mm: move definition for LRU isolation modes to a header
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
0d3d062a 52#include <trace/events/kmem.h>
718a3821 53#include <linux/ftrace_event.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
ac924c60 56#include <asm/div64.h>
1da177e4
LT
57#include "internal.h"
58
59/*
13808910 60 * Array of node states.
1da177e4 61 */
13808910
CL
62nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63 [N_POSSIBLE] = NODE_MASK_ALL,
64 [N_ONLINE] = { { [0] = 1UL } },
65#ifndef CONFIG_NUMA
66 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
67#ifdef CONFIG_HIGHMEM
68 [N_HIGH_MEMORY] = { { [0] = 1UL } },
69#endif
70 [N_CPU] = { { [0] = 1UL } },
71#endif /* NUMA */
72};
73EXPORT_SYMBOL(node_states);
74
6c231b7b 75unsigned long totalram_pages __read_mostly;
cb45b0e9 76unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 77int percpu_pagelist_fraction;
dcce284a 78gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 79
452aa699
RW
80#ifdef CONFIG_PM_SLEEP
81/*
82 * The following functions are used by the suspend/hibernate code to temporarily
83 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
84 * while devices are suspended. To avoid races with the suspend/hibernate code,
85 * they should always be called with pm_mutex held (gfp_allowed_mask also should
86 * only be modified with pm_mutex held, unless the suspend/hibernate code is
87 * guaranteed not to run in parallel with that modification).
88 */
89void set_gfp_allowed_mask(gfp_t mask)
90{
91 WARN_ON(!mutex_is_locked(&pm_mutex));
92 gfp_allowed_mask = mask;
93}
94
95gfp_t clear_gfp_allowed_mask(gfp_t mask)
96{
97 gfp_t ret = gfp_allowed_mask;
98
99 WARN_ON(!mutex_is_locked(&pm_mutex));
100 gfp_allowed_mask &= ~mask;
101 return ret;
102}
103#endif /* CONFIG_PM_SLEEP */
104
d9c23400
MG
105#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
106int pageblock_order __read_mostly;
107#endif
108
d98c7a09 109static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 110
1da177e4
LT
111/*
112 * results with 256, 32 in the lowmem_reserve sysctl:
113 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
114 * 1G machine -> (16M dma, 784M normal, 224M high)
115 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
116 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
117 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
118 *
119 * TBD: should special case ZONE_DMA32 machines here - in those we normally
120 * don't need any ZONE_NORMAL reservation
1da177e4 121 */
2f1b6248 122int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 123#ifdef CONFIG_ZONE_DMA
2f1b6248 124 256,
4b51d669 125#endif
fb0e7942 126#ifdef CONFIG_ZONE_DMA32
2f1b6248 127 256,
fb0e7942 128#endif
e53ef38d 129#ifdef CONFIG_HIGHMEM
2a1e274a 130 32,
e53ef38d 131#endif
2a1e274a 132 32,
2f1b6248 133};
1da177e4
LT
134
135EXPORT_SYMBOL(totalram_pages);
1da177e4 136
15ad7cdc 137static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 138#ifdef CONFIG_ZONE_DMA
2f1b6248 139 "DMA",
4b51d669 140#endif
fb0e7942 141#ifdef CONFIG_ZONE_DMA32
2f1b6248 142 "DMA32",
fb0e7942 143#endif
2f1b6248 144 "Normal",
e53ef38d 145#ifdef CONFIG_HIGHMEM
2a1e274a 146 "HighMem",
e53ef38d 147#endif
2a1e274a 148 "Movable",
2f1b6248
CL
149};
150
1da177e4
LT
151int min_free_kbytes = 1024;
152
2c85f51d
JB
153static unsigned long __meminitdata nr_kernel_pages;
154static unsigned long __meminitdata nr_all_pages;
a3142c8e 155static unsigned long __meminitdata dma_reserve;
1da177e4 156
c713216d
MG
157#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
158 /*
183ff22b 159 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
160 * ranges of memory (RAM) that may be registered with add_active_range().
161 * Ranges passed to add_active_range() will be merged if possible
162 * so the number of times add_active_range() can be called is
163 * related to the number of nodes and the number of holes
164 */
165 #ifdef CONFIG_MAX_ACTIVE_REGIONS
166 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
167 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
168 #else
169 #if MAX_NUMNODES >= 32
170 /* If there can be many nodes, allow up to 50 holes per node */
171 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
172 #else
173 /* By default, allow up to 256 distinct regions */
174 #define MAX_ACTIVE_REGIONS 256
175 #endif
176 #endif
177
98011f56
JB
178 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
179 static int __meminitdata nr_nodemap_entries;
180 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
181 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 182 static unsigned long __initdata required_kernelcore;
484f51f8 183 static unsigned long __initdata required_movablecore;
b69a7288 184 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
185
186 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
187 int movable_zone;
188 EXPORT_SYMBOL(movable_zone);
c713216d
MG
189#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
190
418508c1
MS
191#if MAX_NUMNODES > 1
192int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 193int nr_online_nodes __read_mostly = 1;
418508c1 194EXPORT_SYMBOL(nr_node_ids);
62bc62a8 195EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
196#endif
197
9ef9acb0
MG
198int page_group_by_mobility_disabled __read_mostly;
199
b2a0ac88
MG
200static void set_pageblock_migratetype(struct page *page, int migratetype)
201{
49255c61
MG
202
203 if (unlikely(page_group_by_mobility_disabled))
204 migratetype = MIGRATE_UNMOVABLE;
205
b2a0ac88
MG
206 set_pageblock_flags_group(page, (unsigned long)migratetype,
207 PB_migrate, PB_migrate_end);
208}
209
7f33d49a
RW
210bool oom_killer_disabled __read_mostly;
211
13e7444b 212#ifdef CONFIG_DEBUG_VM
c6a57e19 213static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 214{
bdc8cb98
DH
215 int ret = 0;
216 unsigned seq;
217 unsigned long pfn = page_to_pfn(page);
c6a57e19 218
bdc8cb98
DH
219 do {
220 seq = zone_span_seqbegin(zone);
221 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
222 ret = 1;
223 else if (pfn < zone->zone_start_pfn)
224 ret = 1;
225 } while (zone_span_seqretry(zone, seq));
226
227 return ret;
c6a57e19
DH
228}
229
230static int page_is_consistent(struct zone *zone, struct page *page)
231{
14e07298 232 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 233 return 0;
1da177e4 234 if (zone != page_zone(page))
c6a57e19
DH
235 return 0;
236
237 return 1;
238}
239/*
240 * Temporary debugging check for pages not lying within a given zone.
241 */
242static int bad_range(struct zone *zone, struct page *page)
243{
244 if (page_outside_zone_boundaries(zone, page))
1da177e4 245 return 1;
c6a57e19
DH
246 if (!page_is_consistent(zone, page))
247 return 1;
248
1da177e4
LT
249 return 0;
250}
13e7444b
NP
251#else
252static inline int bad_range(struct zone *zone, struct page *page)
253{
254 return 0;
255}
256#endif
257
224abf92 258static void bad_page(struct page *page)
1da177e4 259{
d936cf9b
HD
260 static unsigned long resume;
261 static unsigned long nr_shown;
262 static unsigned long nr_unshown;
263
2a7684a2
WF
264 /* Don't complain about poisoned pages */
265 if (PageHWPoison(page)) {
266 __ClearPageBuddy(page);
267 return;
268 }
269
d936cf9b
HD
270 /*
271 * Allow a burst of 60 reports, then keep quiet for that minute;
272 * or allow a steady drip of one report per second.
273 */
274 if (nr_shown == 60) {
275 if (time_before(jiffies, resume)) {
276 nr_unshown++;
277 goto out;
278 }
279 if (nr_unshown) {
1e9e6365
HD
280 printk(KERN_ALERT
281 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
282 nr_unshown);
283 nr_unshown = 0;
284 }
285 nr_shown = 0;
286 }
287 if (nr_shown++ == 0)
288 resume = jiffies + 60 * HZ;
289
1e9e6365 290 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 291 current->comm, page_to_pfn(page));
718a3821 292 dump_page(page);
3dc14741 293
1da177e4 294 dump_stack();
d936cf9b 295out:
8cc3b392
HD
296 /* Leave bad fields for debug, except PageBuddy could make trouble */
297 __ClearPageBuddy(page);
9f158333 298 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
299}
300
1da177e4
LT
301/*
302 * Higher-order pages are called "compound pages". They are structured thusly:
303 *
304 * The first PAGE_SIZE page is called the "head page".
305 *
306 * The remaining PAGE_SIZE pages are called "tail pages".
307 *
308 * All pages have PG_compound set. All pages have their ->private pointing at
309 * the head page (even the head page has this).
310 *
41d78ba5
HD
311 * The first tail page's ->lru.next holds the address of the compound page's
312 * put_page() function. Its ->lru.prev holds the order of allocation.
313 * This usage means that zero-order pages may not be compound.
1da177e4 314 */
d98c7a09
HD
315
316static void free_compound_page(struct page *page)
317{
d85f3385 318 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
319}
320
01ad1c08 321void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
322{
323 int i;
324 int nr_pages = 1 << order;
325
326 set_compound_page_dtor(page, free_compound_page);
327 set_compound_order(page, order);
328 __SetPageHead(page);
329 for (i = 1; i < nr_pages; i++) {
330 struct page *p = page + i;
331
332 __SetPageTail(p);
333 p->first_page = page;
334 }
335}
336
8cc3b392 337static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
338{
339 int i;
340 int nr_pages = 1 << order;
8cc3b392 341 int bad = 0;
1da177e4 342
8cc3b392
HD
343 if (unlikely(compound_order(page) != order) ||
344 unlikely(!PageHead(page))) {
224abf92 345 bad_page(page);
8cc3b392
HD
346 bad++;
347 }
1da177e4 348
6d777953 349 __ClearPageHead(page);
8cc3b392 350
18229df5
AW
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
1da177e4 353
e713a21d 354 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 355 bad_page(page);
8cc3b392
HD
356 bad++;
357 }
d85f3385 358 __ClearPageTail(p);
1da177e4 359 }
8cc3b392
HD
360
361 return bad;
1da177e4 362}
1da177e4 363
17cf4406
NP
364static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
365{
366 int i;
367
6626c5d5
AM
368 /*
369 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
370 * and __GFP_HIGHMEM from hard or soft interrupt context.
371 */
725d704e 372 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
373 for (i = 0; i < (1 << order); i++)
374 clear_highpage(page + i);
375}
376
6aa3001b
AM
377static inline void set_page_order(struct page *page, int order)
378{
4c21e2f2 379 set_page_private(page, order);
676165a8 380 __SetPageBuddy(page);
1da177e4
LT
381}
382
383static inline void rmv_page_order(struct page *page)
384{
676165a8 385 __ClearPageBuddy(page);
4c21e2f2 386 set_page_private(page, 0);
1da177e4
LT
387}
388
389/*
390 * Locate the struct page for both the matching buddy in our
391 * pair (buddy1) and the combined O(n+1) page they form (page).
392 *
393 * 1) Any buddy B1 will have an order O twin B2 which satisfies
394 * the following equation:
395 * B2 = B1 ^ (1 << O)
396 * For example, if the starting buddy (buddy2) is #8 its order
397 * 1 buddy is #10:
398 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
399 *
400 * 2) Any buddy B will have an order O+1 parent P which
401 * satisfies the following equation:
402 * P = B & ~(1 << O)
403 *
d6e05edc 404 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
405 */
406static inline struct page *
407__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
408{
409 unsigned long buddy_idx = page_idx ^ (1 << order);
410
411 return page + (buddy_idx - page_idx);
412}
413
414static inline unsigned long
415__find_combined_index(unsigned long page_idx, unsigned int order)
416{
417 return (page_idx & ~(1 << order));
418}
419
420/*
421 * This function checks whether a page is free && is the buddy
422 * we can do coalesce a page and its buddy if
13e7444b 423 * (a) the buddy is not in a hole &&
676165a8 424 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
425 * (c) a page and its buddy have the same order &&
426 * (d) a page and its buddy are in the same zone.
676165a8
NP
427 *
428 * For recording whether a page is in the buddy system, we use PG_buddy.
429 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 430 *
676165a8 431 * For recording page's order, we use page_private(page).
1da177e4 432 */
cb2b95e1
AW
433static inline int page_is_buddy(struct page *page, struct page *buddy,
434 int order)
1da177e4 435{
14e07298 436 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 437 return 0;
13e7444b 438
cb2b95e1
AW
439 if (page_zone_id(page) != page_zone_id(buddy))
440 return 0;
441
442 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 443 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 444 return 1;
676165a8 445 }
6aa3001b 446 return 0;
1da177e4
LT
447}
448
449/*
450 * Freeing function for a buddy system allocator.
451 *
452 * The concept of a buddy system is to maintain direct-mapped table
453 * (containing bit values) for memory blocks of various "orders".
454 * The bottom level table contains the map for the smallest allocatable
455 * units of memory (here, pages), and each level above it describes
456 * pairs of units from the levels below, hence, "buddies".
457 * At a high level, all that happens here is marking the table entry
458 * at the bottom level available, and propagating the changes upward
459 * as necessary, plus some accounting needed to play nicely with other
460 * parts of the VM system.
461 * At each level, we keep a list of pages, which are heads of continuous
676165a8 462 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 463 * order is recorded in page_private(page) field.
1da177e4
LT
464 * So when we are allocating or freeing one, we can derive the state of the
465 * other. That is, if we allocate a small block, and both were
466 * free, the remainder of the region must be split into blocks.
467 * If a block is freed, and its buddy is also free, then this
468 * triggers coalescing into a block of larger size.
469 *
470 * -- wli
471 */
472
48db57f8 473static inline void __free_one_page(struct page *page,
ed0ae21d
MG
474 struct zone *zone, unsigned int order,
475 int migratetype)
1da177e4
LT
476{
477 unsigned long page_idx;
6dda9d55
CZ
478 unsigned long combined_idx;
479 struct page *buddy;
1da177e4 480
224abf92 481 if (unlikely(PageCompound(page)))
8cc3b392
HD
482 if (unlikely(destroy_compound_page(page, order)))
483 return;
1da177e4 484
ed0ae21d
MG
485 VM_BUG_ON(migratetype == -1);
486
1da177e4
LT
487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488
f2260e6b 489 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 490 VM_BUG_ON(bad_range(zone, page));
1da177e4 491
1da177e4 492 while (order < MAX_ORDER-1) {
1da177e4 493 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 494 if (!page_is_buddy(page, buddy, order))
3c82d0ce 495 break;
13e7444b 496
3c82d0ce 497 /* Our buddy is free, merge with it and move up one order. */
1da177e4 498 list_del(&buddy->lru);
b2a0ac88 499 zone->free_area[order].nr_free--;
1da177e4 500 rmv_page_order(buddy);
13e7444b 501 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
502 page = page + (combined_idx - page_idx);
503 page_idx = combined_idx;
504 order++;
505 }
506 set_page_order(page, order);
6dda9d55
CZ
507
508 /*
509 * If this is not the largest possible page, check if the buddy
510 * of the next-highest order is free. If it is, it's possible
511 * that pages are being freed that will coalesce soon. In case,
512 * that is happening, add the free page to the tail of the list
513 * so it's less likely to be used soon and more likely to be merged
514 * as a higher order page
515 */
516 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
517 struct page *higher_page, *higher_buddy;
518 combined_idx = __find_combined_index(page_idx, order);
519 higher_page = page + combined_idx - page_idx;
520 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
521 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
522 list_add_tail(&page->lru,
523 &zone->free_area[order].free_list[migratetype]);
524 goto out;
525 }
526 }
527
528 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
529out:
1da177e4
LT
530 zone->free_area[order].nr_free++;
531}
532
092cead6
KM
533/*
534 * free_page_mlock() -- clean up attempts to free and mlocked() page.
535 * Page should not be on lru, so no need to fix that up.
536 * free_pages_check() will verify...
537 */
538static inline void free_page_mlock(struct page *page)
539{
092cead6
KM
540 __dec_zone_page_state(page, NR_MLOCK);
541 __count_vm_event(UNEVICTABLE_MLOCKFREED);
542}
092cead6 543
224abf92 544static inline int free_pages_check(struct page *page)
1da177e4 545{
92be2e33
NP
546 if (unlikely(page_mapcount(page) |
547 (page->mapping != NULL) |
a3af9c38 548 (atomic_read(&page->_count) != 0) |
8cc3b392 549 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 550 bad_page(page);
79f4b7bf 551 return 1;
8cc3b392 552 }
79f4b7bf
HD
553 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
554 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
555 return 0;
1da177e4
LT
556}
557
558/*
5f8dcc21 559 * Frees a number of pages from the PCP lists
1da177e4 560 * Assumes all pages on list are in same zone, and of same order.
207f36ee 561 * count is the number of pages to free.
1da177e4
LT
562 *
563 * If the zone was previously in an "all pages pinned" state then look to
564 * see if this freeing clears that state.
565 *
566 * And clear the zone's pages_scanned counter, to hold off the "all pages are
567 * pinned" detection logic.
568 */
5f8dcc21
MG
569static void free_pcppages_bulk(struct zone *zone, int count,
570 struct per_cpu_pages *pcp)
1da177e4 571{
5f8dcc21 572 int migratetype = 0;
a6f9edd6 573 int batch_free = 0;
5f8dcc21 574
c54ad30c 575 spin_lock(&zone->lock);
93e4a89a 576 zone->all_unreclaimable = 0;
1da177e4 577 zone->pages_scanned = 0;
f2260e6b 578
5f8dcc21 579 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 580 while (count) {
48db57f8 581 struct page *page;
5f8dcc21
MG
582 struct list_head *list;
583
584 /*
a6f9edd6
MG
585 * Remove pages from lists in a round-robin fashion. A
586 * batch_free count is maintained that is incremented when an
587 * empty list is encountered. This is so more pages are freed
588 * off fuller lists instead of spinning excessively around empty
589 * lists
5f8dcc21
MG
590 */
591 do {
a6f9edd6 592 batch_free++;
5f8dcc21
MG
593 if (++migratetype == MIGRATE_PCPTYPES)
594 migratetype = 0;
595 list = &pcp->lists[migratetype];
596 } while (list_empty(list));
48db57f8 597
a6f9edd6
MG
598 do {
599 page = list_entry(list->prev, struct page, lru);
600 /* must delete as __free_one_page list manipulates */
601 list_del(&page->lru);
a7016235
HD
602 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
603 __free_one_page(page, zone, 0, page_private(page));
604 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 605 } while (--count && --batch_free && !list_empty(list));
1da177e4 606 }
c54ad30c 607 spin_unlock(&zone->lock);
1da177e4
LT
608}
609
ed0ae21d
MG
610static void free_one_page(struct zone *zone, struct page *page, int order,
611 int migratetype)
1da177e4 612{
006d22d9 613 spin_lock(&zone->lock);
93e4a89a 614 zone->all_unreclaimable = 0;
006d22d9 615 zone->pages_scanned = 0;
f2260e6b
MG
616
617 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 618 __free_one_page(page, zone, order, migratetype);
006d22d9 619 spin_unlock(&zone->lock);
48db57f8
NP
620}
621
622static void __free_pages_ok(struct page *page, unsigned int order)
623{
624 unsigned long flags;
1da177e4 625 int i;
8cc3b392 626 int bad = 0;
451ea25d 627 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 628
f650316c 629 trace_mm_page_free_direct(page, order);
b1eeab67
VN
630 kmemcheck_free_shadow(page, order);
631
1da177e4 632 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
633 bad += free_pages_check(page + i);
634 if (bad)
689bcebf
HD
635 return;
636
3ac7fe5a 637 if (!PageHighMem(page)) {
9858db50 638 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
639 debug_check_no_obj_freed(page_address(page),
640 PAGE_SIZE << order);
641 }
dafb1367 642 arch_free_page(page, order);
48db57f8 643 kernel_map_pages(page, 1 << order, 0);
dafb1367 644
c54ad30c 645 local_irq_save(flags);
c277331d 646 if (unlikely(wasMlocked))
da456f14 647 free_page_mlock(page);
f8891e5e 648 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
649 free_one_page(page_zone(page), page, order,
650 get_pageblock_migratetype(page));
c54ad30c 651 local_irq_restore(flags);
1da177e4
LT
652}
653
a226f6c8
DH
654/*
655 * permit the bootmem allocator to evade page validation on high-order frees
656 */
af370fb8 657void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
658{
659 if (order == 0) {
660 __ClearPageReserved(page);
661 set_page_count(page, 0);
7835e98b 662 set_page_refcounted(page);
545b1ea9 663 __free_page(page);
a226f6c8 664 } else {
a226f6c8
DH
665 int loop;
666
545b1ea9 667 prefetchw(page);
a226f6c8
DH
668 for (loop = 0; loop < BITS_PER_LONG; loop++) {
669 struct page *p = &page[loop];
670
545b1ea9
NP
671 if (loop + 1 < BITS_PER_LONG)
672 prefetchw(p + 1);
a226f6c8
DH
673 __ClearPageReserved(p);
674 set_page_count(p, 0);
675 }
676
7835e98b 677 set_page_refcounted(page);
545b1ea9 678 __free_pages(page, order);
a226f6c8
DH
679 }
680}
681
1da177e4
LT
682
683/*
684 * The order of subdivision here is critical for the IO subsystem.
685 * Please do not alter this order without good reasons and regression
686 * testing. Specifically, as large blocks of memory are subdivided,
687 * the order in which smaller blocks are delivered depends on the order
688 * they're subdivided in this function. This is the primary factor
689 * influencing the order in which pages are delivered to the IO
690 * subsystem according to empirical testing, and this is also justified
691 * by considering the behavior of a buddy system containing a single
692 * large block of memory acted on by a series of small allocations.
693 * This behavior is a critical factor in sglist merging's success.
694 *
695 * -- wli
696 */
085cc7d5 697static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
698 int low, int high, struct free_area *area,
699 int migratetype)
1da177e4
LT
700{
701 unsigned long size = 1 << high;
702
703 while (high > low) {
704 area--;
705 high--;
706 size >>= 1;
725d704e 707 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 708 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
709 area->nr_free++;
710 set_page_order(&page[size], high);
711 }
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This page is about to be returned from the page allocator
716 */
2a7684a2 717static inline int check_new_page(struct page *page)
1da177e4 718{
92be2e33
NP
719 if (unlikely(page_mapcount(page) |
720 (page->mapping != NULL) |
a3af9c38 721 (atomic_read(&page->_count) != 0) |
8cc3b392 722 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 723 bad_page(page);
689bcebf 724 return 1;
8cc3b392 725 }
2a7684a2
WF
726 return 0;
727}
728
729static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
730{
731 int i;
732
733 for (i = 0; i < (1 << order); i++) {
734 struct page *p = page + i;
735 if (unlikely(check_new_page(p)))
736 return 1;
737 }
689bcebf 738
4c21e2f2 739 set_page_private(page, 0);
7835e98b 740 set_page_refcounted(page);
cc102509
NP
741
742 arch_alloc_page(page, order);
1da177e4 743 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
744
745 if (gfp_flags & __GFP_ZERO)
746 prep_zero_page(page, order, gfp_flags);
747
748 if (order && (gfp_flags & __GFP_COMP))
749 prep_compound_page(page, order);
750
689bcebf 751 return 0;
1da177e4
LT
752}
753
56fd56b8
MG
754/*
755 * Go through the free lists for the given migratetype and remove
756 * the smallest available page from the freelists
757 */
728ec980
MG
758static inline
759struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
760 int migratetype)
761{
762 unsigned int current_order;
763 struct free_area * area;
764 struct page *page;
765
766 /* Find a page of the appropriate size in the preferred list */
767 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
768 area = &(zone->free_area[current_order]);
769 if (list_empty(&area->free_list[migratetype]))
770 continue;
771
772 page = list_entry(area->free_list[migratetype].next,
773 struct page, lru);
774 list_del(&page->lru);
775 rmv_page_order(page);
776 area->nr_free--;
56fd56b8
MG
777 expand(zone, page, order, current_order, area, migratetype);
778 return page;
779 }
780
781 return NULL;
782}
783
784
b2a0ac88
MG
785/*
786 * This array describes the order lists are fallen back to when
787 * the free lists for the desirable migrate type are depleted
788 */
789static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
790 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
791 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
792 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
793 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
794};
795
c361be55
MG
796/*
797 * Move the free pages in a range to the free lists of the requested type.
d9c23400 798 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
799 * boundary. If alignment is required, use move_freepages_block()
800 */
b69a7288
AB
801static int move_freepages(struct zone *zone,
802 struct page *start_page, struct page *end_page,
803 int migratetype)
c361be55
MG
804{
805 struct page *page;
806 unsigned long order;
d100313f 807 int pages_moved = 0;
c361be55
MG
808
809#ifndef CONFIG_HOLES_IN_ZONE
810 /*
811 * page_zone is not safe to call in this context when
812 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
813 * anyway as we check zone boundaries in move_freepages_block().
814 * Remove at a later date when no bug reports exist related to
ac0e5b7a 815 * grouping pages by mobility
c361be55
MG
816 */
817 BUG_ON(page_zone(start_page) != page_zone(end_page));
818#endif
819
820 for (page = start_page; page <= end_page;) {
344c790e
AL
821 /* Make sure we are not inadvertently changing nodes */
822 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
823
c361be55
MG
824 if (!pfn_valid_within(page_to_pfn(page))) {
825 page++;
826 continue;
827 }
828
829 if (!PageBuddy(page)) {
830 page++;
831 continue;
832 }
833
834 order = page_order(page);
835 list_del(&page->lru);
836 list_add(&page->lru,
837 &zone->free_area[order].free_list[migratetype]);
838 page += 1 << order;
d100313f 839 pages_moved += 1 << order;
c361be55
MG
840 }
841
d100313f 842 return pages_moved;
c361be55
MG
843}
844
b69a7288
AB
845static int move_freepages_block(struct zone *zone, struct page *page,
846 int migratetype)
c361be55
MG
847{
848 unsigned long start_pfn, end_pfn;
849 struct page *start_page, *end_page;
850
851 start_pfn = page_to_pfn(page);
d9c23400 852 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 853 start_page = pfn_to_page(start_pfn);
d9c23400
MG
854 end_page = start_page + pageblock_nr_pages - 1;
855 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
856
857 /* Do not cross zone boundaries */
858 if (start_pfn < zone->zone_start_pfn)
859 start_page = page;
860 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
861 return 0;
862
863 return move_freepages(zone, start_page, end_page, migratetype);
864}
865
2f66a68f
MG
866static void change_pageblock_range(struct page *pageblock_page,
867 int start_order, int migratetype)
868{
869 int nr_pageblocks = 1 << (start_order - pageblock_order);
870
871 while (nr_pageblocks--) {
872 set_pageblock_migratetype(pageblock_page, migratetype);
873 pageblock_page += pageblock_nr_pages;
874 }
875}
876
b2a0ac88 877/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
878static inline struct page *
879__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
880{
881 struct free_area * area;
882 int current_order;
883 struct page *page;
884 int migratetype, i;
885
886 /* Find the largest possible block of pages in the other list */
887 for (current_order = MAX_ORDER-1; current_order >= order;
888 --current_order) {
889 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
890 migratetype = fallbacks[start_migratetype][i];
891
56fd56b8
MG
892 /* MIGRATE_RESERVE handled later if necessary */
893 if (migratetype == MIGRATE_RESERVE)
894 continue;
e010487d 895
b2a0ac88
MG
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 area->nr_free--;
903
904 /*
c361be55 905 * If breaking a large block of pages, move all free
46dafbca
MG
906 * pages to the preferred allocation list. If falling
907 * back for a reclaimable kernel allocation, be more
908 * agressive about taking ownership of free pages
b2a0ac88 909 */
d9c23400 910 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
911 start_migratetype == MIGRATE_RECLAIMABLE ||
912 page_group_by_mobility_disabled) {
46dafbca
MG
913 unsigned long pages;
914 pages = move_freepages_block(zone, page,
915 start_migratetype);
916
917 /* Claim the whole block if over half of it is free */
dd5d241e
MG
918 if (pages >= (1 << (pageblock_order-1)) ||
919 page_group_by_mobility_disabled)
46dafbca
MG
920 set_pageblock_migratetype(page,
921 start_migratetype);
922
b2a0ac88 923 migratetype = start_migratetype;
c361be55 924 }
b2a0ac88
MG
925
926 /* Remove the page from the freelists */
927 list_del(&page->lru);
928 rmv_page_order(page);
b2a0ac88 929
2f66a68f
MG
930 /* Take ownership for orders >= pageblock_order */
931 if (current_order >= pageblock_order)
932 change_pageblock_range(page, current_order,
b2a0ac88
MG
933 start_migratetype);
934
935 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
936
937 trace_mm_page_alloc_extfrag(page, order, current_order,
938 start_migratetype, migratetype);
939
b2a0ac88
MG
940 return page;
941 }
942 }
943
728ec980 944 return NULL;
b2a0ac88
MG
945}
946
56fd56b8 947/*
1da177e4
LT
948 * Do the hard work of removing an element from the buddy allocator.
949 * Call me with the zone->lock already held.
950 */
b2a0ac88
MG
951static struct page *__rmqueue(struct zone *zone, unsigned int order,
952 int migratetype)
1da177e4 953{
1da177e4
LT
954 struct page *page;
955
728ec980 956retry_reserve:
56fd56b8 957 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 958
728ec980 959 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 960 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 961
728ec980
MG
962 /*
963 * Use MIGRATE_RESERVE rather than fail an allocation. goto
964 * is used because __rmqueue_smallest is an inline function
965 * and we want just one call site
966 */
967 if (!page) {
968 migratetype = MIGRATE_RESERVE;
969 goto retry_reserve;
970 }
971 }
972
0d3d062a 973 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 974 return page;
1da177e4
LT
975}
976
977/*
978 * Obtain a specified number of elements from the buddy allocator, all under
979 * a single hold of the lock, for efficiency. Add them to the supplied list.
980 * Returns the number of new pages which were placed at *list.
981 */
982static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 983 unsigned long count, struct list_head *list,
e084b2d9 984 int migratetype, int cold)
1da177e4 985{
1da177e4 986 int i;
1da177e4 987
c54ad30c 988 spin_lock(&zone->lock);
1da177e4 989 for (i = 0; i < count; ++i) {
b2a0ac88 990 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 991 if (unlikely(page == NULL))
1da177e4 992 break;
81eabcbe
MG
993
994 /*
995 * Split buddy pages returned by expand() are received here
996 * in physical page order. The page is added to the callers and
997 * list and the list head then moves forward. From the callers
998 * perspective, the linked list is ordered by page number in
999 * some conditions. This is useful for IO devices that can
1000 * merge IO requests if the physical pages are ordered
1001 * properly.
1002 */
e084b2d9
MG
1003 if (likely(cold == 0))
1004 list_add(&page->lru, list);
1005 else
1006 list_add_tail(&page->lru, list);
535131e6 1007 set_page_private(page, migratetype);
81eabcbe 1008 list = &page->lru;
1da177e4 1009 }
f2260e6b 1010 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1011 spin_unlock(&zone->lock);
085cc7d5 1012 return i;
1da177e4
LT
1013}
1014
4ae7c039 1015#ifdef CONFIG_NUMA
8fce4d8e 1016/*
4037d452
CL
1017 * Called from the vmstat counter updater to drain pagesets of this
1018 * currently executing processor on remote nodes after they have
1019 * expired.
1020 *
879336c3
CL
1021 * Note that this function must be called with the thread pinned to
1022 * a single processor.
8fce4d8e 1023 */
4037d452 1024void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1025{
4ae7c039 1026 unsigned long flags;
4037d452 1027 int to_drain;
4ae7c039 1028
4037d452
CL
1029 local_irq_save(flags);
1030 if (pcp->count >= pcp->batch)
1031 to_drain = pcp->batch;
1032 else
1033 to_drain = pcp->count;
5f8dcc21 1034 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1035 pcp->count -= to_drain;
1036 local_irq_restore(flags);
4ae7c039
CL
1037}
1038#endif
1039
9f8f2172
CL
1040/*
1041 * Drain pages of the indicated processor.
1042 *
1043 * The processor must either be the current processor and the
1044 * thread pinned to the current processor or a processor that
1045 * is not online.
1046 */
1047static void drain_pages(unsigned int cpu)
1da177e4 1048{
c54ad30c 1049 unsigned long flags;
1da177e4 1050 struct zone *zone;
1da177e4 1051
ee99c71c 1052 for_each_populated_zone(zone) {
1da177e4 1053 struct per_cpu_pageset *pset;
3dfa5721 1054 struct per_cpu_pages *pcp;
1da177e4 1055
99dcc3e5
CL
1056 local_irq_save(flags);
1057 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1058
1059 pcp = &pset->pcp;
5f8dcc21 1060 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1061 pcp->count = 0;
1062 local_irq_restore(flags);
1da177e4
LT
1063 }
1064}
1da177e4 1065
9f8f2172
CL
1066/*
1067 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1068 */
1069void drain_local_pages(void *arg)
1070{
1071 drain_pages(smp_processor_id());
1072}
1073
1074/*
1075 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1076 */
1077void drain_all_pages(void)
1078{
15c8b6c1 1079 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1080}
1081
296699de 1082#ifdef CONFIG_HIBERNATION
1da177e4
LT
1083
1084void mark_free_pages(struct zone *zone)
1085{
f623f0db
RW
1086 unsigned long pfn, max_zone_pfn;
1087 unsigned long flags;
b2a0ac88 1088 int order, t;
1da177e4
LT
1089 struct list_head *curr;
1090
1091 if (!zone->spanned_pages)
1092 return;
1093
1094 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1095
1096 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1097 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1098 if (pfn_valid(pfn)) {
1099 struct page *page = pfn_to_page(pfn);
1100
7be98234
RW
1101 if (!swsusp_page_is_forbidden(page))
1102 swsusp_unset_page_free(page);
f623f0db 1103 }
1da177e4 1104
b2a0ac88
MG
1105 for_each_migratetype_order(order, t) {
1106 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1107 unsigned long i;
1da177e4 1108
f623f0db
RW
1109 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1110 for (i = 0; i < (1UL << order); i++)
7be98234 1111 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1112 }
b2a0ac88 1113 }
1da177e4
LT
1114 spin_unlock_irqrestore(&zone->lock, flags);
1115}
e2c55dc8 1116#endif /* CONFIG_PM */
1da177e4 1117
1da177e4
LT
1118/*
1119 * Free a 0-order page
fc91668e 1120 * cold == 1 ? free a cold page : free a hot page
1da177e4 1121 */
fc91668e 1122void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1123{
1124 struct zone *zone = page_zone(page);
1125 struct per_cpu_pages *pcp;
1126 unsigned long flags;
5f8dcc21 1127 int migratetype;
451ea25d 1128 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1129
c475dab6 1130 trace_mm_page_free_direct(page, 0);
b1eeab67
VN
1131 kmemcheck_free_shadow(page, 0);
1132
1da177e4
LT
1133 if (PageAnon(page))
1134 page->mapping = NULL;
224abf92 1135 if (free_pages_check(page))
689bcebf
HD
1136 return;
1137
3ac7fe5a 1138 if (!PageHighMem(page)) {
9858db50 1139 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1140 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1141 }
dafb1367 1142 arch_free_page(page, 0);
689bcebf
HD
1143 kernel_map_pages(page, 1, 0);
1144
5f8dcc21
MG
1145 migratetype = get_pageblock_migratetype(page);
1146 set_page_private(page, migratetype);
1da177e4 1147 local_irq_save(flags);
c277331d 1148 if (unlikely(wasMlocked))
da456f14 1149 free_page_mlock(page);
f8891e5e 1150 __count_vm_event(PGFREE);
da456f14 1151
5f8dcc21
MG
1152 /*
1153 * We only track unmovable, reclaimable and movable on pcp lists.
1154 * Free ISOLATE pages back to the allocator because they are being
1155 * offlined but treat RESERVE as movable pages so we can get those
1156 * areas back if necessary. Otherwise, we may have to free
1157 * excessively into the page allocator
1158 */
1159 if (migratetype >= MIGRATE_PCPTYPES) {
1160 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1161 free_one_page(zone, page, 0, migratetype);
1162 goto out;
1163 }
1164 migratetype = MIGRATE_MOVABLE;
1165 }
1166
99dcc3e5 1167 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1168 if (cold)
5f8dcc21 1169 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1170 else
5f8dcc21 1171 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1172 pcp->count++;
48db57f8 1173 if (pcp->count >= pcp->high) {
5f8dcc21 1174 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1175 pcp->count -= pcp->batch;
1176 }
5f8dcc21
MG
1177
1178out:
1da177e4 1179 local_irq_restore(flags);
1da177e4
LT
1180}
1181
8dfcc9ba
NP
1182/*
1183 * split_page takes a non-compound higher-order page, and splits it into
1184 * n (1<<order) sub-pages: page[0..n]
1185 * Each sub-page must be freed individually.
1186 *
1187 * Note: this is probably too low level an operation for use in drivers.
1188 * Please consult with lkml before using this in your driver.
1189 */
1190void split_page(struct page *page, unsigned int order)
1191{
1192 int i;
1193
725d704e
NP
1194 VM_BUG_ON(PageCompound(page));
1195 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1196
1197#ifdef CONFIG_KMEMCHECK
1198 /*
1199 * Split shadow pages too, because free(page[0]) would
1200 * otherwise free the whole shadow.
1201 */
1202 if (kmemcheck_page_is_tracked(page))
1203 split_page(virt_to_page(page[0].shadow), order);
1204#endif
1205
7835e98b
NP
1206 for (i = 1; i < (1 << order); i++)
1207 set_page_refcounted(page + i);
8dfcc9ba 1208}
8dfcc9ba 1209
1da177e4
LT
1210/*
1211 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1212 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1213 * or two.
1214 */
0a15c3e9
MG
1215static inline
1216struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1217 struct zone *zone, int order, gfp_t gfp_flags,
1218 int migratetype)
1da177e4
LT
1219{
1220 unsigned long flags;
689bcebf 1221 struct page *page;
1da177e4
LT
1222 int cold = !!(gfp_flags & __GFP_COLD);
1223
689bcebf 1224again:
48db57f8 1225 if (likely(order == 0)) {
1da177e4 1226 struct per_cpu_pages *pcp;
5f8dcc21 1227 struct list_head *list;
1da177e4 1228
1da177e4 1229 local_irq_save(flags);
99dcc3e5
CL
1230 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1231 list = &pcp->lists[migratetype];
5f8dcc21 1232 if (list_empty(list)) {
535131e6 1233 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1234 pcp->batch, list,
e084b2d9 1235 migratetype, cold);
5f8dcc21 1236 if (unlikely(list_empty(list)))
6fb332fa 1237 goto failed;
535131e6 1238 }
b92a6edd 1239
5f8dcc21
MG
1240 if (cold)
1241 page = list_entry(list->prev, struct page, lru);
1242 else
1243 page = list_entry(list->next, struct page, lru);
1244
b92a6edd
MG
1245 list_del(&page->lru);
1246 pcp->count--;
7fb1d9fc 1247 } else {
dab48dab
AM
1248 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1249 /*
1250 * __GFP_NOFAIL is not to be used in new code.
1251 *
1252 * All __GFP_NOFAIL callers should be fixed so that they
1253 * properly detect and handle allocation failures.
1254 *
1255 * We most definitely don't want callers attempting to
4923abf9 1256 * allocate greater than order-1 page units with
dab48dab
AM
1257 * __GFP_NOFAIL.
1258 */
4923abf9 1259 WARN_ON_ONCE(order > 1);
dab48dab 1260 }
1da177e4 1261 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1262 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1263 spin_unlock(&zone->lock);
1264 if (!page)
1265 goto failed;
6ccf80eb 1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1267 }
1268
f8891e5e 1269 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1270 zone_statistics(preferred_zone, zone);
a74609fa 1271 local_irq_restore(flags);
1da177e4 1272
725d704e 1273 VM_BUG_ON(bad_range(zone, page));
17cf4406 1274 if (prep_new_page(page, order, gfp_flags))
a74609fa 1275 goto again;
1da177e4 1276 return page;
a74609fa
NP
1277
1278failed:
1279 local_irq_restore(flags);
a74609fa 1280 return NULL;
1da177e4
LT
1281}
1282
41858966
MG
1283/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1284#define ALLOC_WMARK_MIN WMARK_MIN
1285#define ALLOC_WMARK_LOW WMARK_LOW
1286#define ALLOC_WMARK_HIGH WMARK_HIGH
1287#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1288
1289/* Mask to get the watermark bits */
1290#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1291
3148890b
NP
1292#define ALLOC_HARDER 0x10 /* try to alloc harder */
1293#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1294#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1295
933e312e
AM
1296#ifdef CONFIG_FAIL_PAGE_ALLOC
1297
1298static struct fail_page_alloc_attr {
1299 struct fault_attr attr;
1300
1301 u32 ignore_gfp_highmem;
1302 u32 ignore_gfp_wait;
54114994 1303 u32 min_order;
933e312e
AM
1304
1305#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1306
1307 struct dentry *ignore_gfp_highmem_file;
1308 struct dentry *ignore_gfp_wait_file;
54114994 1309 struct dentry *min_order_file;
933e312e
AM
1310
1311#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1312
1313} fail_page_alloc = {
1314 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1315 .ignore_gfp_wait = 1,
1316 .ignore_gfp_highmem = 1,
54114994 1317 .min_order = 1,
933e312e
AM
1318};
1319
1320static int __init setup_fail_page_alloc(char *str)
1321{
1322 return setup_fault_attr(&fail_page_alloc.attr, str);
1323}
1324__setup("fail_page_alloc=", setup_fail_page_alloc);
1325
1326static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1327{
54114994
AM
1328 if (order < fail_page_alloc.min_order)
1329 return 0;
933e312e
AM
1330 if (gfp_mask & __GFP_NOFAIL)
1331 return 0;
1332 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1333 return 0;
1334 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1335 return 0;
1336
1337 return should_fail(&fail_page_alloc.attr, 1 << order);
1338}
1339
1340#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1341
1342static int __init fail_page_alloc_debugfs(void)
1343{
1344 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1345 struct dentry *dir;
1346 int err;
1347
1348 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1349 "fail_page_alloc");
1350 if (err)
1351 return err;
1352 dir = fail_page_alloc.attr.dentries.dir;
1353
1354 fail_page_alloc.ignore_gfp_wait_file =
1355 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1356 &fail_page_alloc.ignore_gfp_wait);
1357
1358 fail_page_alloc.ignore_gfp_highmem_file =
1359 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1360 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1361 fail_page_alloc.min_order_file =
1362 debugfs_create_u32("min-order", mode, dir,
1363 &fail_page_alloc.min_order);
933e312e
AM
1364
1365 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1366 !fail_page_alloc.ignore_gfp_highmem_file ||
1367 !fail_page_alloc.min_order_file) {
933e312e
AM
1368 err = -ENOMEM;
1369 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1370 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1371 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1372 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1373 }
1374
1375 return err;
1376}
1377
1378late_initcall(fail_page_alloc_debugfs);
1379
1380#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1381
1382#else /* CONFIG_FAIL_PAGE_ALLOC */
1383
1384static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1385{
1386 return 0;
1387}
1388
1389#endif /* CONFIG_FAIL_PAGE_ALLOC */
1390
1da177e4
LT
1391/*
1392 * Return 1 if free pages are above 'mark'. This takes into account the order
1393 * of the allocation.
1394 */
1395int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1396 int classzone_idx, int alloc_flags)
1da177e4
LT
1397{
1398 /* free_pages my go negative - that's OK */
d23ad423
CL
1399 long min = mark;
1400 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1401 int o;
1402
7fb1d9fc 1403 if (alloc_flags & ALLOC_HIGH)
1da177e4 1404 min -= min / 2;
7fb1d9fc 1405 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1406 min -= min / 4;
1407
1408 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1409 return 0;
1410 for (o = 0; o < order; o++) {
1411 /* At the next order, this order's pages become unavailable */
1412 free_pages -= z->free_area[o].nr_free << o;
1413
1414 /* Require fewer higher order pages to be free */
1415 min >>= 1;
1416
1417 if (free_pages <= min)
1418 return 0;
1419 }
1420 return 1;
1421}
1422
9276b1bc
PJ
1423#ifdef CONFIG_NUMA
1424/*
1425 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1426 * skip over zones that are not allowed by the cpuset, or that have
1427 * been recently (in last second) found to be nearly full. See further
1428 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1429 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1430 *
1431 * If the zonelist cache is present in the passed in zonelist, then
1432 * returns a pointer to the allowed node mask (either the current
37b07e41 1433 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1434 *
1435 * If the zonelist cache is not available for this zonelist, does
1436 * nothing and returns NULL.
1437 *
1438 * If the fullzones BITMAP in the zonelist cache is stale (more than
1439 * a second since last zap'd) then we zap it out (clear its bits.)
1440 *
1441 * We hold off even calling zlc_setup, until after we've checked the
1442 * first zone in the zonelist, on the theory that most allocations will
1443 * be satisfied from that first zone, so best to examine that zone as
1444 * quickly as we can.
1445 */
1446static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1447{
1448 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1449 nodemask_t *allowednodes; /* zonelist_cache approximation */
1450
1451 zlc = zonelist->zlcache_ptr;
1452 if (!zlc)
1453 return NULL;
1454
f05111f5 1455 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1456 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1457 zlc->last_full_zap = jiffies;
1458 }
1459
1460 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1461 &cpuset_current_mems_allowed :
37b07e41 1462 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1463 return allowednodes;
1464}
1465
1466/*
1467 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1468 * if it is worth looking at further for free memory:
1469 * 1) Check that the zone isn't thought to be full (doesn't have its
1470 * bit set in the zonelist_cache fullzones BITMAP).
1471 * 2) Check that the zones node (obtained from the zonelist_cache
1472 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1473 * Return true (non-zero) if zone is worth looking at further, or
1474 * else return false (zero) if it is not.
1475 *
1476 * This check -ignores- the distinction between various watermarks,
1477 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1478 * found to be full for any variation of these watermarks, it will
1479 * be considered full for up to one second by all requests, unless
1480 * we are so low on memory on all allowed nodes that we are forced
1481 * into the second scan of the zonelist.
1482 *
1483 * In the second scan we ignore this zonelist cache and exactly
1484 * apply the watermarks to all zones, even it is slower to do so.
1485 * We are low on memory in the second scan, and should leave no stone
1486 * unturned looking for a free page.
1487 */
dd1a239f 1488static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1489 nodemask_t *allowednodes)
1490{
1491 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1492 int i; /* index of *z in zonelist zones */
1493 int n; /* node that zone *z is on */
1494
1495 zlc = zonelist->zlcache_ptr;
1496 if (!zlc)
1497 return 1;
1498
dd1a239f 1499 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1500 n = zlc->z_to_n[i];
1501
1502 /* This zone is worth trying if it is allowed but not full */
1503 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1504}
1505
1506/*
1507 * Given 'z' scanning a zonelist, set the corresponding bit in
1508 * zlc->fullzones, so that subsequent attempts to allocate a page
1509 * from that zone don't waste time re-examining it.
1510 */
dd1a239f 1511static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1512{
1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1514 int i; /* index of *z in zonelist zones */
1515
1516 zlc = zonelist->zlcache_ptr;
1517 if (!zlc)
1518 return;
1519
dd1a239f 1520 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1521
1522 set_bit(i, zlc->fullzones);
1523}
1524
1525#else /* CONFIG_NUMA */
1526
1527static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1528{
1529 return NULL;
1530}
1531
dd1a239f 1532static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1533 nodemask_t *allowednodes)
1534{
1535 return 1;
1536}
1537
dd1a239f 1538static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1539{
1540}
1541#endif /* CONFIG_NUMA */
1542
7fb1d9fc 1543/*
0798e519 1544 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1545 * a page.
1546 */
1547static struct page *
19770b32 1548get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1549 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1550 struct zone *preferred_zone, int migratetype)
753ee728 1551{
dd1a239f 1552 struct zoneref *z;
7fb1d9fc 1553 struct page *page = NULL;
54a6eb5c 1554 int classzone_idx;
5117f45d 1555 struct zone *zone;
9276b1bc
PJ
1556 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1557 int zlc_active = 0; /* set if using zonelist_cache */
1558 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1559
19770b32 1560 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1561zonelist_scan:
7fb1d9fc 1562 /*
9276b1bc 1563 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1564 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1565 */
19770b32
MG
1566 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1567 high_zoneidx, nodemask) {
9276b1bc
PJ
1568 if (NUMA_BUILD && zlc_active &&
1569 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1570 continue;
7fb1d9fc 1571 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1572 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1573 goto try_next_zone;
7fb1d9fc 1574
41858966 1575 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1576 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1577 unsigned long mark;
fa5e084e
MG
1578 int ret;
1579
41858966 1580 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1581 if (zone_watermark_ok(zone, order, mark,
1582 classzone_idx, alloc_flags))
1583 goto try_this_zone;
1584
1585 if (zone_reclaim_mode == 0)
1586 goto this_zone_full;
1587
1588 ret = zone_reclaim(zone, gfp_mask, order);
1589 switch (ret) {
1590 case ZONE_RECLAIM_NOSCAN:
1591 /* did not scan */
1592 goto try_next_zone;
1593 case ZONE_RECLAIM_FULL:
1594 /* scanned but unreclaimable */
1595 goto this_zone_full;
1596 default:
1597 /* did we reclaim enough */
1598 if (!zone_watermark_ok(zone, order, mark,
1599 classzone_idx, alloc_flags))
9276b1bc 1600 goto this_zone_full;
0798e519 1601 }
7fb1d9fc
RS
1602 }
1603
fa5e084e 1604try_this_zone:
3dd28266
MG
1605 page = buffered_rmqueue(preferred_zone, zone, order,
1606 gfp_mask, migratetype);
0798e519 1607 if (page)
7fb1d9fc 1608 break;
9276b1bc
PJ
1609this_zone_full:
1610 if (NUMA_BUILD)
1611 zlc_mark_zone_full(zonelist, z);
1612try_next_zone:
62bc62a8 1613 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1614 /*
1615 * we do zlc_setup after the first zone is tried but only
1616 * if there are multiple nodes make it worthwhile
1617 */
9276b1bc
PJ
1618 allowednodes = zlc_setup(zonelist, alloc_flags);
1619 zlc_active = 1;
1620 did_zlc_setup = 1;
1621 }
54a6eb5c 1622 }
9276b1bc
PJ
1623
1624 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1625 /* Disable zlc cache for second zonelist scan */
1626 zlc_active = 0;
1627 goto zonelist_scan;
1628 }
7fb1d9fc 1629 return page;
753ee728
MH
1630}
1631
11e33f6a
MG
1632static inline int
1633should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1634 unsigned long pages_reclaimed)
1da177e4 1635{
11e33f6a
MG
1636 /* Do not loop if specifically requested */
1637 if (gfp_mask & __GFP_NORETRY)
1638 return 0;
1da177e4 1639
11e33f6a
MG
1640 /*
1641 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1642 * means __GFP_NOFAIL, but that may not be true in other
1643 * implementations.
1644 */
1645 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1646 return 1;
1647
1648 /*
1649 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1650 * specified, then we retry until we no longer reclaim any pages
1651 * (above), or we've reclaimed an order of pages at least as
1652 * large as the allocation's order. In both cases, if the
1653 * allocation still fails, we stop retrying.
1654 */
1655 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1656 return 1;
cf40bd16 1657
11e33f6a
MG
1658 /*
1659 * Don't let big-order allocations loop unless the caller
1660 * explicitly requests that.
1661 */
1662 if (gfp_mask & __GFP_NOFAIL)
1663 return 1;
1da177e4 1664
11e33f6a
MG
1665 return 0;
1666}
933e312e 1667
11e33f6a
MG
1668static inline struct page *
1669__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1670 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1671 nodemask_t *nodemask, struct zone *preferred_zone,
1672 int migratetype)
11e33f6a
MG
1673{
1674 struct page *page;
1675
1676 /* Acquire the OOM killer lock for the zones in zonelist */
1677 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1678 schedule_timeout_uninterruptible(1);
1da177e4
LT
1679 return NULL;
1680 }
6b1de916 1681
11e33f6a
MG
1682 /*
1683 * Go through the zonelist yet one more time, keep very high watermark
1684 * here, this is only to catch a parallel oom killing, we must fail if
1685 * we're still under heavy pressure.
1686 */
1687 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1688 order, zonelist, high_zoneidx,
5117f45d 1689 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1690 preferred_zone, migratetype);
7fb1d9fc 1691 if (page)
11e33f6a
MG
1692 goto out;
1693
4365a567
KH
1694 if (!(gfp_mask & __GFP_NOFAIL)) {
1695 /* The OOM killer will not help higher order allocs */
1696 if (order > PAGE_ALLOC_COSTLY_ORDER)
1697 goto out;
1698 /*
1699 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1700 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1701 * The caller should handle page allocation failure by itself if
1702 * it specifies __GFP_THISNODE.
1703 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1704 */
1705 if (gfp_mask & __GFP_THISNODE)
1706 goto out;
1707 }
11e33f6a 1708 /* Exhausted what can be done so it's blamo time */
4365a567 1709 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1710
1711out:
1712 clear_zonelist_oom(zonelist, gfp_mask);
1713 return page;
1714}
1715
1716/* The really slow allocator path where we enter direct reclaim */
1717static inline struct page *
1718__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1719 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1720 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1721 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1722{
1723 struct page *page = NULL;
1724 struct reclaim_state reclaim_state;
1725 struct task_struct *p = current;
1726
1727 cond_resched();
1728
1729 /* We now go into synchronous reclaim */
1730 cpuset_memory_pressure_bump();
11e33f6a
MG
1731 p->flags |= PF_MEMALLOC;
1732 lockdep_set_current_reclaim_state(gfp_mask);
1733 reclaim_state.reclaimed_slab = 0;
1734 p->reclaim_state = &reclaim_state;
1735
1736 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1737
1738 p->reclaim_state = NULL;
1739 lockdep_clear_current_reclaim_state();
1740 p->flags &= ~PF_MEMALLOC;
1741
1742 cond_resched();
1743
1744 if (order != 0)
1745 drain_all_pages();
1746
1747 if (likely(*did_some_progress))
1748 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1749 zonelist, high_zoneidx,
3dd28266
MG
1750 alloc_flags, preferred_zone,
1751 migratetype);
11e33f6a
MG
1752 return page;
1753}
1754
1da177e4 1755/*
11e33f6a
MG
1756 * This is called in the allocator slow-path if the allocation request is of
1757 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1758 */
11e33f6a
MG
1759static inline struct page *
1760__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1761 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1762 nodemask_t *nodemask, struct zone *preferred_zone,
1763 int migratetype)
11e33f6a
MG
1764{
1765 struct page *page;
1766
1767 do {
1768 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1769 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1770 preferred_zone, migratetype);
11e33f6a
MG
1771
1772 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1773 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1774 } while (!page && (gfp_mask & __GFP_NOFAIL));
1775
1776 return page;
1777}
1778
1779static inline
1780void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1781 enum zone_type high_zoneidx)
1da177e4 1782{
dd1a239f
MG
1783 struct zoneref *z;
1784 struct zone *zone;
1da177e4 1785
11e33f6a
MG
1786 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1787 wakeup_kswapd(zone, order);
1788}
cf40bd16 1789
341ce06f
PZ
1790static inline int
1791gfp_to_alloc_flags(gfp_t gfp_mask)
1792{
1793 struct task_struct *p = current;
1794 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1795 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1796
a56f57ff
MG
1797 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1798 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1799
341ce06f
PZ
1800 /*
1801 * The caller may dip into page reserves a bit more if the caller
1802 * cannot run direct reclaim, or if the caller has realtime scheduling
1803 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1804 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1805 */
a56f57ff 1806 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1807
341ce06f
PZ
1808 if (!wait) {
1809 alloc_flags |= ALLOC_HARDER;
523b9458 1810 /*
341ce06f
PZ
1811 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1812 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1813 */
341ce06f 1814 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1815 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1816 alloc_flags |= ALLOC_HARDER;
1817
1818 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1819 if (!in_interrupt() &&
1820 ((p->flags & PF_MEMALLOC) ||
1821 unlikely(test_thread_flag(TIF_MEMDIE))))
1822 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1823 }
6b1de916 1824
341ce06f
PZ
1825 return alloc_flags;
1826}
1827
11e33f6a
MG
1828static inline struct page *
1829__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1830 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1831 nodemask_t *nodemask, struct zone *preferred_zone,
1832 int migratetype)
11e33f6a
MG
1833{
1834 const gfp_t wait = gfp_mask & __GFP_WAIT;
1835 struct page *page = NULL;
1836 int alloc_flags;
1837 unsigned long pages_reclaimed = 0;
1838 unsigned long did_some_progress;
1839 struct task_struct *p = current;
1da177e4 1840
72807a74
MG
1841 /*
1842 * In the slowpath, we sanity check order to avoid ever trying to
1843 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1844 * be using allocators in order of preference for an area that is
1845 * too large.
1846 */
1fc28b70
MG
1847 if (order >= MAX_ORDER) {
1848 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1849 return NULL;
1fc28b70 1850 }
1da177e4 1851
952f3b51
CL
1852 /*
1853 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1854 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1855 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1856 * using a larger set of nodes after it has established that the
1857 * allowed per node queues are empty and that nodes are
1858 * over allocated.
1859 */
1860 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1861 goto nopage;
1862
cc4a6851 1863restart:
11e33f6a 1864 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1865
9bf2229f 1866 /*
7fb1d9fc
RS
1867 * OK, we're below the kswapd watermark and have kicked background
1868 * reclaim. Now things get more complex, so set up alloc_flags according
1869 * to how we want to proceed.
9bf2229f 1870 */
341ce06f 1871 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1872
341ce06f 1873 /* This is the last chance, in general, before the goto nopage. */
19770b32 1874 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1875 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1876 preferred_zone, migratetype);
7fb1d9fc
RS
1877 if (page)
1878 goto got_pg;
1da177e4 1879
b43a57bb 1880rebalance:
11e33f6a 1881 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1882 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1883 page = __alloc_pages_high_priority(gfp_mask, order,
1884 zonelist, high_zoneidx, nodemask,
1885 preferred_zone, migratetype);
1886 if (page)
1887 goto got_pg;
1da177e4
LT
1888 }
1889
1890 /* Atomic allocations - we can't balance anything */
1891 if (!wait)
1892 goto nopage;
1893
341ce06f
PZ
1894 /* Avoid recursion of direct reclaim */
1895 if (p->flags & PF_MEMALLOC)
1896 goto nopage;
1897
6583bb64
DR
1898 /* Avoid allocations with no watermarks from looping endlessly */
1899 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1900 goto nopage;
1901
11e33f6a
MG
1902 /* Try direct reclaim and then allocating */
1903 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1904 zonelist, high_zoneidx,
1905 nodemask,
5117f45d 1906 alloc_flags, preferred_zone,
3dd28266 1907 migratetype, &did_some_progress);
11e33f6a
MG
1908 if (page)
1909 goto got_pg;
1da177e4 1910
e33c3b5e 1911 /*
11e33f6a
MG
1912 * If we failed to make any progress reclaiming, then we are
1913 * running out of options and have to consider going OOM
e33c3b5e 1914 */
11e33f6a
MG
1915 if (!did_some_progress) {
1916 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1917 if (oom_killer_disabled)
1918 goto nopage;
11e33f6a
MG
1919 page = __alloc_pages_may_oom(gfp_mask, order,
1920 zonelist, high_zoneidx,
3dd28266
MG
1921 nodemask, preferred_zone,
1922 migratetype);
11e33f6a
MG
1923 if (page)
1924 goto got_pg;
1da177e4 1925
11e33f6a 1926 /*
82553a93
DR
1927 * The OOM killer does not trigger for high-order
1928 * ~__GFP_NOFAIL allocations so if no progress is being
1929 * made, there are no other options and retrying is
1930 * unlikely to help.
11e33f6a 1931 */
82553a93
DR
1932 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1933 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1934 goto nopage;
e2c55dc8 1935
ff0ceb9d
DR
1936 goto restart;
1937 }
1da177e4
LT
1938 }
1939
11e33f6a 1940 /* Check if we should retry the allocation */
a41f24ea 1941 pages_reclaimed += did_some_progress;
11e33f6a
MG
1942 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1943 /* Wait for some write requests to complete then retry */
8aa7e847 1944 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1945 goto rebalance;
1946 }
1947
1948nopage:
1949 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1950 printk(KERN_WARNING "%s: page allocation failure."
1951 " order:%d, mode:0x%x\n",
1952 p->comm, order, gfp_mask);
1953 dump_stack();
578c2fd6 1954 show_mem();
1da177e4 1955 }
b1eeab67 1956 return page;
1da177e4 1957got_pg:
b1eeab67
VN
1958 if (kmemcheck_enabled)
1959 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1960 return page;
11e33f6a 1961
1da177e4 1962}
11e33f6a
MG
1963
1964/*
1965 * This is the 'heart' of the zoned buddy allocator.
1966 */
1967struct page *
1968__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1969 struct zonelist *zonelist, nodemask_t *nodemask)
1970{
1971 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1972 struct zone *preferred_zone;
11e33f6a 1973 struct page *page;
3dd28266 1974 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1975
dcce284a
BH
1976 gfp_mask &= gfp_allowed_mask;
1977
11e33f6a
MG
1978 lockdep_trace_alloc(gfp_mask);
1979
1980 might_sleep_if(gfp_mask & __GFP_WAIT);
1981
1982 if (should_fail_alloc_page(gfp_mask, order))
1983 return NULL;
1984
1985 /*
1986 * Check the zones suitable for the gfp_mask contain at least one
1987 * valid zone. It's possible to have an empty zonelist as a result
1988 * of GFP_THISNODE and a memoryless node
1989 */
1990 if (unlikely(!zonelist->_zonerefs->zone))
1991 return NULL;
1992
c0ff7453 1993 get_mems_allowed();
5117f45d
MG
1994 /* The preferred zone is used for statistics later */
1995 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
1996 if (!preferred_zone) {
1997 put_mems_allowed();
5117f45d 1998 return NULL;
c0ff7453 1999 }
5117f45d
MG
2000
2001 /* First allocation attempt */
11e33f6a 2002 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2003 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2004 preferred_zone, migratetype);
11e33f6a
MG
2005 if (unlikely(!page))
2006 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2007 zonelist, high_zoneidx, nodemask,
3dd28266 2008 preferred_zone, migratetype);
c0ff7453 2009 put_mems_allowed();
11e33f6a 2010
4b4f278c 2011 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2012 return page;
1da177e4 2013}
d239171e 2014EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2015
2016/*
2017 * Common helper functions.
2018 */
920c7a5d 2019unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2020{
945a1113
AM
2021 struct page *page;
2022
2023 /*
2024 * __get_free_pages() returns a 32-bit address, which cannot represent
2025 * a highmem page
2026 */
2027 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2028
1da177e4
LT
2029 page = alloc_pages(gfp_mask, order);
2030 if (!page)
2031 return 0;
2032 return (unsigned long) page_address(page);
2033}
1da177e4
LT
2034EXPORT_SYMBOL(__get_free_pages);
2035
920c7a5d 2036unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2037{
945a1113 2038 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2039}
1da177e4
LT
2040EXPORT_SYMBOL(get_zeroed_page);
2041
2042void __pagevec_free(struct pagevec *pvec)
2043{
2044 int i = pagevec_count(pvec);
2045
4b4f278c
MG
2046 while (--i >= 0) {
2047 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2048 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2049 }
1da177e4
LT
2050}
2051
920c7a5d 2052void __free_pages(struct page *page, unsigned int order)
1da177e4 2053{
b5810039 2054 if (put_page_testzero(page)) {
1da177e4 2055 if (order == 0)
fc91668e 2056 free_hot_cold_page(page, 0);
1da177e4
LT
2057 else
2058 __free_pages_ok(page, order);
2059 }
2060}
2061
2062EXPORT_SYMBOL(__free_pages);
2063
920c7a5d 2064void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2065{
2066 if (addr != 0) {
725d704e 2067 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2068 __free_pages(virt_to_page((void *)addr), order);
2069 }
2070}
2071
2072EXPORT_SYMBOL(free_pages);
2073
2be0ffe2
TT
2074/**
2075 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2076 * @size: the number of bytes to allocate
2077 * @gfp_mask: GFP flags for the allocation
2078 *
2079 * This function is similar to alloc_pages(), except that it allocates the
2080 * minimum number of pages to satisfy the request. alloc_pages() can only
2081 * allocate memory in power-of-two pages.
2082 *
2083 * This function is also limited by MAX_ORDER.
2084 *
2085 * Memory allocated by this function must be released by free_pages_exact().
2086 */
2087void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2088{
2089 unsigned int order = get_order(size);
2090 unsigned long addr;
2091
2092 addr = __get_free_pages(gfp_mask, order);
2093 if (addr) {
2094 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2095 unsigned long used = addr + PAGE_ALIGN(size);
2096
5bfd7560 2097 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2098 while (used < alloc_end) {
2099 free_page(used);
2100 used += PAGE_SIZE;
2101 }
2102 }
2103
2104 return (void *)addr;
2105}
2106EXPORT_SYMBOL(alloc_pages_exact);
2107
2108/**
2109 * free_pages_exact - release memory allocated via alloc_pages_exact()
2110 * @virt: the value returned by alloc_pages_exact.
2111 * @size: size of allocation, same value as passed to alloc_pages_exact().
2112 *
2113 * Release the memory allocated by a previous call to alloc_pages_exact.
2114 */
2115void free_pages_exact(void *virt, size_t size)
2116{
2117 unsigned long addr = (unsigned long)virt;
2118 unsigned long end = addr + PAGE_ALIGN(size);
2119
2120 while (addr < end) {
2121 free_page(addr);
2122 addr += PAGE_SIZE;
2123 }
2124}
2125EXPORT_SYMBOL(free_pages_exact);
2126
1da177e4
LT
2127static unsigned int nr_free_zone_pages(int offset)
2128{
dd1a239f 2129 struct zoneref *z;
54a6eb5c
MG
2130 struct zone *zone;
2131
e310fd43 2132 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2133 unsigned int sum = 0;
2134
0e88460d 2135 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2136
54a6eb5c 2137 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2138 unsigned long size = zone->present_pages;
41858966 2139 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2140 if (size > high)
2141 sum += size - high;
1da177e4
LT
2142 }
2143
2144 return sum;
2145}
2146
2147/*
2148 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2149 */
2150unsigned int nr_free_buffer_pages(void)
2151{
af4ca457 2152 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2153}
c2f1a551 2154EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2155
2156/*
2157 * Amount of free RAM allocatable within all zones
2158 */
2159unsigned int nr_free_pagecache_pages(void)
2160{
2a1e274a 2161 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2162}
08e0f6a9
CL
2163
2164static inline void show_node(struct zone *zone)
1da177e4 2165{
08e0f6a9 2166 if (NUMA_BUILD)
25ba77c1 2167 printk("Node %d ", zone_to_nid(zone));
1da177e4 2168}
1da177e4 2169
1da177e4
LT
2170void si_meminfo(struct sysinfo *val)
2171{
2172 val->totalram = totalram_pages;
2173 val->sharedram = 0;
d23ad423 2174 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2175 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2176 val->totalhigh = totalhigh_pages;
2177 val->freehigh = nr_free_highpages();
1da177e4
LT
2178 val->mem_unit = PAGE_SIZE;
2179}
2180
2181EXPORT_SYMBOL(si_meminfo);
2182
2183#ifdef CONFIG_NUMA
2184void si_meminfo_node(struct sysinfo *val, int nid)
2185{
2186 pg_data_t *pgdat = NODE_DATA(nid);
2187
2188 val->totalram = pgdat->node_present_pages;
d23ad423 2189 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2190#ifdef CONFIG_HIGHMEM
1da177e4 2191 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2192 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2193 NR_FREE_PAGES);
98d2b0eb
CL
2194#else
2195 val->totalhigh = 0;
2196 val->freehigh = 0;
2197#endif
1da177e4
LT
2198 val->mem_unit = PAGE_SIZE;
2199}
2200#endif
2201
2202#define K(x) ((x) << (PAGE_SHIFT-10))
2203
2204/*
2205 * Show free area list (used inside shift_scroll-lock stuff)
2206 * We also calculate the percentage fragmentation. We do this by counting the
2207 * memory on each free list with the exception of the first item on the list.
2208 */
2209void show_free_areas(void)
2210{
c7241913 2211 int cpu;
1da177e4
LT
2212 struct zone *zone;
2213
ee99c71c 2214 for_each_populated_zone(zone) {
c7241913
JS
2215 show_node(zone);
2216 printk("%s per-cpu:\n", zone->name);
1da177e4 2217
6b482c67 2218 for_each_online_cpu(cpu) {
1da177e4
LT
2219 struct per_cpu_pageset *pageset;
2220
99dcc3e5 2221 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2222
3dfa5721
CL
2223 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2224 cpu, pageset->pcp.high,
2225 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2226 }
2227 }
2228
a731286d
KM
2229 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2230 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2231 " unevictable:%lu"
b76146ed 2232 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2233 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2234 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2235 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2236 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2237 global_page_state(NR_ISOLATED_ANON),
2238 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2239 global_page_state(NR_INACTIVE_FILE),
a731286d 2240 global_page_state(NR_ISOLATED_FILE),
7b854121 2241 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2242 global_page_state(NR_FILE_DIRTY),
ce866b34 2243 global_page_state(NR_WRITEBACK),
fd39fc85 2244 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2245 global_page_state(NR_FREE_PAGES),
3701b033
KM
2246 global_page_state(NR_SLAB_RECLAIMABLE),
2247 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2248 global_page_state(NR_FILE_MAPPED),
4b02108a 2249 global_page_state(NR_SHMEM),
a25700a5
AM
2250 global_page_state(NR_PAGETABLE),
2251 global_page_state(NR_BOUNCE));
1da177e4 2252
ee99c71c 2253 for_each_populated_zone(zone) {
1da177e4
LT
2254 int i;
2255
2256 show_node(zone);
2257 printk("%s"
2258 " free:%lukB"
2259 " min:%lukB"
2260 " low:%lukB"
2261 " high:%lukB"
4f98a2fe
RR
2262 " active_anon:%lukB"
2263 " inactive_anon:%lukB"
2264 " active_file:%lukB"
2265 " inactive_file:%lukB"
7b854121 2266 " unevictable:%lukB"
a731286d
KM
2267 " isolated(anon):%lukB"
2268 " isolated(file):%lukB"
1da177e4 2269 " present:%lukB"
4a0aa73f
KM
2270 " mlocked:%lukB"
2271 " dirty:%lukB"
2272 " writeback:%lukB"
2273 " mapped:%lukB"
4b02108a 2274 " shmem:%lukB"
4a0aa73f
KM
2275 " slab_reclaimable:%lukB"
2276 " slab_unreclaimable:%lukB"
c6a7f572 2277 " kernel_stack:%lukB"
4a0aa73f
KM
2278 " pagetables:%lukB"
2279 " unstable:%lukB"
2280 " bounce:%lukB"
2281 " writeback_tmp:%lukB"
1da177e4
LT
2282 " pages_scanned:%lu"
2283 " all_unreclaimable? %s"
2284 "\n",
2285 zone->name,
d23ad423 2286 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2287 K(min_wmark_pages(zone)),
2288 K(low_wmark_pages(zone)),
2289 K(high_wmark_pages(zone)),
4f98a2fe
RR
2290 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2291 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2292 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2293 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2294 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2295 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2296 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2297 K(zone->present_pages),
4a0aa73f
KM
2298 K(zone_page_state(zone, NR_MLOCK)),
2299 K(zone_page_state(zone, NR_FILE_DIRTY)),
2300 K(zone_page_state(zone, NR_WRITEBACK)),
2301 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2302 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2303 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2304 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2305 zone_page_state(zone, NR_KERNEL_STACK) *
2306 THREAD_SIZE / 1024,
4a0aa73f
KM
2307 K(zone_page_state(zone, NR_PAGETABLE)),
2308 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2309 K(zone_page_state(zone, NR_BOUNCE)),
2310 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2311 zone->pages_scanned,
93e4a89a 2312 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2313 );
2314 printk("lowmem_reserve[]:");
2315 for (i = 0; i < MAX_NR_ZONES; i++)
2316 printk(" %lu", zone->lowmem_reserve[i]);
2317 printk("\n");
2318 }
2319
ee99c71c 2320 for_each_populated_zone(zone) {
8f9de51a 2321 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2322
2323 show_node(zone);
2324 printk("%s: ", zone->name);
1da177e4
LT
2325
2326 spin_lock_irqsave(&zone->lock, flags);
2327 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2328 nr[order] = zone->free_area[order].nr_free;
2329 total += nr[order] << order;
1da177e4
LT
2330 }
2331 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2332 for (order = 0; order < MAX_ORDER; order++)
2333 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2334 printk("= %lukB\n", K(total));
2335 }
2336
e6f3602d
LW
2337 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2338
1da177e4
LT
2339 show_swap_cache_info();
2340}
2341
19770b32
MG
2342static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2343{
2344 zoneref->zone = zone;
2345 zoneref->zone_idx = zone_idx(zone);
2346}
2347
1da177e4
LT
2348/*
2349 * Builds allocation fallback zone lists.
1a93205b
CL
2350 *
2351 * Add all populated zones of a node to the zonelist.
1da177e4 2352 */
f0c0b2b8
KH
2353static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2354 int nr_zones, enum zone_type zone_type)
1da177e4 2355{
1a93205b
CL
2356 struct zone *zone;
2357
98d2b0eb 2358 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2359 zone_type++;
02a68a5e
CL
2360
2361 do {
2f6726e5 2362 zone_type--;
070f8032 2363 zone = pgdat->node_zones + zone_type;
1a93205b 2364 if (populated_zone(zone)) {
dd1a239f
MG
2365 zoneref_set_zone(zone,
2366 &zonelist->_zonerefs[nr_zones++]);
070f8032 2367 check_highest_zone(zone_type);
1da177e4 2368 }
02a68a5e 2369
2f6726e5 2370 } while (zone_type);
070f8032 2371 return nr_zones;
1da177e4
LT
2372}
2373
f0c0b2b8
KH
2374
2375/*
2376 * zonelist_order:
2377 * 0 = automatic detection of better ordering.
2378 * 1 = order by ([node] distance, -zonetype)
2379 * 2 = order by (-zonetype, [node] distance)
2380 *
2381 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2382 * the same zonelist. So only NUMA can configure this param.
2383 */
2384#define ZONELIST_ORDER_DEFAULT 0
2385#define ZONELIST_ORDER_NODE 1
2386#define ZONELIST_ORDER_ZONE 2
2387
2388/* zonelist order in the kernel.
2389 * set_zonelist_order() will set this to NODE or ZONE.
2390 */
2391static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2392static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2393
2394
1da177e4 2395#ifdef CONFIG_NUMA
f0c0b2b8
KH
2396/* The value user specified ....changed by config */
2397static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2398/* string for sysctl */
2399#define NUMA_ZONELIST_ORDER_LEN 16
2400char numa_zonelist_order[16] = "default";
2401
2402/*
2403 * interface for configure zonelist ordering.
2404 * command line option "numa_zonelist_order"
2405 * = "[dD]efault - default, automatic configuration.
2406 * = "[nN]ode - order by node locality, then by zone within node
2407 * = "[zZ]one - order by zone, then by locality within zone
2408 */
2409
2410static int __parse_numa_zonelist_order(char *s)
2411{
2412 if (*s == 'd' || *s == 'D') {
2413 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2414 } else if (*s == 'n' || *s == 'N') {
2415 user_zonelist_order = ZONELIST_ORDER_NODE;
2416 } else if (*s == 'z' || *s == 'Z') {
2417 user_zonelist_order = ZONELIST_ORDER_ZONE;
2418 } else {
2419 printk(KERN_WARNING
2420 "Ignoring invalid numa_zonelist_order value: "
2421 "%s\n", s);
2422 return -EINVAL;
2423 }
2424 return 0;
2425}
2426
2427static __init int setup_numa_zonelist_order(char *s)
2428{
2429 if (s)
2430 return __parse_numa_zonelist_order(s);
2431 return 0;
2432}
2433early_param("numa_zonelist_order", setup_numa_zonelist_order);
2434
2435/*
2436 * sysctl handler for numa_zonelist_order
2437 */
2438int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2439 void __user *buffer, size_t *length,
f0c0b2b8
KH
2440 loff_t *ppos)
2441{
2442 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2443 int ret;
443c6f14 2444 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2445
443c6f14 2446 mutex_lock(&zl_order_mutex);
f0c0b2b8 2447 if (write)
443c6f14 2448 strcpy(saved_string, (char*)table->data);
8d65af78 2449 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2450 if (ret)
443c6f14 2451 goto out;
f0c0b2b8
KH
2452 if (write) {
2453 int oldval = user_zonelist_order;
2454 if (__parse_numa_zonelist_order((char*)table->data)) {
2455 /*
2456 * bogus value. restore saved string
2457 */
2458 strncpy((char*)table->data, saved_string,
2459 NUMA_ZONELIST_ORDER_LEN);
2460 user_zonelist_order = oldval;
2461 } else if (oldval != user_zonelist_order)
2462 build_all_zonelists();
2463 }
443c6f14
AK
2464out:
2465 mutex_unlock(&zl_order_mutex);
2466 return ret;
f0c0b2b8
KH
2467}
2468
2469
62bc62a8 2470#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2471static int node_load[MAX_NUMNODES];
2472
1da177e4 2473/**
4dc3b16b 2474 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2475 * @node: node whose fallback list we're appending
2476 * @used_node_mask: nodemask_t of already used nodes
2477 *
2478 * We use a number of factors to determine which is the next node that should
2479 * appear on a given node's fallback list. The node should not have appeared
2480 * already in @node's fallback list, and it should be the next closest node
2481 * according to the distance array (which contains arbitrary distance values
2482 * from each node to each node in the system), and should also prefer nodes
2483 * with no CPUs, since presumably they'll have very little allocation pressure
2484 * on them otherwise.
2485 * It returns -1 if no node is found.
2486 */
f0c0b2b8 2487static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2488{
4cf808eb 2489 int n, val;
1da177e4
LT
2490 int min_val = INT_MAX;
2491 int best_node = -1;
a70f7302 2492 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2493
4cf808eb
LT
2494 /* Use the local node if we haven't already */
2495 if (!node_isset(node, *used_node_mask)) {
2496 node_set(node, *used_node_mask);
2497 return node;
2498 }
1da177e4 2499
37b07e41 2500 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2501
2502 /* Don't want a node to appear more than once */
2503 if (node_isset(n, *used_node_mask))
2504 continue;
2505
1da177e4
LT
2506 /* Use the distance array to find the distance */
2507 val = node_distance(node, n);
2508
4cf808eb
LT
2509 /* Penalize nodes under us ("prefer the next node") */
2510 val += (n < node);
2511
1da177e4 2512 /* Give preference to headless and unused nodes */
a70f7302
RR
2513 tmp = cpumask_of_node(n);
2514 if (!cpumask_empty(tmp))
1da177e4
LT
2515 val += PENALTY_FOR_NODE_WITH_CPUS;
2516
2517 /* Slight preference for less loaded node */
2518 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2519 val += node_load[n];
2520
2521 if (val < min_val) {
2522 min_val = val;
2523 best_node = n;
2524 }
2525 }
2526
2527 if (best_node >= 0)
2528 node_set(best_node, *used_node_mask);
2529
2530 return best_node;
2531}
2532
f0c0b2b8
KH
2533
2534/*
2535 * Build zonelists ordered by node and zones within node.
2536 * This results in maximum locality--normal zone overflows into local
2537 * DMA zone, if any--but risks exhausting DMA zone.
2538 */
2539static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2540{
f0c0b2b8 2541 int j;
1da177e4 2542 struct zonelist *zonelist;
f0c0b2b8 2543
54a6eb5c 2544 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2545 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2546 ;
2547 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2548 MAX_NR_ZONES - 1);
dd1a239f
MG
2549 zonelist->_zonerefs[j].zone = NULL;
2550 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2551}
2552
523b9458
CL
2553/*
2554 * Build gfp_thisnode zonelists
2555 */
2556static void build_thisnode_zonelists(pg_data_t *pgdat)
2557{
523b9458
CL
2558 int j;
2559 struct zonelist *zonelist;
2560
54a6eb5c
MG
2561 zonelist = &pgdat->node_zonelists[1];
2562 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2563 zonelist->_zonerefs[j].zone = NULL;
2564 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2565}
2566
f0c0b2b8
KH
2567/*
2568 * Build zonelists ordered by zone and nodes within zones.
2569 * This results in conserving DMA zone[s] until all Normal memory is
2570 * exhausted, but results in overflowing to remote node while memory
2571 * may still exist in local DMA zone.
2572 */
2573static int node_order[MAX_NUMNODES];
2574
2575static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2576{
f0c0b2b8
KH
2577 int pos, j, node;
2578 int zone_type; /* needs to be signed */
2579 struct zone *z;
2580 struct zonelist *zonelist;
2581
54a6eb5c
MG
2582 zonelist = &pgdat->node_zonelists[0];
2583 pos = 0;
2584 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2585 for (j = 0; j < nr_nodes; j++) {
2586 node = node_order[j];
2587 z = &NODE_DATA(node)->node_zones[zone_type];
2588 if (populated_zone(z)) {
dd1a239f
MG
2589 zoneref_set_zone(z,
2590 &zonelist->_zonerefs[pos++]);
54a6eb5c 2591 check_highest_zone(zone_type);
f0c0b2b8
KH
2592 }
2593 }
f0c0b2b8 2594 }
dd1a239f
MG
2595 zonelist->_zonerefs[pos].zone = NULL;
2596 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2597}
2598
2599static int default_zonelist_order(void)
2600{
2601 int nid, zone_type;
2602 unsigned long low_kmem_size,total_size;
2603 struct zone *z;
2604 int average_size;
2605 /*
88393161 2606 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2607 * If they are really small and used heavily, the system can fall
2608 * into OOM very easily.
e325c90f 2609 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2610 */
2611 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2612 low_kmem_size = 0;
2613 total_size = 0;
2614 for_each_online_node(nid) {
2615 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2616 z = &NODE_DATA(nid)->node_zones[zone_type];
2617 if (populated_zone(z)) {
2618 if (zone_type < ZONE_NORMAL)
2619 low_kmem_size += z->present_pages;
2620 total_size += z->present_pages;
e325c90f
DR
2621 } else if (zone_type == ZONE_NORMAL) {
2622 /*
2623 * If any node has only lowmem, then node order
2624 * is preferred to allow kernel allocations
2625 * locally; otherwise, they can easily infringe
2626 * on other nodes when there is an abundance of
2627 * lowmem available to allocate from.
2628 */
2629 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2630 }
2631 }
2632 }
2633 if (!low_kmem_size || /* there are no DMA area. */
2634 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2635 return ZONELIST_ORDER_NODE;
2636 /*
2637 * look into each node's config.
2638 * If there is a node whose DMA/DMA32 memory is very big area on
2639 * local memory, NODE_ORDER may be suitable.
2640 */
37b07e41
LS
2641 average_size = total_size /
2642 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2643 for_each_online_node(nid) {
2644 low_kmem_size = 0;
2645 total_size = 0;
2646 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2647 z = &NODE_DATA(nid)->node_zones[zone_type];
2648 if (populated_zone(z)) {
2649 if (zone_type < ZONE_NORMAL)
2650 low_kmem_size += z->present_pages;
2651 total_size += z->present_pages;
2652 }
2653 }
2654 if (low_kmem_size &&
2655 total_size > average_size && /* ignore small node */
2656 low_kmem_size > total_size * 70/100)
2657 return ZONELIST_ORDER_NODE;
2658 }
2659 return ZONELIST_ORDER_ZONE;
2660}
2661
2662static void set_zonelist_order(void)
2663{
2664 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2665 current_zonelist_order = default_zonelist_order();
2666 else
2667 current_zonelist_order = user_zonelist_order;
2668}
2669
2670static void build_zonelists(pg_data_t *pgdat)
2671{
2672 int j, node, load;
2673 enum zone_type i;
1da177e4 2674 nodemask_t used_mask;
f0c0b2b8
KH
2675 int local_node, prev_node;
2676 struct zonelist *zonelist;
2677 int order = current_zonelist_order;
1da177e4
LT
2678
2679 /* initialize zonelists */
523b9458 2680 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2681 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2682 zonelist->_zonerefs[0].zone = NULL;
2683 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2684 }
2685
2686 /* NUMA-aware ordering of nodes */
2687 local_node = pgdat->node_id;
62bc62a8 2688 load = nr_online_nodes;
1da177e4
LT
2689 prev_node = local_node;
2690 nodes_clear(used_mask);
f0c0b2b8 2691
f0c0b2b8
KH
2692 memset(node_order, 0, sizeof(node_order));
2693 j = 0;
2694
1da177e4 2695 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2696 int distance = node_distance(local_node, node);
2697
2698 /*
2699 * If another node is sufficiently far away then it is better
2700 * to reclaim pages in a zone before going off node.
2701 */
2702 if (distance > RECLAIM_DISTANCE)
2703 zone_reclaim_mode = 1;
2704
1da177e4
LT
2705 /*
2706 * We don't want to pressure a particular node.
2707 * So adding penalty to the first node in same
2708 * distance group to make it round-robin.
2709 */
9eeff239 2710 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2711 node_load[node] = load;
2712
1da177e4
LT
2713 prev_node = node;
2714 load--;
f0c0b2b8
KH
2715 if (order == ZONELIST_ORDER_NODE)
2716 build_zonelists_in_node_order(pgdat, node);
2717 else
2718 node_order[j++] = node; /* remember order */
2719 }
1da177e4 2720
f0c0b2b8
KH
2721 if (order == ZONELIST_ORDER_ZONE) {
2722 /* calculate node order -- i.e., DMA last! */
2723 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2724 }
523b9458
CL
2725
2726 build_thisnode_zonelists(pgdat);
1da177e4
LT
2727}
2728
9276b1bc 2729/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2730static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2731{
54a6eb5c
MG
2732 struct zonelist *zonelist;
2733 struct zonelist_cache *zlc;
dd1a239f 2734 struct zoneref *z;
9276b1bc 2735
54a6eb5c
MG
2736 zonelist = &pgdat->node_zonelists[0];
2737 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2738 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2739 for (z = zonelist->_zonerefs; z->zone; z++)
2740 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2741}
2742
f0c0b2b8 2743
1da177e4
LT
2744#else /* CONFIG_NUMA */
2745
f0c0b2b8
KH
2746static void set_zonelist_order(void)
2747{
2748 current_zonelist_order = ZONELIST_ORDER_ZONE;
2749}
2750
2751static void build_zonelists(pg_data_t *pgdat)
1da177e4 2752{
19655d34 2753 int node, local_node;
54a6eb5c
MG
2754 enum zone_type j;
2755 struct zonelist *zonelist;
1da177e4
LT
2756
2757 local_node = pgdat->node_id;
1da177e4 2758
54a6eb5c
MG
2759 zonelist = &pgdat->node_zonelists[0];
2760 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2761
54a6eb5c
MG
2762 /*
2763 * Now we build the zonelist so that it contains the zones
2764 * of all the other nodes.
2765 * We don't want to pressure a particular node, so when
2766 * building the zones for node N, we make sure that the
2767 * zones coming right after the local ones are those from
2768 * node N+1 (modulo N)
2769 */
2770 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2771 if (!node_online(node))
2772 continue;
2773 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2774 MAX_NR_ZONES - 1);
1da177e4 2775 }
54a6eb5c
MG
2776 for (node = 0; node < local_node; node++) {
2777 if (!node_online(node))
2778 continue;
2779 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2780 MAX_NR_ZONES - 1);
2781 }
2782
dd1a239f
MG
2783 zonelist->_zonerefs[j].zone = NULL;
2784 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2785}
2786
9276b1bc 2787/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2788static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2789{
54a6eb5c 2790 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2791}
2792
1da177e4
LT
2793#endif /* CONFIG_NUMA */
2794
99dcc3e5
CL
2795/*
2796 * Boot pageset table. One per cpu which is going to be used for all
2797 * zones and all nodes. The parameters will be set in such a way
2798 * that an item put on a list will immediately be handed over to
2799 * the buddy list. This is safe since pageset manipulation is done
2800 * with interrupts disabled.
2801 *
2802 * The boot_pagesets must be kept even after bootup is complete for
2803 * unused processors and/or zones. They do play a role for bootstrapping
2804 * hotplugged processors.
2805 *
2806 * zoneinfo_show() and maybe other functions do
2807 * not check if the processor is online before following the pageset pointer.
2808 * Other parts of the kernel may not check if the zone is available.
2809 */
2810static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2811static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2812
9b1a4d38 2813/* return values int ....just for stop_machine() */
f0c0b2b8 2814static int __build_all_zonelists(void *dummy)
1da177e4 2815{
6811378e 2816 int nid;
99dcc3e5 2817 int cpu;
9276b1bc 2818
7f9cfb31
BL
2819#ifdef CONFIG_NUMA
2820 memset(node_load, 0, sizeof(node_load));
2821#endif
9276b1bc 2822 for_each_online_node(nid) {
7ea1530a
CL
2823 pg_data_t *pgdat = NODE_DATA(nid);
2824
2825 build_zonelists(pgdat);
2826 build_zonelist_cache(pgdat);
9276b1bc 2827 }
99dcc3e5
CL
2828
2829 /*
2830 * Initialize the boot_pagesets that are going to be used
2831 * for bootstrapping processors. The real pagesets for
2832 * each zone will be allocated later when the per cpu
2833 * allocator is available.
2834 *
2835 * boot_pagesets are used also for bootstrapping offline
2836 * cpus if the system is already booted because the pagesets
2837 * are needed to initialize allocators on a specific cpu too.
2838 * F.e. the percpu allocator needs the page allocator which
2839 * needs the percpu allocator in order to allocate its pagesets
2840 * (a chicken-egg dilemma).
2841 */
2842 for_each_possible_cpu(cpu)
2843 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2844
6811378e
YG
2845 return 0;
2846}
2847
f0c0b2b8 2848void build_all_zonelists(void)
6811378e 2849{
f0c0b2b8
KH
2850 set_zonelist_order();
2851
6811378e 2852 if (system_state == SYSTEM_BOOTING) {
423b41d7 2853 __build_all_zonelists(NULL);
68ad8df4 2854 mminit_verify_zonelist();
6811378e
YG
2855 cpuset_init_current_mems_allowed();
2856 } else {
183ff22b 2857 /* we have to stop all cpus to guarantee there is no user
6811378e 2858 of zonelist */
9b1a4d38 2859 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2860 /* cpuset refresh routine should be here */
2861 }
bd1e22b8 2862 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2863 /*
2864 * Disable grouping by mobility if the number of pages in the
2865 * system is too low to allow the mechanism to work. It would be
2866 * more accurate, but expensive to check per-zone. This check is
2867 * made on memory-hotadd so a system can start with mobility
2868 * disabled and enable it later
2869 */
d9c23400 2870 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2871 page_group_by_mobility_disabled = 1;
2872 else
2873 page_group_by_mobility_disabled = 0;
2874
2875 printk("Built %i zonelists in %s order, mobility grouping %s. "
2876 "Total pages: %ld\n",
62bc62a8 2877 nr_online_nodes,
f0c0b2b8 2878 zonelist_order_name[current_zonelist_order],
9ef9acb0 2879 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2880 vm_total_pages);
2881#ifdef CONFIG_NUMA
2882 printk("Policy zone: %s\n", zone_names[policy_zone]);
2883#endif
1da177e4
LT
2884}
2885
2886/*
2887 * Helper functions to size the waitqueue hash table.
2888 * Essentially these want to choose hash table sizes sufficiently
2889 * large so that collisions trying to wait on pages are rare.
2890 * But in fact, the number of active page waitqueues on typical
2891 * systems is ridiculously low, less than 200. So this is even
2892 * conservative, even though it seems large.
2893 *
2894 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2895 * waitqueues, i.e. the size of the waitq table given the number of pages.
2896 */
2897#define PAGES_PER_WAITQUEUE 256
2898
cca448fe 2899#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2900static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2901{
2902 unsigned long size = 1;
2903
2904 pages /= PAGES_PER_WAITQUEUE;
2905
2906 while (size < pages)
2907 size <<= 1;
2908
2909 /*
2910 * Once we have dozens or even hundreds of threads sleeping
2911 * on IO we've got bigger problems than wait queue collision.
2912 * Limit the size of the wait table to a reasonable size.
2913 */
2914 size = min(size, 4096UL);
2915
2916 return max(size, 4UL);
2917}
cca448fe
YG
2918#else
2919/*
2920 * A zone's size might be changed by hot-add, so it is not possible to determine
2921 * a suitable size for its wait_table. So we use the maximum size now.
2922 *
2923 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2924 *
2925 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2926 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2927 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2928 *
2929 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2930 * or more by the traditional way. (See above). It equals:
2931 *
2932 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2933 * ia64(16K page size) : = ( 8G + 4M)byte.
2934 * powerpc (64K page size) : = (32G +16M)byte.
2935 */
2936static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2937{
2938 return 4096UL;
2939}
2940#endif
1da177e4
LT
2941
2942/*
2943 * This is an integer logarithm so that shifts can be used later
2944 * to extract the more random high bits from the multiplicative
2945 * hash function before the remainder is taken.
2946 */
2947static inline unsigned long wait_table_bits(unsigned long size)
2948{
2949 return ffz(~size);
2950}
2951
2952#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2953
56fd56b8 2954/*
d9c23400 2955 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2956 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2957 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2958 * higher will lead to a bigger reserve which will get freed as contiguous
2959 * blocks as reclaim kicks in
2960 */
2961static void setup_zone_migrate_reserve(struct zone *zone)
2962{
2963 unsigned long start_pfn, pfn, end_pfn;
2964 struct page *page;
78986a67
MG
2965 unsigned long block_migratetype;
2966 int reserve;
56fd56b8
MG
2967
2968 /* Get the start pfn, end pfn and the number of blocks to reserve */
2969 start_pfn = zone->zone_start_pfn;
2970 end_pfn = start_pfn + zone->spanned_pages;
41858966 2971 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2972 pageblock_order;
56fd56b8 2973
78986a67
MG
2974 /*
2975 * Reserve blocks are generally in place to help high-order atomic
2976 * allocations that are short-lived. A min_free_kbytes value that
2977 * would result in more than 2 reserve blocks for atomic allocations
2978 * is assumed to be in place to help anti-fragmentation for the
2979 * future allocation of hugepages at runtime.
2980 */
2981 reserve = min(2, reserve);
2982
d9c23400 2983 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2984 if (!pfn_valid(pfn))
2985 continue;
2986 page = pfn_to_page(pfn);
2987
344c790e
AL
2988 /* Watch out for overlapping nodes */
2989 if (page_to_nid(page) != zone_to_nid(zone))
2990 continue;
2991
56fd56b8
MG
2992 /* Blocks with reserved pages will never free, skip them. */
2993 if (PageReserved(page))
2994 continue;
2995
2996 block_migratetype = get_pageblock_migratetype(page);
2997
2998 /* If this block is reserved, account for it */
2999 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3000 reserve--;
3001 continue;
3002 }
3003
3004 /* Suitable for reserving if this block is movable */
3005 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3006 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3007 move_freepages_block(zone, page, MIGRATE_RESERVE);
3008 reserve--;
3009 continue;
3010 }
3011
3012 /*
3013 * If the reserve is met and this is a previous reserved block,
3014 * take it back
3015 */
3016 if (block_migratetype == MIGRATE_RESERVE) {
3017 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3018 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3019 }
3020 }
3021}
ac0e5b7a 3022
1da177e4
LT
3023/*
3024 * Initially all pages are reserved - free ones are freed
3025 * up by free_all_bootmem() once the early boot process is
3026 * done. Non-atomic initialization, single-pass.
3027 */
c09b4240 3028void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3029 unsigned long start_pfn, enum memmap_context context)
1da177e4 3030{
1da177e4 3031 struct page *page;
29751f69
AW
3032 unsigned long end_pfn = start_pfn + size;
3033 unsigned long pfn;
86051ca5 3034 struct zone *z;
1da177e4 3035
22b31eec
HD
3036 if (highest_memmap_pfn < end_pfn - 1)
3037 highest_memmap_pfn = end_pfn - 1;
3038
86051ca5 3039 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3040 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3041 /*
3042 * There can be holes in boot-time mem_map[]s
3043 * handed to this function. They do not
3044 * exist on hotplugged memory.
3045 */
3046 if (context == MEMMAP_EARLY) {
3047 if (!early_pfn_valid(pfn))
3048 continue;
3049 if (!early_pfn_in_nid(pfn, nid))
3050 continue;
3051 }
d41dee36
AW
3052 page = pfn_to_page(pfn);
3053 set_page_links(page, zone, nid, pfn);
708614e6 3054 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3055 init_page_count(page);
1da177e4
LT
3056 reset_page_mapcount(page);
3057 SetPageReserved(page);
b2a0ac88
MG
3058 /*
3059 * Mark the block movable so that blocks are reserved for
3060 * movable at startup. This will force kernel allocations
3061 * to reserve their blocks rather than leaking throughout
3062 * the address space during boot when many long-lived
56fd56b8
MG
3063 * kernel allocations are made. Later some blocks near
3064 * the start are marked MIGRATE_RESERVE by
3065 * setup_zone_migrate_reserve()
86051ca5
KH
3066 *
3067 * bitmap is created for zone's valid pfn range. but memmap
3068 * can be created for invalid pages (for alignment)
3069 * check here not to call set_pageblock_migratetype() against
3070 * pfn out of zone.
b2a0ac88 3071 */
86051ca5
KH
3072 if ((z->zone_start_pfn <= pfn)
3073 && (pfn < z->zone_start_pfn + z->spanned_pages)
3074 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3075 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3076
1da177e4
LT
3077 INIT_LIST_HEAD(&page->lru);
3078#ifdef WANT_PAGE_VIRTUAL
3079 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3080 if (!is_highmem_idx(zone))
3212c6be 3081 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3082#endif
1da177e4
LT
3083 }
3084}
3085
1e548deb 3086static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3087{
b2a0ac88
MG
3088 int order, t;
3089 for_each_migratetype_order(order, t) {
3090 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3091 zone->free_area[order].nr_free = 0;
3092 }
3093}
3094
3095#ifndef __HAVE_ARCH_MEMMAP_INIT
3096#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3097 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3098#endif
3099
1d6f4e60 3100static int zone_batchsize(struct zone *zone)
e7c8d5c9 3101{
3a6be87f 3102#ifdef CONFIG_MMU
e7c8d5c9
CL
3103 int batch;
3104
3105 /*
3106 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3107 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3108 *
3109 * OK, so we don't know how big the cache is. So guess.
3110 */
3111 batch = zone->present_pages / 1024;
ba56e91c
SR
3112 if (batch * PAGE_SIZE > 512 * 1024)
3113 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3114 batch /= 4; /* We effectively *= 4 below */
3115 if (batch < 1)
3116 batch = 1;
3117
3118 /*
0ceaacc9
NP
3119 * Clamp the batch to a 2^n - 1 value. Having a power
3120 * of 2 value was found to be more likely to have
3121 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3122 *
0ceaacc9
NP
3123 * For example if 2 tasks are alternately allocating
3124 * batches of pages, one task can end up with a lot
3125 * of pages of one half of the possible page colors
3126 * and the other with pages of the other colors.
e7c8d5c9 3127 */
9155203a 3128 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3129
e7c8d5c9 3130 return batch;
3a6be87f
DH
3131
3132#else
3133 /* The deferral and batching of frees should be suppressed under NOMMU
3134 * conditions.
3135 *
3136 * The problem is that NOMMU needs to be able to allocate large chunks
3137 * of contiguous memory as there's no hardware page translation to
3138 * assemble apparent contiguous memory from discontiguous pages.
3139 *
3140 * Queueing large contiguous runs of pages for batching, however,
3141 * causes the pages to actually be freed in smaller chunks. As there
3142 * can be a significant delay between the individual batches being
3143 * recycled, this leads to the once large chunks of space being
3144 * fragmented and becoming unavailable for high-order allocations.
3145 */
3146 return 0;
3147#endif
e7c8d5c9
CL
3148}
3149
b69a7288 3150static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3151{
3152 struct per_cpu_pages *pcp;
5f8dcc21 3153 int migratetype;
2caaad41 3154
1c6fe946
MD
3155 memset(p, 0, sizeof(*p));
3156
3dfa5721 3157 pcp = &p->pcp;
2caaad41 3158 pcp->count = 0;
2caaad41
CL
3159 pcp->high = 6 * batch;
3160 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3161 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3162 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3163}
3164
8ad4b1fb
RS
3165/*
3166 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3167 * to the value high for the pageset p.
3168 */
3169
3170static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3171 unsigned long high)
3172{
3173 struct per_cpu_pages *pcp;
3174
3dfa5721 3175 pcp = &p->pcp;
8ad4b1fb
RS
3176 pcp->high = high;
3177 pcp->batch = max(1UL, high/4);
3178 if ((high/4) > (PAGE_SHIFT * 8))
3179 pcp->batch = PAGE_SHIFT * 8;
3180}
3181
2caaad41 3182/*
99dcc3e5
CL
3183 * Allocate per cpu pagesets and initialize them.
3184 * Before this call only boot pagesets were available.
3185 * Boot pagesets will no longer be used by this processorr
3186 * after setup_per_cpu_pageset().
e7c8d5c9 3187 */
99dcc3e5 3188void __init setup_per_cpu_pageset(void)
e7c8d5c9 3189{
99dcc3e5
CL
3190 struct zone *zone;
3191 int cpu;
e7c8d5c9 3192
ee99c71c 3193 for_each_populated_zone(zone) {
99dcc3e5 3194 zone->pageset = alloc_percpu(struct per_cpu_pageset);
e7c8d5c9 3195
99dcc3e5
CL
3196 for_each_possible_cpu(cpu) {
3197 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
e7c8d5c9 3198
99dcc3e5 3199 setup_pageset(pcp, zone_batchsize(zone));
e7c8d5c9 3200
99dcc3e5
CL
3201 if (percpu_pagelist_fraction)
3202 setup_pagelist_highmark(pcp,
3203 (zone->present_pages /
3204 percpu_pagelist_fraction));
3205 }
e7c8d5c9 3206 }
e7c8d5c9
CL
3207}
3208
577a32f6 3209static noinline __init_refok
cca448fe 3210int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3211{
3212 int i;
3213 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3214 size_t alloc_size;
ed8ece2e
DH
3215
3216 /*
3217 * The per-page waitqueue mechanism uses hashed waitqueues
3218 * per zone.
3219 */
02b694de
YG
3220 zone->wait_table_hash_nr_entries =
3221 wait_table_hash_nr_entries(zone_size_pages);
3222 zone->wait_table_bits =
3223 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3224 alloc_size = zone->wait_table_hash_nr_entries
3225 * sizeof(wait_queue_head_t);
3226
cd94b9db 3227 if (!slab_is_available()) {
cca448fe
YG
3228 zone->wait_table = (wait_queue_head_t *)
3229 alloc_bootmem_node(pgdat, alloc_size);
3230 } else {
3231 /*
3232 * This case means that a zone whose size was 0 gets new memory
3233 * via memory hot-add.
3234 * But it may be the case that a new node was hot-added. In
3235 * this case vmalloc() will not be able to use this new node's
3236 * memory - this wait_table must be initialized to use this new
3237 * node itself as well.
3238 * To use this new node's memory, further consideration will be
3239 * necessary.
3240 */
8691f3a7 3241 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3242 }
3243 if (!zone->wait_table)
3244 return -ENOMEM;
ed8ece2e 3245
02b694de 3246 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3247 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3248
3249 return 0;
ed8ece2e
DH
3250}
3251
112067f0
SL
3252static int __zone_pcp_update(void *data)
3253{
3254 struct zone *zone = data;
3255 int cpu;
3256 unsigned long batch = zone_batchsize(zone), flags;
3257
2d30a1f6 3258 for_each_possible_cpu(cpu) {
112067f0
SL
3259 struct per_cpu_pageset *pset;
3260 struct per_cpu_pages *pcp;
3261
99dcc3e5 3262 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3263 pcp = &pset->pcp;
3264
3265 local_irq_save(flags);
5f8dcc21 3266 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3267 setup_pageset(pset, batch);
3268 local_irq_restore(flags);
3269 }
3270 return 0;
3271}
3272
3273void zone_pcp_update(struct zone *zone)
3274{
3275 stop_machine(__zone_pcp_update, zone, NULL);
3276}
3277
c09b4240 3278static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3279{
99dcc3e5
CL
3280 /*
3281 * per cpu subsystem is not up at this point. The following code
3282 * relies on the ability of the linker to provide the
3283 * offset of a (static) per cpu variable into the per cpu area.
3284 */
3285 zone->pageset = &boot_pageset;
ed8ece2e 3286
f5335c0f 3287 if (zone->present_pages)
99dcc3e5
CL
3288 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3289 zone->name, zone->present_pages,
3290 zone_batchsize(zone));
ed8ece2e
DH
3291}
3292
718127cc
YG
3293__meminit int init_currently_empty_zone(struct zone *zone,
3294 unsigned long zone_start_pfn,
a2f3aa02
DH
3295 unsigned long size,
3296 enum memmap_context context)
ed8ece2e
DH
3297{
3298 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3299 int ret;
3300 ret = zone_wait_table_init(zone, size);
3301 if (ret)
3302 return ret;
ed8ece2e
DH
3303 pgdat->nr_zones = zone_idx(zone) + 1;
3304
ed8ece2e
DH
3305 zone->zone_start_pfn = zone_start_pfn;
3306
708614e6
MG
3307 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3308 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3309 pgdat->node_id,
3310 (unsigned long)zone_idx(zone),
3311 zone_start_pfn, (zone_start_pfn + size));
3312
1e548deb 3313 zone_init_free_lists(zone);
718127cc
YG
3314
3315 return 0;
ed8ece2e
DH
3316}
3317
c713216d
MG
3318#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3319/*
3320 * Basic iterator support. Return the first range of PFNs for a node
3321 * Note: nid == MAX_NUMNODES returns first region regardless of node
3322 */
a3142c8e 3323static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3324{
3325 int i;
3326
3327 for (i = 0; i < nr_nodemap_entries; i++)
3328 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3329 return i;
3330
3331 return -1;
3332}
3333
3334/*
3335 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3336 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3337 */
a3142c8e 3338static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3339{
3340 for (index = index + 1; index < nr_nodemap_entries; index++)
3341 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3342 return index;
3343
3344 return -1;
3345}
3346
3347#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3348/*
3349 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3350 * Architectures may implement their own version but if add_active_range()
3351 * was used and there are no special requirements, this is a convenient
3352 * alternative
3353 */
f2dbcfa7 3354int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3355{
3356 int i;
3357
3358 for (i = 0; i < nr_nodemap_entries; i++) {
3359 unsigned long start_pfn = early_node_map[i].start_pfn;
3360 unsigned long end_pfn = early_node_map[i].end_pfn;
3361
3362 if (start_pfn <= pfn && pfn < end_pfn)
3363 return early_node_map[i].nid;
3364 }
cc2559bc
KH
3365 /* This is a memory hole */
3366 return -1;
c713216d
MG
3367}
3368#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3369
f2dbcfa7
KH
3370int __meminit early_pfn_to_nid(unsigned long pfn)
3371{
cc2559bc
KH
3372 int nid;
3373
3374 nid = __early_pfn_to_nid(pfn);
3375 if (nid >= 0)
3376 return nid;
3377 /* just returns 0 */
3378 return 0;
f2dbcfa7
KH
3379}
3380
cc2559bc
KH
3381#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3382bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3383{
3384 int nid;
3385
3386 nid = __early_pfn_to_nid(pfn);
3387 if (nid >= 0 && nid != node)
3388 return false;
3389 return true;
3390}
3391#endif
f2dbcfa7 3392
c713216d
MG
3393/* Basic iterator support to walk early_node_map[] */
3394#define for_each_active_range_index_in_nid(i, nid) \
3395 for (i = first_active_region_index_in_nid(nid); i != -1; \
3396 i = next_active_region_index_in_nid(i, nid))
3397
3398/**
3399 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3400 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3401 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3402 *
3403 * If an architecture guarantees that all ranges registered with
3404 * add_active_ranges() contain no holes and may be freed, this
3405 * this function may be used instead of calling free_bootmem() manually.
3406 */
3407void __init free_bootmem_with_active_regions(int nid,
3408 unsigned long max_low_pfn)
3409{
3410 int i;
3411
3412 for_each_active_range_index_in_nid(i, nid) {
3413 unsigned long size_pages = 0;
3414 unsigned long end_pfn = early_node_map[i].end_pfn;
3415
3416 if (early_node_map[i].start_pfn >= max_low_pfn)
3417 continue;
3418
3419 if (end_pfn > max_low_pfn)
3420 end_pfn = max_low_pfn;
3421
3422 size_pages = end_pfn - early_node_map[i].start_pfn;
3423 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3424 PFN_PHYS(early_node_map[i].start_pfn),
3425 size_pages << PAGE_SHIFT);
3426 }
3427}
3428
08677214
YL
3429int __init add_from_early_node_map(struct range *range, int az,
3430 int nr_range, int nid)
3431{
3432 int i;
3433 u64 start, end;
3434
3435 /* need to go over early_node_map to find out good range for node */
3436 for_each_active_range_index_in_nid(i, nid) {
3437 start = early_node_map[i].start_pfn;
3438 end = early_node_map[i].end_pfn;
3439 nr_range = add_range(range, az, nr_range, start, end);
3440 }
3441 return nr_range;
3442}
3443
2ee78f7b 3444#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3445void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3446 u64 goal, u64 limit)
3447{
3448 int i;
3449 void *ptr;
3450
3451 /* need to go over early_node_map to find out good range for node */
3452 for_each_active_range_index_in_nid(i, nid) {
3453 u64 addr;
3454 u64 ei_start, ei_last;
3455
3456 ei_last = early_node_map[i].end_pfn;
3457 ei_last <<= PAGE_SHIFT;
3458 ei_start = early_node_map[i].start_pfn;
3459 ei_start <<= PAGE_SHIFT;
3460 addr = find_early_area(ei_start, ei_last,
3461 goal, limit, size, align);
3462
3463 if (addr == -1ULL)
3464 continue;
3465
3466#if 0
3467 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3468 nid,
3469 ei_start, ei_last, goal, limit, size,
3470 align, addr);
3471#endif
3472
3473 ptr = phys_to_virt(addr);
3474 memset(ptr, 0, size);
3475 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3476 return ptr;
3477 }
3478
3479 return NULL;
3480}
2ee78f7b 3481#endif
08677214
YL
3482
3483
b5bc6c0e
YL
3484void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3485{
3486 int i;
d52d53b8 3487 int ret;
b5bc6c0e 3488
d52d53b8
YL
3489 for_each_active_range_index_in_nid(i, nid) {
3490 ret = work_fn(early_node_map[i].start_pfn,
3491 early_node_map[i].end_pfn, data);
3492 if (ret)
3493 break;
3494 }
b5bc6c0e 3495}
c713216d
MG
3496/**
3497 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3498 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3499 *
3500 * If an architecture guarantees that all ranges registered with
3501 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3502 * function may be used instead of calling memory_present() manually.
c713216d
MG
3503 */
3504void __init sparse_memory_present_with_active_regions(int nid)
3505{
3506 int i;
3507
3508 for_each_active_range_index_in_nid(i, nid)
3509 memory_present(early_node_map[i].nid,
3510 early_node_map[i].start_pfn,
3511 early_node_map[i].end_pfn);
3512}
3513
3514/**
3515 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3516 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3517 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3518 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3519 *
3520 * It returns the start and end page frame of a node based on information
3521 * provided by an arch calling add_active_range(). If called for a node
3522 * with no available memory, a warning is printed and the start and end
88ca3b94 3523 * PFNs will be 0.
c713216d 3524 */
a3142c8e 3525void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3526 unsigned long *start_pfn, unsigned long *end_pfn)
3527{
3528 int i;
3529 *start_pfn = -1UL;
3530 *end_pfn = 0;
3531
3532 for_each_active_range_index_in_nid(i, nid) {
3533 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3534 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3535 }
3536
633c0666 3537 if (*start_pfn == -1UL)
c713216d 3538 *start_pfn = 0;
c713216d
MG
3539}
3540
2a1e274a
MG
3541/*
3542 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3543 * assumption is made that zones within a node are ordered in monotonic
3544 * increasing memory addresses so that the "highest" populated zone is used
3545 */
b69a7288 3546static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3547{
3548 int zone_index;
3549 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3550 if (zone_index == ZONE_MOVABLE)
3551 continue;
3552
3553 if (arch_zone_highest_possible_pfn[zone_index] >
3554 arch_zone_lowest_possible_pfn[zone_index])
3555 break;
3556 }
3557
3558 VM_BUG_ON(zone_index == -1);
3559 movable_zone = zone_index;
3560}
3561
3562/*
3563 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3564 * because it is sized independant of architecture. Unlike the other zones,
3565 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3566 * in each node depending on the size of each node and how evenly kernelcore
3567 * is distributed. This helper function adjusts the zone ranges
3568 * provided by the architecture for a given node by using the end of the
3569 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3570 * zones within a node are in order of monotonic increases memory addresses
3571 */
b69a7288 3572static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3573 unsigned long zone_type,
3574 unsigned long node_start_pfn,
3575 unsigned long node_end_pfn,
3576 unsigned long *zone_start_pfn,
3577 unsigned long *zone_end_pfn)
3578{
3579 /* Only adjust if ZONE_MOVABLE is on this node */
3580 if (zone_movable_pfn[nid]) {
3581 /* Size ZONE_MOVABLE */
3582 if (zone_type == ZONE_MOVABLE) {
3583 *zone_start_pfn = zone_movable_pfn[nid];
3584 *zone_end_pfn = min(node_end_pfn,
3585 arch_zone_highest_possible_pfn[movable_zone]);
3586
3587 /* Adjust for ZONE_MOVABLE starting within this range */
3588 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3589 *zone_end_pfn > zone_movable_pfn[nid]) {
3590 *zone_end_pfn = zone_movable_pfn[nid];
3591
3592 /* Check if this whole range is within ZONE_MOVABLE */
3593 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3594 *zone_start_pfn = *zone_end_pfn;
3595 }
3596}
3597
c713216d
MG
3598/*
3599 * Return the number of pages a zone spans in a node, including holes
3600 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3601 */
6ea6e688 3602static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3603 unsigned long zone_type,
3604 unsigned long *ignored)
3605{
3606 unsigned long node_start_pfn, node_end_pfn;
3607 unsigned long zone_start_pfn, zone_end_pfn;
3608
3609 /* Get the start and end of the node and zone */
3610 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3611 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3612 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3613 adjust_zone_range_for_zone_movable(nid, zone_type,
3614 node_start_pfn, node_end_pfn,
3615 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3616
3617 /* Check that this node has pages within the zone's required range */
3618 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3619 return 0;
3620
3621 /* Move the zone boundaries inside the node if necessary */
3622 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3623 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3624
3625 /* Return the spanned pages */
3626 return zone_end_pfn - zone_start_pfn;
3627}
3628
3629/*
3630 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3631 * then all holes in the requested range will be accounted for.
c713216d 3632 */
32996250 3633unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3634 unsigned long range_start_pfn,
3635 unsigned long range_end_pfn)
3636{
3637 int i = 0;
3638 unsigned long prev_end_pfn = 0, hole_pages = 0;
3639 unsigned long start_pfn;
3640
3641 /* Find the end_pfn of the first active range of pfns in the node */
3642 i = first_active_region_index_in_nid(nid);
3643 if (i == -1)
3644 return 0;
3645
b5445f95
MG
3646 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3647
9c7cd687
MG
3648 /* Account for ranges before physical memory on this node */
3649 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3650 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3651
3652 /* Find all holes for the zone within the node */
3653 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3654
3655 /* No need to continue if prev_end_pfn is outside the zone */
3656 if (prev_end_pfn >= range_end_pfn)
3657 break;
3658
3659 /* Make sure the end of the zone is not within the hole */
3660 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3661 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3662
3663 /* Update the hole size cound and move on */
3664 if (start_pfn > range_start_pfn) {
3665 BUG_ON(prev_end_pfn > start_pfn);
3666 hole_pages += start_pfn - prev_end_pfn;
3667 }
3668 prev_end_pfn = early_node_map[i].end_pfn;
3669 }
3670
9c7cd687
MG
3671 /* Account for ranges past physical memory on this node */
3672 if (range_end_pfn > prev_end_pfn)
0c6cb974 3673 hole_pages += range_end_pfn -
9c7cd687
MG
3674 max(range_start_pfn, prev_end_pfn);
3675
c713216d
MG
3676 return hole_pages;
3677}
3678
3679/**
3680 * absent_pages_in_range - Return number of page frames in holes within a range
3681 * @start_pfn: The start PFN to start searching for holes
3682 * @end_pfn: The end PFN to stop searching for holes
3683 *
88ca3b94 3684 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3685 */
3686unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3687 unsigned long end_pfn)
3688{
3689 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3690}
3691
3692/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3693static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3694 unsigned long zone_type,
3695 unsigned long *ignored)
3696{
9c7cd687
MG
3697 unsigned long node_start_pfn, node_end_pfn;
3698 unsigned long zone_start_pfn, zone_end_pfn;
3699
3700 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3701 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3702 node_start_pfn);
3703 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3704 node_end_pfn);
3705
2a1e274a
MG
3706 adjust_zone_range_for_zone_movable(nid, zone_type,
3707 node_start_pfn, node_end_pfn,
3708 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3709 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3710}
0e0b864e 3711
c713216d 3712#else
6ea6e688 3713static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3714 unsigned long zone_type,
3715 unsigned long *zones_size)
3716{
3717 return zones_size[zone_type];
3718}
3719
6ea6e688 3720static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3721 unsigned long zone_type,
3722 unsigned long *zholes_size)
3723{
3724 if (!zholes_size)
3725 return 0;
3726
3727 return zholes_size[zone_type];
3728}
0e0b864e 3729
c713216d
MG
3730#endif
3731
a3142c8e 3732static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3733 unsigned long *zones_size, unsigned long *zholes_size)
3734{
3735 unsigned long realtotalpages, totalpages = 0;
3736 enum zone_type i;
3737
3738 for (i = 0; i < MAX_NR_ZONES; i++)
3739 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3740 zones_size);
3741 pgdat->node_spanned_pages = totalpages;
3742
3743 realtotalpages = totalpages;
3744 for (i = 0; i < MAX_NR_ZONES; i++)
3745 realtotalpages -=
3746 zone_absent_pages_in_node(pgdat->node_id, i,
3747 zholes_size);
3748 pgdat->node_present_pages = realtotalpages;
3749 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3750 realtotalpages);
3751}
3752
835c134e
MG
3753#ifndef CONFIG_SPARSEMEM
3754/*
3755 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3756 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3757 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3758 * round what is now in bits to nearest long in bits, then return it in
3759 * bytes.
3760 */
3761static unsigned long __init usemap_size(unsigned long zonesize)
3762{
3763 unsigned long usemapsize;
3764
d9c23400
MG
3765 usemapsize = roundup(zonesize, pageblock_nr_pages);
3766 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3767 usemapsize *= NR_PAGEBLOCK_BITS;
3768 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3769
3770 return usemapsize / 8;
3771}
3772
3773static void __init setup_usemap(struct pglist_data *pgdat,
3774 struct zone *zone, unsigned long zonesize)
3775{
3776 unsigned long usemapsize = usemap_size(zonesize);
3777 zone->pageblock_flags = NULL;
58a01a45 3778 if (usemapsize)
835c134e 3779 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3780}
3781#else
3782static void inline setup_usemap(struct pglist_data *pgdat,
3783 struct zone *zone, unsigned long zonesize) {}
3784#endif /* CONFIG_SPARSEMEM */
3785
d9c23400 3786#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3787
3788/* Return a sensible default order for the pageblock size. */
3789static inline int pageblock_default_order(void)
3790{
3791 if (HPAGE_SHIFT > PAGE_SHIFT)
3792 return HUGETLB_PAGE_ORDER;
3793
3794 return MAX_ORDER-1;
3795}
3796
d9c23400
MG
3797/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3798static inline void __init set_pageblock_order(unsigned int order)
3799{
3800 /* Check that pageblock_nr_pages has not already been setup */
3801 if (pageblock_order)
3802 return;
3803
3804 /*
3805 * Assume the largest contiguous order of interest is a huge page.
3806 * This value may be variable depending on boot parameters on IA64
3807 */
3808 pageblock_order = order;
3809}
3810#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3811
ba72cb8c
MG
3812/*
3813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3814 * and pageblock_default_order() are unused as pageblock_order is set
3815 * at compile-time. See include/linux/pageblock-flags.h for the values of
3816 * pageblock_order based on the kernel config
3817 */
3818static inline int pageblock_default_order(unsigned int order)
3819{
3820 return MAX_ORDER-1;
3821}
d9c23400
MG
3822#define set_pageblock_order(x) do {} while (0)
3823
3824#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3825
1da177e4
LT
3826/*
3827 * Set up the zone data structures:
3828 * - mark all pages reserved
3829 * - mark all memory queues empty
3830 * - clear the memory bitmaps
3831 */
b5a0e011 3832static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3833 unsigned long *zones_size, unsigned long *zholes_size)
3834{
2f1b6248 3835 enum zone_type j;
ed8ece2e 3836 int nid = pgdat->node_id;
1da177e4 3837 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3838 int ret;
1da177e4 3839
208d54e5 3840 pgdat_resize_init(pgdat);
1da177e4
LT
3841 pgdat->nr_zones = 0;
3842 init_waitqueue_head(&pgdat->kswapd_wait);
3843 pgdat->kswapd_max_order = 0;
52d4b9ac 3844 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3845
3846 for (j = 0; j < MAX_NR_ZONES; j++) {
3847 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3848 unsigned long size, realsize, memmap_pages;
b69408e8 3849 enum lru_list l;
1da177e4 3850
c713216d
MG
3851 size = zone_spanned_pages_in_node(nid, j, zones_size);
3852 realsize = size - zone_absent_pages_in_node(nid, j,
3853 zholes_size);
1da177e4 3854
0e0b864e
MG
3855 /*
3856 * Adjust realsize so that it accounts for how much memory
3857 * is used by this zone for memmap. This affects the watermark
3858 * and per-cpu initialisations
3859 */
f7232154
JW
3860 memmap_pages =
3861 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3862 if (realsize >= memmap_pages) {
3863 realsize -= memmap_pages;
5594c8c8
YL
3864 if (memmap_pages)
3865 printk(KERN_DEBUG
3866 " %s zone: %lu pages used for memmap\n",
3867 zone_names[j], memmap_pages);
0e0b864e
MG
3868 } else
3869 printk(KERN_WARNING
3870 " %s zone: %lu pages exceeds realsize %lu\n",
3871 zone_names[j], memmap_pages, realsize);
3872
6267276f
CL
3873 /* Account for reserved pages */
3874 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3875 realsize -= dma_reserve;
d903ef9f 3876 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3877 zone_names[0], dma_reserve);
0e0b864e
MG
3878 }
3879
98d2b0eb 3880 if (!is_highmem_idx(j))
1da177e4
LT
3881 nr_kernel_pages += realsize;
3882 nr_all_pages += realsize;
3883
3884 zone->spanned_pages = size;
3885 zone->present_pages = realsize;
9614634f 3886#ifdef CONFIG_NUMA
d5f541ed 3887 zone->node = nid;
8417bba4 3888 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3889 / 100;
0ff38490 3890 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3891#endif
1da177e4
LT
3892 zone->name = zone_names[j];
3893 spin_lock_init(&zone->lock);
3894 spin_lock_init(&zone->lru_lock);
bdc8cb98 3895 zone_seqlock_init(zone);
1da177e4 3896 zone->zone_pgdat = pgdat;
1da177e4 3897
3bb1a852 3898 zone->prev_priority = DEF_PRIORITY;
1da177e4 3899
ed8ece2e 3900 zone_pcp_init(zone);
b69408e8
CL
3901 for_each_lru(l) {
3902 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 3903 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 3904 }
6e901571
KM
3905 zone->reclaim_stat.recent_rotated[0] = 0;
3906 zone->reclaim_stat.recent_rotated[1] = 0;
3907 zone->reclaim_stat.recent_scanned[0] = 0;
3908 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3909 zap_zone_vm_stats(zone);
e815af95 3910 zone->flags = 0;
1da177e4
LT
3911 if (!size)
3912 continue;
3913
ba72cb8c 3914 set_pageblock_order(pageblock_default_order());
835c134e 3915 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3916 ret = init_currently_empty_zone(zone, zone_start_pfn,
3917 size, MEMMAP_EARLY);
718127cc 3918 BUG_ON(ret);
76cdd58e 3919 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3920 zone_start_pfn += size;
1da177e4
LT
3921 }
3922}
3923
577a32f6 3924static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3925{
1da177e4
LT
3926 /* Skip empty nodes */
3927 if (!pgdat->node_spanned_pages)
3928 return;
3929
d41dee36 3930#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3931 /* ia64 gets its own node_mem_map, before this, without bootmem */
3932 if (!pgdat->node_mem_map) {
e984bb43 3933 unsigned long size, start, end;
d41dee36
AW
3934 struct page *map;
3935
e984bb43
BP
3936 /*
3937 * The zone's endpoints aren't required to be MAX_ORDER
3938 * aligned but the node_mem_map endpoints must be in order
3939 * for the buddy allocator to function correctly.
3940 */
3941 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3942 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3943 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3944 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3945 map = alloc_remap(pgdat->node_id, size);
3946 if (!map)
3947 map = alloc_bootmem_node(pgdat, size);
e984bb43 3948 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3949 }
12d810c1 3950#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3951 /*
3952 * With no DISCONTIG, the global mem_map is just set as node 0's
3953 */
c713216d 3954 if (pgdat == NODE_DATA(0)) {
1da177e4 3955 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3956#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3957 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3958 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3959#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3960 }
1da177e4 3961#endif
d41dee36 3962#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3963}
3964
9109fb7b
JW
3965void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3966 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3967{
9109fb7b
JW
3968 pg_data_t *pgdat = NODE_DATA(nid);
3969
1da177e4
LT
3970 pgdat->node_id = nid;
3971 pgdat->node_start_pfn = node_start_pfn;
c713216d 3972 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3973
3974 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3975#ifdef CONFIG_FLAT_NODE_MEM_MAP
3976 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3977 nid, (unsigned long)pgdat,
3978 (unsigned long)pgdat->node_mem_map);
3979#endif
1da177e4
LT
3980
3981 free_area_init_core(pgdat, zones_size, zholes_size);
3982}
3983
c713216d 3984#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3985
3986#if MAX_NUMNODES > 1
3987/*
3988 * Figure out the number of possible node ids.
3989 */
3990static void __init setup_nr_node_ids(void)
3991{
3992 unsigned int node;
3993 unsigned int highest = 0;
3994
3995 for_each_node_mask(node, node_possible_map)
3996 highest = node;
3997 nr_node_ids = highest + 1;
3998}
3999#else
4000static inline void setup_nr_node_ids(void)
4001{
4002}
4003#endif
4004
c713216d
MG
4005/**
4006 * add_active_range - Register a range of PFNs backed by physical memory
4007 * @nid: The node ID the range resides on
4008 * @start_pfn: The start PFN of the available physical memory
4009 * @end_pfn: The end PFN of the available physical memory
4010 *
4011 * These ranges are stored in an early_node_map[] and later used by
4012 * free_area_init_nodes() to calculate zone sizes and holes. If the
4013 * range spans a memory hole, it is up to the architecture to ensure
4014 * the memory is not freed by the bootmem allocator. If possible
4015 * the range being registered will be merged with existing ranges.
4016 */
4017void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4018 unsigned long end_pfn)
4019{
4020 int i;
4021
6b74ab97
MG
4022 mminit_dprintk(MMINIT_TRACE, "memory_register",
4023 "Entering add_active_range(%d, %#lx, %#lx) "
4024 "%d entries of %d used\n",
4025 nid, start_pfn, end_pfn,
4026 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4027
2dbb51c4
MG
4028 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4029
c713216d
MG
4030 /* Merge with existing active regions if possible */
4031 for (i = 0; i < nr_nodemap_entries; i++) {
4032 if (early_node_map[i].nid != nid)
4033 continue;
4034
4035 /* Skip if an existing region covers this new one */
4036 if (start_pfn >= early_node_map[i].start_pfn &&
4037 end_pfn <= early_node_map[i].end_pfn)
4038 return;
4039
4040 /* Merge forward if suitable */
4041 if (start_pfn <= early_node_map[i].end_pfn &&
4042 end_pfn > early_node_map[i].end_pfn) {
4043 early_node_map[i].end_pfn = end_pfn;
4044 return;
4045 }
4046
4047 /* Merge backward if suitable */
d2dbe08d 4048 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4049 end_pfn >= early_node_map[i].start_pfn) {
4050 early_node_map[i].start_pfn = start_pfn;
4051 return;
4052 }
4053 }
4054
4055 /* Check that early_node_map is large enough */
4056 if (i >= MAX_ACTIVE_REGIONS) {
4057 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4058 MAX_ACTIVE_REGIONS);
4059 return;
4060 }
4061
4062 early_node_map[i].nid = nid;
4063 early_node_map[i].start_pfn = start_pfn;
4064 early_node_map[i].end_pfn = end_pfn;
4065 nr_nodemap_entries = i + 1;
4066}
4067
4068/**
cc1050ba 4069 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4070 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4071 * @start_pfn: The new PFN of the range
4072 * @end_pfn: The new PFN of the range
c713216d
MG
4073 *
4074 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4075 * The map is kept near the end physical page range that has already been
4076 * registered. This function allows an arch to shrink an existing registered
4077 * range.
c713216d 4078 */
cc1050ba
YL
4079void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4080 unsigned long end_pfn)
c713216d 4081{
cc1a9d86
YL
4082 int i, j;
4083 int removed = 0;
c713216d 4084
cc1050ba
YL
4085 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4086 nid, start_pfn, end_pfn);
4087
c713216d 4088 /* Find the old active region end and shrink */
cc1a9d86 4089 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4090 if (early_node_map[i].start_pfn >= start_pfn &&
4091 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4092 /* clear it */
cc1050ba 4093 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4094 early_node_map[i].end_pfn = 0;
4095 removed = 1;
4096 continue;
4097 }
cc1050ba
YL
4098 if (early_node_map[i].start_pfn < start_pfn &&
4099 early_node_map[i].end_pfn > start_pfn) {
4100 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4101 early_node_map[i].end_pfn = start_pfn;
4102 if (temp_end_pfn > end_pfn)
4103 add_active_range(nid, end_pfn, temp_end_pfn);
4104 continue;
4105 }
4106 if (early_node_map[i].start_pfn >= start_pfn &&
4107 early_node_map[i].end_pfn > end_pfn &&
4108 early_node_map[i].start_pfn < end_pfn) {
4109 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4110 continue;
c713216d 4111 }
cc1a9d86
YL
4112 }
4113
4114 if (!removed)
4115 return;
4116
4117 /* remove the blank ones */
4118 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4119 if (early_node_map[i].nid != nid)
4120 continue;
4121 if (early_node_map[i].end_pfn)
4122 continue;
4123 /* we found it, get rid of it */
4124 for (j = i; j < nr_nodemap_entries - 1; j++)
4125 memcpy(&early_node_map[j], &early_node_map[j+1],
4126 sizeof(early_node_map[j]));
4127 j = nr_nodemap_entries - 1;
4128 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4129 nr_nodemap_entries--;
4130 }
c713216d
MG
4131}
4132
4133/**
4134 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4135 *
c713216d
MG
4136 * During discovery, it may be found that a table like SRAT is invalid
4137 * and an alternative discovery method must be used. This function removes
4138 * all currently registered regions.
4139 */
88ca3b94 4140void __init remove_all_active_ranges(void)
c713216d
MG
4141{
4142 memset(early_node_map, 0, sizeof(early_node_map));
4143 nr_nodemap_entries = 0;
4144}
4145
4146/* Compare two active node_active_regions */
4147static int __init cmp_node_active_region(const void *a, const void *b)
4148{
4149 struct node_active_region *arange = (struct node_active_region *)a;
4150 struct node_active_region *brange = (struct node_active_region *)b;
4151
4152 /* Done this way to avoid overflows */
4153 if (arange->start_pfn > brange->start_pfn)
4154 return 1;
4155 if (arange->start_pfn < brange->start_pfn)
4156 return -1;
4157
4158 return 0;
4159}
4160
4161/* sort the node_map by start_pfn */
32996250 4162void __init sort_node_map(void)
c713216d
MG
4163{
4164 sort(early_node_map, (size_t)nr_nodemap_entries,
4165 sizeof(struct node_active_region),
4166 cmp_node_active_region, NULL);
4167}
4168
a6af2bc3 4169/* Find the lowest pfn for a node */
b69a7288 4170static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4171{
4172 int i;
a6af2bc3 4173 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4174
c713216d
MG
4175 /* Assuming a sorted map, the first range found has the starting pfn */
4176 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4177 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4178
a6af2bc3
MG
4179 if (min_pfn == ULONG_MAX) {
4180 printk(KERN_WARNING
2bc0d261 4181 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4182 return 0;
4183 }
4184
4185 return min_pfn;
c713216d
MG
4186}
4187
4188/**
4189 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4190 *
4191 * It returns the minimum PFN based on information provided via
88ca3b94 4192 * add_active_range().
c713216d
MG
4193 */
4194unsigned long __init find_min_pfn_with_active_regions(void)
4195{
4196 return find_min_pfn_for_node(MAX_NUMNODES);
4197}
4198
37b07e41
LS
4199/*
4200 * early_calculate_totalpages()
4201 * Sum pages in active regions for movable zone.
4202 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4203 */
484f51f8 4204static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4205{
4206 int i;
4207 unsigned long totalpages = 0;
4208
37b07e41
LS
4209 for (i = 0; i < nr_nodemap_entries; i++) {
4210 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4211 early_node_map[i].start_pfn;
37b07e41
LS
4212 totalpages += pages;
4213 if (pages)
4214 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4215 }
4216 return totalpages;
7e63efef
MG
4217}
4218
2a1e274a
MG
4219/*
4220 * Find the PFN the Movable zone begins in each node. Kernel memory
4221 * is spread evenly between nodes as long as the nodes have enough
4222 * memory. When they don't, some nodes will have more kernelcore than
4223 * others
4224 */
b69a7288 4225static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4226{
4227 int i, nid;
4228 unsigned long usable_startpfn;
4229 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4230 /* save the state before borrow the nodemask */
4231 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4232 unsigned long totalpages = early_calculate_totalpages();
4233 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4234
7e63efef
MG
4235 /*
4236 * If movablecore was specified, calculate what size of
4237 * kernelcore that corresponds so that memory usable for
4238 * any allocation type is evenly spread. If both kernelcore
4239 * and movablecore are specified, then the value of kernelcore
4240 * will be used for required_kernelcore if it's greater than
4241 * what movablecore would have allowed.
4242 */
4243 if (required_movablecore) {
7e63efef
MG
4244 unsigned long corepages;
4245
4246 /*
4247 * Round-up so that ZONE_MOVABLE is at least as large as what
4248 * was requested by the user
4249 */
4250 required_movablecore =
4251 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4252 corepages = totalpages - required_movablecore;
4253
4254 required_kernelcore = max(required_kernelcore, corepages);
4255 }
4256
2a1e274a
MG
4257 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4258 if (!required_kernelcore)
66918dcd 4259 goto out;
2a1e274a
MG
4260
4261 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4262 find_usable_zone_for_movable();
4263 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4264
4265restart:
4266 /* Spread kernelcore memory as evenly as possible throughout nodes */
4267 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4268 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4269 /*
4270 * Recalculate kernelcore_node if the division per node
4271 * now exceeds what is necessary to satisfy the requested
4272 * amount of memory for the kernel
4273 */
4274 if (required_kernelcore < kernelcore_node)
4275 kernelcore_node = required_kernelcore / usable_nodes;
4276
4277 /*
4278 * As the map is walked, we track how much memory is usable
4279 * by the kernel using kernelcore_remaining. When it is
4280 * 0, the rest of the node is usable by ZONE_MOVABLE
4281 */
4282 kernelcore_remaining = kernelcore_node;
4283
4284 /* Go through each range of PFNs within this node */
4285 for_each_active_range_index_in_nid(i, nid) {
4286 unsigned long start_pfn, end_pfn;
4287 unsigned long size_pages;
4288
4289 start_pfn = max(early_node_map[i].start_pfn,
4290 zone_movable_pfn[nid]);
4291 end_pfn = early_node_map[i].end_pfn;
4292 if (start_pfn >= end_pfn)
4293 continue;
4294
4295 /* Account for what is only usable for kernelcore */
4296 if (start_pfn < usable_startpfn) {
4297 unsigned long kernel_pages;
4298 kernel_pages = min(end_pfn, usable_startpfn)
4299 - start_pfn;
4300
4301 kernelcore_remaining -= min(kernel_pages,
4302 kernelcore_remaining);
4303 required_kernelcore -= min(kernel_pages,
4304 required_kernelcore);
4305
4306 /* Continue if range is now fully accounted */
4307 if (end_pfn <= usable_startpfn) {
4308
4309 /*
4310 * Push zone_movable_pfn to the end so
4311 * that if we have to rebalance
4312 * kernelcore across nodes, we will
4313 * not double account here
4314 */
4315 zone_movable_pfn[nid] = end_pfn;
4316 continue;
4317 }
4318 start_pfn = usable_startpfn;
4319 }
4320
4321 /*
4322 * The usable PFN range for ZONE_MOVABLE is from
4323 * start_pfn->end_pfn. Calculate size_pages as the
4324 * number of pages used as kernelcore
4325 */
4326 size_pages = end_pfn - start_pfn;
4327 if (size_pages > kernelcore_remaining)
4328 size_pages = kernelcore_remaining;
4329 zone_movable_pfn[nid] = start_pfn + size_pages;
4330
4331 /*
4332 * Some kernelcore has been met, update counts and
4333 * break if the kernelcore for this node has been
4334 * satisified
4335 */
4336 required_kernelcore -= min(required_kernelcore,
4337 size_pages);
4338 kernelcore_remaining -= size_pages;
4339 if (!kernelcore_remaining)
4340 break;
4341 }
4342 }
4343
4344 /*
4345 * If there is still required_kernelcore, we do another pass with one
4346 * less node in the count. This will push zone_movable_pfn[nid] further
4347 * along on the nodes that still have memory until kernelcore is
4348 * satisified
4349 */
4350 usable_nodes--;
4351 if (usable_nodes && required_kernelcore > usable_nodes)
4352 goto restart;
4353
4354 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4355 for (nid = 0; nid < MAX_NUMNODES; nid++)
4356 zone_movable_pfn[nid] =
4357 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4358
4359out:
4360 /* restore the node_state */
4361 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4362}
4363
37b07e41
LS
4364/* Any regular memory on that node ? */
4365static void check_for_regular_memory(pg_data_t *pgdat)
4366{
4367#ifdef CONFIG_HIGHMEM
4368 enum zone_type zone_type;
4369
4370 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4371 struct zone *zone = &pgdat->node_zones[zone_type];
4372 if (zone->present_pages)
4373 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4374 }
4375#endif
4376}
4377
c713216d
MG
4378/**
4379 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4380 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4381 *
4382 * This will call free_area_init_node() for each active node in the system.
4383 * Using the page ranges provided by add_active_range(), the size of each
4384 * zone in each node and their holes is calculated. If the maximum PFN
4385 * between two adjacent zones match, it is assumed that the zone is empty.
4386 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4387 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4388 * starts where the previous one ended. For example, ZONE_DMA32 starts
4389 * at arch_max_dma_pfn.
4390 */
4391void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4392{
4393 unsigned long nid;
db99100d 4394 int i;
c713216d 4395
a6af2bc3
MG
4396 /* Sort early_node_map as initialisation assumes it is sorted */
4397 sort_node_map();
4398
c713216d
MG
4399 /* Record where the zone boundaries are */
4400 memset(arch_zone_lowest_possible_pfn, 0,
4401 sizeof(arch_zone_lowest_possible_pfn));
4402 memset(arch_zone_highest_possible_pfn, 0,
4403 sizeof(arch_zone_highest_possible_pfn));
4404 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4405 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4406 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4407 if (i == ZONE_MOVABLE)
4408 continue;
c713216d
MG
4409 arch_zone_lowest_possible_pfn[i] =
4410 arch_zone_highest_possible_pfn[i-1];
4411 arch_zone_highest_possible_pfn[i] =
4412 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4413 }
2a1e274a
MG
4414 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4415 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4416
4417 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4418 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4419 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4420
c713216d
MG
4421 /* Print out the zone ranges */
4422 printk("Zone PFN ranges:\n");
2a1e274a
MG
4423 for (i = 0; i < MAX_NR_ZONES; i++) {
4424 if (i == ZONE_MOVABLE)
4425 continue;
72f0ba02
DR
4426 printk(" %-8s ", zone_names[i]);
4427 if (arch_zone_lowest_possible_pfn[i] ==
4428 arch_zone_highest_possible_pfn[i])
4429 printk("empty\n");
4430 else
4431 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4432 arch_zone_lowest_possible_pfn[i],
4433 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4434 }
4435
4436 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4437 printk("Movable zone start PFN for each node\n");
4438 for (i = 0; i < MAX_NUMNODES; i++) {
4439 if (zone_movable_pfn[i])
4440 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4441 }
c713216d
MG
4442
4443 /* Print out the early_node_map[] */
4444 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4445 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4446 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4447 early_node_map[i].start_pfn,
4448 early_node_map[i].end_pfn);
4449
4450 /* Initialise every node */
708614e6 4451 mminit_verify_pageflags_layout();
8ef82866 4452 setup_nr_node_ids();
c713216d
MG
4453 for_each_online_node(nid) {
4454 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4455 free_area_init_node(nid, NULL,
c713216d 4456 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4457
4458 /* Any memory on that node */
4459 if (pgdat->node_present_pages)
4460 node_set_state(nid, N_HIGH_MEMORY);
4461 check_for_regular_memory(pgdat);
c713216d
MG
4462 }
4463}
2a1e274a 4464
7e63efef 4465static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4466{
4467 unsigned long long coremem;
4468 if (!p)
4469 return -EINVAL;
4470
4471 coremem = memparse(p, &p);
7e63efef 4472 *core = coremem >> PAGE_SHIFT;
2a1e274a 4473
7e63efef 4474 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4475 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4476
4477 return 0;
4478}
ed7ed365 4479
7e63efef
MG
4480/*
4481 * kernelcore=size sets the amount of memory for use for allocations that
4482 * cannot be reclaimed or migrated.
4483 */
4484static int __init cmdline_parse_kernelcore(char *p)
4485{
4486 return cmdline_parse_core(p, &required_kernelcore);
4487}
4488
4489/*
4490 * movablecore=size sets the amount of memory for use for allocations that
4491 * can be reclaimed or migrated.
4492 */
4493static int __init cmdline_parse_movablecore(char *p)
4494{
4495 return cmdline_parse_core(p, &required_movablecore);
4496}
4497
ed7ed365 4498early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4499early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4500
c713216d
MG
4501#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4502
0e0b864e 4503/**
88ca3b94
RD
4504 * set_dma_reserve - set the specified number of pages reserved in the first zone
4505 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4506 *
4507 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4508 * In the DMA zone, a significant percentage may be consumed by kernel image
4509 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4510 * function may optionally be used to account for unfreeable pages in the
4511 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4512 * smaller per-cpu batchsize.
0e0b864e
MG
4513 */
4514void __init set_dma_reserve(unsigned long new_dma_reserve)
4515{
4516 dma_reserve = new_dma_reserve;
4517}
4518
93b7504e 4519#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4520struct pglist_data __refdata contig_page_data = {
4521#ifndef CONFIG_NO_BOOTMEM
4522 .bdata = &bootmem_node_data[0]
4523#endif
4524 };
1da177e4 4525EXPORT_SYMBOL(contig_page_data);
93b7504e 4526#endif
1da177e4
LT
4527
4528void __init free_area_init(unsigned long *zones_size)
4529{
9109fb7b 4530 free_area_init_node(0, zones_size,
1da177e4
LT
4531 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4532}
1da177e4 4533
1da177e4
LT
4534static int page_alloc_cpu_notify(struct notifier_block *self,
4535 unsigned long action, void *hcpu)
4536{
4537 int cpu = (unsigned long)hcpu;
1da177e4 4538
8bb78442 4539 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4540 drain_pages(cpu);
4541
4542 /*
4543 * Spill the event counters of the dead processor
4544 * into the current processors event counters.
4545 * This artificially elevates the count of the current
4546 * processor.
4547 */
f8891e5e 4548 vm_events_fold_cpu(cpu);
9f8f2172
CL
4549
4550 /*
4551 * Zero the differential counters of the dead processor
4552 * so that the vm statistics are consistent.
4553 *
4554 * This is only okay since the processor is dead and cannot
4555 * race with what we are doing.
4556 */
2244b95a 4557 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4558 }
4559 return NOTIFY_OK;
4560}
1da177e4
LT
4561
4562void __init page_alloc_init(void)
4563{
4564 hotcpu_notifier(page_alloc_cpu_notify, 0);
4565}
4566
cb45b0e9
HA
4567/*
4568 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4569 * or min_free_kbytes changes.
4570 */
4571static void calculate_totalreserve_pages(void)
4572{
4573 struct pglist_data *pgdat;
4574 unsigned long reserve_pages = 0;
2f6726e5 4575 enum zone_type i, j;
cb45b0e9
HA
4576
4577 for_each_online_pgdat(pgdat) {
4578 for (i = 0; i < MAX_NR_ZONES; i++) {
4579 struct zone *zone = pgdat->node_zones + i;
4580 unsigned long max = 0;
4581
4582 /* Find valid and maximum lowmem_reserve in the zone */
4583 for (j = i; j < MAX_NR_ZONES; j++) {
4584 if (zone->lowmem_reserve[j] > max)
4585 max = zone->lowmem_reserve[j];
4586 }
4587
41858966
MG
4588 /* we treat the high watermark as reserved pages. */
4589 max += high_wmark_pages(zone);
cb45b0e9
HA
4590
4591 if (max > zone->present_pages)
4592 max = zone->present_pages;
4593 reserve_pages += max;
4594 }
4595 }
4596 totalreserve_pages = reserve_pages;
4597}
4598
1da177e4
LT
4599/*
4600 * setup_per_zone_lowmem_reserve - called whenever
4601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4602 * has a correct pages reserved value, so an adequate number of
4603 * pages are left in the zone after a successful __alloc_pages().
4604 */
4605static void setup_per_zone_lowmem_reserve(void)
4606{
4607 struct pglist_data *pgdat;
2f6726e5 4608 enum zone_type j, idx;
1da177e4 4609
ec936fc5 4610 for_each_online_pgdat(pgdat) {
1da177e4
LT
4611 for (j = 0; j < MAX_NR_ZONES; j++) {
4612 struct zone *zone = pgdat->node_zones + j;
4613 unsigned long present_pages = zone->present_pages;
4614
4615 zone->lowmem_reserve[j] = 0;
4616
2f6726e5
CL
4617 idx = j;
4618 while (idx) {
1da177e4
LT
4619 struct zone *lower_zone;
4620
2f6726e5
CL
4621 idx--;
4622
1da177e4
LT
4623 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4624 sysctl_lowmem_reserve_ratio[idx] = 1;
4625
4626 lower_zone = pgdat->node_zones + idx;
4627 lower_zone->lowmem_reserve[j] = present_pages /
4628 sysctl_lowmem_reserve_ratio[idx];
4629 present_pages += lower_zone->present_pages;
4630 }
4631 }
4632 }
cb45b0e9
HA
4633
4634 /* update totalreserve_pages */
4635 calculate_totalreserve_pages();
1da177e4
LT
4636}
4637
88ca3b94 4638/**
bc75d33f 4639 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4640 * or when memory is hot-{added|removed}
88ca3b94 4641 *
bc75d33f
MK
4642 * Ensures that the watermark[min,low,high] values for each zone are set
4643 * correctly with respect to min_free_kbytes.
1da177e4 4644 */
bc75d33f 4645void setup_per_zone_wmarks(void)
1da177e4
LT
4646{
4647 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4648 unsigned long lowmem_pages = 0;
4649 struct zone *zone;
4650 unsigned long flags;
4651
4652 /* Calculate total number of !ZONE_HIGHMEM pages */
4653 for_each_zone(zone) {
4654 if (!is_highmem(zone))
4655 lowmem_pages += zone->present_pages;
4656 }
4657
4658 for_each_zone(zone) {
ac924c60
AM
4659 u64 tmp;
4660
1125b4e3 4661 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4662 tmp = (u64)pages_min * zone->present_pages;
4663 do_div(tmp, lowmem_pages);
1da177e4
LT
4664 if (is_highmem(zone)) {
4665 /*
669ed175
NP
4666 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4667 * need highmem pages, so cap pages_min to a small
4668 * value here.
4669 *
41858966 4670 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4671 * deltas controls asynch page reclaim, and so should
4672 * not be capped for highmem.
1da177e4
LT
4673 */
4674 int min_pages;
4675
4676 min_pages = zone->present_pages / 1024;
4677 if (min_pages < SWAP_CLUSTER_MAX)
4678 min_pages = SWAP_CLUSTER_MAX;
4679 if (min_pages > 128)
4680 min_pages = 128;
41858966 4681 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4682 } else {
669ed175
NP
4683 /*
4684 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4685 * proportionate to the zone's size.
4686 */
41858966 4687 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4688 }
4689
41858966
MG
4690 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4691 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4692 setup_zone_migrate_reserve(zone);
1125b4e3 4693 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4694 }
cb45b0e9
HA
4695
4696 /* update totalreserve_pages */
4697 calculate_totalreserve_pages();
1da177e4
LT
4698}
4699
55a4462a 4700/*
556adecb
RR
4701 * The inactive anon list should be small enough that the VM never has to
4702 * do too much work, but large enough that each inactive page has a chance
4703 * to be referenced again before it is swapped out.
4704 *
4705 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4706 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4707 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4708 * the anonymous pages are kept on the inactive list.
4709 *
4710 * total target max
4711 * memory ratio inactive anon
4712 * -------------------------------------
4713 * 10MB 1 5MB
4714 * 100MB 1 50MB
4715 * 1GB 3 250MB
4716 * 10GB 10 0.9GB
4717 * 100GB 31 3GB
4718 * 1TB 101 10GB
4719 * 10TB 320 32GB
4720 */
96cb4df5 4721void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4722{
96cb4df5 4723 unsigned int gb, ratio;
556adecb 4724
96cb4df5
MK
4725 /* Zone size in gigabytes */
4726 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4727 if (gb)
556adecb 4728 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4729 else
4730 ratio = 1;
556adecb 4731
96cb4df5
MK
4732 zone->inactive_ratio = ratio;
4733}
556adecb 4734
96cb4df5
MK
4735static void __init setup_per_zone_inactive_ratio(void)
4736{
4737 struct zone *zone;
4738
4739 for_each_zone(zone)
4740 calculate_zone_inactive_ratio(zone);
556adecb
RR
4741}
4742
1da177e4
LT
4743/*
4744 * Initialise min_free_kbytes.
4745 *
4746 * For small machines we want it small (128k min). For large machines
4747 * we want it large (64MB max). But it is not linear, because network
4748 * bandwidth does not increase linearly with machine size. We use
4749 *
4750 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4751 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4752 *
4753 * which yields
4754 *
4755 * 16MB: 512k
4756 * 32MB: 724k
4757 * 64MB: 1024k
4758 * 128MB: 1448k
4759 * 256MB: 2048k
4760 * 512MB: 2896k
4761 * 1024MB: 4096k
4762 * 2048MB: 5792k
4763 * 4096MB: 8192k
4764 * 8192MB: 11584k
4765 * 16384MB: 16384k
4766 */
bc75d33f 4767static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4768{
4769 unsigned long lowmem_kbytes;
4770
4771 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4772
4773 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4774 if (min_free_kbytes < 128)
4775 min_free_kbytes = 128;
4776 if (min_free_kbytes > 65536)
4777 min_free_kbytes = 65536;
bc75d33f 4778 setup_per_zone_wmarks();
1da177e4 4779 setup_per_zone_lowmem_reserve();
556adecb 4780 setup_per_zone_inactive_ratio();
1da177e4
LT
4781 return 0;
4782}
bc75d33f 4783module_init(init_per_zone_wmark_min)
1da177e4
LT
4784
4785/*
4786 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4787 * that we can call two helper functions whenever min_free_kbytes
4788 * changes.
4789 */
4790int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4791 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4792{
8d65af78 4793 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4794 if (write)
bc75d33f 4795 setup_per_zone_wmarks();
1da177e4
LT
4796 return 0;
4797}
4798
9614634f
CL
4799#ifdef CONFIG_NUMA
4800int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4801 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4802{
4803 struct zone *zone;
4804 int rc;
4805
8d65af78 4806 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4807 if (rc)
4808 return rc;
4809
4810 for_each_zone(zone)
8417bba4 4811 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4812 sysctl_min_unmapped_ratio) / 100;
4813 return 0;
4814}
0ff38490
CL
4815
4816int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4817 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4818{
4819 struct zone *zone;
4820 int rc;
4821
8d65af78 4822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4823 if (rc)
4824 return rc;
4825
4826 for_each_zone(zone)
4827 zone->min_slab_pages = (zone->present_pages *
4828 sysctl_min_slab_ratio) / 100;
4829 return 0;
4830}
9614634f
CL
4831#endif
4832
1da177e4
LT
4833/*
4834 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4835 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4836 * whenever sysctl_lowmem_reserve_ratio changes.
4837 *
4838 * The reserve ratio obviously has absolutely no relation with the
41858966 4839 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4840 * if in function of the boot time zone sizes.
4841 */
4842int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4843 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4844{
8d65af78 4845 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4846 setup_per_zone_lowmem_reserve();
4847 return 0;
4848}
4849
8ad4b1fb
RS
4850/*
4851 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4852 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4853 * can have before it gets flushed back to buddy allocator.
4854 */
4855
4856int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4857 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4858{
4859 struct zone *zone;
4860 unsigned int cpu;
4861 int ret;
4862
8d65af78 4863 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4864 if (!write || (ret == -EINVAL))
4865 return ret;
364df0eb 4866 for_each_populated_zone(zone) {
99dcc3e5 4867 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
4868 unsigned long high;
4869 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
4870 setup_pagelist_highmark(
4871 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
4872 }
4873 }
4874 return 0;
4875}
4876
f034b5d4 4877int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4878
4879#ifdef CONFIG_NUMA
4880static int __init set_hashdist(char *str)
4881{
4882 if (!str)
4883 return 0;
4884 hashdist = simple_strtoul(str, &str, 0);
4885 return 1;
4886}
4887__setup("hashdist=", set_hashdist);
4888#endif
4889
4890/*
4891 * allocate a large system hash table from bootmem
4892 * - it is assumed that the hash table must contain an exact power-of-2
4893 * quantity of entries
4894 * - limit is the number of hash buckets, not the total allocation size
4895 */
4896void *__init alloc_large_system_hash(const char *tablename,
4897 unsigned long bucketsize,
4898 unsigned long numentries,
4899 int scale,
4900 int flags,
4901 unsigned int *_hash_shift,
4902 unsigned int *_hash_mask,
4903 unsigned long limit)
4904{
4905 unsigned long long max = limit;
4906 unsigned long log2qty, size;
4907 void *table = NULL;
4908
4909 /* allow the kernel cmdline to have a say */
4910 if (!numentries) {
4911 /* round applicable memory size up to nearest megabyte */
04903664 4912 numentries = nr_kernel_pages;
1da177e4
LT
4913 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4914 numentries >>= 20 - PAGE_SHIFT;
4915 numentries <<= 20 - PAGE_SHIFT;
4916
4917 /* limit to 1 bucket per 2^scale bytes of low memory */
4918 if (scale > PAGE_SHIFT)
4919 numentries >>= (scale - PAGE_SHIFT);
4920 else
4921 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4922
4923 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
4924 if (unlikely(flags & HASH_SMALL)) {
4925 /* Makes no sense without HASH_EARLY */
4926 WARN_ON(!(flags & HASH_EARLY));
4927 if (!(numentries >> *_hash_shift)) {
4928 numentries = 1UL << *_hash_shift;
4929 BUG_ON(!numentries);
4930 }
4931 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 4932 numentries = PAGE_SIZE / bucketsize;
1da177e4 4933 }
6e692ed3 4934 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4935
4936 /* limit allocation size to 1/16 total memory by default */
4937 if (max == 0) {
4938 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4939 do_div(max, bucketsize);
4940 }
4941
4942 if (numentries > max)
4943 numentries = max;
4944
f0d1b0b3 4945 log2qty = ilog2(numentries);
1da177e4
LT
4946
4947 do {
4948 size = bucketsize << log2qty;
4949 if (flags & HASH_EARLY)
74768ed8 4950 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4951 else if (hashdist)
4952 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4953 else {
1037b83b
ED
4954 /*
4955 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4956 * some pages at the end of hash table which
4957 * alloc_pages_exact() automatically does
1037b83b 4958 */
264ef8a9 4959 if (get_order(size) < MAX_ORDER) {
a1dd268c 4960 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4961 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4962 }
1da177e4
LT
4963 }
4964 } while (!table && size > PAGE_SIZE && --log2qty);
4965
4966 if (!table)
4967 panic("Failed to allocate %s hash table\n", tablename);
4968
b49ad484 4969 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4970 tablename,
4971 (1U << log2qty),
f0d1b0b3 4972 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4973 size);
4974
4975 if (_hash_shift)
4976 *_hash_shift = log2qty;
4977 if (_hash_mask)
4978 *_hash_mask = (1 << log2qty) - 1;
4979
4980 return table;
4981}
a117e66e 4982
835c134e
MG
4983/* Return a pointer to the bitmap storing bits affecting a block of pages */
4984static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4985 unsigned long pfn)
4986{
4987#ifdef CONFIG_SPARSEMEM
4988 return __pfn_to_section(pfn)->pageblock_flags;
4989#else
4990 return zone->pageblock_flags;
4991#endif /* CONFIG_SPARSEMEM */
4992}
4993
4994static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4995{
4996#ifdef CONFIG_SPARSEMEM
4997 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4998 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4999#else
5000 pfn = pfn - zone->zone_start_pfn;
d9c23400 5001 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5002#endif /* CONFIG_SPARSEMEM */
5003}
5004
5005/**
d9c23400 5006 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5007 * @page: The page within the block of interest
5008 * @start_bitidx: The first bit of interest to retrieve
5009 * @end_bitidx: The last bit of interest
5010 * returns pageblock_bits flags
5011 */
5012unsigned long get_pageblock_flags_group(struct page *page,
5013 int start_bitidx, int end_bitidx)
5014{
5015 struct zone *zone;
5016 unsigned long *bitmap;
5017 unsigned long pfn, bitidx;
5018 unsigned long flags = 0;
5019 unsigned long value = 1;
5020
5021 zone = page_zone(page);
5022 pfn = page_to_pfn(page);
5023 bitmap = get_pageblock_bitmap(zone, pfn);
5024 bitidx = pfn_to_bitidx(zone, pfn);
5025
5026 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5027 if (test_bit(bitidx + start_bitidx, bitmap))
5028 flags |= value;
6220ec78 5029
835c134e
MG
5030 return flags;
5031}
5032
5033/**
d9c23400 5034 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5035 * @page: The page within the block of interest
5036 * @start_bitidx: The first bit of interest
5037 * @end_bitidx: The last bit of interest
5038 * @flags: The flags to set
5039 */
5040void set_pageblock_flags_group(struct page *page, unsigned long flags,
5041 int start_bitidx, int end_bitidx)
5042{
5043 struct zone *zone;
5044 unsigned long *bitmap;
5045 unsigned long pfn, bitidx;
5046 unsigned long value = 1;
5047
5048 zone = page_zone(page);
5049 pfn = page_to_pfn(page);
5050 bitmap = get_pageblock_bitmap(zone, pfn);
5051 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5052 VM_BUG_ON(pfn < zone->zone_start_pfn);
5053 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5054
5055 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5056 if (flags & value)
5057 __set_bit(bitidx + start_bitidx, bitmap);
5058 else
5059 __clear_bit(bitidx + start_bitidx, bitmap);
5060}
a5d76b54
KH
5061
5062/*
5063 * This is designed as sub function...plz see page_isolation.c also.
5064 * set/clear page block's type to be ISOLATE.
5065 * page allocater never alloc memory from ISOLATE block.
5066 */
5067
5068int set_migratetype_isolate(struct page *page)
5069{
5070 struct zone *zone;
925cc71e
RJ
5071 struct page *curr_page;
5072 unsigned long flags, pfn, iter;
5073 unsigned long immobile = 0;
5074 struct memory_isolate_notify arg;
5075 int notifier_ret;
a5d76b54 5076 int ret = -EBUSY;
8e7e40d9 5077 int zone_idx;
a5d76b54
KH
5078
5079 zone = page_zone(page);
8e7e40d9 5080 zone_idx = zone_idx(zone);
925cc71e 5081
a5d76b54 5082 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5083 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5084 zone_idx == ZONE_MOVABLE) {
5085 ret = 0;
5086 goto out;
5087 }
5088
5089 pfn = page_to_pfn(page);
5090 arg.start_pfn = pfn;
5091 arg.nr_pages = pageblock_nr_pages;
5092 arg.pages_found = 0;
5093
a5d76b54 5094 /*
925cc71e
RJ
5095 * It may be possible to isolate a pageblock even if the
5096 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5097 * notifier chain is used by balloon drivers to return the
5098 * number of pages in a range that are held by the balloon
5099 * driver to shrink memory. If all the pages are accounted for
5100 * by balloons, are free, or on the LRU, isolation can continue.
5101 * Later, for example, when memory hotplug notifier runs, these
5102 * pages reported as "can be isolated" should be isolated(freed)
5103 * by the balloon driver through the memory notifier chain.
a5d76b54 5104 */
925cc71e
RJ
5105 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5106 notifier_ret = notifier_to_errno(notifier_ret);
5107 if (notifier_ret || !arg.pages_found)
a5d76b54 5108 goto out;
925cc71e
RJ
5109
5110 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5111 if (!pfn_valid_within(pfn))
5112 continue;
5113
5114 curr_page = pfn_to_page(iter);
5115 if (!page_count(curr_page) || PageLRU(curr_page))
5116 continue;
5117
5118 immobile++;
5119 }
5120
5121 if (arg.pages_found == immobile)
5122 ret = 0;
5123
a5d76b54 5124out:
925cc71e
RJ
5125 if (!ret) {
5126 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5127 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5128 }
5129
a5d76b54
KH
5130 spin_unlock_irqrestore(&zone->lock, flags);
5131 if (!ret)
9f8f2172 5132 drain_all_pages();
a5d76b54
KH
5133 return ret;
5134}
5135
5136void unset_migratetype_isolate(struct page *page)
5137{
5138 struct zone *zone;
5139 unsigned long flags;
5140 zone = page_zone(page);
5141 spin_lock_irqsave(&zone->lock, flags);
5142 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5143 goto out;
5144 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5145 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5146out:
5147 spin_unlock_irqrestore(&zone->lock, flags);
5148}
0c0e6195
KH
5149
5150#ifdef CONFIG_MEMORY_HOTREMOVE
5151/*
5152 * All pages in the range must be isolated before calling this.
5153 */
5154void
5155__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5156{
5157 struct page *page;
5158 struct zone *zone;
5159 int order, i;
5160 unsigned long pfn;
5161 unsigned long flags;
5162 /* find the first valid pfn */
5163 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5164 if (pfn_valid(pfn))
5165 break;
5166 if (pfn == end_pfn)
5167 return;
5168 zone = page_zone(pfn_to_page(pfn));
5169 spin_lock_irqsave(&zone->lock, flags);
5170 pfn = start_pfn;
5171 while (pfn < end_pfn) {
5172 if (!pfn_valid(pfn)) {
5173 pfn++;
5174 continue;
5175 }
5176 page = pfn_to_page(pfn);
5177 BUG_ON(page_count(page));
5178 BUG_ON(!PageBuddy(page));
5179 order = page_order(page);
5180#ifdef CONFIG_DEBUG_VM
5181 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5182 pfn, 1 << order, end_pfn);
5183#endif
5184 list_del(&page->lru);
5185 rmv_page_order(page);
5186 zone->free_area[order].nr_free--;
5187 __mod_zone_page_state(zone, NR_FREE_PAGES,
5188 - (1UL << order));
5189 for (i = 0; i < (1 << order); i++)
5190 SetPageReserved((page+i));
5191 pfn += (1 << order);
5192 }
5193 spin_unlock_irqrestore(&zone->lock, flags);
5194}
5195#endif
8d22ba1b
WF
5196
5197#ifdef CONFIG_MEMORY_FAILURE
5198bool is_free_buddy_page(struct page *page)
5199{
5200 struct zone *zone = page_zone(page);
5201 unsigned long pfn = page_to_pfn(page);
5202 unsigned long flags;
5203 int order;
5204
5205 spin_lock_irqsave(&zone->lock, flags);
5206 for (order = 0; order < MAX_ORDER; order++) {
5207 struct page *page_head = page - (pfn & ((1 << order) - 1));
5208
5209 if (PageBuddy(page_head) && page_order(page_head) >= order)
5210 break;
5211 }
5212 spin_unlock_irqrestore(&zone->lock, flags);
5213
5214 return order < MAX_ORDER;
5215}
5216#endif
718a3821
WF
5217
5218static struct trace_print_flags pageflag_names[] = {
5219 {1UL << PG_locked, "locked" },
5220 {1UL << PG_error, "error" },
5221 {1UL << PG_referenced, "referenced" },
5222 {1UL << PG_uptodate, "uptodate" },
5223 {1UL << PG_dirty, "dirty" },
5224 {1UL << PG_lru, "lru" },
5225 {1UL << PG_active, "active" },
5226 {1UL << PG_slab, "slab" },
5227 {1UL << PG_owner_priv_1, "owner_priv_1" },
5228 {1UL << PG_arch_1, "arch_1" },
5229 {1UL << PG_reserved, "reserved" },
5230 {1UL << PG_private, "private" },
5231 {1UL << PG_private_2, "private_2" },
5232 {1UL << PG_writeback, "writeback" },
5233#ifdef CONFIG_PAGEFLAGS_EXTENDED
5234 {1UL << PG_head, "head" },
5235 {1UL << PG_tail, "tail" },
5236#else
5237 {1UL << PG_compound, "compound" },
5238#endif
5239 {1UL << PG_swapcache, "swapcache" },
5240 {1UL << PG_mappedtodisk, "mappedtodisk" },
5241 {1UL << PG_reclaim, "reclaim" },
5242 {1UL << PG_buddy, "buddy" },
5243 {1UL << PG_swapbacked, "swapbacked" },
5244 {1UL << PG_unevictable, "unevictable" },
5245#ifdef CONFIG_MMU
5246 {1UL << PG_mlocked, "mlocked" },
5247#endif
5248#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5249 {1UL << PG_uncached, "uncached" },
5250#endif
5251#ifdef CONFIG_MEMORY_FAILURE
5252 {1UL << PG_hwpoison, "hwpoison" },
5253#endif
5254 {-1UL, NULL },
5255};
5256
5257static void dump_page_flags(unsigned long flags)
5258{
5259 const char *delim = "";
5260 unsigned long mask;
5261 int i;
5262
5263 printk(KERN_ALERT "page flags: %#lx(", flags);
5264
5265 /* remove zone id */
5266 flags &= (1UL << NR_PAGEFLAGS) - 1;
5267
5268 for (i = 0; pageflag_names[i].name && flags; i++) {
5269
5270 mask = pageflag_names[i].mask;
5271 if ((flags & mask) != mask)
5272 continue;
5273
5274 flags &= ~mask;
5275 printk("%s%s", delim, pageflag_names[i].name);
5276 delim = "|";
5277 }
5278
5279 /* check for left over flags */
5280 if (flags)
5281 printk("%s%#lx", delim, flags);
5282
5283 printk(")\n");
5284}
5285
5286void dump_page(struct page *page)
5287{
5288 printk(KERN_ALERT
5289 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5290 page, page_count(page), page_mapcount(page),
5291 page->mapping, page->index);
5292 dump_page_flags(page->flags);
5293}
This page took 0.989848 seconds and 5 git commands to generate.