Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
e30825f1 59#include <linux/page_ext.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
48c96a36 62#include <linux/page_owner.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 71#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 87int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
88#endif
89
1da177e4 90/*
13808910 91 * Array of node states.
1da177e4 92 */
13808910
CL
93nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96#ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98#ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
100#endif
101#ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
103#endif
104 [N_CPU] = { { [0] = 1UL } },
105#endif /* NUMA */
106};
107EXPORT_SYMBOL(node_states);
108
c3d5f5f0
JL
109/* Protect totalram_pages and zone->managed_pages */
110static DEFINE_SPINLOCK(managed_page_count_lock);
111
6c231b7b 112unsigned long totalram_pages __read_mostly;
cb45b0e9 113unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
114/*
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
119 */
120unsigned long dirty_balance_reserve __read_mostly;
121
1b76b02f 122int percpu_pagelist_fraction;
dcce284a 123gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 124
452aa699
RW
125#ifdef CONFIG_PM_SLEEP
126/*
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
133 */
c9e664f1
RW
134
135static gfp_t saved_gfp_mask;
136
137void pm_restore_gfp_mask(void)
452aa699
RW
138{
139 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
140 if (saved_gfp_mask) {
141 gfp_allowed_mask = saved_gfp_mask;
142 saved_gfp_mask = 0;
143 }
452aa699
RW
144}
145
c9e664f1 146void pm_restrict_gfp_mask(void)
452aa699 147{
452aa699 148 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
149 WARN_ON(saved_gfp_mask);
150 saved_gfp_mask = gfp_allowed_mask;
151 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 152}
f90ac398
MG
153
154bool pm_suspended_storage(void)
155{
156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 return false;
158 return true;
159}
452aa699
RW
160#endif /* CONFIG_PM_SLEEP */
161
d9c23400
MG
162#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163int pageblock_order __read_mostly;
164#endif
165
d98c7a09 166static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 167
1da177e4
LT
168/*
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
175 *
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
1da177e4 178 */
2f1b6248 179int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 180#ifdef CONFIG_ZONE_DMA
2f1b6248 181 256,
4b51d669 182#endif
fb0e7942 183#ifdef CONFIG_ZONE_DMA32
2f1b6248 184 256,
fb0e7942 185#endif
e53ef38d 186#ifdef CONFIG_HIGHMEM
2a1e274a 187 32,
e53ef38d 188#endif
2a1e274a 189 32,
2f1b6248 190};
1da177e4
LT
191
192EXPORT_SYMBOL(totalram_pages);
1da177e4 193
15ad7cdc 194static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 "DMA",
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 "DMA32",
fb0e7942 200#endif
2f1b6248 201 "Normal",
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 "HighMem",
e53ef38d 204#endif
2a1e274a 205 "Movable",
2f1b6248
CL
206};
207
1da177e4 208int min_free_kbytes = 1024;
42aa83cb 209int user_min_free_kbytes = -1;
1da177e4 210
2c85f51d
JB
211static unsigned long __meminitdata nr_kernel_pages;
212static unsigned long __meminitdata nr_all_pages;
a3142c8e 213static unsigned long __meminitdata dma_reserve;
1da177e4 214
0ee332c1
TH
215#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __initdata required_kernelcore;
219static unsigned long __initdata required_movablecore;
220static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221
222/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223int movable_zone;
224EXPORT_SYMBOL(movable_zone);
225#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 226
418508c1
MS
227#if MAX_NUMNODES > 1
228int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 229int nr_online_nodes __read_mostly = 1;
418508c1 230EXPORT_SYMBOL(nr_node_ids);
62bc62a8 231EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
232#endif
233
9ef9acb0
MG
234int page_group_by_mobility_disabled __read_mostly;
235
ee6f509c 236void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 237{
5d0f3f72
KM
238 if (unlikely(page_group_by_mobility_disabled &&
239 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
240 migratetype = MIGRATE_UNMOVABLE;
241
b2a0ac88
MG
242 set_pageblock_flags_group(page, (unsigned long)migratetype,
243 PB_migrate, PB_migrate_end);
244}
245
7f33d49a
RW
246bool oom_killer_disabled __read_mostly;
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
59ff4216 383/* update __split_huge_page_refcount if you change this function */
8cc3b392 384static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
385{
386 int i;
387 int nr_pages = 1 << order;
8cc3b392 388 int bad = 0;
1da177e4 389
0bb2c763 390 if (unlikely(compound_order(page) != order)) {
f0b791a3 391 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
392 bad++;
393 }
1da177e4 394
6d777953 395 __ClearPageHead(page);
8cc3b392 396
18229df5
AW
397 for (i = 1; i < nr_pages; i++) {
398 struct page *p = page + i;
1da177e4 399
f0b791a3
DH
400 if (unlikely(!PageTail(p))) {
401 bad_page(page, "PageTail not set", 0);
402 bad++;
403 } else if (unlikely(p->first_page != page)) {
404 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
405 bad++;
406 }
d85f3385 407 __ClearPageTail(p);
1da177e4 408 }
8cc3b392
HD
409
410 return bad;
1da177e4 411}
1da177e4 412
7aeb09f9
MG
413static inline void prep_zero_page(struct page *page, unsigned int order,
414 gfp_t gfp_flags)
17cf4406
NP
415{
416 int i;
417
6626c5d5
AM
418 /*
419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 */
725d704e 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
423 for (i = 0; i < (1 << order); i++)
424 clear_highpage(page + i);
425}
426
c0a32fc5
SG
427#ifdef CONFIG_DEBUG_PAGEALLOC
428unsigned int _debug_guardpage_minorder;
031bc574 429bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
430bool _debug_guardpage_enabled __read_mostly;
431
031bc574
JK
432static int __init early_debug_pagealloc(char *buf)
433{
434 if (!buf)
435 return -EINVAL;
436
437 if (strcmp(buf, "on") == 0)
438 _debug_pagealloc_enabled = true;
439
440 return 0;
441}
442early_param("debug_pagealloc", early_debug_pagealloc);
443
e30825f1
JK
444static bool need_debug_guardpage(void)
445{
031bc574
JK
446 /* If we don't use debug_pagealloc, we don't need guard page */
447 if (!debug_pagealloc_enabled())
448 return false;
449
e30825f1
JK
450 return true;
451}
452
453static void init_debug_guardpage(void)
454{
031bc574
JK
455 if (!debug_pagealloc_enabled())
456 return;
457
e30825f1
JK
458 _debug_guardpage_enabled = true;
459}
460
461struct page_ext_operations debug_guardpage_ops = {
462 .need = need_debug_guardpage,
463 .init = init_debug_guardpage,
464};
c0a32fc5
SG
465
466static int __init debug_guardpage_minorder_setup(char *buf)
467{
468 unsigned long res;
469
470 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
471 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
472 return 0;
473 }
474 _debug_guardpage_minorder = res;
475 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
476 return 0;
477}
478__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
479
2847cf95
JK
480static inline void set_page_guard(struct zone *zone, struct page *page,
481 unsigned int order, int migratetype)
c0a32fc5 482{
e30825f1
JK
483 struct page_ext *page_ext;
484
485 if (!debug_guardpage_enabled())
486 return;
487
488 page_ext = lookup_page_ext(page);
489 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
490
2847cf95
JK
491 INIT_LIST_HEAD(&page->lru);
492 set_page_private(page, order);
493 /* Guard pages are not available for any usage */
494 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
495}
496
2847cf95
JK
497static inline void clear_page_guard(struct zone *zone, struct page *page,
498 unsigned int order, int migratetype)
c0a32fc5 499{
e30825f1
JK
500 struct page_ext *page_ext;
501
502 if (!debug_guardpage_enabled())
503 return;
504
505 page_ext = lookup_page_ext(page);
506 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
507
2847cf95
JK
508 set_page_private(page, 0);
509 if (!is_migrate_isolate(migratetype))
510 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
511}
512#else
e30825f1 513struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
514static inline void set_page_guard(struct zone *zone, struct page *page,
515 unsigned int order, int migratetype) {}
516static inline void clear_page_guard(struct zone *zone, struct page *page,
517 unsigned int order, int migratetype) {}
c0a32fc5
SG
518#endif
519
7aeb09f9 520static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 521{
4c21e2f2 522 set_page_private(page, order);
676165a8 523 __SetPageBuddy(page);
1da177e4
LT
524}
525
526static inline void rmv_page_order(struct page *page)
527{
676165a8 528 __ClearPageBuddy(page);
4c21e2f2 529 set_page_private(page, 0);
1da177e4
LT
530}
531
1da177e4
LT
532/*
533 * This function checks whether a page is free && is the buddy
534 * we can do coalesce a page and its buddy if
13e7444b 535 * (a) the buddy is not in a hole &&
676165a8 536 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
537 * (c) a page and its buddy have the same order &&
538 * (d) a page and its buddy are in the same zone.
676165a8 539 *
cf6fe945
WSH
540 * For recording whether a page is in the buddy system, we set ->_mapcount
541 * PAGE_BUDDY_MAPCOUNT_VALUE.
542 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
543 * serialized by zone->lock.
1da177e4 544 *
676165a8 545 * For recording page's order, we use page_private(page).
1da177e4 546 */
cb2b95e1 547static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 548 unsigned int order)
1da177e4 549{
14e07298 550 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 551 return 0;
13e7444b 552
c0a32fc5 553 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 554 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
555
556 if (page_zone_id(page) != page_zone_id(buddy))
557 return 0;
558
c0a32fc5
SG
559 return 1;
560 }
561
cb2b95e1 562 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 563 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
564
565 /*
566 * zone check is done late to avoid uselessly
567 * calculating zone/node ids for pages that could
568 * never merge.
569 */
570 if (page_zone_id(page) != page_zone_id(buddy))
571 return 0;
572
6aa3001b 573 return 1;
676165a8 574 }
6aa3001b 575 return 0;
1da177e4
LT
576}
577
578/*
579 * Freeing function for a buddy system allocator.
580 *
581 * The concept of a buddy system is to maintain direct-mapped table
582 * (containing bit values) for memory blocks of various "orders".
583 * The bottom level table contains the map for the smallest allocatable
584 * units of memory (here, pages), and each level above it describes
585 * pairs of units from the levels below, hence, "buddies".
586 * At a high level, all that happens here is marking the table entry
587 * at the bottom level available, and propagating the changes upward
588 * as necessary, plus some accounting needed to play nicely with other
589 * parts of the VM system.
590 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
591 * free pages of length of (1 << order) and marked with _mapcount
592 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
593 * field.
1da177e4 594 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
595 * other. That is, if we allocate a small block, and both were
596 * free, the remainder of the region must be split into blocks.
1da177e4 597 * If a block is freed, and its buddy is also free, then this
5f63b720 598 * triggers coalescing into a block of larger size.
1da177e4 599 *
6d49e352 600 * -- nyc
1da177e4
LT
601 */
602
48db57f8 603static inline void __free_one_page(struct page *page,
dc4b0caf 604 unsigned long pfn,
ed0ae21d
MG
605 struct zone *zone, unsigned int order,
606 int migratetype)
1da177e4
LT
607{
608 unsigned long page_idx;
6dda9d55 609 unsigned long combined_idx;
43506fad 610 unsigned long uninitialized_var(buddy_idx);
6dda9d55 611 struct page *buddy;
3c605096 612 int max_order = MAX_ORDER;
1da177e4 613
d29bb978
CS
614 VM_BUG_ON(!zone_is_initialized(zone));
615
224abf92 616 if (unlikely(PageCompound(page)))
8cc3b392
HD
617 if (unlikely(destroy_compound_page(page, order)))
618 return;
1da177e4 619
ed0ae21d 620 VM_BUG_ON(migratetype == -1);
3c605096
JK
621 if (is_migrate_isolate(migratetype)) {
622 /*
623 * We restrict max order of merging to prevent merge
624 * between freepages on isolate pageblock and normal
625 * pageblock. Without this, pageblock isolation
626 * could cause incorrect freepage accounting.
627 */
628 max_order = min(MAX_ORDER, pageblock_order + 1);
629 } else {
8f82b55d 630 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 631 }
ed0ae21d 632
3c605096 633 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 634
309381fe
SL
635 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
636 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 637
3c605096 638 while (order < max_order - 1) {
43506fad
KC
639 buddy_idx = __find_buddy_index(page_idx, order);
640 buddy = page + (buddy_idx - page_idx);
cb2b95e1 641 if (!page_is_buddy(page, buddy, order))
3c82d0ce 642 break;
c0a32fc5
SG
643 /*
644 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
645 * merge with it and move up one order.
646 */
647 if (page_is_guard(buddy)) {
2847cf95 648 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
649 } else {
650 list_del(&buddy->lru);
651 zone->free_area[order].nr_free--;
652 rmv_page_order(buddy);
653 }
43506fad 654 combined_idx = buddy_idx & page_idx;
1da177e4
LT
655 page = page + (combined_idx - page_idx);
656 page_idx = combined_idx;
657 order++;
658 }
659 set_page_order(page, order);
6dda9d55
CZ
660
661 /*
662 * If this is not the largest possible page, check if the buddy
663 * of the next-highest order is free. If it is, it's possible
664 * that pages are being freed that will coalesce soon. In case,
665 * that is happening, add the free page to the tail of the list
666 * so it's less likely to be used soon and more likely to be merged
667 * as a higher order page
668 */
b7f50cfa 669 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 670 struct page *higher_page, *higher_buddy;
43506fad
KC
671 combined_idx = buddy_idx & page_idx;
672 higher_page = page + (combined_idx - page_idx);
673 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 674 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
675 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
676 list_add_tail(&page->lru,
677 &zone->free_area[order].free_list[migratetype]);
678 goto out;
679 }
680 }
681
682 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
683out:
1da177e4
LT
684 zone->free_area[order].nr_free++;
685}
686
224abf92 687static inline int free_pages_check(struct page *page)
1da177e4 688{
d230dec1 689 const char *bad_reason = NULL;
f0b791a3
DH
690 unsigned long bad_flags = 0;
691
692 if (unlikely(page_mapcount(page)))
693 bad_reason = "nonzero mapcount";
694 if (unlikely(page->mapping != NULL))
695 bad_reason = "non-NULL mapping";
696 if (unlikely(atomic_read(&page->_count) != 0))
697 bad_reason = "nonzero _count";
698 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
699 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
700 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
701 }
9edad6ea
JW
702#ifdef CONFIG_MEMCG
703 if (unlikely(page->mem_cgroup))
704 bad_reason = "page still charged to cgroup";
705#endif
f0b791a3
DH
706 if (unlikely(bad_reason)) {
707 bad_page(page, bad_reason, bad_flags);
79f4b7bf 708 return 1;
8cc3b392 709 }
90572890 710 page_cpupid_reset_last(page);
79f4b7bf
HD
711 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
712 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
713 return 0;
1da177e4
LT
714}
715
716/*
5f8dcc21 717 * Frees a number of pages from the PCP lists
1da177e4 718 * Assumes all pages on list are in same zone, and of same order.
207f36ee 719 * count is the number of pages to free.
1da177e4
LT
720 *
721 * If the zone was previously in an "all pages pinned" state then look to
722 * see if this freeing clears that state.
723 *
724 * And clear the zone's pages_scanned counter, to hold off the "all pages are
725 * pinned" detection logic.
726 */
5f8dcc21
MG
727static void free_pcppages_bulk(struct zone *zone, int count,
728 struct per_cpu_pages *pcp)
1da177e4 729{
5f8dcc21 730 int migratetype = 0;
a6f9edd6 731 int batch_free = 0;
72853e29 732 int to_free = count;
0d5d823a 733 unsigned long nr_scanned;
5f8dcc21 734
c54ad30c 735 spin_lock(&zone->lock);
0d5d823a
MG
736 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
737 if (nr_scanned)
738 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 739
72853e29 740 while (to_free) {
48db57f8 741 struct page *page;
5f8dcc21
MG
742 struct list_head *list;
743
744 /*
a6f9edd6
MG
745 * Remove pages from lists in a round-robin fashion. A
746 * batch_free count is maintained that is incremented when an
747 * empty list is encountered. This is so more pages are freed
748 * off fuller lists instead of spinning excessively around empty
749 * lists
5f8dcc21
MG
750 */
751 do {
a6f9edd6 752 batch_free++;
5f8dcc21
MG
753 if (++migratetype == MIGRATE_PCPTYPES)
754 migratetype = 0;
755 list = &pcp->lists[migratetype];
756 } while (list_empty(list));
48db57f8 757
1d16871d
NK
758 /* This is the only non-empty list. Free them all. */
759 if (batch_free == MIGRATE_PCPTYPES)
760 batch_free = to_free;
761
a6f9edd6 762 do {
770c8aaa
BZ
763 int mt; /* migratetype of the to-be-freed page */
764
a6f9edd6
MG
765 page = list_entry(list->prev, struct page, lru);
766 /* must delete as __free_one_page list manipulates */
767 list_del(&page->lru);
b12c4ad1 768 mt = get_freepage_migratetype(page);
8f82b55d 769 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 770 mt = get_pageblock_migratetype(page);
51bb1a40 771
a7016235 772 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 773 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 774 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 775 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 776 }
c54ad30c 777 spin_unlock(&zone->lock);
1da177e4
LT
778}
779
dc4b0caf
MG
780static void free_one_page(struct zone *zone,
781 struct page *page, unsigned long pfn,
7aeb09f9 782 unsigned int order,
ed0ae21d 783 int migratetype)
1da177e4 784{
0d5d823a 785 unsigned long nr_scanned;
006d22d9 786 spin_lock(&zone->lock);
0d5d823a
MG
787 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
788 if (nr_scanned)
789 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 790
ad53f92e
JK
791 if (unlikely(has_isolate_pageblock(zone) ||
792 is_migrate_isolate(migratetype))) {
793 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 794 }
dc4b0caf 795 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 796 spin_unlock(&zone->lock);
48db57f8
NP
797}
798
ec95f53a 799static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 800{
1da177e4 801 int i;
8cc3b392 802 int bad = 0;
1da177e4 803
ab1f306f
YZ
804 VM_BUG_ON_PAGE(PageTail(page), page);
805 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
806
b413d48a 807 trace_mm_page_free(page, order);
b1eeab67
VN
808 kmemcheck_free_shadow(page, order);
809
8dd60a3a
AA
810 if (PageAnon(page))
811 page->mapping = NULL;
812 for (i = 0; i < (1 << order); i++)
813 bad += free_pages_check(page + i);
8cc3b392 814 if (bad)
ec95f53a 815 return false;
689bcebf 816
48c96a36
JK
817 reset_page_owner(page, order);
818
3ac7fe5a 819 if (!PageHighMem(page)) {
b8af2941
PK
820 debug_check_no_locks_freed(page_address(page),
821 PAGE_SIZE << order);
3ac7fe5a
TG
822 debug_check_no_obj_freed(page_address(page),
823 PAGE_SIZE << order);
824 }
dafb1367 825 arch_free_page(page, order);
48db57f8 826 kernel_map_pages(page, 1 << order, 0);
dafb1367 827
ec95f53a
KM
828 return true;
829}
830
831static void __free_pages_ok(struct page *page, unsigned int order)
832{
833 unsigned long flags;
95e34412 834 int migratetype;
dc4b0caf 835 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
836
837 if (!free_pages_prepare(page, order))
838 return;
839
cfc47a28 840 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 841 local_irq_save(flags);
f8891e5e 842 __count_vm_events(PGFREE, 1 << order);
95e34412 843 set_freepage_migratetype(page, migratetype);
dc4b0caf 844 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 845 local_irq_restore(flags);
1da177e4
LT
846}
847
170a5a7e 848void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 849{
c3993076 850 unsigned int nr_pages = 1 << order;
e2d0bd2b 851 struct page *p = page;
c3993076 852 unsigned int loop;
a226f6c8 853
e2d0bd2b
YL
854 prefetchw(p);
855 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
856 prefetchw(p + 1);
c3993076
JW
857 __ClearPageReserved(p);
858 set_page_count(p, 0);
a226f6c8 859 }
e2d0bd2b
YL
860 __ClearPageReserved(p);
861 set_page_count(p, 0);
c3993076 862
e2d0bd2b 863 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
864 set_page_refcounted(page);
865 __free_pages(page, order);
a226f6c8
DH
866}
867
47118af0 868#ifdef CONFIG_CMA
9cf510a5 869/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
870void __init init_cma_reserved_pageblock(struct page *page)
871{
872 unsigned i = pageblock_nr_pages;
873 struct page *p = page;
874
875 do {
876 __ClearPageReserved(p);
877 set_page_count(p, 0);
878 } while (++p, --i);
879
47118af0 880 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
881
882 if (pageblock_order >= MAX_ORDER) {
883 i = pageblock_nr_pages;
884 p = page;
885 do {
886 set_page_refcounted(p);
887 __free_pages(p, MAX_ORDER - 1);
888 p += MAX_ORDER_NR_PAGES;
889 } while (i -= MAX_ORDER_NR_PAGES);
890 } else {
891 set_page_refcounted(page);
892 __free_pages(page, pageblock_order);
893 }
894
3dcc0571 895 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
896}
897#endif
1da177e4
LT
898
899/*
900 * The order of subdivision here is critical for the IO subsystem.
901 * Please do not alter this order without good reasons and regression
902 * testing. Specifically, as large blocks of memory are subdivided,
903 * the order in which smaller blocks are delivered depends on the order
904 * they're subdivided in this function. This is the primary factor
905 * influencing the order in which pages are delivered to the IO
906 * subsystem according to empirical testing, and this is also justified
907 * by considering the behavior of a buddy system containing a single
908 * large block of memory acted on by a series of small allocations.
909 * This behavior is a critical factor in sglist merging's success.
910 *
6d49e352 911 * -- nyc
1da177e4 912 */
085cc7d5 913static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
914 int low, int high, struct free_area *area,
915 int migratetype)
1da177e4
LT
916{
917 unsigned long size = 1 << high;
918
919 while (high > low) {
920 area--;
921 high--;
922 size >>= 1;
309381fe 923 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 924
2847cf95 925 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 926 debug_guardpage_enabled() &&
2847cf95 927 high < debug_guardpage_minorder()) {
c0a32fc5
SG
928 /*
929 * Mark as guard pages (or page), that will allow to
930 * merge back to allocator when buddy will be freed.
931 * Corresponding page table entries will not be touched,
932 * pages will stay not present in virtual address space
933 */
2847cf95 934 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
935 continue;
936 }
b2a0ac88 937 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
938 area->nr_free++;
939 set_page_order(&page[size], high);
940 }
1da177e4
LT
941}
942
1da177e4
LT
943/*
944 * This page is about to be returned from the page allocator
945 */
2a7684a2 946static inline int check_new_page(struct page *page)
1da177e4 947{
d230dec1 948 const char *bad_reason = NULL;
f0b791a3
DH
949 unsigned long bad_flags = 0;
950
951 if (unlikely(page_mapcount(page)))
952 bad_reason = "nonzero mapcount";
953 if (unlikely(page->mapping != NULL))
954 bad_reason = "non-NULL mapping";
955 if (unlikely(atomic_read(&page->_count) != 0))
956 bad_reason = "nonzero _count";
957 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
958 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
959 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
960 }
9edad6ea
JW
961#ifdef CONFIG_MEMCG
962 if (unlikely(page->mem_cgroup))
963 bad_reason = "page still charged to cgroup";
964#endif
f0b791a3
DH
965 if (unlikely(bad_reason)) {
966 bad_page(page, bad_reason, bad_flags);
689bcebf 967 return 1;
8cc3b392 968 }
2a7684a2
WF
969 return 0;
970}
971
7aeb09f9 972static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
973{
974 int i;
975
976 for (i = 0; i < (1 << order); i++) {
977 struct page *p = page + i;
978 if (unlikely(check_new_page(p)))
979 return 1;
980 }
689bcebf 981
4c21e2f2 982 set_page_private(page, 0);
7835e98b 983 set_page_refcounted(page);
cc102509
NP
984
985 arch_alloc_page(page, order);
1da177e4 986 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
987
988 if (gfp_flags & __GFP_ZERO)
989 prep_zero_page(page, order, gfp_flags);
990
991 if (order && (gfp_flags & __GFP_COMP))
992 prep_compound_page(page, order);
993
48c96a36
JK
994 set_page_owner(page, order, gfp_flags);
995
689bcebf 996 return 0;
1da177e4
LT
997}
998
56fd56b8
MG
999/*
1000 * Go through the free lists for the given migratetype and remove
1001 * the smallest available page from the freelists
1002 */
728ec980
MG
1003static inline
1004struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1005 int migratetype)
1006{
1007 unsigned int current_order;
b8af2941 1008 struct free_area *area;
56fd56b8
MG
1009 struct page *page;
1010
1011 /* Find a page of the appropriate size in the preferred list */
1012 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1013 area = &(zone->free_area[current_order]);
1014 if (list_empty(&area->free_list[migratetype]))
1015 continue;
1016
1017 page = list_entry(area->free_list[migratetype].next,
1018 struct page, lru);
1019 list_del(&page->lru);
1020 rmv_page_order(page);
1021 area->nr_free--;
56fd56b8 1022 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1023 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1024 return page;
1025 }
1026
1027 return NULL;
1028}
1029
1030
b2a0ac88
MG
1031/*
1032 * This array describes the order lists are fallen back to when
1033 * the free lists for the desirable migrate type are depleted
1034 */
47118af0
MN
1035static int fallbacks[MIGRATE_TYPES][4] = {
1036 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1037 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1038#ifdef CONFIG_CMA
1039 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1040 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1041#else
1042 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1043#endif
6d4a4916 1044 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1045#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1046 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1047#endif
b2a0ac88
MG
1048};
1049
c361be55
MG
1050/*
1051 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1052 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1053 * boundary. If alignment is required, use move_freepages_block()
1054 */
435b405c 1055int move_freepages(struct zone *zone,
b69a7288
AB
1056 struct page *start_page, struct page *end_page,
1057 int migratetype)
c361be55
MG
1058{
1059 struct page *page;
1060 unsigned long order;
d100313f 1061 int pages_moved = 0;
c361be55
MG
1062
1063#ifndef CONFIG_HOLES_IN_ZONE
1064 /*
1065 * page_zone is not safe to call in this context when
1066 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1067 * anyway as we check zone boundaries in move_freepages_block().
1068 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1069 * grouping pages by mobility
c361be55 1070 */
97ee4ba7 1071 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1072#endif
1073
1074 for (page = start_page; page <= end_page;) {
344c790e 1075 /* Make sure we are not inadvertently changing nodes */
309381fe 1076 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1077
c361be55
MG
1078 if (!pfn_valid_within(page_to_pfn(page))) {
1079 page++;
1080 continue;
1081 }
1082
1083 if (!PageBuddy(page)) {
1084 page++;
1085 continue;
1086 }
1087
1088 order = page_order(page);
84be48d8
KS
1089 list_move(&page->lru,
1090 &zone->free_area[order].free_list[migratetype]);
95e34412 1091 set_freepage_migratetype(page, migratetype);
c361be55 1092 page += 1 << order;
d100313f 1093 pages_moved += 1 << order;
c361be55
MG
1094 }
1095
d100313f 1096 return pages_moved;
c361be55
MG
1097}
1098
ee6f509c 1099int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1100 int migratetype)
c361be55
MG
1101{
1102 unsigned long start_pfn, end_pfn;
1103 struct page *start_page, *end_page;
1104
1105 start_pfn = page_to_pfn(page);
d9c23400 1106 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1107 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1108 end_page = start_page + pageblock_nr_pages - 1;
1109 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1110
1111 /* Do not cross zone boundaries */
108bcc96 1112 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1113 start_page = page;
108bcc96 1114 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1115 return 0;
1116
1117 return move_freepages(zone, start_page, end_page, migratetype);
1118}
1119
2f66a68f
MG
1120static void change_pageblock_range(struct page *pageblock_page,
1121 int start_order, int migratetype)
1122{
1123 int nr_pageblocks = 1 << (start_order - pageblock_order);
1124
1125 while (nr_pageblocks--) {
1126 set_pageblock_migratetype(pageblock_page, migratetype);
1127 pageblock_page += pageblock_nr_pages;
1128 }
1129}
1130
fef903ef
SB
1131/*
1132 * If breaking a large block of pages, move all free pages to the preferred
1133 * allocation list. If falling back for a reclaimable kernel allocation, be
1134 * more aggressive about taking ownership of free pages.
1135 *
1136 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1137 * nor move CMA pages to different free lists. We don't want unmovable pages
1138 * to be allocated from MIGRATE_CMA areas.
1139 *
1140 * Returns the new migratetype of the pageblock (or the same old migratetype
1141 * if it was unchanged).
1142 */
1143static int try_to_steal_freepages(struct zone *zone, struct page *page,
1144 int start_type, int fallback_type)
1145{
1146 int current_order = page_order(page);
1147
0cbef29a
KM
1148 /*
1149 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1150 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1151 * is set to CMA so it is returned to the correct freelist in case
1152 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1153 */
fef903ef
SB
1154 if (is_migrate_cma(fallback_type))
1155 return fallback_type;
1156
1157 /* Take ownership for orders >= pageblock_order */
1158 if (current_order >= pageblock_order) {
1159 change_pageblock_range(page, current_order, start_type);
1160 return start_type;
1161 }
1162
1163 if (current_order >= pageblock_order / 2 ||
1164 start_type == MIGRATE_RECLAIMABLE ||
1165 page_group_by_mobility_disabled) {
1166 int pages;
1167
1168 pages = move_freepages_block(zone, page, start_type);
1169
1170 /* Claim the whole block if over half of it is free */
1171 if (pages >= (1 << (pageblock_order-1)) ||
1172 page_group_by_mobility_disabled) {
1173
1174 set_pageblock_migratetype(page, start_type);
1175 return start_type;
1176 }
1177
1178 }
1179
1180 return fallback_type;
1181}
1182
b2a0ac88 1183/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1184static inline struct page *
7aeb09f9 1185__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1186{
b8af2941 1187 struct free_area *area;
7aeb09f9 1188 unsigned int current_order;
b2a0ac88 1189 struct page *page;
fef903ef 1190 int migratetype, new_type, i;
b2a0ac88
MG
1191
1192 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1193 for (current_order = MAX_ORDER-1;
1194 current_order >= order && current_order <= MAX_ORDER-1;
1195 --current_order) {
6d4a4916 1196 for (i = 0;; i++) {
b2a0ac88
MG
1197 migratetype = fallbacks[start_migratetype][i];
1198
56fd56b8
MG
1199 /* MIGRATE_RESERVE handled later if necessary */
1200 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1201 break;
e010487d 1202
b2a0ac88
MG
1203 area = &(zone->free_area[current_order]);
1204 if (list_empty(&area->free_list[migratetype]))
1205 continue;
1206
1207 page = list_entry(area->free_list[migratetype].next,
1208 struct page, lru);
1209 area->nr_free--;
1210
fef903ef
SB
1211 new_type = try_to_steal_freepages(zone, page,
1212 start_migratetype,
1213 migratetype);
b2a0ac88
MG
1214
1215 /* Remove the page from the freelists */
1216 list_del(&page->lru);
1217 rmv_page_order(page);
b2a0ac88 1218
47118af0 1219 expand(zone, page, order, current_order, area,
0cbef29a 1220 new_type);
5bcc9f86
VB
1221 /* The freepage_migratetype may differ from pageblock's
1222 * migratetype depending on the decisions in
1223 * try_to_steal_freepages. This is OK as long as it does
1224 * not differ for MIGRATE_CMA type.
1225 */
1226 set_freepage_migratetype(page, new_type);
e0fff1bd 1227
52c8f6a5
KM
1228 trace_mm_page_alloc_extfrag(page, order, current_order,
1229 start_migratetype, migratetype, new_type);
e0fff1bd 1230
b2a0ac88
MG
1231 return page;
1232 }
1233 }
1234
728ec980 1235 return NULL;
b2a0ac88
MG
1236}
1237
56fd56b8 1238/*
1da177e4
LT
1239 * Do the hard work of removing an element from the buddy allocator.
1240 * Call me with the zone->lock already held.
1241 */
b2a0ac88
MG
1242static struct page *__rmqueue(struct zone *zone, unsigned int order,
1243 int migratetype)
1da177e4 1244{
1da177e4
LT
1245 struct page *page;
1246
728ec980 1247retry_reserve:
56fd56b8 1248 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1249
728ec980 1250 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1251 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1252
728ec980
MG
1253 /*
1254 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1255 * is used because __rmqueue_smallest is an inline function
1256 * and we want just one call site
1257 */
1258 if (!page) {
1259 migratetype = MIGRATE_RESERVE;
1260 goto retry_reserve;
1261 }
1262 }
1263
0d3d062a 1264 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1265 return page;
1da177e4
LT
1266}
1267
5f63b720 1268/*
1da177e4
LT
1269 * Obtain a specified number of elements from the buddy allocator, all under
1270 * a single hold of the lock, for efficiency. Add them to the supplied list.
1271 * Returns the number of new pages which were placed at *list.
1272 */
5f63b720 1273static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1274 unsigned long count, struct list_head *list,
b745bc85 1275 int migratetype, bool cold)
1da177e4 1276{
5bcc9f86 1277 int i;
5f63b720 1278
c54ad30c 1279 spin_lock(&zone->lock);
1da177e4 1280 for (i = 0; i < count; ++i) {
b2a0ac88 1281 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1282 if (unlikely(page == NULL))
1da177e4 1283 break;
81eabcbe
MG
1284
1285 /*
1286 * Split buddy pages returned by expand() are received here
1287 * in physical page order. The page is added to the callers and
1288 * list and the list head then moves forward. From the callers
1289 * perspective, the linked list is ordered by page number in
1290 * some conditions. This is useful for IO devices that can
1291 * merge IO requests if the physical pages are ordered
1292 * properly.
1293 */
b745bc85 1294 if (likely(!cold))
e084b2d9
MG
1295 list_add(&page->lru, list);
1296 else
1297 list_add_tail(&page->lru, list);
81eabcbe 1298 list = &page->lru;
5bcc9f86 1299 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1300 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1301 -(1 << order));
1da177e4 1302 }
f2260e6b 1303 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1304 spin_unlock(&zone->lock);
085cc7d5 1305 return i;
1da177e4
LT
1306}
1307
4ae7c039 1308#ifdef CONFIG_NUMA
8fce4d8e 1309/*
4037d452
CL
1310 * Called from the vmstat counter updater to drain pagesets of this
1311 * currently executing processor on remote nodes after they have
1312 * expired.
1313 *
879336c3
CL
1314 * Note that this function must be called with the thread pinned to
1315 * a single processor.
8fce4d8e 1316 */
4037d452 1317void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1318{
4ae7c039 1319 unsigned long flags;
7be12fc9 1320 int to_drain, batch;
4ae7c039 1321
4037d452 1322 local_irq_save(flags);
998d39cb 1323 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1324 to_drain = min(pcp->count, batch);
2a13515c
KM
1325 if (to_drain > 0) {
1326 free_pcppages_bulk(zone, to_drain, pcp);
1327 pcp->count -= to_drain;
1328 }
4037d452 1329 local_irq_restore(flags);
4ae7c039
CL
1330}
1331#endif
1332
9f8f2172 1333/*
93481ff0 1334 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1335 *
1336 * The processor must either be the current processor and the
1337 * thread pinned to the current processor or a processor that
1338 * is not online.
1339 */
93481ff0 1340static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1341{
c54ad30c 1342 unsigned long flags;
93481ff0
VB
1343 struct per_cpu_pageset *pset;
1344 struct per_cpu_pages *pcp;
1da177e4 1345
93481ff0
VB
1346 local_irq_save(flags);
1347 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1348
93481ff0
VB
1349 pcp = &pset->pcp;
1350 if (pcp->count) {
1351 free_pcppages_bulk(zone, pcp->count, pcp);
1352 pcp->count = 0;
1353 }
1354 local_irq_restore(flags);
1355}
3dfa5721 1356
93481ff0
VB
1357/*
1358 * Drain pcplists of all zones on the indicated processor.
1359 *
1360 * The processor must either be the current processor and the
1361 * thread pinned to the current processor or a processor that
1362 * is not online.
1363 */
1364static void drain_pages(unsigned int cpu)
1365{
1366 struct zone *zone;
1367
1368 for_each_populated_zone(zone) {
1369 drain_pages_zone(cpu, zone);
1da177e4
LT
1370 }
1371}
1da177e4 1372
9f8f2172
CL
1373/*
1374 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1375 *
1376 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1377 * the single zone's pages.
9f8f2172 1378 */
93481ff0 1379void drain_local_pages(struct zone *zone)
9f8f2172 1380{
93481ff0
VB
1381 int cpu = smp_processor_id();
1382
1383 if (zone)
1384 drain_pages_zone(cpu, zone);
1385 else
1386 drain_pages(cpu);
9f8f2172
CL
1387}
1388
1389/*
74046494
GBY
1390 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1391 *
93481ff0
VB
1392 * When zone parameter is non-NULL, spill just the single zone's pages.
1393 *
74046494
GBY
1394 * Note that this code is protected against sending an IPI to an offline
1395 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1396 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1397 * nothing keeps CPUs from showing up after we populated the cpumask and
1398 * before the call to on_each_cpu_mask().
9f8f2172 1399 */
93481ff0 1400void drain_all_pages(struct zone *zone)
9f8f2172 1401{
74046494 1402 int cpu;
74046494
GBY
1403
1404 /*
1405 * Allocate in the BSS so we wont require allocation in
1406 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1407 */
1408 static cpumask_t cpus_with_pcps;
1409
1410 /*
1411 * We don't care about racing with CPU hotplug event
1412 * as offline notification will cause the notified
1413 * cpu to drain that CPU pcps and on_each_cpu_mask
1414 * disables preemption as part of its processing
1415 */
1416 for_each_online_cpu(cpu) {
93481ff0
VB
1417 struct per_cpu_pageset *pcp;
1418 struct zone *z;
74046494 1419 bool has_pcps = false;
93481ff0
VB
1420
1421 if (zone) {
74046494 1422 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1423 if (pcp->pcp.count)
74046494 1424 has_pcps = true;
93481ff0
VB
1425 } else {
1426 for_each_populated_zone(z) {
1427 pcp = per_cpu_ptr(z->pageset, cpu);
1428 if (pcp->pcp.count) {
1429 has_pcps = true;
1430 break;
1431 }
74046494
GBY
1432 }
1433 }
93481ff0 1434
74046494
GBY
1435 if (has_pcps)
1436 cpumask_set_cpu(cpu, &cpus_with_pcps);
1437 else
1438 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1439 }
93481ff0
VB
1440 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1441 zone, 1);
9f8f2172
CL
1442}
1443
296699de 1444#ifdef CONFIG_HIBERNATION
1da177e4
LT
1445
1446void mark_free_pages(struct zone *zone)
1447{
f623f0db
RW
1448 unsigned long pfn, max_zone_pfn;
1449 unsigned long flags;
7aeb09f9 1450 unsigned int order, t;
1da177e4
LT
1451 struct list_head *curr;
1452
8080fc03 1453 if (zone_is_empty(zone))
1da177e4
LT
1454 return;
1455
1456 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1457
108bcc96 1458 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460 if (pfn_valid(pfn)) {
1461 struct page *page = pfn_to_page(pfn);
1462
7be98234
RW
1463 if (!swsusp_page_is_forbidden(page))
1464 swsusp_unset_page_free(page);
f623f0db 1465 }
1da177e4 1466
b2a0ac88
MG
1467 for_each_migratetype_order(order, t) {
1468 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1469 unsigned long i;
1da177e4 1470
f623f0db
RW
1471 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1472 for (i = 0; i < (1UL << order); i++)
7be98234 1473 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1474 }
b2a0ac88 1475 }
1da177e4
LT
1476 spin_unlock_irqrestore(&zone->lock, flags);
1477}
e2c55dc8 1478#endif /* CONFIG_PM */
1da177e4 1479
1da177e4
LT
1480/*
1481 * Free a 0-order page
b745bc85 1482 * cold == true ? free a cold page : free a hot page
1da177e4 1483 */
b745bc85 1484void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1485{
1486 struct zone *zone = page_zone(page);
1487 struct per_cpu_pages *pcp;
1488 unsigned long flags;
dc4b0caf 1489 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1490 int migratetype;
1da177e4 1491
ec95f53a 1492 if (!free_pages_prepare(page, 0))
689bcebf
HD
1493 return;
1494
dc4b0caf 1495 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1496 set_freepage_migratetype(page, migratetype);
1da177e4 1497 local_irq_save(flags);
f8891e5e 1498 __count_vm_event(PGFREE);
da456f14 1499
5f8dcc21
MG
1500 /*
1501 * We only track unmovable, reclaimable and movable on pcp lists.
1502 * Free ISOLATE pages back to the allocator because they are being
1503 * offlined but treat RESERVE as movable pages so we can get those
1504 * areas back if necessary. Otherwise, we may have to free
1505 * excessively into the page allocator
1506 */
1507 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1508 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1509 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1510 goto out;
1511 }
1512 migratetype = MIGRATE_MOVABLE;
1513 }
1514
99dcc3e5 1515 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1516 if (!cold)
5f8dcc21 1517 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1518 else
1519 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1520 pcp->count++;
48db57f8 1521 if (pcp->count >= pcp->high) {
998d39cb
CS
1522 unsigned long batch = ACCESS_ONCE(pcp->batch);
1523 free_pcppages_bulk(zone, batch, pcp);
1524 pcp->count -= batch;
48db57f8 1525 }
5f8dcc21
MG
1526
1527out:
1da177e4 1528 local_irq_restore(flags);
1da177e4
LT
1529}
1530
cc59850e
KK
1531/*
1532 * Free a list of 0-order pages
1533 */
b745bc85 1534void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1535{
1536 struct page *page, *next;
1537
1538 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1539 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1540 free_hot_cold_page(page, cold);
1541 }
1542}
1543
8dfcc9ba
NP
1544/*
1545 * split_page takes a non-compound higher-order page, and splits it into
1546 * n (1<<order) sub-pages: page[0..n]
1547 * Each sub-page must be freed individually.
1548 *
1549 * Note: this is probably too low level an operation for use in drivers.
1550 * Please consult with lkml before using this in your driver.
1551 */
1552void split_page(struct page *page, unsigned int order)
1553{
1554 int i;
1555
309381fe
SL
1556 VM_BUG_ON_PAGE(PageCompound(page), page);
1557 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1558
1559#ifdef CONFIG_KMEMCHECK
1560 /*
1561 * Split shadow pages too, because free(page[0]) would
1562 * otherwise free the whole shadow.
1563 */
1564 if (kmemcheck_page_is_tracked(page))
1565 split_page(virt_to_page(page[0].shadow), order);
1566#endif
1567
48c96a36
JK
1568 set_page_owner(page, 0, 0);
1569 for (i = 1; i < (1 << order); i++) {
7835e98b 1570 set_page_refcounted(page + i);
48c96a36
JK
1571 set_page_owner(page + i, 0, 0);
1572 }
8dfcc9ba 1573}
5853ff23 1574EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1575
3c605096 1576int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1577{
748446bb
MG
1578 unsigned long watermark;
1579 struct zone *zone;
2139cbe6 1580 int mt;
748446bb
MG
1581
1582 BUG_ON(!PageBuddy(page));
1583
1584 zone = page_zone(page);
2e30abd1 1585 mt = get_pageblock_migratetype(page);
748446bb 1586
194159fb 1587 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1588 /* Obey watermarks as if the page was being allocated */
1589 watermark = low_wmark_pages(zone) + (1 << order);
1590 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1591 return 0;
1592
8fb74b9f 1593 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1594 }
748446bb
MG
1595
1596 /* Remove page from free list */
1597 list_del(&page->lru);
1598 zone->free_area[order].nr_free--;
1599 rmv_page_order(page);
2139cbe6 1600
8fb74b9f 1601 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1602 if (order >= pageblock_order - 1) {
1603 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1604 for (; page < endpage; page += pageblock_nr_pages) {
1605 int mt = get_pageblock_migratetype(page);
194159fb 1606 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1607 set_pageblock_migratetype(page,
1608 MIGRATE_MOVABLE);
1609 }
748446bb
MG
1610 }
1611
48c96a36 1612 set_page_owner(page, order, 0);
8fb74b9f 1613 return 1UL << order;
1fb3f8ca
MG
1614}
1615
1616/*
1617 * Similar to split_page except the page is already free. As this is only
1618 * being used for migration, the migratetype of the block also changes.
1619 * As this is called with interrupts disabled, the caller is responsible
1620 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1621 * are enabled.
1622 *
1623 * Note: this is probably too low level an operation for use in drivers.
1624 * Please consult with lkml before using this in your driver.
1625 */
1626int split_free_page(struct page *page)
1627{
1628 unsigned int order;
1629 int nr_pages;
1630
1fb3f8ca
MG
1631 order = page_order(page);
1632
8fb74b9f 1633 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1634 if (!nr_pages)
1635 return 0;
1636
1637 /* Split into individual pages */
1638 set_page_refcounted(page);
1639 split_page(page, order);
1640 return nr_pages;
748446bb
MG
1641}
1642
1da177e4
LT
1643/*
1644 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1645 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1646 * or two.
1647 */
0a15c3e9
MG
1648static inline
1649struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1650 struct zone *zone, unsigned int order,
1651 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1652{
1653 unsigned long flags;
689bcebf 1654 struct page *page;
b745bc85 1655 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1656
689bcebf 1657again:
48db57f8 1658 if (likely(order == 0)) {
1da177e4 1659 struct per_cpu_pages *pcp;
5f8dcc21 1660 struct list_head *list;
1da177e4 1661
1da177e4 1662 local_irq_save(flags);
99dcc3e5
CL
1663 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1664 list = &pcp->lists[migratetype];
5f8dcc21 1665 if (list_empty(list)) {
535131e6 1666 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1667 pcp->batch, list,
e084b2d9 1668 migratetype, cold);
5f8dcc21 1669 if (unlikely(list_empty(list)))
6fb332fa 1670 goto failed;
535131e6 1671 }
b92a6edd 1672
5f8dcc21
MG
1673 if (cold)
1674 page = list_entry(list->prev, struct page, lru);
1675 else
1676 page = list_entry(list->next, struct page, lru);
1677
b92a6edd
MG
1678 list_del(&page->lru);
1679 pcp->count--;
7fb1d9fc 1680 } else {
dab48dab
AM
1681 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1682 /*
1683 * __GFP_NOFAIL is not to be used in new code.
1684 *
1685 * All __GFP_NOFAIL callers should be fixed so that they
1686 * properly detect and handle allocation failures.
1687 *
1688 * We most definitely don't want callers attempting to
4923abf9 1689 * allocate greater than order-1 page units with
dab48dab
AM
1690 * __GFP_NOFAIL.
1691 */
4923abf9 1692 WARN_ON_ONCE(order > 1);
dab48dab 1693 }
1da177e4 1694 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1695 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1696 spin_unlock(&zone->lock);
1697 if (!page)
1698 goto failed;
d1ce749a 1699 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1700 get_freepage_migratetype(page));
1da177e4
LT
1701 }
1702
3a025760 1703 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1704 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1705 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1706 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1707
f8891e5e 1708 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1709 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1710 local_irq_restore(flags);
1da177e4 1711
309381fe 1712 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1713 if (prep_new_page(page, order, gfp_flags))
a74609fa 1714 goto again;
1da177e4 1715 return page;
a74609fa
NP
1716
1717failed:
1718 local_irq_restore(flags);
a74609fa 1719 return NULL;
1da177e4
LT
1720}
1721
933e312e
AM
1722#ifdef CONFIG_FAIL_PAGE_ALLOC
1723
b2588c4b 1724static struct {
933e312e
AM
1725 struct fault_attr attr;
1726
1727 u32 ignore_gfp_highmem;
1728 u32 ignore_gfp_wait;
54114994 1729 u32 min_order;
933e312e
AM
1730} fail_page_alloc = {
1731 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1732 .ignore_gfp_wait = 1,
1733 .ignore_gfp_highmem = 1,
54114994 1734 .min_order = 1,
933e312e
AM
1735};
1736
1737static int __init setup_fail_page_alloc(char *str)
1738{
1739 return setup_fault_attr(&fail_page_alloc.attr, str);
1740}
1741__setup("fail_page_alloc=", setup_fail_page_alloc);
1742
deaf386e 1743static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1744{
54114994 1745 if (order < fail_page_alloc.min_order)
deaf386e 1746 return false;
933e312e 1747 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1748 return false;
933e312e 1749 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1750 return false;
933e312e 1751 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1752 return false;
933e312e
AM
1753
1754 return should_fail(&fail_page_alloc.attr, 1 << order);
1755}
1756
1757#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1758
1759static int __init fail_page_alloc_debugfs(void)
1760{
f4ae40a6 1761 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1762 struct dentry *dir;
933e312e 1763
dd48c085
AM
1764 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1765 &fail_page_alloc.attr);
1766 if (IS_ERR(dir))
1767 return PTR_ERR(dir);
933e312e 1768
b2588c4b
AM
1769 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1770 &fail_page_alloc.ignore_gfp_wait))
1771 goto fail;
1772 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1773 &fail_page_alloc.ignore_gfp_highmem))
1774 goto fail;
1775 if (!debugfs_create_u32("min-order", mode, dir,
1776 &fail_page_alloc.min_order))
1777 goto fail;
1778
1779 return 0;
1780fail:
dd48c085 1781 debugfs_remove_recursive(dir);
933e312e 1782
b2588c4b 1783 return -ENOMEM;
933e312e
AM
1784}
1785
1786late_initcall(fail_page_alloc_debugfs);
1787
1788#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1789
1790#else /* CONFIG_FAIL_PAGE_ALLOC */
1791
deaf386e 1792static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1793{
deaf386e 1794 return false;
933e312e
AM
1795}
1796
1797#endif /* CONFIG_FAIL_PAGE_ALLOC */
1798
1da177e4 1799/*
88f5acf8 1800 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1801 * of the allocation.
1802 */
7aeb09f9
MG
1803static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1804 unsigned long mark, int classzone_idx, int alloc_flags,
1805 long free_pages)
1da177e4 1806{
26086de3 1807 /* free_pages may go negative - that's OK */
d23ad423 1808 long min = mark;
1da177e4 1809 int o;
026b0814 1810 long free_cma = 0;
1da177e4 1811
df0a6daa 1812 free_pages -= (1 << order) - 1;
7fb1d9fc 1813 if (alloc_flags & ALLOC_HIGH)
1da177e4 1814 min -= min / 2;
7fb1d9fc 1815 if (alloc_flags & ALLOC_HARDER)
1da177e4 1816 min -= min / 4;
d95ea5d1
BZ
1817#ifdef CONFIG_CMA
1818 /* If allocation can't use CMA areas don't use free CMA pages */
1819 if (!(alloc_flags & ALLOC_CMA))
026b0814 1820 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1821#endif
026b0814 1822
3484b2de 1823 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1824 return false;
1da177e4
LT
1825 for (o = 0; o < order; o++) {
1826 /* At the next order, this order's pages become unavailable */
1827 free_pages -= z->free_area[o].nr_free << o;
1828
1829 /* Require fewer higher order pages to be free */
1830 min >>= 1;
1831
1832 if (free_pages <= min)
88f5acf8 1833 return false;
1da177e4 1834 }
88f5acf8
MG
1835 return true;
1836}
1837
7aeb09f9 1838bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1839 int classzone_idx, int alloc_flags)
1840{
1841 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1842 zone_page_state(z, NR_FREE_PAGES));
1843}
1844
7aeb09f9
MG
1845bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1846 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1847{
1848 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1849
1850 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1851 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1852
1853 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1854 free_pages);
1da177e4
LT
1855}
1856
9276b1bc
PJ
1857#ifdef CONFIG_NUMA
1858/*
1859 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1860 * skip over zones that are not allowed by the cpuset, or that have
1861 * been recently (in last second) found to be nearly full. See further
1862 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1863 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1864 *
a1aeb65a 1865 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1866 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1867 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1868 *
1869 * If the zonelist cache is not available for this zonelist, does
1870 * nothing and returns NULL.
1871 *
1872 * If the fullzones BITMAP in the zonelist cache is stale (more than
1873 * a second since last zap'd) then we zap it out (clear its bits.)
1874 *
1875 * We hold off even calling zlc_setup, until after we've checked the
1876 * first zone in the zonelist, on the theory that most allocations will
1877 * be satisfied from that first zone, so best to examine that zone as
1878 * quickly as we can.
1879 */
1880static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1881{
1882 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1883 nodemask_t *allowednodes; /* zonelist_cache approximation */
1884
1885 zlc = zonelist->zlcache_ptr;
1886 if (!zlc)
1887 return NULL;
1888
f05111f5 1889 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1890 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1891 zlc->last_full_zap = jiffies;
1892 }
1893
1894 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1895 &cpuset_current_mems_allowed :
4b0ef1fe 1896 &node_states[N_MEMORY];
9276b1bc
PJ
1897 return allowednodes;
1898}
1899
1900/*
1901 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1902 * if it is worth looking at further for free memory:
1903 * 1) Check that the zone isn't thought to be full (doesn't have its
1904 * bit set in the zonelist_cache fullzones BITMAP).
1905 * 2) Check that the zones node (obtained from the zonelist_cache
1906 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1907 * Return true (non-zero) if zone is worth looking at further, or
1908 * else return false (zero) if it is not.
1909 *
1910 * This check -ignores- the distinction between various watermarks,
1911 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1912 * found to be full for any variation of these watermarks, it will
1913 * be considered full for up to one second by all requests, unless
1914 * we are so low on memory on all allowed nodes that we are forced
1915 * into the second scan of the zonelist.
1916 *
1917 * In the second scan we ignore this zonelist cache and exactly
1918 * apply the watermarks to all zones, even it is slower to do so.
1919 * We are low on memory in the second scan, and should leave no stone
1920 * unturned looking for a free page.
1921 */
dd1a239f 1922static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1923 nodemask_t *allowednodes)
1924{
1925 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1926 int i; /* index of *z in zonelist zones */
1927 int n; /* node that zone *z is on */
1928
1929 zlc = zonelist->zlcache_ptr;
1930 if (!zlc)
1931 return 1;
1932
dd1a239f 1933 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1934 n = zlc->z_to_n[i];
1935
1936 /* This zone is worth trying if it is allowed but not full */
1937 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1938}
1939
1940/*
1941 * Given 'z' scanning a zonelist, set the corresponding bit in
1942 * zlc->fullzones, so that subsequent attempts to allocate a page
1943 * from that zone don't waste time re-examining it.
1944 */
dd1a239f 1945static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1946{
1947 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1948 int i; /* index of *z in zonelist zones */
1949
1950 zlc = zonelist->zlcache_ptr;
1951 if (!zlc)
1952 return;
1953
dd1a239f 1954 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1955
1956 set_bit(i, zlc->fullzones);
1957}
1958
76d3fbf8
MG
1959/*
1960 * clear all zones full, called after direct reclaim makes progress so that
1961 * a zone that was recently full is not skipped over for up to a second
1962 */
1963static void zlc_clear_zones_full(struct zonelist *zonelist)
1964{
1965 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1966
1967 zlc = zonelist->zlcache_ptr;
1968 if (!zlc)
1969 return;
1970
1971 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1972}
1973
81c0a2bb
JW
1974static bool zone_local(struct zone *local_zone, struct zone *zone)
1975{
fff4068c 1976 return local_zone->node == zone->node;
81c0a2bb
JW
1977}
1978
957f822a
DR
1979static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1980{
5f7a75ac
MG
1981 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1982 RECLAIM_DISTANCE;
957f822a
DR
1983}
1984
9276b1bc
PJ
1985#else /* CONFIG_NUMA */
1986
1987static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1988{
1989 return NULL;
1990}
1991
dd1a239f 1992static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1993 nodemask_t *allowednodes)
1994{
1995 return 1;
1996}
1997
dd1a239f 1998static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1999{
2000}
76d3fbf8
MG
2001
2002static void zlc_clear_zones_full(struct zonelist *zonelist)
2003{
2004}
957f822a 2005
81c0a2bb
JW
2006static bool zone_local(struct zone *local_zone, struct zone *zone)
2007{
2008 return true;
2009}
2010
957f822a
DR
2011static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2012{
2013 return true;
2014}
2015
9276b1bc
PJ
2016#endif /* CONFIG_NUMA */
2017
4ffeaf35
MG
2018static void reset_alloc_batches(struct zone *preferred_zone)
2019{
2020 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2021
2022 do {
2023 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2024 high_wmark_pages(zone) - low_wmark_pages(zone) -
2025 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2026 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2027 } while (zone++ != preferred_zone);
2028}
2029
7fb1d9fc 2030/*
0798e519 2031 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2032 * a page.
2033 */
2034static struct page *
19770b32 2035get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 2036 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 2037 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 2038{
dd1a239f 2039 struct zoneref *z;
7fb1d9fc 2040 struct page *page = NULL;
5117f45d 2041 struct zone *zone;
9276b1bc
PJ
2042 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2043 int zlc_active = 0; /* set if using zonelist_cache */
2044 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2045 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2046 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2047 int nr_fair_skipped = 0;
2048 bool zonelist_rescan;
54a6eb5c 2049
9276b1bc 2050zonelist_scan:
4ffeaf35
MG
2051 zonelist_rescan = false;
2052
7fb1d9fc 2053 /*
9276b1bc 2054 * Scan zonelist, looking for a zone with enough free.
344736f2 2055 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2056 */
19770b32
MG
2057 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2058 high_zoneidx, nodemask) {
e085dbc5
JW
2059 unsigned long mark;
2060
e5adfffc 2061 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2062 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2063 continue;
664eedde
MG
2064 if (cpusets_enabled() &&
2065 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2066 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2067 continue;
81c0a2bb
JW
2068 /*
2069 * Distribute pages in proportion to the individual
2070 * zone size to ensure fair page aging. The zone a
2071 * page was allocated in should have no effect on the
2072 * time the page has in memory before being reclaimed.
81c0a2bb 2073 */
3a025760 2074 if (alloc_flags & ALLOC_FAIR) {
fff4068c 2075 if (!zone_local(preferred_zone, zone))
f7b5d647 2076 break;
57054651 2077 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2078 nr_fair_skipped++;
3a025760 2079 continue;
4ffeaf35 2080 }
81c0a2bb 2081 }
a756cf59
JW
2082 /*
2083 * When allocating a page cache page for writing, we
2084 * want to get it from a zone that is within its dirty
2085 * limit, such that no single zone holds more than its
2086 * proportional share of globally allowed dirty pages.
2087 * The dirty limits take into account the zone's
2088 * lowmem reserves and high watermark so that kswapd
2089 * should be able to balance it without having to
2090 * write pages from its LRU list.
2091 *
2092 * This may look like it could increase pressure on
2093 * lower zones by failing allocations in higher zones
2094 * before they are full. But the pages that do spill
2095 * over are limited as the lower zones are protected
2096 * by this very same mechanism. It should not become
2097 * a practical burden to them.
2098 *
2099 * XXX: For now, allow allocations to potentially
2100 * exceed the per-zone dirty limit in the slowpath
2101 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2102 * which is important when on a NUMA setup the allowed
2103 * zones are together not big enough to reach the
2104 * global limit. The proper fix for these situations
2105 * will require awareness of zones in the
2106 * dirty-throttling and the flusher threads.
2107 */
a6e21b14 2108 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2109 continue;
7fb1d9fc 2110
e085dbc5
JW
2111 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2112 if (!zone_watermark_ok(zone, order, mark,
2113 classzone_idx, alloc_flags)) {
fa5e084e
MG
2114 int ret;
2115
5dab2911
MG
2116 /* Checked here to keep the fast path fast */
2117 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2118 if (alloc_flags & ALLOC_NO_WATERMARKS)
2119 goto try_this_zone;
2120
e5adfffc
KS
2121 if (IS_ENABLED(CONFIG_NUMA) &&
2122 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2123 /*
2124 * we do zlc_setup if there are multiple nodes
2125 * and before considering the first zone allowed
2126 * by the cpuset.
2127 */
2128 allowednodes = zlc_setup(zonelist, alloc_flags);
2129 zlc_active = 1;
2130 did_zlc_setup = 1;
2131 }
2132
957f822a
DR
2133 if (zone_reclaim_mode == 0 ||
2134 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2135 goto this_zone_full;
2136
cd38b115
MG
2137 /*
2138 * As we may have just activated ZLC, check if the first
2139 * eligible zone has failed zone_reclaim recently.
2140 */
e5adfffc 2141 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2142 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2143 continue;
2144
fa5e084e
MG
2145 ret = zone_reclaim(zone, gfp_mask, order);
2146 switch (ret) {
2147 case ZONE_RECLAIM_NOSCAN:
2148 /* did not scan */
cd38b115 2149 continue;
fa5e084e
MG
2150 case ZONE_RECLAIM_FULL:
2151 /* scanned but unreclaimable */
cd38b115 2152 continue;
fa5e084e
MG
2153 default:
2154 /* did we reclaim enough */
fed2719e 2155 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2156 classzone_idx, alloc_flags))
fed2719e
MG
2157 goto try_this_zone;
2158
2159 /*
2160 * Failed to reclaim enough to meet watermark.
2161 * Only mark the zone full if checking the min
2162 * watermark or if we failed to reclaim just
2163 * 1<<order pages or else the page allocator
2164 * fastpath will prematurely mark zones full
2165 * when the watermark is between the low and
2166 * min watermarks.
2167 */
2168 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2169 ret == ZONE_RECLAIM_SOME)
9276b1bc 2170 goto this_zone_full;
fed2719e
MG
2171
2172 continue;
0798e519 2173 }
7fb1d9fc
RS
2174 }
2175
fa5e084e 2176try_this_zone:
3dd28266
MG
2177 page = buffered_rmqueue(preferred_zone, zone, order,
2178 gfp_mask, migratetype);
0798e519 2179 if (page)
7fb1d9fc 2180 break;
9276b1bc 2181this_zone_full:
65bb3719 2182 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2183 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2184 }
9276b1bc 2185
4ffeaf35 2186 if (page) {
b121186a
AS
2187 /*
2188 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2189 * necessary to allocate the page. The expectation is
2190 * that the caller is taking steps that will free more
2191 * memory. The caller should avoid the page being used
2192 * for !PFMEMALLOC purposes.
2193 */
2194 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2195 return page;
2196 }
b121186a 2197
4ffeaf35
MG
2198 /*
2199 * The first pass makes sure allocations are spread fairly within the
2200 * local node. However, the local node might have free pages left
2201 * after the fairness batches are exhausted, and remote zones haven't
2202 * even been considered yet. Try once more without fairness, and
2203 * include remote zones now, before entering the slowpath and waking
2204 * kswapd: prefer spilling to a remote zone over swapping locally.
2205 */
2206 if (alloc_flags & ALLOC_FAIR) {
2207 alloc_flags &= ~ALLOC_FAIR;
2208 if (nr_fair_skipped) {
2209 zonelist_rescan = true;
2210 reset_alloc_batches(preferred_zone);
2211 }
2212 if (nr_online_nodes > 1)
2213 zonelist_rescan = true;
2214 }
2215
2216 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2217 /* Disable zlc cache for second zonelist scan */
2218 zlc_active = 0;
2219 zonelist_rescan = true;
2220 }
2221
2222 if (zonelist_rescan)
2223 goto zonelist_scan;
2224
2225 return NULL;
753ee728
MH
2226}
2227
29423e77
DR
2228/*
2229 * Large machines with many possible nodes should not always dump per-node
2230 * meminfo in irq context.
2231 */
2232static inline bool should_suppress_show_mem(void)
2233{
2234 bool ret = false;
2235
2236#if NODES_SHIFT > 8
2237 ret = in_interrupt();
2238#endif
2239 return ret;
2240}
2241
a238ab5b
DH
2242static DEFINE_RATELIMIT_STATE(nopage_rs,
2243 DEFAULT_RATELIMIT_INTERVAL,
2244 DEFAULT_RATELIMIT_BURST);
2245
2246void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2247{
a238ab5b
DH
2248 unsigned int filter = SHOW_MEM_FILTER_NODES;
2249
c0a32fc5
SG
2250 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2251 debug_guardpage_minorder() > 0)
a238ab5b
DH
2252 return;
2253
2254 /*
2255 * This documents exceptions given to allocations in certain
2256 * contexts that are allowed to allocate outside current's set
2257 * of allowed nodes.
2258 */
2259 if (!(gfp_mask & __GFP_NOMEMALLOC))
2260 if (test_thread_flag(TIF_MEMDIE) ||
2261 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2262 filter &= ~SHOW_MEM_FILTER_NODES;
2263 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2264 filter &= ~SHOW_MEM_FILTER_NODES;
2265
2266 if (fmt) {
3ee9a4f0
JP
2267 struct va_format vaf;
2268 va_list args;
2269
a238ab5b 2270 va_start(args, fmt);
3ee9a4f0
JP
2271
2272 vaf.fmt = fmt;
2273 vaf.va = &args;
2274
2275 pr_warn("%pV", &vaf);
2276
a238ab5b
DH
2277 va_end(args);
2278 }
2279
3ee9a4f0
JP
2280 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2281 current->comm, order, gfp_mask);
a238ab5b
DH
2282
2283 dump_stack();
2284 if (!should_suppress_show_mem())
2285 show_mem(filter);
2286}
2287
11e33f6a
MG
2288static inline int
2289should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2290 unsigned long did_some_progress,
11e33f6a 2291 unsigned long pages_reclaimed)
1da177e4 2292{
11e33f6a
MG
2293 /* Do not loop if specifically requested */
2294 if (gfp_mask & __GFP_NORETRY)
2295 return 0;
1da177e4 2296
f90ac398
MG
2297 /* Always retry if specifically requested */
2298 if (gfp_mask & __GFP_NOFAIL)
2299 return 1;
2300
2301 /*
2302 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2303 * making forward progress without invoking OOM. Suspend also disables
2304 * storage devices so kswapd will not help. Bail if we are suspending.
2305 */
2306 if (!did_some_progress && pm_suspended_storage())
2307 return 0;
2308
11e33f6a
MG
2309 /*
2310 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2311 * means __GFP_NOFAIL, but that may not be true in other
2312 * implementations.
2313 */
2314 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2315 return 1;
2316
2317 /*
2318 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2319 * specified, then we retry until we no longer reclaim any pages
2320 * (above), or we've reclaimed an order of pages at least as
2321 * large as the allocation's order. In both cases, if the
2322 * allocation still fails, we stop retrying.
2323 */
2324 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2325 return 1;
cf40bd16 2326
11e33f6a
MG
2327 return 0;
2328}
933e312e 2329
11e33f6a
MG
2330static inline struct page *
2331__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2332 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2333 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2334 int classzone_idx, int migratetype)
11e33f6a
MG
2335{
2336 struct page *page;
2337
e972a070
DR
2338 /* Acquire the per-zone oom lock for each zone */
2339 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2340 schedule_timeout_uninterruptible(1);
1da177e4
LT
2341 return NULL;
2342 }
6b1de916 2343
5695be14
MH
2344 /*
2345 * PM-freezer should be notified that there might be an OOM killer on
2346 * its way to kill and wake somebody up. This is too early and we might
2347 * end up not killing anything but false positives are acceptable.
2348 * See freeze_processes.
2349 */
2350 note_oom_kill();
2351
11e33f6a
MG
2352 /*
2353 * Go through the zonelist yet one more time, keep very high watermark
2354 * here, this is only to catch a parallel oom killing, we must fail if
2355 * we're still under heavy pressure.
2356 */
2357 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2358 order, zonelist, high_zoneidx,
5117f45d 2359 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2360 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2361 if (page)
11e33f6a
MG
2362 goto out;
2363
4365a567
KH
2364 if (!(gfp_mask & __GFP_NOFAIL)) {
2365 /* The OOM killer will not help higher order allocs */
2366 if (order > PAGE_ALLOC_COSTLY_ORDER)
2367 goto out;
03668b3c
DR
2368 /* The OOM killer does not needlessly kill tasks for lowmem */
2369 if (high_zoneidx < ZONE_NORMAL)
2370 goto out;
4365a567
KH
2371 /*
2372 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2373 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2374 * The caller should handle page allocation failure by itself if
2375 * it specifies __GFP_THISNODE.
2376 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2377 */
2378 if (gfp_mask & __GFP_THISNODE)
2379 goto out;
2380 }
11e33f6a 2381 /* Exhausted what can be done so it's blamo time */
08ab9b10 2382 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2383
2384out:
e972a070 2385 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2386 return page;
2387}
2388
56de7263
MG
2389#ifdef CONFIG_COMPACTION
2390/* Try memory compaction for high-order allocations before reclaim */
2391static struct page *
2392__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2393 struct zonelist *zonelist, enum zone_type high_zoneidx,
2394 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2395 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2396 int *contended_compaction, bool *deferred_compaction)
56de7263 2397{
53853e2d 2398 unsigned long compact_result;
98dd3b48 2399 struct page *page;
53853e2d
VB
2400
2401 if (!order)
66199712 2402 return NULL;
66199712 2403
c06b1fca 2404 current->flags |= PF_MEMALLOC;
53853e2d 2405 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2406 nodemask, mode,
53853e2d 2407 contended_compaction,
97d47a65 2408 alloc_flags, classzone_idx);
c06b1fca 2409 current->flags &= ~PF_MEMALLOC;
56de7263 2410
98dd3b48
VB
2411 switch (compact_result) {
2412 case COMPACT_DEFERRED:
53853e2d 2413 *deferred_compaction = true;
98dd3b48
VB
2414 /* fall-through */
2415 case COMPACT_SKIPPED:
2416 return NULL;
2417 default:
2418 break;
2419 }
53853e2d 2420
98dd3b48
VB
2421 /*
2422 * At least in one zone compaction wasn't deferred or skipped, so let's
2423 * count a compaction stall
2424 */
2425 count_vm_event(COMPACTSTALL);
8fb74b9f 2426
98dd3b48
VB
2427 page = get_page_from_freelist(gfp_mask, nodemask,
2428 order, zonelist, high_zoneidx,
2429 alloc_flags & ~ALLOC_NO_WATERMARKS,
2430 preferred_zone, classzone_idx, migratetype);
53853e2d 2431
98dd3b48
VB
2432 if (page) {
2433 struct zone *zone = page_zone(page);
53853e2d 2434
98dd3b48
VB
2435 zone->compact_blockskip_flush = false;
2436 compaction_defer_reset(zone, order, true);
2437 count_vm_event(COMPACTSUCCESS);
2438 return page;
2439 }
56de7263 2440
98dd3b48
VB
2441 /*
2442 * It's bad if compaction run occurs and fails. The most likely reason
2443 * is that pages exist, but not enough to satisfy watermarks.
2444 */
2445 count_vm_event(COMPACTFAIL);
66199712 2446
98dd3b48 2447 cond_resched();
56de7263
MG
2448
2449 return NULL;
2450}
2451#else
2452static inline struct page *
2453__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2454 struct zonelist *zonelist, enum zone_type high_zoneidx,
2455 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
53853e2d 2456 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2457 int *contended_compaction, bool *deferred_compaction)
56de7263
MG
2458{
2459 return NULL;
2460}
2461#endif /* CONFIG_COMPACTION */
2462
bba90710
MS
2463/* Perform direct synchronous page reclaim */
2464static int
2465__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2466 nodemask_t *nodemask)
11e33f6a 2467{
11e33f6a 2468 struct reclaim_state reclaim_state;
bba90710 2469 int progress;
11e33f6a
MG
2470
2471 cond_resched();
2472
2473 /* We now go into synchronous reclaim */
2474 cpuset_memory_pressure_bump();
c06b1fca 2475 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2476 lockdep_set_current_reclaim_state(gfp_mask);
2477 reclaim_state.reclaimed_slab = 0;
c06b1fca 2478 current->reclaim_state = &reclaim_state;
11e33f6a 2479
bba90710 2480 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2481
c06b1fca 2482 current->reclaim_state = NULL;
11e33f6a 2483 lockdep_clear_current_reclaim_state();
c06b1fca 2484 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2485
2486 cond_resched();
2487
bba90710
MS
2488 return progress;
2489}
2490
2491/* The really slow allocator path where we enter direct reclaim */
2492static inline struct page *
2493__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2494 struct zonelist *zonelist, enum zone_type high_zoneidx,
2495 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2496 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2497{
2498 struct page *page = NULL;
2499 bool drained = false;
2500
2501 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2502 nodemask);
9ee493ce
MG
2503 if (unlikely(!(*did_some_progress)))
2504 return NULL;
11e33f6a 2505
76d3fbf8 2506 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2507 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2508 zlc_clear_zones_full(zonelist);
2509
9ee493ce
MG
2510retry:
2511 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2512 zonelist, high_zoneidx,
cfd19c5a 2513 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2514 preferred_zone, classzone_idx,
2515 migratetype);
9ee493ce
MG
2516
2517 /*
2518 * If an allocation failed after direct reclaim, it could be because
2519 * pages are pinned on the per-cpu lists. Drain them and try again
2520 */
2521 if (!page && !drained) {
93481ff0 2522 drain_all_pages(NULL);
9ee493ce
MG
2523 drained = true;
2524 goto retry;
2525 }
2526
11e33f6a
MG
2527 return page;
2528}
2529
1da177e4 2530/*
11e33f6a
MG
2531 * This is called in the allocator slow-path if the allocation request is of
2532 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2533 */
11e33f6a
MG
2534static inline struct page *
2535__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2536 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2537 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2538 int classzone_idx, int migratetype)
11e33f6a
MG
2539{
2540 struct page *page;
2541
2542 do {
2543 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2544 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2545 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2546
2547 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2548 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2549 } while (!page && (gfp_mask & __GFP_NOFAIL));
2550
2551 return page;
2552}
2553
3a025760
JW
2554static void wake_all_kswapds(unsigned int order,
2555 struct zonelist *zonelist,
2556 enum zone_type high_zoneidx,
7ade3c99
WY
2557 struct zone *preferred_zone,
2558 nodemask_t *nodemask)
3a025760
JW
2559{
2560 struct zoneref *z;
2561 struct zone *zone;
2562
7ade3c99
WY
2563 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2564 high_zoneidx, nodemask)
3a025760
JW
2565 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2566}
2567
341ce06f
PZ
2568static inline int
2569gfp_to_alloc_flags(gfp_t gfp_mask)
2570{
341ce06f 2571 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2572 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2573
a56f57ff 2574 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2575 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2576
341ce06f
PZ
2577 /*
2578 * The caller may dip into page reserves a bit more if the caller
2579 * cannot run direct reclaim, or if the caller has realtime scheduling
2580 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2581 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2582 */
e6223a3b 2583 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2584
b104a35d 2585 if (atomic) {
5c3240d9 2586 /*
b104a35d
DR
2587 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2588 * if it can't schedule.
5c3240d9 2589 */
b104a35d 2590 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2591 alloc_flags |= ALLOC_HARDER;
523b9458 2592 /*
b104a35d 2593 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2594 * comment for __cpuset_node_allowed().
523b9458 2595 */
341ce06f 2596 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2597 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2598 alloc_flags |= ALLOC_HARDER;
2599
b37f1dd0
MG
2600 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2601 if (gfp_mask & __GFP_MEMALLOC)
2602 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2603 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2604 alloc_flags |= ALLOC_NO_WATERMARKS;
2605 else if (!in_interrupt() &&
2606 ((current->flags & PF_MEMALLOC) ||
2607 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2608 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2609 }
d95ea5d1 2610#ifdef CONFIG_CMA
43e7a34d 2611 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2612 alloc_flags |= ALLOC_CMA;
2613#endif
341ce06f
PZ
2614 return alloc_flags;
2615}
2616
072bb0aa
MG
2617bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2618{
b37f1dd0 2619 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2620}
2621
11e33f6a
MG
2622static inline struct page *
2623__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2624 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2625 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2626 int classzone_idx, int migratetype)
11e33f6a
MG
2627{
2628 const gfp_t wait = gfp_mask & __GFP_WAIT;
2629 struct page *page = NULL;
2630 int alloc_flags;
2631 unsigned long pages_reclaimed = 0;
2632 unsigned long did_some_progress;
e0b9daeb 2633 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2634 bool deferred_compaction = false;
1f9efdef 2635 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2636
72807a74
MG
2637 /*
2638 * In the slowpath, we sanity check order to avoid ever trying to
2639 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2640 * be using allocators in order of preference for an area that is
2641 * too large.
2642 */
1fc28b70
MG
2643 if (order >= MAX_ORDER) {
2644 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2645 return NULL;
1fc28b70 2646 }
1da177e4 2647
952f3b51
CL
2648 /*
2649 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2650 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2651 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2652 * using a larger set of nodes after it has established that the
2653 * allowed per node queues are empty and that nodes are
2654 * over allocated.
2655 */
3a025760
JW
2656 if (IS_ENABLED(CONFIG_NUMA) &&
2657 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2658 goto nopage;
2659
cc4a6851 2660restart:
3a025760 2661 if (!(gfp_mask & __GFP_NO_KSWAPD))
7ade3c99
WY
2662 wake_all_kswapds(order, zonelist, high_zoneidx,
2663 preferred_zone, nodemask);
1da177e4 2664
9bf2229f 2665 /*
7fb1d9fc
RS
2666 * OK, we're below the kswapd watermark and have kicked background
2667 * reclaim. Now things get more complex, so set up alloc_flags according
2668 * to how we want to proceed.
9bf2229f 2669 */
341ce06f 2670 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2671
f33261d7
DR
2672 /*
2673 * Find the true preferred zone if the allocation is unconstrained by
2674 * cpusets.
2675 */
d8846374
MG
2676 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2677 struct zoneref *preferred_zoneref;
2678 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2679 NULL, &preferred_zone);
2680 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2681 }
f33261d7 2682
cfa54a0f 2683rebalance:
341ce06f 2684 /* This is the last chance, in general, before the goto nopage. */
19770b32 2685 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2686 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2687 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2688 if (page)
2689 goto got_pg;
1da177e4 2690
11e33f6a 2691 /* Allocate without watermarks if the context allows */
341ce06f 2692 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2693 /*
2694 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2695 * the allocation is high priority and these type of
2696 * allocations are system rather than user orientated
2697 */
2698 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2699
341ce06f
PZ
2700 page = __alloc_pages_high_priority(gfp_mask, order,
2701 zonelist, high_zoneidx, nodemask,
d8846374 2702 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2703 if (page) {
341ce06f 2704 goto got_pg;
cfd19c5a 2705 }
1da177e4
LT
2706 }
2707
2708 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2709 if (!wait) {
2710 /*
2711 * All existing users of the deprecated __GFP_NOFAIL are
2712 * blockable, so warn of any new users that actually allow this
2713 * type of allocation to fail.
2714 */
2715 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2716 goto nopage;
aed0a0e3 2717 }
1da177e4 2718
341ce06f 2719 /* Avoid recursion of direct reclaim */
c06b1fca 2720 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2721 goto nopage;
2722
6583bb64
DR
2723 /* Avoid allocations with no watermarks from looping endlessly */
2724 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2725 goto nopage;
2726
77f1fe6b
MG
2727 /*
2728 * Try direct compaction. The first pass is asynchronous. Subsequent
2729 * attempts after direct reclaim are synchronous
2730 */
e0b9daeb
DR
2731 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2732 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2733 preferred_zone,
2734 classzone_idx, migratetype,
e0b9daeb 2735 migration_mode, &contended_compaction,
53853e2d 2736 &deferred_compaction);
56de7263
MG
2737 if (page)
2738 goto got_pg;
75f30861 2739
1f9efdef
VB
2740 /* Checks for THP-specific high-order allocations */
2741 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2742 /*
2743 * If compaction is deferred for high-order allocations, it is
2744 * because sync compaction recently failed. If this is the case
2745 * and the caller requested a THP allocation, we do not want
2746 * to heavily disrupt the system, so we fail the allocation
2747 * instead of entering direct reclaim.
2748 */
2749 if (deferred_compaction)
2750 goto nopage;
2751
2752 /*
2753 * In all zones where compaction was attempted (and not
2754 * deferred or skipped), lock contention has been detected.
2755 * For THP allocation we do not want to disrupt the others
2756 * so we fallback to base pages instead.
2757 */
2758 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2759 goto nopage;
2760
2761 /*
2762 * If compaction was aborted due to need_resched(), we do not
2763 * want to further increase allocation latency, unless it is
2764 * khugepaged trying to collapse.
2765 */
2766 if (contended_compaction == COMPACT_CONTENDED_SCHED
2767 && !(current->flags & PF_KTHREAD))
2768 goto nopage;
2769 }
66199712 2770
8fe78048
DR
2771 /*
2772 * It can become very expensive to allocate transparent hugepages at
2773 * fault, so use asynchronous memory compaction for THP unless it is
2774 * khugepaged trying to collapse.
2775 */
2776 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2777 (current->flags & PF_KTHREAD))
2778 migration_mode = MIGRATE_SYNC_LIGHT;
2779
11e33f6a
MG
2780 /* Try direct reclaim and then allocating */
2781 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2782 zonelist, high_zoneidx,
2783 nodemask,
5117f45d 2784 alloc_flags, preferred_zone,
d8846374
MG
2785 classzone_idx, migratetype,
2786 &did_some_progress);
11e33f6a
MG
2787 if (page)
2788 goto got_pg;
1da177e4 2789
e33c3b5e 2790 /*
11e33f6a
MG
2791 * If we failed to make any progress reclaiming, then we are
2792 * running out of options and have to consider going OOM
e33c3b5e 2793 */
11e33f6a 2794 if (!did_some_progress) {
b9921ecd 2795 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2796 if (oom_killer_disabled)
2797 goto nopage;
29fd66d2
DR
2798 /* Coredumps can quickly deplete all memory reserves */
2799 if ((current->flags & PF_DUMPCORE) &&
2800 !(gfp_mask & __GFP_NOFAIL))
2801 goto nopage;
11e33f6a
MG
2802 page = __alloc_pages_may_oom(gfp_mask, order,
2803 zonelist, high_zoneidx,
3dd28266 2804 nodemask, preferred_zone,
d8846374 2805 classzone_idx, migratetype);
11e33f6a
MG
2806 if (page)
2807 goto got_pg;
1da177e4 2808
03668b3c
DR
2809 if (!(gfp_mask & __GFP_NOFAIL)) {
2810 /*
2811 * The oom killer is not called for high-order
2812 * allocations that may fail, so if no progress
2813 * is being made, there are no other options and
2814 * retrying is unlikely to help.
2815 */
2816 if (order > PAGE_ALLOC_COSTLY_ORDER)
2817 goto nopage;
2818 /*
2819 * The oom killer is not called for lowmem
2820 * allocations to prevent needlessly killing
2821 * innocent tasks.
2822 */
2823 if (high_zoneidx < ZONE_NORMAL)
2824 goto nopage;
2825 }
e2c55dc8 2826
ff0ceb9d
DR
2827 goto restart;
2828 }
1da177e4
LT
2829 }
2830
11e33f6a 2831 /* Check if we should retry the allocation */
a41f24ea 2832 pages_reclaimed += did_some_progress;
f90ac398
MG
2833 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2834 pages_reclaimed)) {
11e33f6a 2835 /* Wait for some write requests to complete then retry */
0e093d99 2836 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2837 goto rebalance;
3e7d3449
MG
2838 } else {
2839 /*
2840 * High-order allocations do not necessarily loop after
2841 * direct reclaim and reclaim/compaction depends on compaction
2842 * being called after reclaim so call directly if necessary
2843 */
e0b9daeb
DR
2844 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2845 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2846 preferred_zone,
2847 classzone_idx, migratetype,
e0b9daeb 2848 migration_mode, &contended_compaction,
53853e2d 2849 &deferred_compaction);
3e7d3449
MG
2850 if (page)
2851 goto got_pg;
1da177e4
LT
2852 }
2853
2854nopage:
a238ab5b 2855 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2856 return page;
1da177e4 2857got_pg:
b1eeab67
VN
2858 if (kmemcheck_enabled)
2859 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2860
072bb0aa 2861 return page;
1da177e4 2862}
11e33f6a
MG
2863
2864/*
2865 * This is the 'heart' of the zoned buddy allocator.
2866 */
2867struct page *
2868__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2869 struct zonelist *zonelist, nodemask_t *nodemask)
2870{
2871 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2872 struct zone *preferred_zone;
d8846374 2873 struct zoneref *preferred_zoneref;
cc9a6c87 2874 struct page *page = NULL;
43e7a34d 2875 int migratetype = gfpflags_to_migratetype(gfp_mask);
cc9a6c87 2876 unsigned int cpuset_mems_cookie;
3a025760 2877 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2878 int classzone_idx;
11e33f6a 2879
dcce284a
BH
2880 gfp_mask &= gfp_allowed_mask;
2881
11e33f6a
MG
2882 lockdep_trace_alloc(gfp_mask);
2883
2884 might_sleep_if(gfp_mask & __GFP_WAIT);
2885
2886 if (should_fail_alloc_page(gfp_mask, order))
2887 return NULL;
2888
2889 /*
2890 * Check the zones suitable for the gfp_mask contain at least one
2891 * valid zone. It's possible to have an empty zonelist as a result
2892 * of GFP_THISNODE and a memoryless node
2893 */
2894 if (unlikely(!zonelist->_zonerefs->zone))
2895 return NULL;
2896
21bb9bd1
VB
2897 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2898 alloc_flags |= ALLOC_CMA;
2899
cc9a6c87 2900retry_cpuset:
d26914d1 2901 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2902
5117f45d 2903 /* The preferred zone is used for statistics later */
d8846374 2904 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2905 nodemask ? : &cpuset_current_mems_allowed,
2906 &preferred_zone);
cc9a6c87
MG
2907 if (!preferred_zone)
2908 goto out;
d8846374 2909 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2910
2911 /* First allocation attempt */
11e33f6a 2912 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2913 zonelist, high_zoneidx, alloc_flags,
d8846374 2914 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2915 if (unlikely(!page)) {
2916 /*
2917 * Runtime PM, block IO and its error handling path
2918 * can deadlock because I/O on the device might not
2919 * complete.
2920 */
2921 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2922 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2923 zonelist, high_zoneidx, nodemask,
d8846374 2924 preferred_zone, classzone_idx, migratetype);
21caf2fc 2925 }
11e33f6a 2926
4b4f278c 2927 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2928
2929out:
2930 /*
2931 * When updating a task's mems_allowed, it is possible to race with
2932 * parallel threads in such a way that an allocation can fail while
2933 * the mask is being updated. If a page allocation is about to fail,
2934 * check if the cpuset changed during allocation and if so, retry.
2935 */
d26914d1 2936 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2937 goto retry_cpuset;
2938
11e33f6a 2939 return page;
1da177e4 2940}
d239171e 2941EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2942
2943/*
2944 * Common helper functions.
2945 */
920c7a5d 2946unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2947{
945a1113
AM
2948 struct page *page;
2949
2950 /*
2951 * __get_free_pages() returns a 32-bit address, which cannot represent
2952 * a highmem page
2953 */
2954 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2955
1da177e4
LT
2956 page = alloc_pages(gfp_mask, order);
2957 if (!page)
2958 return 0;
2959 return (unsigned long) page_address(page);
2960}
1da177e4
LT
2961EXPORT_SYMBOL(__get_free_pages);
2962
920c7a5d 2963unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2964{
945a1113 2965 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2966}
1da177e4
LT
2967EXPORT_SYMBOL(get_zeroed_page);
2968
920c7a5d 2969void __free_pages(struct page *page, unsigned int order)
1da177e4 2970{
b5810039 2971 if (put_page_testzero(page)) {
1da177e4 2972 if (order == 0)
b745bc85 2973 free_hot_cold_page(page, false);
1da177e4
LT
2974 else
2975 __free_pages_ok(page, order);
2976 }
2977}
2978
2979EXPORT_SYMBOL(__free_pages);
2980
920c7a5d 2981void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2982{
2983 if (addr != 0) {
725d704e 2984 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2985 __free_pages(virt_to_page((void *)addr), order);
2986 }
2987}
2988
2989EXPORT_SYMBOL(free_pages);
2990
6a1a0d3b 2991/*
52383431
VD
2992 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2993 * of the current memory cgroup.
6a1a0d3b 2994 *
52383431
VD
2995 * It should be used when the caller would like to use kmalloc, but since the
2996 * allocation is large, it has to fall back to the page allocator.
2997 */
2998struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2999{
3000 struct page *page;
3001 struct mem_cgroup *memcg = NULL;
3002
3003 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3004 return NULL;
3005 page = alloc_pages(gfp_mask, order);
3006 memcg_kmem_commit_charge(page, memcg, order);
3007 return page;
3008}
3009
3010struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3011{
3012 struct page *page;
3013 struct mem_cgroup *memcg = NULL;
3014
3015 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3016 return NULL;
3017 page = alloc_pages_node(nid, gfp_mask, order);
3018 memcg_kmem_commit_charge(page, memcg, order);
3019 return page;
3020}
3021
3022/*
3023 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3024 * alloc_kmem_pages.
6a1a0d3b 3025 */
52383431 3026void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3027{
3028 memcg_kmem_uncharge_pages(page, order);
3029 __free_pages(page, order);
3030}
3031
52383431 3032void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3033{
3034 if (addr != 0) {
3035 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3036 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3037 }
3038}
3039
ee85c2e1
AK
3040static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3041{
3042 if (addr) {
3043 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3044 unsigned long used = addr + PAGE_ALIGN(size);
3045
3046 split_page(virt_to_page((void *)addr), order);
3047 while (used < alloc_end) {
3048 free_page(used);
3049 used += PAGE_SIZE;
3050 }
3051 }
3052 return (void *)addr;
3053}
3054
2be0ffe2
TT
3055/**
3056 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3057 * @size: the number of bytes to allocate
3058 * @gfp_mask: GFP flags for the allocation
3059 *
3060 * This function is similar to alloc_pages(), except that it allocates the
3061 * minimum number of pages to satisfy the request. alloc_pages() can only
3062 * allocate memory in power-of-two pages.
3063 *
3064 * This function is also limited by MAX_ORDER.
3065 *
3066 * Memory allocated by this function must be released by free_pages_exact().
3067 */
3068void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3069{
3070 unsigned int order = get_order(size);
3071 unsigned long addr;
3072
3073 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3074 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3075}
3076EXPORT_SYMBOL(alloc_pages_exact);
3077
ee85c2e1
AK
3078/**
3079 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3080 * pages on a node.
b5e6ab58 3081 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3082 * @size: the number of bytes to allocate
3083 * @gfp_mask: GFP flags for the allocation
3084 *
3085 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3086 * back.
3087 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3088 * but is not exact.
3089 */
e1931811 3090void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3091{
3092 unsigned order = get_order(size);
3093 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3094 if (!p)
3095 return NULL;
3096 return make_alloc_exact((unsigned long)page_address(p), order, size);
3097}
ee85c2e1 3098
2be0ffe2
TT
3099/**
3100 * free_pages_exact - release memory allocated via alloc_pages_exact()
3101 * @virt: the value returned by alloc_pages_exact.
3102 * @size: size of allocation, same value as passed to alloc_pages_exact().
3103 *
3104 * Release the memory allocated by a previous call to alloc_pages_exact.
3105 */
3106void free_pages_exact(void *virt, size_t size)
3107{
3108 unsigned long addr = (unsigned long)virt;
3109 unsigned long end = addr + PAGE_ALIGN(size);
3110
3111 while (addr < end) {
3112 free_page(addr);
3113 addr += PAGE_SIZE;
3114 }
3115}
3116EXPORT_SYMBOL(free_pages_exact);
3117
e0fb5815
ZY
3118/**
3119 * nr_free_zone_pages - count number of pages beyond high watermark
3120 * @offset: The zone index of the highest zone
3121 *
3122 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3123 * high watermark within all zones at or below a given zone index. For each
3124 * zone, the number of pages is calculated as:
834405c3 3125 * managed_pages - high_pages
e0fb5815 3126 */
ebec3862 3127static unsigned long nr_free_zone_pages(int offset)
1da177e4 3128{
dd1a239f 3129 struct zoneref *z;
54a6eb5c
MG
3130 struct zone *zone;
3131
e310fd43 3132 /* Just pick one node, since fallback list is circular */
ebec3862 3133 unsigned long sum = 0;
1da177e4 3134
0e88460d 3135 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3136
54a6eb5c 3137 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3138 unsigned long size = zone->managed_pages;
41858966 3139 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3140 if (size > high)
3141 sum += size - high;
1da177e4
LT
3142 }
3143
3144 return sum;
3145}
3146
e0fb5815
ZY
3147/**
3148 * nr_free_buffer_pages - count number of pages beyond high watermark
3149 *
3150 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3151 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3152 */
ebec3862 3153unsigned long nr_free_buffer_pages(void)
1da177e4 3154{
af4ca457 3155 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3156}
c2f1a551 3157EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3158
e0fb5815
ZY
3159/**
3160 * nr_free_pagecache_pages - count number of pages beyond high watermark
3161 *
3162 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3163 * high watermark within all zones.
1da177e4 3164 */
ebec3862 3165unsigned long nr_free_pagecache_pages(void)
1da177e4 3166{
2a1e274a 3167 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3168}
08e0f6a9
CL
3169
3170static inline void show_node(struct zone *zone)
1da177e4 3171{
e5adfffc 3172 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3173 printk("Node %d ", zone_to_nid(zone));
1da177e4 3174}
1da177e4 3175
1da177e4
LT
3176void si_meminfo(struct sysinfo *val)
3177{
3178 val->totalram = totalram_pages;
cc7452b6 3179 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3180 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3181 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3182 val->totalhigh = totalhigh_pages;
3183 val->freehigh = nr_free_highpages();
1da177e4
LT
3184 val->mem_unit = PAGE_SIZE;
3185}
3186
3187EXPORT_SYMBOL(si_meminfo);
3188
3189#ifdef CONFIG_NUMA
3190void si_meminfo_node(struct sysinfo *val, int nid)
3191{
cdd91a77
JL
3192 int zone_type; /* needs to be signed */
3193 unsigned long managed_pages = 0;
1da177e4
LT
3194 pg_data_t *pgdat = NODE_DATA(nid);
3195
cdd91a77
JL
3196 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3197 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3198 val->totalram = managed_pages;
cc7452b6 3199 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3200 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3201#ifdef CONFIG_HIGHMEM
b40da049 3202 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3203 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3204 NR_FREE_PAGES);
98d2b0eb
CL
3205#else
3206 val->totalhigh = 0;
3207 val->freehigh = 0;
3208#endif
1da177e4
LT
3209 val->mem_unit = PAGE_SIZE;
3210}
3211#endif
3212
ddd588b5 3213/*
7bf02ea2
DR
3214 * Determine whether the node should be displayed or not, depending on whether
3215 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3216 */
7bf02ea2 3217bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3218{
3219 bool ret = false;
cc9a6c87 3220 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3221
3222 if (!(flags & SHOW_MEM_FILTER_NODES))
3223 goto out;
3224
cc9a6c87 3225 do {
d26914d1 3226 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3227 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3228 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3229out:
3230 return ret;
3231}
3232
1da177e4
LT
3233#define K(x) ((x) << (PAGE_SHIFT-10))
3234
377e4f16
RV
3235static void show_migration_types(unsigned char type)
3236{
3237 static const char types[MIGRATE_TYPES] = {
3238 [MIGRATE_UNMOVABLE] = 'U',
3239 [MIGRATE_RECLAIMABLE] = 'E',
3240 [MIGRATE_MOVABLE] = 'M',
3241 [MIGRATE_RESERVE] = 'R',
3242#ifdef CONFIG_CMA
3243 [MIGRATE_CMA] = 'C',
3244#endif
194159fb 3245#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3246 [MIGRATE_ISOLATE] = 'I',
194159fb 3247#endif
377e4f16
RV
3248 };
3249 char tmp[MIGRATE_TYPES + 1];
3250 char *p = tmp;
3251 int i;
3252
3253 for (i = 0; i < MIGRATE_TYPES; i++) {
3254 if (type & (1 << i))
3255 *p++ = types[i];
3256 }
3257
3258 *p = '\0';
3259 printk("(%s) ", tmp);
3260}
3261
1da177e4
LT
3262/*
3263 * Show free area list (used inside shift_scroll-lock stuff)
3264 * We also calculate the percentage fragmentation. We do this by counting the
3265 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3266 * Suppresses nodes that are not allowed by current's cpuset if
3267 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3268 */
7bf02ea2 3269void show_free_areas(unsigned int filter)
1da177e4 3270{
c7241913 3271 int cpu;
1da177e4
LT
3272 struct zone *zone;
3273
ee99c71c 3274 for_each_populated_zone(zone) {
7bf02ea2 3275 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3276 continue;
c7241913
JS
3277 show_node(zone);
3278 printk("%s per-cpu:\n", zone->name);
1da177e4 3279
6b482c67 3280 for_each_online_cpu(cpu) {
1da177e4
LT
3281 struct per_cpu_pageset *pageset;
3282
99dcc3e5 3283 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3284
3dfa5721
CL
3285 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3286 cpu, pageset->pcp.high,
3287 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3288 }
3289 }
3290
a731286d
KM
3291 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3292 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3293 " unevictable:%lu"
b76146ed 3294 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3295 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3296 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3297 " free_cma:%lu\n",
4f98a2fe 3298 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3299 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3300 global_page_state(NR_ISOLATED_ANON),
3301 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3302 global_page_state(NR_INACTIVE_FILE),
a731286d 3303 global_page_state(NR_ISOLATED_FILE),
7b854121 3304 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3305 global_page_state(NR_FILE_DIRTY),
ce866b34 3306 global_page_state(NR_WRITEBACK),
fd39fc85 3307 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3308 global_page_state(NR_FREE_PAGES),
3701b033
KM
3309 global_page_state(NR_SLAB_RECLAIMABLE),
3310 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3311 global_page_state(NR_FILE_MAPPED),
4b02108a 3312 global_page_state(NR_SHMEM),
a25700a5 3313 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3314 global_page_state(NR_BOUNCE),
3315 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3316
ee99c71c 3317 for_each_populated_zone(zone) {
1da177e4
LT
3318 int i;
3319
7bf02ea2 3320 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3321 continue;
1da177e4
LT
3322 show_node(zone);
3323 printk("%s"
3324 " free:%lukB"
3325 " min:%lukB"
3326 " low:%lukB"
3327 " high:%lukB"
4f98a2fe
RR
3328 " active_anon:%lukB"
3329 " inactive_anon:%lukB"
3330 " active_file:%lukB"
3331 " inactive_file:%lukB"
7b854121 3332 " unevictable:%lukB"
a731286d
KM
3333 " isolated(anon):%lukB"
3334 " isolated(file):%lukB"
1da177e4 3335 " present:%lukB"
9feedc9d 3336 " managed:%lukB"
4a0aa73f
KM
3337 " mlocked:%lukB"
3338 " dirty:%lukB"
3339 " writeback:%lukB"
3340 " mapped:%lukB"
4b02108a 3341 " shmem:%lukB"
4a0aa73f
KM
3342 " slab_reclaimable:%lukB"
3343 " slab_unreclaimable:%lukB"
c6a7f572 3344 " kernel_stack:%lukB"
4a0aa73f
KM
3345 " pagetables:%lukB"
3346 " unstable:%lukB"
3347 " bounce:%lukB"
d1ce749a 3348 " free_cma:%lukB"
4a0aa73f 3349 " writeback_tmp:%lukB"
1da177e4
LT
3350 " pages_scanned:%lu"
3351 " all_unreclaimable? %s"
3352 "\n",
3353 zone->name,
88f5acf8 3354 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3355 K(min_wmark_pages(zone)),
3356 K(low_wmark_pages(zone)),
3357 K(high_wmark_pages(zone)),
4f98a2fe
RR
3358 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3359 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3360 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3361 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3362 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3363 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3364 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3365 K(zone->present_pages),
9feedc9d 3366 K(zone->managed_pages),
4a0aa73f
KM
3367 K(zone_page_state(zone, NR_MLOCK)),
3368 K(zone_page_state(zone, NR_FILE_DIRTY)),
3369 K(zone_page_state(zone, NR_WRITEBACK)),
3370 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3371 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3372 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3373 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3374 zone_page_state(zone, NR_KERNEL_STACK) *
3375 THREAD_SIZE / 1024,
4a0aa73f
KM
3376 K(zone_page_state(zone, NR_PAGETABLE)),
3377 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3378 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3379 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3380 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3381 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3382 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3383 );
3384 printk("lowmem_reserve[]:");
3385 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3386 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3387 printk("\n");
3388 }
3389
ee99c71c 3390 for_each_populated_zone(zone) {
b8af2941 3391 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3392 unsigned char types[MAX_ORDER];
1da177e4 3393
7bf02ea2 3394 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3395 continue;
1da177e4
LT
3396 show_node(zone);
3397 printk("%s: ", zone->name);
1da177e4
LT
3398
3399 spin_lock_irqsave(&zone->lock, flags);
3400 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3401 struct free_area *area = &zone->free_area[order];
3402 int type;
3403
3404 nr[order] = area->nr_free;
8f9de51a 3405 total += nr[order] << order;
377e4f16
RV
3406
3407 types[order] = 0;
3408 for (type = 0; type < MIGRATE_TYPES; type++) {
3409 if (!list_empty(&area->free_list[type]))
3410 types[order] |= 1 << type;
3411 }
1da177e4
LT
3412 }
3413 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3414 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3415 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3416 if (nr[order])
3417 show_migration_types(types[order]);
3418 }
1da177e4
LT
3419 printk("= %lukB\n", K(total));
3420 }
3421
949f7ec5
DR
3422 hugetlb_show_meminfo();
3423
e6f3602d
LW
3424 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3425
1da177e4
LT
3426 show_swap_cache_info();
3427}
3428
19770b32
MG
3429static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3430{
3431 zoneref->zone = zone;
3432 zoneref->zone_idx = zone_idx(zone);
3433}
3434
1da177e4
LT
3435/*
3436 * Builds allocation fallback zone lists.
1a93205b
CL
3437 *
3438 * Add all populated zones of a node to the zonelist.
1da177e4 3439 */
f0c0b2b8 3440static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3441 int nr_zones)
1da177e4 3442{
1a93205b 3443 struct zone *zone;
bc732f1d 3444 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3445
3446 do {
2f6726e5 3447 zone_type--;
070f8032 3448 zone = pgdat->node_zones + zone_type;
1a93205b 3449 if (populated_zone(zone)) {
dd1a239f
MG
3450 zoneref_set_zone(zone,
3451 &zonelist->_zonerefs[nr_zones++]);
070f8032 3452 check_highest_zone(zone_type);
1da177e4 3453 }
2f6726e5 3454 } while (zone_type);
bc732f1d 3455
070f8032 3456 return nr_zones;
1da177e4
LT
3457}
3458
f0c0b2b8
KH
3459
3460/*
3461 * zonelist_order:
3462 * 0 = automatic detection of better ordering.
3463 * 1 = order by ([node] distance, -zonetype)
3464 * 2 = order by (-zonetype, [node] distance)
3465 *
3466 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3467 * the same zonelist. So only NUMA can configure this param.
3468 */
3469#define ZONELIST_ORDER_DEFAULT 0
3470#define ZONELIST_ORDER_NODE 1
3471#define ZONELIST_ORDER_ZONE 2
3472
3473/* zonelist order in the kernel.
3474 * set_zonelist_order() will set this to NODE or ZONE.
3475 */
3476static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3477static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3478
3479
1da177e4 3480#ifdef CONFIG_NUMA
f0c0b2b8
KH
3481/* The value user specified ....changed by config */
3482static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3483/* string for sysctl */
3484#define NUMA_ZONELIST_ORDER_LEN 16
3485char numa_zonelist_order[16] = "default";
3486
3487/*
3488 * interface for configure zonelist ordering.
3489 * command line option "numa_zonelist_order"
3490 * = "[dD]efault - default, automatic configuration.
3491 * = "[nN]ode - order by node locality, then by zone within node
3492 * = "[zZ]one - order by zone, then by locality within zone
3493 */
3494
3495static int __parse_numa_zonelist_order(char *s)
3496{
3497 if (*s == 'd' || *s == 'D') {
3498 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3499 } else if (*s == 'n' || *s == 'N') {
3500 user_zonelist_order = ZONELIST_ORDER_NODE;
3501 } else if (*s == 'z' || *s == 'Z') {
3502 user_zonelist_order = ZONELIST_ORDER_ZONE;
3503 } else {
3504 printk(KERN_WARNING
3505 "Ignoring invalid numa_zonelist_order value: "
3506 "%s\n", s);
3507 return -EINVAL;
3508 }
3509 return 0;
3510}
3511
3512static __init int setup_numa_zonelist_order(char *s)
3513{
ecb256f8
VL
3514 int ret;
3515
3516 if (!s)
3517 return 0;
3518
3519 ret = __parse_numa_zonelist_order(s);
3520 if (ret == 0)
3521 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3522
3523 return ret;
f0c0b2b8
KH
3524}
3525early_param("numa_zonelist_order", setup_numa_zonelist_order);
3526
3527/*
3528 * sysctl handler for numa_zonelist_order
3529 */
cccad5b9 3530int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3531 void __user *buffer, size_t *length,
f0c0b2b8
KH
3532 loff_t *ppos)
3533{
3534 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3535 int ret;
443c6f14 3536 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3537
443c6f14 3538 mutex_lock(&zl_order_mutex);
dacbde09
CG
3539 if (write) {
3540 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3541 ret = -EINVAL;
3542 goto out;
3543 }
3544 strcpy(saved_string, (char *)table->data);
3545 }
8d65af78 3546 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3547 if (ret)
443c6f14 3548 goto out;
f0c0b2b8
KH
3549 if (write) {
3550 int oldval = user_zonelist_order;
dacbde09
CG
3551
3552 ret = __parse_numa_zonelist_order((char *)table->data);
3553 if (ret) {
f0c0b2b8
KH
3554 /*
3555 * bogus value. restore saved string
3556 */
dacbde09 3557 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3558 NUMA_ZONELIST_ORDER_LEN);
3559 user_zonelist_order = oldval;
4eaf3f64
HL
3560 } else if (oldval != user_zonelist_order) {
3561 mutex_lock(&zonelists_mutex);
9adb62a5 3562 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3563 mutex_unlock(&zonelists_mutex);
3564 }
f0c0b2b8 3565 }
443c6f14
AK
3566out:
3567 mutex_unlock(&zl_order_mutex);
3568 return ret;
f0c0b2b8
KH
3569}
3570
3571
62bc62a8 3572#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3573static int node_load[MAX_NUMNODES];
3574
1da177e4 3575/**
4dc3b16b 3576 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3577 * @node: node whose fallback list we're appending
3578 * @used_node_mask: nodemask_t of already used nodes
3579 *
3580 * We use a number of factors to determine which is the next node that should
3581 * appear on a given node's fallback list. The node should not have appeared
3582 * already in @node's fallback list, and it should be the next closest node
3583 * according to the distance array (which contains arbitrary distance values
3584 * from each node to each node in the system), and should also prefer nodes
3585 * with no CPUs, since presumably they'll have very little allocation pressure
3586 * on them otherwise.
3587 * It returns -1 if no node is found.
3588 */
f0c0b2b8 3589static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3590{
4cf808eb 3591 int n, val;
1da177e4 3592 int min_val = INT_MAX;
00ef2d2f 3593 int best_node = NUMA_NO_NODE;
a70f7302 3594 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3595
4cf808eb
LT
3596 /* Use the local node if we haven't already */
3597 if (!node_isset(node, *used_node_mask)) {
3598 node_set(node, *used_node_mask);
3599 return node;
3600 }
1da177e4 3601
4b0ef1fe 3602 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3603
3604 /* Don't want a node to appear more than once */
3605 if (node_isset(n, *used_node_mask))
3606 continue;
3607
1da177e4
LT
3608 /* Use the distance array to find the distance */
3609 val = node_distance(node, n);
3610
4cf808eb
LT
3611 /* Penalize nodes under us ("prefer the next node") */
3612 val += (n < node);
3613
1da177e4 3614 /* Give preference to headless and unused nodes */
a70f7302
RR
3615 tmp = cpumask_of_node(n);
3616 if (!cpumask_empty(tmp))
1da177e4
LT
3617 val += PENALTY_FOR_NODE_WITH_CPUS;
3618
3619 /* Slight preference for less loaded node */
3620 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3621 val += node_load[n];
3622
3623 if (val < min_val) {
3624 min_val = val;
3625 best_node = n;
3626 }
3627 }
3628
3629 if (best_node >= 0)
3630 node_set(best_node, *used_node_mask);
3631
3632 return best_node;
3633}
3634
f0c0b2b8
KH
3635
3636/*
3637 * Build zonelists ordered by node and zones within node.
3638 * This results in maximum locality--normal zone overflows into local
3639 * DMA zone, if any--but risks exhausting DMA zone.
3640 */
3641static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3642{
f0c0b2b8 3643 int j;
1da177e4 3644 struct zonelist *zonelist;
f0c0b2b8 3645
54a6eb5c 3646 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3647 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3648 ;
bc732f1d 3649 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3650 zonelist->_zonerefs[j].zone = NULL;
3651 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3652}
3653
523b9458
CL
3654/*
3655 * Build gfp_thisnode zonelists
3656 */
3657static void build_thisnode_zonelists(pg_data_t *pgdat)
3658{
523b9458
CL
3659 int j;
3660 struct zonelist *zonelist;
3661
54a6eb5c 3662 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3663 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3664 zonelist->_zonerefs[j].zone = NULL;
3665 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3666}
3667
f0c0b2b8
KH
3668/*
3669 * Build zonelists ordered by zone and nodes within zones.
3670 * This results in conserving DMA zone[s] until all Normal memory is
3671 * exhausted, but results in overflowing to remote node while memory
3672 * may still exist in local DMA zone.
3673 */
3674static int node_order[MAX_NUMNODES];
3675
3676static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3677{
f0c0b2b8
KH
3678 int pos, j, node;
3679 int zone_type; /* needs to be signed */
3680 struct zone *z;
3681 struct zonelist *zonelist;
3682
54a6eb5c
MG
3683 zonelist = &pgdat->node_zonelists[0];
3684 pos = 0;
3685 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3686 for (j = 0; j < nr_nodes; j++) {
3687 node = node_order[j];
3688 z = &NODE_DATA(node)->node_zones[zone_type];
3689 if (populated_zone(z)) {
dd1a239f
MG
3690 zoneref_set_zone(z,
3691 &zonelist->_zonerefs[pos++]);
54a6eb5c 3692 check_highest_zone(zone_type);
f0c0b2b8
KH
3693 }
3694 }
f0c0b2b8 3695 }
dd1a239f
MG
3696 zonelist->_zonerefs[pos].zone = NULL;
3697 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3698}
3699
3193913c
MG
3700#if defined(CONFIG_64BIT)
3701/*
3702 * Devices that require DMA32/DMA are relatively rare and do not justify a
3703 * penalty to every machine in case the specialised case applies. Default
3704 * to Node-ordering on 64-bit NUMA machines
3705 */
3706static int default_zonelist_order(void)
3707{
3708 return ZONELIST_ORDER_NODE;
3709}
3710#else
3711/*
3712 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3713 * by the kernel. If processes running on node 0 deplete the low memory zone
3714 * then reclaim will occur more frequency increasing stalls and potentially
3715 * be easier to OOM if a large percentage of the zone is under writeback or
3716 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3717 * Hence, default to zone ordering on 32-bit.
3718 */
f0c0b2b8
KH
3719static int default_zonelist_order(void)
3720{
f0c0b2b8
KH
3721 return ZONELIST_ORDER_ZONE;
3722}
3193913c 3723#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3724
3725static void set_zonelist_order(void)
3726{
3727 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3728 current_zonelist_order = default_zonelist_order();
3729 else
3730 current_zonelist_order = user_zonelist_order;
3731}
3732
3733static void build_zonelists(pg_data_t *pgdat)
3734{
3735 int j, node, load;
3736 enum zone_type i;
1da177e4 3737 nodemask_t used_mask;
f0c0b2b8
KH
3738 int local_node, prev_node;
3739 struct zonelist *zonelist;
3740 int order = current_zonelist_order;
1da177e4
LT
3741
3742 /* initialize zonelists */
523b9458 3743 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3744 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3745 zonelist->_zonerefs[0].zone = NULL;
3746 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3747 }
3748
3749 /* NUMA-aware ordering of nodes */
3750 local_node = pgdat->node_id;
62bc62a8 3751 load = nr_online_nodes;
1da177e4
LT
3752 prev_node = local_node;
3753 nodes_clear(used_mask);
f0c0b2b8 3754
f0c0b2b8
KH
3755 memset(node_order, 0, sizeof(node_order));
3756 j = 0;
3757
1da177e4
LT
3758 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3759 /*
3760 * We don't want to pressure a particular node.
3761 * So adding penalty to the first node in same
3762 * distance group to make it round-robin.
3763 */
957f822a
DR
3764 if (node_distance(local_node, node) !=
3765 node_distance(local_node, prev_node))
f0c0b2b8
KH
3766 node_load[node] = load;
3767
1da177e4
LT
3768 prev_node = node;
3769 load--;
f0c0b2b8
KH
3770 if (order == ZONELIST_ORDER_NODE)
3771 build_zonelists_in_node_order(pgdat, node);
3772 else
3773 node_order[j++] = node; /* remember order */
3774 }
1da177e4 3775
f0c0b2b8
KH
3776 if (order == ZONELIST_ORDER_ZONE) {
3777 /* calculate node order -- i.e., DMA last! */
3778 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3779 }
523b9458
CL
3780
3781 build_thisnode_zonelists(pgdat);
1da177e4
LT
3782}
3783
9276b1bc 3784/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3785static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3786{
54a6eb5c
MG
3787 struct zonelist *zonelist;
3788 struct zonelist_cache *zlc;
dd1a239f 3789 struct zoneref *z;
9276b1bc 3790
54a6eb5c
MG
3791 zonelist = &pgdat->node_zonelists[0];
3792 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3793 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3794 for (z = zonelist->_zonerefs; z->zone; z++)
3795 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3796}
3797
7aac7898
LS
3798#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3799/*
3800 * Return node id of node used for "local" allocations.
3801 * I.e., first node id of first zone in arg node's generic zonelist.
3802 * Used for initializing percpu 'numa_mem', which is used primarily
3803 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3804 */
3805int local_memory_node(int node)
3806{
3807 struct zone *zone;
3808
3809 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3810 gfp_zone(GFP_KERNEL),
3811 NULL,
3812 &zone);
3813 return zone->node;
3814}
3815#endif
f0c0b2b8 3816
1da177e4
LT
3817#else /* CONFIG_NUMA */
3818
f0c0b2b8
KH
3819static void set_zonelist_order(void)
3820{
3821 current_zonelist_order = ZONELIST_ORDER_ZONE;
3822}
3823
3824static void build_zonelists(pg_data_t *pgdat)
1da177e4 3825{
19655d34 3826 int node, local_node;
54a6eb5c
MG
3827 enum zone_type j;
3828 struct zonelist *zonelist;
1da177e4
LT
3829
3830 local_node = pgdat->node_id;
1da177e4 3831
54a6eb5c 3832 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3833 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3834
54a6eb5c
MG
3835 /*
3836 * Now we build the zonelist so that it contains the zones
3837 * of all the other nodes.
3838 * We don't want to pressure a particular node, so when
3839 * building the zones for node N, we make sure that the
3840 * zones coming right after the local ones are those from
3841 * node N+1 (modulo N)
3842 */
3843 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3844 if (!node_online(node))
3845 continue;
bc732f1d 3846 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3847 }
54a6eb5c
MG
3848 for (node = 0; node < local_node; node++) {
3849 if (!node_online(node))
3850 continue;
bc732f1d 3851 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3852 }
3853
dd1a239f
MG
3854 zonelist->_zonerefs[j].zone = NULL;
3855 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3856}
3857
9276b1bc 3858/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3859static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3860{
54a6eb5c 3861 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3862}
3863
1da177e4
LT
3864#endif /* CONFIG_NUMA */
3865
99dcc3e5
CL
3866/*
3867 * Boot pageset table. One per cpu which is going to be used for all
3868 * zones and all nodes. The parameters will be set in such a way
3869 * that an item put on a list will immediately be handed over to
3870 * the buddy list. This is safe since pageset manipulation is done
3871 * with interrupts disabled.
3872 *
3873 * The boot_pagesets must be kept even after bootup is complete for
3874 * unused processors and/or zones. They do play a role for bootstrapping
3875 * hotplugged processors.
3876 *
3877 * zoneinfo_show() and maybe other functions do
3878 * not check if the processor is online before following the pageset pointer.
3879 * Other parts of the kernel may not check if the zone is available.
3880 */
3881static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3882static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3883static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3884
4eaf3f64
HL
3885/*
3886 * Global mutex to protect against size modification of zonelists
3887 * as well as to serialize pageset setup for the new populated zone.
3888 */
3889DEFINE_MUTEX(zonelists_mutex);
3890
9b1a4d38 3891/* return values int ....just for stop_machine() */
4ed7e022 3892static int __build_all_zonelists(void *data)
1da177e4 3893{
6811378e 3894 int nid;
99dcc3e5 3895 int cpu;
9adb62a5 3896 pg_data_t *self = data;
9276b1bc 3897
7f9cfb31
BL
3898#ifdef CONFIG_NUMA
3899 memset(node_load, 0, sizeof(node_load));
3900#endif
9adb62a5
JL
3901
3902 if (self && !node_online(self->node_id)) {
3903 build_zonelists(self);
3904 build_zonelist_cache(self);
3905 }
3906
9276b1bc 3907 for_each_online_node(nid) {
7ea1530a
CL
3908 pg_data_t *pgdat = NODE_DATA(nid);
3909
3910 build_zonelists(pgdat);
3911 build_zonelist_cache(pgdat);
9276b1bc 3912 }
99dcc3e5
CL
3913
3914 /*
3915 * Initialize the boot_pagesets that are going to be used
3916 * for bootstrapping processors. The real pagesets for
3917 * each zone will be allocated later when the per cpu
3918 * allocator is available.
3919 *
3920 * boot_pagesets are used also for bootstrapping offline
3921 * cpus if the system is already booted because the pagesets
3922 * are needed to initialize allocators on a specific cpu too.
3923 * F.e. the percpu allocator needs the page allocator which
3924 * needs the percpu allocator in order to allocate its pagesets
3925 * (a chicken-egg dilemma).
3926 */
7aac7898 3927 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3928 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3929
7aac7898
LS
3930#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3931 /*
3932 * We now know the "local memory node" for each node--
3933 * i.e., the node of the first zone in the generic zonelist.
3934 * Set up numa_mem percpu variable for on-line cpus. During
3935 * boot, only the boot cpu should be on-line; we'll init the
3936 * secondary cpus' numa_mem as they come on-line. During
3937 * node/memory hotplug, we'll fixup all on-line cpus.
3938 */
3939 if (cpu_online(cpu))
3940 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3941#endif
3942 }
3943
6811378e
YG
3944 return 0;
3945}
3946
4eaf3f64
HL
3947/*
3948 * Called with zonelists_mutex held always
3949 * unless system_state == SYSTEM_BOOTING.
3950 */
9adb62a5 3951void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3952{
f0c0b2b8
KH
3953 set_zonelist_order();
3954
6811378e 3955 if (system_state == SYSTEM_BOOTING) {
423b41d7 3956 __build_all_zonelists(NULL);
68ad8df4 3957 mminit_verify_zonelist();
6811378e
YG
3958 cpuset_init_current_mems_allowed();
3959 } else {
e9959f0f 3960#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3961 if (zone)
3962 setup_zone_pageset(zone);
e9959f0f 3963#endif
dd1895e2
CS
3964 /* we have to stop all cpus to guarantee there is no user
3965 of zonelist */
9adb62a5 3966 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3967 /* cpuset refresh routine should be here */
3968 }
bd1e22b8 3969 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3970 /*
3971 * Disable grouping by mobility if the number of pages in the
3972 * system is too low to allow the mechanism to work. It would be
3973 * more accurate, but expensive to check per-zone. This check is
3974 * made on memory-hotadd so a system can start with mobility
3975 * disabled and enable it later
3976 */
d9c23400 3977 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3978 page_group_by_mobility_disabled = 1;
3979 else
3980 page_group_by_mobility_disabled = 0;
3981
f88dfff5 3982 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3983 "Total pages: %ld\n",
62bc62a8 3984 nr_online_nodes,
f0c0b2b8 3985 zonelist_order_name[current_zonelist_order],
9ef9acb0 3986 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3987 vm_total_pages);
3988#ifdef CONFIG_NUMA
f88dfff5 3989 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3990#endif
1da177e4
LT
3991}
3992
3993/*
3994 * Helper functions to size the waitqueue hash table.
3995 * Essentially these want to choose hash table sizes sufficiently
3996 * large so that collisions trying to wait on pages are rare.
3997 * But in fact, the number of active page waitqueues on typical
3998 * systems is ridiculously low, less than 200. So this is even
3999 * conservative, even though it seems large.
4000 *
4001 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4002 * waitqueues, i.e. the size of the waitq table given the number of pages.
4003 */
4004#define PAGES_PER_WAITQUEUE 256
4005
cca448fe 4006#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4007static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4008{
4009 unsigned long size = 1;
4010
4011 pages /= PAGES_PER_WAITQUEUE;
4012
4013 while (size < pages)
4014 size <<= 1;
4015
4016 /*
4017 * Once we have dozens or even hundreds of threads sleeping
4018 * on IO we've got bigger problems than wait queue collision.
4019 * Limit the size of the wait table to a reasonable size.
4020 */
4021 size = min(size, 4096UL);
4022
4023 return max(size, 4UL);
4024}
cca448fe
YG
4025#else
4026/*
4027 * A zone's size might be changed by hot-add, so it is not possible to determine
4028 * a suitable size for its wait_table. So we use the maximum size now.
4029 *
4030 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4031 *
4032 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4033 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4034 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4035 *
4036 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4037 * or more by the traditional way. (See above). It equals:
4038 *
4039 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4040 * ia64(16K page size) : = ( 8G + 4M)byte.
4041 * powerpc (64K page size) : = (32G +16M)byte.
4042 */
4043static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4044{
4045 return 4096UL;
4046}
4047#endif
1da177e4
LT
4048
4049/*
4050 * This is an integer logarithm so that shifts can be used later
4051 * to extract the more random high bits from the multiplicative
4052 * hash function before the remainder is taken.
4053 */
4054static inline unsigned long wait_table_bits(unsigned long size)
4055{
4056 return ffz(~size);
4057}
4058
6d3163ce
AH
4059/*
4060 * Check if a pageblock contains reserved pages
4061 */
4062static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4063{
4064 unsigned long pfn;
4065
4066 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4067 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4068 return 1;
4069 }
4070 return 0;
4071}
4072
56fd56b8 4073/*
d9c23400 4074 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4075 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4076 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4077 * higher will lead to a bigger reserve which will get freed as contiguous
4078 * blocks as reclaim kicks in
4079 */
4080static void setup_zone_migrate_reserve(struct zone *zone)
4081{
6d3163ce 4082 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4083 struct page *page;
78986a67
MG
4084 unsigned long block_migratetype;
4085 int reserve;
943dca1a 4086 int old_reserve;
56fd56b8 4087
d0215638
MH
4088 /*
4089 * Get the start pfn, end pfn and the number of blocks to reserve
4090 * We have to be careful to be aligned to pageblock_nr_pages to
4091 * make sure that we always check pfn_valid for the first page in
4092 * the block.
4093 */
56fd56b8 4094 start_pfn = zone->zone_start_pfn;
108bcc96 4095 end_pfn = zone_end_pfn(zone);
d0215638 4096 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4097 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4098 pageblock_order;
56fd56b8 4099
78986a67
MG
4100 /*
4101 * Reserve blocks are generally in place to help high-order atomic
4102 * allocations that are short-lived. A min_free_kbytes value that
4103 * would result in more than 2 reserve blocks for atomic allocations
4104 * is assumed to be in place to help anti-fragmentation for the
4105 * future allocation of hugepages at runtime.
4106 */
4107 reserve = min(2, reserve);
943dca1a
YI
4108 old_reserve = zone->nr_migrate_reserve_block;
4109
4110 /* When memory hot-add, we almost always need to do nothing */
4111 if (reserve == old_reserve)
4112 return;
4113 zone->nr_migrate_reserve_block = reserve;
78986a67 4114
d9c23400 4115 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4116 if (!pfn_valid(pfn))
4117 continue;
4118 page = pfn_to_page(pfn);
4119
344c790e
AL
4120 /* Watch out for overlapping nodes */
4121 if (page_to_nid(page) != zone_to_nid(zone))
4122 continue;
4123
56fd56b8
MG
4124 block_migratetype = get_pageblock_migratetype(page);
4125
938929f1
MG
4126 /* Only test what is necessary when the reserves are not met */
4127 if (reserve > 0) {
4128 /*
4129 * Blocks with reserved pages will never free, skip
4130 * them.
4131 */
4132 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4133 if (pageblock_is_reserved(pfn, block_end_pfn))
4134 continue;
56fd56b8 4135
938929f1
MG
4136 /* If this block is reserved, account for it */
4137 if (block_migratetype == MIGRATE_RESERVE) {
4138 reserve--;
4139 continue;
4140 }
4141
4142 /* Suitable for reserving if this block is movable */
4143 if (block_migratetype == MIGRATE_MOVABLE) {
4144 set_pageblock_migratetype(page,
4145 MIGRATE_RESERVE);
4146 move_freepages_block(zone, page,
4147 MIGRATE_RESERVE);
4148 reserve--;
4149 continue;
4150 }
943dca1a
YI
4151 } else if (!old_reserve) {
4152 /*
4153 * At boot time we don't need to scan the whole zone
4154 * for turning off MIGRATE_RESERVE.
4155 */
4156 break;
56fd56b8
MG
4157 }
4158
4159 /*
4160 * If the reserve is met and this is a previous reserved block,
4161 * take it back
4162 */
4163 if (block_migratetype == MIGRATE_RESERVE) {
4164 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4165 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4166 }
4167 }
4168}
ac0e5b7a 4169
1da177e4
LT
4170/*
4171 * Initially all pages are reserved - free ones are freed
4172 * up by free_all_bootmem() once the early boot process is
4173 * done. Non-atomic initialization, single-pass.
4174 */
c09b4240 4175void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4176 unsigned long start_pfn, enum memmap_context context)
1da177e4 4177{
1da177e4 4178 struct page *page;
29751f69
AW
4179 unsigned long end_pfn = start_pfn + size;
4180 unsigned long pfn;
86051ca5 4181 struct zone *z;
1da177e4 4182
22b31eec
HD
4183 if (highest_memmap_pfn < end_pfn - 1)
4184 highest_memmap_pfn = end_pfn - 1;
4185
86051ca5 4186 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4187 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4188 /*
4189 * There can be holes in boot-time mem_map[]s
4190 * handed to this function. They do not
4191 * exist on hotplugged memory.
4192 */
4193 if (context == MEMMAP_EARLY) {
4194 if (!early_pfn_valid(pfn))
4195 continue;
4196 if (!early_pfn_in_nid(pfn, nid))
4197 continue;
4198 }
d41dee36
AW
4199 page = pfn_to_page(pfn);
4200 set_page_links(page, zone, nid, pfn);
708614e6 4201 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4202 init_page_count(page);
22b751c3 4203 page_mapcount_reset(page);
90572890 4204 page_cpupid_reset_last(page);
1da177e4 4205 SetPageReserved(page);
b2a0ac88
MG
4206 /*
4207 * Mark the block movable so that blocks are reserved for
4208 * movable at startup. This will force kernel allocations
4209 * to reserve their blocks rather than leaking throughout
4210 * the address space during boot when many long-lived
56fd56b8
MG
4211 * kernel allocations are made. Later some blocks near
4212 * the start are marked MIGRATE_RESERVE by
4213 * setup_zone_migrate_reserve()
86051ca5
KH
4214 *
4215 * bitmap is created for zone's valid pfn range. but memmap
4216 * can be created for invalid pages (for alignment)
4217 * check here not to call set_pageblock_migratetype() against
4218 * pfn out of zone.
b2a0ac88 4219 */
86051ca5 4220 if ((z->zone_start_pfn <= pfn)
108bcc96 4221 && (pfn < zone_end_pfn(z))
86051ca5 4222 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4223 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4224
1da177e4
LT
4225 INIT_LIST_HEAD(&page->lru);
4226#ifdef WANT_PAGE_VIRTUAL
4227 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4228 if (!is_highmem_idx(zone))
3212c6be 4229 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4230#endif
1da177e4
LT
4231 }
4232}
4233
1e548deb 4234static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4235{
7aeb09f9 4236 unsigned int order, t;
b2a0ac88
MG
4237 for_each_migratetype_order(order, t) {
4238 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4239 zone->free_area[order].nr_free = 0;
4240 }
4241}
4242
4243#ifndef __HAVE_ARCH_MEMMAP_INIT
4244#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4245 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4246#endif
4247
7cd2b0a3 4248static int zone_batchsize(struct zone *zone)
e7c8d5c9 4249{
3a6be87f 4250#ifdef CONFIG_MMU
e7c8d5c9
CL
4251 int batch;
4252
4253 /*
4254 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4255 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4256 *
4257 * OK, so we don't know how big the cache is. So guess.
4258 */
b40da049 4259 batch = zone->managed_pages / 1024;
ba56e91c
SR
4260 if (batch * PAGE_SIZE > 512 * 1024)
4261 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4262 batch /= 4; /* We effectively *= 4 below */
4263 if (batch < 1)
4264 batch = 1;
4265
4266 /*
0ceaacc9
NP
4267 * Clamp the batch to a 2^n - 1 value. Having a power
4268 * of 2 value was found to be more likely to have
4269 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4270 *
0ceaacc9
NP
4271 * For example if 2 tasks are alternately allocating
4272 * batches of pages, one task can end up with a lot
4273 * of pages of one half of the possible page colors
4274 * and the other with pages of the other colors.
e7c8d5c9 4275 */
9155203a 4276 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4277
e7c8d5c9 4278 return batch;
3a6be87f
DH
4279
4280#else
4281 /* The deferral and batching of frees should be suppressed under NOMMU
4282 * conditions.
4283 *
4284 * The problem is that NOMMU needs to be able to allocate large chunks
4285 * of contiguous memory as there's no hardware page translation to
4286 * assemble apparent contiguous memory from discontiguous pages.
4287 *
4288 * Queueing large contiguous runs of pages for batching, however,
4289 * causes the pages to actually be freed in smaller chunks. As there
4290 * can be a significant delay between the individual batches being
4291 * recycled, this leads to the once large chunks of space being
4292 * fragmented and becoming unavailable for high-order allocations.
4293 */
4294 return 0;
4295#endif
e7c8d5c9
CL
4296}
4297
8d7a8fa9
CS
4298/*
4299 * pcp->high and pcp->batch values are related and dependent on one another:
4300 * ->batch must never be higher then ->high.
4301 * The following function updates them in a safe manner without read side
4302 * locking.
4303 *
4304 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4305 * those fields changing asynchronously (acording the the above rule).
4306 *
4307 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4308 * outside of boot time (or some other assurance that no concurrent updaters
4309 * exist).
4310 */
4311static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4312 unsigned long batch)
4313{
4314 /* start with a fail safe value for batch */
4315 pcp->batch = 1;
4316 smp_wmb();
4317
4318 /* Update high, then batch, in order */
4319 pcp->high = high;
4320 smp_wmb();
4321
4322 pcp->batch = batch;
4323}
4324
3664033c 4325/* a companion to pageset_set_high() */
4008bab7
CS
4326static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4327{
8d7a8fa9 4328 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4329}
4330
88c90dbc 4331static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4332{
4333 struct per_cpu_pages *pcp;
5f8dcc21 4334 int migratetype;
2caaad41 4335
1c6fe946
MD
4336 memset(p, 0, sizeof(*p));
4337
3dfa5721 4338 pcp = &p->pcp;
2caaad41 4339 pcp->count = 0;
5f8dcc21
MG
4340 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4341 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4342}
4343
88c90dbc
CS
4344static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4345{
4346 pageset_init(p);
4347 pageset_set_batch(p, batch);
4348}
4349
8ad4b1fb 4350/*
3664033c 4351 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4352 * to the value high for the pageset p.
4353 */
3664033c 4354static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4355 unsigned long high)
4356{
8d7a8fa9
CS
4357 unsigned long batch = max(1UL, high / 4);
4358 if ((high / 4) > (PAGE_SHIFT * 8))
4359 batch = PAGE_SHIFT * 8;
8ad4b1fb 4360
8d7a8fa9 4361 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4362}
4363
7cd2b0a3
DR
4364static void pageset_set_high_and_batch(struct zone *zone,
4365 struct per_cpu_pageset *pcp)
56cef2b8 4366{
56cef2b8 4367 if (percpu_pagelist_fraction)
3664033c 4368 pageset_set_high(pcp,
56cef2b8
CS
4369 (zone->managed_pages /
4370 percpu_pagelist_fraction));
4371 else
4372 pageset_set_batch(pcp, zone_batchsize(zone));
4373}
4374
169f6c19
CS
4375static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4376{
4377 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4378
4379 pageset_init(pcp);
4380 pageset_set_high_and_batch(zone, pcp);
4381}
4382
4ed7e022 4383static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4384{
4385 int cpu;
319774e2 4386 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4387 for_each_possible_cpu(cpu)
4388 zone_pageset_init(zone, cpu);
319774e2
WF
4389}
4390
2caaad41 4391/*
99dcc3e5
CL
4392 * Allocate per cpu pagesets and initialize them.
4393 * Before this call only boot pagesets were available.
e7c8d5c9 4394 */
99dcc3e5 4395void __init setup_per_cpu_pageset(void)
e7c8d5c9 4396{
99dcc3e5 4397 struct zone *zone;
e7c8d5c9 4398
319774e2
WF
4399 for_each_populated_zone(zone)
4400 setup_zone_pageset(zone);
e7c8d5c9
CL
4401}
4402
577a32f6 4403static noinline __init_refok
cca448fe 4404int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4405{
4406 int i;
cca448fe 4407 size_t alloc_size;
ed8ece2e
DH
4408
4409 /*
4410 * The per-page waitqueue mechanism uses hashed waitqueues
4411 * per zone.
4412 */
02b694de
YG
4413 zone->wait_table_hash_nr_entries =
4414 wait_table_hash_nr_entries(zone_size_pages);
4415 zone->wait_table_bits =
4416 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4417 alloc_size = zone->wait_table_hash_nr_entries
4418 * sizeof(wait_queue_head_t);
4419
cd94b9db 4420 if (!slab_is_available()) {
cca448fe 4421 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4422 memblock_virt_alloc_node_nopanic(
4423 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4424 } else {
4425 /*
4426 * This case means that a zone whose size was 0 gets new memory
4427 * via memory hot-add.
4428 * But it may be the case that a new node was hot-added. In
4429 * this case vmalloc() will not be able to use this new node's
4430 * memory - this wait_table must be initialized to use this new
4431 * node itself as well.
4432 * To use this new node's memory, further consideration will be
4433 * necessary.
4434 */
8691f3a7 4435 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4436 }
4437 if (!zone->wait_table)
4438 return -ENOMEM;
ed8ece2e 4439
b8af2941 4440 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4441 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4442
4443 return 0;
ed8ece2e
DH
4444}
4445
c09b4240 4446static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4447{
99dcc3e5
CL
4448 /*
4449 * per cpu subsystem is not up at this point. The following code
4450 * relies on the ability of the linker to provide the
4451 * offset of a (static) per cpu variable into the per cpu area.
4452 */
4453 zone->pageset = &boot_pageset;
ed8ece2e 4454
b38a8725 4455 if (populated_zone(zone))
99dcc3e5
CL
4456 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4457 zone->name, zone->present_pages,
4458 zone_batchsize(zone));
ed8ece2e
DH
4459}
4460
4ed7e022 4461int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4462 unsigned long zone_start_pfn,
a2f3aa02
DH
4463 unsigned long size,
4464 enum memmap_context context)
ed8ece2e
DH
4465{
4466 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4467 int ret;
4468 ret = zone_wait_table_init(zone, size);
4469 if (ret)
4470 return ret;
ed8ece2e
DH
4471 pgdat->nr_zones = zone_idx(zone) + 1;
4472
ed8ece2e
DH
4473 zone->zone_start_pfn = zone_start_pfn;
4474
708614e6
MG
4475 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4476 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4477 pgdat->node_id,
4478 (unsigned long)zone_idx(zone),
4479 zone_start_pfn, (zone_start_pfn + size));
4480
1e548deb 4481 zone_init_free_lists(zone);
718127cc
YG
4482
4483 return 0;
ed8ece2e
DH
4484}
4485
0ee332c1 4486#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4487#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4488/*
4489 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4490 */
f2dbcfa7 4491int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4492{
c13291a5 4493 unsigned long start_pfn, end_pfn;
e76b63f8 4494 int nid;
7c243c71
RA
4495 /*
4496 * NOTE: The following SMP-unsafe globals are only used early in boot
4497 * when the kernel is running single-threaded.
4498 */
4499 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4500 static int __meminitdata last_nid;
4501
4502 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4503 return last_nid;
c713216d 4504
e76b63f8
YL
4505 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4506 if (nid != -1) {
4507 last_start_pfn = start_pfn;
4508 last_end_pfn = end_pfn;
4509 last_nid = nid;
4510 }
4511
4512 return nid;
c713216d
MG
4513}
4514#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4515
f2dbcfa7
KH
4516int __meminit early_pfn_to_nid(unsigned long pfn)
4517{
cc2559bc
KH
4518 int nid;
4519
4520 nid = __early_pfn_to_nid(pfn);
4521 if (nid >= 0)
4522 return nid;
4523 /* just returns 0 */
4524 return 0;
f2dbcfa7
KH
4525}
4526
cc2559bc
KH
4527#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4528bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4529{
4530 int nid;
4531
4532 nid = __early_pfn_to_nid(pfn);
4533 if (nid >= 0 && nid != node)
4534 return false;
4535 return true;
4536}
4537#endif
f2dbcfa7 4538
c713216d 4539/**
6782832e 4540 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4541 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4542 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4543 *
7d018176
ZZ
4544 * If an architecture guarantees that all ranges registered contain no holes
4545 * and may be freed, this this function may be used instead of calling
4546 * memblock_free_early_nid() manually.
c713216d 4547 */
c13291a5 4548void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4549{
c13291a5
TH
4550 unsigned long start_pfn, end_pfn;
4551 int i, this_nid;
edbe7d23 4552
c13291a5
TH
4553 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4554 start_pfn = min(start_pfn, max_low_pfn);
4555 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4556
c13291a5 4557 if (start_pfn < end_pfn)
6782832e
SS
4558 memblock_free_early_nid(PFN_PHYS(start_pfn),
4559 (end_pfn - start_pfn) << PAGE_SHIFT,
4560 this_nid);
edbe7d23 4561 }
edbe7d23 4562}
edbe7d23 4563
c713216d
MG
4564/**
4565 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4566 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4567 *
7d018176
ZZ
4568 * If an architecture guarantees that all ranges registered contain no holes and may
4569 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4570 */
4571void __init sparse_memory_present_with_active_regions(int nid)
4572{
c13291a5
TH
4573 unsigned long start_pfn, end_pfn;
4574 int i, this_nid;
c713216d 4575
c13291a5
TH
4576 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4577 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4578}
4579
4580/**
4581 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4582 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4583 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4584 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4585 *
4586 * It returns the start and end page frame of a node based on information
7d018176 4587 * provided by memblock_set_node(). If called for a node
c713216d 4588 * with no available memory, a warning is printed and the start and end
88ca3b94 4589 * PFNs will be 0.
c713216d 4590 */
a3142c8e 4591void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4592 unsigned long *start_pfn, unsigned long *end_pfn)
4593{
c13291a5 4594 unsigned long this_start_pfn, this_end_pfn;
c713216d 4595 int i;
c13291a5 4596
c713216d
MG
4597 *start_pfn = -1UL;
4598 *end_pfn = 0;
4599
c13291a5
TH
4600 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4601 *start_pfn = min(*start_pfn, this_start_pfn);
4602 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4603 }
4604
633c0666 4605 if (*start_pfn == -1UL)
c713216d 4606 *start_pfn = 0;
c713216d
MG
4607}
4608
2a1e274a
MG
4609/*
4610 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4611 * assumption is made that zones within a node are ordered in monotonic
4612 * increasing memory addresses so that the "highest" populated zone is used
4613 */
b69a7288 4614static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4615{
4616 int zone_index;
4617 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4618 if (zone_index == ZONE_MOVABLE)
4619 continue;
4620
4621 if (arch_zone_highest_possible_pfn[zone_index] >
4622 arch_zone_lowest_possible_pfn[zone_index])
4623 break;
4624 }
4625
4626 VM_BUG_ON(zone_index == -1);
4627 movable_zone = zone_index;
4628}
4629
4630/*
4631 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4632 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4633 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4634 * in each node depending on the size of each node and how evenly kernelcore
4635 * is distributed. This helper function adjusts the zone ranges
4636 * provided by the architecture for a given node by using the end of the
4637 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4638 * zones within a node are in order of monotonic increases memory addresses
4639 */
b69a7288 4640static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4641 unsigned long zone_type,
4642 unsigned long node_start_pfn,
4643 unsigned long node_end_pfn,
4644 unsigned long *zone_start_pfn,
4645 unsigned long *zone_end_pfn)
4646{
4647 /* Only adjust if ZONE_MOVABLE is on this node */
4648 if (zone_movable_pfn[nid]) {
4649 /* Size ZONE_MOVABLE */
4650 if (zone_type == ZONE_MOVABLE) {
4651 *zone_start_pfn = zone_movable_pfn[nid];
4652 *zone_end_pfn = min(node_end_pfn,
4653 arch_zone_highest_possible_pfn[movable_zone]);
4654
4655 /* Adjust for ZONE_MOVABLE starting within this range */
4656 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4657 *zone_end_pfn > zone_movable_pfn[nid]) {
4658 *zone_end_pfn = zone_movable_pfn[nid];
4659
4660 /* Check if this whole range is within ZONE_MOVABLE */
4661 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4662 *zone_start_pfn = *zone_end_pfn;
4663 }
4664}
4665
c713216d
MG
4666/*
4667 * Return the number of pages a zone spans in a node, including holes
4668 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4669 */
6ea6e688 4670static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4671 unsigned long zone_type,
7960aedd
ZY
4672 unsigned long node_start_pfn,
4673 unsigned long node_end_pfn,
c713216d
MG
4674 unsigned long *ignored)
4675{
c713216d
MG
4676 unsigned long zone_start_pfn, zone_end_pfn;
4677
7960aedd 4678 /* Get the start and end of the zone */
c713216d
MG
4679 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4680 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4681 adjust_zone_range_for_zone_movable(nid, zone_type,
4682 node_start_pfn, node_end_pfn,
4683 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4684
4685 /* Check that this node has pages within the zone's required range */
4686 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4687 return 0;
4688
4689 /* Move the zone boundaries inside the node if necessary */
4690 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4691 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4692
4693 /* Return the spanned pages */
4694 return zone_end_pfn - zone_start_pfn;
4695}
4696
4697/*
4698 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4699 * then all holes in the requested range will be accounted for.
c713216d 4700 */
32996250 4701unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4702 unsigned long range_start_pfn,
4703 unsigned long range_end_pfn)
4704{
96e907d1
TH
4705 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4706 unsigned long start_pfn, end_pfn;
4707 int i;
c713216d 4708
96e907d1
TH
4709 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4710 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4711 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4712 nr_absent -= end_pfn - start_pfn;
c713216d 4713 }
96e907d1 4714 return nr_absent;
c713216d
MG
4715}
4716
4717/**
4718 * absent_pages_in_range - Return number of page frames in holes within a range
4719 * @start_pfn: The start PFN to start searching for holes
4720 * @end_pfn: The end PFN to stop searching for holes
4721 *
88ca3b94 4722 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4723 */
4724unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4725 unsigned long end_pfn)
4726{
4727 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4728}
4729
4730/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4731static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4732 unsigned long zone_type,
7960aedd
ZY
4733 unsigned long node_start_pfn,
4734 unsigned long node_end_pfn,
c713216d
MG
4735 unsigned long *ignored)
4736{
96e907d1
TH
4737 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4738 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4739 unsigned long zone_start_pfn, zone_end_pfn;
4740
96e907d1
TH
4741 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4742 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4743
2a1e274a
MG
4744 adjust_zone_range_for_zone_movable(nid, zone_type,
4745 node_start_pfn, node_end_pfn,
4746 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4747 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4748}
0e0b864e 4749
0ee332c1 4750#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4751static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4752 unsigned long zone_type,
7960aedd
ZY
4753 unsigned long node_start_pfn,
4754 unsigned long node_end_pfn,
c713216d
MG
4755 unsigned long *zones_size)
4756{
4757 return zones_size[zone_type];
4758}
4759
6ea6e688 4760static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4761 unsigned long zone_type,
7960aedd
ZY
4762 unsigned long node_start_pfn,
4763 unsigned long node_end_pfn,
c713216d
MG
4764 unsigned long *zholes_size)
4765{
4766 if (!zholes_size)
4767 return 0;
4768
4769 return zholes_size[zone_type];
4770}
20e6926d 4771
0ee332c1 4772#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4773
a3142c8e 4774static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4775 unsigned long node_start_pfn,
4776 unsigned long node_end_pfn,
4777 unsigned long *zones_size,
4778 unsigned long *zholes_size)
c713216d
MG
4779{
4780 unsigned long realtotalpages, totalpages = 0;
4781 enum zone_type i;
4782
4783 for (i = 0; i < MAX_NR_ZONES; i++)
4784 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4785 node_start_pfn,
4786 node_end_pfn,
4787 zones_size);
c713216d
MG
4788 pgdat->node_spanned_pages = totalpages;
4789
4790 realtotalpages = totalpages;
4791 for (i = 0; i < MAX_NR_ZONES; i++)
4792 realtotalpages -=
4793 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4794 node_start_pfn, node_end_pfn,
4795 zholes_size);
c713216d
MG
4796 pgdat->node_present_pages = realtotalpages;
4797 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4798 realtotalpages);
4799}
4800
835c134e
MG
4801#ifndef CONFIG_SPARSEMEM
4802/*
4803 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4804 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4805 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4806 * round what is now in bits to nearest long in bits, then return it in
4807 * bytes.
4808 */
7c45512d 4809static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4810{
4811 unsigned long usemapsize;
4812
7c45512d 4813 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4814 usemapsize = roundup(zonesize, pageblock_nr_pages);
4815 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4816 usemapsize *= NR_PAGEBLOCK_BITS;
4817 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4818
4819 return usemapsize / 8;
4820}
4821
4822static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4823 struct zone *zone,
4824 unsigned long zone_start_pfn,
4825 unsigned long zonesize)
835c134e 4826{
7c45512d 4827 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4828 zone->pageblock_flags = NULL;
58a01a45 4829 if (usemapsize)
6782832e
SS
4830 zone->pageblock_flags =
4831 memblock_virt_alloc_node_nopanic(usemapsize,
4832 pgdat->node_id);
835c134e
MG
4833}
4834#else
7c45512d
LT
4835static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4836 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4837#endif /* CONFIG_SPARSEMEM */
4838
d9c23400 4839#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4840
d9c23400 4841/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4842void __paginginit set_pageblock_order(void)
d9c23400 4843{
955c1cd7
AM
4844 unsigned int order;
4845
d9c23400
MG
4846 /* Check that pageblock_nr_pages has not already been setup */
4847 if (pageblock_order)
4848 return;
4849
955c1cd7
AM
4850 if (HPAGE_SHIFT > PAGE_SHIFT)
4851 order = HUGETLB_PAGE_ORDER;
4852 else
4853 order = MAX_ORDER - 1;
4854
d9c23400
MG
4855 /*
4856 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4857 * This value may be variable depending on boot parameters on IA64 and
4858 * powerpc.
d9c23400
MG
4859 */
4860 pageblock_order = order;
4861}
4862#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4863
ba72cb8c
MG
4864/*
4865 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4866 * is unused as pageblock_order is set at compile-time. See
4867 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4868 * the kernel config
ba72cb8c 4869 */
15ca220e 4870void __paginginit set_pageblock_order(void)
ba72cb8c 4871{
ba72cb8c 4872}
d9c23400
MG
4873
4874#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4875
01cefaef
JL
4876static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4877 unsigned long present_pages)
4878{
4879 unsigned long pages = spanned_pages;
4880
4881 /*
4882 * Provide a more accurate estimation if there are holes within
4883 * the zone and SPARSEMEM is in use. If there are holes within the
4884 * zone, each populated memory region may cost us one or two extra
4885 * memmap pages due to alignment because memmap pages for each
4886 * populated regions may not naturally algined on page boundary.
4887 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4888 */
4889 if (spanned_pages > present_pages + (present_pages >> 4) &&
4890 IS_ENABLED(CONFIG_SPARSEMEM))
4891 pages = present_pages;
4892
4893 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4894}
4895
1da177e4
LT
4896/*
4897 * Set up the zone data structures:
4898 * - mark all pages reserved
4899 * - mark all memory queues empty
4900 * - clear the memory bitmaps
6527af5d
MK
4901 *
4902 * NOTE: pgdat should get zeroed by caller.
1da177e4 4903 */
b5a0e011 4904static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4905 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4906 unsigned long *zones_size, unsigned long *zholes_size)
4907{
2f1b6248 4908 enum zone_type j;
ed8ece2e 4909 int nid = pgdat->node_id;
1da177e4 4910 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4911 int ret;
1da177e4 4912
208d54e5 4913 pgdat_resize_init(pgdat);
8177a420
AA
4914#ifdef CONFIG_NUMA_BALANCING
4915 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4916 pgdat->numabalancing_migrate_nr_pages = 0;
4917 pgdat->numabalancing_migrate_next_window = jiffies;
4918#endif
1da177e4 4919 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4920 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4921 pgdat_page_ext_init(pgdat);
5f63b720 4922
1da177e4
LT
4923 for (j = 0; j < MAX_NR_ZONES; j++) {
4924 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4925 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4926
7960aedd
ZY
4927 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4928 node_end_pfn, zones_size);
9feedc9d 4929 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4930 node_start_pfn,
4931 node_end_pfn,
c713216d 4932 zholes_size);
1da177e4 4933
0e0b864e 4934 /*
9feedc9d 4935 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4936 * is used by this zone for memmap. This affects the watermark
4937 * and per-cpu initialisations
4938 */
01cefaef 4939 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4940 if (!is_highmem_idx(j)) {
4941 if (freesize >= memmap_pages) {
4942 freesize -= memmap_pages;
4943 if (memmap_pages)
4944 printk(KERN_DEBUG
4945 " %s zone: %lu pages used for memmap\n",
4946 zone_names[j], memmap_pages);
4947 } else
4948 printk(KERN_WARNING
4949 " %s zone: %lu pages exceeds freesize %lu\n",
4950 zone_names[j], memmap_pages, freesize);
4951 }
0e0b864e 4952
6267276f 4953 /* Account for reserved pages */
9feedc9d
JL
4954 if (j == 0 && freesize > dma_reserve) {
4955 freesize -= dma_reserve;
d903ef9f 4956 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4957 zone_names[0], dma_reserve);
0e0b864e
MG
4958 }
4959
98d2b0eb 4960 if (!is_highmem_idx(j))
9feedc9d 4961 nr_kernel_pages += freesize;
01cefaef
JL
4962 /* Charge for highmem memmap if there are enough kernel pages */
4963 else if (nr_kernel_pages > memmap_pages * 2)
4964 nr_kernel_pages -= memmap_pages;
9feedc9d 4965 nr_all_pages += freesize;
1da177e4
LT
4966
4967 zone->spanned_pages = size;
306f2e9e 4968 zone->present_pages = realsize;
9feedc9d
JL
4969 /*
4970 * Set an approximate value for lowmem here, it will be adjusted
4971 * when the bootmem allocator frees pages into the buddy system.
4972 * And all highmem pages will be managed by the buddy system.
4973 */
4974 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4975#ifdef CONFIG_NUMA
d5f541ed 4976 zone->node = nid;
9feedc9d 4977 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4978 / 100;
9feedc9d 4979 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4980#endif
1da177e4
LT
4981 zone->name = zone_names[j];
4982 spin_lock_init(&zone->lock);
4983 spin_lock_init(&zone->lru_lock);
bdc8cb98 4984 zone_seqlock_init(zone);
1da177e4 4985 zone->zone_pgdat = pgdat;
ed8ece2e 4986 zone_pcp_init(zone);
81c0a2bb
JW
4987
4988 /* For bootup, initialized properly in watermark setup */
4989 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4990
bea8c150 4991 lruvec_init(&zone->lruvec);
1da177e4
LT
4992 if (!size)
4993 continue;
4994
955c1cd7 4995 set_pageblock_order();
7c45512d 4996 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4997 ret = init_currently_empty_zone(zone, zone_start_pfn,
4998 size, MEMMAP_EARLY);
718127cc 4999 BUG_ON(ret);
76cdd58e 5000 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5001 zone_start_pfn += size;
1da177e4
LT
5002 }
5003}
5004
577a32f6 5005static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5006{
1da177e4
LT
5007 /* Skip empty nodes */
5008 if (!pgdat->node_spanned_pages)
5009 return;
5010
d41dee36 5011#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5012 /* ia64 gets its own node_mem_map, before this, without bootmem */
5013 if (!pgdat->node_mem_map) {
e984bb43 5014 unsigned long size, start, end;
d41dee36
AW
5015 struct page *map;
5016
e984bb43
BP
5017 /*
5018 * The zone's endpoints aren't required to be MAX_ORDER
5019 * aligned but the node_mem_map endpoints must be in order
5020 * for the buddy allocator to function correctly.
5021 */
5022 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5023 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5024 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5025 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5026 map = alloc_remap(pgdat->node_id, size);
5027 if (!map)
6782832e
SS
5028 map = memblock_virt_alloc_node_nopanic(size,
5029 pgdat->node_id);
e984bb43 5030 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5031 }
12d810c1 5032#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5033 /*
5034 * With no DISCONTIG, the global mem_map is just set as node 0's
5035 */
c713216d 5036 if (pgdat == NODE_DATA(0)) {
1da177e4 5037 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5038#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5039 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5040 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5041#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5042 }
1da177e4 5043#endif
d41dee36 5044#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5045}
5046
9109fb7b
JW
5047void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5048 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5049{
9109fb7b 5050 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5051 unsigned long start_pfn = 0;
5052 unsigned long end_pfn = 0;
9109fb7b 5053
88fdf75d 5054 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5055 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5056
1da177e4
LT
5057 pgdat->node_id = nid;
5058 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5059#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5060 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
5061 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5062 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5063#endif
5064 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5065 zones_size, zholes_size);
1da177e4
LT
5066
5067 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5068#ifdef CONFIG_FLAT_NODE_MEM_MAP
5069 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5070 nid, (unsigned long)pgdat,
5071 (unsigned long)pgdat->node_mem_map);
5072#endif
1da177e4 5073
7960aedd
ZY
5074 free_area_init_core(pgdat, start_pfn, end_pfn,
5075 zones_size, zholes_size);
1da177e4
LT
5076}
5077
0ee332c1 5078#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5079
5080#if MAX_NUMNODES > 1
5081/*
5082 * Figure out the number of possible node ids.
5083 */
f9872caf 5084void __init setup_nr_node_ids(void)
418508c1
MS
5085{
5086 unsigned int node;
5087 unsigned int highest = 0;
5088
5089 for_each_node_mask(node, node_possible_map)
5090 highest = node;
5091 nr_node_ids = highest + 1;
5092}
418508c1
MS
5093#endif
5094
1e01979c
TH
5095/**
5096 * node_map_pfn_alignment - determine the maximum internode alignment
5097 *
5098 * This function should be called after node map is populated and sorted.
5099 * It calculates the maximum power of two alignment which can distinguish
5100 * all the nodes.
5101 *
5102 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5103 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5104 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5105 * shifted, 1GiB is enough and this function will indicate so.
5106 *
5107 * This is used to test whether pfn -> nid mapping of the chosen memory
5108 * model has fine enough granularity to avoid incorrect mapping for the
5109 * populated node map.
5110 *
5111 * Returns the determined alignment in pfn's. 0 if there is no alignment
5112 * requirement (single node).
5113 */
5114unsigned long __init node_map_pfn_alignment(void)
5115{
5116 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5117 unsigned long start, end, mask;
1e01979c 5118 int last_nid = -1;
c13291a5 5119 int i, nid;
1e01979c 5120
c13291a5 5121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5122 if (!start || last_nid < 0 || last_nid == nid) {
5123 last_nid = nid;
5124 last_end = end;
5125 continue;
5126 }
5127
5128 /*
5129 * Start with a mask granular enough to pin-point to the
5130 * start pfn and tick off bits one-by-one until it becomes
5131 * too coarse to separate the current node from the last.
5132 */
5133 mask = ~((1 << __ffs(start)) - 1);
5134 while (mask && last_end <= (start & (mask << 1)))
5135 mask <<= 1;
5136
5137 /* accumulate all internode masks */
5138 accl_mask |= mask;
5139 }
5140
5141 /* convert mask to number of pages */
5142 return ~accl_mask + 1;
5143}
5144
a6af2bc3 5145/* Find the lowest pfn for a node */
b69a7288 5146static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5147{
a6af2bc3 5148 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5149 unsigned long start_pfn;
5150 int i;
1abbfb41 5151
c13291a5
TH
5152 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5153 min_pfn = min(min_pfn, start_pfn);
c713216d 5154
a6af2bc3
MG
5155 if (min_pfn == ULONG_MAX) {
5156 printk(KERN_WARNING
2bc0d261 5157 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5158 return 0;
5159 }
5160
5161 return min_pfn;
c713216d
MG
5162}
5163
5164/**
5165 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5166 *
5167 * It returns the minimum PFN based on information provided via
7d018176 5168 * memblock_set_node().
c713216d
MG
5169 */
5170unsigned long __init find_min_pfn_with_active_regions(void)
5171{
5172 return find_min_pfn_for_node(MAX_NUMNODES);
5173}
5174
37b07e41
LS
5175/*
5176 * early_calculate_totalpages()
5177 * Sum pages in active regions for movable zone.
4b0ef1fe 5178 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5179 */
484f51f8 5180static unsigned long __init early_calculate_totalpages(void)
7e63efef 5181{
7e63efef 5182 unsigned long totalpages = 0;
c13291a5
TH
5183 unsigned long start_pfn, end_pfn;
5184 int i, nid;
5185
5186 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5187 unsigned long pages = end_pfn - start_pfn;
7e63efef 5188
37b07e41
LS
5189 totalpages += pages;
5190 if (pages)
4b0ef1fe 5191 node_set_state(nid, N_MEMORY);
37b07e41 5192 }
b8af2941 5193 return totalpages;
7e63efef
MG
5194}
5195
2a1e274a
MG
5196/*
5197 * Find the PFN the Movable zone begins in each node. Kernel memory
5198 * is spread evenly between nodes as long as the nodes have enough
5199 * memory. When they don't, some nodes will have more kernelcore than
5200 * others
5201 */
b224ef85 5202static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5203{
5204 int i, nid;
5205 unsigned long usable_startpfn;
5206 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5207 /* save the state before borrow the nodemask */
4b0ef1fe 5208 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5209 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5210 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5211 struct memblock_region *r;
b2f3eebe
TC
5212
5213 /* Need to find movable_zone earlier when movable_node is specified. */
5214 find_usable_zone_for_movable();
5215
5216 /*
5217 * If movable_node is specified, ignore kernelcore and movablecore
5218 * options.
5219 */
5220 if (movable_node_is_enabled()) {
136199f0
EM
5221 for_each_memblock(memory, r) {
5222 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5223 continue;
5224
136199f0 5225 nid = r->nid;
b2f3eebe 5226
136199f0 5227 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5228 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5229 min(usable_startpfn, zone_movable_pfn[nid]) :
5230 usable_startpfn;
5231 }
5232
5233 goto out2;
5234 }
2a1e274a 5235
7e63efef 5236 /*
b2f3eebe 5237 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5238 * kernelcore that corresponds so that memory usable for
5239 * any allocation type is evenly spread. If both kernelcore
5240 * and movablecore are specified, then the value of kernelcore
5241 * will be used for required_kernelcore if it's greater than
5242 * what movablecore would have allowed.
5243 */
5244 if (required_movablecore) {
7e63efef
MG
5245 unsigned long corepages;
5246
5247 /*
5248 * Round-up so that ZONE_MOVABLE is at least as large as what
5249 * was requested by the user
5250 */
5251 required_movablecore =
5252 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5253 corepages = totalpages - required_movablecore;
5254
5255 required_kernelcore = max(required_kernelcore, corepages);
5256 }
5257
20e6926d
YL
5258 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5259 if (!required_kernelcore)
66918dcd 5260 goto out;
2a1e274a
MG
5261
5262 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5263 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5264
5265restart:
5266 /* Spread kernelcore memory as evenly as possible throughout nodes */
5267 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5268 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5269 unsigned long start_pfn, end_pfn;
5270
2a1e274a
MG
5271 /*
5272 * Recalculate kernelcore_node if the division per node
5273 * now exceeds what is necessary to satisfy the requested
5274 * amount of memory for the kernel
5275 */
5276 if (required_kernelcore < kernelcore_node)
5277 kernelcore_node = required_kernelcore / usable_nodes;
5278
5279 /*
5280 * As the map is walked, we track how much memory is usable
5281 * by the kernel using kernelcore_remaining. When it is
5282 * 0, the rest of the node is usable by ZONE_MOVABLE
5283 */
5284 kernelcore_remaining = kernelcore_node;
5285
5286 /* Go through each range of PFNs within this node */
c13291a5 5287 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5288 unsigned long size_pages;
5289
c13291a5 5290 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5291 if (start_pfn >= end_pfn)
5292 continue;
5293
5294 /* Account for what is only usable for kernelcore */
5295 if (start_pfn < usable_startpfn) {
5296 unsigned long kernel_pages;
5297 kernel_pages = min(end_pfn, usable_startpfn)
5298 - start_pfn;
5299
5300 kernelcore_remaining -= min(kernel_pages,
5301 kernelcore_remaining);
5302 required_kernelcore -= min(kernel_pages,
5303 required_kernelcore);
5304
5305 /* Continue if range is now fully accounted */
5306 if (end_pfn <= usable_startpfn) {
5307
5308 /*
5309 * Push zone_movable_pfn to the end so
5310 * that if we have to rebalance
5311 * kernelcore across nodes, we will
5312 * not double account here
5313 */
5314 zone_movable_pfn[nid] = end_pfn;
5315 continue;
5316 }
5317 start_pfn = usable_startpfn;
5318 }
5319
5320 /*
5321 * The usable PFN range for ZONE_MOVABLE is from
5322 * start_pfn->end_pfn. Calculate size_pages as the
5323 * number of pages used as kernelcore
5324 */
5325 size_pages = end_pfn - start_pfn;
5326 if (size_pages > kernelcore_remaining)
5327 size_pages = kernelcore_remaining;
5328 zone_movable_pfn[nid] = start_pfn + size_pages;
5329
5330 /*
5331 * Some kernelcore has been met, update counts and
5332 * break if the kernelcore for this node has been
b8af2941 5333 * satisfied
2a1e274a
MG
5334 */
5335 required_kernelcore -= min(required_kernelcore,
5336 size_pages);
5337 kernelcore_remaining -= size_pages;
5338 if (!kernelcore_remaining)
5339 break;
5340 }
5341 }
5342
5343 /*
5344 * If there is still required_kernelcore, we do another pass with one
5345 * less node in the count. This will push zone_movable_pfn[nid] further
5346 * along on the nodes that still have memory until kernelcore is
b8af2941 5347 * satisfied
2a1e274a
MG
5348 */
5349 usable_nodes--;
5350 if (usable_nodes && required_kernelcore > usable_nodes)
5351 goto restart;
5352
b2f3eebe 5353out2:
2a1e274a
MG
5354 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5355 for (nid = 0; nid < MAX_NUMNODES; nid++)
5356 zone_movable_pfn[nid] =
5357 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5358
20e6926d 5359out:
66918dcd 5360 /* restore the node_state */
4b0ef1fe 5361 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5362}
5363
4b0ef1fe
LJ
5364/* Any regular or high memory on that node ? */
5365static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5366{
37b07e41
LS
5367 enum zone_type zone_type;
5368
4b0ef1fe
LJ
5369 if (N_MEMORY == N_NORMAL_MEMORY)
5370 return;
5371
5372 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5373 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5374 if (populated_zone(zone)) {
4b0ef1fe
LJ
5375 node_set_state(nid, N_HIGH_MEMORY);
5376 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5377 zone_type <= ZONE_NORMAL)
5378 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5379 break;
5380 }
37b07e41 5381 }
37b07e41
LS
5382}
5383
c713216d
MG
5384/**
5385 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5386 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5387 *
5388 * This will call free_area_init_node() for each active node in the system.
7d018176 5389 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5390 * zone in each node and their holes is calculated. If the maximum PFN
5391 * between two adjacent zones match, it is assumed that the zone is empty.
5392 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5393 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5394 * starts where the previous one ended. For example, ZONE_DMA32 starts
5395 * at arch_max_dma_pfn.
5396 */
5397void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5398{
c13291a5
TH
5399 unsigned long start_pfn, end_pfn;
5400 int i, nid;
a6af2bc3 5401
c713216d
MG
5402 /* Record where the zone boundaries are */
5403 memset(arch_zone_lowest_possible_pfn, 0,
5404 sizeof(arch_zone_lowest_possible_pfn));
5405 memset(arch_zone_highest_possible_pfn, 0,
5406 sizeof(arch_zone_highest_possible_pfn));
5407 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5408 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5409 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5410 if (i == ZONE_MOVABLE)
5411 continue;
c713216d
MG
5412 arch_zone_lowest_possible_pfn[i] =
5413 arch_zone_highest_possible_pfn[i-1];
5414 arch_zone_highest_possible_pfn[i] =
5415 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5416 }
2a1e274a
MG
5417 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5418 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5419
5420 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5421 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5422 find_zone_movable_pfns_for_nodes();
c713216d 5423
c713216d 5424 /* Print out the zone ranges */
f88dfff5 5425 pr_info("Zone ranges:\n");
2a1e274a
MG
5426 for (i = 0; i < MAX_NR_ZONES; i++) {
5427 if (i == ZONE_MOVABLE)
5428 continue;
f88dfff5 5429 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5430 if (arch_zone_lowest_possible_pfn[i] ==
5431 arch_zone_highest_possible_pfn[i])
f88dfff5 5432 pr_cont("empty\n");
72f0ba02 5433 else
f88dfff5 5434 pr_cont("[mem %0#10lx-%0#10lx]\n",
a62e2f4f
BH
5435 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5436 (arch_zone_highest_possible_pfn[i]
5437 << PAGE_SHIFT) - 1);
2a1e274a
MG
5438 }
5439
5440 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5441 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5442 for (i = 0; i < MAX_NUMNODES; i++) {
5443 if (zone_movable_pfn[i])
f88dfff5 5444 pr_info(" Node %d: %#010lx\n", i,
a62e2f4f 5445 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5446 }
c713216d 5447
f2d52fe5 5448 /* Print out the early node map */
f88dfff5 5449 pr_info("Early memory node ranges\n");
c13291a5 5450 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
f88dfff5 5451 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
a62e2f4f 5452 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5453
5454 /* Initialise every node */
708614e6 5455 mminit_verify_pageflags_layout();
8ef82866 5456 setup_nr_node_ids();
c713216d
MG
5457 for_each_online_node(nid) {
5458 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5459 free_area_init_node(nid, NULL,
c713216d 5460 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5461
5462 /* Any memory on that node */
5463 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5464 node_set_state(nid, N_MEMORY);
5465 check_for_memory(pgdat, nid);
c713216d
MG
5466 }
5467}
2a1e274a 5468
7e63efef 5469static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5470{
5471 unsigned long long coremem;
5472 if (!p)
5473 return -EINVAL;
5474
5475 coremem = memparse(p, &p);
7e63efef 5476 *core = coremem >> PAGE_SHIFT;
2a1e274a 5477
7e63efef 5478 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5479 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5480
5481 return 0;
5482}
ed7ed365 5483
7e63efef
MG
5484/*
5485 * kernelcore=size sets the amount of memory for use for allocations that
5486 * cannot be reclaimed or migrated.
5487 */
5488static int __init cmdline_parse_kernelcore(char *p)
5489{
5490 return cmdline_parse_core(p, &required_kernelcore);
5491}
5492
5493/*
5494 * movablecore=size sets the amount of memory for use for allocations that
5495 * can be reclaimed or migrated.
5496 */
5497static int __init cmdline_parse_movablecore(char *p)
5498{
5499 return cmdline_parse_core(p, &required_movablecore);
5500}
5501
ed7ed365 5502early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5503early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5504
0ee332c1 5505#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5506
c3d5f5f0
JL
5507void adjust_managed_page_count(struct page *page, long count)
5508{
5509 spin_lock(&managed_page_count_lock);
5510 page_zone(page)->managed_pages += count;
5511 totalram_pages += count;
3dcc0571
JL
5512#ifdef CONFIG_HIGHMEM
5513 if (PageHighMem(page))
5514 totalhigh_pages += count;
5515#endif
c3d5f5f0
JL
5516 spin_unlock(&managed_page_count_lock);
5517}
3dcc0571 5518EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5519
11199692 5520unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5521{
11199692
JL
5522 void *pos;
5523 unsigned long pages = 0;
69afade7 5524
11199692
JL
5525 start = (void *)PAGE_ALIGN((unsigned long)start);
5526 end = (void *)((unsigned long)end & PAGE_MASK);
5527 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5528 if ((unsigned int)poison <= 0xFF)
11199692
JL
5529 memset(pos, poison, PAGE_SIZE);
5530 free_reserved_page(virt_to_page(pos));
69afade7
JL
5531 }
5532
5533 if (pages && s)
11199692 5534 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5535 s, pages << (PAGE_SHIFT - 10), start, end);
5536
5537 return pages;
5538}
11199692 5539EXPORT_SYMBOL(free_reserved_area);
69afade7 5540
cfa11e08
JL
5541#ifdef CONFIG_HIGHMEM
5542void free_highmem_page(struct page *page)
5543{
5544 __free_reserved_page(page);
5545 totalram_pages++;
7b4b2a0d 5546 page_zone(page)->managed_pages++;
cfa11e08
JL
5547 totalhigh_pages++;
5548}
5549#endif
5550
7ee3d4e8
JL
5551
5552void __init mem_init_print_info(const char *str)
5553{
5554 unsigned long physpages, codesize, datasize, rosize, bss_size;
5555 unsigned long init_code_size, init_data_size;
5556
5557 physpages = get_num_physpages();
5558 codesize = _etext - _stext;
5559 datasize = _edata - _sdata;
5560 rosize = __end_rodata - __start_rodata;
5561 bss_size = __bss_stop - __bss_start;
5562 init_data_size = __init_end - __init_begin;
5563 init_code_size = _einittext - _sinittext;
5564
5565 /*
5566 * Detect special cases and adjust section sizes accordingly:
5567 * 1) .init.* may be embedded into .data sections
5568 * 2) .init.text.* may be out of [__init_begin, __init_end],
5569 * please refer to arch/tile/kernel/vmlinux.lds.S.
5570 * 3) .rodata.* may be embedded into .text or .data sections.
5571 */
5572#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5573 do { \
5574 if (start <= pos && pos < end && size > adj) \
5575 size -= adj; \
5576 } while (0)
7ee3d4e8
JL
5577
5578 adj_init_size(__init_begin, __init_end, init_data_size,
5579 _sinittext, init_code_size);
5580 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5581 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5582 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5583 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5584
5585#undef adj_init_size
5586
f88dfff5 5587 pr_info("Memory: %luK/%luK available "
7ee3d4e8
JL
5588 "(%luK kernel code, %luK rwdata, %luK rodata, "
5589 "%luK init, %luK bss, %luK reserved"
5590#ifdef CONFIG_HIGHMEM
5591 ", %luK highmem"
5592#endif
5593 "%s%s)\n",
5594 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5595 codesize >> 10, datasize >> 10, rosize >> 10,
5596 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5597 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5598#ifdef CONFIG_HIGHMEM
5599 totalhigh_pages << (PAGE_SHIFT-10),
5600#endif
5601 str ? ", " : "", str ? str : "");
5602}
5603
0e0b864e 5604/**
88ca3b94
RD
5605 * set_dma_reserve - set the specified number of pages reserved in the first zone
5606 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5607 *
5608 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5609 * In the DMA zone, a significant percentage may be consumed by kernel image
5610 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5611 * function may optionally be used to account for unfreeable pages in the
5612 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5613 * smaller per-cpu batchsize.
0e0b864e
MG
5614 */
5615void __init set_dma_reserve(unsigned long new_dma_reserve)
5616{
5617 dma_reserve = new_dma_reserve;
5618}
5619
1da177e4
LT
5620void __init free_area_init(unsigned long *zones_size)
5621{
9109fb7b 5622 free_area_init_node(0, zones_size,
1da177e4
LT
5623 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5624}
1da177e4 5625
1da177e4
LT
5626static int page_alloc_cpu_notify(struct notifier_block *self,
5627 unsigned long action, void *hcpu)
5628{
5629 int cpu = (unsigned long)hcpu;
1da177e4 5630
8bb78442 5631 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5632 lru_add_drain_cpu(cpu);
9f8f2172
CL
5633 drain_pages(cpu);
5634
5635 /*
5636 * Spill the event counters of the dead processor
5637 * into the current processors event counters.
5638 * This artificially elevates the count of the current
5639 * processor.
5640 */
f8891e5e 5641 vm_events_fold_cpu(cpu);
9f8f2172
CL
5642
5643 /*
5644 * Zero the differential counters of the dead processor
5645 * so that the vm statistics are consistent.
5646 *
5647 * This is only okay since the processor is dead and cannot
5648 * race with what we are doing.
5649 */
2bb921e5 5650 cpu_vm_stats_fold(cpu);
1da177e4
LT
5651 }
5652 return NOTIFY_OK;
5653}
1da177e4
LT
5654
5655void __init page_alloc_init(void)
5656{
5657 hotcpu_notifier(page_alloc_cpu_notify, 0);
5658}
5659
cb45b0e9
HA
5660/*
5661 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5662 * or min_free_kbytes changes.
5663 */
5664static void calculate_totalreserve_pages(void)
5665{
5666 struct pglist_data *pgdat;
5667 unsigned long reserve_pages = 0;
2f6726e5 5668 enum zone_type i, j;
cb45b0e9
HA
5669
5670 for_each_online_pgdat(pgdat) {
5671 for (i = 0; i < MAX_NR_ZONES; i++) {
5672 struct zone *zone = pgdat->node_zones + i;
3484b2de 5673 long max = 0;
cb45b0e9
HA
5674
5675 /* Find valid and maximum lowmem_reserve in the zone */
5676 for (j = i; j < MAX_NR_ZONES; j++) {
5677 if (zone->lowmem_reserve[j] > max)
5678 max = zone->lowmem_reserve[j];
5679 }
5680
41858966
MG
5681 /* we treat the high watermark as reserved pages. */
5682 max += high_wmark_pages(zone);
cb45b0e9 5683
b40da049
JL
5684 if (max > zone->managed_pages)
5685 max = zone->managed_pages;
cb45b0e9 5686 reserve_pages += max;
ab8fabd4
JW
5687 /*
5688 * Lowmem reserves are not available to
5689 * GFP_HIGHUSER page cache allocations and
5690 * kswapd tries to balance zones to their high
5691 * watermark. As a result, neither should be
5692 * regarded as dirtyable memory, to prevent a
5693 * situation where reclaim has to clean pages
5694 * in order to balance the zones.
5695 */
5696 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5697 }
5698 }
ab8fabd4 5699 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5700 totalreserve_pages = reserve_pages;
5701}
5702
1da177e4
LT
5703/*
5704 * setup_per_zone_lowmem_reserve - called whenever
5705 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5706 * has a correct pages reserved value, so an adequate number of
5707 * pages are left in the zone after a successful __alloc_pages().
5708 */
5709static void setup_per_zone_lowmem_reserve(void)
5710{
5711 struct pglist_data *pgdat;
2f6726e5 5712 enum zone_type j, idx;
1da177e4 5713
ec936fc5 5714 for_each_online_pgdat(pgdat) {
1da177e4
LT
5715 for (j = 0; j < MAX_NR_ZONES; j++) {
5716 struct zone *zone = pgdat->node_zones + j;
b40da049 5717 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5718
5719 zone->lowmem_reserve[j] = 0;
5720
2f6726e5
CL
5721 idx = j;
5722 while (idx) {
1da177e4
LT
5723 struct zone *lower_zone;
5724
2f6726e5
CL
5725 idx--;
5726
1da177e4
LT
5727 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5728 sysctl_lowmem_reserve_ratio[idx] = 1;
5729
5730 lower_zone = pgdat->node_zones + idx;
b40da049 5731 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5732 sysctl_lowmem_reserve_ratio[idx];
b40da049 5733 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5734 }
5735 }
5736 }
cb45b0e9
HA
5737
5738 /* update totalreserve_pages */
5739 calculate_totalreserve_pages();
1da177e4
LT
5740}
5741
cfd3da1e 5742static void __setup_per_zone_wmarks(void)
1da177e4
LT
5743{
5744 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5745 unsigned long lowmem_pages = 0;
5746 struct zone *zone;
5747 unsigned long flags;
5748
5749 /* Calculate total number of !ZONE_HIGHMEM pages */
5750 for_each_zone(zone) {
5751 if (!is_highmem(zone))
b40da049 5752 lowmem_pages += zone->managed_pages;
1da177e4
LT
5753 }
5754
5755 for_each_zone(zone) {
ac924c60
AM
5756 u64 tmp;
5757
1125b4e3 5758 spin_lock_irqsave(&zone->lock, flags);
b40da049 5759 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5760 do_div(tmp, lowmem_pages);
1da177e4
LT
5761 if (is_highmem(zone)) {
5762 /*
669ed175
NP
5763 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5764 * need highmem pages, so cap pages_min to a small
5765 * value here.
5766 *
41858966 5767 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5768 * deltas controls asynch page reclaim, and so should
5769 * not be capped for highmem.
1da177e4 5770 */
90ae8d67 5771 unsigned long min_pages;
1da177e4 5772
b40da049 5773 min_pages = zone->managed_pages / 1024;
90ae8d67 5774 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5775 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5776 } else {
669ed175
NP
5777 /*
5778 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5779 * proportionate to the zone's size.
5780 */
41858966 5781 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5782 }
5783
41858966
MG
5784 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5785 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5786
81c0a2bb 5787 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5788 high_wmark_pages(zone) - low_wmark_pages(zone) -
5789 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5790
56fd56b8 5791 setup_zone_migrate_reserve(zone);
1125b4e3 5792 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5793 }
cb45b0e9
HA
5794
5795 /* update totalreserve_pages */
5796 calculate_totalreserve_pages();
1da177e4
LT
5797}
5798
cfd3da1e
MG
5799/**
5800 * setup_per_zone_wmarks - called when min_free_kbytes changes
5801 * or when memory is hot-{added|removed}
5802 *
5803 * Ensures that the watermark[min,low,high] values for each zone are set
5804 * correctly with respect to min_free_kbytes.
5805 */
5806void setup_per_zone_wmarks(void)
5807{
5808 mutex_lock(&zonelists_mutex);
5809 __setup_per_zone_wmarks();
5810 mutex_unlock(&zonelists_mutex);
5811}
5812
55a4462a 5813/*
556adecb
RR
5814 * The inactive anon list should be small enough that the VM never has to
5815 * do too much work, but large enough that each inactive page has a chance
5816 * to be referenced again before it is swapped out.
5817 *
5818 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5819 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5820 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5821 * the anonymous pages are kept on the inactive list.
5822 *
5823 * total target max
5824 * memory ratio inactive anon
5825 * -------------------------------------
5826 * 10MB 1 5MB
5827 * 100MB 1 50MB
5828 * 1GB 3 250MB
5829 * 10GB 10 0.9GB
5830 * 100GB 31 3GB
5831 * 1TB 101 10GB
5832 * 10TB 320 32GB
5833 */
1b79acc9 5834static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5835{
96cb4df5 5836 unsigned int gb, ratio;
556adecb 5837
96cb4df5 5838 /* Zone size in gigabytes */
b40da049 5839 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5840 if (gb)
556adecb 5841 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5842 else
5843 ratio = 1;
556adecb 5844
96cb4df5
MK
5845 zone->inactive_ratio = ratio;
5846}
556adecb 5847
839a4fcc 5848static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5849{
5850 struct zone *zone;
5851
5852 for_each_zone(zone)
5853 calculate_zone_inactive_ratio(zone);
556adecb
RR
5854}
5855
1da177e4
LT
5856/*
5857 * Initialise min_free_kbytes.
5858 *
5859 * For small machines we want it small (128k min). For large machines
5860 * we want it large (64MB max). But it is not linear, because network
5861 * bandwidth does not increase linearly with machine size. We use
5862 *
b8af2941 5863 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5864 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5865 *
5866 * which yields
5867 *
5868 * 16MB: 512k
5869 * 32MB: 724k
5870 * 64MB: 1024k
5871 * 128MB: 1448k
5872 * 256MB: 2048k
5873 * 512MB: 2896k
5874 * 1024MB: 4096k
5875 * 2048MB: 5792k
5876 * 4096MB: 8192k
5877 * 8192MB: 11584k
5878 * 16384MB: 16384k
5879 */
1b79acc9 5880int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5881{
5882 unsigned long lowmem_kbytes;
5f12733e 5883 int new_min_free_kbytes;
1da177e4
LT
5884
5885 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5886 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5887
5888 if (new_min_free_kbytes > user_min_free_kbytes) {
5889 min_free_kbytes = new_min_free_kbytes;
5890 if (min_free_kbytes < 128)
5891 min_free_kbytes = 128;
5892 if (min_free_kbytes > 65536)
5893 min_free_kbytes = 65536;
5894 } else {
5895 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5896 new_min_free_kbytes, user_min_free_kbytes);
5897 }
bc75d33f 5898 setup_per_zone_wmarks();
a6cccdc3 5899 refresh_zone_stat_thresholds();
1da177e4 5900 setup_per_zone_lowmem_reserve();
556adecb 5901 setup_per_zone_inactive_ratio();
1da177e4
LT
5902 return 0;
5903}
bc75d33f 5904module_init(init_per_zone_wmark_min)
1da177e4
LT
5905
5906/*
b8af2941 5907 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5908 * that we can call two helper functions whenever min_free_kbytes
5909 * changes.
5910 */
cccad5b9 5911int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5912 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5913{
da8c757b
HP
5914 int rc;
5915
5916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 if (rc)
5918 return rc;
5919
5f12733e
MH
5920 if (write) {
5921 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5922 setup_per_zone_wmarks();
5f12733e 5923 }
1da177e4
LT
5924 return 0;
5925}
5926
9614634f 5927#ifdef CONFIG_NUMA
cccad5b9 5928int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5929 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5930{
5931 struct zone *zone;
5932 int rc;
5933
8d65af78 5934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5935 if (rc)
5936 return rc;
5937
5938 for_each_zone(zone)
b40da049 5939 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5940 sysctl_min_unmapped_ratio) / 100;
5941 return 0;
5942}
0ff38490 5943
cccad5b9 5944int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5945 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5946{
5947 struct zone *zone;
5948 int rc;
5949
8d65af78 5950 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5951 if (rc)
5952 return rc;
5953
5954 for_each_zone(zone)
b40da049 5955 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5956 sysctl_min_slab_ratio) / 100;
5957 return 0;
5958}
9614634f
CL
5959#endif
5960
1da177e4
LT
5961/*
5962 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5963 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5964 * whenever sysctl_lowmem_reserve_ratio changes.
5965 *
5966 * The reserve ratio obviously has absolutely no relation with the
41858966 5967 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5968 * if in function of the boot time zone sizes.
5969 */
cccad5b9 5970int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5971 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5972{
8d65af78 5973 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5974 setup_per_zone_lowmem_reserve();
5975 return 0;
5976}
5977
8ad4b1fb
RS
5978/*
5979 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5980 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5981 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5982 */
cccad5b9 5983int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5984 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5985{
5986 struct zone *zone;
7cd2b0a3 5987 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5988 int ret;
5989
7cd2b0a3
DR
5990 mutex_lock(&pcp_batch_high_lock);
5991 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5992
8d65af78 5993 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5994 if (!write || ret < 0)
5995 goto out;
5996
5997 /* Sanity checking to avoid pcp imbalance */
5998 if (percpu_pagelist_fraction &&
5999 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6000 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6001 ret = -EINVAL;
6002 goto out;
6003 }
6004
6005 /* No change? */
6006 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6007 goto out;
c8e251fa 6008
364df0eb 6009 for_each_populated_zone(zone) {
7cd2b0a3
DR
6010 unsigned int cpu;
6011
22a7f12b 6012 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6013 pageset_set_high_and_batch(zone,
6014 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6015 }
7cd2b0a3 6016out:
c8e251fa 6017 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6018 return ret;
8ad4b1fb
RS
6019}
6020
f034b5d4 6021int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
6022
6023#ifdef CONFIG_NUMA
6024static int __init set_hashdist(char *str)
6025{
6026 if (!str)
6027 return 0;
6028 hashdist = simple_strtoul(str, &str, 0);
6029 return 1;
6030}
6031__setup("hashdist=", set_hashdist);
6032#endif
6033
6034/*
6035 * allocate a large system hash table from bootmem
6036 * - it is assumed that the hash table must contain an exact power-of-2
6037 * quantity of entries
6038 * - limit is the number of hash buckets, not the total allocation size
6039 */
6040void *__init alloc_large_system_hash(const char *tablename,
6041 unsigned long bucketsize,
6042 unsigned long numentries,
6043 int scale,
6044 int flags,
6045 unsigned int *_hash_shift,
6046 unsigned int *_hash_mask,
31fe62b9
TB
6047 unsigned long low_limit,
6048 unsigned long high_limit)
1da177e4 6049{
31fe62b9 6050 unsigned long long max = high_limit;
1da177e4
LT
6051 unsigned long log2qty, size;
6052 void *table = NULL;
6053
6054 /* allow the kernel cmdline to have a say */
6055 if (!numentries) {
6056 /* round applicable memory size up to nearest megabyte */
04903664 6057 numentries = nr_kernel_pages;
a7e83318
JZ
6058
6059 /* It isn't necessary when PAGE_SIZE >= 1MB */
6060 if (PAGE_SHIFT < 20)
6061 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6062
6063 /* limit to 1 bucket per 2^scale bytes of low memory */
6064 if (scale > PAGE_SHIFT)
6065 numentries >>= (scale - PAGE_SHIFT);
6066 else
6067 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6068
6069 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6070 if (unlikely(flags & HASH_SMALL)) {
6071 /* Makes no sense without HASH_EARLY */
6072 WARN_ON(!(flags & HASH_EARLY));
6073 if (!(numentries >> *_hash_shift)) {
6074 numentries = 1UL << *_hash_shift;
6075 BUG_ON(!numentries);
6076 }
6077 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6078 numentries = PAGE_SIZE / bucketsize;
1da177e4 6079 }
6e692ed3 6080 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6081
6082 /* limit allocation size to 1/16 total memory by default */
6083 if (max == 0) {
6084 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6085 do_div(max, bucketsize);
6086 }
074b8517 6087 max = min(max, 0x80000000ULL);
1da177e4 6088
31fe62b9
TB
6089 if (numentries < low_limit)
6090 numentries = low_limit;
1da177e4
LT
6091 if (numentries > max)
6092 numentries = max;
6093
f0d1b0b3 6094 log2qty = ilog2(numentries);
1da177e4
LT
6095
6096 do {
6097 size = bucketsize << log2qty;
6098 if (flags & HASH_EARLY)
6782832e 6099 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6100 else if (hashdist)
6101 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6102 else {
1037b83b
ED
6103 /*
6104 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6105 * some pages at the end of hash table which
6106 * alloc_pages_exact() automatically does
1037b83b 6107 */
264ef8a9 6108 if (get_order(size) < MAX_ORDER) {
a1dd268c 6109 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6110 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6111 }
1da177e4
LT
6112 }
6113 } while (!table && size > PAGE_SIZE && --log2qty);
6114
6115 if (!table)
6116 panic("Failed to allocate %s hash table\n", tablename);
6117
f241e660 6118 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6119 tablename,
f241e660 6120 (1UL << log2qty),
f0d1b0b3 6121 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6122 size);
6123
6124 if (_hash_shift)
6125 *_hash_shift = log2qty;
6126 if (_hash_mask)
6127 *_hash_mask = (1 << log2qty) - 1;
6128
6129 return table;
6130}
a117e66e 6131
835c134e
MG
6132/* Return a pointer to the bitmap storing bits affecting a block of pages */
6133static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6134 unsigned long pfn)
6135{
6136#ifdef CONFIG_SPARSEMEM
6137 return __pfn_to_section(pfn)->pageblock_flags;
6138#else
6139 return zone->pageblock_flags;
6140#endif /* CONFIG_SPARSEMEM */
6141}
6142
6143static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6144{
6145#ifdef CONFIG_SPARSEMEM
6146 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6147 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6148#else
c060f943 6149 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6150 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6151#endif /* CONFIG_SPARSEMEM */
6152}
6153
6154/**
1aab4d77 6155 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6156 * @page: The page within the block of interest
1aab4d77
RD
6157 * @pfn: The target page frame number
6158 * @end_bitidx: The last bit of interest to retrieve
6159 * @mask: mask of bits that the caller is interested in
6160 *
6161 * Return: pageblock_bits flags
835c134e 6162 */
dc4b0caf 6163unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6164 unsigned long end_bitidx,
6165 unsigned long mask)
835c134e
MG
6166{
6167 struct zone *zone;
6168 unsigned long *bitmap;
dc4b0caf 6169 unsigned long bitidx, word_bitidx;
e58469ba 6170 unsigned long word;
835c134e
MG
6171
6172 zone = page_zone(page);
835c134e
MG
6173 bitmap = get_pageblock_bitmap(zone, pfn);
6174 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6175 word_bitidx = bitidx / BITS_PER_LONG;
6176 bitidx &= (BITS_PER_LONG-1);
835c134e 6177
e58469ba
MG
6178 word = bitmap[word_bitidx];
6179 bitidx += end_bitidx;
6180 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6181}
6182
6183/**
dc4b0caf 6184 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6185 * @page: The page within the block of interest
835c134e 6186 * @flags: The flags to set
1aab4d77
RD
6187 * @pfn: The target page frame number
6188 * @end_bitidx: The last bit of interest
6189 * @mask: mask of bits that the caller is interested in
835c134e 6190 */
dc4b0caf
MG
6191void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6192 unsigned long pfn,
e58469ba
MG
6193 unsigned long end_bitidx,
6194 unsigned long mask)
835c134e
MG
6195{
6196 struct zone *zone;
6197 unsigned long *bitmap;
dc4b0caf 6198 unsigned long bitidx, word_bitidx;
e58469ba
MG
6199 unsigned long old_word, word;
6200
6201 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6202
6203 zone = page_zone(page);
835c134e
MG
6204 bitmap = get_pageblock_bitmap(zone, pfn);
6205 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6206 word_bitidx = bitidx / BITS_PER_LONG;
6207 bitidx &= (BITS_PER_LONG-1);
6208
309381fe 6209 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6210
e58469ba
MG
6211 bitidx += end_bitidx;
6212 mask <<= (BITS_PER_LONG - bitidx - 1);
6213 flags <<= (BITS_PER_LONG - bitidx - 1);
6214
6215 word = ACCESS_ONCE(bitmap[word_bitidx]);
6216 for (;;) {
6217 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6218 if (word == old_word)
6219 break;
6220 word = old_word;
6221 }
835c134e 6222}
a5d76b54
KH
6223
6224/*
80934513
MK
6225 * This function checks whether pageblock includes unmovable pages or not.
6226 * If @count is not zero, it is okay to include less @count unmovable pages
6227 *
b8af2941 6228 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6229 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6230 * expect this function should be exact.
a5d76b54 6231 */
b023f468
WC
6232bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6233 bool skip_hwpoisoned_pages)
49ac8255
KH
6234{
6235 unsigned long pfn, iter, found;
47118af0
MN
6236 int mt;
6237
49ac8255
KH
6238 /*
6239 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6240 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6241 */
6242 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6243 return false;
47118af0
MN
6244 mt = get_pageblock_migratetype(page);
6245 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6246 return false;
49ac8255
KH
6247
6248 pfn = page_to_pfn(page);
6249 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6250 unsigned long check = pfn + iter;
6251
29723fcc 6252 if (!pfn_valid_within(check))
49ac8255 6253 continue;
29723fcc 6254
49ac8255 6255 page = pfn_to_page(check);
c8721bbb
NH
6256
6257 /*
6258 * Hugepages are not in LRU lists, but they're movable.
6259 * We need not scan over tail pages bacause we don't
6260 * handle each tail page individually in migration.
6261 */
6262 if (PageHuge(page)) {
6263 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6264 continue;
6265 }
6266
97d255c8
MK
6267 /*
6268 * We can't use page_count without pin a page
6269 * because another CPU can free compound page.
6270 * This check already skips compound tails of THP
6271 * because their page->_count is zero at all time.
6272 */
6273 if (!atomic_read(&page->_count)) {
49ac8255
KH
6274 if (PageBuddy(page))
6275 iter += (1 << page_order(page)) - 1;
6276 continue;
6277 }
97d255c8 6278
b023f468
WC
6279 /*
6280 * The HWPoisoned page may be not in buddy system, and
6281 * page_count() is not 0.
6282 */
6283 if (skip_hwpoisoned_pages && PageHWPoison(page))
6284 continue;
6285
49ac8255
KH
6286 if (!PageLRU(page))
6287 found++;
6288 /*
6b4f7799
JW
6289 * If there are RECLAIMABLE pages, we need to check
6290 * it. But now, memory offline itself doesn't call
6291 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6292 */
6293 /*
6294 * If the page is not RAM, page_count()should be 0.
6295 * we don't need more check. This is an _used_ not-movable page.
6296 *
6297 * The problematic thing here is PG_reserved pages. PG_reserved
6298 * is set to both of a memory hole page and a _used_ kernel
6299 * page at boot.
6300 */
6301 if (found > count)
80934513 6302 return true;
49ac8255 6303 }
80934513 6304 return false;
49ac8255
KH
6305}
6306
6307bool is_pageblock_removable_nolock(struct page *page)
6308{
656a0706
MH
6309 struct zone *zone;
6310 unsigned long pfn;
687875fb
MH
6311
6312 /*
6313 * We have to be careful here because we are iterating over memory
6314 * sections which are not zone aware so we might end up outside of
6315 * the zone but still within the section.
656a0706
MH
6316 * We have to take care about the node as well. If the node is offline
6317 * its NODE_DATA will be NULL - see page_zone.
687875fb 6318 */
656a0706
MH
6319 if (!node_online(page_to_nid(page)))
6320 return false;
6321
6322 zone = page_zone(page);
6323 pfn = page_to_pfn(page);
108bcc96 6324 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6325 return false;
6326
b023f468 6327 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6328}
0c0e6195 6329
041d3a8c
MN
6330#ifdef CONFIG_CMA
6331
6332static unsigned long pfn_max_align_down(unsigned long pfn)
6333{
6334 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6335 pageblock_nr_pages) - 1);
6336}
6337
6338static unsigned long pfn_max_align_up(unsigned long pfn)
6339{
6340 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6341 pageblock_nr_pages));
6342}
6343
041d3a8c 6344/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6345static int __alloc_contig_migrate_range(struct compact_control *cc,
6346 unsigned long start, unsigned long end)
041d3a8c
MN
6347{
6348 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6349 unsigned long nr_reclaimed;
041d3a8c
MN
6350 unsigned long pfn = start;
6351 unsigned int tries = 0;
6352 int ret = 0;
6353
be49a6e1 6354 migrate_prep();
041d3a8c 6355
bb13ffeb 6356 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6357 if (fatal_signal_pending(current)) {
6358 ret = -EINTR;
6359 break;
6360 }
6361
bb13ffeb
MG
6362 if (list_empty(&cc->migratepages)) {
6363 cc->nr_migratepages = 0;
edc2ca61 6364 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6365 if (!pfn) {
6366 ret = -EINTR;
6367 break;
6368 }
6369 tries = 0;
6370 } else if (++tries == 5) {
6371 ret = ret < 0 ? ret : -EBUSY;
6372 break;
6373 }
6374
beb51eaa
MK
6375 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6376 &cc->migratepages);
6377 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6378
9c620e2b 6379 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6380 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6381 }
2a6f5124
SP
6382 if (ret < 0) {
6383 putback_movable_pages(&cc->migratepages);
6384 return ret;
6385 }
6386 return 0;
041d3a8c
MN
6387}
6388
6389/**
6390 * alloc_contig_range() -- tries to allocate given range of pages
6391 * @start: start PFN to allocate
6392 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6393 * @migratetype: migratetype of the underlaying pageblocks (either
6394 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6395 * in range must have the same migratetype and it must
6396 * be either of the two.
041d3a8c
MN
6397 *
6398 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6399 * aligned, however it's the caller's responsibility to guarantee that
6400 * we are the only thread that changes migrate type of pageblocks the
6401 * pages fall in.
6402 *
6403 * The PFN range must belong to a single zone.
6404 *
6405 * Returns zero on success or negative error code. On success all
6406 * pages which PFN is in [start, end) are allocated for the caller and
6407 * need to be freed with free_contig_range().
6408 */
0815f3d8
MN
6409int alloc_contig_range(unsigned long start, unsigned long end,
6410 unsigned migratetype)
041d3a8c 6411{
041d3a8c
MN
6412 unsigned long outer_start, outer_end;
6413 int ret = 0, order;
6414
bb13ffeb
MG
6415 struct compact_control cc = {
6416 .nr_migratepages = 0,
6417 .order = -1,
6418 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6419 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6420 .ignore_skip_hint = true,
6421 };
6422 INIT_LIST_HEAD(&cc.migratepages);
6423
041d3a8c
MN
6424 /*
6425 * What we do here is we mark all pageblocks in range as
6426 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6427 * have different sizes, and due to the way page allocator
6428 * work, we align the range to biggest of the two pages so
6429 * that page allocator won't try to merge buddies from
6430 * different pageblocks and change MIGRATE_ISOLATE to some
6431 * other migration type.
6432 *
6433 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6434 * migrate the pages from an unaligned range (ie. pages that
6435 * we are interested in). This will put all the pages in
6436 * range back to page allocator as MIGRATE_ISOLATE.
6437 *
6438 * When this is done, we take the pages in range from page
6439 * allocator removing them from the buddy system. This way
6440 * page allocator will never consider using them.
6441 *
6442 * This lets us mark the pageblocks back as
6443 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6444 * aligned range but not in the unaligned, original range are
6445 * put back to page allocator so that buddy can use them.
6446 */
6447
6448 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6449 pfn_max_align_up(end), migratetype,
6450 false);
041d3a8c 6451 if (ret)
86a595f9 6452 return ret;
041d3a8c 6453
bb13ffeb 6454 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6455 if (ret)
6456 goto done;
6457
6458 /*
6459 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6460 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6461 * more, all pages in [start, end) are free in page allocator.
6462 * What we are going to do is to allocate all pages from
6463 * [start, end) (that is remove them from page allocator).
6464 *
6465 * The only problem is that pages at the beginning and at the
6466 * end of interesting range may be not aligned with pages that
6467 * page allocator holds, ie. they can be part of higher order
6468 * pages. Because of this, we reserve the bigger range and
6469 * once this is done free the pages we are not interested in.
6470 *
6471 * We don't have to hold zone->lock here because the pages are
6472 * isolated thus they won't get removed from buddy.
6473 */
6474
6475 lru_add_drain_all();
510f5507 6476 drain_all_pages(cc.zone);
041d3a8c
MN
6477
6478 order = 0;
6479 outer_start = start;
6480 while (!PageBuddy(pfn_to_page(outer_start))) {
6481 if (++order >= MAX_ORDER) {
6482 ret = -EBUSY;
6483 goto done;
6484 }
6485 outer_start &= ~0UL << order;
6486 }
6487
6488 /* Make sure the range is really isolated. */
b023f468 6489 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6490 pr_info("%s: [%lx, %lx) PFNs busy\n",
6491 __func__, outer_start, end);
041d3a8c
MN
6492 ret = -EBUSY;
6493 goto done;
6494 }
6495
49f223a9 6496 /* Grab isolated pages from freelists. */
bb13ffeb 6497 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6498 if (!outer_end) {
6499 ret = -EBUSY;
6500 goto done;
6501 }
6502
6503 /* Free head and tail (if any) */
6504 if (start != outer_start)
6505 free_contig_range(outer_start, start - outer_start);
6506 if (end != outer_end)
6507 free_contig_range(end, outer_end - end);
6508
6509done:
6510 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6511 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6512 return ret;
6513}
6514
6515void free_contig_range(unsigned long pfn, unsigned nr_pages)
6516{
bcc2b02f
MS
6517 unsigned int count = 0;
6518
6519 for (; nr_pages--; pfn++) {
6520 struct page *page = pfn_to_page(pfn);
6521
6522 count += page_count(page) != 1;
6523 __free_page(page);
6524 }
6525 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6526}
6527#endif
6528
4ed7e022 6529#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6530/*
6531 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6532 * page high values need to be recalulated.
6533 */
4ed7e022
JL
6534void __meminit zone_pcp_update(struct zone *zone)
6535{
0a647f38 6536 unsigned cpu;
c8e251fa 6537 mutex_lock(&pcp_batch_high_lock);
0a647f38 6538 for_each_possible_cpu(cpu)
169f6c19
CS
6539 pageset_set_high_and_batch(zone,
6540 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6541 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6542}
6543#endif
6544
340175b7
JL
6545void zone_pcp_reset(struct zone *zone)
6546{
6547 unsigned long flags;
5a883813
MK
6548 int cpu;
6549 struct per_cpu_pageset *pset;
340175b7
JL
6550
6551 /* avoid races with drain_pages() */
6552 local_irq_save(flags);
6553 if (zone->pageset != &boot_pageset) {
5a883813
MK
6554 for_each_online_cpu(cpu) {
6555 pset = per_cpu_ptr(zone->pageset, cpu);
6556 drain_zonestat(zone, pset);
6557 }
340175b7
JL
6558 free_percpu(zone->pageset);
6559 zone->pageset = &boot_pageset;
6560 }
6561 local_irq_restore(flags);
6562}
6563
6dcd73d7 6564#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6565/*
6566 * All pages in the range must be isolated before calling this.
6567 */
6568void
6569__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6570{
6571 struct page *page;
6572 struct zone *zone;
7aeb09f9 6573 unsigned int order, i;
0c0e6195
KH
6574 unsigned long pfn;
6575 unsigned long flags;
6576 /* find the first valid pfn */
6577 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6578 if (pfn_valid(pfn))
6579 break;
6580 if (pfn == end_pfn)
6581 return;
6582 zone = page_zone(pfn_to_page(pfn));
6583 spin_lock_irqsave(&zone->lock, flags);
6584 pfn = start_pfn;
6585 while (pfn < end_pfn) {
6586 if (!pfn_valid(pfn)) {
6587 pfn++;
6588 continue;
6589 }
6590 page = pfn_to_page(pfn);
b023f468
WC
6591 /*
6592 * The HWPoisoned page may be not in buddy system, and
6593 * page_count() is not 0.
6594 */
6595 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6596 pfn++;
6597 SetPageReserved(page);
6598 continue;
6599 }
6600
0c0e6195
KH
6601 BUG_ON(page_count(page));
6602 BUG_ON(!PageBuddy(page));
6603 order = page_order(page);
6604#ifdef CONFIG_DEBUG_VM
6605 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6606 pfn, 1 << order, end_pfn);
6607#endif
6608 list_del(&page->lru);
6609 rmv_page_order(page);
6610 zone->free_area[order].nr_free--;
0c0e6195
KH
6611 for (i = 0; i < (1 << order); i++)
6612 SetPageReserved((page+i));
6613 pfn += (1 << order);
6614 }
6615 spin_unlock_irqrestore(&zone->lock, flags);
6616}
6617#endif
8d22ba1b
WF
6618
6619#ifdef CONFIG_MEMORY_FAILURE
6620bool is_free_buddy_page(struct page *page)
6621{
6622 struct zone *zone = page_zone(page);
6623 unsigned long pfn = page_to_pfn(page);
6624 unsigned long flags;
7aeb09f9 6625 unsigned int order;
8d22ba1b
WF
6626
6627 spin_lock_irqsave(&zone->lock, flags);
6628 for (order = 0; order < MAX_ORDER; order++) {
6629 struct page *page_head = page - (pfn & ((1 << order) - 1));
6630
6631 if (PageBuddy(page_head) && page_order(page_head) >= order)
6632 break;
6633 }
6634 spin_unlock_irqrestore(&zone->lock, flags);
6635
6636 return order < MAX_ORDER;
6637}
6638#endif
This page took 2.320169 seconds and 5 git commands to generate.