_pte(pte))
e9995ef9 150 goto unlock;
0697212a
CL
151
152 entry = pte_to_swp_entry(pte);
153
e9995ef9
HD
154 if (!is_migration_entry(entry) ||
155 migration_entry_to_page(entry) != old)
156 goto unlock;
0697212a 157
0697212a
CL
158 get_page(new);
159 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 if (is_write_migration_entry(entry))
161 pte = pte_mkwrite(pte);
3ef8fd7f 162#ifdef CONFIG_HUGETLB_PAGE
be7517d6 163 if (PageHuge(new)) {
290408d4 164 pte = pte_mkhuge(pte);
be7517d6
TL
165 pte = arch_make_huge_pte(pte, vma, new, 0);
166 }
3ef8fd7f 167#endif
97ee0524 168 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 169 set_pte_at(mm, addr, ptep, pte);
04e62a29 170
290408d4
NH
171 if (PageHuge(new)) {
172 if (PageAnon(new))
173 hugepage_add_anon_rmap(new, vma, addr);
174 else
175 page_dup_rmap(new);
176 } else if (PageAnon(new))
04e62a29
CL
177 page_add_anon_rmap(new, vma, addr);
178 else
179 page_add_file_rmap(new);
180
181 /* No need to invalidate - it was non-present before */
4b3073e1 182 update_mmu_cache(vma, addr, ptep);
e9995ef9 183unlock:
0697212a 184 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
185out:
186 return SWAP_AGAIN;
0697212a
CL
187}
188
04e62a29
CL
189/*
190 * Get rid of all migration entries and replace them by
191 * references to the indicated page.
192 */
193static void remove_migration_ptes(struct page *old, struct page *new)
194{
e9995ef9 195 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
196}
197
0697212a
CL
198/*
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
0697212a
CL
202 */
203void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
204 unsigned long address)
205{
206 pte_t *ptep, pte;
207 spinlock_t *ptl;
208 swp_entry_t entry;
209 struct page *page;
210
211 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
212 pte = *ptep;
213 if (!is_swap_pte(pte))
214 goto out;
215
216 entry = pte_to_swp_entry(pte);
217 if (!is_migration_entry(entry))
218 goto out;
219
220 page = migration_entry_to_page(entry);
221
e286781d
NP
222 /*
223 * Once radix-tree replacement of page migration started, page_count
224 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 * against a page without get_page().
226 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 * will occur again.
228 */
229 if (!get_page_unless_zero(page))
230 goto out;
0697212a
CL
231 pte_unmap_unlock(ptep, ptl);
232 wait_on_page_locked(page);
233 put_page(page);
234 return;
235out:
236 pte_unmap_unlock(ptep, ptl);
237}
238
b969c4ab
MG
239#ifdef CONFIG_BLOCK
240/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
241static bool buffer_migrate_lock_buffers(struct buffer_head *head,
242 enum migrate_mode mode)
b969c4ab
MG
243{
244 struct buffer_head *bh = head;
245
246 /* Simple case, sync compaction */
a6bc32b8 247 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
248 do {
249 get_bh(bh);
250 lock_buffer(bh);
251 bh = bh->b_this_page;
252
253 } while (bh != head);
254
255 return true;
256 }
257
258 /* async case, we cannot block on lock_buffer so use trylock_buffer */
259 do {
260 get_bh(bh);
261 if (!trylock_buffer(bh)) {
262 /*
263 * We failed to lock the buffer and cannot stall in
264 * async migration. Release the taken locks
265 */
266 struct buffer_head *failed_bh = bh;
267 put_bh(failed_bh);
268 bh = head;
269 while (bh != failed_bh) {
270 unlock_buffer(bh);
271 put_bh(bh);
272 bh = bh->b_this_page;
273 }
274 return false;
275 }
276
277 bh = bh->b_this_page;
278 } while (bh != head);
279 return true;
280}
281#else
282static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 283 enum migrate_mode mode)
b969c4ab
MG
284{
285 return true;
286}
287#endif /* CONFIG_BLOCK */
288
b20a3503 289/*
c3fcf8a5 290 * Replace the page in the mapping.
5b5c7120
CL
291 *
292 * The number of remaining references must be:
293 * 1 for anonymous pages without a mapping
294 * 2 for pages with a mapping
266cf658 295 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 296 */
2d1db3b1 297static int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 298 struct page *newpage, struct page *page,
a6bc32b8 299 struct buffer_head *head, enum migrate_mode mode)
b20a3503 300{
7039e1db 301 int expected_count = 0;
7cf9c2c7 302 void **pslot;
b20a3503 303
6c5240ae 304 if (!mapping) {
0e8c7d0f 305 /* Anonymous page without mapping */
6c5240ae
CL
306 if (page_count(page) != 1)
307 return -EAGAIN;
78bd5209 308 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
309 }
310
19fd6231 311 spin_lock_irq(&mapping->tree_lock);
b20a3503 312
7cf9c2c7
NP
313 pslot = radix_tree_lookup_slot(&mapping->page_tree,
314 page_index(page));
b20a3503 315
edcf4748 316 expected_count = 2 + page_has_private(page);
e286781d 317 if (page_count(page) != expected_count ||
29c1f677 318 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 319 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 320 return -EAGAIN;
b20a3503
CL
321 }
322
e286781d 323 if (!page_freeze_refs(page, expected_count)) {
19fd6231 324 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
325 return -EAGAIN;
326 }
327
b969c4ab
MG
328 /*
329 * In the async migration case of moving a page with buffers, lock the
330 * buffers using trylock before the mapping is moved. If the mapping
331 * was moved, we later failed to lock the buffers and could not move
332 * the mapping back due to an elevated page count, we would have to
333 * block waiting on other references to be dropped.
334 */
a6bc32b8
MG
335 if (mode == MIGRATE_ASYNC && head &&
336 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
337 page_unfreeze_refs(page, expected_count);
338 spin_unlock_irq(&mapping->tree_lock);
339 return -EAGAIN;
340 }
341
b20a3503
CL
342 /*
343 * Now we know that no one else is looking at the page.
b20a3503 344 */
7cf9c2c7 345 get_page(newpage); /* add cache reference */
b20a3503
CL
346 if (PageSwapCache(page)) {
347 SetPageSwapCache(newpage);
348 set_page_private(newpage, page_private(page));
349 }
350
7cf9c2c7
NP
351 radix_tree_replace_slot(pslot, newpage);
352
353 /*
937a94c9
JG
354 * Drop cache reference from old page by unfreezing
355 * to one less reference.
7cf9c2c7
NP
356 * We know this isn't the last reference.
357 */
937a94c9 358 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 359
0e8c7d0f
CL
360 /*
361 * If moved to a different zone then also account
362 * the page for that zone. Other VM counters will be
363 * taken care of when we establish references to the
364 * new page and drop references to the old page.
365 *
366 * Note that anonymous pages are accounted for
367 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 * are mapped to swap space.
369 */
370 __dec_zone_page_state(page, NR_FILE_PAGES);
371 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 372 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
373 __dec_zone_page_state(page, NR_SHMEM);
374 __inc_zone_page_state(newpage, NR_SHMEM);
375 }
19fd6231 376 spin_unlock_irq(&mapping->tree_lock);
b20a3503 377
78bd5209 378 return MIGRATEPAGE_SUCCESS;
b20a3503 379}
b20a3503 380
290408d4
NH
381/*
382 * The expected number of remaining references is the same as that
383 * of migrate_page_move_mapping().
384 */
385int migrate_huge_page_move_mapping(struct address_space *mapping,
386 struct page *newpage, struct page *page)
387{
388 int expected_count;
389 void **pslot;
390
391 if (!mapping) {
392 if (page_count(page) != 1)
393 return -EAGAIN;
78bd5209 394 return MIGRATEPAGE_SUCCESS;
290408d4
NH
395 }
396
397 spin_lock_irq(&mapping->tree_lock);
398
399 pslot = radix_tree_lookup_slot(&mapping->page_tree,
400 page_index(page));
401
402 expected_count = 2 + page_has_private(page);
403 if (page_count(page) != expected_count ||
29c1f677 404 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
405 spin_unlock_irq(&mapping->tree_lock);
406 return -EAGAIN;
407 }
408
409 if (!page_freeze_refs(page, expected_count)) {
410 spin_unlock_irq(&mapping->tree_lock);
411 return -EAGAIN;
412 }
413
414 get_page(newpage);
415
416 radix_tree_replace_slot(pslot, newpage);
417
937a94c9 418 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
419
420 spin_unlock_irq(&mapping->tree_lock);
78bd5209 421 return MIGRATEPAGE_SUCCESS;
290408d4
NH
422}
423
b20a3503
CL
424/*
425 * Copy the page to its new location
426 */
290408d4 427void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 428{
b32967ff 429 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
430 copy_huge_page(newpage, page);
431 else
432 copy_highpage(newpage, page);
b20a3503
CL
433
434 if (PageError(page))
435 SetPageError(newpage);
436 if (PageReferenced(page))
437 SetPageReferenced(newpage);
438 if (PageUptodate(page))
439 SetPageUptodate(newpage);
894bc310
LS
440 if (TestClearPageActive(page)) {
441 VM_BUG_ON(PageUnevictable(page));
b20a3503 442 SetPageActive(newpage);
418b27ef
LS
443 } else if (TestClearPageUnevictable(page))
444 SetPageUnevictable(newpage);
b20a3503
CL
445 if (PageChecked(page))
446 SetPageChecked(newpage);
447 if (PageMappedToDisk(page))
448 SetPageMappedToDisk(newpage);
449
450 if (PageDirty(page)) {
451 clear_page_dirty_for_io(page);
3a902c5f
NP
452 /*
453 * Want to mark the page and the radix tree as dirty, and
454 * redo the accounting that clear_page_dirty_for_io undid,
455 * but we can't use set_page_dirty because that function
456 * is actually a signal that all of the page has become dirty.
25985edc 457 * Whereas only part of our page may be dirty.
3a902c5f 458 */
752dc185
HD
459 if (PageSwapBacked(page))
460 SetPageDirty(newpage);
461 else
462 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
463 }
464
b291f000 465 mlock_migrate_page(newpage, page);
e9995ef9 466 ksm_migrate_page(newpage, page);
c8d6553b
HD
467 /*
468 * Please do not reorder this without considering how mm/ksm.c's
469 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
470 */
b20a3503 471 ClearPageSwapCache(page);
b20a3503
CL
472 ClearPagePrivate(page);
473 set_page_private(page, 0);
b20a3503
CL
474
475 /*
476 * If any waiters have accumulated on the new page then
477 * wake them up.
478 */
479 if (PageWriteback(newpage))
480 end_page_writeback(newpage);
481}
b20a3503 482
1d8b85cc
CL
483/************************************************************
484 * Migration functions
485 ***********************************************************/
486
487/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
488int fail_migrate_page(struct address_space *mapping,
489 struct page *newpage, struct page *page)
1d8b85cc
CL
490{
491 return -EIO;
492}
493EXPORT_SYMBOL(fail_migrate_page);
494
b20a3503
CL
495/*
496 * Common logic to directly migrate a single page suitable for
266cf658 497 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
498 *
499 * Pages are locked upon entry and exit.
500 */
2d1db3b1 501int migrate_page(struct address_space *mapping,
a6bc32b8
MG
502 struct page *newpage, struct page *page,
503 enum migrate_mode mode)
b20a3503
CL
504{
505 int rc;
506
507 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
508
a6bc32b8 509 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
b20a3503 510
78bd5209 511 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
512 return rc;
513
514 migrate_page_copy(newpage, page);
78bd5209 515 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
516}
517EXPORT_SYMBOL(migrate_page);
518
9361401e 519#ifdef CONFIG_BLOCK
1d8b85cc
CL
520/*
521 * Migration function for pages with buffers. This function can only be used
522 * if the underlying filesystem guarantees that no other references to "page"
523 * exist.
524 */
2d1db3b1 525int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 526 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 527{
1d8b85cc
CL
528 struct buffer_head *bh, *head;
529 int rc;
530
1d8b85cc 531 if (!page_has_buffers(page))
a6bc32b8 532 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
533
534 head = page_buffers(page);
535
a6bc32b8 536 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
1d8b85cc 537
78bd5209 538 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
539 return rc;
540
b969c4ab
MG
541 /*
542 * In the async case, migrate_page_move_mapping locked the buffers
543 * with an IRQ-safe spinlock held. In the sync case, the buffers
544 * need to be locked now
545 */
a6bc32b8
MG
546 if (mode != MIGRATE_ASYNC)
547 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
548
549 ClearPagePrivate(page);
550 set_page_private(newpage, page_private(page));
551 set_page_private(page, 0);
552 put_page(page);
553 get_page(newpage);
554
555 bh = head;
556 do {
557 set_bh_page(bh, newpage, bh_offset(bh));
558 bh = bh->b_this_page;
559
560 } while (bh != head);
561
562 SetPagePrivate(newpage);
563
564 migrate_page_copy(newpage, page);
565
566 bh = head;
567 do {
568 unlock_buffer(bh);
569 put_bh(bh);
570 bh = bh->b_this_page;
571
572 } while (bh != head);
573
78bd5209 574 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
575}
576EXPORT_SYMBOL(buffer_migrate_page);
9361401e 577#endif
1d8b85cc 578
04e62a29
CL
579/*
580 * Writeback a page to clean the dirty state
581 */
582static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 583{
04e62a29
CL
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_NONE,
586 .nr_to_write = 1,
587 .range_start = 0,
588 .range_end = LLONG_MAX,
04e62a29
CL
589 .for_reclaim = 1
590 };
591 int rc;
592
593 if (!mapping->a_ops->writepage)
594 /* No write method for the address space */
595 return -EINVAL;
596
597 if (!clear_page_dirty_for_io(page))
598 /* Someone else already triggered a write */
599 return -EAGAIN;
600
8351a6e4 601 /*
04e62a29
CL
602 * A dirty page may imply that the underlying filesystem has
603 * the page on some queue. So the page must be clean for
604 * migration. Writeout may mean we loose the lock and the
605 * page state is no longer what we checked for earlier.
606 * At this point we know that the migration attempt cannot
607 * be successful.
8351a6e4 608 */
04e62a29 609 remove_migration_ptes(page, page);
8351a6e4 610
04e62a29 611 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 612
04e62a29
CL
613 if (rc != AOP_WRITEPAGE_ACTIVATE)
614 /* unlocked. Relock */
615 lock_page(page);
616
bda8550d 617 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
618}
619
620/*
621 * Default handling if a filesystem does not provide a migration function.
622 */
623static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 624 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 625{
b969c4ab 626 if (PageDirty(page)) {
a6bc32b8
MG
627 /* Only writeback pages in full synchronous migration */
628 if (mode != MIGRATE_SYNC)
b969c4ab 629 return -EBUSY;
04e62a29 630 return writeout(mapping, page);
b969c4ab 631 }
8351a6e4
CL
632
633 /*
634 * Buffers may be managed in a filesystem specific way.
635 * We must have no buffers or drop them.
636 */
266cf658 637 if (page_has_private(page) &&
8351a6e4
CL
638 !try_to_release_page(page, GFP_KERNEL))
639 return -EAGAIN;
640
a6bc32b8 641 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
642}
643
e24f0b8f
CL
644/*
645 * Move a page to a newly allocated page
646 * The page is locked and all ptes have been successfully removed.
647 *
648 * The new page will have replaced the old page if this function
649 * is successful.
894bc310
LS
650 *
651 * Return value:
652 * < 0 - error code
78bd5209 653 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 654 */
3fe2011f 655static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 656 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
657{
658 struct address_space *mapping;
659 int rc;
660
661 /*
662 * Block others from accessing the page when we get around to
663 * establishing additional references. We are the only one
664 * holding a reference to the new page at this point.
665 */
529ae9aa 666 if (!trylock_page(newpage))
e24f0b8f
CL
667 BUG();
668
669 /* Prepare mapping for the new page.*/
670 newpage->index = page->index;
671 newpage->mapping = page->mapping;
b2e18538
RR
672 if (PageSwapBacked(page))
673 SetPageSwapBacked(newpage);
e24f0b8f
CL
674
675 mapping = page_mapping(page);
676 if (!mapping)
a6bc32b8 677 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 678 else if (mapping->a_ops->migratepage)
e24f0b8f 679 /*
b969c4ab
MG
680 * Most pages have a mapping and most filesystems provide a
681 * migratepage callback. Anonymous pages are part of swap
682 * space which also has its own migratepage callback. This
683 * is the most common path for page migration.
e24f0b8f 684 */
b969c4ab 685 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 686 newpage, page, mode);
b969c4ab 687 else
a6bc32b8 688 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 689
78bd5209 690 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 691 newpage->mapping = NULL;
3fe2011f
MG
692 } else {
693 if (remap_swapcache)
694 remove_migration_ptes(page, newpage);
35512eca 695 page->mapping = NULL;
3fe2011f 696 }
e24f0b8f
CL
697
698 unlock_page(newpage);
699
700 return rc;
701}
702
0dabec93 703static int __unmap_and_move(struct page *page, struct page *newpage,
a6bc32b8 704 int force, bool offlining, enum migrate_mode mode)
e24f0b8f 705{
0dabec93 706 int rc = -EAGAIN;
3fe2011f 707 int remap_swapcache = 1;
56039efa 708 struct mem_cgroup *mem;
3f6c8272 709 struct anon_vma *anon_vma = NULL;
95a402c3 710
529ae9aa 711 if (!trylock_page(page)) {
a6bc32b8 712 if (!force || mode == MIGRATE_ASYNC)
0dabec93 713 goto out;
3e7d3449
MG
714
715 /*
716 * It's not safe for direct compaction to call lock_page.
717 * For example, during page readahead pages are added locked
718 * to the LRU. Later, when the IO completes the pages are
719 * marked uptodate and unlocked. However, the queueing
720 * could be merging multiple pages for one bio (e.g.
721 * mpage_readpages). If an allocation happens for the
722 * second or third page, the process can end up locking
723 * the same page twice and deadlocking. Rather than
724 * trying to be clever about what pages can be locked,
725 * avoid the use of lock_page for direct compaction
726 * altogether.
727 */
728 if (current->flags & PF_MEMALLOC)
0dabec93 729 goto out;
3e7d3449 730
e24f0b8f
CL
731 lock_page(page);
732 }
733
62b61f61
HD
734 /*
735 * Only memory hotplug's offline_pages() caller has locked out KSM,
736 * and can safely migrate a KSM page. The other cases have skipped
737 * PageKsm along with PageReserved - but it is only now when we have
738 * the page lock that we can be certain it will not go KSM beneath us
739 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
740 * its pagecount raised, but only here do we take the page lock which
741 * serializes that).
742 */
743 if (PageKsm(page) && !offlining) {
744 rc = -EBUSY;
745 goto unlock;
746 }
747
01b1ae63 748 /* charge against new page */
0030f535 749 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 750
e24f0b8f 751 if (PageWriteback(page)) {
11bc82d6 752 /*
a6bc32b8
MG
753 * Only in the case of a full syncronous migration is it
754 * necessary to wait for PageWriteback. In the async case,
755 * the retry loop is too short and in the sync-light case,
756 * the overhead of stalling is too much
11bc82d6 757 */
a6bc32b8 758 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
759 rc = -EBUSY;
760 goto uncharge;
761 }
762 if (!force)
01b1ae63 763 goto uncharge;
e24f0b8f
CL
764 wait_on_page_writeback(page);
765 }
e24f0b8f 766 /*
dc386d4d
KH
767 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
768 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 769 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 770 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
771 * File Caches may use write_page() or lock_page() in migration, then,
772 * just care Anon page here.
dc386d4d 773 */
989f89c5 774 if (PageAnon(page)) {
1ce82b69 775 /*
4fc3f1d6 776 * Only page_lock_anon_vma_read() understands the subtleties of
1ce82b69
HD
777 * getting a hold on an anon_vma from outside one of its mms.
778 */
746b18d4 779 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
780 if (anon_vma) {
781 /*
746b18d4 782 * Anon page
1ce82b69 783 */
1ce82b69 784 } else if (PageSwapCache(page)) {
3fe2011f
MG
785 /*
786 * We cannot be sure that the anon_vma of an unmapped
787 * swapcache page is safe to use because we don't
788 * know in advance if the VMA that this page belonged
789 * to still exists. If the VMA and others sharing the
790 * data have been freed, then the anon_vma could
791 * already be invalid.
792 *
793 * To avoid this possibility, swapcache pages get
794 * migrated but are not remapped when migration
795 * completes
796 */
797 remap_swapcache = 0;
798 } else {
1ce82b69 799 goto uncharge;
3fe2011f 800 }
989f89c5 801 }
62e1c553 802
bf6bddf1
RA
803 if (unlikely(balloon_page_movable(page))) {
804 /*
805 * A ballooned page does not need any special attention from
806 * physical to virtual reverse mapping procedures.
807 * Skip any attempt to unmap PTEs or to remap swap cache,
808 * in order to avoid burning cycles at rmap level, and perform
809 * the page migration right away (proteced by page lock).
810 */
811 rc = balloon_page_migrate(newpage, page, mode);
812 goto uncharge;
813 }
814
dc386d4d 815 /*
62e1c553
SL
816 * Corner case handling:
817 * 1. When a new swap-cache page is read into, it is added to the LRU
818 * and treated as swapcache but it has no rmap yet.
819 * Calling try_to_unmap() against a page->mapping==NULL page will
820 * trigger a BUG. So handle it here.
821 * 2. An orphaned page (see truncate_complete_page) might have
822 * fs-private metadata. The page can be picked up due to memory
823 * offlining. Everywhere else except page reclaim, the page is
824 * invisible to the vm, so the page can not be migrated. So try to
825 * free the metadata, so the page can be freed.
e24f0b8f 826 */
62e1c553 827 if (!page->mapping) {
1ce82b69
HD
828 VM_BUG_ON(PageAnon(page));
829 if (page_has_private(page)) {
62e1c553 830 try_to_free_buffers(page);
1ce82b69 831 goto uncharge;
62e1c553 832 }
abfc3488 833 goto skip_unmap;
62e1c553
SL
834 }
835
dc386d4d 836 /* Establish migration ptes or remove ptes */
14fa31b8 837 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 838
abfc3488 839skip_unmap:
e6a1530d 840 if (!page_mapped(page))
a6bc32b8 841 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 842
3fe2011f 843 if (rc && remap_swapcache)
e24f0b8f 844 remove_migration_ptes(page, page);
3f6c8272
MG
845
846 /* Drop an anon_vma reference if we took one */
76545066 847 if (anon_vma)
9e60109f 848 put_anon_vma(anon_vma);
3f6c8272 849
01b1ae63 850uncharge:
bf6bddf1
RA
851 mem_cgroup_end_migration(mem, page, newpage,
852 (rc == MIGRATEPAGE_SUCCESS ||
853 rc == MIGRATEPAGE_BALLOON_SUCCESS));
e24f0b8f
CL
854unlock:
855 unlock_page(page);
0dabec93
MK
856out:
857 return rc;
858}
95a402c3 859
0dabec93
MK
860/*
861 * Obtain the lock on page, remove all ptes and migrate the page
862 * to the newly allocated page in newpage.
863 */
864static int unmap_and_move(new_page_t get_new_page, unsigned long private,
a6bc32b8
MG
865 struct page *page, int force, bool offlining,
866 enum migrate_mode mode)
0dabec93
MK
867{
868 int rc = 0;
869 int *result = NULL;
870 struct page *newpage = get_new_page(page, private, &result);
871
872 if (!newpage)
873 return -ENOMEM;
874
875 if (page_count(page) == 1) {
876 /* page was freed from under us. So we are done. */
877 goto out;
878 }
879
880 if (unlikely(PageTransHuge(page)))
881 if (unlikely(split_huge_page(page)))
882 goto out;
883
a6bc32b8 884 rc = __unmap_and_move(page, newpage, force, offlining, mode);
bf6bddf1
RA
885
886 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
887 /*
888 * A ballooned page has been migrated already.
889 * Now, it's the time to wrap-up counters,
890 * handle the page back to Buddy and return.
891 */
892 dec_zone_page_state(page, NR_ISOLATED_ANON +
893 page_is_file_cache(page));
894 balloon_page_free(page);
895 return MIGRATEPAGE_SUCCESS;
896 }
0dabec93 897out:
e24f0b8f 898 if (rc != -EAGAIN) {
0dabec93
MK
899 /*
900 * A page that has been migrated has all references
901 * removed and will be freed. A page that has not been
902 * migrated will have kepts its references and be
903 * restored.
904 */
905 list_del(&page->lru);
a731286d 906 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 907 page_is_file_cache(page));
894bc310 908 putback_lru_page(page);
e24f0b8f 909 }
95a402c3
CL
910 /*
911 * Move the new page to the LRU. If migration was not successful
912 * then this will free the page.
913 */
894bc310 914 putback_lru_page(newpage);
742755a1
CL
915 if (result) {
916 if (rc)
917 *result = rc;
918 else
919 *result = page_to_nid(newpage);
920 }
e24f0b8f
CL
921 return rc;
922}
923
290408d4
NH
924/*
925 * Counterpart of unmap_and_move_page() for hugepage migration.
926 *
927 * This function doesn't wait the completion of hugepage I/O
928 * because there is no race between I/O and migration for hugepage.
929 * Note that currently hugepage I/O occurs only in direct I/O
930 * where no lock is held and PG_writeback is irrelevant,
931 * and writeback status of all subpages are counted in the reference
932 * count of the head page (i.e. if all subpages of a 2MB hugepage are
933 * under direct I/O, the reference of the head page is 512 and a bit more.)
934 * This means that when we try to migrate hugepage whose subpages are
935 * doing direct I/O, some references remain after try_to_unmap() and
936 * hugepage migration fails without data corruption.
937 *
938 * There is also no race when direct I/O is issued on the page under migration,
939 * because then pte is replaced with migration swap entry and direct I/O code
940 * will wait in the page fault for migration to complete.
941 */
942static int unmap_and_move_huge_page(new_page_t get_new_page,
943 unsigned long private, struct page *hpage,
a6bc32b8
MG
944 int force, bool offlining,
945 enum migrate_mode mode)
290408d4
NH
946{
947 int rc = 0;
948 int *result = NULL;
949 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
950 struct anon_vma *anon_vma = NULL;
951
952 if (!new_hpage)
953 return -ENOMEM;
954
955 rc = -EAGAIN;
956
957 if (!trylock_page(hpage)) {
a6bc32b8 958 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
959 goto out;
960 lock_page(hpage);
961 }
962
746b18d4
PZ
963 if (PageAnon(hpage))
964 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
965
966 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
967
968 if (!page_mapped(hpage))
a6bc32b8 969 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
970
971 if (rc)
972 remove_migration_ptes(hpage, hpage);
973
fd4a4663 974 if (anon_vma)
9e60109f 975 put_anon_vma(anon_vma);
8e6ac7fa
AK
976
977 if (!rc)
978 hugetlb_cgroup_migrate(hpage, new_hpage);
979
290408d4 980 unlock_page(hpage);
09761333 981out:
290408d4 982 put_page(new_hpage);
290408d4
NH
983 if (result) {
984 if (rc)
985 *result = rc;
986 else
987 *result = page_to_nid(new_hpage);
988 }
989 return rc;
990}
991
b20a3503
CL
992/*
993 * migrate_pages
994 *
95a402c3
CL
995 * The function takes one list of pages to migrate and a function
996 * that determines from the page to be migrated and the private data
997 * the target of the move and allocates the page.
b20a3503
CL
998 *
999 * The function returns after 10 attempts or if no pages
1000 * are movable anymore because to has become empty
cf608ac1
MK
1001 * or no retryable pages exist anymore.
1002 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 1003 * or free list only if ret != 0.
b20a3503 1004 *
95a402c3 1005 * Return: Number of pages not migrated or error code.
b20a3503 1006 */
95a402c3 1007int migrate_pages(struct list_head *from,
7f0f2496 1008 new_page_t get_new_page, unsigned long private, bool offlining,
7b2a2d4a 1009 enum migrate_mode mode, int reason)
b20a3503 1010{
e24f0b8f 1011 int retry = 1;
b20a3503 1012 int nr_failed = 0;
5647bc29 1013 int nr_succeeded = 0;
b20a3503
CL
1014 int pass = 0;
1015 struct page *page;
1016 struct page *page2;
1017 int swapwrite = current->flags & PF_SWAPWRITE;
1018 int rc;
1019
1020 if (!swapwrite)
1021 current->flags |= PF_SWAPWRITE;
1022
e24f0b8f
CL
1023 for(pass = 0; pass < 10 && retry; pass++) {
1024 retry = 0;
b20a3503 1025
e24f0b8f 1026 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1027 cond_resched();
2d1db3b1 1028
95a402c3 1029 rc = unmap_and_move(get_new_page, private,
77f1fe6b 1030 page, pass > 2, offlining,
a6bc32b8 1031 mode);
2d1db3b1 1032
e24f0b8f 1033 switch(rc) {
95a402c3
CL
1034 case -ENOMEM:
1035 goto out;
e24f0b8f 1036 case -EAGAIN:
2d1db3b1 1037 retry++;
e24f0b8f 1038 break;
78bd5209 1039 case MIGRATEPAGE_SUCCESS:
5647bc29 1040 nr_succeeded++;
e24f0b8f
CL
1041 break;
1042 default:
2d1db3b1 1043 /* Permanent failure */
2d1db3b1 1044 nr_failed++;
e24f0b8f 1045 break;
2d1db3b1 1046 }
b20a3503
CL
1047 }
1048 }
78bd5209 1049 rc = nr_failed + retry;
95a402c3 1050out:
5647bc29
MG
1051 if (nr_succeeded)
1052 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1053 if (nr_failed)
1054 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1055 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1056
b20a3503
CL
1057 if (!swapwrite)
1058 current->flags &= ~PF_SWAPWRITE;
1059
78bd5209 1060 return rc;
b20a3503 1061}
95a402c3 1062
189ebff2
AK
1063int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1064 unsigned long private, bool offlining,
1065 enum migrate_mode mode)
290408d4 1066{
189ebff2
AK
1067 int pass, rc;
1068
1069 for (pass = 0; pass < 10; pass++) {
1070 rc = unmap_and_move_huge_page(get_new_page,
1071 private, hpage, pass > 2, offlining,
1072 mode);
1073 switch (rc) {
1074 case -ENOMEM:
1075 goto out;
1076 case -EAGAIN:
1077 /* try again */
290408d4 1078 cond_resched();
189ebff2 1079 break;
78bd5209 1080 case MIGRATEPAGE_SUCCESS:
189ebff2
AK
1081 goto out;
1082 default:
1083 rc = -EIO;
1084 goto out;
290408d4
NH
1085 }
1086 }
290408d4 1087out:
189ebff2 1088 return rc;
290408d4
NH
1089}
1090
742755a1
CL
1091#ifdef CONFIG_NUMA
1092/*
1093 * Move a list of individual pages
1094 */
1095struct page_to_node {
1096 unsigned long addr;
1097 struct page *page;
1098 int node;
1099 int status;
1100};
1101
1102static struct page *new_page_node(struct page *p, unsigned long private,
1103 int **result)
1104{
1105 struct page_to_node *pm = (struct page_to_node *)private;
1106
1107 while (pm->node != MAX_NUMNODES && pm->page != p)
1108 pm++;
1109
1110 if (pm->node == MAX_NUMNODES)
1111 return NULL;
1112
1113 *result = &pm->status;
1114
6484eb3e 1115 return alloc_pages_exact_node(pm->node,
769848c0 1116 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1117}
1118
1119/*
1120 * Move a set of pages as indicated in the pm array. The addr
1121 * field must be set to the virtual address of the page to be moved
1122 * and the node number must contain a valid target node.
5e9a0f02 1123 * The pm array ends with node = MAX_NUMNODES.
742755a1 1124 */
5e9a0f02
BG
1125static int do_move_page_to_node_array(struct mm_struct *mm,
1126 struct page_to_node *pm,
1127 int migrate_all)
742755a1
CL
1128{
1129 int err;
1130 struct page_to_node *pp;
1131 LIST_HEAD(pagelist);
1132
1133 down_read(&mm->mmap_sem);
1134
1135 /*
1136 * Build a list of pages to migrate
1137 */
742755a1
CL
1138 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1139 struct vm_area_struct *vma;
1140 struct page *page;
1141
742755a1
CL
1142 err = -EFAULT;
1143 vma = find_vma(mm, pp->addr);
70384dc6 1144 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1145 goto set_status;
1146
500d65d4 1147 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1148
1149 err = PTR_ERR(page);
1150 if (IS_ERR(page))
1151 goto set_status;
1152
742755a1
CL
1153 err = -ENOENT;
1154 if (!page)
1155 goto set_status;
1156
62b61f61
HD
1157 /* Use PageReserved to check for zero page */
1158 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1159 goto put_and_set;
1160
1161 pp->page = page;
1162 err = page_to_nid(page);
1163
1164 if (err == pp->node)
1165 /*
1166 * Node already in the right place
1167 */
1168 goto put_and_set;
1169
1170 err = -EACCES;
1171 if (page_mapcount(page) > 1 &&
1172 !migrate_all)
1173 goto put_and_set;
1174
62695a84 1175 err = isolate_lru_page(page);
6d9c285a 1176 if (!err) {
62695a84 1177 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1178 inc_zone_page_state(page, NR_ISOLATED_ANON +
1179 page_is_file_cache(page));
1180 }
742755a1
CL
1181put_and_set:
1182 /*
1183 * Either remove the duplicate refcount from
1184 * isolate_lru_page() or drop the page ref if it was
1185 * not isolated.
1186 */
1187 put_page(page);
1188set_status:
1189 pp->status = err;
1190 }
1191
e78bbfa8 1192 err = 0;
cf608ac1 1193 if (!list_empty(&pagelist)) {
742755a1 1194 err = migrate_pages(&pagelist, new_page_node,
7b2a2d4a
MG
1195 (unsigned long)pm, 0, MIGRATE_SYNC,
1196 MR_SYSCALL);
cf608ac1
MK
1197 if (err)
1198 putback_lru_pages(&pagelist);
1199 }
742755a1
CL
1200
1201 up_read(&mm->mmap_sem);
1202 return err;
1203}
1204
5e9a0f02
BG
1205/*
1206 * Migrate an array of page address onto an array of nodes and fill
1207 * the corresponding array of status.
1208 */
3268c63e 1209static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1210 unsigned long nr_pages,
1211 const void __user * __user *pages,
1212 const int __user *nodes,
1213 int __user *status, int flags)
1214{
3140a227 1215 struct page_to_node *pm;
3140a227
BG
1216 unsigned long chunk_nr_pages;
1217 unsigned long chunk_start;
1218 int err;
5e9a0f02 1219
3140a227
BG
1220 err = -ENOMEM;
1221 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1222 if (!pm)
5e9a0f02 1223 goto out;
35282a2d
BG
1224
1225 migrate_prep();
1226
5e9a0f02 1227 /*
3140a227
BG
1228 * Store a chunk of page_to_node array in a page,
1229 * but keep the last one as a marker
5e9a0f02 1230 */
3140a227 1231 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1232
3140a227
BG
1233 for (chunk_start = 0;
1234 chunk_start < nr_pages;
1235 chunk_start += chunk_nr_pages) {
1236 int j;
5e9a0f02 1237
3140a227
BG
1238 if (chunk_start + chunk_nr_pages > nr_pages)
1239 chunk_nr_pages = nr_pages - chunk_start;
1240
1241 /* fill the chunk pm with addrs and nodes from user-space */
1242 for (j = 0; j < chunk_nr_pages; j++) {
1243 const void __user *p;
5e9a0f02
BG
1244 int node;
1245
3140a227
BG
1246 err = -EFAULT;
1247 if (get_user(p, pages + j + chunk_start))
1248 goto out_pm;
1249 pm[j].addr = (unsigned long) p;
1250
1251 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1252 goto out_pm;
1253
1254 err = -ENODEV;
6f5a55f1
LT
1255 if (node < 0 || node >= MAX_NUMNODES)
1256 goto out_pm;
1257
389162c2 1258 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1259 goto out_pm;
1260
1261 err = -EACCES;
1262 if (!node_isset(node, task_nodes))
1263 goto out_pm;
1264
3140a227
BG
1265 pm[j].node = node;
1266 }
1267
1268 /* End marker for this chunk */
1269 pm[chunk_nr_pages].node = MAX_NUMNODES;
1270
1271 /* Migrate this chunk */
1272 err = do_move_page_to_node_array(mm, pm,
1273 flags & MPOL_MF_MOVE_ALL);
1274 if (err < 0)
1275 goto out_pm;
5e9a0f02 1276
5e9a0f02 1277 /* Return status information */
3140a227
BG
1278 for (j = 0; j < chunk_nr_pages; j++)
1279 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1280 err = -EFAULT;
3140a227
BG
1281 goto out_pm;
1282 }
1283 }
1284 err = 0;
5e9a0f02
BG
1285
1286out_pm:
3140a227 1287 free_page((unsigned long)pm);
5e9a0f02
BG
1288out:
1289 return err;
1290}
1291
742755a1 1292/*
2f007e74 1293 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1294 */
80bba129
BG
1295static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1296 const void __user **pages, int *status)
742755a1 1297{
2f007e74 1298 unsigned long i;
2f007e74 1299
742755a1
CL
1300 down_read(&mm->mmap_sem);
1301
2f007e74 1302 for (i = 0; i < nr_pages; i++) {
80bba129 1303 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1304 struct vm_area_struct *vma;
1305 struct page *page;
c095adbc 1306 int err = -EFAULT;
2f007e74
BG
1307
1308 vma = find_vma(mm, addr);
70384dc6 1309 if (!vma || addr < vma->vm_start)
742755a1
CL
1310 goto set_status;
1311
2f007e74 1312 page = follow_page(vma, addr, 0);
89f5b7da
LT
1313
1314 err = PTR_ERR(page);
1315 if (IS_ERR(page))
1316 goto set_status;
1317
742755a1
CL
1318 err = -ENOENT;
1319 /* Use PageReserved to check for zero page */
62b61f61 1320 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1321 goto set_status;
1322
1323 err = page_to_nid(page);
1324set_status:
80bba129
BG
1325 *status = err;
1326
1327 pages++;
1328 status++;
1329 }
1330
1331 up_read(&mm->mmap_sem);
1332}
1333
1334/*
1335 * Determine the nodes of a user array of pages and store it in
1336 * a user array of status.
1337 */
1338static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1339 const void __user * __user *pages,
1340 int __user *status)
1341{
1342#define DO_PAGES_STAT_CHUNK_NR 16
1343 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1344 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1345
87b8d1ad
PA
1346 while (nr_pages) {
1347 unsigned long chunk_nr;
80bba129 1348
87b8d1ad
PA
1349 chunk_nr = nr_pages;
1350 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1351 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1352
1353 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1354 break;
80bba129
BG
1355
1356 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1357
87b8d1ad
PA
1358 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1359 break;
742755a1 1360
87b8d1ad
PA
1361 pages += chunk_nr;
1362 status += chunk_nr;
1363 nr_pages -= chunk_nr;
1364 }
1365 return nr_pages ? -EFAULT : 0;
742755a1
CL
1366}
1367
1368/*
1369 * Move a list of pages in the address space of the currently executing
1370 * process.
1371 */
938bb9f5
HC
1372SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1373 const void __user * __user *, pages,
1374 const int __user *, nodes,
1375 int __user *, status, int, flags)
742755a1 1376{
c69e8d9c 1377 const struct cred *cred = current_cred(), *tcred;
742755a1 1378 struct task_struct *task;
742755a1 1379 struct mm_struct *mm;
5e9a0f02 1380 int err;
3268c63e 1381 nodemask_t task_nodes;
742755a1
CL
1382
1383 /* Check flags */
1384 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1385 return -EINVAL;
1386
1387 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1388 return -EPERM;
1389
1390 /* Find the mm_struct */
a879bf58 1391 rcu_read_lock();
228ebcbe 1392 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1393 if (!task) {
a879bf58 1394 rcu_read_unlock();
742755a1
CL
1395 return -ESRCH;
1396 }
3268c63e 1397 get_task_struct(task);
742755a1
CL
1398
1399 /*
1400 * Check if this process has the right to modify the specified
1401 * process. The right exists if the process has administrative
1402 * capabilities, superuser privileges or the same
1403 * userid as the target process.
1404 */
c69e8d9c 1405 tcred = __task_cred(task);
b38a86eb
EB
1406 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1407 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1408 !capable(CAP_SYS_NICE)) {
c69e8d9c 1409 rcu_read_unlock();
742755a1 1410 err = -EPERM;
5e9a0f02 1411 goto out;
742755a1 1412 }
c69e8d9c 1413 rcu_read_unlock();
742755a1 1414
86c3a764
DQ
1415 err = security_task_movememory(task);
1416 if (err)
5e9a0f02 1417 goto out;
86c3a764 1418
3268c63e
CL
1419 task_nodes = cpuset_mems_allowed(task);
1420 mm = get_task_mm(task);
1421 put_task_struct(task);
1422
6e8b09ea
SL
1423 if (!mm)
1424 return -EINVAL;
1425
1426 if (nodes)
1427 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1428 nodes, status, flags);
1429 else
1430 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1431
742755a1
CL
1432 mmput(mm);
1433 return err;
3268c63e
CL
1434
1435out:
1436 put_task_struct(task);
1437 return err;
742755a1 1438}
742755a1 1439
7b2259b3
CL
1440/*
1441 * Call migration functions in the vma_ops that may prepare
1442 * memory in a vm for migration. migration functions may perform
1443 * the migration for vmas that do not have an underlying page struct.
1444 */
1445int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1446 const nodemask_t *from, unsigned long flags)
1447{
1448 struct vm_area_struct *vma;
1449 int err = 0;
1450
1001c9fb 1451 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1452 if (vma->vm_ops && vma->vm_ops->migrate) {
1453 err = vma->vm_ops->migrate(vma, to, from, flags);
1454 if (err)
1455 break;
1456 }
1457 }
1458 return err;
1459}
7039e1db
PZ
1460
1461#ifdef CONFIG_NUMA_BALANCING
1462/*
1463 * Returns true if this is a safe migration target node for misplaced NUMA
1464 * pages. Currently it only checks the watermarks which crude
1465 */
1466static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1467 unsigned long nr_migrate_pages)
7039e1db
PZ
1468{
1469 int z;
1470 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1471 struct zone *zone = pgdat->node_zones + z;
1472
1473 if (!populated_zone(zone))
1474 continue;
1475
1476 if (zone->all_unreclaimable)
1477 continue;
1478
1479 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1480 if (!zone_watermark_ok(zone, 0,
1481 high_wmark_pages(zone) +
1482 nr_migrate_pages,
1483 0, 0))
1484 continue;
1485 return true;
1486 }
1487 return false;
1488}
1489
1490static struct page *alloc_misplaced_dst_page(struct page *page,
1491 unsigned long data,
1492 int **result)
1493{
1494 int nid = (int) data;
1495 struct page *newpage;
1496
1497 newpage = alloc_pages_exact_node(nid,
1498 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1499 __GFP_NOMEMALLOC | __GFP_NORETRY |
1500 __GFP_NOWARN) &
1501 ~GFP_IOFS, 0);
bac0382c 1502 if (newpage)
22b751c3 1503 page_nid_xchg_last(newpage, page_nid_last(page));
bac0382c 1504
7039e1db
PZ
1505 return newpage;
1506}
1507
a8f60772
MG
1508/*
1509 * page migration rate limiting control.
1510 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1511 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1512 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1513 * as it is faults that reset the window, pte updates will happen unconditionally
1514 * if there has not been a fault since @pteupdate_interval_millisecs after the
1515 * throttle window closed.
a8f60772
MG
1516 */
1517static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1518static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1519static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1520
e14808b4
MG
1521/* Returns true if NUMA migration is currently rate limited */
1522bool migrate_ratelimited(int node)
1523{
1524 pg_data_t *pgdat = NODE_DATA(node);
1525
1526 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1527 msecs_to_jiffies(pteupdate_interval_millisecs)))
1528 return false;
1529
1530 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1531 return false;
1532
1533 return true;
1534}
1535
b32967ff 1536/* Returns true if the node is migrate rate-limited after the update */
d28d4335 1537bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
7039e1db 1538{
b32967ff 1539 bool rate_limited = false;
7039e1db 1540
a8f60772
MG
1541 /*
1542 * Rate-limit the amount of data that is being migrated to a node.
1543 * Optimal placement is no good if the memory bus is saturated and
1544 * all the time is being spent migrating!
1545 */
1546 spin_lock(&pgdat->numabalancing_migrate_lock);
1547 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1548 pgdat->numabalancing_migrate_nr_pages = 0;
1549 pgdat->numabalancing_migrate_next_window = jiffies +
1550 msecs_to_jiffies(migrate_interval_millisecs);
1551 }
b32967ff
MG
1552 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1553 rate_limited = true;
1554 else
d28d4335 1555 pgdat->numabalancing_migrate_nr_pages += nr_pages;
a8f60772 1556 spin_unlock(&pgdat->numabalancing_migrate_lock);
b32967ff
MG
1557
1558 return rate_limited;
1559}
1560
1561int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1562{
340ef390 1563 int page_lru;
a8f60772 1564
3abef4e6
MG
1565 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1566
7039e1db 1567 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1568 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1569 return 0;
7039e1db 1570
340ef390
HD
1571 if (isolate_lru_page(page))
1572 return 0;
7039e1db 1573
340ef390
HD
1574 /*
1575 * migrate_misplaced_transhuge_page() skips page migration's usual
1576 * check on page_count(), so we must do it here, now that the page
1577 * has been isolated: a GUP pin, or any other pin, prevents migration.
1578 * The expected page count is 3: 1 for page's mapcount and 1 for the
1579 * caller's pin and 1 for the reference taken by isolate_lru_page().
1580 */
1581 if (PageTransHuge(page) && page_count(page) != 3) {
1582 putback_lru_page(page);
1583 return 0;
7039e1db
PZ
1584 }
1585
340ef390
HD
1586 page_lru = page_is_file_cache(page);
1587 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1588 hpage_nr_pages(page));
1589
149c33e1 1590 /*
340ef390
HD
1591 * Isolating the page has taken another reference, so the
1592 * caller's reference can be safely dropped without the page
1593 * disappearing underneath us during migration.
149c33e1
MG
1594 */
1595 put_page(page);
340ef390 1596 return 1;
b32967ff
MG
1597}
1598
1599/*
1600 * Attempt to migrate a misplaced page to the specified destination
1601 * node. Caller is expected to have an elevated reference count on
1602 * the page that will be dropped by this function before returning.
1603 */
1604int migrate_misplaced_page(struct page *page, int node)
1605{
1606 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1607 int isolated;
b32967ff
MG
1608 int nr_remaining;
1609 LIST_HEAD(migratepages);
1610
1611 /*
1612 * Don't migrate pages that are mapped in multiple processes.
1613 * TODO: Handle false sharing detection instead of this hammer
1614 */
340ef390 1615 if (page_mapcount(page) != 1)
b32967ff 1616 goto out;
b32967ff
MG
1617
1618 /*
1619 * Rate-limit the amount of data that is being migrated to a node.
1620 * Optimal placement is no good if the memory bus is saturated and
1621 * all the time is being spent migrating!
1622 */
340ef390 1623 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1624 goto out;
b32967ff
MG
1625
1626 isolated = numamigrate_isolate_page(pgdat, page);
1627 if (!isolated)
1628 goto out;
1629
1630 list_add(&page->lru, &migratepages);
1631 nr_remaining = migrate_pages(&migratepages,
1632 alloc_misplaced_dst_page,
1633 node, false, MIGRATE_ASYNC,
1634 MR_NUMA_MISPLACED);
1635 if (nr_remaining) {
1636 putback_lru_pages(&migratepages);
1637 isolated = 0;
1638 } else
1639 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1640 BUG_ON(!list_empty(&migratepages));
7039e1db 1641 return isolated;
340ef390
HD
1642
1643out:
1644 put_page(page);
1645 return 0;
7039e1db 1646}
220018d3 1647#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1648
220018d3 1649#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1650/*
1651 * Migrates a THP to a given target node. page must be locked and is unlocked
1652 * before returning.
1653 */
b32967ff
MG
1654int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1655 struct vm_area_struct *vma,
1656 pmd_t *pmd, pmd_t entry,
1657 unsigned long address,
1658 struct page *page, int node)
1659{
1660 unsigned long haddr = address & HPAGE_PMD_MASK;
1661 pg_data_t *pgdat = NODE_DATA(node);
1662 int isolated = 0;
1663 struct page *new_page = NULL;
1664 struct mem_cgroup *memcg = NULL;
1665 int page_lru = page_is_file_cache(page);
1666
1667 /*
1668 * Don't migrate pages that are mapped in multiple processes.
1669 * TODO: Handle false sharing detection instead of this hammer
1670 */
1671 if (page_mapcount(page) != 1)
1672 goto out_dropref;
1673
1674 /*
1675 * Rate-limit the amount of data that is being migrated to a node.
1676 * Optimal placement is no good if the memory bus is saturated and
1677 * all the time is being spent migrating!
1678 */
d28d4335 1679 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1680 goto out_dropref;
1681
1682 new_page = alloc_pages_node(node,
1683 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
340ef390
HD
1684 if (!new_page)
1685 goto out_fail;
1686
22b751c3 1687 page_nid_xchg_last(new_page, page_nid_last(page));
b32967ff
MG
1688
1689 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1690 if (!isolated) {
b32967ff 1691 put_page(new_page);
340ef390 1692 goto out_fail;
b32967ff
MG
1693 }
1694
1695 /* Prepare a page as a migration target */
1696 __set_page_locked(new_page);
1697 SetPageSwapBacked(new_page);
1698
1699 /* anon mapping, we can simply copy page->mapping to the new page: */
1700 new_page->mapping = page->mapping;
1701 new_page->index = page->index;
1702 migrate_page_copy(new_page, page);
1703 WARN_ON(PageLRU(new_page));
1704
1705 /* Recheck the target PMD */
1706 spin_lock(&mm->page_table_lock);
1707 if (unlikely(!pmd_same(*pmd, entry))) {
1708 spin_unlock(&mm->page_table_lock);
1709
1710 /* Reverse changes made by migrate_page_copy() */
1711 if (TestClearPageActive(new_page))
1712 SetPageActive(page);
1713 if (TestClearPageUnevictable(new_page))
1714 SetPageUnevictable(page);
1715 mlock_migrate_page(page, new_page);
1716
1717 unlock_page(new_page);
1718 put_page(new_page); /* Free it */
1719
1720 unlock_page(page);
1721 putback_lru_page(page);
1722
1723 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
340ef390 1724 isolated = 0;
b32967ff
MG
1725 goto out;
1726 }
1727
1728 /*
1729 * Traditional migration needs to prepare the memcg charge
1730 * transaction early to prevent the old page from being
1731 * uncharged when installing migration entries. Here we can
1732 * save the potential rollback and start the charge transfer
1733 * only when migration is already known to end successfully.
1734 */
1735 mem_cgroup_prepare_migration(page, new_page, &memcg);
1736
1737 entry = mk_pmd(new_page, vma->vm_page_prot);
1738 entry = pmd_mknonnuma(entry);
1739 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1740 entry = pmd_mkhuge(entry);
1741
1742 page_add_new_anon_rmap(new_page, vma, haddr);
1743
1744 set_pmd_at(mm, haddr, pmd, entry);
ce4a9cc5 1745 update_mmu_cache_pmd(vma, address, &entry);
b32967ff
MG
1746 page_remove_rmap(page);
1747 /*
1748 * Finish the charge transaction under the page table lock to
1749 * prevent split_huge_page() from dividing up the charge
1750 * before it's fully transferred to the new page.
1751 */
1752 mem_cgroup_end_migration(memcg, page, new_page, true);
1753 spin_unlock(&mm->page_table_lock);
1754
1755 unlock_page(new_page);
1756 unlock_page(page);
1757 put_page(page); /* Drop the rmap reference */
1758 put_page(page); /* Drop the LRU isolation reference */
1759
1760 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1761 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1762
1763out:
1764 mod_zone_page_state(page_zone(page),
1765 NR_ISOLATED_ANON + page_lru,
1766 -HPAGE_PMD_NR);
1767 return isolated;
1768
340ef390
HD
1769out_fail:
1770 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1771out_dropref:
340ef390 1772 unlock_page(page);
b32967ff 1773 put_page(page);
b32967ff
MG
1774 return 0;
1775}
7039e1db
PZ
1776#endif /* CONFIG_NUMA_BALANCING */
1777
1778#endif /* CONFIG_NUMA */
This page took 0.746183 seconds and 5 git commands to generate.