mm/page-writeback.c: add strictlimit feature
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
5f12733e 208int user_min_free_kbytes;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
49255c61
MG
237
238 if (unlikely(page_group_by_mobility_disabled))
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
224abf92 298static void bad_page(struct page *page)
1da177e4 299{
d936cf9b
HD
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
2a7684a2
WF
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
22b751c3 306 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
307 return;
308 }
309
d936cf9b
HD
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
1e9e6365
HD
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
1e9e6365 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 331 current->comm, page_to_pfn(page));
718a3821 332 dump_page(page);
3dc14741 333
4f31888c 334 print_modules();
1da177e4 335 dump_stack();
d936cf9b 336out:
8cc3b392 337 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 338 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
340}
341
1da177e4
LT
342/*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
6416b9fa
WSH
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
1da177e4 351 *
41d78ba5
HD
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
1da177e4 355 */
d98c7a09
HD
356
357static void free_compound_page(struct page *page)
358{
d85f3385 359 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
360}
361
01ad1c08 362void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
363{
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
18229df5 372 __SetPageTail(p);
58a84aa9 373 set_page_count(p, 0);
18229df5
AW
374 p->first_page = page;
375 }
376}
377
59ff4216 378/* update __split_huge_page_refcount if you change this function */
8cc3b392 379static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
380{
381 int i;
382 int nr_pages = 1 << order;
8cc3b392 383 int bad = 0;
1da177e4 384
0bb2c763 385 if (unlikely(compound_order(page) != order)) {
224abf92 386 bad_page(page);
8cc3b392
HD
387 bad++;
388 }
1da177e4 389
6d777953 390 __ClearPageHead(page);
8cc3b392 391
18229df5
AW
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
1da177e4 394
e713a21d 395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 396 bad_page(page);
8cc3b392
HD
397 bad++;
398 }
d85f3385 399 __ClearPageTail(p);
1da177e4 400 }
8cc3b392
HD
401
402 return bad;
1da177e4 403}
1da177e4 404
17cf4406
NP
405static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406{
407 int i;
408
6626c5d5
AM
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
725d704e 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416}
417
c0a32fc5
SG
418#ifdef CONFIG_DEBUG_PAGEALLOC
419unsigned int _debug_guardpage_minorder;
420
421static int __init debug_guardpage_minorder_setup(char *buf)
422{
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432}
433__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435static inline void set_page_guard_flag(struct page *page)
436{
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438}
439
440static inline void clear_page_guard_flag(struct page *page)
441{
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443}
444#else
445static inline void set_page_guard_flag(struct page *page) { }
446static inline void clear_page_guard_flag(struct page *page) { }
447#endif
448
6aa3001b
AM
449static inline void set_page_order(struct page *page, int order)
450{
4c21e2f2 451 set_page_private(page, order);
676165a8 452 __SetPageBuddy(page);
1da177e4
LT
453}
454
455static inline void rmv_page_order(struct page *page)
456{
676165a8 457 __ClearPageBuddy(page);
4c21e2f2 458 set_page_private(page, 0);
1da177e4
LT
459}
460
461/*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
d6e05edc 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 477 */
1da177e4 478static inline unsigned long
43506fad 479__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 480{
43506fad 481 return page_idx ^ (1 << order);
1da177e4
LT
482}
483
484/*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
13e7444b 487 * (a) the buddy is not in a hole &&
676165a8 488 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
676165a8 491 *
5f24ce5f
AA
492 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
493 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 494 *
676165a8 495 * For recording page's order, we use page_private(page).
1da177e4 496 */
cb2b95e1
AW
497static inline int page_is_buddy(struct page *page, struct page *buddy,
498 int order)
1da177e4 499{
14e07298 500 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 501 return 0;
13e7444b 502
cb2b95e1
AW
503 if (page_zone_id(page) != page_zone_id(buddy))
504 return 0;
505
c0a32fc5
SG
506 if (page_is_guard(buddy) && page_order(buddy) == order) {
507 VM_BUG_ON(page_count(buddy) != 0);
508 return 1;
509 }
510
cb2b95e1 511 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 512 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 513 return 1;
676165a8 514 }
6aa3001b 515 return 0;
1da177e4
LT
516}
517
518/*
519 * Freeing function for a buddy system allocator.
520 *
521 * The concept of a buddy system is to maintain direct-mapped table
522 * (containing bit values) for memory blocks of various "orders".
523 * The bottom level table contains the map for the smallest allocatable
524 * units of memory (here, pages), and each level above it describes
525 * pairs of units from the levels below, hence, "buddies".
526 * At a high level, all that happens here is marking the table entry
527 * at the bottom level available, and propagating the changes upward
528 * as necessary, plus some accounting needed to play nicely with other
529 * parts of the VM system.
530 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 531 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 532 * order is recorded in page_private(page) field.
1da177e4 533 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
534 * other. That is, if we allocate a small block, and both were
535 * free, the remainder of the region must be split into blocks.
1da177e4 536 * If a block is freed, and its buddy is also free, then this
5f63b720 537 * triggers coalescing into a block of larger size.
1da177e4 538 *
6d49e352 539 * -- nyc
1da177e4
LT
540 */
541
48db57f8 542static inline void __free_one_page(struct page *page,
ed0ae21d
MG
543 struct zone *zone, unsigned int order,
544 int migratetype)
1da177e4
LT
545{
546 unsigned long page_idx;
6dda9d55 547 unsigned long combined_idx;
43506fad 548 unsigned long uninitialized_var(buddy_idx);
6dda9d55 549 struct page *buddy;
1da177e4 550
d29bb978
CS
551 VM_BUG_ON(!zone_is_initialized(zone));
552
224abf92 553 if (unlikely(PageCompound(page)))
8cc3b392
HD
554 if (unlikely(destroy_compound_page(page, order)))
555 return;
1da177e4 556
ed0ae21d
MG
557 VM_BUG_ON(migratetype == -1);
558
1da177e4
LT
559 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
560
f2260e6b 561 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 562 VM_BUG_ON(bad_range(zone, page));
1da177e4 563
1da177e4 564 while (order < MAX_ORDER-1) {
43506fad
KC
565 buddy_idx = __find_buddy_index(page_idx, order);
566 buddy = page + (buddy_idx - page_idx);
cb2b95e1 567 if (!page_is_buddy(page, buddy, order))
3c82d0ce 568 break;
c0a32fc5
SG
569 /*
570 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
571 * merge with it and move up one order.
572 */
573 if (page_is_guard(buddy)) {
574 clear_page_guard_flag(buddy);
575 set_page_private(page, 0);
d1ce749a
BZ
576 __mod_zone_freepage_state(zone, 1 << order,
577 migratetype);
c0a32fc5
SG
578 } else {
579 list_del(&buddy->lru);
580 zone->free_area[order].nr_free--;
581 rmv_page_order(buddy);
582 }
43506fad 583 combined_idx = buddy_idx & page_idx;
1da177e4
LT
584 page = page + (combined_idx - page_idx);
585 page_idx = combined_idx;
586 order++;
587 }
588 set_page_order(page, order);
6dda9d55
CZ
589
590 /*
591 * If this is not the largest possible page, check if the buddy
592 * of the next-highest order is free. If it is, it's possible
593 * that pages are being freed that will coalesce soon. In case,
594 * that is happening, add the free page to the tail of the list
595 * so it's less likely to be used soon and more likely to be merged
596 * as a higher order page
597 */
b7f50cfa 598 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 599 struct page *higher_page, *higher_buddy;
43506fad
KC
600 combined_idx = buddy_idx & page_idx;
601 higher_page = page + (combined_idx - page_idx);
602 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 603 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
604 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
605 list_add_tail(&page->lru,
606 &zone->free_area[order].free_list[migratetype]);
607 goto out;
608 }
609 }
610
611 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
612out:
1da177e4
LT
613 zone->free_area[order].nr_free++;
614}
615
224abf92 616static inline int free_pages_check(struct page *page)
1da177e4 617{
92be2e33
NP
618 if (unlikely(page_mapcount(page) |
619 (page->mapping != NULL) |
a3af9c38 620 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
621 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
622 (mem_cgroup_bad_page_check(page)))) {
224abf92 623 bad_page(page);
79f4b7bf 624 return 1;
8cc3b392 625 }
22b751c3 626 page_nid_reset_last(page);
79f4b7bf
HD
627 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
628 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
629 return 0;
1da177e4
LT
630}
631
632/*
5f8dcc21 633 * Frees a number of pages from the PCP lists
1da177e4 634 * Assumes all pages on list are in same zone, and of same order.
207f36ee 635 * count is the number of pages to free.
1da177e4
LT
636 *
637 * If the zone was previously in an "all pages pinned" state then look to
638 * see if this freeing clears that state.
639 *
640 * And clear the zone's pages_scanned counter, to hold off the "all pages are
641 * pinned" detection logic.
642 */
5f8dcc21
MG
643static void free_pcppages_bulk(struct zone *zone, int count,
644 struct per_cpu_pages *pcp)
1da177e4 645{
5f8dcc21 646 int migratetype = 0;
a6f9edd6 647 int batch_free = 0;
72853e29 648 int to_free = count;
5f8dcc21 649
c54ad30c 650 spin_lock(&zone->lock);
1da177e4 651 zone->pages_scanned = 0;
f2260e6b 652
72853e29 653 while (to_free) {
48db57f8 654 struct page *page;
5f8dcc21
MG
655 struct list_head *list;
656
657 /*
a6f9edd6
MG
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
5f8dcc21
MG
663 */
664 do {
a6f9edd6 665 batch_free++;
5f8dcc21
MG
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
48db57f8 670
1d16871d
NK
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
a6f9edd6 675 do {
770c8aaa
BZ
676 int mt; /* migratetype of the to-be-freed page */
677
a6f9edd6
MG
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
b12c4ad1 681 mt = get_freepage_migratetype(page);
a7016235 682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 685 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
72853e29 690 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 691 }
c54ad30c 692 spin_unlock(&zone->lock);
1da177e4
LT
693}
694
ed0ae21d
MG
695static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
1da177e4 697{
006d22d9 698 spin_lock(&zone->lock);
006d22d9 699 zone->pages_scanned = 0;
f2260e6b 700
ed0ae21d 701 __free_one_page(page, zone, order, migratetype);
194159fb 702 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 703 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 704 spin_unlock(&zone->lock);
48db57f8
NP
705}
706
ec95f53a 707static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 708{
1da177e4 709 int i;
8cc3b392 710 int bad = 0;
1da177e4 711
b413d48a 712 trace_mm_page_free(page, order);
b1eeab67
VN
713 kmemcheck_free_shadow(page, order);
714
8dd60a3a
AA
715 if (PageAnon(page))
716 page->mapping = NULL;
717 for (i = 0; i < (1 << order); i++)
718 bad += free_pages_check(page + i);
8cc3b392 719 if (bad)
ec95f53a 720 return false;
689bcebf 721
3ac7fe5a 722 if (!PageHighMem(page)) {
b8af2941
PK
723 debug_check_no_locks_freed(page_address(page),
724 PAGE_SIZE << order);
3ac7fe5a
TG
725 debug_check_no_obj_freed(page_address(page),
726 PAGE_SIZE << order);
727 }
dafb1367 728 arch_free_page(page, order);
48db57f8 729 kernel_map_pages(page, 1 << order, 0);
dafb1367 730
ec95f53a
KM
731 return true;
732}
733
734static void __free_pages_ok(struct page *page, unsigned int order)
735{
736 unsigned long flags;
95e34412 737 int migratetype;
ec95f53a
KM
738
739 if (!free_pages_prepare(page, order))
740 return;
741
c54ad30c 742 local_irq_save(flags);
f8891e5e 743 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
744 migratetype = get_pageblock_migratetype(page);
745 set_freepage_migratetype(page, migratetype);
746 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 747 local_irq_restore(flags);
1da177e4
LT
748}
749
170a5a7e 750void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 751{
c3993076 752 unsigned int nr_pages = 1 << order;
e2d0bd2b 753 struct page *p = page;
c3993076 754 unsigned int loop;
a226f6c8 755
e2d0bd2b
YL
756 prefetchw(p);
757 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
758 prefetchw(p + 1);
c3993076
JW
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
a226f6c8 761 }
e2d0bd2b
YL
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
c3993076 764
e2d0bd2b 765 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
766 set_page_refcounted(page);
767 __free_pages(page, order);
a226f6c8
DH
768}
769
47118af0 770#ifdef CONFIG_CMA
9cf510a5 771/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
772void __init init_cma_reserved_pageblock(struct page *page)
773{
774 unsigned i = pageblock_nr_pages;
775 struct page *p = page;
776
777 do {
778 __ClearPageReserved(p);
779 set_page_count(p, 0);
780 } while (++p, --i);
781
782 set_page_refcounted(page);
783 set_pageblock_migratetype(page, MIGRATE_CMA);
784 __free_pages(page, pageblock_order);
3dcc0571 785 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
786}
787#endif
1da177e4
LT
788
789/*
790 * The order of subdivision here is critical for the IO subsystem.
791 * Please do not alter this order without good reasons and regression
792 * testing. Specifically, as large blocks of memory are subdivided,
793 * the order in which smaller blocks are delivered depends on the order
794 * they're subdivided in this function. This is the primary factor
795 * influencing the order in which pages are delivered to the IO
796 * subsystem according to empirical testing, and this is also justified
797 * by considering the behavior of a buddy system containing a single
798 * large block of memory acted on by a series of small allocations.
799 * This behavior is a critical factor in sglist merging's success.
800 *
6d49e352 801 * -- nyc
1da177e4 802 */
085cc7d5 803static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
804 int low, int high, struct free_area *area,
805 int migratetype)
1da177e4
LT
806{
807 unsigned long size = 1 << high;
808
809 while (high > low) {
810 area--;
811 high--;
812 size >>= 1;
725d704e 813 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
814
815#ifdef CONFIG_DEBUG_PAGEALLOC
816 if (high < debug_guardpage_minorder()) {
817 /*
818 * Mark as guard pages (or page), that will allow to
819 * merge back to allocator when buddy will be freed.
820 * Corresponding page table entries will not be touched,
821 * pages will stay not present in virtual address space
822 */
823 INIT_LIST_HEAD(&page[size].lru);
824 set_page_guard_flag(&page[size]);
825 set_page_private(&page[size], high);
826 /* Guard pages are not available for any usage */
d1ce749a
BZ
827 __mod_zone_freepage_state(zone, -(1 << high),
828 migratetype);
c0a32fc5
SG
829 continue;
830 }
831#endif
b2a0ac88 832 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
833 area->nr_free++;
834 set_page_order(&page[size], high);
835 }
1da177e4
LT
836}
837
1da177e4
LT
838/*
839 * This page is about to be returned from the page allocator
840 */
2a7684a2 841static inline int check_new_page(struct page *page)
1da177e4 842{
92be2e33
NP
843 if (unlikely(page_mapcount(page) |
844 (page->mapping != NULL) |
a3af9c38 845 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
846 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
847 (mem_cgroup_bad_page_check(page)))) {
224abf92 848 bad_page(page);
689bcebf 849 return 1;
8cc3b392 850 }
2a7684a2
WF
851 return 0;
852}
853
854static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
855{
856 int i;
857
858 for (i = 0; i < (1 << order); i++) {
859 struct page *p = page + i;
860 if (unlikely(check_new_page(p)))
861 return 1;
862 }
689bcebf 863
4c21e2f2 864 set_page_private(page, 0);
7835e98b 865 set_page_refcounted(page);
cc102509
NP
866
867 arch_alloc_page(page, order);
1da177e4 868 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
869
870 if (gfp_flags & __GFP_ZERO)
871 prep_zero_page(page, order, gfp_flags);
872
873 if (order && (gfp_flags & __GFP_COMP))
874 prep_compound_page(page, order);
875
689bcebf 876 return 0;
1da177e4
LT
877}
878
56fd56b8
MG
879/*
880 * Go through the free lists for the given migratetype and remove
881 * the smallest available page from the freelists
882 */
728ec980
MG
883static inline
884struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
885 int migratetype)
886{
887 unsigned int current_order;
b8af2941 888 struct free_area *area;
56fd56b8
MG
889 struct page *page;
890
891 /* Find a page of the appropriate size in the preferred list */
892 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
893 area = &(zone->free_area[current_order]);
894 if (list_empty(&area->free_list[migratetype]))
895 continue;
896
897 page = list_entry(area->free_list[migratetype].next,
898 struct page, lru);
899 list_del(&page->lru);
900 rmv_page_order(page);
901 area->nr_free--;
56fd56b8
MG
902 expand(zone, page, order, current_order, area, migratetype);
903 return page;
904 }
905
906 return NULL;
907}
908
909
b2a0ac88
MG
910/*
911 * This array describes the order lists are fallen back to when
912 * the free lists for the desirable migrate type are depleted
913 */
47118af0
MN
914static int fallbacks[MIGRATE_TYPES][4] = {
915 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917#ifdef CONFIG_CMA
918 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
920#else
921 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922#endif
6d4a4916 923 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 924#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 925 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 926#endif
b2a0ac88
MG
927};
928
c361be55
MG
929/*
930 * Move the free pages in a range to the free lists of the requested type.
d9c23400 931 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
932 * boundary. If alignment is required, use move_freepages_block()
933 */
435b405c 934int move_freepages(struct zone *zone,
b69a7288
AB
935 struct page *start_page, struct page *end_page,
936 int migratetype)
c361be55
MG
937{
938 struct page *page;
939 unsigned long order;
d100313f 940 int pages_moved = 0;
c361be55
MG
941
942#ifndef CONFIG_HOLES_IN_ZONE
943 /*
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
ac0e5b7a 948 * grouping pages by mobility
c361be55
MG
949 */
950 BUG_ON(page_zone(start_page) != page_zone(end_page));
951#endif
952
953 for (page = start_page; page <= end_page;) {
344c790e
AL
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
956
c361be55
MG
957 if (!pfn_valid_within(page_to_pfn(page))) {
958 page++;
959 continue;
960 }
961
962 if (!PageBuddy(page)) {
963 page++;
964 continue;
965 }
966
967 order = page_order(page);
84be48d8
KS
968 list_move(&page->lru,
969 &zone->free_area[order].free_list[migratetype]);
95e34412 970 set_freepage_migratetype(page, migratetype);
c361be55 971 page += 1 << order;
d100313f 972 pages_moved += 1 << order;
c361be55
MG
973 }
974
d100313f 975 return pages_moved;
c361be55
MG
976}
977
ee6f509c 978int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 979 int migratetype)
c361be55
MG
980{
981 unsigned long start_pfn, end_pfn;
982 struct page *start_page, *end_page;
983
984 start_pfn = page_to_pfn(page);
d9c23400 985 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 986 start_page = pfn_to_page(start_pfn);
d9c23400
MG
987 end_page = start_page + pageblock_nr_pages - 1;
988 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
989
990 /* Do not cross zone boundaries */
108bcc96 991 if (!zone_spans_pfn(zone, start_pfn))
c361be55 992 start_page = page;
108bcc96 993 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
994 return 0;
995
996 return move_freepages(zone, start_page, end_page, migratetype);
997}
998
2f66a68f
MG
999static void change_pageblock_range(struct page *pageblock_page,
1000 int start_order, int migratetype)
1001{
1002 int nr_pageblocks = 1 << (start_order - pageblock_order);
1003
1004 while (nr_pageblocks--) {
1005 set_pageblock_migratetype(pageblock_page, migratetype);
1006 pageblock_page += pageblock_nr_pages;
1007 }
1008}
1009
fef903ef
SB
1010/*
1011 * If breaking a large block of pages, move all free pages to the preferred
1012 * allocation list. If falling back for a reclaimable kernel allocation, be
1013 * more aggressive about taking ownership of free pages.
1014 *
1015 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1016 * nor move CMA pages to different free lists. We don't want unmovable pages
1017 * to be allocated from MIGRATE_CMA areas.
1018 *
1019 * Returns the new migratetype of the pageblock (or the same old migratetype
1020 * if it was unchanged).
1021 */
1022static int try_to_steal_freepages(struct zone *zone, struct page *page,
1023 int start_type, int fallback_type)
1024{
1025 int current_order = page_order(page);
1026
1027 if (is_migrate_cma(fallback_type))
1028 return fallback_type;
1029
1030 /* Take ownership for orders >= pageblock_order */
1031 if (current_order >= pageblock_order) {
1032 change_pageblock_range(page, current_order, start_type);
1033 return start_type;
1034 }
1035
1036 if (current_order >= pageblock_order / 2 ||
1037 start_type == MIGRATE_RECLAIMABLE ||
1038 page_group_by_mobility_disabled) {
1039 int pages;
1040
1041 pages = move_freepages_block(zone, page, start_type);
1042
1043 /* Claim the whole block if over half of it is free */
1044 if (pages >= (1 << (pageblock_order-1)) ||
1045 page_group_by_mobility_disabled) {
1046
1047 set_pageblock_migratetype(page, start_type);
1048 return start_type;
1049 }
1050
1051 }
1052
1053 return fallback_type;
1054}
1055
b2a0ac88 1056/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1057static inline struct page *
1058__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1059{
b8af2941 1060 struct free_area *area;
b2a0ac88
MG
1061 int current_order;
1062 struct page *page;
fef903ef 1063 int migratetype, new_type, i;
b2a0ac88
MG
1064
1065 /* Find the largest possible block of pages in the other list */
1066 for (current_order = MAX_ORDER-1; current_order >= order;
1067 --current_order) {
6d4a4916 1068 for (i = 0;; i++) {
b2a0ac88
MG
1069 migratetype = fallbacks[start_migratetype][i];
1070
56fd56b8
MG
1071 /* MIGRATE_RESERVE handled later if necessary */
1072 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1073 break;
e010487d 1074
b2a0ac88
MG
1075 area = &(zone->free_area[current_order]);
1076 if (list_empty(&area->free_list[migratetype]))
1077 continue;
1078
1079 page = list_entry(area->free_list[migratetype].next,
1080 struct page, lru);
1081 area->nr_free--;
1082
fef903ef
SB
1083 new_type = try_to_steal_freepages(zone, page,
1084 start_migratetype,
1085 migratetype);
b2a0ac88
MG
1086
1087 /* Remove the page from the freelists */
1088 list_del(&page->lru);
1089 rmv_page_order(page);
b2a0ac88 1090
fef903ef
SB
1091 /*
1092 * Borrow the excess buddy pages as well, irrespective
1093 * of whether we stole freepages, or took ownership of
1094 * the pageblock or not.
1095 *
1096 * Exception: When borrowing from MIGRATE_CMA, release
1097 * the excess buddy pages to CMA itself.
1098 */
47118af0
MN
1099 expand(zone, page, order, current_order, area,
1100 is_migrate_cma(migratetype)
1101 ? migratetype : start_migratetype);
e0fff1bd 1102
f92310c1
SB
1103 trace_mm_page_alloc_extfrag(page, order,
1104 current_order, start_migratetype, migratetype,
1105 new_type == start_migratetype);
e0fff1bd 1106
b2a0ac88
MG
1107 return page;
1108 }
1109 }
1110
728ec980 1111 return NULL;
b2a0ac88
MG
1112}
1113
56fd56b8 1114/*
1da177e4
LT
1115 * Do the hard work of removing an element from the buddy allocator.
1116 * Call me with the zone->lock already held.
1117 */
b2a0ac88
MG
1118static struct page *__rmqueue(struct zone *zone, unsigned int order,
1119 int migratetype)
1da177e4 1120{
1da177e4
LT
1121 struct page *page;
1122
728ec980 1123retry_reserve:
56fd56b8 1124 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1125
728ec980 1126 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1127 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1128
728ec980
MG
1129 /*
1130 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1131 * is used because __rmqueue_smallest is an inline function
1132 * and we want just one call site
1133 */
1134 if (!page) {
1135 migratetype = MIGRATE_RESERVE;
1136 goto retry_reserve;
1137 }
1138 }
1139
0d3d062a 1140 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1141 return page;
1da177e4
LT
1142}
1143
5f63b720 1144/*
1da177e4
LT
1145 * Obtain a specified number of elements from the buddy allocator, all under
1146 * a single hold of the lock, for efficiency. Add them to the supplied list.
1147 * Returns the number of new pages which were placed at *list.
1148 */
5f63b720 1149static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1150 unsigned long count, struct list_head *list,
e084b2d9 1151 int migratetype, int cold)
1da177e4 1152{
47118af0 1153 int mt = migratetype, i;
5f63b720 1154
c54ad30c 1155 spin_lock(&zone->lock);
1da177e4 1156 for (i = 0; i < count; ++i) {
b2a0ac88 1157 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1158 if (unlikely(page == NULL))
1da177e4 1159 break;
81eabcbe
MG
1160
1161 /*
1162 * Split buddy pages returned by expand() are received here
1163 * in physical page order. The page is added to the callers and
1164 * list and the list head then moves forward. From the callers
1165 * perspective, the linked list is ordered by page number in
1166 * some conditions. This is useful for IO devices that can
1167 * merge IO requests if the physical pages are ordered
1168 * properly.
1169 */
e084b2d9
MG
1170 if (likely(cold == 0))
1171 list_add(&page->lru, list);
1172 else
1173 list_add_tail(&page->lru, list);
47118af0
MN
1174 if (IS_ENABLED(CONFIG_CMA)) {
1175 mt = get_pageblock_migratetype(page);
194159fb 1176 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1177 mt = migratetype;
1178 }
b12c4ad1 1179 set_freepage_migratetype(page, mt);
81eabcbe 1180 list = &page->lru;
d1ce749a
BZ
1181 if (is_migrate_cma(mt))
1182 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1183 -(1 << order));
1da177e4 1184 }
f2260e6b 1185 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1186 spin_unlock(&zone->lock);
085cc7d5 1187 return i;
1da177e4
LT
1188}
1189
4ae7c039 1190#ifdef CONFIG_NUMA
8fce4d8e 1191/*
4037d452
CL
1192 * Called from the vmstat counter updater to drain pagesets of this
1193 * currently executing processor on remote nodes after they have
1194 * expired.
1195 *
879336c3
CL
1196 * Note that this function must be called with the thread pinned to
1197 * a single processor.
8fce4d8e 1198 */
4037d452 1199void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1200{
4ae7c039 1201 unsigned long flags;
4037d452 1202 int to_drain;
998d39cb 1203 unsigned long batch;
4ae7c039 1204
4037d452 1205 local_irq_save(flags);
998d39cb
CS
1206 batch = ACCESS_ONCE(pcp->batch);
1207 if (pcp->count >= batch)
1208 to_drain = batch;
4037d452
CL
1209 else
1210 to_drain = pcp->count;
2a13515c
KM
1211 if (to_drain > 0) {
1212 free_pcppages_bulk(zone, to_drain, pcp);
1213 pcp->count -= to_drain;
1214 }
4037d452 1215 local_irq_restore(flags);
4ae7c039
CL
1216}
1217#endif
1218
9f8f2172
CL
1219/*
1220 * Drain pages of the indicated processor.
1221 *
1222 * The processor must either be the current processor and the
1223 * thread pinned to the current processor or a processor that
1224 * is not online.
1225 */
1226static void drain_pages(unsigned int cpu)
1da177e4 1227{
c54ad30c 1228 unsigned long flags;
1da177e4 1229 struct zone *zone;
1da177e4 1230
ee99c71c 1231 for_each_populated_zone(zone) {
1da177e4 1232 struct per_cpu_pageset *pset;
3dfa5721 1233 struct per_cpu_pages *pcp;
1da177e4 1234
99dcc3e5
CL
1235 local_irq_save(flags);
1236 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1237
1238 pcp = &pset->pcp;
2ff754fa
DR
1239 if (pcp->count) {
1240 free_pcppages_bulk(zone, pcp->count, pcp);
1241 pcp->count = 0;
1242 }
3dfa5721 1243 local_irq_restore(flags);
1da177e4
LT
1244 }
1245}
1da177e4 1246
9f8f2172
CL
1247/*
1248 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1249 */
1250void drain_local_pages(void *arg)
1251{
1252 drain_pages(smp_processor_id());
1253}
1254
1255/*
74046494
GBY
1256 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1257 *
1258 * Note that this code is protected against sending an IPI to an offline
1259 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1260 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1261 * nothing keeps CPUs from showing up after we populated the cpumask and
1262 * before the call to on_each_cpu_mask().
9f8f2172
CL
1263 */
1264void drain_all_pages(void)
1265{
74046494
GBY
1266 int cpu;
1267 struct per_cpu_pageset *pcp;
1268 struct zone *zone;
1269
1270 /*
1271 * Allocate in the BSS so we wont require allocation in
1272 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1273 */
1274 static cpumask_t cpus_with_pcps;
1275
1276 /*
1277 * We don't care about racing with CPU hotplug event
1278 * as offline notification will cause the notified
1279 * cpu to drain that CPU pcps and on_each_cpu_mask
1280 * disables preemption as part of its processing
1281 */
1282 for_each_online_cpu(cpu) {
1283 bool has_pcps = false;
1284 for_each_populated_zone(zone) {
1285 pcp = per_cpu_ptr(zone->pageset, cpu);
1286 if (pcp->pcp.count) {
1287 has_pcps = true;
1288 break;
1289 }
1290 }
1291 if (has_pcps)
1292 cpumask_set_cpu(cpu, &cpus_with_pcps);
1293 else
1294 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1295 }
1296 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1297}
1298
296699de 1299#ifdef CONFIG_HIBERNATION
1da177e4
LT
1300
1301void mark_free_pages(struct zone *zone)
1302{
f623f0db
RW
1303 unsigned long pfn, max_zone_pfn;
1304 unsigned long flags;
b2a0ac88 1305 int order, t;
1da177e4
LT
1306 struct list_head *curr;
1307
8080fc03 1308 if (zone_is_empty(zone))
1da177e4
LT
1309 return;
1310
1311 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1312
108bcc96 1313 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1314 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1315 if (pfn_valid(pfn)) {
1316 struct page *page = pfn_to_page(pfn);
1317
7be98234
RW
1318 if (!swsusp_page_is_forbidden(page))
1319 swsusp_unset_page_free(page);
f623f0db 1320 }
1da177e4 1321
b2a0ac88
MG
1322 for_each_migratetype_order(order, t) {
1323 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1324 unsigned long i;
1da177e4 1325
f623f0db
RW
1326 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1327 for (i = 0; i < (1UL << order); i++)
7be98234 1328 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1329 }
b2a0ac88 1330 }
1da177e4
LT
1331 spin_unlock_irqrestore(&zone->lock, flags);
1332}
e2c55dc8 1333#endif /* CONFIG_PM */
1da177e4 1334
1da177e4
LT
1335/*
1336 * Free a 0-order page
fc91668e 1337 * cold == 1 ? free a cold page : free a hot page
1da177e4 1338 */
fc91668e 1339void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1340{
1341 struct zone *zone = page_zone(page);
1342 struct per_cpu_pages *pcp;
1343 unsigned long flags;
5f8dcc21 1344 int migratetype;
1da177e4 1345
ec95f53a 1346 if (!free_pages_prepare(page, 0))
689bcebf
HD
1347 return;
1348
5f8dcc21 1349 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1350 set_freepage_migratetype(page, migratetype);
1da177e4 1351 local_irq_save(flags);
f8891e5e 1352 __count_vm_event(PGFREE);
da456f14 1353
5f8dcc21
MG
1354 /*
1355 * We only track unmovable, reclaimable and movable on pcp lists.
1356 * Free ISOLATE pages back to the allocator because they are being
1357 * offlined but treat RESERVE as movable pages so we can get those
1358 * areas back if necessary. Otherwise, we may have to free
1359 * excessively into the page allocator
1360 */
1361 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1362 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1363 free_one_page(zone, page, 0, migratetype);
1364 goto out;
1365 }
1366 migratetype = MIGRATE_MOVABLE;
1367 }
1368
99dcc3e5 1369 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1370 if (cold)
5f8dcc21 1371 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1372 else
5f8dcc21 1373 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1374 pcp->count++;
48db57f8 1375 if (pcp->count >= pcp->high) {
998d39cb
CS
1376 unsigned long batch = ACCESS_ONCE(pcp->batch);
1377 free_pcppages_bulk(zone, batch, pcp);
1378 pcp->count -= batch;
48db57f8 1379 }
5f8dcc21
MG
1380
1381out:
1da177e4 1382 local_irq_restore(flags);
1da177e4
LT
1383}
1384
cc59850e
KK
1385/*
1386 * Free a list of 0-order pages
1387 */
1388void free_hot_cold_page_list(struct list_head *list, int cold)
1389{
1390 struct page *page, *next;
1391
1392 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1393 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1394 free_hot_cold_page(page, cold);
1395 }
1396}
1397
8dfcc9ba
NP
1398/*
1399 * split_page takes a non-compound higher-order page, and splits it into
1400 * n (1<<order) sub-pages: page[0..n]
1401 * Each sub-page must be freed individually.
1402 *
1403 * Note: this is probably too low level an operation for use in drivers.
1404 * Please consult with lkml before using this in your driver.
1405 */
1406void split_page(struct page *page, unsigned int order)
1407{
1408 int i;
1409
725d704e
NP
1410 VM_BUG_ON(PageCompound(page));
1411 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1412
1413#ifdef CONFIG_KMEMCHECK
1414 /*
1415 * Split shadow pages too, because free(page[0]) would
1416 * otherwise free the whole shadow.
1417 */
1418 if (kmemcheck_page_is_tracked(page))
1419 split_page(virt_to_page(page[0].shadow), order);
1420#endif
1421
7835e98b
NP
1422 for (i = 1; i < (1 << order); i++)
1423 set_page_refcounted(page + i);
8dfcc9ba 1424}
5853ff23 1425EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1426
8fb74b9f 1427static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1428{
748446bb
MG
1429 unsigned long watermark;
1430 struct zone *zone;
2139cbe6 1431 int mt;
748446bb
MG
1432
1433 BUG_ON(!PageBuddy(page));
1434
1435 zone = page_zone(page);
2e30abd1 1436 mt = get_pageblock_migratetype(page);
748446bb 1437
194159fb 1438 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1439 /* Obey watermarks as if the page was being allocated */
1440 watermark = low_wmark_pages(zone) + (1 << order);
1441 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1442 return 0;
1443
8fb74b9f 1444 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1445 }
748446bb
MG
1446
1447 /* Remove page from free list */
1448 list_del(&page->lru);
1449 zone->free_area[order].nr_free--;
1450 rmv_page_order(page);
2139cbe6 1451
8fb74b9f 1452 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1453 if (order >= pageblock_order - 1) {
1454 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1455 for (; page < endpage; page += pageblock_nr_pages) {
1456 int mt = get_pageblock_migratetype(page);
194159fb 1457 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1458 set_pageblock_migratetype(page,
1459 MIGRATE_MOVABLE);
1460 }
748446bb
MG
1461 }
1462
8fb74b9f 1463 return 1UL << order;
1fb3f8ca
MG
1464}
1465
1466/*
1467 * Similar to split_page except the page is already free. As this is only
1468 * being used for migration, the migratetype of the block also changes.
1469 * As this is called with interrupts disabled, the caller is responsible
1470 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1471 * are enabled.
1472 *
1473 * Note: this is probably too low level an operation for use in drivers.
1474 * Please consult with lkml before using this in your driver.
1475 */
1476int split_free_page(struct page *page)
1477{
1478 unsigned int order;
1479 int nr_pages;
1480
1fb3f8ca
MG
1481 order = page_order(page);
1482
8fb74b9f 1483 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1484 if (!nr_pages)
1485 return 0;
1486
1487 /* Split into individual pages */
1488 set_page_refcounted(page);
1489 split_page(page, order);
1490 return nr_pages;
748446bb
MG
1491}
1492
1da177e4
LT
1493/*
1494 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1495 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1496 * or two.
1497 */
0a15c3e9
MG
1498static inline
1499struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1500 struct zone *zone, int order, gfp_t gfp_flags,
1501 int migratetype)
1da177e4
LT
1502{
1503 unsigned long flags;
689bcebf 1504 struct page *page;
1da177e4
LT
1505 int cold = !!(gfp_flags & __GFP_COLD);
1506
689bcebf 1507again:
48db57f8 1508 if (likely(order == 0)) {
1da177e4 1509 struct per_cpu_pages *pcp;
5f8dcc21 1510 struct list_head *list;
1da177e4 1511
1da177e4 1512 local_irq_save(flags);
99dcc3e5
CL
1513 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1514 list = &pcp->lists[migratetype];
5f8dcc21 1515 if (list_empty(list)) {
535131e6 1516 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1517 pcp->batch, list,
e084b2d9 1518 migratetype, cold);
5f8dcc21 1519 if (unlikely(list_empty(list)))
6fb332fa 1520 goto failed;
535131e6 1521 }
b92a6edd 1522
5f8dcc21
MG
1523 if (cold)
1524 page = list_entry(list->prev, struct page, lru);
1525 else
1526 page = list_entry(list->next, struct page, lru);
1527
b92a6edd
MG
1528 list_del(&page->lru);
1529 pcp->count--;
7fb1d9fc 1530 } else {
dab48dab
AM
1531 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1532 /*
1533 * __GFP_NOFAIL is not to be used in new code.
1534 *
1535 * All __GFP_NOFAIL callers should be fixed so that they
1536 * properly detect and handle allocation failures.
1537 *
1538 * We most definitely don't want callers attempting to
4923abf9 1539 * allocate greater than order-1 page units with
dab48dab
AM
1540 * __GFP_NOFAIL.
1541 */
4923abf9 1542 WARN_ON_ONCE(order > 1);
dab48dab 1543 }
1da177e4 1544 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1545 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1546 spin_unlock(&zone->lock);
1547 if (!page)
1548 goto failed;
d1ce749a
BZ
1549 __mod_zone_freepage_state(zone, -(1 << order),
1550 get_pageblock_migratetype(page));
1da177e4
LT
1551 }
1552
81c0a2bb 1553 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
f8891e5e 1554 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1555 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1556 local_irq_restore(flags);
1da177e4 1557
725d704e 1558 VM_BUG_ON(bad_range(zone, page));
17cf4406 1559 if (prep_new_page(page, order, gfp_flags))
a74609fa 1560 goto again;
1da177e4 1561 return page;
a74609fa
NP
1562
1563failed:
1564 local_irq_restore(flags);
a74609fa 1565 return NULL;
1da177e4
LT
1566}
1567
933e312e
AM
1568#ifdef CONFIG_FAIL_PAGE_ALLOC
1569
b2588c4b 1570static struct {
933e312e
AM
1571 struct fault_attr attr;
1572
1573 u32 ignore_gfp_highmem;
1574 u32 ignore_gfp_wait;
54114994 1575 u32 min_order;
933e312e
AM
1576} fail_page_alloc = {
1577 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1578 .ignore_gfp_wait = 1,
1579 .ignore_gfp_highmem = 1,
54114994 1580 .min_order = 1,
933e312e
AM
1581};
1582
1583static int __init setup_fail_page_alloc(char *str)
1584{
1585 return setup_fault_attr(&fail_page_alloc.attr, str);
1586}
1587__setup("fail_page_alloc=", setup_fail_page_alloc);
1588
deaf386e 1589static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1590{
54114994 1591 if (order < fail_page_alloc.min_order)
deaf386e 1592 return false;
933e312e 1593 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1594 return false;
933e312e 1595 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1596 return false;
933e312e 1597 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1598 return false;
933e312e
AM
1599
1600 return should_fail(&fail_page_alloc.attr, 1 << order);
1601}
1602
1603#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1604
1605static int __init fail_page_alloc_debugfs(void)
1606{
f4ae40a6 1607 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1608 struct dentry *dir;
933e312e 1609
dd48c085
AM
1610 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1611 &fail_page_alloc.attr);
1612 if (IS_ERR(dir))
1613 return PTR_ERR(dir);
933e312e 1614
b2588c4b
AM
1615 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1616 &fail_page_alloc.ignore_gfp_wait))
1617 goto fail;
1618 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1619 &fail_page_alloc.ignore_gfp_highmem))
1620 goto fail;
1621 if (!debugfs_create_u32("min-order", mode, dir,
1622 &fail_page_alloc.min_order))
1623 goto fail;
1624
1625 return 0;
1626fail:
dd48c085 1627 debugfs_remove_recursive(dir);
933e312e 1628
b2588c4b 1629 return -ENOMEM;
933e312e
AM
1630}
1631
1632late_initcall(fail_page_alloc_debugfs);
1633
1634#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1635
1636#else /* CONFIG_FAIL_PAGE_ALLOC */
1637
deaf386e 1638static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1639{
deaf386e 1640 return false;
933e312e
AM
1641}
1642
1643#endif /* CONFIG_FAIL_PAGE_ALLOC */
1644
1da177e4 1645/*
88f5acf8 1646 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1647 * of the allocation.
1648 */
88f5acf8
MG
1649static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1650 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1651{
1652 /* free_pages my go negative - that's OK */
d23ad423 1653 long min = mark;
2cfed075 1654 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1655 int o;
026b0814 1656 long free_cma = 0;
1da177e4 1657
df0a6daa 1658 free_pages -= (1 << order) - 1;
7fb1d9fc 1659 if (alloc_flags & ALLOC_HIGH)
1da177e4 1660 min -= min / 2;
7fb1d9fc 1661 if (alloc_flags & ALLOC_HARDER)
1da177e4 1662 min -= min / 4;
d95ea5d1
BZ
1663#ifdef CONFIG_CMA
1664 /* If allocation can't use CMA areas don't use free CMA pages */
1665 if (!(alloc_flags & ALLOC_CMA))
026b0814 1666 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1667#endif
026b0814
TS
1668
1669 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1670 return false;
1da177e4
LT
1671 for (o = 0; o < order; o++) {
1672 /* At the next order, this order's pages become unavailable */
1673 free_pages -= z->free_area[o].nr_free << o;
1674
1675 /* Require fewer higher order pages to be free */
1676 min >>= 1;
1677
1678 if (free_pages <= min)
88f5acf8 1679 return false;
1da177e4 1680 }
88f5acf8
MG
1681 return true;
1682}
1683
1684bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1685 int classzone_idx, int alloc_flags)
1686{
1687 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1688 zone_page_state(z, NR_FREE_PAGES));
1689}
1690
1691bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1692 int classzone_idx, int alloc_flags)
1693{
1694 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1695
1696 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1697 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1698
1699 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1700 free_pages);
1da177e4
LT
1701}
1702
9276b1bc
PJ
1703#ifdef CONFIG_NUMA
1704/*
1705 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1706 * skip over zones that are not allowed by the cpuset, or that have
1707 * been recently (in last second) found to be nearly full. See further
1708 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1709 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1710 *
1711 * If the zonelist cache is present in the passed in zonelist, then
1712 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1713 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1714 *
1715 * If the zonelist cache is not available for this zonelist, does
1716 * nothing and returns NULL.
1717 *
1718 * If the fullzones BITMAP in the zonelist cache is stale (more than
1719 * a second since last zap'd) then we zap it out (clear its bits.)
1720 *
1721 * We hold off even calling zlc_setup, until after we've checked the
1722 * first zone in the zonelist, on the theory that most allocations will
1723 * be satisfied from that first zone, so best to examine that zone as
1724 * quickly as we can.
1725 */
1726static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1727{
1728 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1729 nodemask_t *allowednodes; /* zonelist_cache approximation */
1730
1731 zlc = zonelist->zlcache_ptr;
1732 if (!zlc)
1733 return NULL;
1734
f05111f5 1735 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1736 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1737 zlc->last_full_zap = jiffies;
1738 }
1739
1740 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1741 &cpuset_current_mems_allowed :
4b0ef1fe 1742 &node_states[N_MEMORY];
9276b1bc
PJ
1743 return allowednodes;
1744}
1745
1746/*
1747 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1748 * if it is worth looking at further for free memory:
1749 * 1) Check that the zone isn't thought to be full (doesn't have its
1750 * bit set in the zonelist_cache fullzones BITMAP).
1751 * 2) Check that the zones node (obtained from the zonelist_cache
1752 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1753 * Return true (non-zero) if zone is worth looking at further, or
1754 * else return false (zero) if it is not.
1755 *
1756 * This check -ignores- the distinction between various watermarks,
1757 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1758 * found to be full for any variation of these watermarks, it will
1759 * be considered full for up to one second by all requests, unless
1760 * we are so low on memory on all allowed nodes that we are forced
1761 * into the second scan of the zonelist.
1762 *
1763 * In the second scan we ignore this zonelist cache and exactly
1764 * apply the watermarks to all zones, even it is slower to do so.
1765 * We are low on memory in the second scan, and should leave no stone
1766 * unturned looking for a free page.
1767 */
dd1a239f 1768static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1769 nodemask_t *allowednodes)
1770{
1771 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1772 int i; /* index of *z in zonelist zones */
1773 int n; /* node that zone *z is on */
1774
1775 zlc = zonelist->zlcache_ptr;
1776 if (!zlc)
1777 return 1;
1778
dd1a239f 1779 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1780 n = zlc->z_to_n[i];
1781
1782 /* This zone is worth trying if it is allowed but not full */
1783 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1784}
1785
1786/*
1787 * Given 'z' scanning a zonelist, set the corresponding bit in
1788 * zlc->fullzones, so that subsequent attempts to allocate a page
1789 * from that zone don't waste time re-examining it.
1790 */
dd1a239f 1791static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794 int i; /* index of *z in zonelist zones */
1795
1796 zlc = zonelist->zlcache_ptr;
1797 if (!zlc)
1798 return;
1799
dd1a239f 1800 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1801
1802 set_bit(i, zlc->fullzones);
1803}
1804
76d3fbf8
MG
1805/*
1806 * clear all zones full, called after direct reclaim makes progress so that
1807 * a zone that was recently full is not skipped over for up to a second
1808 */
1809static void zlc_clear_zones_full(struct zonelist *zonelist)
1810{
1811 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1812
1813 zlc = zonelist->zlcache_ptr;
1814 if (!zlc)
1815 return;
1816
1817 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1818}
1819
81c0a2bb
JW
1820static bool zone_local(struct zone *local_zone, struct zone *zone)
1821{
1822 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1823}
1824
957f822a
DR
1825static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1826{
1827 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1828}
1829
1830static void __paginginit init_zone_allows_reclaim(int nid)
1831{
1832 int i;
1833
1834 for_each_online_node(i)
6b187d02 1835 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1836 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1837 else
957f822a 1838 zone_reclaim_mode = 1;
957f822a
DR
1839}
1840
9276b1bc
PJ
1841#else /* CONFIG_NUMA */
1842
1843static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1844{
1845 return NULL;
1846}
1847
dd1a239f 1848static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1849 nodemask_t *allowednodes)
1850{
1851 return 1;
1852}
1853
dd1a239f 1854static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1855{
1856}
76d3fbf8
MG
1857
1858static void zlc_clear_zones_full(struct zonelist *zonelist)
1859{
1860}
957f822a 1861
81c0a2bb
JW
1862static bool zone_local(struct zone *local_zone, struct zone *zone)
1863{
1864 return true;
1865}
1866
957f822a
DR
1867static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1868{
1869 return true;
1870}
1871
1872static inline void init_zone_allows_reclaim(int nid)
1873{
1874}
9276b1bc
PJ
1875#endif /* CONFIG_NUMA */
1876
7fb1d9fc 1877/*
0798e519 1878 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1879 * a page.
1880 */
1881static struct page *
19770b32 1882get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1883 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1884 struct zone *preferred_zone, int migratetype)
753ee728 1885{
dd1a239f 1886 struct zoneref *z;
7fb1d9fc 1887 struct page *page = NULL;
54a6eb5c 1888 int classzone_idx;
5117f45d 1889 struct zone *zone;
9276b1bc
PJ
1890 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1891 int zlc_active = 0; /* set if using zonelist_cache */
1892 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1893
19770b32 1894 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1895zonelist_scan:
7fb1d9fc 1896 /*
9276b1bc 1897 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1898 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1899 */
19770b32
MG
1900 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1901 high_zoneidx, nodemask) {
e085dbc5
JW
1902 unsigned long mark;
1903
e5adfffc 1904 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1905 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1906 continue;
7fb1d9fc 1907 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1908 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1909 continue;
e085dbc5 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1911 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1912 goto try_this_zone;
81c0a2bb
JW
1913 /*
1914 * Distribute pages in proportion to the individual
1915 * zone size to ensure fair page aging. The zone a
1916 * page was allocated in should have no effect on the
1917 * time the page has in memory before being reclaimed.
1918 *
1919 * When zone_reclaim_mode is enabled, try to stay in
1920 * local zones in the fastpath. If that fails, the
1921 * slowpath is entered, which will do another pass
1922 * starting with the local zones, but ultimately fall
1923 * back to remote zones that do not partake in the
1924 * fairness round-robin cycle of this zonelist.
1925 */
1926 if (alloc_flags & ALLOC_WMARK_LOW) {
1927 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1928 continue;
1929 if (zone_reclaim_mode &&
1930 !zone_local(preferred_zone, zone))
1931 continue;
1932 }
a756cf59
JW
1933 /*
1934 * When allocating a page cache page for writing, we
1935 * want to get it from a zone that is within its dirty
1936 * limit, such that no single zone holds more than its
1937 * proportional share of globally allowed dirty pages.
1938 * The dirty limits take into account the zone's
1939 * lowmem reserves and high watermark so that kswapd
1940 * should be able to balance it without having to
1941 * write pages from its LRU list.
1942 *
1943 * This may look like it could increase pressure on
1944 * lower zones by failing allocations in higher zones
1945 * before they are full. But the pages that do spill
1946 * over are limited as the lower zones are protected
1947 * by this very same mechanism. It should not become
1948 * a practical burden to them.
1949 *
1950 * XXX: For now, allow allocations to potentially
1951 * exceed the per-zone dirty limit in the slowpath
1952 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1953 * which is important when on a NUMA setup the allowed
1954 * zones are together not big enough to reach the
1955 * global limit. The proper fix for these situations
1956 * will require awareness of zones in the
1957 * dirty-throttling and the flusher threads.
1958 */
1959 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1960 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1961 goto this_zone_full;
7fb1d9fc 1962
e085dbc5
JW
1963 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1964 if (!zone_watermark_ok(zone, order, mark,
1965 classzone_idx, alloc_flags)) {
fa5e084e
MG
1966 int ret;
1967
e5adfffc
KS
1968 if (IS_ENABLED(CONFIG_NUMA) &&
1969 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1970 /*
1971 * we do zlc_setup if there are multiple nodes
1972 * and before considering the first zone allowed
1973 * by the cpuset.
1974 */
1975 allowednodes = zlc_setup(zonelist, alloc_flags);
1976 zlc_active = 1;
1977 did_zlc_setup = 1;
1978 }
1979
957f822a
DR
1980 if (zone_reclaim_mode == 0 ||
1981 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1982 goto this_zone_full;
1983
cd38b115
MG
1984 /*
1985 * As we may have just activated ZLC, check if the first
1986 * eligible zone has failed zone_reclaim recently.
1987 */
e5adfffc 1988 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1989 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1990 continue;
1991
fa5e084e
MG
1992 ret = zone_reclaim(zone, gfp_mask, order);
1993 switch (ret) {
1994 case ZONE_RECLAIM_NOSCAN:
1995 /* did not scan */
cd38b115 1996 continue;
fa5e084e
MG
1997 case ZONE_RECLAIM_FULL:
1998 /* scanned but unreclaimable */
cd38b115 1999 continue;
fa5e084e
MG
2000 default:
2001 /* did we reclaim enough */
fed2719e 2002 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2003 classzone_idx, alloc_flags))
fed2719e
MG
2004 goto try_this_zone;
2005
2006 /*
2007 * Failed to reclaim enough to meet watermark.
2008 * Only mark the zone full if checking the min
2009 * watermark or if we failed to reclaim just
2010 * 1<<order pages or else the page allocator
2011 * fastpath will prematurely mark zones full
2012 * when the watermark is between the low and
2013 * min watermarks.
2014 */
2015 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2016 ret == ZONE_RECLAIM_SOME)
9276b1bc 2017 goto this_zone_full;
fed2719e
MG
2018
2019 continue;
0798e519 2020 }
7fb1d9fc
RS
2021 }
2022
fa5e084e 2023try_this_zone:
3dd28266
MG
2024 page = buffered_rmqueue(preferred_zone, zone, order,
2025 gfp_mask, migratetype);
0798e519 2026 if (page)
7fb1d9fc 2027 break;
9276b1bc 2028this_zone_full:
e5adfffc 2029 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2030 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2031 }
9276b1bc 2032
e5adfffc 2033 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2034 /* Disable zlc cache for second zonelist scan */
2035 zlc_active = 0;
2036 goto zonelist_scan;
2037 }
b121186a
AS
2038
2039 if (page)
2040 /*
2041 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2042 * necessary to allocate the page. The expectation is
2043 * that the caller is taking steps that will free more
2044 * memory. The caller should avoid the page being used
2045 * for !PFMEMALLOC purposes.
2046 */
2047 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2048
7fb1d9fc 2049 return page;
753ee728
MH
2050}
2051
29423e77
DR
2052/*
2053 * Large machines with many possible nodes should not always dump per-node
2054 * meminfo in irq context.
2055 */
2056static inline bool should_suppress_show_mem(void)
2057{
2058 bool ret = false;
2059
2060#if NODES_SHIFT > 8
2061 ret = in_interrupt();
2062#endif
2063 return ret;
2064}
2065
a238ab5b
DH
2066static DEFINE_RATELIMIT_STATE(nopage_rs,
2067 DEFAULT_RATELIMIT_INTERVAL,
2068 DEFAULT_RATELIMIT_BURST);
2069
2070void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2071{
a238ab5b
DH
2072 unsigned int filter = SHOW_MEM_FILTER_NODES;
2073
c0a32fc5
SG
2074 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2075 debug_guardpage_minorder() > 0)
a238ab5b
DH
2076 return;
2077
4b59e6c4
DR
2078 /*
2079 * Walking all memory to count page types is very expensive and should
2080 * be inhibited in non-blockable contexts.
2081 */
2082 if (!(gfp_mask & __GFP_WAIT))
2083 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2084
a238ab5b
DH
2085 /*
2086 * This documents exceptions given to allocations in certain
2087 * contexts that are allowed to allocate outside current's set
2088 * of allowed nodes.
2089 */
2090 if (!(gfp_mask & __GFP_NOMEMALLOC))
2091 if (test_thread_flag(TIF_MEMDIE) ||
2092 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2093 filter &= ~SHOW_MEM_FILTER_NODES;
2094 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2095 filter &= ~SHOW_MEM_FILTER_NODES;
2096
2097 if (fmt) {
3ee9a4f0
JP
2098 struct va_format vaf;
2099 va_list args;
2100
a238ab5b 2101 va_start(args, fmt);
3ee9a4f0
JP
2102
2103 vaf.fmt = fmt;
2104 vaf.va = &args;
2105
2106 pr_warn("%pV", &vaf);
2107
a238ab5b
DH
2108 va_end(args);
2109 }
2110
3ee9a4f0
JP
2111 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2112 current->comm, order, gfp_mask);
a238ab5b
DH
2113
2114 dump_stack();
2115 if (!should_suppress_show_mem())
2116 show_mem(filter);
2117}
2118
11e33f6a
MG
2119static inline int
2120should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2121 unsigned long did_some_progress,
11e33f6a 2122 unsigned long pages_reclaimed)
1da177e4 2123{
11e33f6a
MG
2124 /* Do not loop if specifically requested */
2125 if (gfp_mask & __GFP_NORETRY)
2126 return 0;
1da177e4 2127
f90ac398
MG
2128 /* Always retry if specifically requested */
2129 if (gfp_mask & __GFP_NOFAIL)
2130 return 1;
2131
2132 /*
2133 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2134 * making forward progress without invoking OOM. Suspend also disables
2135 * storage devices so kswapd will not help. Bail if we are suspending.
2136 */
2137 if (!did_some_progress && pm_suspended_storage())
2138 return 0;
2139
11e33f6a
MG
2140 /*
2141 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2142 * means __GFP_NOFAIL, but that may not be true in other
2143 * implementations.
2144 */
2145 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2146 return 1;
2147
2148 /*
2149 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2150 * specified, then we retry until we no longer reclaim any pages
2151 * (above), or we've reclaimed an order of pages at least as
2152 * large as the allocation's order. In both cases, if the
2153 * allocation still fails, we stop retrying.
2154 */
2155 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2156 return 1;
cf40bd16 2157
11e33f6a
MG
2158 return 0;
2159}
933e312e 2160
11e33f6a
MG
2161static inline struct page *
2162__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2163 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2164 nodemask_t *nodemask, struct zone *preferred_zone,
2165 int migratetype)
11e33f6a
MG
2166{
2167 struct page *page;
2168
2169 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2170 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2171 schedule_timeout_uninterruptible(1);
1da177e4
LT
2172 return NULL;
2173 }
6b1de916 2174
11e33f6a
MG
2175 /*
2176 * Go through the zonelist yet one more time, keep very high watermark
2177 * here, this is only to catch a parallel oom killing, we must fail if
2178 * we're still under heavy pressure.
2179 */
2180 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2181 order, zonelist, high_zoneidx,
5117f45d 2182 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2183 preferred_zone, migratetype);
7fb1d9fc 2184 if (page)
11e33f6a
MG
2185 goto out;
2186
4365a567
KH
2187 if (!(gfp_mask & __GFP_NOFAIL)) {
2188 /* The OOM killer will not help higher order allocs */
2189 if (order > PAGE_ALLOC_COSTLY_ORDER)
2190 goto out;
03668b3c
DR
2191 /* The OOM killer does not needlessly kill tasks for lowmem */
2192 if (high_zoneidx < ZONE_NORMAL)
2193 goto out;
4365a567
KH
2194 /*
2195 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2196 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2197 * The caller should handle page allocation failure by itself if
2198 * it specifies __GFP_THISNODE.
2199 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2200 */
2201 if (gfp_mask & __GFP_THISNODE)
2202 goto out;
2203 }
11e33f6a 2204 /* Exhausted what can be done so it's blamo time */
08ab9b10 2205 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2206
2207out:
2208 clear_zonelist_oom(zonelist, gfp_mask);
2209 return page;
2210}
2211
56de7263
MG
2212#ifdef CONFIG_COMPACTION
2213/* Try memory compaction for high-order allocations before reclaim */
2214static struct page *
2215__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2216 struct zonelist *zonelist, enum zone_type high_zoneidx,
2217 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2218 int migratetype, bool sync_migration,
c67fe375 2219 bool *contended_compaction, bool *deferred_compaction,
66199712 2220 unsigned long *did_some_progress)
56de7263 2221{
66199712 2222 if (!order)
56de7263
MG
2223 return NULL;
2224
aff62249 2225 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2226 *deferred_compaction = true;
2227 return NULL;
2228 }
2229
c06b1fca 2230 current->flags |= PF_MEMALLOC;
56de7263 2231 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2232 nodemask, sync_migration,
8fb74b9f 2233 contended_compaction);
c06b1fca 2234 current->flags &= ~PF_MEMALLOC;
56de7263 2235
1fb3f8ca 2236 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2237 struct page *page;
2238
56de7263
MG
2239 /* Page migration frees to the PCP lists but we want merging */
2240 drain_pages(get_cpu());
2241 put_cpu();
2242
2243 page = get_page_from_freelist(gfp_mask, nodemask,
2244 order, zonelist, high_zoneidx,
cfd19c5a
MG
2245 alloc_flags & ~ALLOC_NO_WATERMARKS,
2246 preferred_zone, migratetype);
56de7263 2247 if (page) {
62997027 2248 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2249 preferred_zone->compact_considered = 0;
2250 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2251 if (order >= preferred_zone->compact_order_failed)
2252 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2253 count_vm_event(COMPACTSUCCESS);
2254 return page;
2255 }
2256
2257 /*
2258 * It's bad if compaction run occurs and fails.
2259 * The most likely reason is that pages exist,
2260 * but not enough to satisfy watermarks.
2261 */
2262 count_vm_event(COMPACTFAIL);
66199712
MG
2263
2264 /*
2265 * As async compaction considers a subset of pageblocks, only
2266 * defer if the failure was a sync compaction failure.
2267 */
2268 if (sync_migration)
aff62249 2269 defer_compaction(preferred_zone, order);
56de7263
MG
2270
2271 cond_resched();
2272 }
2273
2274 return NULL;
2275}
2276#else
2277static inline struct page *
2278__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2279 struct zonelist *zonelist, enum zone_type high_zoneidx,
2280 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2281 int migratetype, bool sync_migration,
c67fe375 2282 bool *contended_compaction, bool *deferred_compaction,
66199712 2283 unsigned long *did_some_progress)
56de7263
MG
2284{
2285 return NULL;
2286}
2287#endif /* CONFIG_COMPACTION */
2288
bba90710
MS
2289/* Perform direct synchronous page reclaim */
2290static int
2291__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2292 nodemask_t *nodemask)
11e33f6a 2293{
11e33f6a 2294 struct reclaim_state reclaim_state;
bba90710 2295 int progress;
11e33f6a
MG
2296
2297 cond_resched();
2298
2299 /* We now go into synchronous reclaim */
2300 cpuset_memory_pressure_bump();
c06b1fca 2301 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2302 lockdep_set_current_reclaim_state(gfp_mask);
2303 reclaim_state.reclaimed_slab = 0;
c06b1fca 2304 current->reclaim_state = &reclaim_state;
11e33f6a 2305
bba90710 2306 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2307
c06b1fca 2308 current->reclaim_state = NULL;
11e33f6a 2309 lockdep_clear_current_reclaim_state();
c06b1fca 2310 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2311
2312 cond_resched();
2313
bba90710
MS
2314 return progress;
2315}
2316
2317/* The really slow allocator path where we enter direct reclaim */
2318static inline struct page *
2319__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2320 struct zonelist *zonelist, enum zone_type high_zoneidx,
2321 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2322 int migratetype, unsigned long *did_some_progress)
2323{
2324 struct page *page = NULL;
2325 bool drained = false;
2326
2327 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2328 nodemask);
9ee493ce
MG
2329 if (unlikely(!(*did_some_progress)))
2330 return NULL;
11e33f6a 2331
76d3fbf8 2332 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2333 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2334 zlc_clear_zones_full(zonelist);
2335
9ee493ce
MG
2336retry:
2337 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2338 zonelist, high_zoneidx,
cfd19c5a
MG
2339 alloc_flags & ~ALLOC_NO_WATERMARKS,
2340 preferred_zone, migratetype);
9ee493ce
MG
2341
2342 /*
2343 * If an allocation failed after direct reclaim, it could be because
2344 * pages are pinned on the per-cpu lists. Drain them and try again
2345 */
2346 if (!page && !drained) {
2347 drain_all_pages();
2348 drained = true;
2349 goto retry;
2350 }
2351
11e33f6a
MG
2352 return page;
2353}
2354
1da177e4 2355/*
11e33f6a
MG
2356 * This is called in the allocator slow-path if the allocation request is of
2357 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2358 */
11e33f6a
MG
2359static inline struct page *
2360__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2361 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2362 nodemask_t *nodemask, struct zone *preferred_zone,
2363 int migratetype)
11e33f6a
MG
2364{
2365 struct page *page;
2366
2367 do {
2368 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2369 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2370 preferred_zone, migratetype);
11e33f6a
MG
2371
2372 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2373 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2374 } while (!page && (gfp_mask & __GFP_NOFAIL));
2375
2376 return page;
2377}
2378
81c0a2bb
JW
2379static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2380 struct zonelist *zonelist,
2381 enum zone_type high_zoneidx,
2382 struct zone *preferred_zone)
1da177e4 2383{
dd1a239f
MG
2384 struct zoneref *z;
2385 struct zone *zone;
1da177e4 2386
81c0a2bb
JW
2387 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2388 if (!(gfp_mask & __GFP_NO_KSWAPD))
2389 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2390 /*
2391 * Only reset the batches of zones that were actually
2392 * considered in the fast path, we don't want to
2393 * thrash fairness information for zones that are not
2394 * actually part of this zonelist's round-robin cycle.
2395 */
2396 if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2397 continue;
2398 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2399 high_wmark_pages(zone) -
2400 low_wmark_pages(zone) -
2401 zone_page_state(zone, NR_ALLOC_BATCH));
2402 }
11e33f6a 2403}
cf40bd16 2404
341ce06f
PZ
2405static inline int
2406gfp_to_alloc_flags(gfp_t gfp_mask)
2407{
341ce06f
PZ
2408 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2409 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2410
a56f57ff 2411 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2412 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2413
341ce06f
PZ
2414 /*
2415 * The caller may dip into page reserves a bit more if the caller
2416 * cannot run direct reclaim, or if the caller has realtime scheduling
2417 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2418 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2419 */
e6223a3b 2420 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2421
341ce06f 2422 if (!wait) {
5c3240d9
AA
2423 /*
2424 * Not worth trying to allocate harder for
2425 * __GFP_NOMEMALLOC even if it can't schedule.
2426 */
2427 if (!(gfp_mask & __GFP_NOMEMALLOC))
2428 alloc_flags |= ALLOC_HARDER;
523b9458 2429 /*
341ce06f
PZ
2430 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2431 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2432 */
341ce06f 2433 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2434 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2435 alloc_flags |= ALLOC_HARDER;
2436
b37f1dd0
MG
2437 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2438 if (gfp_mask & __GFP_MEMALLOC)
2439 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2440 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2441 alloc_flags |= ALLOC_NO_WATERMARKS;
2442 else if (!in_interrupt() &&
2443 ((current->flags & PF_MEMALLOC) ||
2444 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2445 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2446 }
d95ea5d1
BZ
2447#ifdef CONFIG_CMA
2448 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2449 alloc_flags |= ALLOC_CMA;
2450#endif
341ce06f
PZ
2451 return alloc_flags;
2452}
2453
072bb0aa
MG
2454bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2455{
b37f1dd0 2456 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2457}
2458
11e33f6a
MG
2459static inline struct page *
2460__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2461 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2462 nodemask_t *nodemask, struct zone *preferred_zone,
2463 int migratetype)
11e33f6a
MG
2464{
2465 const gfp_t wait = gfp_mask & __GFP_WAIT;
2466 struct page *page = NULL;
2467 int alloc_flags;
2468 unsigned long pages_reclaimed = 0;
2469 unsigned long did_some_progress;
77f1fe6b 2470 bool sync_migration = false;
66199712 2471 bool deferred_compaction = false;
c67fe375 2472 bool contended_compaction = false;
1da177e4 2473
72807a74
MG
2474 /*
2475 * In the slowpath, we sanity check order to avoid ever trying to
2476 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2477 * be using allocators in order of preference for an area that is
2478 * too large.
2479 */
1fc28b70
MG
2480 if (order >= MAX_ORDER) {
2481 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2482 return NULL;
1fc28b70 2483 }
1da177e4 2484
952f3b51
CL
2485 /*
2486 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2487 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2488 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2489 * using a larger set of nodes after it has established that the
2490 * allowed per node queues are empty and that nodes are
2491 * over allocated.
2492 */
e5adfffc
KS
2493 if (IS_ENABLED(CONFIG_NUMA) &&
2494 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2495 goto nopage;
2496
cc4a6851 2497restart:
81c0a2bb
JW
2498 prepare_slowpath(gfp_mask, order, zonelist,
2499 high_zoneidx, preferred_zone);
1da177e4 2500
9bf2229f 2501 /*
7fb1d9fc
RS
2502 * OK, we're below the kswapd watermark and have kicked background
2503 * reclaim. Now things get more complex, so set up alloc_flags according
2504 * to how we want to proceed.
9bf2229f 2505 */
341ce06f 2506 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2507
f33261d7
DR
2508 /*
2509 * Find the true preferred zone if the allocation is unconstrained by
2510 * cpusets.
2511 */
2512 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2513 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2514 &preferred_zone);
2515
cfa54a0f 2516rebalance:
341ce06f 2517 /* This is the last chance, in general, before the goto nopage. */
19770b32 2518 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2519 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2520 preferred_zone, migratetype);
7fb1d9fc
RS
2521 if (page)
2522 goto got_pg;
1da177e4 2523
11e33f6a 2524 /* Allocate without watermarks if the context allows */
341ce06f 2525 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2526 /*
2527 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2528 * the allocation is high priority and these type of
2529 * allocations are system rather than user orientated
2530 */
2531 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2532
341ce06f
PZ
2533 page = __alloc_pages_high_priority(gfp_mask, order,
2534 zonelist, high_zoneidx, nodemask,
2535 preferred_zone, migratetype);
cfd19c5a 2536 if (page) {
341ce06f 2537 goto got_pg;
cfd19c5a 2538 }
1da177e4
LT
2539 }
2540
2541 /* Atomic allocations - we can't balance anything */
2542 if (!wait)
2543 goto nopage;
2544
341ce06f 2545 /* Avoid recursion of direct reclaim */
c06b1fca 2546 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2547 goto nopage;
2548
6583bb64
DR
2549 /* Avoid allocations with no watermarks from looping endlessly */
2550 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2551 goto nopage;
2552
77f1fe6b
MG
2553 /*
2554 * Try direct compaction. The first pass is asynchronous. Subsequent
2555 * attempts after direct reclaim are synchronous
2556 */
56de7263
MG
2557 page = __alloc_pages_direct_compact(gfp_mask, order,
2558 zonelist, high_zoneidx,
2559 nodemask,
2560 alloc_flags, preferred_zone,
66199712 2561 migratetype, sync_migration,
c67fe375 2562 &contended_compaction,
66199712
MG
2563 &deferred_compaction,
2564 &did_some_progress);
56de7263
MG
2565 if (page)
2566 goto got_pg;
c6a140bf 2567 sync_migration = true;
56de7263 2568
31f8d42d
LT
2569 /*
2570 * If compaction is deferred for high-order allocations, it is because
2571 * sync compaction recently failed. In this is the case and the caller
2572 * requested a movable allocation that does not heavily disrupt the
2573 * system then fail the allocation instead of entering direct reclaim.
2574 */
2575 if ((deferred_compaction || contended_compaction) &&
caf49191 2576 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2577 goto nopage;
66199712 2578
11e33f6a
MG
2579 /* Try direct reclaim and then allocating */
2580 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
5117f45d 2583 alloc_flags, preferred_zone,
3dd28266 2584 migratetype, &did_some_progress);
11e33f6a
MG
2585 if (page)
2586 goto got_pg;
1da177e4 2587
e33c3b5e 2588 /*
11e33f6a
MG
2589 * If we failed to make any progress reclaiming, then we are
2590 * running out of options and have to consider going OOM
e33c3b5e 2591 */
11e33f6a
MG
2592 if (!did_some_progress) {
2593 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2594 if (oom_killer_disabled)
2595 goto nopage;
29fd66d2
DR
2596 /* Coredumps can quickly deplete all memory reserves */
2597 if ((current->flags & PF_DUMPCORE) &&
2598 !(gfp_mask & __GFP_NOFAIL))
2599 goto nopage;
11e33f6a
MG
2600 page = __alloc_pages_may_oom(gfp_mask, order,
2601 zonelist, high_zoneidx,
3dd28266
MG
2602 nodemask, preferred_zone,
2603 migratetype);
11e33f6a
MG
2604 if (page)
2605 goto got_pg;
1da177e4 2606
03668b3c
DR
2607 if (!(gfp_mask & __GFP_NOFAIL)) {
2608 /*
2609 * The oom killer is not called for high-order
2610 * allocations that may fail, so if no progress
2611 * is being made, there are no other options and
2612 * retrying is unlikely to help.
2613 */
2614 if (order > PAGE_ALLOC_COSTLY_ORDER)
2615 goto nopage;
2616 /*
2617 * The oom killer is not called for lowmem
2618 * allocations to prevent needlessly killing
2619 * innocent tasks.
2620 */
2621 if (high_zoneidx < ZONE_NORMAL)
2622 goto nopage;
2623 }
e2c55dc8 2624
ff0ceb9d
DR
2625 goto restart;
2626 }
1da177e4
LT
2627 }
2628
11e33f6a 2629 /* Check if we should retry the allocation */
a41f24ea 2630 pages_reclaimed += did_some_progress;
f90ac398
MG
2631 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2632 pages_reclaimed)) {
11e33f6a 2633 /* Wait for some write requests to complete then retry */
0e093d99 2634 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2635 goto rebalance;
3e7d3449
MG
2636 } else {
2637 /*
2638 * High-order allocations do not necessarily loop after
2639 * direct reclaim and reclaim/compaction depends on compaction
2640 * being called after reclaim so call directly if necessary
2641 */
2642 page = __alloc_pages_direct_compact(gfp_mask, order,
2643 zonelist, high_zoneidx,
2644 nodemask,
2645 alloc_flags, preferred_zone,
66199712 2646 migratetype, sync_migration,
c67fe375 2647 &contended_compaction,
66199712
MG
2648 &deferred_compaction,
2649 &did_some_progress);
3e7d3449
MG
2650 if (page)
2651 goto got_pg;
1da177e4
LT
2652 }
2653
2654nopage:
a238ab5b 2655 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2656 return page;
1da177e4 2657got_pg:
b1eeab67
VN
2658 if (kmemcheck_enabled)
2659 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2660
072bb0aa 2661 return page;
1da177e4 2662}
11e33f6a
MG
2663
2664/*
2665 * This is the 'heart' of the zoned buddy allocator.
2666 */
2667struct page *
2668__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2669 struct zonelist *zonelist, nodemask_t *nodemask)
2670{
2671 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2672 struct zone *preferred_zone;
cc9a6c87 2673 struct page *page = NULL;
3dd28266 2674 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2675 unsigned int cpuset_mems_cookie;
d95ea5d1 2676 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2677 struct mem_cgroup *memcg = NULL;
11e33f6a 2678
dcce284a
BH
2679 gfp_mask &= gfp_allowed_mask;
2680
11e33f6a
MG
2681 lockdep_trace_alloc(gfp_mask);
2682
2683 might_sleep_if(gfp_mask & __GFP_WAIT);
2684
2685 if (should_fail_alloc_page(gfp_mask, order))
2686 return NULL;
2687
2688 /*
2689 * Check the zones suitable for the gfp_mask contain at least one
2690 * valid zone. It's possible to have an empty zonelist as a result
2691 * of GFP_THISNODE and a memoryless node
2692 */
2693 if (unlikely(!zonelist->_zonerefs->zone))
2694 return NULL;
2695
6a1a0d3b
GC
2696 /*
2697 * Will only have any effect when __GFP_KMEMCG is set. This is
2698 * verified in the (always inline) callee
2699 */
2700 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2701 return NULL;
2702
cc9a6c87
MG
2703retry_cpuset:
2704 cpuset_mems_cookie = get_mems_allowed();
2705
5117f45d 2706 /* The preferred zone is used for statistics later */
f33261d7
DR
2707 first_zones_zonelist(zonelist, high_zoneidx,
2708 nodemask ? : &cpuset_current_mems_allowed,
2709 &preferred_zone);
cc9a6c87
MG
2710 if (!preferred_zone)
2711 goto out;
5117f45d 2712
d95ea5d1
BZ
2713#ifdef CONFIG_CMA
2714 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2715 alloc_flags |= ALLOC_CMA;
2716#endif
5117f45d 2717 /* First allocation attempt */
11e33f6a 2718 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2719 zonelist, high_zoneidx, alloc_flags,
3dd28266 2720 preferred_zone, migratetype);
21caf2fc
ML
2721 if (unlikely(!page)) {
2722 /*
2723 * Runtime PM, block IO and its error handling path
2724 * can deadlock because I/O on the device might not
2725 * complete.
2726 */
2727 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2728 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2729 zonelist, high_zoneidx, nodemask,
3dd28266 2730 preferred_zone, migratetype);
21caf2fc 2731 }
11e33f6a 2732
4b4f278c 2733 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2734
2735out:
2736 /*
2737 * When updating a task's mems_allowed, it is possible to race with
2738 * parallel threads in such a way that an allocation can fail while
2739 * the mask is being updated. If a page allocation is about to fail,
2740 * check if the cpuset changed during allocation and if so, retry.
2741 */
2742 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2743 goto retry_cpuset;
2744
6a1a0d3b
GC
2745 memcg_kmem_commit_charge(page, memcg, order);
2746
11e33f6a 2747 return page;
1da177e4 2748}
d239171e 2749EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2750
2751/*
2752 * Common helper functions.
2753 */
920c7a5d 2754unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2755{
945a1113
AM
2756 struct page *page;
2757
2758 /*
2759 * __get_free_pages() returns a 32-bit address, which cannot represent
2760 * a highmem page
2761 */
2762 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2763
1da177e4
LT
2764 page = alloc_pages(gfp_mask, order);
2765 if (!page)
2766 return 0;
2767 return (unsigned long) page_address(page);
2768}
1da177e4
LT
2769EXPORT_SYMBOL(__get_free_pages);
2770
920c7a5d 2771unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2772{
945a1113 2773 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2774}
1da177e4
LT
2775EXPORT_SYMBOL(get_zeroed_page);
2776
920c7a5d 2777void __free_pages(struct page *page, unsigned int order)
1da177e4 2778{
b5810039 2779 if (put_page_testzero(page)) {
1da177e4 2780 if (order == 0)
fc91668e 2781 free_hot_cold_page(page, 0);
1da177e4
LT
2782 else
2783 __free_pages_ok(page, order);
2784 }
2785}
2786
2787EXPORT_SYMBOL(__free_pages);
2788
920c7a5d 2789void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2790{
2791 if (addr != 0) {
725d704e 2792 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2793 __free_pages(virt_to_page((void *)addr), order);
2794 }
2795}
2796
2797EXPORT_SYMBOL(free_pages);
2798
6a1a0d3b
GC
2799/*
2800 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2801 * pages allocated with __GFP_KMEMCG.
2802 *
2803 * Those pages are accounted to a particular memcg, embedded in the
2804 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2805 * for that information only to find out that it is NULL for users who have no
2806 * interest in that whatsoever, we provide these functions.
2807 *
2808 * The caller knows better which flags it relies on.
2809 */
2810void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2811{
2812 memcg_kmem_uncharge_pages(page, order);
2813 __free_pages(page, order);
2814}
2815
2816void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2817{
2818 if (addr != 0) {
2819 VM_BUG_ON(!virt_addr_valid((void *)addr));
2820 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2821 }
2822}
2823
ee85c2e1
AK
2824static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2825{
2826 if (addr) {
2827 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2828 unsigned long used = addr + PAGE_ALIGN(size);
2829
2830 split_page(virt_to_page((void *)addr), order);
2831 while (used < alloc_end) {
2832 free_page(used);
2833 used += PAGE_SIZE;
2834 }
2835 }
2836 return (void *)addr;
2837}
2838
2be0ffe2
TT
2839/**
2840 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2841 * @size: the number of bytes to allocate
2842 * @gfp_mask: GFP flags for the allocation
2843 *
2844 * This function is similar to alloc_pages(), except that it allocates the
2845 * minimum number of pages to satisfy the request. alloc_pages() can only
2846 * allocate memory in power-of-two pages.
2847 *
2848 * This function is also limited by MAX_ORDER.
2849 *
2850 * Memory allocated by this function must be released by free_pages_exact().
2851 */
2852void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2853{
2854 unsigned int order = get_order(size);
2855 unsigned long addr;
2856
2857 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2858 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2859}
2860EXPORT_SYMBOL(alloc_pages_exact);
2861
ee85c2e1
AK
2862/**
2863 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2864 * pages on a node.
b5e6ab58 2865 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2866 * @size: the number of bytes to allocate
2867 * @gfp_mask: GFP flags for the allocation
2868 *
2869 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2870 * back.
2871 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2872 * but is not exact.
2873 */
2874void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2875{
2876 unsigned order = get_order(size);
2877 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2878 if (!p)
2879 return NULL;
2880 return make_alloc_exact((unsigned long)page_address(p), order, size);
2881}
2882EXPORT_SYMBOL(alloc_pages_exact_nid);
2883
2be0ffe2
TT
2884/**
2885 * free_pages_exact - release memory allocated via alloc_pages_exact()
2886 * @virt: the value returned by alloc_pages_exact.
2887 * @size: size of allocation, same value as passed to alloc_pages_exact().
2888 *
2889 * Release the memory allocated by a previous call to alloc_pages_exact.
2890 */
2891void free_pages_exact(void *virt, size_t size)
2892{
2893 unsigned long addr = (unsigned long)virt;
2894 unsigned long end = addr + PAGE_ALIGN(size);
2895
2896 while (addr < end) {
2897 free_page(addr);
2898 addr += PAGE_SIZE;
2899 }
2900}
2901EXPORT_SYMBOL(free_pages_exact);
2902
e0fb5815
ZY
2903/**
2904 * nr_free_zone_pages - count number of pages beyond high watermark
2905 * @offset: The zone index of the highest zone
2906 *
2907 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2908 * high watermark within all zones at or below a given zone index. For each
2909 * zone, the number of pages is calculated as:
834405c3 2910 * managed_pages - high_pages
e0fb5815 2911 */
ebec3862 2912static unsigned long nr_free_zone_pages(int offset)
1da177e4 2913{
dd1a239f 2914 struct zoneref *z;
54a6eb5c
MG
2915 struct zone *zone;
2916
e310fd43 2917 /* Just pick one node, since fallback list is circular */
ebec3862 2918 unsigned long sum = 0;
1da177e4 2919
0e88460d 2920 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2921
54a6eb5c 2922 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2923 unsigned long size = zone->managed_pages;
41858966 2924 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2925 if (size > high)
2926 sum += size - high;
1da177e4
LT
2927 }
2928
2929 return sum;
2930}
2931
e0fb5815
ZY
2932/**
2933 * nr_free_buffer_pages - count number of pages beyond high watermark
2934 *
2935 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2936 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2937 */
ebec3862 2938unsigned long nr_free_buffer_pages(void)
1da177e4 2939{
af4ca457 2940 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2941}
c2f1a551 2942EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2943
e0fb5815
ZY
2944/**
2945 * nr_free_pagecache_pages - count number of pages beyond high watermark
2946 *
2947 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2948 * high watermark within all zones.
1da177e4 2949 */
ebec3862 2950unsigned long nr_free_pagecache_pages(void)
1da177e4 2951{
2a1e274a 2952 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2953}
08e0f6a9
CL
2954
2955static inline void show_node(struct zone *zone)
1da177e4 2956{
e5adfffc 2957 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2958 printk("Node %d ", zone_to_nid(zone));
1da177e4 2959}
1da177e4 2960
1da177e4
LT
2961void si_meminfo(struct sysinfo *val)
2962{
2963 val->totalram = totalram_pages;
2964 val->sharedram = 0;
d23ad423 2965 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2966 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2967 val->totalhigh = totalhigh_pages;
2968 val->freehigh = nr_free_highpages();
1da177e4
LT
2969 val->mem_unit = PAGE_SIZE;
2970}
2971
2972EXPORT_SYMBOL(si_meminfo);
2973
2974#ifdef CONFIG_NUMA
2975void si_meminfo_node(struct sysinfo *val, int nid)
2976{
cdd91a77
JL
2977 int zone_type; /* needs to be signed */
2978 unsigned long managed_pages = 0;
1da177e4
LT
2979 pg_data_t *pgdat = NODE_DATA(nid);
2980
cdd91a77
JL
2981 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2982 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2983 val->totalram = managed_pages;
d23ad423 2984 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2985#ifdef CONFIG_HIGHMEM
b40da049 2986 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2987 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2988 NR_FREE_PAGES);
98d2b0eb
CL
2989#else
2990 val->totalhigh = 0;
2991 val->freehigh = 0;
2992#endif
1da177e4
LT
2993 val->mem_unit = PAGE_SIZE;
2994}
2995#endif
2996
ddd588b5 2997/*
7bf02ea2
DR
2998 * Determine whether the node should be displayed or not, depending on whether
2999 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3000 */
7bf02ea2 3001bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3002{
3003 bool ret = false;
cc9a6c87 3004 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3005
3006 if (!(flags & SHOW_MEM_FILTER_NODES))
3007 goto out;
3008
cc9a6c87
MG
3009 do {
3010 cpuset_mems_cookie = get_mems_allowed();
3011 ret = !node_isset(nid, cpuset_current_mems_allowed);
3012 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
3013out:
3014 return ret;
3015}
3016
1da177e4
LT
3017#define K(x) ((x) << (PAGE_SHIFT-10))
3018
377e4f16
RV
3019static void show_migration_types(unsigned char type)
3020{
3021 static const char types[MIGRATE_TYPES] = {
3022 [MIGRATE_UNMOVABLE] = 'U',
3023 [MIGRATE_RECLAIMABLE] = 'E',
3024 [MIGRATE_MOVABLE] = 'M',
3025 [MIGRATE_RESERVE] = 'R',
3026#ifdef CONFIG_CMA
3027 [MIGRATE_CMA] = 'C',
3028#endif
194159fb 3029#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3030 [MIGRATE_ISOLATE] = 'I',
194159fb 3031#endif
377e4f16
RV
3032 };
3033 char tmp[MIGRATE_TYPES + 1];
3034 char *p = tmp;
3035 int i;
3036
3037 for (i = 0; i < MIGRATE_TYPES; i++) {
3038 if (type & (1 << i))
3039 *p++ = types[i];
3040 }
3041
3042 *p = '\0';
3043 printk("(%s) ", tmp);
3044}
3045
1da177e4
LT
3046/*
3047 * Show free area list (used inside shift_scroll-lock stuff)
3048 * We also calculate the percentage fragmentation. We do this by counting the
3049 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3050 * Suppresses nodes that are not allowed by current's cpuset if
3051 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3052 */
7bf02ea2 3053void show_free_areas(unsigned int filter)
1da177e4 3054{
c7241913 3055 int cpu;
1da177e4
LT
3056 struct zone *zone;
3057
ee99c71c 3058 for_each_populated_zone(zone) {
7bf02ea2 3059 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3060 continue;
c7241913
JS
3061 show_node(zone);
3062 printk("%s per-cpu:\n", zone->name);
1da177e4 3063
6b482c67 3064 for_each_online_cpu(cpu) {
1da177e4
LT
3065 struct per_cpu_pageset *pageset;
3066
99dcc3e5 3067 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3068
3dfa5721
CL
3069 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3070 cpu, pageset->pcp.high,
3071 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3072 }
3073 }
3074
a731286d
KM
3075 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3076 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3077 " unevictable:%lu"
b76146ed 3078 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3079 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3080 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3081 " free_cma:%lu\n",
4f98a2fe 3082 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3083 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3084 global_page_state(NR_ISOLATED_ANON),
3085 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3086 global_page_state(NR_INACTIVE_FILE),
a731286d 3087 global_page_state(NR_ISOLATED_FILE),
7b854121 3088 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3089 global_page_state(NR_FILE_DIRTY),
ce866b34 3090 global_page_state(NR_WRITEBACK),
fd39fc85 3091 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3092 global_page_state(NR_FREE_PAGES),
3701b033
KM
3093 global_page_state(NR_SLAB_RECLAIMABLE),
3094 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3095 global_page_state(NR_FILE_MAPPED),
4b02108a 3096 global_page_state(NR_SHMEM),
a25700a5 3097 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3098 global_page_state(NR_BOUNCE),
3099 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3100
ee99c71c 3101 for_each_populated_zone(zone) {
1da177e4
LT
3102 int i;
3103
7bf02ea2 3104 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3105 continue;
1da177e4
LT
3106 show_node(zone);
3107 printk("%s"
3108 " free:%lukB"
3109 " min:%lukB"
3110 " low:%lukB"
3111 " high:%lukB"
4f98a2fe
RR
3112 " active_anon:%lukB"
3113 " inactive_anon:%lukB"
3114 " active_file:%lukB"
3115 " inactive_file:%lukB"
7b854121 3116 " unevictable:%lukB"
a731286d
KM
3117 " isolated(anon):%lukB"
3118 " isolated(file):%lukB"
1da177e4 3119 " present:%lukB"
9feedc9d 3120 " managed:%lukB"
4a0aa73f
KM
3121 " mlocked:%lukB"
3122 " dirty:%lukB"
3123 " writeback:%lukB"
3124 " mapped:%lukB"
4b02108a 3125 " shmem:%lukB"
4a0aa73f
KM
3126 " slab_reclaimable:%lukB"
3127 " slab_unreclaimable:%lukB"
c6a7f572 3128 " kernel_stack:%lukB"
4a0aa73f
KM
3129 " pagetables:%lukB"
3130 " unstable:%lukB"
3131 " bounce:%lukB"
d1ce749a 3132 " free_cma:%lukB"
4a0aa73f 3133 " writeback_tmp:%lukB"
1da177e4
LT
3134 " pages_scanned:%lu"
3135 " all_unreclaimable? %s"
3136 "\n",
3137 zone->name,
88f5acf8 3138 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3139 K(min_wmark_pages(zone)),
3140 K(low_wmark_pages(zone)),
3141 K(high_wmark_pages(zone)),
4f98a2fe
RR
3142 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3143 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3144 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3145 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3146 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3147 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3148 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3149 K(zone->present_pages),
9feedc9d 3150 K(zone->managed_pages),
4a0aa73f
KM
3151 K(zone_page_state(zone, NR_MLOCK)),
3152 K(zone_page_state(zone, NR_FILE_DIRTY)),
3153 K(zone_page_state(zone, NR_WRITEBACK)),
3154 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3155 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3156 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3157 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3158 zone_page_state(zone, NR_KERNEL_STACK) *
3159 THREAD_SIZE / 1024,
4a0aa73f
KM
3160 K(zone_page_state(zone, NR_PAGETABLE)),
3161 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3162 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3163 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3164 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3165 zone->pages_scanned,
6e543d57 3166 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3167 );
3168 printk("lowmem_reserve[]:");
3169 for (i = 0; i < MAX_NR_ZONES; i++)
3170 printk(" %lu", zone->lowmem_reserve[i]);
3171 printk("\n");
3172 }
3173
ee99c71c 3174 for_each_populated_zone(zone) {
b8af2941 3175 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3176 unsigned char types[MAX_ORDER];
1da177e4 3177
7bf02ea2 3178 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3179 continue;
1da177e4
LT
3180 show_node(zone);
3181 printk("%s: ", zone->name);
1da177e4
LT
3182
3183 spin_lock_irqsave(&zone->lock, flags);
3184 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3185 struct free_area *area = &zone->free_area[order];
3186 int type;
3187
3188 nr[order] = area->nr_free;
8f9de51a 3189 total += nr[order] << order;
377e4f16
RV
3190
3191 types[order] = 0;
3192 for (type = 0; type < MIGRATE_TYPES; type++) {
3193 if (!list_empty(&area->free_list[type]))
3194 types[order] |= 1 << type;
3195 }
1da177e4
LT
3196 }
3197 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3198 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3199 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3200 if (nr[order])
3201 show_migration_types(types[order]);
3202 }
1da177e4
LT
3203 printk("= %lukB\n", K(total));
3204 }
3205
949f7ec5
DR
3206 hugetlb_show_meminfo();
3207
e6f3602d
LW
3208 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3209
1da177e4
LT
3210 show_swap_cache_info();
3211}
3212
19770b32
MG
3213static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3214{
3215 zoneref->zone = zone;
3216 zoneref->zone_idx = zone_idx(zone);
3217}
3218
1da177e4
LT
3219/*
3220 * Builds allocation fallback zone lists.
1a93205b
CL
3221 *
3222 * Add all populated zones of a node to the zonelist.
1da177e4 3223 */
f0c0b2b8 3224static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3225 int nr_zones)
1da177e4 3226{
1a93205b 3227 struct zone *zone;
bc732f1d 3228 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3229
3230 do {
2f6726e5 3231 zone_type--;
070f8032 3232 zone = pgdat->node_zones + zone_type;
1a93205b 3233 if (populated_zone(zone)) {
dd1a239f
MG
3234 zoneref_set_zone(zone,
3235 &zonelist->_zonerefs[nr_zones++]);
070f8032 3236 check_highest_zone(zone_type);
1da177e4 3237 }
2f6726e5 3238 } while (zone_type);
bc732f1d 3239
070f8032 3240 return nr_zones;
1da177e4
LT
3241}
3242
f0c0b2b8
KH
3243
3244/*
3245 * zonelist_order:
3246 * 0 = automatic detection of better ordering.
3247 * 1 = order by ([node] distance, -zonetype)
3248 * 2 = order by (-zonetype, [node] distance)
3249 *
3250 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3251 * the same zonelist. So only NUMA can configure this param.
3252 */
3253#define ZONELIST_ORDER_DEFAULT 0
3254#define ZONELIST_ORDER_NODE 1
3255#define ZONELIST_ORDER_ZONE 2
3256
3257/* zonelist order in the kernel.
3258 * set_zonelist_order() will set this to NODE or ZONE.
3259 */
3260static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3261static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3262
3263
1da177e4 3264#ifdef CONFIG_NUMA
f0c0b2b8
KH
3265/* The value user specified ....changed by config */
3266static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3267/* string for sysctl */
3268#define NUMA_ZONELIST_ORDER_LEN 16
3269char numa_zonelist_order[16] = "default";
3270
3271/*
3272 * interface for configure zonelist ordering.
3273 * command line option "numa_zonelist_order"
3274 * = "[dD]efault - default, automatic configuration.
3275 * = "[nN]ode - order by node locality, then by zone within node
3276 * = "[zZ]one - order by zone, then by locality within zone
3277 */
3278
3279static int __parse_numa_zonelist_order(char *s)
3280{
3281 if (*s == 'd' || *s == 'D') {
3282 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3283 } else if (*s == 'n' || *s == 'N') {
3284 user_zonelist_order = ZONELIST_ORDER_NODE;
3285 } else if (*s == 'z' || *s == 'Z') {
3286 user_zonelist_order = ZONELIST_ORDER_ZONE;
3287 } else {
3288 printk(KERN_WARNING
3289 "Ignoring invalid numa_zonelist_order value: "
3290 "%s\n", s);
3291 return -EINVAL;
3292 }
3293 return 0;
3294}
3295
3296static __init int setup_numa_zonelist_order(char *s)
3297{
ecb256f8
VL
3298 int ret;
3299
3300 if (!s)
3301 return 0;
3302
3303 ret = __parse_numa_zonelist_order(s);
3304 if (ret == 0)
3305 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3306
3307 return ret;
f0c0b2b8
KH
3308}
3309early_param("numa_zonelist_order", setup_numa_zonelist_order);
3310
3311/*
3312 * sysctl handler for numa_zonelist_order
3313 */
3314int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3315 void __user *buffer, size_t *length,
f0c0b2b8
KH
3316 loff_t *ppos)
3317{
3318 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3319 int ret;
443c6f14 3320 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3321
443c6f14 3322 mutex_lock(&zl_order_mutex);
dacbde09
CG
3323 if (write) {
3324 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3325 ret = -EINVAL;
3326 goto out;
3327 }
3328 strcpy(saved_string, (char *)table->data);
3329 }
8d65af78 3330 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3331 if (ret)
443c6f14 3332 goto out;
f0c0b2b8
KH
3333 if (write) {
3334 int oldval = user_zonelist_order;
dacbde09
CG
3335
3336 ret = __parse_numa_zonelist_order((char *)table->data);
3337 if (ret) {
f0c0b2b8
KH
3338 /*
3339 * bogus value. restore saved string
3340 */
dacbde09 3341 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3342 NUMA_ZONELIST_ORDER_LEN);
3343 user_zonelist_order = oldval;
4eaf3f64
HL
3344 } else if (oldval != user_zonelist_order) {
3345 mutex_lock(&zonelists_mutex);
9adb62a5 3346 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3347 mutex_unlock(&zonelists_mutex);
3348 }
f0c0b2b8 3349 }
443c6f14
AK
3350out:
3351 mutex_unlock(&zl_order_mutex);
3352 return ret;
f0c0b2b8
KH
3353}
3354
3355
62bc62a8 3356#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3357static int node_load[MAX_NUMNODES];
3358
1da177e4 3359/**
4dc3b16b 3360 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3361 * @node: node whose fallback list we're appending
3362 * @used_node_mask: nodemask_t of already used nodes
3363 *
3364 * We use a number of factors to determine which is the next node that should
3365 * appear on a given node's fallback list. The node should not have appeared
3366 * already in @node's fallback list, and it should be the next closest node
3367 * according to the distance array (which contains arbitrary distance values
3368 * from each node to each node in the system), and should also prefer nodes
3369 * with no CPUs, since presumably they'll have very little allocation pressure
3370 * on them otherwise.
3371 * It returns -1 if no node is found.
3372 */
f0c0b2b8 3373static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3374{
4cf808eb 3375 int n, val;
1da177e4 3376 int min_val = INT_MAX;
00ef2d2f 3377 int best_node = NUMA_NO_NODE;
a70f7302 3378 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3379
4cf808eb
LT
3380 /* Use the local node if we haven't already */
3381 if (!node_isset(node, *used_node_mask)) {
3382 node_set(node, *used_node_mask);
3383 return node;
3384 }
1da177e4 3385
4b0ef1fe 3386 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3387
3388 /* Don't want a node to appear more than once */
3389 if (node_isset(n, *used_node_mask))
3390 continue;
3391
1da177e4
LT
3392 /* Use the distance array to find the distance */
3393 val = node_distance(node, n);
3394
4cf808eb
LT
3395 /* Penalize nodes under us ("prefer the next node") */
3396 val += (n < node);
3397
1da177e4 3398 /* Give preference to headless and unused nodes */
a70f7302
RR
3399 tmp = cpumask_of_node(n);
3400 if (!cpumask_empty(tmp))
1da177e4
LT
3401 val += PENALTY_FOR_NODE_WITH_CPUS;
3402
3403 /* Slight preference for less loaded node */
3404 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3405 val += node_load[n];
3406
3407 if (val < min_val) {
3408 min_val = val;
3409 best_node = n;
3410 }
3411 }
3412
3413 if (best_node >= 0)
3414 node_set(best_node, *used_node_mask);
3415
3416 return best_node;
3417}
3418
f0c0b2b8
KH
3419
3420/*
3421 * Build zonelists ordered by node and zones within node.
3422 * This results in maximum locality--normal zone overflows into local
3423 * DMA zone, if any--but risks exhausting DMA zone.
3424 */
3425static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3426{
f0c0b2b8 3427 int j;
1da177e4 3428 struct zonelist *zonelist;
f0c0b2b8 3429
54a6eb5c 3430 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3431 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3432 ;
bc732f1d 3433 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3434 zonelist->_zonerefs[j].zone = NULL;
3435 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3436}
3437
523b9458
CL
3438/*
3439 * Build gfp_thisnode zonelists
3440 */
3441static void build_thisnode_zonelists(pg_data_t *pgdat)
3442{
523b9458
CL
3443 int j;
3444 struct zonelist *zonelist;
3445
54a6eb5c 3446 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3447 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3448 zonelist->_zonerefs[j].zone = NULL;
3449 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3450}
3451
f0c0b2b8
KH
3452/*
3453 * Build zonelists ordered by zone and nodes within zones.
3454 * This results in conserving DMA zone[s] until all Normal memory is
3455 * exhausted, but results in overflowing to remote node while memory
3456 * may still exist in local DMA zone.
3457 */
3458static int node_order[MAX_NUMNODES];
3459
3460static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3461{
f0c0b2b8
KH
3462 int pos, j, node;
3463 int zone_type; /* needs to be signed */
3464 struct zone *z;
3465 struct zonelist *zonelist;
3466
54a6eb5c
MG
3467 zonelist = &pgdat->node_zonelists[0];
3468 pos = 0;
3469 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3470 for (j = 0; j < nr_nodes; j++) {
3471 node = node_order[j];
3472 z = &NODE_DATA(node)->node_zones[zone_type];
3473 if (populated_zone(z)) {
dd1a239f
MG
3474 zoneref_set_zone(z,
3475 &zonelist->_zonerefs[pos++]);
54a6eb5c 3476 check_highest_zone(zone_type);
f0c0b2b8
KH
3477 }
3478 }
f0c0b2b8 3479 }
dd1a239f
MG
3480 zonelist->_zonerefs[pos].zone = NULL;
3481 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3482}
3483
3484static int default_zonelist_order(void)
3485{
3486 int nid, zone_type;
b8af2941 3487 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3488 struct zone *z;
3489 int average_size;
3490 /*
b8af2941 3491 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3492 * If they are really small and used heavily, the system can fall
3493 * into OOM very easily.
e325c90f 3494 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3495 */
3496 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3497 low_kmem_size = 0;
3498 total_size = 0;
3499 for_each_online_node(nid) {
3500 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3501 z = &NODE_DATA(nid)->node_zones[zone_type];
3502 if (populated_zone(z)) {
3503 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3504 low_kmem_size += z->managed_pages;
3505 total_size += z->managed_pages;
e325c90f
DR
3506 } else if (zone_type == ZONE_NORMAL) {
3507 /*
3508 * If any node has only lowmem, then node order
3509 * is preferred to allow kernel allocations
3510 * locally; otherwise, they can easily infringe
3511 * on other nodes when there is an abundance of
3512 * lowmem available to allocate from.
3513 */
3514 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3515 }
3516 }
3517 }
3518 if (!low_kmem_size || /* there are no DMA area. */
3519 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3520 return ZONELIST_ORDER_NODE;
3521 /*
3522 * look into each node's config.
b8af2941
PK
3523 * If there is a node whose DMA/DMA32 memory is very big area on
3524 * local memory, NODE_ORDER may be suitable.
3525 */
37b07e41 3526 average_size = total_size /
4b0ef1fe 3527 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3528 for_each_online_node(nid) {
3529 low_kmem_size = 0;
3530 total_size = 0;
3531 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3532 z = &NODE_DATA(nid)->node_zones[zone_type];
3533 if (populated_zone(z)) {
3534 if (zone_type < ZONE_NORMAL)
3535 low_kmem_size += z->present_pages;
3536 total_size += z->present_pages;
3537 }
3538 }
3539 if (low_kmem_size &&
3540 total_size > average_size && /* ignore small node */
3541 low_kmem_size > total_size * 70/100)
3542 return ZONELIST_ORDER_NODE;
3543 }
3544 return ZONELIST_ORDER_ZONE;
3545}
3546
3547static void set_zonelist_order(void)
3548{
3549 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3550 current_zonelist_order = default_zonelist_order();
3551 else
3552 current_zonelist_order = user_zonelist_order;
3553}
3554
3555static void build_zonelists(pg_data_t *pgdat)
3556{
3557 int j, node, load;
3558 enum zone_type i;
1da177e4 3559 nodemask_t used_mask;
f0c0b2b8
KH
3560 int local_node, prev_node;
3561 struct zonelist *zonelist;
3562 int order = current_zonelist_order;
1da177e4
LT
3563
3564 /* initialize zonelists */
523b9458 3565 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3566 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3567 zonelist->_zonerefs[0].zone = NULL;
3568 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3569 }
3570
3571 /* NUMA-aware ordering of nodes */
3572 local_node = pgdat->node_id;
62bc62a8 3573 load = nr_online_nodes;
1da177e4
LT
3574 prev_node = local_node;
3575 nodes_clear(used_mask);
f0c0b2b8 3576
f0c0b2b8
KH
3577 memset(node_order, 0, sizeof(node_order));
3578 j = 0;
3579
1da177e4
LT
3580 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3581 /*
3582 * We don't want to pressure a particular node.
3583 * So adding penalty to the first node in same
3584 * distance group to make it round-robin.
3585 */
957f822a
DR
3586 if (node_distance(local_node, node) !=
3587 node_distance(local_node, prev_node))
f0c0b2b8
KH
3588 node_load[node] = load;
3589
1da177e4
LT
3590 prev_node = node;
3591 load--;
f0c0b2b8
KH
3592 if (order == ZONELIST_ORDER_NODE)
3593 build_zonelists_in_node_order(pgdat, node);
3594 else
3595 node_order[j++] = node; /* remember order */
3596 }
1da177e4 3597
f0c0b2b8
KH
3598 if (order == ZONELIST_ORDER_ZONE) {
3599 /* calculate node order -- i.e., DMA last! */
3600 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3601 }
523b9458
CL
3602
3603 build_thisnode_zonelists(pgdat);
1da177e4
LT
3604}
3605
9276b1bc 3606/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3607static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3608{
54a6eb5c
MG
3609 struct zonelist *zonelist;
3610 struct zonelist_cache *zlc;
dd1a239f 3611 struct zoneref *z;
9276b1bc 3612
54a6eb5c
MG
3613 zonelist = &pgdat->node_zonelists[0];
3614 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3615 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3616 for (z = zonelist->_zonerefs; z->zone; z++)
3617 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3618}
3619
7aac7898
LS
3620#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3621/*
3622 * Return node id of node used for "local" allocations.
3623 * I.e., first node id of first zone in arg node's generic zonelist.
3624 * Used for initializing percpu 'numa_mem', which is used primarily
3625 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3626 */
3627int local_memory_node(int node)
3628{
3629 struct zone *zone;
3630
3631 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3632 gfp_zone(GFP_KERNEL),
3633 NULL,
3634 &zone);
3635 return zone->node;
3636}
3637#endif
f0c0b2b8 3638
1da177e4
LT
3639#else /* CONFIG_NUMA */
3640
f0c0b2b8
KH
3641static void set_zonelist_order(void)
3642{
3643 current_zonelist_order = ZONELIST_ORDER_ZONE;
3644}
3645
3646static void build_zonelists(pg_data_t *pgdat)
1da177e4 3647{
19655d34 3648 int node, local_node;
54a6eb5c
MG
3649 enum zone_type j;
3650 struct zonelist *zonelist;
1da177e4
LT
3651
3652 local_node = pgdat->node_id;
1da177e4 3653
54a6eb5c 3654 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3655 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3656
54a6eb5c
MG
3657 /*
3658 * Now we build the zonelist so that it contains the zones
3659 * of all the other nodes.
3660 * We don't want to pressure a particular node, so when
3661 * building the zones for node N, we make sure that the
3662 * zones coming right after the local ones are those from
3663 * node N+1 (modulo N)
3664 */
3665 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3666 if (!node_online(node))
3667 continue;
bc732f1d 3668 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3669 }
54a6eb5c
MG
3670 for (node = 0; node < local_node; node++) {
3671 if (!node_online(node))
3672 continue;
bc732f1d 3673 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3674 }
3675
dd1a239f
MG
3676 zonelist->_zonerefs[j].zone = NULL;
3677 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3678}
3679
9276b1bc 3680/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3681static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3682{
54a6eb5c 3683 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3684}
3685
1da177e4
LT
3686#endif /* CONFIG_NUMA */
3687
99dcc3e5
CL
3688/*
3689 * Boot pageset table. One per cpu which is going to be used for all
3690 * zones and all nodes. The parameters will be set in such a way
3691 * that an item put on a list will immediately be handed over to
3692 * the buddy list. This is safe since pageset manipulation is done
3693 * with interrupts disabled.
3694 *
3695 * The boot_pagesets must be kept even after bootup is complete for
3696 * unused processors and/or zones. They do play a role for bootstrapping
3697 * hotplugged processors.
3698 *
3699 * zoneinfo_show() and maybe other functions do
3700 * not check if the processor is online before following the pageset pointer.
3701 * Other parts of the kernel may not check if the zone is available.
3702 */
3703static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3704static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3705static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3706
4eaf3f64
HL
3707/*
3708 * Global mutex to protect against size modification of zonelists
3709 * as well as to serialize pageset setup for the new populated zone.
3710 */
3711DEFINE_MUTEX(zonelists_mutex);
3712
9b1a4d38 3713/* return values int ....just for stop_machine() */
4ed7e022 3714static int __build_all_zonelists(void *data)
1da177e4 3715{
6811378e 3716 int nid;
99dcc3e5 3717 int cpu;
9adb62a5 3718 pg_data_t *self = data;
9276b1bc 3719
7f9cfb31
BL
3720#ifdef CONFIG_NUMA
3721 memset(node_load, 0, sizeof(node_load));
3722#endif
9adb62a5
JL
3723
3724 if (self && !node_online(self->node_id)) {
3725 build_zonelists(self);
3726 build_zonelist_cache(self);
3727 }
3728
9276b1bc 3729 for_each_online_node(nid) {
7ea1530a
CL
3730 pg_data_t *pgdat = NODE_DATA(nid);
3731
3732 build_zonelists(pgdat);
3733 build_zonelist_cache(pgdat);
9276b1bc 3734 }
99dcc3e5
CL
3735
3736 /*
3737 * Initialize the boot_pagesets that are going to be used
3738 * for bootstrapping processors. The real pagesets for
3739 * each zone will be allocated later when the per cpu
3740 * allocator is available.
3741 *
3742 * boot_pagesets are used also for bootstrapping offline
3743 * cpus if the system is already booted because the pagesets
3744 * are needed to initialize allocators on a specific cpu too.
3745 * F.e. the percpu allocator needs the page allocator which
3746 * needs the percpu allocator in order to allocate its pagesets
3747 * (a chicken-egg dilemma).
3748 */
7aac7898 3749 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3750 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3751
7aac7898
LS
3752#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3753 /*
3754 * We now know the "local memory node" for each node--
3755 * i.e., the node of the first zone in the generic zonelist.
3756 * Set up numa_mem percpu variable for on-line cpus. During
3757 * boot, only the boot cpu should be on-line; we'll init the
3758 * secondary cpus' numa_mem as they come on-line. During
3759 * node/memory hotplug, we'll fixup all on-line cpus.
3760 */
3761 if (cpu_online(cpu))
3762 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3763#endif
3764 }
3765
6811378e
YG
3766 return 0;
3767}
3768
4eaf3f64
HL
3769/*
3770 * Called with zonelists_mutex held always
3771 * unless system_state == SYSTEM_BOOTING.
3772 */
9adb62a5 3773void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3774{
f0c0b2b8
KH
3775 set_zonelist_order();
3776
6811378e 3777 if (system_state == SYSTEM_BOOTING) {
423b41d7 3778 __build_all_zonelists(NULL);
68ad8df4 3779 mminit_verify_zonelist();
6811378e
YG
3780 cpuset_init_current_mems_allowed();
3781 } else {
e9959f0f 3782#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3783 if (zone)
3784 setup_zone_pageset(zone);
e9959f0f 3785#endif
dd1895e2
CS
3786 /* we have to stop all cpus to guarantee there is no user
3787 of zonelist */
9adb62a5 3788 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3789 /* cpuset refresh routine should be here */
3790 }
bd1e22b8 3791 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3792 /*
3793 * Disable grouping by mobility if the number of pages in the
3794 * system is too low to allow the mechanism to work. It would be
3795 * more accurate, but expensive to check per-zone. This check is
3796 * made on memory-hotadd so a system can start with mobility
3797 * disabled and enable it later
3798 */
d9c23400 3799 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3800 page_group_by_mobility_disabled = 1;
3801 else
3802 page_group_by_mobility_disabled = 0;
3803
3804 printk("Built %i zonelists in %s order, mobility grouping %s. "
3805 "Total pages: %ld\n",
62bc62a8 3806 nr_online_nodes,
f0c0b2b8 3807 zonelist_order_name[current_zonelist_order],
9ef9acb0 3808 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3809 vm_total_pages);
3810#ifdef CONFIG_NUMA
3811 printk("Policy zone: %s\n", zone_names[policy_zone]);
3812#endif
1da177e4
LT
3813}
3814
3815/*
3816 * Helper functions to size the waitqueue hash table.
3817 * Essentially these want to choose hash table sizes sufficiently
3818 * large so that collisions trying to wait on pages are rare.
3819 * But in fact, the number of active page waitqueues on typical
3820 * systems is ridiculously low, less than 200. So this is even
3821 * conservative, even though it seems large.
3822 *
3823 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3824 * waitqueues, i.e. the size of the waitq table given the number of pages.
3825 */
3826#define PAGES_PER_WAITQUEUE 256
3827
cca448fe 3828#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3829static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3830{
3831 unsigned long size = 1;
3832
3833 pages /= PAGES_PER_WAITQUEUE;
3834
3835 while (size < pages)
3836 size <<= 1;
3837
3838 /*
3839 * Once we have dozens or even hundreds of threads sleeping
3840 * on IO we've got bigger problems than wait queue collision.
3841 * Limit the size of the wait table to a reasonable size.
3842 */
3843 size = min(size, 4096UL);
3844
3845 return max(size, 4UL);
3846}
cca448fe
YG
3847#else
3848/*
3849 * A zone's size might be changed by hot-add, so it is not possible to determine
3850 * a suitable size for its wait_table. So we use the maximum size now.
3851 *
3852 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3853 *
3854 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3855 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3856 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3857 *
3858 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3859 * or more by the traditional way. (See above). It equals:
3860 *
3861 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3862 * ia64(16K page size) : = ( 8G + 4M)byte.
3863 * powerpc (64K page size) : = (32G +16M)byte.
3864 */
3865static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3866{
3867 return 4096UL;
3868}
3869#endif
1da177e4
LT
3870
3871/*
3872 * This is an integer logarithm so that shifts can be used later
3873 * to extract the more random high bits from the multiplicative
3874 * hash function before the remainder is taken.
3875 */
3876static inline unsigned long wait_table_bits(unsigned long size)
3877{
3878 return ffz(~size);
3879}
3880
3881#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3882
6d3163ce
AH
3883/*
3884 * Check if a pageblock contains reserved pages
3885 */
3886static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3887{
3888 unsigned long pfn;
3889
3890 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3891 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3892 return 1;
3893 }
3894 return 0;
3895}
3896
56fd56b8 3897/*
d9c23400 3898 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3899 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3900 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3901 * higher will lead to a bigger reserve which will get freed as contiguous
3902 * blocks as reclaim kicks in
3903 */
3904static void setup_zone_migrate_reserve(struct zone *zone)
3905{
6d3163ce 3906 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3907 struct page *page;
78986a67
MG
3908 unsigned long block_migratetype;
3909 int reserve;
56fd56b8 3910
d0215638
MH
3911 /*
3912 * Get the start pfn, end pfn and the number of blocks to reserve
3913 * We have to be careful to be aligned to pageblock_nr_pages to
3914 * make sure that we always check pfn_valid for the first page in
3915 * the block.
3916 */
56fd56b8 3917 start_pfn = zone->zone_start_pfn;
108bcc96 3918 end_pfn = zone_end_pfn(zone);
d0215638 3919 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3920 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3921 pageblock_order;
56fd56b8 3922
78986a67
MG
3923 /*
3924 * Reserve blocks are generally in place to help high-order atomic
3925 * allocations that are short-lived. A min_free_kbytes value that
3926 * would result in more than 2 reserve blocks for atomic allocations
3927 * is assumed to be in place to help anti-fragmentation for the
3928 * future allocation of hugepages at runtime.
3929 */
3930 reserve = min(2, reserve);
3931
d9c23400 3932 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3933 if (!pfn_valid(pfn))
3934 continue;
3935 page = pfn_to_page(pfn);
3936
344c790e
AL
3937 /* Watch out for overlapping nodes */
3938 if (page_to_nid(page) != zone_to_nid(zone))
3939 continue;
3940
56fd56b8
MG
3941 block_migratetype = get_pageblock_migratetype(page);
3942
938929f1
MG
3943 /* Only test what is necessary when the reserves are not met */
3944 if (reserve > 0) {
3945 /*
3946 * Blocks with reserved pages will never free, skip
3947 * them.
3948 */
3949 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3950 if (pageblock_is_reserved(pfn, block_end_pfn))
3951 continue;
56fd56b8 3952
938929f1
MG
3953 /* If this block is reserved, account for it */
3954 if (block_migratetype == MIGRATE_RESERVE) {
3955 reserve--;
3956 continue;
3957 }
3958
3959 /* Suitable for reserving if this block is movable */
3960 if (block_migratetype == MIGRATE_MOVABLE) {
3961 set_pageblock_migratetype(page,
3962 MIGRATE_RESERVE);
3963 move_freepages_block(zone, page,
3964 MIGRATE_RESERVE);
3965 reserve--;
3966 continue;
3967 }
56fd56b8
MG
3968 }
3969
3970 /*
3971 * If the reserve is met and this is a previous reserved block,
3972 * take it back
3973 */
3974 if (block_migratetype == MIGRATE_RESERVE) {
3975 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3976 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3977 }
3978 }
3979}
ac0e5b7a 3980
1da177e4
LT
3981/*
3982 * Initially all pages are reserved - free ones are freed
3983 * up by free_all_bootmem() once the early boot process is
3984 * done. Non-atomic initialization, single-pass.
3985 */
c09b4240 3986void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3987 unsigned long start_pfn, enum memmap_context context)
1da177e4 3988{
1da177e4 3989 struct page *page;
29751f69
AW
3990 unsigned long end_pfn = start_pfn + size;
3991 unsigned long pfn;
86051ca5 3992 struct zone *z;
1da177e4 3993
22b31eec
HD
3994 if (highest_memmap_pfn < end_pfn - 1)
3995 highest_memmap_pfn = end_pfn - 1;
3996
86051ca5 3997 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3998 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3999 /*
4000 * There can be holes in boot-time mem_map[]s
4001 * handed to this function. They do not
4002 * exist on hotplugged memory.
4003 */
4004 if (context == MEMMAP_EARLY) {
4005 if (!early_pfn_valid(pfn))
4006 continue;
4007 if (!early_pfn_in_nid(pfn, nid))
4008 continue;
4009 }
d41dee36
AW
4010 page = pfn_to_page(pfn);
4011 set_page_links(page, zone, nid, pfn);
708614e6 4012 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4013 init_page_count(page);
22b751c3
MG
4014 page_mapcount_reset(page);
4015 page_nid_reset_last(page);
1da177e4 4016 SetPageReserved(page);
b2a0ac88
MG
4017 /*
4018 * Mark the block movable so that blocks are reserved for
4019 * movable at startup. This will force kernel allocations
4020 * to reserve their blocks rather than leaking throughout
4021 * the address space during boot when many long-lived
56fd56b8
MG
4022 * kernel allocations are made. Later some blocks near
4023 * the start are marked MIGRATE_RESERVE by
4024 * setup_zone_migrate_reserve()
86051ca5
KH
4025 *
4026 * bitmap is created for zone's valid pfn range. but memmap
4027 * can be created for invalid pages (for alignment)
4028 * check here not to call set_pageblock_migratetype() against
4029 * pfn out of zone.
b2a0ac88 4030 */
86051ca5 4031 if ((z->zone_start_pfn <= pfn)
108bcc96 4032 && (pfn < zone_end_pfn(z))
86051ca5 4033 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4034 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4035
1da177e4
LT
4036 INIT_LIST_HEAD(&page->lru);
4037#ifdef WANT_PAGE_VIRTUAL
4038 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4039 if (!is_highmem_idx(zone))
3212c6be 4040 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4041#endif
1da177e4
LT
4042 }
4043}
4044
1e548deb 4045static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4046{
b2a0ac88
MG
4047 int order, t;
4048 for_each_migratetype_order(order, t) {
4049 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4050 zone->free_area[order].nr_free = 0;
4051 }
4052}
4053
4054#ifndef __HAVE_ARCH_MEMMAP_INIT
4055#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4056 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4057#endif
4058
4ed7e022 4059static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4060{
3a6be87f 4061#ifdef CONFIG_MMU
e7c8d5c9
CL
4062 int batch;
4063
4064 /*
4065 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4066 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4067 *
4068 * OK, so we don't know how big the cache is. So guess.
4069 */
b40da049 4070 batch = zone->managed_pages / 1024;
ba56e91c
SR
4071 if (batch * PAGE_SIZE > 512 * 1024)
4072 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4073 batch /= 4; /* We effectively *= 4 below */
4074 if (batch < 1)
4075 batch = 1;
4076
4077 /*
0ceaacc9
NP
4078 * Clamp the batch to a 2^n - 1 value. Having a power
4079 * of 2 value was found to be more likely to have
4080 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4081 *
0ceaacc9
NP
4082 * For example if 2 tasks are alternately allocating
4083 * batches of pages, one task can end up with a lot
4084 * of pages of one half of the possible page colors
4085 * and the other with pages of the other colors.
e7c8d5c9 4086 */
9155203a 4087 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4088
e7c8d5c9 4089 return batch;
3a6be87f
DH
4090
4091#else
4092 /* The deferral and batching of frees should be suppressed under NOMMU
4093 * conditions.
4094 *
4095 * The problem is that NOMMU needs to be able to allocate large chunks
4096 * of contiguous memory as there's no hardware page translation to
4097 * assemble apparent contiguous memory from discontiguous pages.
4098 *
4099 * Queueing large contiguous runs of pages for batching, however,
4100 * causes the pages to actually be freed in smaller chunks. As there
4101 * can be a significant delay between the individual batches being
4102 * recycled, this leads to the once large chunks of space being
4103 * fragmented and becoming unavailable for high-order allocations.
4104 */
4105 return 0;
4106#endif
e7c8d5c9
CL
4107}
4108
8d7a8fa9
CS
4109/*
4110 * pcp->high and pcp->batch values are related and dependent on one another:
4111 * ->batch must never be higher then ->high.
4112 * The following function updates them in a safe manner without read side
4113 * locking.
4114 *
4115 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4116 * those fields changing asynchronously (acording the the above rule).
4117 *
4118 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4119 * outside of boot time (or some other assurance that no concurrent updaters
4120 * exist).
4121 */
4122static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4123 unsigned long batch)
4124{
4125 /* start with a fail safe value for batch */
4126 pcp->batch = 1;
4127 smp_wmb();
4128
4129 /* Update high, then batch, in order */
4130 pcp->high = high;
4131 smp_wmb();
4132
4133 pcp->batch = batch;
4134}
4135
3664033c 4136/* a companion to pageset_set_high() */
4008bab7
CS
4137static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4138{
8d7a8fa9 4139 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4140}
4141
88c90dbc 4142static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4143{
4144 struct per_cpu_pages *pcp;
5f8dcc21 4145 int migratetype;
2caaad41 4146
1c6fe946
MD
4147 memset(p, 0, sizeof(*p));
4148
3dfa5721 4149 pcp = &p->pcp;
2caaad41 4150 pcp->count = 0;
5f8dcc21
MG
4151 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4152 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4153}
4154
88c90dbc
CS
4155static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4156{
4157 pageset_init(p);
4158 pageset_set_batch(p, batch);
4159}
4160
8ad4b1fb 4161/*
3664033c 4162 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4163 * to the value high for the pageset p.
4164 */
3664033c 4165static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4166 unsigned long high)
4167{
8d7a8fa9
CS
4168 unsigned long batch = max(1UL, high / 4);
4169 if ((high / 4) > (PAGE_SHIFT * 8))
4170 batch = PAGE_SHIFT * 8;
8ad4b1fb 4171
8d7a8fa9 4172 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4173}
4174
169f6c19
CS
4175static void __meminit pageset_set_high_and_batch(struct zone *zone,
4176 struct per_cpu_pageset *pcp)
56cef2b8 4177{
56cef2b8 4178 if (percpu_pagelist_fraction)
3664033c 4179 pageset_set_high(pcp,
56cef2b8
CS
4180 (zone->managed_pages /
4181 percpu_pagelist_fraction));
4182 else
4183 pageset_set_batch(pcp, zone_batchsize(zone));
4184}
4185
169f6c19
CS
4186static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4187{
4188 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4189
4190 pageset_init(pcp);
4191 pageset_set_high_and_batch(zone, pcp);
4192}
4193
4ed7e022 4194static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4195{
4196 int cpu;
319774e2 4197 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4198 for_each_possible_cpu(cpu)
4199 zone_pageset_init(zone, cpu);
319774e2
WF
4200}
4201
2caaad41 4202/*
99dcc3e5
CL
4203 * Allocate per cpu pagesets and initialize them.
4204 * Before this call only boot pagesets were available.
e7c8d5c9 4205 */
99dcc3e5 4206void __init setup_per_cpu_pageset(void)
e7c8d5c9 4207{
99dcc3e5 4208 struct zone *zone;
e7c8d5c9 4209
319774e2
WF
4210 for_each_populated_zone(zone)
4211 setup_zone_pageset(zone);
e7c8d5c9
CL
4212}
4213
577a32f6 4214static noinline __init_refok
cca448fe 4215int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4216{
4217 int i;
4218 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4219 size_t alloc_size;
ed8ece2e
DH
4220
4221 /*
4222 * The per-page waitqueue mechanism uses hashed waitqueues
4223 * per zone.
4224 */
02b694de
YG
4225 zone->wait_table_hash_nr_entries =
4226 wait_table_hash_nr_entries(zone_size_pages);
4227 zone->wait_table_bits =
4228 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4229 alloc_size = zone->wait_table_hash_nr_entries
4230 * sizeof(wait_queue_head_t);
4231
cd94b9db 4232 if (!slab_is_available()) {
cca448fe 4233 zone->wait_table = (wait_queue_head_t *)
8f389a99 4234 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4235 } else {
4236 /*
4237 * This case means that a zone whose size was 0 gets new memory
4238 * via memory hot-add.
4239 * But it may be the case that a new node was hot-added. In
4240 * this case vmalloc() will not be able to use this new node's
4241 * memory - this wait_table must be initialized to use this new
4242 * node itself as well.
4243 * To use this new node's memory, further consideration will be
4244 * necessary.
4245 */
8691f3a7 4246 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4247 }
4248 if (!zone->wait_table)
4249 return -ENOMEM;
ed8ece2e 4250
b8af2941 4251 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4252 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4253
4254 return 0;
ed8ece2e
DH
4255}
4256
c09b4240 4257static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4258{
99dcc3e5
CL
4259 /*
4260 * per cpu subsystem is not up at this point. The following code
4261 * relies on the ability of the linker to provide the
4262 * offset of a (static) per cpu variable into the per cpu area.
4263 */
4264 zone->pageset = &boot_pageset;
ed8ece2e 4265
f5335c0f 4266 if (zone->present_pages)
99dcc3e5
CL
4267 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4268 zone->name, zone->present_pages,
4269 zone_batchsize(zone));
ed8ece2e
DH
4270}
4271
4ed7e022 4272int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4273 unsigned long zone_start_pfn,
a2f3aa02
DH
4274 unsigned long size,
4275 enum memmap_context context)
ed8ece2e
DH
4276{
4277 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4278 int ret;
4279 ret = zone_wait_table_init(zone, size);
4280 if (ret)
4281 return ret;
ed8ece2e
DH
4282 pgdat->nr_zones = zone_idx(zone) + 1;
4283
ed8ece2e
DH
4284 zone->zone_start_pfn = zone_start_pfn;
4285
708614e6
MG
4286 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4287 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4288 pgdat->node_id,
4289 (unsigned long)zone_idx(zone),
4290 zone_start_pfn, (zone_start_pfn + size));
4291
1e548deb 4292 zone_init_free_lists(zone);
718127cc
YG
4293
4294 return 0;
ed8ece2e
DH
4295}
4296
0ee332c1 4297#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4298#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4299/*
4300 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4301 * Architectures may implement their own version but if add_active_range()
4302 * was used and there are no special requirements, this is a convenient
4303 * alternative
4304 */
f2dbcfa7 4305int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4306{
c13291a5 4307 unsigned long start_pfn, end_pfn;
e76b63f8 4308 int nid;
7c243c71
RA
4309 /*
4310 * NOTE: The following SMP-unsafe globals are only used early in boot
4311 * when the kernel is running single-threaded.
4312 */
4313 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4314 static int __meminitdata last_nid;
4315
4316 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4317 return last_nid;
c713216d 4318
e76b63f8
YL
4319 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4320 if (nid != -1) {
4321 last_start_pfn = start_pfn;
4322 last_end_pfn = end_pfn;
4323 last_nid = nid;
4324 }
4325
4326 return nid;
c713216d
MG
4327}
4328#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4329
f2dbcfa7
KH
4330int __meminit early_pfn_to_nid(unsigned long pfn)
4331{
cc2559bc
KH
4332 int nid;
4333
4334 nid = __early_pfn_to_nid(pfn);
4335 if (nid >= 0)
4336 return nid;
4337 /* just returns 0 */
4338 return 0;
f2dbcfa7
KH
4339}
4340
cc2559bc
KH
4341#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4342bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4343{
4344 int nid;
4345
4346 nid = __early_pfn_to_nid(pfn);
4347 if (nid >= 0 && nid != node)
4348 return false;
4349 return true;
4350}
4351#endif
f2dbcfa7 4352
c713216d
MG
4353/**
4354 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4355 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4356 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4357 *
4358 * If an architecture guarantees that all ranges registered with
4359 * add_active_ranges() contain no holes and may be freed, this
4360 * this function may be used instead of calling free_bootmem() manually.
4361 */
c13291a5 4362void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4363{
c13291a5
TH
4364 unsigned long start_pfn, end_pfn;
4365 int i, this_nid;
edbe7d23 4366
c13291a5
TH
4367 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4368 start_pfn = min(start_pfn, max_low_pfn);
4369 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4370
c13291a5
TH
4371 if (start_pfn < end_pfn)
4372 free_bootmem_node(NODE_DATA(this_nid),
4373 PFN_PHYS(start_pfn),
4374 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4375 }
edbe7d23 4376}
edbe7d23 4377
c713216d
MG
4378/**
4379 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4380 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4381 *
4382 * If an architecture guarantees that all ranges registered with
4383 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4384 * function may be used instead of calling memory_present() manually.
c713216d
MG
4385 */
4386void __init sparse_memory_present_with_active_regions(int nid)
4387{
c13291a5
TH
4388 unsigned long start_pfn, end_pfn;
4389 int i, this_nid;
c713216d 4390
c13291a5
TH
4391 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4392 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4393}
4394
4395/**
4396 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4397 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4398 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4399 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4400 *
4401 * It returns the start and end page frame of a node based on information
4402 * provided by an arch calling add_active_range(). If called for a node
4403 * with no available memory, a warning is printed and the start and end
88ca3b94 4404 * PFNs will be 0.
c713216d 4405 */
a3142c8e 4406void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4407 unsigned long *start_pfn, unsigned long *end_pfn)
4408{
c13291a5 4409 unsigned long this_start_pfn, this_end_pfn;
c713216d 4410 int i;
c13291a5 4411
c713216d
MG
4412 *start_pfn = -1UL;
4413 *end_pfn = 0;
4414
c13291a5
TH
4415 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4416 *start_pfn = min(*start_pfn, this_start_pfn);
4417 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4418 }
4419
633c0666 4420 if (*start_pfn == -1UL)
c713216d 4421 *start_pfn = 0;
c713216d
MG
4422}
4423
2a1e274a
MG
4424/*
4425 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4426 * assumption is made that zones within a node are ordered in monotonic
4427 * increasing memory addresses so that the "highest" populated zone is used
4428 */
b69a7288 4429static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4430{
4431 int zone_index;
4432 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4433 if (zone_index == ZONE_MOVABLE)
4434 continue;
4435
4436 if (arch_zone_highest_possible_pfn[zone_index] >
4437 arch_zone_lowest_possible_pfn[zone_index])
4438 break;
4439 }
4440
4441 VM_BUG_ON(zone_index == -1);
4442 movable_zone = zone_index;
4443}
4444
4445/*
4446 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4447 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4448 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4449 * in each node depending on the size of each node and how evenly kernelcore
4450 * is distributed. This helper function adjusts the zone ranges
4451 * provided by the architecture for a given node by using the end of the
4452 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4453 * zones within a node are in order of monotonic increases memory addresses
4454 */
b69a7288 4455static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4456 unsigned long zone_type,
4457 unsigned long node_start_pfn,
4458 unsigned long node_end_pfn,
4459 unsigned long *zone_start_pfn,
4460 unsigned long *zone_end_pfn)
4461{
4462 /* Only adjust if ZONE_MOVABLE is on this node */
4463 if (zone_movable_pfn[nid]) {
4464 /* Size ZONE_MOVABLE */
4465 if (zone_type == ZONE_MOVABLE) {
4466 *zone_start_pfn = zone_movable_pfn[nid];
4467 *zone_end_pfn = min(node_end_pfn,
4468 arch_zone_highest_possible_pfn[movable_zone]);
4469
4470 /* Adjust for ZONE_MOVABLE starting within this range */
4471 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4472 *zone_end_pfn > zone_movable_pfn[nid]) {
4473 *zone_end_pfn = zone_movable_pfn[nid];
4474
4475 /* Check if this whole range is within ZONE_MOVABLE */
4476 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4477 *zone_start_pfn = *zone_end_pfn;
4478 }
4479}
4480
c713216d
MG
4481/*
4482 * Return the number of pages a zone spans in a node, including holes
4483 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4484 */
6ea6e688 4485static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4486 unsigned long zone_type,
7960aedd
ZY
4487 unsigned long node_start_pfn,
4488 unsigned long node_end_pfn,
c713216d
MG
4489 unsigned long *ignored)
4490{
c713216d
MG
4491 unsigned long zone_start_pfn, zone_end_pfn;
4492
7960aedd 4493 /* Get the start and end of the zone */
c713216d
MG
4494 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4495 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4496 adjust_zone_range_for_zone_movable(nid, zone_type,
4497 node_start_pfn, node_end_pfn,
4498 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4499
4500 /* Check that this node has pages within the zone's required range */
4501 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4502 return 0;
4503
4504 /* Move the zone boundaries inside the node if necessary */
4505 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4506 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4507
4508 /* Return the spanned pages */
4509 return zone_end_pfn - zone_start_pfn;
4510}
4511
4512/*
4513 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4514 * then all holes in the requested range will be accounted for.
c713216d 4515 */
32996250 4516unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4517 unsigned long range_start_pfn,
4518 unsigned long range_end_pfn)
4519{
96e907d1
TH
4520 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4521 unsigned long start_pfn, end_pfn;
4522 int i;
c713216d 4523
96e907d1
TH
4524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4525 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4526 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4527 nr_absent -= end_pfn - start_pfn;
c713216d 4528 }
96e907d1 4529 return nr_absent;
c713216d
MG
4530}
4531
4532/**
4533 * absent_pages_in_range - Return number of page frames in holes within a range
4534 * @start_pfn: The start PFN to start searching for holes
4535 * @end_pfn: The end PFN to stop searching for holes
4536 *
88ca3b94 4537 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4538 */
4539unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4540 unsigned long end_pfn)
4541{
4542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4543}
4544
4545/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4546static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4547 unsigned long zone_type,
7960aedd
ZY
4548 unsigned long node_start_pfn,
4549 unsigned long node_end_pfn,
c713216d
MG
4550 unsigned long *ignored)
4551{
96e907d1
TH
4552 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4553 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4554 unsigned long zone_start_pfn, zone_end_pfn;
4555
96e907d1
TH
4556 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4557 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4558
2a1e274a
MG
4559 adjust_zone_range_for_zone_movable(nid, zone_type,
4560 node_start_pfn, node_end_pfn,
4561 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4562 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4563}
0e0b864e 4564
0ee332c1 4565#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4566static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4567 unsigned long zone_type,
7960aedd
ZY
4568 unsigned long node_start_pfn,
4569 unsigned long node_end_pfn,
c713216d
MG
4570 unsigned long *zones_size)
4571{
4572 return zones_size[zone_type];
4573}
4574
6ea6e688 4575static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4576 unsigned long zone_type,
7960aedd
ZY
4577 unsigned long node_start_pfn,
4578 unsigned long node_end_pfn,
c713216d
MG
4579 unsigned long *zholes_size)
4580{
4581 if (!zholes_size)
4582 return 0;
4583
4584 return zholes_size[zone_type];
4585}
20e6926d 4586
0ee332c1 4587#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4588
a3142c8e 4589static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4590 unsigned long node_start_pfn,
4591 unsigned long node_end_pfn,
4592 unsigned long *zones_size,
4593 unsigned long *zholes_size)
c713216d
MG
4594{
4595 unsigned long realtotalpages, totalpages = 0;
4596 enum zone_type i;
4597
4598 for (i = 0; i < MAX_NR_ZONES; i++)
4599 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4600 node_start_pfn,
4601 node_end_pfn,
4602 zones_size);
c713216d
MG
4603 pgdat->node_spanned_pages = totalpages;
4604
4605 realtotalpages = totalpages;
4606 for (i = 0; i < MAX_NR_ZONES; i++)
4607 realtotalpages -=
4608 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4609 node_start_pfn, node_end_pfn,
4610 zholes_size);
c713216d
MG
4611 pgdat->node_present_pages = realtotalpages;
4612 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4613 realtotalpages);
4614}
4615
835c134e
MG
4616#ifndef CONFIG_SPARSEMEM
4617/*
4618 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4619 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4620 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4621 * round what is now in bits to nearest long in bits, then return it in
4622 * bytes.
4623 */
7c45512d 4624static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4625{
4626 unsigned long usemapsize;
4627
7c45512d 4628 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4629 usemapsize = roundup(zonesize, pageblock_nr_pages);
4630 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4631 usemapsize *= NR_PAGEBLOCK_BITS;
4632 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4633
4634 return usemapsize / 8;
4635}
4636
4637static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4638 struct zone *zone,
4639 unsigned long zone_start_pfn,
4640 unsigned long zonesize)
835c134e 4641{
7c45512d 4642 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4643 zone->pageblock_flags = NULL;
58a01a45 4644 if (usemapsize)
8f389a99
YL
4645 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4646 usemapsize);
835c134e
MG
4647}
4648#else
7c45512d
LT
4649static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4650 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4651#endif /* CONFIG_SPARSEMEM */
4652
d9c23400 4653#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4654
d9c23400 4655/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4656void __paginginit set_pageblock_order(void)
d9c23400 4657{
955c1cd7
AM
4658 unsigned int order;
4659
d9c23400
MG
4660 /* Check that pageblock_nr_pages has not already been setup */
4661 if (pageblock_order)
4662 return;
4663
955c1cd7
AM
4664 if (HPAGE_SHIFT > PAGE_SHIFT)
4665 order = HUGETLB_PAGE_ORDER;
4666 else
4667 order = MAX_ORDER - 1;
4668
d9c23400
MG
4669 /*
4670 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4671 * This value may be variable depending on boot parameters on IA64 and
4672 * powerpc.
d9c23400
MG
4673 */
4674 pageblock_order = order;
4675}
4676#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4677
ba72cb8c
MG
4678/*
4679 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4680 * is unused as pageblock_order is set at compile-time. See
4681 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4682 * the kernel config
ba72cb8c 4683 */
15ca220e 4684void __paginginit set_pageblock_order(void)
ba72cb8c 4685{
ba72cb8c 4686}
d9c23400
MG
4687
4688#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4689
01cefaef
JL
4690static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4691 unsigned long present_pages)
4692{
4693 unsigned long pages = spanned_pages;
4694
4695 /*
4696 * Provide a more accurate estimation if there are holes within
4697 * the zone and SPARSEMEM is in use. If there are holes within the
4698 * zone, each populated memory region may cost us one or two extra
4699 * memmap pages due to alignment because memmap pages for each
4700 * populated regions may not naturally algined on page boundary.
4701 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4702 */
4703 if (spanned_pages > present_pages + (present_pages >> 4) &&
4704 IS_ENABLED(CONFIG_SPARSEMEM))
4705 pages = present_pages;
4706
4707 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4708}
4709
1da177e4
LT
4710/*
4711 * Set up the zone data structures:
4712 * - mark all pages reserved
4713 * - mark all memory queues empty
4714 * - clear the memory bitmaps
6527af5d
MK
4715 *
4716 * NOTE: pgdat should get zeroed by caller.
1da177e4 4717 */
b5a0e011 4718static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4719 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4720 unsigned long *zones_size, unsigned long *zholes_size)
4721{
2f1b6248 4722 enum zone_type j;
ed8ece2e 4723 int nid = pgdat->node_id;
1da177e4 4724 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4725 int ret;
1da177e4 4726
208d54e5 4727 pgdat_resize_init(pgdat);
8177a420
AA
4728#ifdef CONFIG_NUMA_BALANCING
4729 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4730 pgdat->numabalancing_migrate_nr_pages = 0;
4731 pgdat->numabalancing_migrate_next_window = jiffies;
4732#endif
1da177e4 4733 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4734 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4735 pgdat_page_cgroup_init(pgdat);
5f63b720 4736
1da177e4
LT
4737 for (j = 0; j < MAX_NR_ZONES; j++) {
4738 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4739 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4740
7960aedd
ZY
4741 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4742 node_end_pfn, zones_size);
9feedc9d 4743 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4744 node_start_pfn,
4745 node_end_pfn,
c713216d 4746 zholes_size);
1da177e4 4747
0e0b864e 4748 /*
9feedc9d 4749 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4750 * is used by this zone for memmap. This affects the watermark
4751 * and per-cpu initialisations
4752 */
01cefaef 4753 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4754 if (freesize >= memmap_pages) {
4755 freesize -= memmap_pages;
5594c8c8
YL
4756 if (memmap_pages)
4757 printk(KERN_DEBUG
4758 " %s zone: %lu pages used for memmap\n",
4759 zone_names[j], memmap_pages);
0e0b864e
MG
4760 } else
4761 printk(KERN_WARNING
9feedc9d
JL
4762 " %s zone: %lu pages exceeds freesize %lu\n",
4763 zone_names[j], memmap_pages, freesize);
0e0b864e 4764
6267276f 4765 /* Account for reserved pages */
9feedc9d
JL
4766 if (j == 0 && freesize > dma_reserve) {
4767 freesize -= dma_reserve;
d903ef9f 4768 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4769 zone_names[0], dma_reserve);
0e0b864e
MG
4770 }
4771
98d2b0eb 4772 if (!is_highmem_idx(j))
9feedc9d 4773 nr_kernel_pages += freesize;
01cefaef
JL
4774 /* Charge for highmem memmap if there are enough kernel pages */
4775 else if (nr_kernel_pages > memmap_pages * 2)
4776 nr_kernel_pages -= memmap_pages;
9feedc9d 4777 nr_all_pages += freesize;
1da177e4
LT
4778
4779 zone->spanned_pages = size;
306f2e9e 4780 zone->present_pages = realsize;
9feedc9d
JL
4781 /*
4782 * Set an approximate value for lowmem here, it will be adjusted
4783 * when the bootmem allocator frees pages into the buddy system.
4784 * And all highmem pages will be managed by the buddy system.
4785 */
4786 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4787#ifdef CONFIG_NUMA
d5f541ed 4788 zone->node = nid;
9feedc9d 4789 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4790 / 100;
9feedc9d 4791 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4792#endif
1da177e4
LT
4793 zone->name = zone_names[j];
4794 spin_lock_init(&zone->lock);
4795 spin_lock_init(&zone->lru_lock);
bdc8cb98 4796 zone_seqlock_init(zone);
1da177e4 4797 zone->zone_pgdat = pgdat;
ed8ece2e 4798 zone_pcp_init(zone);
81c0a2bb
JW
4799
4800 /* For bootup, initialized properly in watermark setup */
4801 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4802
bea8c150 4803 lruvec_init(&zone->lruvec);
1da177e4
LT
4804 if (!size)
4805 continue;
4806
955c1cd7 4807 set_pageblock_order();
7c45512d 4808 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4809 ret = init_currently_empty_zone(zone, zone_start_pfn,
4810 size, MEMMAP_EARLY);
718127cc 4811 BUG_ON(ret);
76cdd58e 4812 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4813 zone_start_pfn += size;
1da177e4
LT
4814 }
4815}
4816
577a32f6 4817static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4818{
1da177e4
LT
4819 /* Skip empty nodes */
4820 if (!pgdat->node_spanned_pages)
4821 return;
4822
d41dee36 4823#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4824 /* ia64 gets its own node_mem_map, before this, without bootmem */
4825 if (!pgdat->node_mem_map) {
e984bb43 4826 unsigned long size, start, end;
d41dee36
AW
4827 struct page *map;
4828
e984bb43
BP
4829 /*
4830 * The zone's endpoints aren't required to be MAX_ORDER
4831 * aligned but the node_mem_map endpoints must be in order
4832 * for the buddy allocator to function correctly.
4833 */
4834 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4835 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4836 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4837 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4838 map = alloc_remap(pgdat->node_id, size);
4839 if (!map)
8f389a99 4840 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4841 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4842 }
12d810c1 4843#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4844 /*
4845 * With no DISCONTIG, the global mem_map is just set as node 0's
4846 */
c713216d 4847 if (pgdat == NODE_DATA(0)) {
1da177e4 4848 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4849#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4850 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4851 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4852#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4853 }
1da177e4 4854#endif
d41dee36 4855#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4856}
4857
9109fb7b
JW
4858void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4859 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4860{
9109fb7b 4861 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4862 unsigned long start_pfn = 0;
4863 unsigned long end_pfn = 0;
9109fb7b 4864
88fdf75d 4865 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4866 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4867
1da177e4
LT
4868 pgdat->node_id = nid;
4869 pgdat->node_start_pfn = node_start_pfn;
957f822a 4870 init_zone_allows_reclaim(nid);
7960aedd
ZY
4871#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4873#endif
4874 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4875 zones_size, zholes_size);
1da177e4
LT
4876
4877 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4878#ifdef CONFIG_FLAT_NODE_MEM_MAP
4879 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4880 nid, (unsigned long)pgdat,
4881 (unsigned long)pgdat->node_mem_map);
4882#endif
1da177e4 4883
7960aedd
ZY
4884 free_area_init_core(pgdat, start_pfn, end_pfn,
4885 zones_size, zholes_size);
1da177e4
LT
4886}
4887
0ee332c1 4888#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4889
4890#if MAX_NUMNODES > 1
4891/*
4892 * Figure out the number of possible node ids.
4893 */
f9872caf 4894void __init setup_nr_node_ids(void)
418508c1
MS
4895{
4896 unsigned int node;
4897 unsigned int highest = 0;
4898
4899 for_each_node_mask(node, node_possible_map)
4900 highest = node;
4901 nr_node_ids = highest + 1;
4902}
418508c1
MS
4903#endif
4904
1e01979c
TH
4905/**
4906 * node_map_pfn_alignment - determine the maximum internode alignment
4907 *
4908 * This function should be called after node map is populated and sorted.
4909 * It calculates the maximum power of two alignment which can distinguish
4910 * all the nodes.
4911 *
4912 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4913 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4914 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4915 * shifted, 1GiB is enough and this function will indicate so.
4916 *
4917 * This is used to test whether pfn -> nid mapping of the chosen memory
4918 * model has fine enough granularity to avoid incorrect mapping for the
4919 * populated node map.
4920 *
4921 * Returns the determined alignment in pfn's. 0 if there is no alignment
4922 * requirement (single node).
4923 */
4924unsigned long __init node_map_pfn_alignment(void)
4925{
4926 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4927 unsigned long start, end, mask;
1e01979c 4928 int last_nid = -1;
c13291a5 4929 int i, nid;
1e01979c 4930
c13291a5 4931 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4932 if (!start || last_nid < 0 || last_nid == nid) {
4933 last_nid = nid;
4934 last_end = end;
4935 continue;
4936 }
4937
4938 /*
4939 * Start with a mask granular enough to pin-point to the
4940 * start pfn and tick off bits one-by-one until it becomes
4941 * too coarse to separate the current node from the last.
4942 */
4943 mask = ~((1 << __ffs(start)) - 1);
4944 while (mask && last_end <= (start & (mask << 1)))
4945 mask <<= 1;
4946
4947 /* accumulate all internode masks */
4948 accl_mask |= mask;
4949 }
4950
4951 /* convert mask to number of pages */
4952 return ~accl_mask + 1;
4953}
4954
a6af2bc3 4955/* Find the lowest pfn for a node */
b69a7288 4956static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4957{
a6af2bc3 4958 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4959 unsigned long start_pfn;
4960 int i;
1abbfb41 4961
c13291a5
TH
4962 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4963 min_pfn = min(min_pfn, start_pfn);
c713216d 4964
a6af2bc3
MG
4965 if (min_pfn == ULONG_MAX) {
4966 printk(KERN_WARNING
2bc0d261 4967 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4968 return 0;
4969 }
4970
4971 return min_pfn;
c713216d
MG
4972}
4973
4974/**
4975 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4976 *
4977 * It returns the minimum PFN based on information provided via
88ca3b94 4978 * add_active_range().
c713216d
MG
4979 */
4980unsigned long __init find_min_pfn_with_active_regions(void)
4981{
4982 return find_min_pfn_for_node(MAX_NUMNODES);
4983}
4984
37b07e41
LS
4985/*
4986 * early_calculate_totalpages()
4987 * Sum pages in active regions for movable zone.
4b0ef1fe 4988 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4989 */
484f51f8 4990static unsigned long __init early_calculate_totalpages(void)
7e63efef 4991{
7e63efef 4992 unsigned long totalpages = 0;
c13291a5
TH
4993 unsigned long start_pfn, end_pfn;
4994 int i, nid;
4995
4996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4997 unsigned long pages = end_pfn - start_pfn;
7e63efef 4998
37b07e41
LS
4999 totalpages += pages;
5000 if (pages)
4b0ef1fe 5001 node_set_state(nid, N_MEMORY);
37b07e41 5002 }
b8af2941 5003 return totalpages;
7e63efef
MG
5004}
5005
2a1e274a
MG
5006/*
5007 * Find the PFN the Movable zone begins in each node. Kernel memory
5008 * is spread evenly between nodes as long as the nodes have enough
5009 * memory. When they don't, some nodes will have more kernelcore than
5010 * others
5011 */
b224ef85 5012static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5013{
5014 int i, nid;
5015 unsigned long usable_startpfn;
5016 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5017 /* save the state before borrow the nodemask */
4b0ef1fe 5018 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5019 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5020 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 5021
7e63efef
MG
5022 /*
5023 * If movablecore was specified, calculate what size of
5024 * kernelcore that corresponds so that memory usable for
5025 * any allocation type is evenly spread. If both kernelcore
5026 * and movablecore are specified, then the value of kernelcore
5027 * will be used for required_kernelcore if it's greater than
5028 * what movablecore would have allowed.
5029 */
5030 if (required_movablecore) {
7e63efef
MG
5031 unsigned long corepages;
5032
5033 /*
5034 * Round-up so that ZONE_MOVABLE is at least as large as what
5035 * was requested by the user
5036 */
5037 required_movablecore =
5038 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5039 corepages = totalpages - required_movablecore;
5040
5041 required_kernelcore = max(required_kernelcore, corepages);
5042 }
5043
20e6926d
YL
5044 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5045 if (!required_kernelcore)
66918dcd 5046 goto out;
2a1e274a
MG
5047
5048 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 5049 find_usable_zone_for_movable();
2a1e274a
MG
5050 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5051
5052restart:
5053 /* Spread kernelcore memory as evenly as possible throughout nodes */
5054 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5055 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5056 unsigned long start_pfn, end_pfn;
5057
2a1e274a
MG
5058 /*
5059 * Recalculate kernelcore_node if the division per node
5060 * now exceeds what is necessary to satisfy the requested
5061 * amount of memory for the kernel
5062 */
5063 if (required_kernelcore < kernelcore_node)
5064 kernelcore_node = required_kernelcore / usable_nodes;
5065
5066 /*
5067 * As the map is walked, we track how much memory is usable
5068 * by the kernel using kernelcore_remaining. When it is
5069 * 0, the rest of the node is usable by ZONE_MOVABLE
5070 */
5071 kernelcore_remaining = kernelcore_node;
5072
5073 /* Go through each range of PFNs within this node */
c13291a5 5074 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5075 unsigned long size_pages;
5076
c13291a5 5077 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5078 if (start_pfn >= end_pfn)
5079 continue;
5080
5081 /* Account for what is only usable for kernelcore */
5082 if (start_pfn < usable_startpfn) {
5083 unsigned long kernel_pages;
5084 kernel_pages = min(end_pfn, usable_startpfn)
5085 - start_pfn;
5086
5087 kernelcore_remaining -= min(kernel_pages,
5088 kernelcore_remaining);
5089 required_kernelcore -= min(kernel_pages,
5090 required_kernelcore);
5091
5092 /* Continue if range is now fully accounted */
5093 if (end_pfn <= usable_startpfn) {
5094
5095 /*
5096 * Push zone_movable_pfn to the end so
5097 * that if we have to rebalance
5098 * kernelcore across nodes, we will
5099 * not double account here
5100 */
5101 zone_movable_pfn[nid] = end_pfn;
5102 continue;
5103 }
5104 start_pfn = usable_startpfn;
5105 }
5106
5107 /*
5108 * The usable PFN range for ZONE_MOVABLE is from
5109 * start_pfn->end_pfn. Calculate size_pages as the
5110 * number of pages used as kernelcore
5111 */
5112 size_pages = end_pfn - start_pfn;
5113 if (size_pages > kernelcore_remaining)
5114 size_pages = kernelcore_remaining;
5115 zone_movable_pfn[nid] = start_pfn + size_pages;
5116
5117 /*
5118 * Some kernelcore has been met, update counts and
5119 * break if the kernelcore for this node has been
b8af2941 5120 * satisfied
2a1e274a
MG
5121 */
5122 required_kernelcore -= min(required_kernelcore,
5123 size_pages);
5124 kernelcore_remaining -= size_pages;
5125 if (!kernelcore_remaining)
5126 break;
5127 }
5128 }
5129
5130 /*
5131 * If there is still required_kernelcore, we do another pass with one
5132 * less node in the count. This will push zone_movable_pfn[nid] further
5133 * along on the nodes that still have memory until kernelcore is
b8af2941 5134 * satisfied
2a1e274a
MG
5135 */
5136 usable_nodes--;
5137 if (usable_nodes && required_kernelcore > usable_nodes)
5138 goto restart;
5139
5140 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5141 for (nid = 0; nid < MAX_NUMNODES; nid++)
5142 zone_movable_pfn[nid] =
5143 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5144
20e6926d 5145out:
66918dcd 5146 /* restore the node_state */
4b0ef1fe 5147 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5148}
5149
4b0ef1fe
LJ
5150/* Any regular or high memory on that node ? */
5151static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5152{
37b07e41
LS
5153 enum zone_type zone_type;
5154
4b0ef1fe
LJ
5155 if (N_MEMORY == N_NORMAL_MEMORY)
5156 return;
5157
5158 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5159 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5160 if (zone->present_pages) {
4b0ef1fe
LJ
5161 node_set_state(nid, N_HIGH_MEMORY);
5162 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5163 zone_type <= ZONE_NORMAL)
5164 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5165 break;
5166 }
37b07e41 5167 }
37b07e41
LS
5168}
5169
c713216d
MG
5170/**
5171 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5172 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5173 *
5174 * This will call free_area_init_node() for each active node in the system.
5175 * Using the page ranges provided by add_active_range(), the size of each
5176 * zone in each node and their holes is calculated. If the maximum PFN
5177 * between two adjacent zones match, it is assumed that the zone is empty.
5178 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5179 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5180 * starts where the previous one ended. For example, ZONE_DMA32 starts
5181 * at arch_max_dma_pfn.
5182 */
5183void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5184{
c13291a5
TH
5185 unsigned long start_pfn, end_pfn;
5186 int i, nid;
a6af2bc3 5187
c713216d
MG
5188 /* Record where the zone boundaries are */
5189 memset(arch_zone_lowest_possible_pfn, 0,
5190 sizeof(arch_zone_lowest_possible_pfn));
5191 memset(arch_zone_highest_possible_pfn, 0,
5192 sizeof(arch_zone_highest_possible_pfn));
5193 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5194 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5195 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5196 if (i == ZONE_MOVABLE)
5197 continue;
c713216d
MG
5198 arch_zone_lowest_possible_pfn[i] =
5199 arch_zone_highest_possible_pfn[i-1];
5200 arch_zone_highest_possible_pfn[i] =
5201 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5202 }
2a1e274a
MG
5203 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5204 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5205
5206 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5207 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5208 find_zone_movable_pfns_for_nodes();
c713216d 5209
c713216d 5210 /* Print out the zone ranges */
a62e2f4f 5211 printk("Zone ranges:\n");
2a1e274a
MG
5212 for (i = 0; i < MAX_NR_ZONES; i++) {
5213 if (i == ZONE_MOVABLE)
5214 continue;
155cbfc8 5215 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5216 if (arch_zone_lowest_possible_pfn[i] ==
5217 arch_zone_highest_possible_pfn[i])
155cbfc8 5218 printk(KERN_CONT "empty\n");
72f0ba02 5219 else
a62e2f4f
BH
5220 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5221 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5222 (arch_zone_highest_possible_pfn[i]
5223 << PAGE_SHIFT) - 1);
2a1e274a
MG
5224 }
5225
5226 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5227 printk("Movable zone start for each node\n");
2a1e274a
MG
5228 for (i = 0; i < MAX_NUMNODES; i++) {
5229 if (zone_movable_pfn[i])
a62e2f4f
BH
5230 printk(" Node %d: %#010lx\n", i,
5231 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5232 }
c713216d 5233
f2d52fe5 5234 /* Print out the early node map */
a62e2f4f 5235 printk("Early memory node ranges\n");
c13291a5 5236 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5237 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5238 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5239
5240 /* Initialise every node */
708614e6 5241 mminit_verify_pageflags_layout();
8ef82866 5242 setup_nr_node_ids();
c713216d
MG
5243 for_each_online_node(nid) {
5244 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5245 free_area_init_node(nid, NULL,
c713216d 5246 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5247
5248 /* Any memory on that node */
5249 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5250 node_set_state(nid, N_MEMORY);
5251 check_for_memory(pgdat, nid);
c713216d
MG
5252 }
5253}
2a1e274a 5254
7e63efef 5255static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5256{
5257 unsigned long long coremem;
5258 if (!p)
5259 return -EINVAL;
5260
5261 coremem = memparse(p, &p);
7e63efef 5262 *core = coremem >> PAGE_SHIFT;
2a1e274a 5263
7e63efef 5264 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5265 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5266
5267 return 0;
5268}
ed7ed365 5269
7e63efef
MG
5270/*
5271 * kernelcore=size sets the amount of memory for use for allocations that
5272 * cannot be reclaimed or migrated.
5273 */
5274static int __init cmdline_parse_kernelcore(char *p)
5275{
5276 return cmdline_parse_core(p, &required_kernelcore);
5277}
5278
5279/*
5280 * movablecore=size sets the amount of memory for use for allocations that
5281 * can be reclaimed or migrated.
5282 */
5283static int __init cmdline_parse_movablecore(char *p)
5284{
5285 return cmdline_parse_core(p, &required_movablecore);
5286}
5287
ed7ed365 5288early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5289early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5290
0ee332c1 5291#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5292
c3d5f5f0
JL
5293void adjust_managed_page_count(struct page *page, long count)
5294{
5295 spin_lock(&managed_page_count_lock);
5296 page_zone(page)->managed_pages += count;
5297 totalram_pages += count;
3dcc0571
JL
5298#ifdef CONFIG_HIGHMEM
5299 if (PageHighMem(page))
5300 totalhigh_pages += count;
5301#endif
c3d5f5f0
JL
5302 spin_unlock(&managed_page_count_lock);
5303}
3dcc0571 5304EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5305
11199692 5306unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5307{
11199692
JL
5308 void *pos;
5309 unsigned long pages = 0;
69afade7 5310
11199692
JL
5311 start = (void *)PAGE_ALIGN((unsigned long)start);
5312 end = (void *)((unsigned long)end & PAGE_MASK);
5313 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5314 if ((unsigned int)poison <= 0xFF)
11199692
JL
5315 memset(pos, poison, PAGE_SIZE);
5316 free_reserved_page(virt_to_page(pos));
69afade7
JL
5317 }
5318
5319 if (pages && s)
11199692 5320 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5321 s, pages << (PAGE_SHIFT - 10), start, end);
5322
5323 return pages;
5324}
11199692 5325EXPORT_SYMBOL(free_reserved_area);
69afade7 5326
cfa11e08
JL
5327#ifdef CONFIG_HIGHMEM
5328void free_highmem_page(struct page *page)
5329{
5330 __free_reserved_page(page);
5331 totalram_pages++;
7b4b2a0d 5332 page_zone(page)->managed_pages++;
cfa11e08
JL
5333 totalhigh_pages++;
5334}
5335#endif
5336
7ee3d4e8
JL
5337
5338void __init mem_init_print_info(const char *str)
5339{
5340 unsigned long physpages, codesize, datasize, rosize, bss_size;
5341 unsigned long init_code_size, init_data_size;
5342
5343 physpages = get_num_physpages();
5344 codesize = _etext - _stext;
5345 datasize = _edata - _sdata;
5346 rosize = __end_rodata - __start_rodata;
5347 bss_size = __bss_stop - __bss_start;
5348 init_data_size = __init_end - __init_begin;
5349 init_code_size = _einittext - _sinittext;
5350
5351 /*
5352 * Detect special cases and adjust section sizes accordingly:
5353 * 1) .init.* may be embedded into .data sections
5354 * 2) .init.text.* may be out of [__init_begin, __init_end],
5355 * please refer to arch/tile/kernel/vmlinux.lds.S.
5356 * 3) .rodata.* may be embedded into .text or .data sections.
5357 */
5358#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5359 do { \
5360 if (start <= pos && pos < end && size > adj) \
5361 size -= adj; \
5362 } while (0)
7ee3d4e8
JL
5363
5364 adj_init_size(__init_begin, __init_end, init_data_size,
5365 _sinittext, init_code_size);
5366 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5367 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5368 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5369 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5370
5371#undef adj_init_size
5372
5373 printk("Memory: %luK/%luK available "
5374 "(%luK kernel code, %luK rwdata, %luK rodata, "
5375 "%luK init, %luK bss, %luK reserved"
5376#ifdef CONFIG_HIGHMEM
5377 ", %luK highmem"
5378#endif
5379 "%s%s)\n",
5380 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5381 codesize >> 10, datasize >> 10, rosize >> 10,
5382 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5383 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5384#ifdef CONFIG_HIGHMEM
5385 totalhigh_pages << (PAGE_SHIFT-10),
5386#endif
5387 str ? ", " : "", str ? str : "");
5388}
5389
0e0b864e 5390/**
88ca3b94
RD
5391 * set_dma_reserve - set the specified number of pages reserved in the first zone
5392 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5393 *
5394 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5395 * In the DMA zone, a significant percentage may be consumed by kernel image
5396 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5397 * function may optionally be used to account for unfreeable pages in the
5398 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5399 * smaller per-cpu batchsize.
0e0b864e
MG
5400 */
5401void __init set_dma_reserve(unsigned long new_dma_reserve)
5402{
5403 dma_reserve = new_dma_reserve;
5404}
5405
1da177e4
LT
5406void __init free_area_init(unsigned long *zones_size)
5407{
9109fb7b 5408 free_area_init_node(0, zones_size,
1da177e4
LT
5409 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5410}
1da177e4 5411
1da177e4
LT
5412static int page_alloc_cpu_notify(struct notifier_block *self,
5413 unsigned long action, void *hcpu)
5414{
5415 int cpu = (unsigned long)hcpu;
1da177e4 5416
8bb78442 5417 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5418 lru_add_drain_cpu(cpu);
9f8f2172
CL
5419 drain_pages(cpu);
5420
5421 /*
5422 * Spill the event counters of the dead processor
5423 * into the current processors event counters.
5424 * This artificially elevates the count of the current
5425 * processor.
5426 */
f8891e5e 5427 vm_events_fold_cpu(cpu);
9f8f2172
CL
5428
5429 /*
5430 * Zero the differential counters of the dead processor
5431 * so that the vm statistics are consistent.
5432 *
5433 * This is only okay since the processor is dead and cannot
5434 * race with what we are doing.
5435 */
2bb921e5 5436 cpu_vm_stats_fold(cpu);
1da177e4
LT
5437 }
5438 return NOTIFY_OK;
5439}
1da177e4
LT
5440
5441void __init page_alloc_init(void)
5442{
5443 hotcpu_notifier(page_alloc_cpu_notify, 0);
5444}
5445
cb45b0e9
HA
5446/*
5447 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5448 * or min_free_kbytes changes.
5449 */
5450static void calculate_totalreserve_pages(void)
5451{
5452 struct pglist_data *pgdat;
5453 unsigned long reserve_pages = 0;
2f6726e5 5454 enum zone_type i, j;
cb45b0e9
HA
5455
5456 for_each_online_pgdat(pgdat) {
5457 for (i = 0; i < MAX_NR_ZONES; i++) {
5458 struct zone *zone = pgdat->node_zones + i;
5459 unsigned long max = 0;
5460
5461 /* Find valid and maximum lowmem_reserve in the zone */
5462 for (j = i; j < MAX_NR_ZONES; j++) {
5463 if (zone->lowmem_reserve[j] > max)
5464 max = zone->lowmem_reserve[j];
5465 }
5466
41858966
MG
5467 /* we treat the high watermark as reserved pages. */
5468 max += high_wmark_pages(zone);
cb45b0e9 5469
b40da049
JL
5470 if (max > zone->managed_pages)
5471 max = zone->managed_pages;
cb45b0e9 5472 reserve_pages += max;
ab8fabd4
JW
5473 /*
5474 * Lowmem reserves are not available to
5475 * GFP_HIGHUSER page cache allocations and
5476 * kswapd tries to balance zones to their high
5477 * watermark. As a result, neither should be
5478 * regarded as dirtyable memory, to prevent a
5479 * situation where reclaim has to clean pages
5480 * in order to balance the zones.
5481 */
5482 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5483 }
5484 }
ab8fabd4 5485 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5486 totalreserve_pages = reserve_pages;
5487}
5488
1da177e4
LT
5489/*
5490 * setup_per_zone_lowmem_reserve - called whenever
5491 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5492 * has a correct pages reserved value, so an adequate number of
5493 * pages are left in the zone after a successful __alloc_pages().
5494 */
5495static void setup_per_zone_lowmem_reserve(void)
5496{
5497 struct pglist_data *pgdat;
2f6726e5 5498 enum zone_type j, idx;
1da177e4 5499
ec936fc5 5500 for_each_online_pgdat(pgdat) {
1da177e4
LT
5501 for (j = 0; j < MAX_NR_ZONES; j++) {
5502 struct zone *zone = pgdat->node_zones + j;
b40da049 5503 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5504
5505 zone->lowmem_reserve[j] = 0;
5506
2f6726e5
CL
5507 idx = j;
5508 while (idx) {
1da177e4
LT
5509 struct zone *lower_zone;
5510
2f6726e5
CL
5511 idx--;
5512
1da177e4
LT
5513 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5514 sysctl_lowmem_reserve_ratio[idx] = 1;
5515
5516 lower_zone = pgdat->node_zones + idx;
b40da049 5517 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5518 sysctl_lowmem_reserve_ratio[idx];
b40da049 5519 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5520 }
5521 }
5522 }
cb45b0e9
HA
5523
5524 /* update totalreserve_pages */
5525 calculate_totalreserve_pages();
1da177e4
LT
5526}
5527
cfd3da1e 5528static void __setup_per_zone_wmarks(void)
1da177e4
LT
5529{
5530 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5531 unsigned long lowmem_pages = 0;
5532 struct zone *zone;
5533 unsigned long flags;
5534
5535 /* Calculate total number of !ZONE_HIGHMEM pages */
5536 for_each_zone(zone) {
5537 if (!is_highmem(zone))
b40da049 5538 lowmem_pages += zone->managed_pages;
1da177e4
LT
5539 }
5540
5541 for_each_zone(zone) {
ac924c60
AM
5542 u64 tmp;
5543
1125b4e3 5544 spin_lock_irqsave(&zone->lock, flags);
b40da049 5545 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5546 do_div(tmp, lowmem_pages);
1da177e4
LT
5547 if (is_highmem(zone)) {
5548 /*
669ed175
NP
5549 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5550 * need highmem pages, so cap pages_min to a small
5551 * value here.
5552 *
41858966 5553 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5554 * deltas controls asynch page reclaim, and so should
5555 * not be capped for highmem.
1da177e4 5556 */
90ae8d67 5557 unsigned long min_pages;
1da177e4 5558
b40da049 5559 min_pages = zone->managed_pages / 1024;
90ae8d67 5560 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5561 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5562 } else {
669ed175
NP
5563 /*
5564 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5565 * proportionate to the zone's size.
5566 */
41858966 5567 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5568 }
5569
41858966
MG
5570 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5571 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5572
81c0a2bb
JW
5573 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5574 high_wmark_pages(zone) -
5575 low_wmark_pages(zone) -
5576 zone_page_state(zone, NR_ALLOC_BATCH));
5577
56fd56b8 5578 setup_zone_migrate_reserve(zone);
1125b4e3 5579 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5580 }
cb45b0e9
HA
5581
5582 /* update totalreserve_pages */
5583 calculate_totalreserve_pages();
1da177e4
LT
5584}
5585
cfd3da1e
MG
5586/**
5587 * setup_per_zone_wmarks - called when min_free_kbytes changes
5588 * or when memory is hot-{added|removed}
5589 *
5590 * Ensures that the watermark[min,low,high] values for each zone are set
5591 * correctly with respect to min_free_kbytes.
5592 */
5593void setup_per_zone_wmarks(void)
5594{
5595 mutex_lock(&zonelists_mutex);
5596 __setup_per_zone_wmarks();
5597 mutex_unlock(&zonelists_mutex);
5598}
5599
55a4462a 5600/*
556adecb
RR
5601 * The inactive anon list should be small enough that the VM never has to
5602 * do too much work, but large enough that each inactive page has a chance
5603 * to be referenced again before it is swapped out.
5604 *
5605 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5606 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5607 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5608 * the anonymous pages are kept on the inactive list.
5609 *
5610 * total target max
5611 * memory ratio inactive anon
5612 * -------------------------------------
5613 * 10MB 1 5MB
5614 * 100MB 1 50MB
5615 * 1GB 3 250MB
5616 * 10GB 10 0.9GB
5617 * 100GB 31 3GB
5618 * 1TB 101 10GB
5619 * 10TB 320 32GB
5620 */
1b79acc9 5621static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5622{
96cb4df5 5623 unsigned int gb, ratio;
556adecb 5624
96cb4df5 5625 /* Zone size in gigabytes */
b40da049 5626 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5627 if (gb)
556adecb 5628 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5629 else
5630 ratio = 1;
556adecb 5631
96cb4df5
MK
5632 zone->inactive_ratio = ratio;
5633}
556adecb 5634
839a4fcc 5635static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5636{
5637 struct zone *zone;
5638
5639 for_each_zone(zone)
5640 calculate_zone_inactive_ratio(zone);
556adecb
RR
5641}
5642
1da177e4
LT
5643/*
5644 * Initialise min_free_kbytes.
5645 *
5646 * For small machines we want it small (128k min). For large machines
5647 * we want it large (64MB max). But it is not linear, because network
5648 * bandwidth does not increase linearly with machine size. We use
5649 *
b8af2941 5650 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5651 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5652 *
5653 * which yields
5654 *
5655 * 16MB: 512k
5656 * 32MB: 724k
5657 * 64MB: 1024k
5658 * 128MB: 1448k
5659 * 256MB: 2048k
5660 * 512MB: 2896k
5661 * 1024MB: 4096k
5662 * 2048MB: 5792k
5663 * 4096MB: 8192k
5664 * 8192MB: 11584k
5665 * 16384MB: 16384k
5666 */
1b79acc9 5667int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5668{
5669 unsigned long lowmem_kbytes;
5f12733e 5670 int new_min_free_kbytes;
1da177e4
LT
5671
5672 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5673 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5674
5675 if (new_min_free_kbytes > user_min_free_kbytes) {
5676 min_free_kbytes = new_min_free_kbytes;
5677 if (min_free_kbytes < 128)
5678 min_free_kbytes = 128;
5679 if (min_free_kbytes > 65536)
5680 min_free_kbytes = 65536;
5681 } else {
5682 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5683 new_min_free_kbytes, user_min_free_kbytes);
5684 }
bc75d33f 5685 setup_per_zone_wmarks();
a6cccdc3 5686 refresh_zone_stat_thresholds();
1da177e4 5687 setup_per_zone_lowmem_reserve();
556adecb 5688 setup_per_zone_inactive_ratio();
1da177e4
LT
5689 return 0;
5690}
bc75d33f 5691module_init(init_per_zone_wmark_min)
1da177e4
LT
5692
5693/*
b8af2941 5694 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5695 * that we can call two helper functions whenever min_free_kbytes
5696 * changes.
5697 */
b8af2941 5698int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5699 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5700{
8d65af78 5701 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5702 if (write) {
5703 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5704 setup_per_zone_wmarks();
5f12733e 5705 }
1da177e4
LT
5706 return 0;
5707}
5708
9614634f
CL
5709#ifdef CONFIG_NUMA
5710int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5711 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5712{
5713 struct zone *zone;
5714 int rc;
5715
8d65af78 5716 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5717 if (rc)
5718 return rc;
5719
5720 for_each_zone(zone)
b40da049 5721 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5722 sysctl_min_unmapped_ratio) / 100;
5723 return 0;
5724}
0ff38490
CL
5725
5726int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5727 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5728{
5729 struct zone *zone;
5730 int rc;
5731
8d65af78 5732 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5733 if (rc)
5734 return rc;
5735
5736 for_each_zone(zone)
b40da049 5737 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5738 sysctl_min_slab_ratio) / 100;
5739 return 0;
5740}
9614634f
CL
5741#endif
5742
1da177e4
LT
5743/*
5744 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5745 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5746 * whenever sysctl_lowmem_reserve_ratio changes.
5747 *
5748 * The reserve ratio obviously has absolutely no relation with the
41858966 5749 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5750 * if in function of the boot time zone sizes.
5751 */
5752int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5753 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5754{
8d65af78 5755 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5756 setup_per_zone_lowmem_reserve();
5757 return 0;
5758}
5759
8ad4b1fb
RS
5760/*
5761 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5762 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5763 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5764 */
8ad4b1fb 5765int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5766 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5767{
5768 struct zone *zone;
5769 unsigned int cpu;
5770 int ret;
5771
8d65af78 5772 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5773 if (!write || (ret < 0))
8ad4b1fb 5774 return ret;
c8e251fa
CS
5775
5776 mutex_lock(&pcp_batch_high_lock);
364df0eb 5777 for_each_populated_zone(zone) {
22a7f12b
CS
5778 unsigned long high;
5779 high = zone->managed_pages / percpu_pagelist_fraction;
5780 for_each_possible_cpu(cpu)
3664033c
CS
5781 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5782 high);
8ad4b1fb 5783 }
c8e251fa 5784 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5785 return 0;
5786}
5787
f034b5d4 5788int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5789
5790#ifdef CONFIG_NUMA
5791static int __init set_hashdist(char *str)
5792{
5793 if (!str)
5794 return 0;
5795 hashdist = simple_strtoul(str, &str, 0);
5796 return 1;
5797}
5798__setup("hashdist=", set_hashdist);
5799#endif
5800
5801/*
5802 * allocate a large system hash table from bootmem
5803 * - it is assumed that the hash table must contain an exact power-of-2
5804 * quantity of entries
5805 * - limit is the number of hash buckets, not the total allocation size
5806 */
5807void *__init alloc_large_system_hash(const char *tablename,
5808 unsigned long bucketsize,
5809 unsigned long numentries,
5810 int scale,
5811 int flags,
5812 unsigned int *_hash_shift,
5813 unsigned int *_hash_mask,
31fe62b9
TB
5814 unsigned long low_limit,
5815 unsigned long high_limit)
1da177e4 5816{
31fe62b9 5817 unsigned long long max = high_limit;
1da177e4
LT
5818 unsigned long log2qty, size;
5819 void *table = NULL;
5820
5821 /* allow the kernel cmdline to have a say */
5822 if (!numentries) {
5823 /* round applicable memory size up to nearest megabyte */
04903664 5824 numentries = nr_kernel_pages;
a7e83318
JZ
5825
5826 /* It isn't necessary when PAGE_SIZE >= 1MB */
5827 if (PAGE_SHIFT < 20)
5828 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5829
5830 /* limit to 1 bucket per 2^scale bytes of low memory */
5831 if (scale > PAGE_SHIFT)
5832 numentries >>= (scale - PAGE_SHIFT);
5833 else
5834 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5835
5836 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5837 if (unlikely(flags & HASH_SMALL)) {
5838 /* Makes no sense without HASH_EARLY */
5839 WARN_ON(!(flags & HASH_EARLY));
5840 if (!(numentries >> *_hash_shift)) {
5841 numentries = 1UL << *_hash_shift;
5842 BUG_ON(!numentries);
5843 }
5844 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5845 numentries = PAGE_SIZE / bucketsize;
1da177e4 5846 }
6e692ed3 5847 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5848
5849 /* limit allocation size to 1/16 total memory by default */
5850 if (max == 0) {
5851 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5852 do_div(max, bucketsize);
5853 }
074b8517 5854 max = min(max, 0x80000000ULL);
1da177e4 5855
31fe62b9
TB
5856 if (numentries < low_limit)
5857 numentries = low_limit;
1da177e4
LT
5858 if (numentries > max)
5859 numentries = max;
5860
f0d1b0b3 5861 log2qty = ilog2(numentries);
1da177e4
LT
5862
5863 do {
5864 size = bucketsize << log2qty;
5865 if (flags & HASH_EARLY)
74768ed8 5866 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5867 else if (hashdist)
5868 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5869 else {
1037b83b
ED
5870 /*
5871 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5872 * some pages at the end of hash table which
5873 * alloc_pages_exact() automatically does
1037b83b 5874 */
264ef8a9 5875 if (get_order(size) < MAX_ORDER) {
a1dd268c 5876 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5877 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5878 }
1da177e4
LT
5879 }
5880 } while (!table && size > PAGE_SIZE && --log2qty);
5881
5882 if (!table)
5883 panic("Failed to allocate %s hash table\n", tablename);
5884
f241e660 5885 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5886 tablename,
f241e660 5887 (1UL << log2qty),
f0d1b0b3 5888 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5889 size);
5890
5891 if (_hash_shift)
5892 *_hash_shift = log2qty;
5893 if (_hash_mask)
5894 *_hash_mask = (1 << log2qty) - 1;
5895
5896 return table;
5897}
a117e66e 5898
835c134e
MG
5899/* Return a pointer to the bitmap storing bits affecting a block of pages */
5900static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5901 unsigned long pfn)
5902{
5903#ifdef CONFIG_SPARSEMEM
5904 return __pfn_to_section(pfn)->pageblock_flags;
5905#else
5906 return zone->pageblock_flags;
5907#endif /* CONFIG_SPARSEMEM */
5908}
5909
5910static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5911{
5912#ifdef CONFIG_SPARSEMEM
5913 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5914 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5915#else
c060f943 5916 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5917 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5918#endif /* CONFIG_SPARSEMEM */
5919}
5920
5921/**
d9c23400 5922 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5923 * @page: The page within the block of interest
5924 * @start_bitidx: The first bit of interest to retrieve
5925 * @end_bitidx: The last bit of interest
5926 * returns pageblock_bits flags
5927 */
5928unsigned long get_pageblock_flags_group(struct page *page,
5929 int start_bitidx, int end_bitidx)
5930{
5931 struct zone *zone;
5932 unsigned long *bitmap;
5933 unsigned long pfn, bitidx;
5934 unsigned long flags = 0;
5935 unsigned long value = 1;
5936
5937 zone = page_zone(page);
5938 pfn = page_to_pfn(page);
5939 bitmap = get_pageblock_bitmap(zone, pfn);
5940 bitidx = pfn_to_bitidx(zone, pfn);
5941
5942 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5943 if (test_bit(bitidx + start_bitidx, bitmap))
5944 flags |= value;
6220ec78 5945
835c134e
MG
5946 return flags;
5947}
5948
5949/**
d9c23400 5950 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5951 * @page: The page within the block of interest
5952 * @start_bitidx: The first bit of interest
5953 * @end_bitidx: The last bit of interest
5954 * @flags: The flags to set
5955 */
5956void set_pageblock_flags_group(struct page *page, unsigned long flags,
5957 int start_bitidx, int end_bitidx)
5958{
5959 struct zone *zone;
5960 unsigned long *bitmap;
5961 unsigned long pfn, bitidx;
5962 unsigned long value = 1;
5963
5964 zone = page_zone(page);
5965 pfn = page_to_pfn(page);
5966 bitmap = get_pageblock_bitmap(zone, pfn);
5967 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5968 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5969
5970 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5971 if (flags & value)
5972 __set_bit(bitidx + start_bitidx, bitmap);
5973 else
5974 __clear_bit(bitidx + start_bitidx, bitmap);
5975}
a5d76b54
KH
5976
5977/*
80934513
MK
5978 * This function checks whether pageblock includes unmovable pages or not.
5979 * If @count is not zero, it is okay to include less @count unmovable pages
5980 *
b8af2941 5981 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
5982 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5983 * expect this function should be exact.
a5d76b54 5984 */
b023f468
WC
5985bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5986 bool skip_hwpoisoned_pages)
49ac8255
KH
5987{
5988 unsigned long pfn, iter, found;
47118af0
MN
5989 int mt;
5990
49ac8255
KH
5991 /*
5992 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5993 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5994 */
5995 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5996 return false;
47118af0
MN
5997 mt = get_pageblock_migratetype(page);
5998 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5999 return false;
49ac8255
KH
6000
6001 pfn = page_to_pfn(page);
6002 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6003 unsigned long check = pfn + iter;
6004
29723fcc 6005 if (!pfn_valid_within(check))
49ac8255 6006 continue;
29723fcc 6007
49ac8255 6008 page = pfn_to_page(check);
c8721bbb
NH
6009
6010 /*
6011 * Hugepages are not in LRU lists, but they're movable.
6012 * We need not scan over tail pages bacause we don't
6013 * handle each tail page individually in migration.
6014 */
6015 if (PageHuge(page)) {
6016 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6017 continue;
6018 }
6019
97d255c8
MK
6020 /*
6021 * We can't use page_count without pin a page
6022 * because another CPU can free compound page.
6023 * This check already skips compound tails of THP
6024 * because their page->_count is zero at all time.
6025 */
6026 if (!atomic_read(&page->_count)) {
49ac8255
KH
6027 if (PageBuddy(page))
6028 iter += (1 << page_order(page)) - 1;
6029 continue;
6030 }
97d255c8 6031
b023f468
WC
6032 /*
6033 * The HWPoisoned page may be not in buddy system, and
6034 * page_count() is not 0.
6035 */
6036 if (skip_hwpoisoned_pages && PageHWPoison(page))
6037 continue;
6038
49ac8255
KH
6039 if (!PageLRU(page))
6040 found++;
6041 /*
6042 * If there are RECLAIMABLE pages, we need to check it.
6043 * But now, memory offline itself doesn't call shrink_slab()
6044 * and it still to be fixed.
6045 */
6046 /*
6047 * If the page is not RAM, page_count()should be 0.
6048 * we don't need more check. This is an _used_ not-movable page.
6049 *
6050 * The problematic thing here is PG_reserved pages. PG_reserved
6051 * is set to both of a memory hole page and a _used_ kernel
6052 * page at boot.
6053 */
6054 if (found > count)
80934513 6055 return true;
49ac8255 6056 }
80934513 6057 return false;
49ac8255
KH
6058}
6059
6060bool is_pageblock_removable_nolock(struct page *page)
6061{
656a0706
MH
6062 struct zone *zone;
6063 unsigned long pfn;
687875fb
MH
6064
6065 /*
6066 * We have to be careful here because we are iterating over memory
6067 * sections which are not zone aware so we might end up outside of
6068 * the zone but still within the section.
656a0706
MH
6069 * We have to take care about the node as well. If the node is offline
6070 * its NODE_DATA will be NULL - see page_zone.
687875fb 6071 */
656a0706
MH
6072 if (!node_online(page_to_nid(page)))
6073 return false;
6074
6075 zone = page_zone(page);
6076 pfn = page_to_pfn(page);
108bcc96 6077 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6078 return false;
6079
b023f468 6080 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6081}
0c0e6195 6082
041d3a8c
MN
6083#ifdef CONFIG_CMA
6084
6085static unsigned long pfn_max_align_down(unsigned long pfn)
6086{
6087 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6088 pageblock_nr_pages) - 1);
6089}
6090
6091static unsigned long pfn_max_align_up(unsigned long pfn)
6092{
6093 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6094 pageblock_nr_pages));
6095}
6096
041d3a8c 6097/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6098static int __alloc_contig_migrate_range(struct compact_control *cc,
6099 unsigned long start, unsigned long end)
041d3a8c
MN
6100{
6101 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6102 unsigned long nr_reclaimed;
041d3a8c
MN
6103 unsigned long pfn = start;
6104 unsigned int tries = 0;
6105 int ret = 0;
6106
be49a6e1 6107 migrate_prep();
041d3a8c 6108
bb13ffeb 6109 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6110 if (fatal_signal_pending(current)) {
6111 ret = -EINTR;
6112 break;
6113 }
6114
bb13ffeb
MG
6115 if (list_empty(&cc->migratepages)) {
6116 cc->nr_migratepages = 0;
6117 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6118 pfn, end, true);
041d3a8c
MN
6119 if (!pfn) {
6120 ret = -EINTR;
6121 break;
6122 }
6123 tries = 0;
6124 } else if (++tries == 5) {
6125 ret = ret < 0 ? ret : -EBUSY;
6126 break;
6127 }
6128
beb51eaa
MK
6129 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6130 &cc->migratepages);
6131 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6132
9c620e2b
HD
6133 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6134 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6135 }
2a6f5124
SP
6136 if (ret < 0) {
6137 putback_movable_pages(&cc->migratepages);
6138 return ret;
6139 }
6140 return 0;
041d3a8c
MN
6141}
6142
6143/**
6144 * alloc_contig_range() -- tries to allocate given range of pages
6145 * @start: start PFN to allocate
6146 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6147 * @migratetype: migratetype of the underlaying pageblocks (either
6148 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6149 * in range must have the same migratetype and it must
6150 * be either of the two.
041d3a8c
MN
6151 *
6152 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6153 * aligned, however it's the caller's responsibility to guarantee that
6154 * we are the only thread that changes migrate type of pageblocks the
6155 * pages fall in.
6156 *
6157 * The PFN range must belong to a single zone.
6158 *
6159 * Returns zero on success or negative error code. On success all
6160 * pages which PFN is in [start, end) are allocated for the caller and
6161 * need to be freed with free_contig_range().
6162 */
0815f3d8
MN
6163int alloc_contig_range(unsigned long start, unsigned long end,
6164 unsigned migratetype)
041d3a8c 6165{
041d3a8c
MN
6166 unsigned long outer_start, outer_end;
6167 int ret = 0, order;
6168
bb13ffeb
MG
6169 struct compact_control cc = {
6170 .nr_migratepages = 0,
6171 .order = -1,
6172 .zone = page_zone(pfn_to_page(start)),
6173 .sync = true,
6174 .ignore_skip_hint = true,
6175 };
6176 INIT_LIST_HEAD(&cc.migratepages);
6177
041d3a8c
MN
6178 /*
6179 * What we do here is we mark all pageblocks in range as
6180 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6181 * have different sizes, and due to the way page allocator
6182 * work, we align the range to biggest of the two pages so
6183 * that page allocator won't try to merge buddies from
6184 * different pageblocks and change MIGRATE_ISOLATE to some
6185 * other migration type.
6186 *
6187 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6188 * migrate the pages from an unaligned range (ie. pages that
6189 * we are interested in). This will put all the pages in
6190 * range back to page allocator as MIGRATE_ISOLATE.
6191 *
6192 * When this is done, we take the pages in range from page
6193 * allocator removing them from the buddy system. This way
6194 * page allocator will never consider using them.
6195 *
6196 * This lets us mark the pageblocks back as
6197 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6198 * aligned range but not in the unaligned, original range are
6199 * put back to page allocator so that buddy can use them.
6200 */
6201
6202 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6203 pfn_max_align_up(end), migratetype,
6204 false);
041d3a8c 6205 if (ret)
86a595f9 6206 return ret;
041d3a8c 6207
bb13ffeb 6208 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6209 if (ret)
6210 goto done;
6211
6212 /*
6213 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6214 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6215 * more, all pages in [start, end) are free in page allocator.
6216 * What we are going to do is to allocate all pages from
6217 * [start, end) (that is remove them from page allocator).
6218 *
6219 * The only problem is that pages at the beginning and at the
6220 * end of interesting range may be not aligned with pages that
6221 * page allocator holds, ie. they can be part of higher order
6222 * pages. Because of this, we reserve the bigger range and
6223 * once this is done free the pages we are not interested in.
6224 *
6225 * We don't have to hold zone->lock here because the pages are
6226 * isolated thus they won't get removed from buddy.
6227 */
6228
6229 lru_add_drain_all();
6230 drain_all_pages();
6231
6232 order = 0;
6233 outer_start = start;
6234 while (!PageBuddy(pfn_to_page(outer_start))) {
6235 if (++order >= MAX_ORDER) {
6236 ret = -EBUSY;
6237 goto done;
6238 }
6239 outer_start &= ~0UL << order;
6240 }
6241
6242 /* Make sure the range is really isolated. */
b023f468 6243 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6244 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6245 outer_start, end);
6246 ret = -EBUSY;
6247 goto done;
6248 }
6249
49f223a9
MS
6250
6251 /* Grab isolated pages from freelists. */
bb13ffeb 6252 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6253 if (!outer_end) {
6254 ret = -EBUSY;
6255 goto done;
6256 }
6257
6258 /* Free head and tail (if any) */
6259 if (start != outer_start)
6260 free_contig_range(outer_start, start - outer_start);
6261 if (end != outer_end)
6262 free_contig_range(end, outer_end - end);
6263
6264done:
6265 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6266 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6267 return ret;
6268}
6269
6270void free_contig_range(unsigned long pfn, unsigned nr_pages)
6271{
bcc2b02f
MS
6272 unsigned int count = 0;
6273
6274 for (; nr_pages--; pfn++) {
6275 struct page *page = pfn_to_page(pfn);
6276
6277 count += page_count(page) != 1;
6278 __free_page(page);
6279 }
6280 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6281}
6282#endif
6283
4ed7e022 6284#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6285/*
6286 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6287 * page high values need to be recalulated.
6288 */
4ed7e022
JL
6289void __meminit zone_pcp_update(struct zone *zone)
6290{
0a647f38 6291 unsigned cpu;
c8e251fa 6292 mutex_lock(&pcp_batch_high_lock);
0a647f38 6293 for_each_possible_cpu(cpu)
169f6c19
CS
6294 pageset_set_high_and_batch(zone,
6295 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6296 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6297}
6298#endif
6299
340175b7
JL
6300void zone_pcp_reset(struct zone *zone)
6301{
6302 unsigned long flags;
5a883813
MK
6303 int cpu;
6304 struct per_cpu_pageset *pset;
340175b7
JL
6305
6306 /* avoid races with drain_pages() */
6307 local_irq_save(flags);
6308 if (zone->pageset != &boot_pageset) {
5a883813
MK
6309 for_each_online_cpu(cpu) {
6310 pset = per_cpu_ptr(zone->pageset, cpu);
6311 drain_zonestat(zone, pset);
6312 }
340175b7
JL
6313 free_percpu(zone->pageset);
6314 zone->pageset = &boot_pageset;
6315 }
6316 local_irq_restore(flags);
6317}
6318
6dcd73d7 6319#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6320/*
6321 * All pages in the range must be isolated before calling this.
6322 */
6323void
6324__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6325{
6326 struct page *page;
6327 struct zone *zone;
6328 int order, i;
6329 unsigned long pfn;
6330 unsigned long flags;
6331 /* find the first valid pfn */
6332 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6333 if (pfn_valid(pfn))
6334 break;
6335 if (pfn == end_pfn)
6336 return;
6337 zone = page_zone(pfn_to_page(pfn));
6338 spin_lock_irqsave(&zone->lock, flags);
6339 pfn = start_pfn;
6340 while (pfn < end_pfn) {
6341 if (!pfn_valid(pfn)) {
6342 pfn++;
6343 continue;
6344 }
6345 page = pfn_to_page(pfn);
b023f468
WC
6346 /*
6347 * The HWPoisoned page may be not in buddy system, and
6348 * page_count() is not 0.
6349 */
6350 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6351 pfn++;
6352 SetPageReserved(page);
6353 continue;
6354 }
6355
0c0e6195
KH
6356 BUG_ON(page_count(page));
6357 BUG_ON(!PageBuddy(page));
6358 order = page_order(page);
6359#ifdef CONFIG_DEBUG_VM
6360 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6361 pfn, 1 << order, end_pfn);
6362#endif
6363 list_del(&page->lru);
6364 rmv_page_order(page);
6365 zone->free_area[order].nr_free--;
cea27eb2
WL
6366#ifdef CONFIG_HIGHMEM
6367 if (PageHighMem(page))
6368 totalhigh_pages -= 1 << order;
6369#endif
0c0e6195
KH
6370 for (i = 0; i < (1 << order); i++)
6371 SetPageReserved((page+i));
6372 pfn += (1 << order);
6373 }
6374 spin_unlock_irqrestore(&zone->lock, flags);
6375}
6376#endif
8d22ba1b
WF
6377
6378#ifdef CONFIG_MEMORY_FAILURE
6379bool is_free_buddy_page(struct page *page)
6380{
6381 struct zone *zone = page_zone(page);
6382 unsigned long pfn = page_to_pfn(page);
6383 unsigned long flags;
6384 int order;
6385
6386 spin_lock_irqsave(&zone->lock, flags);
6387 for (order = 0; order < MAX_ORDER; order++) {
6388 struct page *page_head = page - (pfn & ((1 << order) - 1));
6389
6390 if (PageBuddy(page_head) && page_order(page_head) >= order)
6391 break;
6392 }
6393 spin_unlock_irqrestore(&zone->lock, flags);
6394
6395 return order < MAX_ORDER;
6396}
6397#endif
718a3821 6398
51300cef 6399static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6400 {1UL << PG_locked, "locked" },
6401 {1UL << PG_error, "error" },
6402 {1UL << PG_referenced, "referenced" },
6403 {1UL << PG_uptodate, "uptodate" },
6404 {1UL << PG_dirty, "dirty" },
6405 {1UL << PG_lru, "lru" },
6406 {1UL << PG_active, "active" },
6407 {1UL << PG_slab, "slab" },
6408 {1UL << PG_owner_priv_1, "owner_priv_1" },
6409 {1UL << PG_arch_1, "arch_1" },
6410 {1UL << PG_reserved, "reserved" },
6411 {1UL << PG_private, "private" },
6412 {1UL << PG_private_2, "private_2" },
6413 {1UL << PG_writeback, "writeback" },
6414#ifdef CONFIG_PAGEFLAGS_EXTENDED
6415 {1UL << PG_head, "head" },
6416 {1UL << PG_tail, "tail" },
6417#else
6418 {1UL << PG_compound, "compound" },
6419#endif
6420 {1UL << PG_swapcache, "swapcache" },
6421 {1UL << PG_mappedtodisk, "mappedtodisk" },
6422 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6423 {1UL << PG_swapbacked, "swapbacked" },
6424 {1UL << PG_unevictable, "unevictable" },
6425#ifdef CONFIG_MMU
6426 {1UL << PG_mlocked, "mlocked" },
6427#endif
6428#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6429 {1UL << PG_uncached, "uncached" },
6430#endif
6431#ifdef CONFIG_MEMORY_FAILURE
6432 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6433#endif
6434#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6435 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6436#endif
718a3821
WF
6437};
6438
6439static void dump_page_flags(unsigned long flags)
6440{
6441 const char *delim = "";
6442 unsigned long mask;
6443 int i;
6444
51300cef 6445 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6446
718a3821
WF
6447 printk(KERN_ALERT "page flags: %#lx(", flags);
6448
6449 /* remove zone id */
6450 flags &= (1UL << NR_PAGEFLAGS) - 1;
6451
51300cef 6452 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6453
6454 mask = pageflag_names[i].mask;
6455 if ((flags & mask) != mask)
6456 continue;
6457
6458 flags &= ~mask;
6459 printk("%s%s", delim, pageflag_names[i].name);
6460 delim = "|";
6461 }
6462
6463 /* check for left over flags */
6464 if (flags)
6465 printk("%s%#lx", delim, flags);
6466
6467 printk(")\n");
6468}
6469
6470void dump_page(struct page *page)
6471{
6472 printk(KERN_ALERT
6473 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6474 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6475 page->mapping, page->index);
6476 dump_page_flags(page->flags);
f212ad7c 6477 mem_cgroup_print_bad_page(page);
718a3821 6478}
This page took 1.631277 seconds and 5 git commands to generate.