mm: use macros from compiler.h instead of __attribute__((...))
[deliverable/linux.git] / mm / nommu.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
8feae131 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
1da177e4
LT
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
29c185e5 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
1da177e4
LT
14 */
15
b95f1b31 16#include <linux/export.h>
1da177e4 17#include <linux/mm.h>
615d6e87 18#include <linux/vmacache.h>
1da177e4
LT
19#include <linux/mman.h>
20#include <linux/swap.h>
21#include <linux/file.h>
22#include <linux/highmem.h>
23#include <linux/pagemap.h>
24#include <linux/slab.h>
25#include <linux/vmalloc.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
3b32123d 28#include <linux/compiler.h>
1da177e4
LT
29#include <linux/mount.h>
30#include <linux/personality.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
120a795d 33#include <linux/audit.h>
cf4aebc2 34#include <linux/sched/sysctl.h>
1da177e4
LT
35
36#include <asm/uaccess.h>
37#include <asm/tlb.h>
38#include <asm/tlbflush.h>
eb8cdec4 39#include <asm/mmu_context.h>
8feae131
DH
40#include "internal.h"
41
8feae131
DH
42#if 0
43#define kenter(FMT, ...) \
44 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
45#define kleave(FMT, ...) \
46 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
47#define kdebug(FMT, ...) \
48 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
49#else
50#define kenter(FMT, ...) \
51 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
52#define kleave(FMT, ...) \
53 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
54#define kdebug(FMT, ...) \
55 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
56#endif
1da177e4
LT
57
58void *high_memory;
59struct page *mem_map;
60unsigned long max_mapnr;
4266c97a 61unsigned long highest_memmap_pfn;
00a62ce9 62struct percpu_counter vm_committed_as;
1da177e4
LT
63int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
64int sysctl_overcommit_ratio = 50; /* default is 50% */
49f0ce5f 65unsigned long sysctl_overcommit_kbytes __read_mostly;
1da177e4 66int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
fc4d5c29 67int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
c9b1d098 68unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
4eeab4f5 69unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
1da177e4
LT
70int heap_stack_gap = 0;
71
33e5d769 72atomic_long_t mmap_pages_allocated;
8feae131 73
997071bc
S
74/*
75 * The global memory commitment made in the system can be a metric
76 * that can be used to drive ballooning decisions when Linux is hosted
77 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
78 * balancing memory across competing virtual machines that are hosted.
79 * Several metrics drive this policy engine including the guest reported
80 * memory commitment.
81 */
82unsigned long vm_memory_committed(void)
83{
84 return percpu_counter_read_positive(&vm_committed_as);
85}
86
87EXPORT_SYMBOL_GPL(vm_memory_committed);
88
1da177e4 89EXPORT_SYMBOL(mem_map);
1da177e4 90
8feae131
DH
91/* list of mapped, potentially shareable regions */
92static struct kmem_cache *vm_region_jar;
93struct rb_root nommu_region_tree = RB_ROOT;
94DECLARE_RWSEM(nommu_region_sem);
1da177e4 95
f0f37e2f 96const struct vm_operations_struct generic_file_vm_ops = {
1da177e4
LT
97};
98
1da177e4
LT
99/*
100 * Return the total memory allocated for this pointer, not
101 * just what the caller asked for.
102 *
103 * Doesn't have to be accurate, i.e. may have races.
104 */
105unsigned int kobjsize(const void *objp)
106{
107 struct page *page;
108
4016a139
MH
109 /*
110 * If the object we have should not have ksize performed on it,
111 * return size of 0
112 */
5a1603be 113 if (!objp || !virt_addr_valid(objp))
6cfd53fc
PM
114 return 0;
115
116 page = virt_to_head_page(objp);
6cfd53fc
PM
117
118 /*
119 * If the allocator sets PageSlab, we know the pointer came from
120 * kmalloc().
121 */
1da177e4
LT
122 if (PageSlab(page))
123 return ksize(objp);
124
ab2e83ea
PM
125 /*
126 * If it's not a compound page, see if we have a matching VMA
127 * region. This test is intentionally done in reverse order,
128 * so if there's no VMA, we still fall through and hand back
129 * PAGE_SIZE for 0-order pages.
130 */
131 if (!PageCompound(page)) {
132 struct vm_area_struct *vma;
133
134 vma = find_vma(current->mm, (unsigned long)objp);
135 if (vma)
136 return vma->vm_end - vma->vm_start;
137 }
138
6cfd53fc
PM
139 /*
140 * The ksize() function is only guaranteed to work for pointers
5a1603be 141 * returned by kmalloc(). So handle arbitrary pointers here.
6cfd53fc 142 */
5a1603be 143 return PAGE_SIZE << compound_order(page);
1da177e4
LT
144}
145
28a35716
ML
146long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
147 unsigned long start, unsigned long nr_pages,
148 unsigned int foll_flags, struct page **pages,
149 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 150{
910e46da 151 struct vm_area_struct *vma;
7b4d5b8b
DH
152 unsigned long vm_flags;
153 int i;
154
155 /* calculate required read or write permissions.
58fa879e 156 * If FOLL_FORCE is set, we only require the "MAY" flags.
7b4d5b8b 157 */
58fa879e
HD
158 vm_flags = (foll_flags & FOLL_WRITE) ?
159 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
160 vm_flags &= (foll_flags & FOLL_FORCE) ?
161 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4 162
9d73777e 163 for (i = 0; i < nr_pages; i++) {
7561e8ca 164 vma = find_vma(mm, start);
7b4d5b8b
DH
165 if (!vma)
166 goto finish_or_fault;
167
168 /* protect what we can, including chardevs */
1c3aff1c
HD
169 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
170 !(vm_flags & vma->vm_flags))
7b4d5b8b 171 goto finish_or_fault;
910e46da 172
1da177e4
LT
173 if (pages) {
174 pages[i] = virt_to_page(start);
175 if (pages[i])
176 page_cache_get(pages[i]);
177 }
178 if (vmas)
910e46da 179 vmas[i] = vma;
e1ee65d8 180 start = (start + PAGE_SIZE) & PAGE_MASK;
1da177e4 181 }
7b4d5b8b
DH
182
183 return i;
184
185finish_or_fault:
186 return i ? : -EFAULT;
1da177e4 187}
b291f000 188
b291f000
NP
189/*
190 * get a list of pages in an address range belonging to the specified process
191 * and indicate the VMA that covers each page
192 * - this is potentially dodgy as we may end incrementing the page count of a
193 * slab page or a secondary page from a compound page
194 * - don't permit access to VMAs that don't support it, such as I/O mappings
195 */
28a35716
ML
196long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
197 unsigned long start, unsigned long nr_pages,
198 int write, int force, struct page **pages,
199 struct vm_area_struct **vmas)
b291f000
NP
200{
201 int flags = 0;
202
203 if (write)
58fa879e 204 flags |= FOLL_WRITE;
b291f000 205 if (force)
58fa879e 206 flags |= FOLL_FORCE;
b291f000 207
53a7706d
ML
208 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
209 NULL);
b291f000 210}
66aa2b4b
GU
211EXPORT_SYMBOL(get_user_pages);
212
dfc2f91a
PM
213/**
214 * follow_pfn - look up PFN at a user virtual address
215 * @vma: memory mapping
216 * @address: user virtual address
217 * @pfn: location to store found PFN
218 *
219 * Only IO mappings and raw PFN mappings are allowed.
220 *
221 * Returns zero and the pfn at @pfn on success, -ve otherwise.
222 */
223int follow_pfn(struct vm_area_struct *vma, unsigned long address,
224 unsigned long *pfn)
225{
226 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
227 return -EINVAL;
228
229 *pfn = address >> PAGE_SHIFT;
230 return 0;
231}
232EXPORT_SYMBOL(follow_pfn);
233
f1c4069e 234LIST_HEAD(vmap_area_list);
1da177e4 235
b3bdda02 236void vfree(const void *addr)
1da177e4
LT
237{
238 kfree(addr);
239}
b5073173 240EXPORT_SYMBOL(vfree);
1da177e4 241
dd0fc66f 242void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1da177e4
LT
243{
244 /*
8518609d
RD
245 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
246 * returns only a logical address.
1da177e4 247 */
84097518 248 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
1da177e4 249}
b5073173 250EXPORT_SYMBOL(__vmalloc);
1da177e4 251
f905bc44
PM
252void *vmalloc_user(unsigned long size)
253{
254 void *ret;
255
256 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
257 PAGE_KERNEL);
258 if (ret) {
259 struct vm_area_struct *vma;
260
261 down_write(&current->mm->mmap_sem);
262 vma = find_vma(current->mm, (unsigned long)ret);
263 if (vma)
264 vma->vm_flags |= VM_USERMAP;
265 up_write(&current->mm->mmap_sem);
266 }
267
268 return ret;
269}
270EXPORT_SYMBOL(vmalloc_user);
271
b3bdda02 272struct page *vmalloc_to_page(const void *addr)
1da177e4
LT
273{
274 return virt_to_page(addr);
275}
b5073173 276EXPORT_SYMBOL(vmalloc_to_page);
1da177e4 277
b3bdda02 278unsigned long vmalloc_to_pfn(const void *addr)
1da177e4
LT
279{
280 return page_to_pfn(virt_to_page(addr));
281}
b5073173 282EXPORT_SYMBOL(vmalloc_to_pfn);
1da177e4
LT
283
284long vread(char *buf, char *addr, unsigned long count)
285{
9bde916b
CG
286 /* Don't allow overflow */
287 if ((unsigned long) buf + count < count)
288 count = -(unsigned long) buf;
289
1da177e4
LT
290 memcpy(buf, addr, count);
291 return count;
292}
293
294long vwrite(char *buf, char *addr, unsigned long count)
295{
296 /* Don't allow overflow */
297 if ((unsigned long) addr + count < count)
298 count = -(unsigned long) addr;
299
300 memcpy(addr, buf, count);
301 return(count);
302}
303
304/*
305 * vmalloc - allocate virtually continguos memory
306 *
307 * @size: allocation size
308 *
309 * Allocate enough pages to cover @size from the page level
310 * allocator and map them into continguos kernel virtual space.
311 *
c1c8897f 312 * For tight control over page level allocator and protection flags
1da177e4
LT
313 * use __vmalloc() instead.
314 */
315void *vmalloc(unsigned long size)
316{
317 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
318}
f6138882
AM
319EXPORT_SYMBOL(vmalloc);
320
e1ca7788
DY
321/*
322 * vzalloc - allocate virtually continguos memory with zero fill
323 *
324 * @size: allocation size
325 *
326 * Allocate enough pages to cover @size from the page level
327 * allocator and map them into continguos kernel virtual space.
328 * The memory allocated is set to zero.
329 *
330 * For tight control over page level allocator and protection flags
331 * use __vmalloc() instead.
332 */
333void *vzalloc(unsigned long size)
334{
335 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
336 PAGE_KERNEL);
337}
338EXPORT_SYMBOL(vzalloc);
339
340/**
341 * vmalloc_node - allocate memory on a specific node
342 * @size: allocation size
343 * @node: numa node
344 *
345 * Allocate enough pages to cover @size from the page level
346 * allocator and map them into contiguous kernel virtual space.
347 *
348 * For tight control over page level allocator and protection flags
349 * use __vmalloc() instead.
350 */
f6138882
AM
351void *vmalloc_node(unsigned long size, int node)
352{
353 return vmalloc(size);
354}
9a14f653 355EXPORT_SYMBOL(vmalloc_node);
e1ca7788
DY
356
357/**
358 * vzalloc_node - allocate memory on a specific node with zero fill
359 * @size: allocation size
360 * @node: numa node
361 *
362 * Allocate enough pages to cover @size from the page level
363 * allocator and map them into contiguous kernel virtual space.
364 * The memory allocated is set to zero.
365 *
366 * For tight control over page level allocator and protection flags
367 * use __vmalloc() instead.
368 */
369void *vzalloc_node(unsigned long size, int node)
370{
371 return vzalloc(size);
372}
373EXPORT_SYMBOL(vzalloc_node);
1da177e4 374
1af446ed
PM
375#ifndef PAGE_KERNEL_EXEC
376# define PAGE_KERNEL_EXEC PAGE_KERNEL
377#endif
378
379/**
380 * vmalloc_exec - allocate virtually contiguous, executable memory
381 * @size: allocation size
382 *
383 * Kernel-internal function to allocate enough pages to cover @size
384 * the page level allocator and map them into contiguous and
385 * executable kernel virtual space.
386 *
387 * For tight control over page level allocator and protection flags
388 * use __vmalloc() instead.
389 */
390
391void *vmalloc_exec(unsigned long size)
392{
393 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
394}
395
b5073173
PM
396/**
397 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
398 * @size: allocation size
399 *
400 * Allocate enough 32bit PA addressable pages to cover @size from the
401 * page level allocator and map them into continguos kernel virtual space.
402 */
403void *vmalloc_32(unsigned long size)
404{
405 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
406}
b5073173
PM
407EXPORT_SYMBOL(vmalloc_32);
408
409/**
410 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
411 * @size: allocation size
412 *
413 * The resulting memory area is 32bit addressable and zeroed so it can be
414 * mapped to userspace without leaking data.
f905bc44
PM
415 *
416 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
417 * remap_vmalloc_range() are permissible.
b5073173
PM
418 */
419void *vmalloc_32_user(unsigned long size)
420{
f905bc44
PM
421 /*
422 * We'll have to sort out the ZONE_DMA bits for 64-bit,
423 * but for now this can simply use vmalloc_user() directly.
424 */
425 return vmalloc_user(size);
b5073173
PM
426}
427EXPORT_SYMBOL(vmalloc_32_user);
1da177e4
LT
428
429void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
430{
431 BUG();
432 return NULL;
433}
b5073173 434EXPORT_SYMBOL(vmap);
1da177e4 435
b3bdda02 436void vunmap(const void *addr)
1da177e4
LT
437{
438 BUG();
439}
b5073173 440EXPORT_SYMBOL(vunmap);
1da177e4 441
eb6434d9
PM
442void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
443{
444 BUG();
445 return NULL;
446}
447EXPORT_SYMBOL(vm_map_ram);
448
449void vm_unmap_ram(const void *mem, unsigned int count)
450{
451 BUG();
452}
453EXPORT_SYMBOL(vm_unmap_ram);
454
455void vm_unmap_aliases(void)
456{
457}
458EXPORT_SYMBOL_GPL(vm_unmap_aliases);
459
1eeb66a1
CH
460/*
461 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
462 * have one.
463 */
3b32123d 464void __weak vmalloc_sync_all(void)
1eeb66a1
CH
465{
466}
467
29c185e5
PM
468/**
469 * alloc_vm_area - allocate a range of kernel address space
470 * @size: size of the area
471 *
472 * Returns: NULL on failure, vm_struct on success
473 *
474 * This function reserves a range of kernel address space, and
475 * allocates pagetables to map that range. No actual mappings
476 * are created. If the kernel address space is not shared
477 * between processes, it syncs the pagetable across all
478 * processes.
479 */
cd12909c 480struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
29c185e5
PM
481{
482 BUG();
483 return NULL;
484}
485EXPORT_SYMBOL_GPL(alloc_vm_area);
486
487void free_vm_area(struct vm_struct *area)
488{
489 BUG();
490}
491EXPORT_SYMBOL_GPL(free_vm_area);
492
b5073173
PM
493int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
494 struct page *page)
495{
496 return -EINVAL;
497}
498EXPORT_SYMBOL(vm_insert_page);
499
1da177e4
LT
500/*
501 * sys_brk() for the most part doesn't need the global kernel
502 * lock, except when an application is doing something nasty
503 * like trying to un-brk an area that has already been mapped
504 * to a regular file. in this case, the unmapping will need
505 * to invoke file system routines that need the global lock.
506 */
6a6160a7 507SYSCALL_DEFINE1(brk, unsigned long, brk)
1da177e4
LT
508{
509 struct mm_struct *mm = current->mm;
510
511 if (brk < mm->start_brk || brk > mm->context.end_brk)
512 return mm->brk;
513
514 if (mm->brk == brk)
515 return mm->brk;
516
517 /*
518 * Always allow shrinking brk
519 */
520 if (brk <= mm->brk) {
521 mm->brk = brk;
522 return brk;
523 }
524
525 /*
526 * Ok, looks good - let it rip.
527 */
cfe79c00 528 flush_icache_range(mm->brk, brk);
1da177e4
LT
529 return mm->brk = brk;
530}
531
8feae131
DH
532/*
533 * initialise the VMA and region record slabs
534 */
535void __init mmap_init(void)
1da177e4 536{
00a62ce9
KM
537 int ret;
538
539 ret = percpu_counter_init(&vm_committed_as, 0);
540 VM_BUG_ON(ret);
33e5d769 541 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
1da177e4 542}
1da177e4 543
3034097a 544/*
8feae131
DH
545 * validate the region tree
546 * - the caller must hold the region lock
3034097a 547 */
8feae131
DH
548#ifdef CONFIG_DEBUG_NOMMU_REGIONS
549static noinline void validate_nommu_regions(void)
3034097a 550{
8feae131
DH
551 struct vm_region *region, *last;
552 struct rb_node *p, *lastp;
3034097a 553
8feae131
DH
554 lastp = rb_first(&nommu_region_tree);
555 if (!lastp)
556 return;
557
558 last = rb_entry(lastp, struct vm_region, vm_rb);
33e5d769
DH
559 BUG_ON(unlikely(last->vm_end <= last->vm_start));
560 BUG_ON(unlikely(last->vm_top < last->vm_end));
8feae131
DH
561
562 while ((p = rb_next(lastp))) {
563 region = rb_entry(p, struct vm_region, vm_rb);
564 last = rb_entry(lastp, struct vm_region, vm_rb);
565
33e5d769
DH
566 BUG_ON(unlikely(region->vm_end <= region->vm_start));
567 BUG_ON(unlikely(region->vm_top < region->vm_end));
568 BUG_ON(unlikely(region->vm_start < last->vm_top));
3034097a 569
8feae131
DH
570 lastp = p;
571 }
3034097a 572}
8feae131 573#else
33e5d769
DH
574static void validate_nommu_regions(void)
575{
576}
8feae131 577#endif
3034097a
DH
578
579/*
8feae131 580 * add a region into the global tree
3034097a 581 */
8feae131 582static void add_nommu_region(struct vm_region *region)
3034097a 583{
8feae131
DH
584 struct vm_region *pregion;
585 struct rb_node **p, *parent;
3034097a 586
8feae131
DH
587 validate_nommu_regions();
588
8feae131
DH
589 parent = NULL;
590 p = &nommu_region_tree.rb_node;
591 while (*p) {
592 parent = *p;
593 pregion = rb_entry(parent, struct vm_region, vm_rb);
594 if (region->vm_start < pregion->vm_start)
595 p = &(*p)->rb_left;
596 else if (region->vm_start > pregion->vm_start)
597 p = &(*p)->rb_right;
598 else if (pregion == region)
599 return;
600 else
601 BUG();
3034097a
DH
602 }
603
8feae131
DH
604 rb_link_node(&region->vm_rb, parent, p);
605 rb_insert_color(&region->vm_rb, &nommu_region_tree);
3034097a 606
8feae131 607 validate_nommu_regions();
3034097a 608}
3034097a 609
930e652a 610/*
8feae131 611 * delete a region from the global tree
930e652a 612 */
8feae131 613static void delete_nommu_region(struct vm_region *region)
930e652a 614{
8feae131 615 BUG_ON(!nommu_region_tree.rb_node);
930e652a 616
8feae131
DH
617 validate_nommu_regions();
618 rb_erase(&region->vm_rb, &nommu_region_tree);
619 validate_nommu_regions();
57c8f63e
GU
620}
621
6fa5f80b 622/*
8feae131 623 * free a contiguous series of pages
6fa5f80b 624 */
8feae131 625static void free_page_series(unsigned long from, unsigned long to)
6fa5f80b 626{
8feae131
DH
627 for (; from < to; from += PAGE_SIZE) {
628 struct page *page = virt_to_page(from);
629
630 kdebug("- free %lx", from);
33e5d769 631 atomic_long_dec(&mmap_pages_allocated);
8feae131 632 if (page_count(page) != 1)
33e5d769
DH
633 kdebug("free page %p: refcount not one: %d",
634 page, page_count(page));
8feae131 635 put_page(page);
6fa5f80b 636 }
6fa5f80b
DH
637}
638
3034097a 639/*
8feae131 640 * release a reference to a region
33e5d769 641 * - the caller must hold the region semaphore for writing, which this releases
dd8632a1 642 * - the region may not have been added to the tree yet, in which case vm_top
8feae131 643 * will equal vm_start
3034097a 644 */
8feae131
DH
645static void __put_nommu_region(struct vm_region *region)
646 __releases(nommu_region_sem)
1da177e4 647{
1e2ae599 648 kenter("%p{%d}", region, region->vm_usage);
1da177e4 649
8feae131 650 BUG_ON(!nommu_region_tree.rb_node);
1da177e4 651
1e2ae599 652 if (--region->vm_usage == 0) {
dd8632a1 653 if (region->vm_top > region->vm_start)
8feae131
DH
654 delete_nommu_region(region);
655 up_write(&nommu_region_sem);
656
657 if (region->vm_file)
658 fput(region->vm_file);
659
660 /* IO memory and memory shared directly out of the pagecache
661 * from ramfs/tmpfs mustn't be released here */
662 if (region->vm_flags & VM_MAPPED_COPY) {
663 kdebug("free series");
dd8632a1 664 free_page_series(region->vm_start, region->vm_top);
8feae131
DH
665 }
666 kmem_cache_free(vm_region_jar, region);
667 } else {
668 up_write(&nommu_region_sem);
1da177e4 669 }
8feae131 670}
1da177e4 671
8feae131
DH
672/*
673 * release a reference to a region
674 */
675static void put_nommu_region(struct vm_region *region)
676{
677 down_write(&nommu_region_sem);
678 __put_nommu_region(region);
1da177e4
LT
679}
680
eb8cdec4
BS
681/*
682 * update protection on a vma
683 */
684static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
685{
686#ifdef CONFIG_MPU
687 struct mm_struct *mm = vma->vm_mm;
688 long start = vma->vm_start & PAGE_MASK;
689 while (start < vma->vm_end) {
690 protect_page(mm, start, flags);
691 start += PAGE_SIZE;
692 }
693 update_protections(mm);
694#endif
695}
696
3034097a 697/*
8feae131
DH
698 * add a VMA into a process's mm_struct in the appropriate place in the list
699 * and tree and add to the address space's page tree also if not an anonymous
700 * page
701 * - should be called with mm->mmap_sem held writelocked
3034097a 702 */
8feae131 703static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 704{
6038def0 705 struct vm_area_struct *pvma, *prev;
1da177e4 706 struct address_space *mapping;
6038def0 707 struct rb_node **p, *parent, *rb_prev;
8feae131
DH
708
709 kenter(",%p", vma);
710
711 BUG_ON(!vma->vm_region);
712
713 mm->map_count++;
714 vma->vm_mm = mm;
1da177e4 715
eb8cdec4
BS
716 protect_vma(vma, vma->vm_flags);
717
1da177e4
LT
718 /* add the VMA to the mapping */
719 if (vma->vm_file) {
720 mapping = vma->vm_file->f_mapping;
721
918e556e 722 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 723 flush_dcache_mmap_lock(mapping);
6b2dbba8 724 vma_interval_tree_insert(vma, &mapping->i_mmap);
1da177e4 725 flush_dcache_mmap_unlock(mapping);
918e556e 726 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
727 }
728
8feae131 729 /* add the VMA to the tree */
6038def0 730 parent = rb_prev = NULL;
8feae131 731 p = &mm->mm_rb.rb_node;
1da177e4
LT
732 while (*p) {
733 parent = *p;
734 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
735
8feae131
DH
736 /* sort by: start addr, end addr, VMA struct addr in that order
737 * (the latter is necessary as we may get identical VMAs) */
738 if (vma->vm_start < pvma->vm_start)
1da177e4 739 p = &(*p)->rb_left;
6038def0
NK
740 else if (vma->vm_start > pvma->vm_start) {
741 rb_prev = parent;
1da177e4 742 p = &(*p)->rb_right;
6038def0 743 } else if (vma->vm_end < pvma->vm_end)
8feae131 744 p = &(*p)->rb_left;
6038def0
NK
745 else if (vma->vm_end > pvma->vm_end) {
746 rb_prev = parent;
8feae131 747 p = &(*p)->rb_right;
6038def0 748 } else if (vma < pvma)
8feae131 749 p = &(*p)->rb_left;
6038def0
NK
750 else if (vma > pvma) {
751 rb_prev = parent;
8feae131 752 p = &(*p)->rb_right;
6038def0 753 } else
8feae131 754 BUG();
1da177e4
LT
755 }
756
757 rb_link_node(&vma->vm_rb, parent, p);
8feae131
DH
758 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
759
760 /* add VMA to the VMA list also */
6038def0
NK
761 prev = NULL;
762 if (rb_prev)
763 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
8feae131 764
6038def0 765 __vma_link_list(mm, vma, prev, parent);
1da177e4
LT
766}
767
3034097a 768/*
8feae131 769 * delete a VMA from its owning mm_struct and address space
3034097a 770 */
8feae131 771static void delete_vma_from_mm(struct vm_area_struct *vma)
1da177e4 772{
615d6e87 773 int i;
1da177e4 774 struct address_space *mapping;
8feae131 775 struct mm_struct *mm = vma->vm_mm;
615d6e87 776 struct task_struct *curr = current;
8feae131
DH
777
778 kenter("%p", vma);
779
eb8cdec4
BS
780 protect_vma(vma, 0);
781
8feae131 782 mm->map_count--;
615d6e87
DB
783 for (i = 0; i < VMACACHE_SIZE; i++) {
784 /* if the vma is cached, invalidate the entire cache */
785 if (curr->vmacache[i] == vma) {
786 vmacache_invalidate(curr->mm);
787 break;
788 }
789 }
1da177e4
LT
790
791 /* remove the VMA from the mapping */
792 if (vma->vm_file) {
793 mapping = vma->vm_file->f_mapping;
794
918e556e 795 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 796 flush_dcache_mmap_lock(mapping);
6b2dbba8 797 vma_interval_tree_remove(vma, &mapping->i_mmap);
1da177e4 798 flush_dcache_mmap_unlock(mapping);
918e556e 799 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
800 }
801
8feae131
DH
802 /* remove from the MM's tree and list */
803 rb_erase(&vma->vm_rb, &mm->mm_rb);
b951bf2c
NK
804
805 if (vma->vm_prev)
806 vma->vm_prev->vm_next = vma->vm_next;
807 else
808 mm->mmap = vma->vm_next;
809
810 if (vma->vm_next)
811 vma->vm_next->vm_prev = vma->vm_prev;
8feae131
DH
812}
813
814/*
815 * destroy a VMA record
816 */
817static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
818{
819 kenter("%p", vma);
820 if (vma->vm_ops && vma->vm_ops->close)
821 vma->vm_ops->close(vma);
e9714acf 822 if (vma->vm_file)
8feae131 823 fput(vma->vm_file);
8feae131
DH
824 put_nommu_region(vma->vm_region);
825 kmem_cache_free(vm_area_cachep, vma);
826}
827
828/*
829 * look up the first VMA in which addr resides, NULL if none
830 * - should be called with mm->mmap_sem at least held readlocked
831 */
832struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
833{
834 struct vm_area_struct *vma;
8feae131
DH
835
836 /* check the cache first */
615d6e87
DB
837 vma = vmacache_find(mm, addr);
838 if (likely(vma))
8feae131
DH
839 return vma;
840
e922c4c5 841 /* trawl the list (there may be multiple mappings in which addr
8feae131 842 * resides) */
e922c4c5 843 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8feae131
DH
844 if (vma->vm_start > addr)
845 return NULL;
846 if (vma->vm_end > addr) {
615d6e87 847 vmacache_update(addr, vma);
8feae131
DH
848 return vma;
849 }
850 }
851
852 return NULL;
853}
854EXPORT_SYMBOL(find_vma);
855
856/*
857 * find a VMA
858 * - we don't extend stack VMAs under NOMMU conditions
859 */
860struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
861{
7561e8ca 862 return find_vma(mm, addr);
8feae131
DH
863}
864
865/*
866 * expand a stack to a given address
867 * - not supported under NOMMU conditions
868 */
869int expand_stack(struct vm_area_struct *vma, unsigned long address)
870{
871 return -ENOMEM;
872}
873
874/*
875 * look up the first VMA exactly that exactly matches addr
876 * - should be called with mm->mmap_sem at least held readlocked
877 */
878static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
879 unsigned long addr,
880 unsigned long len)
881{
882 struct vm_area_struct *vma;
8feae131
DH
883 unsigned long end = addr + len;
884
885 /* check the cache first */
615d6e87
DB
886 vma = vmacache_find_exact(mm, addr, end);
887 if (vma)
8feae131
DH
888 return vma;
889
e922c4c5 890 /* trawl the list (there may be multiple mappings in which addr
8feae131 891 * resides) */
e922c4c5 892 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8feae131
DH
893 if (vma->vm_start < addr)
894 continue;
895 if (vma->vm_start > addr)
896 return NULL;
897 if (vma->vm_end == end) {
615d6e87 898 vmacache_update(addr, vma);
8feae131
DH
899 return vma;
900 }
901 }
902
903 return NULL;
1da177e4
LT
904}
905
906/*
907 * determine whether a mapping should be permitted and, if so, what sort of
908 * mapping we're capable of supporting
909 */
910static int validate_mmap_request(struct file *file,
911 unsigned long addr,
912 unsigned long len,
913 unsigned long prot,
914 unsigned long flags,
915 unsigned long pgoff,
916 unsigned long *_capabilities)
917{
8feae131 918 unsigned long capabilities, rlen;
1da177e4
LT
919 int ret;
920
921 /* do the simple checks first */
06aab5a3 922 if (flags & MAP_FIXED) {
1da177e4
LT
923 printk(KERN_DEBUG
924 "%d: Can't do fixed-address/overlay mmap of RAM\n",
925 current->pid);
926 return -EINVAL;
927 }
928
929 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
930 (flags & MAP_TYPE) != MAP_SHARED)
931 return -EINVAL;
932
f81cff0d 933 if (!len)
1da177e4
LT
934 return -EINVAL;
935
f81cff0d 936 /* Careful about overflows.. */
8feae131
DH
937 rlen = PAGE_ALIGN(len);
938 if (!rlen || rlen > TASK_SIZE)
f81cff0d
MF
939 return -ENOMEM;
940
1da177e4 941 /* offset overflow? */
8feae131 942 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
f81cff0d 943 return -EOVERFLOW;
1da177e4
LT
944
945 if (file) {
946 /* validate file mapping requests */
947 struct address_space *mapping;
948
949 /* files must support mmap */
72c2d531 950 if (!file->f_op->mmap)
1da177e4
LT
951 return -ENODEV;
952
953 /* work out if what we've got could possibly be shared
954 * - we support chardevs that provide their own "memory"
955 * - we support files/blockdevs that are memory backed
956 */
957 mapping = file->f_mapping;
958 if (!mapping)
496ad9aa 959 mapping = file_inode(file)->i_mapping;
1da177e4
LT
960
961 capabilities = 0;
962 if (mapping && mapping->backing_dev_info)
963 capabilities = mapping->backing_dev_info->capabilities;
964
965 if (!capabilities) {
966 /* no explicit capabilities set, so assume some
967 * defaults */
496ad9aa 968 switch (file_inode(file)->i_mode & S_IFMT) {
1da177e4
LT
969 case S_IFREG:
970 case S_IFBLK:
971 capabilities = BDI_CAP_MAP_COPY;
972 break;
973
974 case S_IFCHR:
975 capabilities =
976 BDI_CAP_MAP_DIRECT |
977 BDI_CAP_READ_MAP |
978 BDI_CAP_WRITE_MAP;
979 break;
980
981 default:
982 return -EINVAL;
983 }
984 }
985
986 /* eliminate any capabilities that we can't support on this
987 * device */
988 if (!file->f_op->get_unmapped_area)
989 capabilities &= ~BDI_CAP_MAP_DIRECT;
990 if (!file->f_op->read)
991 capabilities &= ~BDI_CAP_MAP_COPY;
992
28d7a6ae
GY
993 /* The file shall have been opened with read permission. */
994 if (!(file->f_mode & FMODE_READ))
995 return -EACCES;
996
1da177e4
LT
997 if (flags & MAP_SHARED) {
998 /* do checks for writing, appending and locking */
999 if ((prot & PROT_WRITE) &&
1000 !(file->f_mode & FMODE_WRITE))
1001 return -EACCES;
1002
496ad9aa 1003 if (IS_APPEND(file_inode(file)) &&
1da177e4
LT
1004 (file->f_mode & FMODE_WRITE))
1005 return -EACCES;
1006
d7a06983 1007 if (locks_verify_locked(file))
1da177e4
LT
1008 return -EAGAIN;
1009
1010 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1011 return -ENODEV;
1012
1da177e4
LT
1013 /* we mustn't privatise shared mappings */
1014 capabilities &= ~BDI_CAP_MAP_COPY;
1015 }
1016 else {
1017 /* we're going to read the file into private memory we
1018 * allocate */
1019 if (!(capabilities & BDI_CAP_MAP_COPY))
1020 return -ENODEV;
1021
1022 /* we don't permit a private writable mapping to be
1023 * shared with the backing device */
1024 if (prot & PROT_WRITE)
1025 capabilities &= ~BDI_CAP_MAP_DIRECT;
1026 }
1027
3c7b2045
BS
1028 if (capabilities & BDI_CAP_MAP_DIRECT) {
1029 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1030 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1031 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1032 ) {
1033 capabilities &= ~BDI_CAP_MAP_DIRECT;
1034 if (flags & MAP_SHARED) {
1035 printk(KERN_WARNING
1036 "MAP_SHARED not completely supported on !MMU\n");
1037 return -EINVAL;
1038 }
1039 }
1040 }
1041
1da177e4
LT
1042 /* handle executable mappings and implied executable
1043 * mappings */
e9536ae7 1044 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1da177e4
LT
1045 if (prot & PROT_EXEC)
1046 return -EPERM;
1047 }
1048 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1049 /* handle implication of PROT_EXEC by PROT_READ */
1050 if (current->personality & READ_IMPLIES_EXEC) {
1051 if (capabilities & BDI_CAP_EXEC_MAP)
1052 prot |= PROT_EXEC;
1053 }
1054 }
1055 else if ((prot & PROT_READ) &&
1056 (prot & PROT_EXEC) &&
1057 !(capabilities & BDI_CAP_EXEC_MAP)
1058 ) {
1059 /* backing file is not executable, try to copy */
1060 capabilities &= ~BDI_CAP_MAP_DIRECT;
1061 }
1062 }
1063 else {
1064 /* anonymous mappings are always memory backed and can be
1065 * privately mapped
1066 */
1067 capabilities = BDI_CAP_MAP_COPY;
1068
1069 /* handle PROT_EXEC implication by PROT_READ */
1070 if ((prot & PROT_READ) &&
1071 (current->personality & READ_IMPLIES_EXEC))
1072 prot |= PROT_EXEC;
1073 }
1074
1075 /* allow the security API to have its say */
e5467859 1076 ret = security_mmap_addr(addr);
1da177e4
LT
1077 if (ret < 0)
1078 return ret;
1079
1080 /* looks okay */
1081 *_capabilities = capabilities;
1082 return 0;
1083}
1084
1085/*
1086 * we've determined that we can make the mapping, now translate what we
1087 * now know into VMA flags
1088 */
1089static unsigned long determine_vm_flags(struct file *file,
1090 unsigned long prot,
1091 unsigned long flags,
1092 unsigned long capabilities)
1093{
1094 unsigned long vm_flags;
1095
1096 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1da177e4
LT
1097 /* vm_flags |= mm->def_flags; */
1098
1099 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1100 /* attempt to share read-only copies of mapped file chunks */
3c7b2045 1101 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1da177e4
LT
1102 if (file && !(prot & PROT_WRITE))
1103 vm_flags |= VM_MAYSHARE;
3c7b2045 1104 } else {
1da177e4
LT
1105 /* overlay a shareable mapping on the backing device or inode
1106 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1107 * romfs/cramfs */
3c7b2045 1108 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1da177e4 1109 if (flags & MAP_SHARED)
3c7b2045 1110 vm_flags |= VM_SHARED;
1da177e4
LT
1111 }
1112
1113 /* refuse to let anyone share private mappings with this process if
1114 * it's being traced - otherwise breakpoints set in it may interfere
1115 * with another untraced process
1116 */
a288eecc 1117 if ((flags & MAP_PRIVATE) && current->ptrace)
1da177e4
LT
1118 vm_flags &= ~VM_MAYSHARE;
1119
1120 return vm_flags;
1121}
1122
1123/*
8feae131
DH
1124 * set up a shared mapping on a file (the driver or filesystem provides and
1125 * pins the storage)
1da177e4 1126 */
8feae131 1127static int do_mmap_shared_file(struct vm_area_struct *vma)
1da177e4
LT
1128{
1129 int ret;
1130
1131 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
dd8632a1
PM
1132 if (ret == 0) {
1133 vma->vm_region->vm_top = vma->vm_region->vm_end;
645d83c5 1134 return 0;
dd8632a1 1135 }
1da177e4
LT
1136 if (ret != -ENOSYS)
1137 return ret;
1138
3fa30460
DH
1139 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1140 * opposed to tried but failed) so we can only give a suitable error as
1141 * it's not possible to make a private copy if MAP_SHARED was given */
1da177e4
LT
1142 return -ENODEV;
1143}
1144
1145/*
1146 * set up a private mapping or an anonymous shared mapping
1147 */
8feae131
DH
1148static int do_mmap_private(struct vm_area_struct *vma,
1149 struct vm_region *region,
645d83c5
DH
1150 unsigned long len,
1151 unsigned long capabilities)
1da177e4 1152{
8feae131 1153 struct page *pages;
f67d9b15 1154 unsigned long total, point, n;
1da177e4 1155 void *base;
8feae131 1156 int ret, order;
1da177e4
LT
1157
1158 /* invoke the file's mapping function so that it can keep track of
1159 * shared mappings on devices or memory
1160 * - VM_MAYSHARE will be set if it may attempt to share
1161 */
645d83c5 1162 if (capabilities & BDI_CAP_MAP_DIRECT) {
1da177e4 1163 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
dd8632a1 1164 if (ret == 0) {
1da177e4 1165 /* shouldn't return success if we're not sharing */
dd8632a1
PM
1166 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1167 vma->vm_region->vm_top = vma->vm_region->vm_end;
645d83c5 1168 return 0;
1da177e4 1169 }
dd8632a1
PM
1170 if (ret != -ENOSYS)
1171 return ret;
1da177e4
LT
1172
1173 /* getting an ENOSYS error indicates that direct mmap isn't
1174 * possible (as opposed to tried but failed) so we'll try to
1175 * make a private copy of the data and map that instead */
1176 }
1177
8feae131 1178
1da177e4
LT
1179 /* allocate some memory to hold the mapping
1180 * - note that this may not return a page-aligned address if the object
1181 * we're allocating is smaller than a page
1182 */
f67d9b15 1183 order = get_order(len);
8feae131
DH
1184 kdebug("alloc order %d for %lx", order, len);
1185
1186 pages = alloc_pages(GFP_KERNEL, order);
1187 if (!pages)
1da177e4
LT
1188 goto enomem;
1189
8feae131 1190 total = 1 << order;
33e5d769 1191 atomic_long_add(total, &mmap_pages_allocated);
8feae131 1192
f67d9b15 1193 point = len >> PAGE_SHIFT;
dd8632a1
PM
1194
1195 /* we allocated a power-of-2 sized page set, so we may want to trim off
1196 * the excess */
1197 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1198 while (total > point) {
1199 order = ilog2(total - point);
1200 n = 1 << order;
1201 kdebug("shave %lu/%lu @%lu", n, total - point, total);
33e5d769 1202 atomic_long_sub(n, &mmap_pages_allocated);
dd8632a1
PM
1203 total -= n;
1204 set_page_refcounted(pages + total);
1205 __free_pages(pages + total, order);
1206 }
8feae131
DH
1207 }
1208
8feae131
DH
1209 for (point = 1; point < total; point++)
1210 set_page_refcounted(&pages[point]);
1da177e4 1211
8feae131
DH
1212 base = page_address(pages);
1213 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1214 region->vm_start = (unsigned long) base;
f67d9b15 1215 region->vm_end = region->vm_start + len;
dd8632a1 1216 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
8feae131
DH
1217
1218 vma->vm_start = region->vm_start;
1219 vma->vm_end = region->vm_start + len;
1da177e4
LT
1220
1221 if (vma->vm_file) {
1222 /* read the contents of a file into the copy */
1223 mm_segment_t old_fs;
1224 loff_t fpos;
1225
1226 fpos = vma->vm_pgoff;
1227 fpos <<= PAGE_SHIFT;
1228
1229 old_fs = get_fs();
1230 set_fs(KERNEL_DS);
f67d9b15 1231 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1da177e4
LT
1232 set_fs(old_fs);
1233
1234 if (ret < 0)
1235 goto error_free;
1236
1237 /* clear the last little bit */
f67d9b15
BL
1238 if (ret < len)
1239 memset(base + ret, 0, len - ret);
1da177e4 1240
1da177e4
LT
1241 }
1242
1243 return 0;
1244
1245error_free:
7223bb4a 1246 free_page_series(region->vm_start, region->vm_top);
8feae131
DH
1247 region->vm_start = vma->vm_start = 0;
1248 region->vm_end = vma->vm_end = 0;
dd8632a1 1249 region->vm_top = 0;
1da177e4
LT
1250 return ret;
1251
1252enomem:
05ae6fa3
GU
1253 printk("Allocation of length %lu from process %d (%s) failed\n",
1254 len, current->pid, current->comm);
7bf02ea2 1255 show_free_areas(0);
1da177e4
LT
1256 return -ENOMEM;
1257}
1258
1259/*
1260 * handle mapping creation for uClinux
1261 */
e3fc629d 1262unsigned long do_mmap_pgoff(struct file *file,
1da177e4
LT
1263 unsigned long addr,
1264 unsigned long len,
1265 unsigned long prot,
1266 unsigned long flags,
bebeb3d6 1267 unsigned long pgoff,
41badc15 1268 unsigned long *populate)
1da177e4 1269{
8feae131
DH
1270 struct vm_area_struct *vma;
1271 struct vm_region *region;
1da177e4 1272 struct rb_node *rb;
8feae131 1273 unsigned long capabilities, vm_flags, result;
1da177e4
LT
1274 int ret;
1275
8feae131
DH
1276 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1277
41badc15 1278 *populate = 0;
bebeb3d6 1279
1da177e4
LT
1280 /* decide whether we should attempt the mapping, and if so what sort of
1281 * mapping */
1282 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1283 &capabilities);
8feae131
DH
1284 if (ret < 0) {
1285 kleave(" = %d [val]", ret);
1da177e4 1286 return ret;
8feae131 1287 }
1da177e4 1288
06aab5a3
DH
1289 /* we ignore the address hint */
1290 addr = 0;
f67d9b15 1291 len = PAGE_ALIGN(len);
06aab5a3 1292
1da177e4
LT
1293 /* we've determined that we can make the mapping, now translate what we
1294 * now know into VMA flags */
1295 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1296
8feae131
DH
1297 /* we're going to need to record the mapping */
1298 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1299 if (!region)
1300 goto error_getting_region;
1301
1302 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1303 if (!vma)
1304 goto error_getting_vma;
1da177e4 1305
1e2ae599 1306 region->vm_usage = 1;
8feae131
DH
1307 region->vm_flags = vm_flags;
1308 region->vm_pgoff = pgoff;
1309
5beb4930 1310 INIT_LIST_HEAD(&vma->anon_vma_chain);
8feae131
DH
1311 vma->vm_flags = vm_flags;
1312 vma->vm_pgoff = pgoff;
1da177e4 1313
8feae131 1314 if (file) {
cb0942b8
AV
1315 region->vm_file = get_file(file);
1316 vma->vm_file = get_file(file);
8feae131
DH
1317 }
1318
1319 down_write(&nommu_region_sem);
1320
1321 /* if we want to share, we need to check for regions created by other
1da177e4 1322 * mmap() calls that overlap with our proposed mapping
8feae131 1323 * - we can only share with a superset match on most regular files
1da177e4
LT
1324 * - shared mappings on character devices and memory backed files are
1325 * permitted to overlap inexactly as far as we are concerned for in
1326 * these cases, sharing is handled in the driver or filesystem rather
1327 * than here
1328 */
1329 if (vm_flags & VM_MAYSHARE) {
8feae131
DH
1330 struct vm_region *pregion;
1331 unsigned long pglen, rpglen, pgend, rpgend, start;
1da177e4 1332
8feae131
DH
1333 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1334 pgend = pgoff + pglen;
165b2392 1335
8feae131
DH
1336 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1337 pregion = rb_entry(rb, struct vm_region, vm_rb);
1da177e4 1338
8feae131 1339 if (!(pregion->vm_flags & VM_MAYSHARE))
1da177e4
LT
1340 continue;
1341
1342 /* search for overlapping mappings on the same file */
496ad9aa
AV
1343 if (file_inode(pregion->vm_file) !=
1344 file_inode(file))
1da177e4
LT
1345 continue;
1346
8feae131 1347 if (pregion->vm_pgoff >= pgend)
1da177e4
LT
1348 continue;
1349
8feae131
DH
1350 rpglen = pregion->vm_end - pregion->vm_start;
1351 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1352 rpgend = pregion->vm_pgoff + rpglen;
1353 if (pgoff >= rpgend)
1da177e4
LT
1354 continue;
1355
8feae131
DH
1356 /* handle inexactly overlapping matches between
1357 * mappings */
1358 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1359 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1360 /* new mapping is not a subset of the region */
1da177e4
LT
1361 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1362 goto sharing_violation;
1363 continue;
1364 }
1365
8feae131 1366 /* we've found a region we can share */
1e2ae599 1367 pregion->vm_usage++;
8feae131
DH
1368 vma->vm_region = pregion;
1369 start = pregion->vm_start;
1370 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1371 vma->vm_start = start;
1372 vma->vm_end = start + len;
1373
1374 if (pregion->vm_flags & VM_MAPPED_COPY) {
1375 kdebug("share copy");
1376 vma->vm_flags |= VM_MAPPED_COPY;
1377 } else {
1378 kdebug("share mmap");
1379 ret = do_mmap_shared_file(vma);
1380 if (ret < 0) {
1381 vma->vm_region = NULL;
1382 vma->vm_start = 0;
1383 vma->vm_end = 0;
1e2ae599 1384 pregion->vm_usage--;
8feae131
DH
1385 pregion = NULL;
1386 goto error_just_free;
1387 }
1388 }
1389 fput(region->vm_file);
1390 kmem_cache_free(vm_region_jar, region);
1391 region = pregion;
1392 result = start;
1393 goto share;
1da177e4
LT
1394 }
1395
1da177e4
LT
1396 /* obtain the address at which to make a shared mapping
1397 * - this is the hook for quasi-memory character devices to
1398 * tell us the location of a shared mapping
1399 */
645d83c5 1400 if (capabilities & BDI_CAP_MAP_DIRECT) {
1da177e4
LT
1401 addr = file->f_op->get_unmapped_area(file, addr, len,
1402 pgoff, flags);
bb005a59 1403 if (IS_ERR_VALUE(addr)) {
1da177e4 1404 ret = addr;
bb005a59 1405 if (ret != -ENOSYS)
8feae131 1406 goto error_just_free;
1da177e4
LT
1407
1408 /* the driver refused to tell us where to site
1409 * the mapping so we'll have to attempt to copy
1410 * it */
bb005a59 1411 ret = -ENODEV;
1da177e4 1412 if (!(capabilities & BDI_CAP_MAP_COPY))
8feae131 1413 goto error_just_free;
1da177e4
LT
1414
1415 capabilities &= ~BDI_CAP_MAP_DIRECT;
8feae131
DH
1416 } else {
1417 vma->vm_start = region->vm_start = addr;
1418 vma->vm_end = region->vm_end = addr + len;
1da177e4
LT
1419 }
1420 }
1421 }
1422
8feae131 1423 vma->vm_region = region;
1da177e4 1424
645d83c5
DH
1425 /* set up the mapping
1426 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1427 */
1da177e4 1428 if (file && vma->vm_flags & VM_SHARED)
8feae131 1429 ret = do_mmap_shared_file(vma);
1da177e4 1430 else
645d83c5 1431 ret = do_mmap_private(vma, region, len, capabilities);
1da177e4 1432 if (ret < 0)
645d83c5
DH
1433 goto error_just_free;
1434 add_nommu_region(region);
8feae131 1435
ea637639
JZ
1436 /* clear anonymous mappings that don't ask for uninitialized data */
1437 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1438 memset((void *)region->vm_start, 0,
1439 region->vm_end - region->vm_start);
1440
1da177e4 1441 /* okay... we have a mapping; now we have to register it */
8feae131 1442 result = vma->vm_start;
1da177e4 1443
1da177e4
LT
1444 current->mm->total_vm += len >> PAGE_SHIFT;
1445
8feae131
DH
1446share:
1447 add_vma_to_mm(current->mm, vma);
1da177e4 1448
cfe79c00
MF
1449 /* we flush the region from the icache only when the first executable
1450 * mapping of it is made */
1451 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1452 flush_icache_range(region->vm_start, region->vm_end);
1453 region->vm_icache_flushed = true;
1454 }
1da177e4 1455
cfe79c00 1456 up_write(&nommu_region_sem);
1da177e4 1457
8feae131
DH
1458 kleave(" = %lx", result);
1459 return result;
1da177e4 1460
8feae131
DH
1461error_just_free:
1462 up_write(&nommu_region_sem);
1463error:
89a86402
DH
1464 if (region->vm_file)
1465 fput(region->vm_file);
8feae131 1466 kmem_cache_free(vm_region_jar, region);
89a86402
DH
1467 if (vma->vm_file)
1468 fput(vma->vm_file);
8feae131
DH
1469 kmem_cache_free(vm_area_cachep, vma);
1470 kleave(" = %d", ret);
1471 return ret;
1472
1473sharing_violation:
1474 up_write(&nommu_region_sem);
1475 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1476 ret = -EINVAL;
1477 goto error;
1da177e4 1478
8feae131
DH
1479error_getting_vma:
1480 kmem_cache_free(vm_region_jar, region);
1481 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1482 " from process %d failed\n",
1da177e4 1483 len, current->pid);
7bf02ea2 1484 show_free_areas(0);
1da177e4
LT
1485 return -ENOMEM;
1486
8feae131
DH
1487error_getting_region:
1488 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1489 " from process %d failed\n",
1da177e4 1490 len, current->pid);
7bf02ea2 1491 show_free_areas(0);
1da177e4
LT
1492 return -ENOMEM;
1493}
6be5ceb0 1494
66f0dc48
HD
1495SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1496 unsigned long, prot, unsigned long, flags,
1497 unsigned long, fd, unsigned long, pgoff)
1498{
1499 struct file *file = NULL;
1500 unsigned long retval = -EBADF;
1501
120a795d 1502 audit_mmap_fd(fd, flags);
66f0dc48
HD
1503 if (!(flags & MAP_ANONYMOUS)) {
1504 file = fget(fd);
1505 if (!file)
1506 goto out;
1507 }
1508
1509 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1510
ad1ed293 1511 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
66f0dc48
HD
1512
1513 if (file)
1514 fput(file);
1515out:
1516 return retval;
1517}
1518
a4679373
CH
1519#ifdef __ARCH_WANT_SYS_OLD_MMAP
1520struct mmap_arg_struct {
1521 unsigned long addr;
1522 unsigned long len;
1523 unsigned long prot;
1524 unsigned long flags;
1525 unsigned long fd;
1526 unsigned long offset;
1527};
1528
1529SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1530{
1531 struct mmap_arg_struct a;
1532
1533 if (copy_from_user(&a, arg, sizeof(a)))
1534 return -EFAULT;
1535 if (a.offset & ~PAGE_MASK)
1536 return -EINVAL;
1537
1538 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1539 a.offset >> PAGE_SHIFT);
1540}
1541#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1542
1da177e4 1543/*
8feae131
DH
1544 * split a vma into two pieces at address 'addr', a new vma is allocated either
1545 * for the first part or the tail.
1da177e4 1546 */
8feae131
DH
1547int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1548 unsigned long addr, int new_below)
1da177e4 1549{
8feae131
DH
1550 struct vm_area_struct *new;
1551 struct vm_region *region;
1552 unsigned long npages;
1da177e4 1553
8feae131 1554 kenter("");
1da177e4 1555
779c1023
DH
1556 /* we're only permitted to split anonymous regions (these should have
1557 * only a single usage on the region) */
1558 if (vma->vm_file)
8feae131 1559 return -ENOMEM;
1da177e4 1560
8feae131
DH
1561 if (mm->map_count >= sysctl_max_map_count)
1562 return -ENOMEM;
1da177e4 1563
8feae131
DH
1564 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1565 if (!region)
1566 return -ENOMEM;
1da177e4 1567
8feae131
DH
1568 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1569 if (!new) {
1570 kmem_cache_free(vm_region_jar, region);
1571 return -ENOMEM;
1572 }
1573
1574 /* most fields are the same, copy all, and then fixup */
1575 *new = *vma;
1576 *region = *vma->vm_region;
1577 new->vm_region = region;
1578
1579 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1580
1581 if (new_below) {
dd8632a1 1582 region->vm_top = region->vm_end = new->vm_end = addr;
8feae131
DH
1583 } else {
1584 region->vm_start = new->vm_start = addr;
1585 region->vm_pgoff = new->vm_pgoff += npages;
1da177e4 1586 }
8feae131
DH
1587
1588 if (new->vm_ops && new->vm_ops->open)
1589 new->vm_ops->open(new);
1590
1591 delete_vma_from_mm(vma);
1592 down_write(&nommu_region_sem);
1593 delete_nommu_region(vma->vm_region);
1594 if (new_below) {
1595 vma->vm_region->vm_start = vma->vm_start = addr;
1596 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1597 } else {
1598 vma->vm_region->vm_end = vma->vm_end = addr;
dd8632a1 1599 vma->vm_region->vm_top = addr;
8feae131
DH
1600 }
1601 add_nommu_region(vma->vm_region);
1602 add_nommu_region(new->vm_region);
1603 up_write(&nommu_region_sem);
1604 add_vma_to_mm(mm, vma);
1605 add_vma_to_mm(mm, new);
1606 return 0;
1da177e4
LT
1607}
1608
3034097a 1609/*
8feae131
DH
1610 * shrink a VMA by removing the specified chunk from either the beginning or
1611 * the end
3034097a 1612 */
8feae131
DH
1613static int shrink_vma(struct mm_struct *mm,
1614 struct vm_area_struct *vma,
1615 unsigned long from, unsigned long to)
1da177e4 1616{
8feae131 1617 struct vm_region *region;
1da177e4 1618
8feae131 1619 kenter("");
1da177e4 1620
8feae131
DH
1621 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1622 * and list */
1623 delete_vma_from_mm(vma);
1624 if (from > vma->vm_start)
1625 vma->vm_end = from;
1626 else
1627 vma->vm_start = to;
1628 add_vma_to_mm(mm, vma);
1da177e4 1629
8feae131
DH
1630 /* cut the backing region down to size */
1631 region = vma->vm_region;
1e2ae599 1632 BUG_ON(region->vm_usage != 1);
8feae131
DH
1633
1634 down_write(&nommu_region_sem);
1635 delete_nommu_region(region);
dd8632a1
PM
1636 if (from > region->vm_start) {
1637 to = region->vm_top;
1638 region->vm_top = region->vm_end = from;
1639 } else {
8feae131 1640 region->vm_start = to;
dd8632a1 1641 }
8feae131
DH
1642 add_nommu_region(region);
1643 up_write(&nommu_region_sem);
1644
1645 free_page_series(from, to);
1646 return 0;
1647}
1da177e4 1648
8feae131
DH
1649/*
1650 * release a mapping
1651 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1652 * VMA, though it need not cover the whole VMA
1653 */
1654int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1655{
1656 struct vm_area_struct *vma;
f67d9b15 1657 unsigned long end;
8feae131 1658 int ret;
1da177e4 1659
8feae131 1660 kenter(",%lx,%zx", start, len);
1da177e4 1661
f67d9b15 1662 len = PAGE_ALIGN(len);
8feae131
DH
1663 if (len == 0)
1664 return -EINVAL;
365e9c87 1665
f67d9b15
BL
1666 end = start + len;
1667
8feae131
DH
1668 /* find the first potentially overlapping VMA */
1669 vma = find_vma(mm, start);
1670 if (!vma) {
33e5d769
DH
1671 static int limit = 0;
1672 if (limit < 5) {
1673 printk(KERN_WARNING
1674 "munmap of memory not mmapped by process %d"
1675 " (%s): 0x%lx-0x%lx\n",
1676 current->pid, current->comm,
1677 start, start + len - 1);
1678 limit++;
1679 }
8feae131
DH
1680 return -EINVAL;
1681 }
1da177e4 1682
8feae131
DH
1683 /* we're allowed to split an anonymous VMA but not a file-backed one */
1684 if (vma->vm_file) {
1685 do {
1686 if (start > vma->vm_start) {
1687 kleave(" = -EINVAL [miss]");
1688 return -EINVAL;
1689 }
1690 if (end == vma->vm_end)
1691 goto erase_whole_vma;
d75a310c
NK
1692 vma = vma->vm_next;
1693 } while (vma);
8feae131
DH
1694 kleave(" = -EINVAL [split file]");
1695 return -EINVAL;
1696 } else {
1697 /* the chunk must be a subset of the VMA found */
1698 if (start == vma->vm_start && end == vma->vm_end)
1699 goto erase_whole_vma;
1700 if (start < vma->vm_start || end > vma->vm_end) {
1701 kleave(" = -EINVAL [superset]");
1702 return -EINVAL;
1703 }
1704 if (start & ~PAGE_MASK) {
1705 kleave(" = -EINVAL [unaligned start]");
1706 return -EINVAL;
1707 }
1708 if (end != vma->vm_end && end & ~PAGE_MASK) {
1709 kleave(" = -EINVAL [unaligned split]");
1710 return -EINVAL;
1711 }
1712 if (start != vma->vm_start && end != vma->vm_end) {
1713 ret = split_vma(mm, vma, start, 1);
1714 if (ret < 0) {
1715 kleave(" = %d [split]", ret);
1716 return ret;
1717 }
1718 }
1719 return shrink_vma(mm, vma, start, end);
1720 }
1da177e4 1721
8feae131
DH
1722erase_whole_vma:
1723 delete_vma_from_mm(vma);
1724 delete_vma(mm, vma);
1725 kleave(" = 0");
1da177e4
LT
1726 return 0;
1727}
b5073173 1728EXPORT_SYMBOL(do_munmap);
1da177e4 1729
bfce281c 1730int vm_munmap(unsigned long addr, size_t len)
3034097a 1731{
bfce281c 1732 struct mm_struct *mm = current->mm;
3034097a 1733 int ret;
3034097a
DH
1734
1735 down_write(&mm->mmap_sem);
1736 ret = do_munmap(mm, addr, len);
1737 up_write(&mm->mmap_sem);
1738 return ret;
1739}
a46ef99d
LT
1740EXPORT_SYMBOL(vm_munmap);
1741
1742SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1743{
bfce281c 1744 return vm_munmap(addr, len);
a46ef99d 1745}
3034097a
DH
1746
1747/*
8feae131 1748 * release all the mappings made in a process's VM space
3034097a 1749 */
8feae131 1750void exit_mmap(struct mm_struct *mm)
1da177e4 1751{
8feae131 1752 struct vm_area_struct *vma;
1da177e4 1753
8feae131
DH
1754 if (!mm)
1755 return;
1da177e4 1756
8feae131 1757 kenter("");
1da177e4 1758
8feae131 1759 mm->total_vm = 0;
1da177e4 1760
8feae131
DH
1761 while ((vma = mm->mmap)) {
1762 mm->mmap = vma->vm_next;
1763 delete_vma_from_mm(vma);
1764 delete_vma(mm, vma);
04c34961 1765 cond_resched();
1da177e4 1766 }
8feae131
DH
1767
1768 kleave("");
1da177e4
LT
1769}
1770
e4eb1ff6 1771unsigned long vm_brk(unsigned long addr, unsigned long len)
1da177e4
LT
1772{
1773 return -ENOMEM;
1774}
1775
1776/*
6fa5f80b
DH
1777 * expand (or shrink) an existing mapping, potentially moving it at the same
1778 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1da177e4 1779 *
6fa5f80b 1780 * under NOMMU conditions, we only permit changing a mapping's size, and only
8feae131
DH
1781 * as long as it stays within the region allocated by do_mmap_private() and the
1782 * block is not shareable
1da177e4 1783 *
6fa5f80b 1784 * MREMAP_FIXED is not supported under NOMMU conditions
1da177e4 1785 */
4b377bab 1786static unsigned long do_mremap(unsigned long addr,
1da177e4
LT
1787 unsigned long old_len, unsigned long new_len,
1788 unsigned long flags, unsigned long new_addr)
1789{
6fa5f80b 1790 struct vm_area_struct *vma;
1da177e4
LT
1791
1792 /* insanity checks first */
f67d9b15
BL
1793 old_len = PAGE_ALIGN(old_len);
1794 new_len = PAGE_ALIGN(new_len);
8feae131 1795 if (old_len == 0 || new_len == 0)
1da177e4
LT
1796 return (unsigned long) -EINVAL;
1797
8feae131
DH
1798 if (addr & ~PAGE_MASK)
1799 return -EINVAL;
1800
1da177e4
LT
1801 if (flags & MREMAP_FIXED && new_addr != addr)
1802 return (unsigned long) -EINVAL;
1803
8feae131 1804 vma = find_vma_exact(current->mm, addr, old_len);
6fa5f80b
DH
1805 if (!vma)
1806 return (unsigned long) -EINVAL;
1da177e4 1807
6fa5f80b 1808 if (vma->vm_end != vma->vm_start + old_len)
1da177e4
LT
1809 return (unsigned long) -EFAULT;
1810
6fa5f80b 1811 if (vma->vm_flags & VM_MAYSHARE)
1da177e4
LT
1812 return (unsigned long) -EPERM;
1813
8feae131 1814 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1da177e4
LT
1815 return (unsigned long) -ENOMEM;
1816
1817 /* all checks complete - do it */
6fa5f80b 1818 vma->vm_end = vma->vm_start + new_len;
6fa5f80b
DH
1819 return vma->vm_start;
1820}
1821
6a6160a7
HC
1822SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1823 unsigned long, new_len, unsigned long, flags,
1824 unsigned long, new_addr)
6fa5f80b
DH
1825{
1826 unsigned long ret;
1827
1828 down_write(&current->mm->mmap_sem);
1829 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1830 up_write(&current->mm->mmap_sem);
1831 return ret;
1da177e4
LT
1832}
1833
240aadee
ML
1834struct page *follow_page_mask(struct vm_area_struct *vma,
1835 unsigned long address, unsigned int flags,
1836 unsigned int *page_mask)
1da177e4 1837{
240aadee 1838 *page_mask = 0;
1da177e4
LT
1839 return NULL;
1840}
1841
8f3b1327
BL
1842int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1843 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4 1844{
8f3b1327
BL
1845 if (addr != (pfn << PAGE_SHIFT))
1846 return -EINVAL;
1847
314e51b9 1848 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
66aa2b4b 1849 return 0;
1da177e4 1850}
22c4af40 1851EXPORT_SYMBOL(remap_pfn_range);
1da177e4 1852
3c0b9de6
LT
1853int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1854{
1855 unsigned long pfn = start >> PAGE_SHIFT;
1856 unsigned long vm_len = vma->vm_end - vma->vm_start;
1857
1858 pfn += vma->vm_pgoff;
1859 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1860}
1861EXPORT_SYMBOL(vm_iomap_memory);
1862
f905bc44
PM
1863int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1864 unsigned long pgoff)
1865{
1866 unsigned int size = vma->vm_end - vma->vm_start;
1867
1868 if (!(vma->vm_flags & VM_USERMAP))
1869 return -EINVAL;
1870
1871 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1872 vma->vm_end = vma->vm_start + size;
1873
1874 return 0;
1875}
1876EXPORT_SYMBOL(remap_vmalloc_range);
1877
1da177e4
LT
1878unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1879 unsigned long len, unsigned long pgoff, unsigned long flags)
1880{
1881 return -ENOMEM;
1882}
1883
1da177e4
LT
1884void unmap_mapping_range(struct address_space *mapping,
1885 loff_t const holebegin, loff_t const holelen,
1886 int even_cows)
1887{
1888}
22c4af40 1889EXPORT_SYMBOL(unmap_mapping_range);
1da177e4
LT
1890
1891/*
1892 * Check that a process has enough memory to allocate a new virtual
1893 * mapping. 0 means there is enough memory for the allocation to
1894 * succeed and -ENOMEM implies there is not.
1895 *
1896 * We currently support three overcommit policies, which are set via the
1897 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1898 *
1899 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1900 * Additional code 2002 Jul 20 by Robert Love.
1901 *
1902 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1903 *
1904 * Note this is a helper function intended to be used by LSMs which
1905 * wish to use this logic.
1906 */
34b4e4aa 1907int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1da177e4 1908{
c9b1d098 1909 unsigned long free, allowed, reserve;
1da177e4
LT
1910
1911 vm_acct_memory(pages);
1912
1913 /*
1914 * Sometimes we want to use more memory than we have
1915 */
1916 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1917 return 0;
1918
1919 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
c15bef30
DF
1920 free = global_page_state(NR_FREE_PAGES);
1921 free += global_page_state(NR_FILE_PAGES);
1922
1923 /*
1924 * shmem pages shouldn't be counted as free in this
1925 * case, they can't be purged, only swapped out, and
1926 * that won't affect the overall amount of available
1927 * memory in the system.
1928 */
1929 free -= global_page_state(NR_SHMEM);
1da177e4 1930
ec8acf20 1931 free += get_nr_swap_pages();
1da177e4
LT
1932
1933 /*
1934 * Any slabs which are created with the
1935 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1936 * which are reclaimable, under pressure. The dentry
1937 * cache and most inode caches should fall into this
1938 */
972d1a7b 1939 free += global_page_state(NR_SLAB_RECLAIMABLE);
1da177e4 1940
d5ddc79b
HA
1941 /*
1942 * Leave reserved pages. The pages are not for anonymous pages.
1943 */
c15bef30 1944 if (free <= totalreserve_pages)
d5ddc79b
HA
1945 goto error;
1946 else
c15bef30 1947 free -= totalreserve_pages;
d5ddc79b
HA
1948
1949 /*
4eeab4f5 1950 * Reserve some for root
d5ddc79b 1951 */
1da177e4 1952 if (!cap_sys_admin)
4eeab4f5 1953 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
1954
1955 if (free > pages)
1956 return 0;
d5ddc79b
HA
1957
1958 goto error;
1da177e4
LT
1959 }
1960
00619bcc 1961 allowed = vm_commit_limit();
1da177e4 1962 /*
4eeab4f5 1963 * Reserve some 3% for root
1da177e4
LT
1964 */
1965 if (!cap_sys_admin)
4eeab4f5 1966 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4 1967
c9b1d098
AS
1968 /*
1969 * Don't let a single process grow so big a user can't recover
1970 */
1971 if (mm) {
1972 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1973 allowed -= min(mm->total_vm / 32, reserve);
1974 }
1da177e4 1975
00a62ce9 1976 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1da177e4 1977 return 0;
00a62ce9 1978
d5ddc79b 1979error:
1da177e4
LT
1980 vm_unacct_memory(pages);
1981
1982 return -ENOMEM;
1983}
1984
cae5d390 1985int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
1986{
1987 return 0;
1988}
b0e15190 1989
d0217ac0 1990int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
b0e15190
DH
1991{
1992 BUG();
d0217ac0 1993 return 0;
b0e15190 1994}
b5073173 1995EXPORT_SYMBOL(filemap_fault);
0ec76a11 1996
f1820361
KS
1997void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1998{
1999 BUG();
2000}
2001EXPORT_SYMBOL(filemap_map_pages);
2002
0b173bc4
KK
2003int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
2004 unsigned long size, pgoff_t pgoff)
2005{
2006 BUG();
2007 return 0;
2008}
2009EXPORT_SYMBOL(generic_file_remap_pages);
2010
f55f199b
MF
2011static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2012 unsigned long addr, void *buf, int len, int write)
0ec76a11 2013{
0ec76a11 2014 struct vm_area_struct *vma;
0ec76a11
DH
2015
2016 down_read(&mm->mmap_sem);
2017
2018 /* the access must start within one of the target process's mappings */
0159b141
DH
2019 vma = find_vma(mm, addr);
2020 if (vma) {
0ec76a11
DH
2021 /* don't overrun this mapping */
2022 if (addr + len >= vma->vm_end)
2023 len = vma->vm_end - addr;
2024
2025 /* only read or write mappings where it is permitted */
d00c7b99 2026 if (write && vma->vm_flags & VM_MAYWRITE)
7959722b
JZ
2027 copy_to_user_page(vma, NULL, addr,
2028 (void *) addr, buf, len);
d00c7b99 2029 else if (!write && vma->vm_flags & VM_MAYREAD)
7959722b
JZ
2030 copy_from_user_page(vma, NULL, addr,
2031 buf, (void *) addr, len);
0ec76a11
DH
2032 else
2033 len = 0;
2034 } else {
2035 len = 0;
2036 }
2037
2038 up_read(&mm->mmap_sem);
f55f199b
MF
2039
2040 return len;
2041}
2042
2043/**
2044 * @access_remote_vm - access another process' address space
2045 * @mm: the mm_struct of the target address space
2046 * @addr: start address to access
2047 * @buf: source or destination buffer
2048 * @len: number of bytes to transfer
2049 * @write: whether the access is a write
2050 *
2051 * The caller must hold a reference on @mm.
2052 */
2053int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2054 void *buf, int len, int write)
2055{
2056 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2057}
2058
2059/*
2060 * Access another process' address space.
2061 * - source/target buffer must be kernel space
2062 */
2063int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2064{
2065 struct mm_struct *mm;
2066
2067 if (addr + len < addr)
2068 return 0;
2069
2070 mm = get_task_mm(tsk);
2071 if (!mm)
2072 return 0;
2073
2074 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2075
0ec76a11
DH
2076 mmput(mm);
2077 return len;
2078}
7e660872
DH
2079
2080/**
2081 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2082 * @inode: The inode to check
2083 * @size: The current filesize of the inode
2084 * @newsize: The proposed filesize of the inode
2085 *
2086 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2087 * make sure that that any outstanding VMAs aren't broken and then shrink the
2088 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2089 * automatically grant mappings that are too large.
2090 */
2091int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2092 size_t newsize)
2093{
2094 struct vm_area_struct *vma;
7e660872
DH
2095 struct vm_region *region;
2096 pgoff_t low, high;
2097 size_t r_size, r_top;
2098
2099 low = newsize >> PAGE_SHIFT;
2100 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2101
2102 down_write(&nommu_region_sem);
918e556e 2103 mutex_lock(&inode->i_mapping->i_mmap_mutex);
7e660872
DH
2104
2105 /* search for VMAs that fall within the dead zone */
6b2dbba8 2106 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
7e660872
DH
2107 /* found one - only interested if it's shared out of the page
2108 * cache */
2109 if (vma->vm_flags & VM_SHARED) {
918e556e 2110 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
7e660872
DH
2111 up_write(&nommu_region_sem);
2112 return -ETXTBSY; /* not quite true, but near enough */
2113 }
2114 }
2115
2116 /* reduce any regions that overlap the dead zone - if in existence,
2117 * these will be pointed to by VMAs that don't overlap the dead zone
2118 *
2119 * we don't check for any regions that start beyond the EOF as there
2120 * shouldn't be any
2121 */
6b2dbba8
ML
2122 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2123 0, ULONG_MAX) {
7e660872
DH
2124 if (!(vma->vm_flags & VM_SHARED))
2125 continue;
2126
2127 region = vma->vm_region;
2128 r_size = region->vm_top - region->vm_start;
2129 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2130
2131 if (r_top > newsize) {
2132 region->vm_top -= r_top - newsize;
2133 if (region->vm_end > region->vm_top)
2134 region->vm_end = region->vm_top;
2135 }
2136 }
2137
918e556e 2138 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
7e660872
DH
2139 up_write(&nommu_region_sem);
2140 return 0;
2141}
c9b1d098
AS
2142
2143/*
2144 * Initialise sysctl_user_reserve_kbytes.
2145 *
2146 * This is intended to prevent a user from starting a single memory hogging
2147 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2148 * mode.
2149 *
2150 * The default value is min(3% of free memory, 128MB)
2151 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2152 */
2153static int __meminit init_user_reserve(void)
2154{
2155 unsigned long free_kbytes;
2156
2157 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2158
2159 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2160 return 0;
2161}
2162module_init(init_user_reserve)
4eeab4f5
AS
2163
2164/*
2165 * Initialise sysctl_admin_reserve_kbytes.
2166 *
2167 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2168 * to log in and kill a memory hogging process.
2169 *
2170 * Systems with more than 256MB will reserve 8MB, enough to recover
2171 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2172 * only reserve 3% of free pages by default.
2173 */
2174static int __meminit init_admin_reserve(void)
2175{
2176 unsigned long free_kbytes;
2177
2178 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2179
2180 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2181 return 0;
2182}
2183module_init(init_admin_reserve)
This page took 1.163105 seconds and 5 git commands to generate.