gcc-plugins: Add latent_entropy plugin
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
3fcd59ab 67#include <linux/random.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
2a544866
ER
95#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
96volatile u64 latent_entropy;
97EXPORT_SYMBOL(latent_entropy);
98#endif
99
1da177e4 100/*
13808910 101 * Array of node states.
1da177e4 102 */
13808910
CL
103nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106#ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108#ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
110#endif
111#ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
113#endif
114 [N_CPU] = { { [0] = 1UL } },
115#endif /* NUMA */
116};
117EXPORT_SYMBOL(node_states);
118
c3d5f5f0
JL
119/* Protect totalram_pages and zone->managed_pages */
120static DEFINE_SPINLOCK(managed_page_count_lock);
121
6c231b7b 122unsigned long totalram_pages __read_mostly;
cb45b0e9 123unsigned long totalreserve_pages __read_mostly;
e48322ab 124unsigned long totalcma_pages __read_mostly;
ab8fabd4 125
1b76b02f 126int percpu_pagelist_fraction;
dcce284a 127gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 128
bb14c2c7
VB
129/*
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
136 */
137static inline int get_pcppage_migratetype(struct page *page)
138{
139 return page->index;
140}
141
142static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143{
144 page->index = migratetype;
145}
146
452aa699
RW
147#ifdef CONFIG_PM_SLEEP
148/*
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
155 */
c9e664f1
RW
156
157static gfp_t saved_gfp_mask;
158
159void pm_restore_gfp_mask(void)
452aa699
RW
160{
161 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
165 }
452aa699
RW
166}
167
c9e664f1 168void pm_restrict_gfp_mask(void)
452aa699 169{
452aa699 170 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
d0164adc 173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 174}
f90ac398
MG
175
176bool pm_suspended_storage(void)
177{
d0164adc 178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
179 return false;
180 return true;
181}
452aa699
RW
182#endif /* CONFIG_PM_SLEEP */
183
d9c23400 184#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 185unsigned int pageblock_order __read_mostly;
d9c23400
MG
186#endif
187
d98c7a09 188static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 189
1da177e4
LT
190/*
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
197 *
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
1da177e4 200 */
2f1b6248 201int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 202#ifdef CONFIG_ZONE_DMA
2f1b6248 203 256,
4b51d669 204#endif
fb0e7942 205#ifdef CONFIG_ZONE_DMA32
2f1b6248 206 256,
fb0e7942 207#endif
e53ef38d 208#ifdef CONFIG_HIGHMEM
2a1e274a 209 32,
e53ef38d 210#endif
2a1e274a 211 32,
2f1b6248 212};
1da177e4
LT
213
214EXPORT_SYMBOL(totalram_pages);
1da177e4 215
15ad7cdc 216static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 217#ifdef CONFIG_ZONE_DMA
2f1b6248 218 "DMA",
4b51d669 219#endif
fb0e7942 220#ifdef CONFIG_ZONE_DMA32
2f1b6248 221 "DMA32",
fb0e7942 222#endif
2f1b6248 223 "Normal",
e53ef38d 224#ifdef CONFIG_HIGHMEM
2a1e274a 225 "HighMem",
e53ef38d 226#endif
2a1e274a 227 "Movable",
033fbae9
DW
228#ifdef CONFIG_ZONE_DEVICE
229 "Device",
230#endif
2f1b6248
CL
231};
232
60f30350
VB
233char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238#ifdef CONFIG_CMA
239 "CMA",
240#endif
241#ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243#endif
244};
245
f1e61557
KS
246compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249#ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251#endif
9a982250
KS
252#ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254#endif
f1e61557
KS
255};
256
1da177e4 257int min_free_kbytes = 1024;
42aa83cb 258int user_min_free_kbytes = -1;
795ae7a0 259int watermark_scale_factor = 10;
1da177e4 260
2c85f51d
JB
261static unsigned long __meminitdata nr_kernel_pages;
262static unsigned long __meminitdata nr_all_pages;
a3142c8e 263static unsigned long __meminitdata dma_reserve;
1da177e4 264
0ee332c1
TH
265#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268static unsigned long __initdata required_kernelcore;
269static unsigned long __initdata required_movablecore;
270static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 271static bool mirrored_kernelcore;
0ee332c1
TH
272
273/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274int movable_zone;
275EXPORT_SYMBOL(movable_zone);
276#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 277
418508c1
MS
278#if MAX_NUMNODES > 1
279int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 280int nr_online_nodes __read_mostly = 1;
418508c1 281EXPORT_SYMBOL(nr_node_ids);
62bc62a8 282EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
283#endif
284
9ef9acb0
MG
285int page_group_by_mobility_disabled __read_mostly;
286
3a80a7fa
MG
287#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288static inline void reset_deferred_meminit(pg_data_t *pgdat)
289{
290 pgdat->first_deferred_pfn = ULONG_MAX;
291}
292
293/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 294static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 295{
ef70b6f4
MG
296 int nid = early_pfn_to_nid(pfn);
297
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
299 return true;
300
301 return false;
302}
303
304/*
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
307 */
308static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
311{
987b3095
LZ
312 unsigned long max_initialise;
313
3a80a7fa
MG
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
987b3095
LZ
317 /*
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
320 */
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
3a80a7fa 323
3a80a7fa 324 (*nr_initialised)++;
987b3095 325 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
329 }
330
331 return true;
332}
333#else
334static inline void reset_deferred_meminit(pg_data_t *pgdat)
335{
336}
337
338static inline bool early_page_uninitialised(unsigned long pfn)
339{
340 return false;
341}
342
343static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346{
347 return true;
348}
349#endif
350
0b423ca2
MG
351/* Return a pointer to the bitmap storing bits affecting a block of pages */
352static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
354{
355#ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357#else
358 return page_zone(page)->pageblock_flags;
359#endif /* CONFIG_SPARSEMEM */
360}
361
362static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363{
364#ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367#else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370#endif /* CONFIG_SPARSEMEM */
371}
372
373/**
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
379 *
380 * Return: pageblock_bits flags
381 */
382static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
386{
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
390
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
395
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
399}
400
401unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404{
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
406}
407
408static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409{
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
411}
412
413/**
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
420 */
421void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
425{
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
429
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
436
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
442
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
449 }
450}
3a80a7fa 451
ee6f509c 452void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 453{
5d0f3f72
KM
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
456 migratetype = MIGRATE_UNMOVABLE;
457
b2a0ac88
MG
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
460}
461
13e7444b 462#ifdef CONFIG_DEBUG_VM
c6a57e19 463static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 464{
bdc8cb98
DH
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 468 unsigned long sp, start_pfn;
c6a57e19 469
bdc8cb98
DH
470 do {
471 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
108bcc96 474 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
477
b5e6a5a2 478 if (ret)
613813e8
DH
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
b5e6a5a2 482
bdc8cb98 483 return ret;
c6a57e19
DH
484}
485
486static int page_is_consistent(struct zone *zone, struct page *page)
487{
14e07298 488 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 489 return 0;
1da177e4 490 if (zone != page_zone(page))
c6a57e19
DH
491 return 0;
492
493 return 1;
494}
495/*
496 * Temporary debugging check for pages not lying within a given zone.
497 */
498static int bad_range(struct zone *zone, struct page *page)
499{
500 if (page_outside_zone_boundaries(zone, page))
1da177e4 501 return 1;
c6a57e19
DH
502 if (!page_is_consistent(zone, page))
503 return 1;
504
1da177e4
LT
505 return 0;
506}
13e7444b
NP
507#else
508static inline int bad_range(struct zone *zone, struct page *page)
509{
510 return 0;
511}
512#endif
513
d230dec1
KS
514static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
1da177e4 516{
d936cf9b
HD
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
520
521 /*
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
524 */
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
529 }
530 if (nr_unshown) {
ff8e8116 531 pr_alert(
1e9e6365 532 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
ff8e8116 541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 542 current->comm, page_to_pfn(page));
ff8e8116
VB
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
4e462112 548 dump_page_owner(page);
3dc14741 549
4f31888c 550 print_modules();
1da177e4 551 dump_stack();
d936cf9b 552out:
8cc3b392 553 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 554 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
1d798ca3 561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 562 *
1d798ca3
KS
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 565 *
1d798ca3
KS
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
1da177e4 568 *
1d798ca3 569 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 570 * This usage means that zero-order pages may not be compound.
1da177e4 571 */
d98c7a09 572
9a982250 573void free_compound_page(struct page *page)
d98c7a09 574{
d85f3385 575 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
576}
577
d00181b9 578void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
579{
580 int i;
581 int nr_pages = 1 << order;
582
f1e61557 583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
58a84aa9 588 set_page_count(p, 0);
1c290f64 589 p->mapping = TAIL_MAPPING;
1d798ca3 590 set_compound_head(p, page);
18229df5 591 }
53f9263b 592 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
593}
594
c0a32fc5
SG
595#ifdef CONFIG_DEBUG_PAGEALLOC
596unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
597bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 599EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
600bool _debug_guardpage_enabled __read_mostly;
601
031bc574
JK
602static int __init early_debug_pagealloc(char *buf)
603{
604 if (!buf)
605 return -EINVAL;
2a138dc7 606 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
607}
608early_param("debug_pagealloc", early_debug_pagealloc);
609
e30825f1
JK
610static bool need_debug_guardpage(void)
611{
031bc574
JK
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
615
e30825f1
JK
616 return true;
617}
618
619static void init_debug_guardpage(void)
620{
031bc574
JK
621 if (!debug_pagealloc_enabled())
622 return;
623
e30825f1
JK
624 _debug_guardpage_enabled = true;
625}
626
627struct page_ext_operations debug_guardpage_ops = {
628 .need = need_debug_guardpage,
629 .init = init_debug_guardpage,
630};
c0a32fc5
SG
631
632static int __init debug_guardpage_minorder_setup(char *buf)
633{
634 unsigned long res;
635
636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 637 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
638 return 0;
639 }
640 _debug_guardpage_minorder = res;
1170532b 641 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
642 return 0;
643}
644__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
645
2847cf95
JK
646static inline void set_page_guard(struct zone *zone, struct page *page,
647 unsigned int order, int migratetype)
c0a32fc5 648{
e30825f1
JK
649 struct page_ext *page_ext;
650
651 if (!debug_guardpage_enabled())
652 return;
653
654 page_ext = lookup_page_ext(page);
f86e4271
YS
655 if (unlikely(!page_ext))
656 return;
657
e30825f1
JK
658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
659
2847cf95
JK
660 INIT_LIST_HEAD(&page->lru);
661 set_page_private(page, order);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
664}
665
2847cf95
JK
666static inline void clear_page_guard(struct zone *zone, struct page *page,
667 unsigned int order, int migratetype)
c0a32fc5 668{
e30825f1
JK
669 struct page_ext *page_ext;
670
671 if (!debug_guardpage_enabled())
672 return;
673
674 page_ext = lookup_page_ext(page);
f86e4271
YS
675 if (unlikely(!page_ext))
676 return;
677
e30825f1
JK
678 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
679
2847cf95
JK
680 set_page_private(page, 0);
681 if (!is_migrate_isolate(migratetype))
682 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
683}
684#else
e30825f1 685struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
686static inline void set_page_guard(struct zone *zone, struct page *page,
687 unsigned int order, int migratetype) {}
688static inline void clear_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype) {}
c0a32fc5
SG
690#endif
691
7aeb09f9 692static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 693{
4c21e2f2 694 set_page_private(page, order);
676165a8 695 __SetPageBuddy(page);
1da177e4
LT
696}
697
698static inline void rmv_page_order(struct page *page)
699{
676165a8 700 __ClearPageBuddy(page);
4c21e2f2 701 set_page_private(page, 0);
1da177e4
LT
702}
703
1da177e4
LT
704/*
705 * This function checks whether a page is free && is the buddy
706 * we can do coalesce a page and its buddy if
13e7444b 707 * (a) the buddy is not in a hole &&
676165a8 708 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
709 * (c) a page and its buddy have the same order &&
710 * (d) a page and its buddy are in the same zone.
676165a8 711 *
cf6fe945
WSH
712 * For recording whether a page is in the buddy system, we set ->_mapcount
713 * PAGE_BUDDY_MAPCOUNT_VALUE.
714 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
715 * serialized by zone->lock.
1da177e4 716 *
676165a8 717 * For recording page's order, we use page_private(page).
1da177e4 718 */
cb2b95e1 719static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 720 unsigned int order)
1da177e4 721{
14e07298 722 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 723 return 0;
13e7444b 724
c0a32fc5 725 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
726 if (page_zone_id(page) != page_zone_id(buddy))
727 return 0;
728
4c5018ce
WY
729 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
730
c0a32fc5
SG
731 return 1;
732 }
733
cb2b95e1 734 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
735 /*
736 * zone check is done late to avoid uselessly
737 * calculating zone/node ids for pages that could
738 * never merge.
739 */
740 if (page_zone_id(page) != page_zone_id(buddy))
741 return 0;
742
4c5018ce
WY
743 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
744
6aa3001b 745 return 1;
676165a8 746 }
6aa3001b 747 return 0;
1da177e4
LT
748}
749
750/*
751 * Freeing function for a buddy system allocator.
752 *
753 * The concept of a buddy system is to maintain direct-mapped table
754 * (containing bit values) for memory blocks of various "orders".
755 * The bottom level table contains the map for the smallest allocatable
756 * units of memory (here, pages), and each level above it describes
757 * pairs of units from the levels below, hence, "buddies".
758 * At a high level, all that happens here is marking the table entry
759 * at the bottom level available, and propagating the changes upward
760 * as necessary, plus some accounting needed to play nicely with other
761 * parts of the VM system.
762 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
763 * free pages of length of (1 << order) and marked with _mapcount
764 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
765 * field.
1da177e4 766 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
767 * other. That is, if we allocate a small block, and both were
768 * free, the remainder of the region must be split into blocks.
1da177e4 769 * If a block is freed, and its buddy is also free, then this
5f63b720 770 * triggers coalescing into a block of larger size.
1da177e4 771 *
6d49e352 772 * -- nyc
1da177e4
LT
773 */
774
48db57f8 775static inline void __free_one_page(struct page *page,
dc4b0caf 776 unsigned long pfn,
ed0ae21d
MG
777 struct zone *zone, unsigned int order,
778 int migratetype)
1da177e4
LT
779{
780 unsigned long page_idx;
6dda9d55 781 unsigned long combined_idx;
43506fad 782 unsigned long uninitialized_var(buddy_idx);
6dda9d55 783 struct page *buddy;
d9dddbf5
VB
784 unsigned int max_order;
785
786 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 787
d29bb978 788 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 789 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 790
ed0ae21d 791 VM_BUG_ON(migratetype == -1);
d9dddbf5 792 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 793 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 794
d9dddbf5 795 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 796
309381fe
SL
797 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 799
d9dddbf5 800continue_merging:
3c605096 801 while (order < max_order - 1) {
43506fad
KC
802 buddy_idx = __find_buddy_index(page_idx, order);
803 buddy = page + (buddy_idx - page_idx);
cb2b95e1 804 if (!page_is_buddy(page, buddy, order))
d9dddbf5 805 goto done_merging;
c0a32fc5
SG
806 /*
807 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
808 * merge with it and move up one order.
809 */
810 if (page_is_guard(buddy)) {
2847cf95 811 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
812 } else {
813 list_del(&buddy->lru);
814 zone->free_area[order].nr_free--;
815 rmv_page_order(buddy);
816 }
43506fad 817 combined_idx = buddy_idx & page_idx;
1da177e4
LT
818 page = page + (combined_idx - page_idx);
819 page_idx = combined_idx;
820 order++;
821 }
d9dddbf5
VB
822 if (max_order < MAX_ORDER) {
823 /* If we are here, it means order is >= pageblock_order.
824 * We want to prevent merge between freepages on isolate
825 * pageblock and normal pageblock. Without this, pageblock
826 * isolation could cause incorrect freepage or CMA accounting.
827 *
828 * We don't want to hit this code for the more frequent
829 * low-order merging.
830 */
831 if (unlikely(has_isolate_pageblock(zone))) {
832 int buddy_mt;
833
834 buddy_idx = __find_buddy_index(page_idx, order);
835 buddy = page + (buddy_idx - page_idx);
836 buddy_mt = get_pageblock_migratetype(buddy);
837
838 if (migratetype != buddy_mt
839 && (is_migrate_isolate(migratetype) ||
840 is_migrate_isolate(buddy_mt)))
841 goto done_merging;
842 }
843 max_order++;
844 goto continue_merging;
845 }
846
847done_merging:
1da177e4 848 set_page_order(page, order);
6dda9d55
CZ
849
850 /*
851 * If this is not the largest possible page, check if the buddy
852 * of the next-highest order is free. If it is, it's possible
853 * that pages are being freed that will coalesce soon. In case,
854 * that is happening, add the free page to the tail of the list
855 * so it's less likely to be used soon and more likely to be merged
856 * as a higher order page
857 */
b7f50cfa 858 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 859 struct page *higher_page, *higher_buddy;
43506fad
KC
860 combined_idx = buddy_idx & page_idx;
861 higher_page = page + (combined_idx - page_idx);
862 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 863 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
864 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
865 list_add_tail(&page->lru,
866 &zone->free_area[order].free_list[migratetype]);
867 goto out;
868 }
869 }
870
871 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
872out:
1da177e4
LT
873 zone->free_area[order].nr_free++;
874}
875
7bfec6f4
MG
876/*
877 * A bad page could be due to a number of fields. Instead of multiple branches,
878 * try and check multiple fields with one check. The caller must do a detailed
879 * check if necessary.
880 */
881static inline bool page_expected_state(struct page *page,
882 unsigned long check_flags)
883{
884 if (unlikely(atomic_read(&page->_mapcount) != -1))
885 return false;
886
887 if (unlikely((unsigned long)page->mapping |
888 page_ref_count(page) |
889#ifdef CONFIG_MEMCG
890 (unsigned long)page->mem_cgroup |
891#endif
892 (page->flags & check_flags)))
893 return false;
894
895 return true;
896}
897
bb552ac6 898static void free_pages_check_bad(struct page *page)
1da177e4 899{
7bfec6f4
MG
900 const char *bad_reason;
901 unsigned long bad_flags;
902
7bfec6f4
MG
903 bad_reason = NULL;
904 bad_flags = 0;
f0b791a3 905
53f9263b 906 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
907 bad_reason = "nonzero mapcount";
908 if (unlikely(page->mapping != NULL))
909 bad_reason = "non-NULL mapping";
fe896d18 910 if (unlikely(page_ref_count(page) != 0))
0139aa7b 911 bad_reason = "nonzero _refcount";
f0b791a3
DH
912 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
913 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
914 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
915 }
9edad6ea
JW
916#ifdef CONFIG_MEMCG
917 if (unlikely(page->mem_cgroup))
918 bad_reason = "page still charged to cgroup";
919#endif
7bfec6f4 920 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
921}
922
923static inline int free_pages_check(struct page *page)
924{
da838d4f 925 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 926 return 0;
bb552ac6
MG
927
928 /* Something has gone sideways, find it */
929 free_pages_check_bad(page);
7bfec6f4 930 return 1;
1da177e4
LT
931}
932
4db7548c
MG
933static int free_tail_pages_check(struct page *head_page, struct page *page)
934{
935 int ret = 1;
936
937 /*
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 */
941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942
943 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
944 ret = 0;
945 goto out;
946 }
947 switch (page - head_page) {
948 case 1:
949 /* the first tail page: ->mapping is compound_mapcount() */
950 if (unlikely(compound_mapcount(page))) {
951 bad_page(page, "nonzero compound_mapcount", 0);
952 goto out;
953 }
954 break;
955 case 2:
956 /*
957 * the second tail page: ->mapping is
958 * page_deferred_list().next -- ignore value.
959 */
960 break;
961 default:
962 if (page->mapping != TAIL_MAPPING) {
963 bad_page(page, "corrupted mapping in tail page", 0);
964 goto out;
965 }
966 break;
967 }
968 if (unlikely(!PageTail(page))) {
969 bad_page(page, "PageTail not set", 0);
970 goto out;
971 }
972 if (unlikely(compound_head(page) != head_page)) {
973 bad_page(page, "compound_head not consistent", 0);
974 goto out;
975 }
976 ret = 0;
977out:
978 page->mapping = NULL;
979 clear_compound_head(page);
980 return ret;
981}
982
e2769dbd
MG
983static __always_inline bool free_pages_prepare(struct page *page,
984 unsigned int order, bool check_free)
4db7548c 985{
e2769dbd 986 int bad = 0;
4db7548c 987
4db7548c
MG
988 VM_BUG_ON_PAGE(PageTail(page), page);
989
e2769dbd
MG
990 trace_mm_page_free(page, order);
991 kmemcheck_free_shadow(page, order);
e2769dbd
MG
992
993 /*
994 * Check tail pages before head page information is cleared to
995 * avoid checking PageCompound for order-0 pages.
996 */
997 if (unlikely(order)) {
998 bool compound = PageCompound(page);
999 int i;
1000
1001 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1002
9a73f61b
KS
1003 if (compound)
1004 ClearPageDoubleMap(page);
e2769dbd
MG
1005 for (i = 1; i < (1 << order); i++) {
1006 if (compound)
1007 bad += free_tail_pages_check(page, page + i);
1008 if (unlikely(free_pages_check(page + i))) {
1009 bad++;
1010 continue;
1011 }
1012 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1013 }
1014 }
bda807d4 1015 if (PageMappingFlags(page))
4db7548c 1016 page->mapping = NULL;
4949148a
VD
1017 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1018 memcg_kmem_uncharge(page, order);
1019 __ClearPageKmemcg(page);
1020 }
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
1da177e4 1066/*
5f8dcc21 1067 * Frees a number of pages from the PCP lists
1da177e4 1068 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1069 * count is the number of pages to free.
1da177e4
LT
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
5f8dcc21
MG
1077static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1da177e4 1079{
5f8dcc21 1080 int migratetype = 0;
a6f9edd6 1081 int batch_free = 0;
0d5d823a 1082 unsigned long nr_scanned;
3777999d 1083 bool isolated_pageblocks;
5f8dcc21 1084
c54ad30c 1085 spin_lock(&zone->lock);
3777999d 1086 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1087 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1088 if (nr_scanned)
599d0c95 1089 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1090
e5b31ac2 1091 while (count) {
48db57f8 1092 struct page *page;
5f8dcc21
MG
1093 struct list_head *list;
1094
1095 /*
a6f9edd6
MG
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
5f8dcc21
MG
1101 */
1102 do {
a6f9edd6 1103 batch_free++;
5f8dcc21
MG
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
48db57f8 1108
1d16871d
NK
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1111 batch_free = count;
1d16871d 1112
a6f9edd6 1113 do {
770c8aaa
BZ
1114 int mt; /* migratetype of the to-be-freed page */
1115
a16601c5 1116 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
aa016d14 1119
bb14c2c7 1120 mt = get_pcppage_migratetype(page);
aa016d14
VB
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
3777999d 1124 if (unlikely(isolated_pageblocks))
51bb1a40 1125 mt = get_pageblock_migratetype(page);
51bb1a40 1126
4db7548c
MG
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
dc4b0caf 1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1131 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1132 } while (--count && --batch_free && !list_empty(list));
1da177e4 1133 }
c54ad30c 1134 spin_unlock(&zone->lock);
1da177e4
LT
1135}
1136
dc4b0caf
MG
1137static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
7aeb09f9 1139 unsigned int order,
ed0ae21d 1140 int migratetype)
1da177e4 1141{
0d5d823a 1142 unsigned long nr_scanned;
006d22d9 1143 spin_lock(&zone->lock);
599d0c95 1144 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1145 if (nr_scanned)
599d0c95 1146 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1147
ad53f92e
JK
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1151 }
dc4b0caf 1152 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1153 spin_unlock(&zone->lock);
48db57f8
NP
1154}
1155
1e8ce83c
RH
1156static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158{
1e8ce83c 1159 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1e8ce83c 1163
1e8ce83c
RH
1164 INIT_LIST_HEAD(&page->lru);
1165#ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169#endif
1170}
1171
1172static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174{
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176}
1177
7e18adb4
MG
1178#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179static void init_reserved_page(unsigned long pfn)
1180{
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197}
1198#else
1199static inline void init_reserved_page(unsigned long pfn)
1200{
1201}
1202#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
92923ca3
NZ
1204/*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
4b50bcc7 1210void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1211{
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
7e18adb4
MG
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1d798ca3
KS
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
7e18adb4
MG
1224 SetPageReserved(page);
1225 }
1226 }
92923ca3
NZ
1227}
1228
ec95f53a
KM
1229static void __free_pages_ok(struct page *page, unsigned int order)
1230{
1231 unsigned long flags;
95e34412 1232 int migratetype;
dc4b0caf 1233 unsigned long pfn = page_to_pfn(page);
ec95f53a 1234
e2769dbd 1235 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1236 return;
1237
cfc47a28 1238 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1239 local_irq_save(flags);
f8891e5e 1240 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1242 local_irq_restore(flags);
1da177e4
LT
1243}
1244
3fcd59ab
ER
1245bool __meminitdata ram_latent_entropy;
1246
1247static int __init setup_ram_latent_entropy(char *str)
1248{
1249 ram_latent_entropy = true;
1250 return 0;
1251}
1252early_param("ram_latent_entropy", setup_ram_latent_entropy);
1253
949698a3 1254static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1255{
c3993076 1256 unsigned int nr_pages = 1 << order;
e2d0bd2b 1257 struct page *p = page;
c3993076 1258 unsigned int loop;
a226f6c8 1259
e2d0bd2b
YL
1260 prefetchw(p);
1261 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1262 prefetchw(p + 1);
c3993076
JW
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
a226f6c8 1265 }
e2d0bd2b
YL
1266 __ClearPageReserved(p);
1267 set_page_count(p, 0);
c3993076 1268
3fcd59ab
ER
1269 if (ram_latent_entropy && !PageHighMem(page) &&
1270 page_to_pfn(page) < 0x100000) {
1271 u64 hash = 0;
1272 size_t index, end = PAGE_SIZE * nr_pages / sizeof(hash);
1273 const u64 *data = lowmem_page_address(page);
1274
1275 for (index = 0; index < end; index++)
1276 hash ^= hash + data[index];
1277 add_device_randomness((const void *)&hash, sizeof(hash));
1278 }
1279
e2d0bd2b 1280 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1281 set_page_refcounted(page);
1282 __free_pages(page, order);
a226f6c8
DH
1283}
1284
75a592a4
MG
1285#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1286 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1287
75a592a4
MG
1288static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1289
1290int __meminit early_pfn_to_nid(unsigned long pfn)
1291{
7ace9917 1292 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1293 int nid;
1294
7ace9917 1295 spin_lock(&early_pfn_lock);
75a592a4 1296 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1297 if (nid < 0)
e4568d38 1298 nid = first_online_node;
7ace9917
MG
1299 spin_unlock(&early_pfn_lock);
1300
1301 return nid;
75a592a4
MG
1302}
1303#endif
1304
1305#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1306static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1307 struct mminit_pfnnid_cache *state)
1308{
1309 int nid;
1310
1311 nid = __early_pfn_to_nid(pfn, state);
1312 if (nid >= 0 && nid != node)
1313 return false;
1314 return true;
1315}
1316
1317/* Only safe to use early in boot when initialisation is single-threaded */
1318static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319{
1320 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1321}
1322
1323#else
1324
1325static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1326{
1327 return true;
1328}
1329static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1330 struct mminit_pfnnid_cache *state)
1331{
1332 return true;
1333}
1334#endif
1335
1336
0e1cc95b 1337void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1338 unsigned int order)
1339{
1340 if (early_page_uninitialised(pfn))
1341 return;
949698a3 1342 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1343}
1344
7cf91a98
JK
1345/*
1346 * Check that the whole (or subset of) a pageblock given by the interval of
1347 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1348 * with the migration of free compaction scanner. The scanners then need to
1349 * use only pfn_valid_within() check for arches that allow holes within
1350 * pageblocks.
1351 *
1352 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1353 *
1354 * It's possible on some configurations to have a setup like node0 node1 node0
1355 * i.e. it's possible that all pages within a zones range of pages do not
1356 * belong to a single zone. We assume that a border between node0 and node1
1357 * can occur within a single pageblock, but not a node0 node1 node0
1358 * interleaving within a single pageblock. It is therefore sufficient to check
1359 * the first and last page of a pageblock and avoid checking each individual
1360 * page in a pageblock.
1361 */
1362struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1363 unsigned long end_pfn, struct zone *zone)
1364{
1365 struct page *start_page;
1366 struct page *end_page;
1367
1368 /* end_pfn is one past the range we are checking */
1369 end_pfn--;
1370
1371 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1372 return NULL;
1373
1374 start_page = pfn_to_page(start_pfn);
1375
1376 if (page_zone(start_page) != zone)
1377 return NULL;
1378
1379 end_page = pfn_to_page(end_pfn);
1380
1381 /* This gives a shorter code than deriving page_zone(end_page) */
1382 if (page_zone_id(start_page) != page_zone_id(end_page))
1383 return NULL;
1384
1385 return start_page;
1386}
1387
1388void set_zone_contiguous(struct zone *zone)
1389{
1390 unsigned long block_start_pfn = zone->zone_start_pfn;
1391 unsigned long block_end_pfn;
1392
1393 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1394 for (; block_start_pfn < zone_end_pfn(zone);
1395 block_start_pfn = block_end_pfn,
1396 block_end_pfn += pageblock_nr_pages) {
1397
1398 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1399
1400 if (!__pageblock_pfn_to_page(block_start_pfn,
1401 block_end_pfn, zone))
1402 return;
1403 }
1404
1405 /* We confirm that there is no hole */
1406 zone->contiguous = true;
1407}
1408
1409void clear_zone_contiguous(struct zone *zone)
1410{
1411 zone->contiguous = false;
1412}
1413
7e18adb4 1414#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1415static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1416 unsigned long pfn, int nr_pages)
1417{
1418 int i;
1419
1420 if (!page)
1421 return;
1422
1423 /* Free a large naturally-aligned chunk if possible */
1424 if (nr_pages == MAX_ORDER_NR_PAGES &&
1425 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1427 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1428 return;
1429 }
1430
949698a3
LZ
1431 for (i = 0; i < nr_pages; i++, page++)
1432 __free_pages_boot_core(page, 0);
a4de83dd
MG
1433}
1434
d3cd131d
NS
1435/* Completion tracking for deferred_init_memmap() threads */
1436static atomic_t pgdat_init_n_undone __initdata;
1437static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439static inline void __init pgdat_init_report_one_done(void)
1440{
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1443}
0e1cc95b 1444
7e18adb4 1445/* Initialise remaining memory on a node */
0e1cc95b 1446static int __init deferred_init_memmap(void *data)
7e18adb4 1447{
0e1cc95b
MG
1448 pg_data_t *pgdat = data;
1449 int nid = pgdat->node_id;
7e18adb4
MG
1450 struct mminit_pfnnid_cache nid_init_state = { };
1451 unsigned long start = jiffies;
1452 unsigned long nr_pages = 0;
1453 unsigned long walk_start, walk_end;
1454 int i, zid;
1455 struct zone *zone;
7e18adb4 1456 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1457 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1458
0e1cc95b 1459 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1460 pgdat_init_report_one_done();
0e1cc95b
MG
1461 return 0;
1462 }
1463
1464 /* Bind memory initialisation thread to a local node if possible */
1465 if (!cpumask_empty(cpumask))
1466 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1467
1468 /* Sanity check boundaries */
1469 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1470 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1471 pgdat->first_deferred_pfn = ULONG_MAX;
1472
1473 /* Only the highest zone is deferred so find it */
1474 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1475 zone = pgdat->node_zones + zid;
1476 if (first_init_pfn < zone_end_pfn(zone))
1477 break;
1478 }
1479
1480 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1481 unsigned long pfn, end_pfn;
54608c3f 1482 struct page *page = NULL;
a4de83dd
MG
1483 struct page *free_base_page = NULL;
1484 unsigned long free_base_pfn = 0;
1485 int nr_to_free = 0;
7e18adb4
MG
1486
1487 end_pfn = min(walk_end, zone_end_pfn(zone));
1488 pfn = first_init_pfn;
1489 if (pfn < walk_start)
1490 pfn = walk_start;
1491 if (pfn < zone->zone_start_pfn)
1492 pfn = zone->zone_start_pfn;
1493
1494 for (; pfn < end_pfn; pfn++) {
54608c3f 1495 if (!pfn_valid_within(pfn))
a4de83dd 1496 goto free_range;
7e18adb4 1497
54608c3f
MG
1498 /*
1499 * Ensure pfn_valid is checked every
1500 * MAX_ORDER_NR_PAGES for memory holes
1501 */
1502 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1503 if (!pfn_valid(pfn)) {
1504 page = NULL;
a4de83dd 1505 goto free_range;
54608c3f
MG
1506 }
1507 }
1508
1509 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1510 page = NULL;
a4de83dd 1511 goto free_range;
54608c3f
MG
1512 }
1513
1514 /* Minimise pfn page lookups and scheduler checks */
1515 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1516 page++;
1517 } else {
a4de83dd
MG
1518 nr_pages += nr_to_free;
1519 deferred_free_range(free_base_page,
1520 free_base_pfn, nr_to_free);
1521 free_base_page = NULL;
1522 free_base_pfn = nr_to_free = 0;
1523
54608c3f
MG
1524 page = pfn_to_page(pfn);
1525 cond_resched();
1526 }
7e18adb4
MG
1527
1528 if (page->flags) {
1529 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1530 goto free_range;
7e18adb4
MG
1531 }
1532
1533 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1534 if (!free_base_page) {
1535 free_base_page = page;
1536 free_base_pfn = pfn;
1537 nr_to_free = 0;
1538 }
1539 nr_to_free++;
1540
1541 /* Where possible, batch up pages for a single free */
1542 continue;
1543free_range:
1544 /* Free the current block of pages to allocator */
1545 nr_pages += nr_to_free;
1546 deferred_free_range(free_base_page, free_base_pfn,
1547 nr_to_free);
1548 free_base_page = NULL;
1549 free_base_pfn = nr_to_free = 0;
7e18adb4 1550 }
a4de83dd 1551
7e18adb4
MG
1552 first_init_pfn = max(end_pfn, first_init_pfn);
1553 }
1554
1555 /* Sanity check that the next zone really is unpopulated */
1556 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1557
0e1cc95b 1558 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1559 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1560
1561 pgdat_init_report_one_done();
0e1cc95b
MG
1562 return 0;
1563}
7cf91a98 1564#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1565
1566void __init page_alloc_init_late(void)
1567{
7cf91a98
JK
1568 struct zone *zone;
1569
1570#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1571 int nid;
1572
d3cd131d
NS
1573 /* There will be num_node_state(N_MEMORY) threads */
1574 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1575 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1576 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1577 }
1578
1579 /* Block until all are initialised */
d3cd131d 1580 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1581
1582 /* Reinit limits that are based on free pages after the kernel is up */
1583 files_maxfiles_init();
7cf91a98
JK
1584#endif
1585
1586 for_each_populated_zone(zone)
1587 set_zone_contiguous(zone);
7e18adb4 1588}
7e18adb4 1589
47118af0 1590#ifdef CONFIG_CMA
9cf510a5 1591/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1592void __init init_cma_reserved_pageblock(struct page *page)
1593{
1594 unsigned i = pageblock_nr_pages;
1595 struct page *p = page;
1596
1597 do {
1598 __ClearPageReserved(p);
1599 set_page_count(p, 0);
1600 } while (++p, --i);
1601
47118af0 1602 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1603
1604 if (pageblock_order >= MAX_ORDER) {
1605 i = pageblock_nr_pages;
1606 p = page;
1607 do {
1608 set_page_refcounted(p);
1609 __free_pages(p, MAX_ORDER - 1);
1610 p += MAX_ORDER_NR_PAGES;
1611 } while (i -= MAX_ORDER_NR_PAGES);
1612 } else {
1613 set_page_refcounted(page);
1614 __free_pages(page, pageblock_order);
1615 }
1616
3dcc0571 1617 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1618}
1619#endif
1da177e4
LT
1620
1621/*
1622 * The order of subdivision here is critical for the IO subsystem.
1623 * Please do not alter this order without good reasons and regression
1624 * testing. Specifically, as large blocks of memory are subdivided,
1625 * the order in which smaller blocks are delivered depends on the order
1626 * they're subdivided in this function. This is the primary factor
1627 * influencing the order in which pages are delivered to the IO
1628 * subsystem according to empirical testing, and this is also justified
1629 * by considering the behavior of a buddy system containing a single
1630 * large block of memory acted on by a series of small allocations.
1631 * This behavior is a critical factor in sglist merging's success.
1632 *
6d49e352 1633 * -- nyc
1da177e4 1634 */
085cc7d5 1635static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1636 int low, int high, struct free_area *area,
1637 int migratetype)
1da177e4
LT
1638{
1639 unsigned long size = 1 << high;
1640
1641 while (high > low) {
1642 area--;
1643 high--;
1644 size >>= 1;
309381fe 1645 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1646
2847cf95 1647 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1648 debug_guardpage_enabled() &&
2847cf95 1649 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1650 /*
1651 * Mark as guard pages (or page), that will allow to
1652 * merge back to allocator when buddy will be freed.
1653 * Corresponding page table entries will not be touched,
1654 * pages will stay not present in virtual address space
1655 */
2847cf95 1656 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1657 continue;
1658 }
b2a0ac88 1659 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1660 area->nr_free++;
1661 set_page_order(&page[size], high);
1662 }
1da177e4
LT
1663}
1664
4e611801 1665static void check_new_page_bad(struct page *page)
1da177e4 1666{
4e611801
VB
1667 const char *bad_reason = NULL;
1668 unsigned long bad_flags = 0;
7bfec6f4 1669
53f9263b 1670 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1671 bad_reason = "nonzero mapcount";
1672 if (unlikely(page->mapping != NULL))
1673 bad_reason = "non-NULL mapping";
fe896d18 1674 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1675 bad_reason = "nonzero _count";
f4c18e6f
NH
1676 if (unlikely(page->flags & __PG_HWPOISON)) {
1677 bad_reason = "HWPoisoned (hardware-corrupted)";
1678 bad_flags = __PG_HWPOISON;
e570f56c
NH
1679 /* Don't complain about hwpoisoned pages */
1680 page_mapcount_reset(page); /* remove PageBuddy */
1681 return;
f4c18e6f 1682 }
f0b791a3
DH
1683 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1684 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1685 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1686 }
9edad6ea
JW
1687#ifdef CONFIG_MEMCG
1688 if (unlikely(page->mem_cgroup))
1689 bad_reason = "page still charged to cgroup";
1690#endif
4e611801
VB
1691 bad_page(page, bad_reason, bad_flags);
1692}
1693
1694/*
1695 * This page is about to be returned from the page allocator
1696 */
1697static inline int check_new_page(struct page *page)
1698{
1699 if (likely(page_expected_state(page,
1700 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1701 return 0;
1702
1703 check_new_page_bad(page);
1704 return 1;
2a7684a2
WF
1705}
1706
1414c7f4
LA
1707static inline bool free_pages_prezeroed(bool poisoned)
1708{
1709 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1710 page_poisoning_enabled() && poisoned;
1711}
1712
479f854a
MG
1713#ifdef CONFIG_DEBUG_VM
1714static bool check_pcp_refill(struct page *page)
1715{
1716 return false;
1717}
1718
1719static bool check_new_pcp(struct page *page)
1720{
1721 return check_new_page(page);
1722}
1723#else
1724static bool check_pcp_refill(struct page *page)
1725{
1726 return check_new_page(page);
1727}
1728static bool check_new_pcp(struct page *page)
1729{
1730 return false;
1731}
1732#endif /* CONFIG_DEBUG_VM */
1733
1734static bool check_new_pages(struct page *page, unsigned int order)
1735{
1736 int i;
1737 for (i = 0; i < (1 << order); i++) {
1738 struct page *p = page + i;
1739
1740 if (unlikely(check_new_page(p)))
1741 return true;
1742 }
1743
1744 return false;
1745}
1746
46f24fd8
JK
1747inline void post_alloc_hook(struct page *page, unsigned int order,
1748 gfp_t gfp_flags)
1749{
1750 set_page_private(page, 0);
1751 set_page_refcounted(page);
1752
1753 arch_alloc_page(page, order);
1754 kernel_map_pages(page, 1 << order, 1);
1755 kernel_poison_pages(page, 1 << order, 1);
1756 kasan_alloc_pages(page, order);
1757 set_page_owner(page, order, gfp_flags);
1758}
1759
479f854a 1760static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1761 unsigned int alloc_flags)
2a7684a2
WF
1762{
1763 int i;
1414c7f4 1764 bool poisoned = true;
2a7684a2
WF
1765
1766 for (i = 0; i < (1 << order); i++) {
1767 struct page *p = page + i;
1414c7f4
LA
1768 if (poisoned)
1769 poisoned &= page_is_poisoned(p);
2a7684a2 1770 }
689bcebf 1771
46f24fd8 1772 post_alloc_hook(page, order, gfp_flags);
17cf4406 1773
1414c7f4 1774 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1775 for (i = 0; i < (1 << order); i++)
1776 clear_highpage(page + i);
17cf4406
NP
1777
1778 if (order && (gfp_flags & __GFP_COMP))
1779 prep_compound_page(page, order);
1780
75379191 1781 /*
2f064f34 1782 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1783 * allocate the page. The expectation is that the caller is taking
1784 * steps that will free more memory. The caller should avoid the page
1785 * being used for !PFMEMALLOC purposes.
1786 */
2f064f34
MH
1787 if (alloc_flags & ALLOC_NO_WATERMARKS)
1788 set_page_pfmemalloc(page);
1789 else
1790 clear_page_pfmemalloc(page);
1da177e4
LT
1791}
1792
56fd56b8
MG
1793/*
1794 * Go through the free lists for the given migratetype and remove
1795 * the smallest available page from the freelists
1796 */
728ec980
MG
1797static inline
1798struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1799 int migratetype)
1800{
1801 unsigned int current_order;
b8af2941 1802 struct free_area *area;
56fd56b8
MG
1803 struct page *page;
1804
1805 /* Find a page of the appropriate size in the preferred list */
1806 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1807 area = &(zone->free_area[current_order]);
a16601c5 1808 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1809 struct page, lru);
a16601c5
GT
1810 if (!page)
1811 continue;
56fd56b8
MG
1812 list_del(&page->lru);
1813 rmv_page_order(page);
1814 area->nr_free--;
56fd56b8 1815 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1816 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1817 return page;
1818 }
1819
1820 return NULL;
1821}
1822
1823
b2a0ac88
MG
1824/*
1825 * This array describes the order lists are fallen back to when
1826 * the free lists for the desirable migrate type are depleted
1827 */
47118af0 1828static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1829 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1830 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1831 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1832#ifdef CONFIG_CMA
974a786e 1833 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1834#endif
194159fb 1835#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1836 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1837#endif
b2a0ac88
MG
1838};
1839
dc67647b
JK
1840#ifdef CONFIG_CMA
1841static struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 unsigned int order)
1843{
1844 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1845}
1846#else
1847static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1848 unsigned int order) { return NULL; }
1849#endif
1850
c361be55
MG
1851/*
1852 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1853 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1854 * boundary. If alignment is required, use move_freepages_block()
1855 */
435b405c 1856int move_freepages(struct zone *zone,
b69a7288
AB
1857 struct page *start_page, struct page *end_page,
1858 int migratetype)
c361be55
MG
1859{
1860 struct page *page;
d00181b9 1861 unsigned int order;
d100313f 1862 int pages_moved = 0;
c361be55
MG
1863
1864#ifndef CONFIG_HOLES_IN_ZONE
1865 /*
1866 * page_zone is not safe to call in this context when
1867 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1868 * anyway as we check zone boundaries in move_freepages_block().
1869 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1870 * grouping pages by mobility
c361be55 1871 */
97ee4ba7 1872 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1873#endif
1874
1875 for (page = start_page; page <= end_page;) {
344c790e 1876 /* Make sure we are not inadvertently changing nodes */
309381fe 1877 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1878
c361be55
MG
1879 if (!pfn_valid_within(page_to_pfn(page))) {
1880 page++;
1881 continue;
1882 }
1883
1884 if (!PageBuddy(page)) {
1885 page++;
1886 continue;
1887 }
1888
1889 order = page_order(page);
84be48d8
KS
1890 list_move(&page->lru,
1891 &zone->free_area[order].free_list[migratetype]);
c361be55 1892 page += 1 << order;
d100313f 1893 pages_moved += 1 << order;
c361be55
MG
1894 }
1895
d100313f 1896 return pages_moved;
c361be55
MG
1897}
1898
ee6f509c 1899int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1900 int migratetype)
c361be55
MG
1901{
1902 unsigned long start_pfn, end_pfn;
1903 struct page *start_page, *end_page;
1904
1905 start_pfn = page_to_pfn(page);
d9c23400 1906 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1907 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1908 end_page = start_page + pageblock_nr_pages - 1;
1909 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1910
1911 /* Do not cross zone boundaries */
108bcc96 1912 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1913 start_page = page;
108bcc96 1914 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1915 return 0;
1916
1917 return move_freepages(zone, start_page, end_page, migratetype);
1918}
1919
2f66a68f
MG
1920static void change_pageblock_range(struct page *pageblock_page,
1921 int start_order, int migratetype)
1922{
1923 int nr_pageblocks = 1 << (start_order - pageblock_order);
1924
1925 while (nr_pageblocks--) {
1926 set_pageblock_migratetype(pageblock_page, migratetype);
1927 pageblock_page += pageblock_nr_pages;
1928 }
1929}
1930
fef903ef 1931/*
9c0415eb
VB
1932 * When we are falling back to another migratetype during allocation, try to
1933 * steal extra free pages from the same pageblocks to satisfy further
1934 * allocations, instead of polluting multiple pageblocks.
1935 *
1936 * If we are stealing a relatively large buddy page, it is likely there will
1937 * be more free pages in the pageblock, so try to steal them all. For
1938 * reclaimable and unmovable allocations, we steal regardless of page size,
1939 * as fragmentation caused by those allocations polluting movable pageblocks
1940 * is worse than movable allocations stealing from unmovable and reclaimable
1941 * pageblocks.
fef903ef 1942 */
4eb7dce6
JK
1943static bool can_steal_fallback(unsigned int order, int start_mt)
1944{
1945 /*
1946 * Leaving this order check is intended, although there is
1947 * relaxed order check in next check. The reason is that
1948 * we can actually steal whole pageblock if this condition met,
1949 * but, below check doesn't guarantee it and that is just heuristic
1950 * so could be changed anytime.
1951 */
1952 if (order >= pageblock_order)
1953 return true;
1954
1955 if (order >= pageblock_order / 2 ||
1956 start_mt == MIGRATE_RECLAIMABLE ||
1957 start_mt == MIGRATE_UNMOVABLE ||
1958 page_group_by_mobility_disabled)
1959 return true;
1960
1961 return false;
1962}
1963
1964/*
1965 * This function implements actual steal behaviour. If order is large enough,
1966 * we can steal whole pageblock. If not, we first move freepages in this
1967 * pageblock and check whether half of pages are moved or not. If half of
1968 * pages are moved, we can change migratetype of pageblock and permanently
1969 * use it's pages as requested migratetype in the future.
1970 */
1971static void steal_suitable_fallback(struct zone *zone, struct page *page,
1972 int start_type)
fef903ef 1973{
d00181b9 1974 unsigned int current_order = page_order(page);
4eb7dce6 1975 int pages;
fef903ef 1976
fef903ef
SB
1977 /* Take ownership for orders >= pageblock_order */
1978 if (current_order >= pageblock_order) {
1979 change_pageblock_range(page, current_order, start_type);
3a1086fb 1980 return;
fef903ef
SB
1981 }
1982
4eb7dce6 1983 pages = move_freepages_block(zone, page, start_type);
fef903ef 1984
4eb7dce6
JK
1985 /* Claim the whole block if over half of it is free */
1986 if (pages >= (1 << (pageblock_order-1)) ||
1987 page_group_by_mobility_disabled)
1988 set_pageblock_migratetype(page, start_type);
1989}
1990
2149cdae
JK
1991/*
1992 * Check whether there is a suitable fallback freepage with requested order.
1993 * If only_stealable is true, this function returns fallback_mt only if
1994 * we can steal other freepages all together. This would help to reduce
1995 * fragmentation due to mixed migratetype pages in one pageblock.
1996 */
1997int find_suitable_fallback(struct free_area *area, unsigned int order,
1998 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1999{
2000 int i;
2001 int fallback_mt;
2002
2003 if (area->nr_free == 0)
2004 return -1;
2005
2006 *can_steal = false;
2007 for (i = 0;; i++) {
2008 fallback_mt = fallbacks[migratetype][i];
974a786e 2009 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2010 break;
2011
2012 if (list_empty(&area->free_list[fallback_mt]))
2013 continue;
fef903ef 2014
4eb7dce6
JK
2015 if (can_steal_fallback(order, migratetype))
2016 *can_steal = true;
2017
2149cdae
JK
2018 if (!only_stealable)
2019 return fallback_mt;
2020
2021 if (*can_steal)
2022 return fallback_mt;
fef903ef 2023 }
4eb7dce6
JK
2024
2025 return -1;
fef903ef
SB
2026}
2027
0aaa29a5
MG
2028/*
2029 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2030 * there are no empty page blocks that contain a page with a suitable order
2031 */
2032static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2033 unsigned int alloc_order)
2034{
2035 int mt;
2036 unsigned long max_managed, flags;
2037
2038 /*
2039 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2040 * Check is race-prone but harmless.
2041 */
2042 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2043 if (zone->nr_reserved_highatomic >= max_managed)
2044 return;
2045
2046 spin_lock_irqsave(&zone->lock, flags);
2047
2048 /* Recheck the nr_reserved_highatomic limit under the lock */
2049 if (zone->nr_reserved_highatomic >= max_managed)
2050 goto out_unlock;
2051
2052 /* Yoink! */
2053 mt = get_pageblock_migratetype(page);
2054 if (mt != MIGRATE_HIGHATOMIC &&
2055 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2056 zone->nr_reserved_highatomic += pageblock_nr_pages;
2057 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2058 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2059 }
2060
2061out_unlock:
2062 spin_unlock_irqrestore(&zone->lock, flags);
2063}
2064
2065/*
2066 * Used when an allocation is about to fail under memory pressure. This
2067 * potentially hurts the reliability of high-order allocations when under
2068 * intense memory pressure but failed atomic allocations should be easier
2069 * to recover from than an OOM.
2070 */
2071static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2072{
2073 struct zonelist *zonelist = ac->zonelist;
2074 unsigned long flags;
2075 struct zoneref *z;
2076 struct zone *zone;
2077 struct page *page;
2078 int order;
2079
2080 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2081 ac->nodemask) {
2082 /* Preserve at least one pageblock */
2083 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
a16601c5
GT
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
0aaa29a5
MG
2094 continue;
2095
0aaa29a5
MG
2096 /*
2097 * It should never happen but changes to locking could
2098 * inadvertently allow a per-cpu drain to add pages
2099 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2100 * and watch for underflows.
2101 */
2102 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2103 zone->nr_reserved_highatomic);
2104
2105 /*
2106 * Convert to ac->migratetype and avoid the normal
2107 * pageblock stealing heuristics. Minimally, the caller
2108 * is doing the work and needs the pages. More
2109 * importantly, if the block was always converted to
2110 * MIGRATE_UNMOVABLE or another type then the number
2111 * of pageblocks that cannot be completely freed
2112 * may increase.
2113 */
2114 set_pageblock_migratetype(page, ac->migratetype);
2115 move_freepages_block(zone, page, ac->migratetype);
2116 spin_unlock_irqrestore(&zone->lock, flags);
2117 return;
2118 }
2119 spin_unlock_irqrestore(&zone->lock, flags);
2120 }
2121}
2122
b2a0ac88 2123/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2124static inline struct page *
7aeb09f9 2125__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2126{
b8af2941 2127 struct free_area *area;
7aeb09f9 2128 unsigned int current_order;
b2a0ac88 2129 struct page *page;
4eb7dce6
JK
2130 int fallback_mt;
2131 bool can_steal;
b2a0ac88
MG
2132
2133 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2134 for (current_order = MAX_ORDER-1;
2135 current_order >= order && current_order <= MAX_ORDER-1;
2136 --current_order) {
4eb7dce6
JK
2137 area = &(zone->free_area[current_order]);
2138 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2139 start_migratetype, false, &can_steal);
4eb7dce6
JK
2140 if (fallback_mt == -1)
2141 continue;
b2a0ac88 2142
a16601c5 2143 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2144 struct page, lru);
2145 if (can_steal)
2146 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2147
4eb7dce6
JK
2148 /* Remove the page from the freelists */
2149 area->nr_free--;
2150 list_del(&page->lru);
2151 rmv_page_order(page);
3a1086fb 2152
4eb7dce6
JK
2153 expand(zone, page, order, current_order, area,
2154 start_migratetype);
2155 /*
bb14c2c7 2156 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2157 * migratetype depending on the decisions in
bb14c2c7
VB
2158 * find_suitable_fallback(). This is OK as long as it does not
2159 * differ for MIGRATE_CMA pageblocks. Those can be used as
2160 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2161 */
bb14c2c7 2162 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2163
4eb7dce6
JK
2164 trace_mm_page_alloc_extfrag(page, order, current_order,
2165 start_migratetype, fallback_mt);
e0fff1bd 2166
4eb7dce6 2167 return page;
b2a0ac88
MG
2168 }
2169
728ec980 2170 return NULL;
b2a0ac88
MG
2171}
2172
56fd56b8 2173/*
1da177e4
LT
2174 * Do the hard work of removing an element from the buddy allocator.
2175 * Call me with the zone->lock already held.
2176 */
b2a0ac88 2177static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2178 int migratetype)
1da177e4 2179{
1da177e4
LT
2180 struct page *page;
2181
56fd56b8 2182 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2183 if (unlikely(!page)) {
dc67647b
JK
2184 if (migratetype == MIGRATE_MOVABLE)
2185 page = __rmqueue_cma_fallback(zone, order);
2186
2187 if (!page)
2188 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2189 }
2190
0d3d062a 2191 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2192 return page;
1da177e4
LT
2193}
2194
5f63b720 2195/*
1da177e4
LT
2196 * Obtain a specified number of elements from the buddy allocator, all under
2197 * a single hold of the lock, for efficiency. Add them to the supplied list.
2198 * Returns the number of new pages which were placed at *list.
2199 */
5f63b720 2200static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2201 unsigned long count, struct list_head *list,
b745bc85 2202 int migratetype, bool cold)
1da177e4 2203{
5bcc9f86 2204 int i;
5f63b720 2205
c54ad30c 2206 spin_lock(&zone->lock);
1da177e4 2207 for (i = 0; i < count; ++i) {
6ac0206b 2208 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2209 if (unlikely(page == NULL))
1da177e4 2210 break;
81eabcbe 2211
479f854a
MG
2212 if (unlikely(check_pcp_refill(page)))
2213 continue;
2214
81eabcbe
MG
2215 /*
2216 * Split buddy pages returned by expand() are received here
2217 * in physical page order. The page is added to the callers and
2218 * list and the list head then moves forward. From the callers
2219 * perspective, the linked list is ordered by page number in
2220 * some conditions. This is useful for IO devices that can
2221 * merge IO requests if the physical pages are ordered
2222 * properly.
2223 */
b745bc85 2224 if (likely(!cold))
e084b2d9
MG
2225 list_add(&page->lru, list);
2226 else
2227 list_add_tail(&page->lru, list);
81eabcbe 2228 list = &page->lru;
bb14c2c7 2229 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2230 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2231 -(1 << order));
1da177e4 2232 }
f2260e6b 2233 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2234 spin_unlock(&zone->lock);
085cc7d5 2235 return i;
1da177e4
LT
2236}
2237
4ae7c039 2238#ifdef CONFIG_NUMA
8fce4d8e 2239/*
4037d452
CL
2240 * Called from the vmstat counter updater to drain pagesets of this
2241 * currently executing processor on remote nodes after they have
2242 * expired.
2243 *
879336c3
CL
2244 * Note that this function must be called with the thread pinned to
2245 * a single processor.
8fce4d8e 2246 */
4037d452 2247void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2248{
4ae7c039 2249 unsigned long flags;
7be12fc9 2250 int to_drain, batch;
4ae7c039 2251
4037d452 2252 local_irq_save(flags);
4db0c3c2 2253 batch = READ_ONCE(pcp->batch);
7be12fc9 2254 to_drain = min(pcp->count, batch);
2a13515c
KM
2255 if (to_drain > 0) {
2256 free_pcppages_bulk(zone, to_drain, pcp);
2257 pcp->count -= to_drain;
2258 }
4037d452 2259 local_irq_restore(flags);
4ae7c039
CL
2260}
2261#endif
2262
9f8f2172 2263/*
93481ff0 2264 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2265 *
2266 * The processor must either be the current processor and the
2267 * thread pinned to the current processor or a processor that
2268 * is not online.
2269 */
93481ff0 2270static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2271{
c54ad30c 2272 unsigned long flags;
93481ff0
VB
2273 struct per_cpu_pageset *pset;
2274 struct per_cpu_pages *pcp;
1da177e4 2275
93481ff0
VB
2276 local_irq_save(flags);
2277 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2278
93481ff0
VB
2279 pcp = &pset->pcp;
2280 if (pcp->count) {
2281 free_pcppages_bulk(zone, pcp->count, pcp);
2282 pcp->count = 0;
2283 }
2284 local_irq_restore(flags);
2285}
3dfa5721 2286
93481ff0
VB
2287/*
2288 * Drain pcplists of all zones on the indicated processor.
2289 *
2290 * The processor must either be the current processor and the
2291 * thread pinned to the current processor or a processor that
2292 * is not online.
2293 */
2294static void drain_pages(unsigned int cpu)
2295{
2296 struct zone *zone;
2297
2298 for_each_populated_zone(zone) {
2299 drain_pages_zone(cpu, zone);
1da177e4
LT
2300 }
2301}
1da177e4 2302
9f8f2172
CL
2303/*
2304 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2305 *
2306 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2307 * the single zone's pages.
9f8f2172 2308 */
93481ff0 2309void drain_local_pages(struct zone *zone)
9f8f2172 2310{
93481ff0
VB
2311 int cpu = smp_processor_id();
2312
2313 if (zone)
2314 drain_pages_zone(cpu, zone);
2315 else
2316 drain_pages(cpu);
9f8f2172
CL
2317}
2318
2319/*
74046494
GBY
2320 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2321 *
93481ff0
VB
2322 * When zone parameter is non-NULL, spill just the single zone's pages.
2323 *
74046494
GBY
2324 * Note that this code is protected against sending an IPI to an offline
2325 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2326 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2327 * nothing keeps CPUs from showing up after we populated the cpumask and
2328 * before the call to on_each_cpu_mask().
9f8f2172 2329 */
93481ff0 2330void drain_all_pages(struct zone *zone)
9f8f2172 2331{
74046494 2332 int cpu;
74046494
GBY
2333
2334 /*
2335 * Allocate in the BSS so we wont require allocation in
2336 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2337 */
2338 static cpumask_t cpus_with_pcps;
2339
2340 /*
2341 * We don't care about racing with CPU hotplug event
2342 * as offline notification will cause the notified
2343 * cpu to drain that CPU pcps and on_each_cpu_mask
2344 * disables preemption as part of its processing
2345 */
2346 for_each_online_cpu(cpu) {
93481ff0
VB
2347 struct per_cpu_pageset *pcp;
2348 struct zone *z;
74046494 2349 bool has_pcps = false;
93481ff0
VB
2350
2351 if (zone) {
74046494 2352 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2353 if (pcp->pcp.count)
74046494 2354 has_pcps = true;
93481ff0
VB
2355 } else {
2356 for_each_populated_zone(z) {
2357 pcp = per_cpu_ptr(z->pageset, cpu);
2358 if (pcp->pcp.count) {
2359 has_pcps = true;
2360 break;
2361 }
74046494
GBY
2362 }
2363 }
93481ff0 2364
74046494
GBY
2365 if (has_pcps)
2366 cpumask_set_cpu(cpu, &cpus_with_pcps);
2367 else
2368 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2369 }
93481ff0
VB
2370 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2371 zone, 1);
9f8f2172
CL
2372}
2373
296699de 2374#ifdef CONFIG_HIBERNATION
1da177e4
LT
2375
2376void mark_free_pages(struct zone *zone)
2377{
f623f0db
RW
2378 unsigned long pfn, max_zone_pfn;
2379 unsigned long flags;
7aeb09f9 2380 unsigned int order, t;
86760a2c 2381 struct page *page;
1da177e4 2382
8080fc03 2383 if (zone_is_empty(zone))
1da177e4
LT
2384 return;
2385
2386 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2387
108bcc96 2388 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2389 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2390 if (pfn_valid(pfn)) {
86760a2c 2391 page = pfn_to_page(pfn);
ba6b0979
JK
2392
2393 if (page_zone(page) != zone)
2394 continue;
2395
7be98234
RW
2396 if (!swsusp_page_is_forbidden(page))
2397 swsusp_unset_page_free(page);
f623f0db 2398 }
1da177e4 2399
b2a0ac88 2400 for_each_migratetype_order(order, t) {
86760a2c
GT
2401 list_for_each_entry(page,
2402 &zone->free_area[order].free_list[t], lru) {
f623f0db 2403 unsigned long i;
1da177e4 2404
86760a2c 2405 pfn = page_to_pfn(page);
f623f0db 2406 for (i = 0; i < (1UL << order); i++)
7be98234 2407 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2408 }
b2a0ac88 2409 }
1da177e4
LT
2410 spin_unlock_irqrestore(&zone->lock, flags);
2411}
e2c55dc8 2412#endif /* CONFIG_PM */
1da177e4 2413
1da177e4
LT
2414/*
2415 * Free a 0-order page
b745bc85 2416 * cold == true ? free a cold page : free a hot page
1da177e4 2417 */
b745bc85 2418void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2419{
2420 struct zone *zone = page_zone(page);
2421 struct per_cpu_pages *pcp;
2422 unsigned long flags;
dc4b0caf 2423 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2424 int migratetype;
1da177e4 2425
4db7548c 2426 if (!free_pcp_prepare(page))
689bcebf
HD
2427 return;
2428
dc4b0caf 2429 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2430 set_pcppage_migratetype(page, migratetype);
1da177e4 2431 local_irq_save(flags);
f8891e5e 2432 __count_vm_event(PGFREE);
da456f14 2433
5f8dcc21
MG
2434 /*
2435 * We only track unmovable, reclaimable and movable on pcp lists.
2436 * Free ISOLATE pages back to the allocator because they are being
2437 * offlined but treat RESERVE as movable pages so we can get those
2438 * areas back if necessary. Otherwise, we may have to free
2439 * excessively into the page allocator
2440 */
2441 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2442 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2443 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2444 goto out;
2445 }
2446 migratetype = MIGRATE_MOVABLE;
2447 }
2448
99dcc3e5 2449 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2450 if (!cold)
5f8dcc21 2451 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2452 else
2453 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2454 pcp->count++;
48db57f8 2455 if (pcp->count >= pcp->high) {
4db0c3c2 2456 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2457 free_pcppages_bulk(zone, batch, pcp);
2458 pcp->count -= batch;
48db57f8 2459 }
5f8dcc21
MG
2460
2461out:
1da177e4 2462 local_irq_restore(flags);
1da177e4
LT
2463}
2464
cc59850e
KK
2465/*
2466 * Free a list of 0-order pages
2467 */
b745bc85 2468void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2469{
2470 struct page *page, *next;
2471
2472 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2473 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2474 free_hot_cold_page(page, cold);
2475 }
2476}
2477
8dfcc9ba
NP
2478/*
2479 * split_page takes a non-compound higher-order page, and splits it into
2480 * n (1<<order) sub-pages: page[0..n]
2481 * Each sub-page must be freed individually.
2482 *
2483 * Note: this is probably too low level an operation for use in drivers.
2484 * Please consult with lkml before using this in your driver.
2485 */
2486void split_page(struct page *page, unsigned int order)
2487{
2488 int i;
2489
309381fe
SL
2490 VM_BUG_ON_PAGE(PageCompound(page), page);
2491 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2492
2493#ifdef CONFIG_KMEMCHECK
2494 /*
2495 * Split shadow pages too, because free(page[0]) would
2496 * otherwise free the whole shadow.
2497 */
2498 if (kmemcheck_page_is_tracked(page))
2499 split_page(virt_to_page(page[0].shadow), order);
2500#endif
2501
a9627bc5 2502 for (i = 1; i < (1 << order); i++)
7835e98b 2503 set_page_refcounted(page + i);
a9627bc5 2504 split_page_owner(page, order);
8dfcc9ba 2505}
5853ff23 2506EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2507
3c605096 2508int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2509{
748446bb
MG
2510 unsigned long watermark;
2511 struct zone *zone;
2139cbe6 2512 int mt;
748446bb
MG
2513
2514 BUG_ON(!PageBuddy(page));
2515
2516 zone = page_zone(page);
2e30abd1 2517 mt = get_pageblock_migratetype(page);
748446bb 2518
194159fb 2519 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2520 /* Obey watermarks as if the page was being allocated */
2521 watermark = low_wmark_pages(zone) + (1 << order);
2522 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2523 return 0;
2524
8fb74b9f 2525 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2526 }
748446bb
MG
2527
2528 /* Remove page from free list */
2529 list_del(&page->lru);
2530 zone->free_area[order].nr_free--;
2531 rmv_page_order(page);
2139cbe6 2532
400bc7fd 2533 /*
2534 * Set the pageblock if the isolated page is at least half of a
2535 * pageblock
2536 */
748446bb
MG
2537 if (order >= pageblock_order - 1) {
2538 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2539 for (; page < endpage; page += pageblock_nr_pages) {
2540 int mt = get_pageblock_migratetype(page);
194159fb 2541 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2542 set_pageblock_migratetype(page,
2543 MIGRATE_MOVABLE);
2544 }
748446bb
MG
2545 }
2546
f3a14ced 2547
8fb74b9f 2548 return 1UL << order;
1fb3f8ca
MG
2549}
2550
060e7417
MG
2551/*
2552 * Update NUMA hit/miss statistics
2553 *
2554 * Must be called with interrupts disabled.
2555 *
2556 * When __GFP_OTHER_NODE is set assume the node of the preferred
2557 * zone is the local node. This is useful for daemons who allocate
2558 * memory on behalf of other processes.
2559 */
2560static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2561 gfp_t flags)
2562{
2563#ifdef CONFIG_NUMA
2564 int local_nid = numa_node_id();
2565 enum zone_stat_item local_stat = NUMA_LOCAL;
2566
2567 if (unlikely(flags & __GFP_OTHER_NODE)) {
2568 local_stat = NUMA_OTHER;
2569 local_nid = preferred_zone->node;
2570 }
2571
2572 if (z->node == local_nid) {
2573 __inc_zone_state(z, NUMA_HIT);
2574 __inc_zone_state(z, local_stat);
2575 } else {
2576 __inc_zone_state(z, NUMA_MISS);
2577 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2578 }
2579#endif
2580}
2581
1da177e4 2582/*
75379191 2583 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2584 */
0a15c3e9
MG
2585static inline
2586struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2587 struct zone *zone, unsigned int order,
c603844b
MG
2588 gfp_t gfp_flags, unsigned int alloc_flags,
2589 int migratetype)
1da177e4
LT
2590{
2591 unsigned long flags;
689bcebf 2592 struct page *page;
b745bc85 2593 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2594
48db57f8 2595 if (likely(order == 0)) {
1da177e4 2596 struct per_cpu_pages *pcp;
5f8dcc21 2597 struct list_head *list;
1da177e4 2598
1da177e4 2599 local_irq_save(flags);
479f854a
MG
2600 do {
2601 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2602 list = &pcp->lists[migratetype];
2603 if (list_empty(list)) {
2604 pcp->count += rmqueue_bulk(zone, 0,
2605 pcp->batch, list,
2606 migratetype, cold);
2607 if (unlikely(list_empty(list)))
2608 goto failed;
2609 }
b92a6edd 2610
479f854a
MG
2611 if (cold)
2612 page = list_last_entry(list, struct page, lru);
2613 else
2614 page = list_first_entry(list, struct page, lru);
5f8dcc21 2615
83b9355b
VB
2616 list_del(&page->lru);
2617 pcp->count--;
2618
2619 } while (check_new_pcp(page));
7fb1d9fc 2620 } else {
0f352e53
MH
2621 /*
2622 * We most definitely don't want callers attempting to
2623 * allocate greater than order-1 page units with __GFP_NOFAIL.
2624 */
2625 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2626 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2627
479f854a
MG
2628 do {
2629 page = NULL;
2630 if (alloc_flags & ALLOC_HARDER) {
2631 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2632 if (page)
2633 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2634 }
2635 if (!page)
2636 page = __rmqueue(zone, order, migratetype);
2637 } while (page && check_new_pages(page, order));
a74609fa
NP
2638 spin_unlock(&zone->lock);
2639 if (!page)
2640 goto failed;
d1ce749a 2641 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2642 get_pcppage_migratetype(page));
1da177e4
LT
2643 }
2644
16709d1d 2645 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2646 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2647 local_irq_restore(flags);
1da177e4 2648
309381fe 2649 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2650 return page;
a74609fa
NP
2651
2652failed:
2653 local_irq_restore(flags);
a74609fa 2654 return NULL;
1da177e4
LT
2655}
2656
933e312e
AM
2657#ifdef CONFIG_FAIL_PAGE_ALLOC
2658
b2588c4b 2659static struct {
933e312e
AM
2660 struct fault_attr attr;
2661
621a5f7a 2662 bool ignore_gfp_highmem;
71baba4b 2663 bool ignore_gfp_reclaim;
54114994 2664 u32 min_order;
933e312e
AM
2665} fail_page_alloc = {
2666 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2667 .ignore_gfp_reclaim = true,
621a5f7a 2668 .ignore_gfp_highmem = true,
54114994 2669 .min_order = 1,
933e312e
AM
2670};
2671
2672static int __init setup_fail_page_alloc(char *str)
2673{
2674 return setup_fault_attr(&fail_page_alloc.attr, str);
2675}
2676__setup("fail_page_alloc=", setup_fail_page_alloc);
2677
deaf386e 2678static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2679{
54114994 2680 if (order < fail_page_alloc.min_order)
deaf386e 2681 return false;
933e312e 2682 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2683 return false;
933e312e 2684 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2685 return false;
71baba4b
MG
2686 if (fail_page_alloc.ignore_gfp_reclaim &&
2687 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2688 return false;
933e312e
AM
2689
2690 return should_fail(&fail_page_alloc.attr, 1 << order);
2691}
2692
2693#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2694
2695static int __init fail_page_alloc_debugfs(void)
2696{
f4ae40a6 2697 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2698 struct dentry *dir;
933e312e 2699
dd48c085
AM
2700 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2701 &fail_page_alloc.attr);
2702 if (IS_ERR(dir))
2703 return PTR_ERR(dir);
933e312e 2704
b2588c4b 2705 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2706 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2707 goto fail;
2708 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2709 &fail_page_alloc.ignore_gfp_highmem))
2710 goto fail;
2711 if (!debugfs_create_u32("min-order", mode, dir,
2712 &fail_page_alloc.min_order))
2713 goto fail;
2714
2715 return 0;
2716fail:
dd48c085 2717 debugfs_remove_recursive(dir);
933e312e 2718
b2588c4b 2719 return -ENOMEM;
933e312e
AM
2720}
2721
2722late_initcall(fail_page_alloc_debugfs);
2723
2724#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2725
2726#else /* CONFIG_FAIL_PAGE_ALLOC */
2727
deaf386e 2728static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2729{
deaf386e 2730 return false;
933e312e
AM
2731}
2732
2733#endif /* CONFIG_FAIL_PAGE_ALLOC */
2734
1da177e4 2735/*
97a16fc8
MG
2736 * Return true if free base pages are above 'mark'. For high-order checks it
2737 * will return true of the order-0 watermark is reached and there is at least
2738 * one free page of a suitable size. Checking now avoids taking the zone lock
2739 * to check in the allocation paths if no pages are free.
1da177e4 2740 */
86a294a8
MH
2741bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2742 int classzone_idx, unsigned int alloc_flags,
2743 long free_pages)
1da177e4 2744{
d23ad423 2745 long min = mark;
1da177e4 2746 int o;
c603844b 2747 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2748
0aaa29a5 2749 /* free_pages may go negative - that's OK */
df0a6daa 2750 free_pages -= (1 << order) - 1;
0aaa29a5 2751
7fb1d9fc 2752 if (alloc_flags & ALLOC_HIGH)
1da177e4 2753 min -= min / 2;
0aaa29a5
MG
2754
2755 /*
2756 * If the caller does not have rights to ALLOC_HARDER then subtract
2757 * the high-atomic reserves. This will over-estimate the size of the
2758 * atomic reserve but it avoids a search.
2759 */
97a16fc8 2760 if (likely(!alloc_harder))
0aaa29a5
MG
2761 free_pages -= z->nr_reserved_highatomic;
2762 else
1da177e4 2763 min -= min / 4;
e2b19197 2764
d95ea5d1
BZ
2765#ifdef CONFIG_CMA
2766 /* If allocation can't use CMA areas don't use free CMA pages */
2767 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2768 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2769#endif
026b0814 2770
97a16fc8
MG
2771 /*
2772 * Check watermarks for an order-0 allocation request. If these
2773 * are not met, then a high-order request also cannot go ahead
2774 * even if a suitable page happened to be free.
2775 */
2776 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2777 return false;
1da177e4 2778
97a16fc8
MG
2779 /* If this is an order-0 request then the watermark is fine */
2780 if (!order)
2781 return true;
2782
2783 /* For a high-order request, check at least one suitable page is free */
2784 for (o = order; o < MAX_ORDER; o++) {
2785 struct free_area *area = &z->free_area[o];
2786 int mt;
2787
2788 if (!area->nr_free)
2789 continue;
2790
2791 if (alloc_harder)
2792 return true;
1da177e4 2793
97a16fc8
MG
2794 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2795 if (!list_empty(&area->free_list[mt]))
2796 return true;
2797 }
2798
2799#ifdef CONFIG_CMA
2800 if ((alloc_flags & ALLOC_CMA) &&
2801 !list_empty(&area->free_list[MIGRATE_CMA])) {
2802 return true;
2803 }
2804#endif
1da177e4 2805 }
97a16fc8 2806 return false;
88f5acf8
MG
2807}
2808
7aeb09f9 2809bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2810 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2811{
2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 zone_page_state(z, NR_FREE_PAGES));
2814}
2815
48ee5f36
MG
2816static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2817 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2818{
2819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820 long cma_pages = 0;
2821
2822#ifdef CONFIG_CMA
2823 /* If allocation can't use CMA areas don't use free CMA pages */
2824 if (!(alloc_flags & ALLOC_CMA))
2825 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2826#endif
2827
2828 /*
2829 * Fast check for order-0 only. If this fails then the reserves
2830 * need to be calculated. There is a corner case where the check
2831 * passes but only the high-order atomic reserve are free. If
2832 * the caller is !atomic then it'll uselessly search the free
2833 * list. That corner case is then slower but it is harmless.
2834 */
2835 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2836 return true;
2837
2838 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2839 free_pages);
2840}
2841
7aeb09f9 2842bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2843 unsigned long mark, int classzone_idx)
88f5acf8
MG
2844{
2845 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2846
2847 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2848 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2849
e2b19197 2850 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2851 free_pages);
1da177e4
LT
2852}
2853
9276b1bc 2854#ifdef CONFIG_NUMA
957f822a
DR
2855static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2856{
5f7a75ac
MG
2857 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2858 RECLAIM_DISTANCE;
957f822a 2859}
9276b1bc 2860#else /* CONFIG_NUMA */
957f822a
DR
2861static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2862{
2863 return true;
2864}
9276b1bc
PJ
2865#endif /* CONFIG_NUMA */
2866
7fb1d9fc 2867/*
0798e519 2868 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2869 * a page.
2870 */
2871static struct page *
a9263751
VB
2872get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2873 const struct alloc_context *ac)
753ee728 2874{
c33d6c06 2875 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2876 struct zone *zone;
3b8c0be4
MG
2877 struct pglist_data *last_pgdat_dirty_limit = NULL;
2878
7fb1d9fc 2879 /*
9276b1bc 2880 * Scan zonelist, looking for a zone with enough free.
344736f2 2881 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2882 */
c33d6c06 2883 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2884 ac->nodemask) {
be06af00 2885 struct page *page;
e085dbc5
JW
2886 unsigned long mark;
2887
664eedde
MG
2888 if (cpusets_enabled() &&
2889 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2890 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2891 continue;
a756cf59
JW
2892 /*
2893 * When allocating a page cache page for writing, we
281e3726
MG
2894 * want to get it from a node that is within its dirty
2895 * limit, such that no single node holds more than its
a756cf59 2896 * proportional share of globally allowed dirty pages.
281e3726 2897 * The dirty limits take into account the node's
a756cf59
JW
2898 * lowmem reserves and high watermark so that kswapd
2899 * should be able to balance it without having to
2900 * write pages from its LRU list.
2901 *
a756cf59 2902 * XXX: For now, allow allocations to potentially
281e3726 2903 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2904 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2905 * which is important when on a NUMA setup the allowed
281e3726 2906 * nodes are together not big enough to reach the
a756cf59 2907 * global limit. The proper fix for these situations
281e3726 2908 * will require awareness of nodes in the
a756cf59
JW
2909 * dirty-throttling and the flusher threads.
2910 */
3b8c0be4
MG
2911 if (ac->spread_dirty_pages) {
2912 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2913 continue;
2914
2915 if (!node_dirty_ok(zone->zone_pgdat)) {
2916 last_pgdat_dirty_limit = zone->zone_pgdat;
2917 continue;
2918 }
2919 }
7fb1d9fc 2920
e085dbc5 2921 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2922 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2923 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2924 int ret;
2925
5dab2911
MG
2926 /* Checked here to keep the fast path fast */
2927 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2928 if (alloc_flags & ALLOC_NO_WATERMARKS)
2929 goto try_this_zone;
2930
a5f5f91d 2931 if (node_reclaim_mode == 0 ||
c33d6c06 2932 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2933 continue;
2934
a5f5f91d 2935 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2936 switch (ret) {
a5f5f91d 2937 case NODE_RECLAIM_NOSCAN:
fa5e084e 2938 /* did not scan */
cd38b115 2939 continue;
a5f5f91d 2940 case NODE_RECLAIM_FULL:
fa5e084e 2941 /* scanned but unreclaimable */
cd38b115 2942 continue;
fa5e084e
MG
2943 default:
2944 /* did we reclaim enough */
fed2719e 2945 if (zone_watermark_ok(zone, order, mark,
93ea9964 2946 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2947 goto try_this_zone;
2948
fed2719e 2949 continue;
0798e519 2950 }
7fb1d9fc
RS
2951 }
2952
fa5e084e 2953try_this_zone:
c33d6c06 2954 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2955 gfp_mask, alloc_flags, ac->migratetype);
75379191 2956 if (page) {
479f854a 2957 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2958
2959 /*
2960 * If this is a high-order atomic allocation then check
2961 * if the pageblock should be reserved for the future
2962 */
2963 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2964 reserve_highatomic_pageblock(page, zone, order);
2965
75379191
VB
2966 return page;
2967 }
54a6eb5c 2968 }
9276b1bc 2969
4ffeaf35 2970 return NULL;
753ee728
MH
2971}
2972
29423e77
DR
2973/*
2974 * Large machines with many possible nodes should not always dump per-node
2975 * meminfo in irq context.
2976 */
2977static inline bool should_suppress_show_mem(void)
2978{
2979 bool ret = false;
2980
2981#if NODES_SHIFT > 8
2982 ret = in_interrupt();
2983#endif
2984 return ret;
2985}
2986
a238ab5b
DH
2987static DEFINE_RATELIMIT_STATE(nopage_rs,
2988 DEFAULT_RATELIMIT_INTERVAL,
2989 DEFAULT_RATELIMIT_BURST);
2990
d00181b9 2991void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2992{
a238ab5b
DH
2993 unsigned int filter = SHOW_MEM_FILTER_NODES;
2994
c0a32fc5
SG
2995 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2996 debug_guardpage_minorder() > 0)
a238ab5b
DH
2997 return;
2998
2999 /*
3000 * This documents exceptions given to allocations in certain
3001 * contexts that are allowed to allocate outside current's set
3002 * of allowed nodes.
3003 */
3004 if (!(gfp_mask & __GFP_NOMEMALLOC))
3005 if (test_thread_flag(TIF_MEMDIE) ||
3006 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3007 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3008 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3009 filter &= ~SHOW_MEM_FILTER_NODES;
3010
3011 if (fmt) {
3ee9a4f0
JP
3012 struct va_format vaf;
3013 va_list args;
3014
a238ab5b 3015 va_start(args, fmt);
3ee9a4f0
JP
3016
3017 vaf.fmt = fmt;
3018 vaf.va = &args;
3019
3020 pr_warn("%pV", &vaf);
3021
a238ab5b
DH
3022 va_end(args);
3023 }
3024
c5c990e8
VB
3025 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3026 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3027 dump_stack();
3028 if (!should_suppress_show_mem())
3029 show_mem(filter);
3030}
3031
11e33f6a
MG
3032static inline struct page *
3033__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3034 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3035{
6e0fc46d
DR
3036 struct oom_control oc = {
3037 .zonelist = ac->zonelist,
3038 .nodemask = ac->nodemask,
2a966b77 3039 .memcg = NULL,
6e0fc46d
DR
3040 .gfp_mask = gfp_mask,
3041 .order = order,
6e0fc46d 3042 };
11e33f6a
MG
3043 struct page *page;
3044
9879de73
JW
3045 *did_some_progress = 0;
3046
9879de73 3047 /*
dc56401f
JW
3048 * Acquire the oom lock. If that fails, somebody else is
3049 * making progress for us.
9879de73 3050 */
dc56401f 3051 if (!mutex_trylock(&oom_lock)) {
9879de73 3052 *did_some_progress = 1;
11e33f6a 3053 schedule_timeout_uninterruptible(1);
1da177e4
LT
3054 return NULL;
3055 }
6b1de916 3056
11e33f6a
MG
3057 /*
3058 * Go through the zonelist yet one more time, keep very high watermark
3059 * here, this is only to catch a parallel oom killing, we must fail if
3060 * we're still under heavy pressure.
3061 */
a9263751
VB
3062 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3063 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3064 if (page)
11e33f6a
MG
3065 goto out;
3066
4365a567 3067 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3068 /* Coredumps can quickly deplete all memory reserves */
3069 if (current->flags & PF_DUMPCORE)
3070 goto out;
4365a567
KH
3071 /* The OOM killer will not help higher order allocs */
3072 if (order > PAGE_ALLOC_COSTLY_ORDER)
3073 goto out;
03668b3c 3074 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3075 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3076 goto out;
9083905a
JW
3077 if (pm_suspended_storage())
3078 goto out;
3da88fb3
MH
3079 /*
3080 * XXX: GFP_NOFS allocations should rather fail than rely on
3081 * other request to make a forward progress.
3082 * We are in an unfortunate situation where out_of_memory cannot
3083 * do much for this context but let's try it to at least get
3084 * access to memory reserved if the current task is killed (see
3085 * out_of_memory). Once filesystems are ready to handle allocation
3086 * failures more gracefully we should just bail out here.
3087 */
3088
4167e9b2 3089 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3090 if (gfp_mask & __GFP_THISNODE)
3091 goto out;
3092 }
11e33f6a 3093 /* Exhausted what can be done so it's blamo time */
5020e285 3094 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3095 *did_some_progress = 1;
5020e285
MH
3096
3097 if (gfp_mask & __GFP_NOFAIL) {
3098 page = get_page_from_freelist(gfp_mask, order,
3099 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3100 /*
3101 * fallback to ignore cpuset restriction if our nodes
3102 * are depleted
3103 */
3104 if (!page)
3105 page = get_page_from_freelist(gfp_mask, order,
3106 ALLOC_NO_WATERMARKS, ac);
3107 }
3108 }
11e33f6a 3109out:
dc56401f 3110 mutex_unlock(&oom_lock);
11e33f6a
MG
3111 return page;
3112}
3113
33c2d214
MH
3114/*
3115 * Maximum number of compaction retries wit a progress before OOM
3116 * killer is consider as the only way to move forward.
3117 */
3118#define MAX_COMPACT_RETRIES 16
3119
56de7263
MG
3120#ifdef CONFIG_COMPACTION
3121/* Try memory compaction for high-order allocations before reclaim */
3122static struct page *
3123__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3124 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3125 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3126{
98dd3b48 3127 struct page *page;
53853e2d
VB
3128
3129 if (!order)
66199712 3130 return NULL;
66199712 3131
c06b1fca 3132 current->flags |= PF_MEMALLOC;
c5d01d0d 3133 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3134 prio);
c06b1fca 3135 current->flags &= ~PF_MEMALLOC;
56de7263 3136
c5d01d0d 3137 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3138 return NULL;
53853e2d 3139
98dd3b48
VB
3140 /*
3141 * At least in one zone compaction wasn't deferred or skipped, so let's
3142 * count a compaction stall
3143 */
3144 count_vm_event(COMPACTSTALL);
8fb74b9f 3145
31a6c190 3146 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3147
98dd3b48
VB
3148 if (page) {
3149 struct zone *zone = page_zone(page);
53853e2d 3150
98dd3b48
VB
3151 zone->compact_blockskip_flush = false;
3152 compaction_defer_reset(zone, order, true);
3153 count_vm_event(COMPACTSUCCESS);
3154 return page;
3155 }
56de7263 3156
98dd3b48
VB
3157 /*
3158 * It's bad if compaction run occurs and fails. The most likely reason
3159 * is that pages exist, but not enough to satisfy watermarks.
3160 */
3161 count_vm_event(COMPACTFAIL);
66199712 3162
98dd3b48 3163 cond_resched();
56de7263
MG
3164
3165 return NULL;
3166}
33c2d214
MH
3167
3168static inline bool
86a294a8 3169should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
a5508cd8
VB
3170 enum compact_result compact_result,
3171 enum compact_priority *compact_priority,
33c2d214
MH
3172 int compaction_retries)
3173{
7854ea6c
MH
3174 int max_retries = MAX_COMPACT_RETRIES;
3175
33c2d214
MH
3176 if (!order)
3177 return false;
3178
3179 /*
3180 * compaction considers all the zone as desperately out of memory
3181 * so it doesn't really make much sense to retry except when the
a5508cd8 3182 * failure could be caused by insufficient priority
33c2d214
MH
3183 */
3184 if (compaction_failed(compact_result)) {
a5508cd8
VB
3185 if (*compact_priority > MIN_COMPACT_PRIORITY) {
3186 (*compact_priority)--;
33c2d214
MH
3187 return true;
3188 }
3189 return false;
3190 }
3191
3192 /*
7854ea6c
MH
3193 * make sure the compaction wasn't deferred or didn't bail out early
3194 * due to locks contention before we declare that we should give up.
86a294a8
MH
3195 * But do not retry if the given zonelist is not suitable for
3196 * compaction.
33c2d214 3197 */
7854ea6c 3198 if (compaction_withdrawn(compact_result))
86a294a8 3199 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3200
3201 /*
3202 * !costly requests are much more important than __GFP_REPEAT
3203 * costly ones because they are de facto nofail and invoke OOM
3204 * killer to move on while costly can fail and users are ready
3205 * to cope with that. 1/4 retries is rather arbitrary but we
3206 * would need much more detailed feedback from compaction to
3207 * make a better decision.
3208 */
3209 if (order > PAGE_ALLOC_COSTLY_ORDER)
3210 max_retries /= 4;
3211 if (compaction_retries <= max_retries)
3212 return true;
33c2d214
MH
3213
3214 return false;
3215}
56de7263
MG
3216#else
3217static inline struct page *
3218__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3219 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3220 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3221{
33c2d214 3222 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3223 return NULL;
3224}
33c2d214
MH
3225
3226static inline bool
86a294a8
MH
3227should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3228 enum compact_result compact_result,
a5508cd8 3229 enum compact_priority *compact_priority,
33c2d214
MH
3230 int compaction_retries)
3231{
31e49bfd
MH
3232 struct zone *zone;
3233 struct zoneref *z;
3234
3235 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3236 return false;
3237
3238 /*
3239 * There are setups with compaction disabled which would prefer to loop
3240 * inside the allocator rather than hit the oom killer prematurely.
3241 * Let's give them a good hope and keep retrying while the order-0
3242 * watermarks are OK.
3243 */
3244 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3245 ac->nodemask) {
3246 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3247 ac_classzone_idx(ac), alloc_flags))
3248 return true;
3249 }
33c2d214
MH
3250 return false;
3251}
56de7263
MG
3252#endif /* CONFIG_COMPACTION */
3253
bba90710
MS
3254/* Perform direct synchronous page reclaim */
3255static int
a9263751
VB
3256__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3257 const struct alloc_context *ac)
11e33f6a 3258{
11e33f6a 3259 struct reclaim_state reclaim_state;
bba90710 3260 int progress;
11e33f6a
MG
3261
3262 cond_resched();
3263
3264 /* We now go into synchronous reclaim */
3265 cpuset_memory_pressure_bump();
c06b1fca 3266 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3267 lockdep_set_current_reclaim_state(gfp_mask);
3268 reclaim_state.reclaimed_slab = 0;
c06b1fca 3269 current->reclaim_state = &reclaim_state;
11e33f6a 3270
a9263751
VB
3271 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3272 ac->nodemask);
11e33f6a 3273
c06b1fca 3274 current->reclaim_state = NULL;
11e33f6a 3275 lockdep_clear_current_reclaim_state();
c06b1fca 3276 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3277
3278 cond_resched();
3279
bba90710
MS
3280 return progress;
3281}
3282
3283/* The really slow allocator path where we enter direct reclaim */
3284static inline struct page *
3285__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3286 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3287 unsigned long *did_some_progress)
bba90710
MS
3288{
3289 struct page *page = NULL;
3290 bool drained = false;
3291
a9263751 3292 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3293 if (unlikely(!(*did_some_progress)))
3294 return NULL;
11e33f6a 3295
9ee493ce 3296retry:
31a6c190 3297 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3298
3299 /*
3300 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3301 * pages are pinned on the per-cpu lists or in high alloc reserves.
3302 * Shrink them them and try again
9ee493ce
MG
3303 */
3304 if (!page && !drained) {
0aaa29a5 3305 unreserve_highatomic_pageblock(ac);
93481ff0 3306 drain_all_pages(NULL);
9ee493ce
MG
3307 drained = true;
3308 goto retry;
3309 }
3310
11e33f6a
MG
3311 return page;
3312}
3313
a9263751 3314static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3315{
3316 struct zoneref *z;
3317 struct zone *zone;
e1a55637 3318 pg_data_t *last_pgdat = NULL;
3a025760 3319
a9263751 3320 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3321 ac->high_zoneidx, ac->nodemask) {
3322 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3323 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3324 last_pgdat = zone->zone_pgdat;
3325 }
3a025760
JW
3326}
3327
c603844b 3328static inline unsigned int
341ce06f
PZ
3329gfp_to_alloc_flags(gfp_t gfp_mask)
3330{
c603844b 3331 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3332
a56f57ff 3333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3335
341ce06f
PZ
3336 /*
3337 * The caller may dip into page reserves a bit more if the caller
3338 * cannot run direct reclaim, or if the caller has realtime scheduling
3339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3340 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3341 */
e6223a3b 3342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3343
d0164adc 3344 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3345 /*
b104a35d
DR
3346 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3347 * if it can't schedule.
5c3240d9 3348 */
b104a35d 3349 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3350 alloc_flags |= ALLOC_HARDER;
523b9458 3351 /*
b104a35d 3352 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3353 * comment for __cpuset_node_allowed().
523b9458 3354 */
341ce06f 3355 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3356 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3357 alloc_flags |= ALLOC_HARDER;
3358
d95ea5d1 3359#ifdef CONFIG_CMA
43e7a34d 3360 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3361 alloc_flags |= ALLOC_CMA;
3362#endif
341ce06f
PZ
3363 return alloc_flags;
3364}
3365
072bb0aa
MG
3366bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3367{
31a6c190
VB
3368 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3369 return false;
3370
3371 if (gfp_mask & __GFP_MEMALLOC)
3372 return true;
3373 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3374 return true;
3375 if (!in_interrupt() &&
3376 ((current->flags & PF_MEMALLOC) ||
3377 unlikely(test_thread_flag(TIF_MEMDIE))))
3378 return true;
3379
3380 return false;
072bb0aa
MG
3381}
3382
0a0337e0
MH
3383/*
3384 * Maximum number of reclaim retries without any progress before OOM killer
3385 * is consider as the only way to move forward.
3386 */
3387#define MAX_RECLAIM_RETRIES 16
3388
3389/*
3390 * Checks whether it makes sense to retry the reclaim to make a forward progress
3391 * for the given allocation request.
3392 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3393 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3394 * any progress in a row) is considered as well as the reclaimable pages on the
3395 * applicable zone list (with a backoff mechanism which is a function of
3396 * no_progress_loops).
0a0337e0
MH
3397 *
3398 * Returns true if a retry is viable or false to enter the oom path.
3399 */
3400static inline bool
3401should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3402 struct alloc_context *ac, int alloc_flags,
7854ea6c 3403 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3404{
3405 struct zone *zone;
3406 struct zoneref *z;
3407
3408 /*
3409 * Make sure we converge to OOM if we cannot make any progress
3410 * several times in the row.
3411 */
3412 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3413 return false;
3414
bca67592
MG
3415 /*
3416 * Keep reclaiming pages while there is a chance this will lead
3417 * somewhere. If none of the target zones can satisfy our allocation
3418 * request even if all reclaimable pages are considered then we are
3419 * screwed and have to go OOM.
0a0337e0
MH
3420 */
3421 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3422 ac->nodemask) {
3423 unsigned long available;
ede37713 3424 unsigned long reclaimable;
0a0337e0 3425
5a1c84b4 3426 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3427 available -= DIV_ROUND_UP(no_progress_loops * available,
3428 MAX_RECLAIM_RETRIES);
5a1c84b4 3429 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3430
3431 /*
3432 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3433 * available?
0a0337e0 3434 */
5a1c84b4
MG
3435 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3436 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3437 /*
3438 * If we didn't make any progress and have a lot of
3439 * dirty + writeback pages then we should wait for
3440 * an IO to complete to slow down the reclaim and
3441 * prevent from pre mature OOM
3442 */
3443 if (!did_some_progress) {
11fb9989 3444 unsigned long write_pending;
ede37713 3445
5a1c84b4
MG
3446 write_pending = zone_page_state_snapshot(zone,
3447 NR_ZONE_WRITE_PENDING);
ede37713 3448
11fb9989 3449 if (2 * write_pending > reclaimable) {
ede37713
MH
3450 congestion_wait(BLK_RW_ASYNC, HZ/10);
3451 return true;
3452 }
3453 }
5a1c84b4 3454
ede37713
MH
3455 /*
3456 * Memory allocation/reclaim might be called from a WQ
3457 * context and the current implementation of the WQ
3458 * concurrency control doesn't recognize that
3459 * a particular WQ is congested if the worker thread is
3460 * looping without ever sleeping. Therefore we have to
3461 * do a short sleep here rather than calling
3462 * cond_resched().
3463 */
3464 if (current->flags & PF_WQ_WORKER)
3465 schedule_timeout_uninterruptible(1);
3466 else
3467 cond_resched();
3468
0a0337e0
MH
3469 return true;
3470 }
3471 }
3472
3473 return false;
3474}
3475
11e33f6a
MG
3476static inline struct page *
3477__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3478 struct alloc_context *ac)
11e33f6a 3479{
d0164adc 3480 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3481 struct page *page = NULL;
c603844b 3482 unsigned int alloc_flags;
11e33f6a 3483 unsigned long did_some_progress;
a5508cd8 3484 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3485 enum compact_result compact_result;
33c2d214 3486 int compaction_retries = 0;
0a0337e0 3487 int no_progress_loops = 0;
1da177e4 3488
72807a74
MG
3489 /*
3490 * In the slowpath, we sanity check order to avoid ever trying to
3491 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3492 * be using allocators in order of preference for an area that is
3493 * too large.
3494 */
1fc28b70
MG
3495 if (order >= MAX_ORDER) {
3496 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3497 return NULL;
1fc28b70 3498 }
1da177e4 3499
d0164adc
MG
3500 /*
3501 * We also sanity check to catch abuse of atomic reserves being used by
3502 * callers that are not in atomic context.
3503 */
3504 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3505 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3506 gfp_mask &= ~__GFP_ATOMIC;
3507
9bf2229f 3508 /*
31a6c190
VB
3509 * The fast path uses conservative alloc_flags to succeed only until
3510 * kswapd needs to be woken up, and to avoid the cost of setting up
3511 * alloc_flags precisely. So we do that now.
9bf2229f 3512 */
341ce06f 3513 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3514
23771235
VB
3515 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3516 wake_all_kswapds(order, ac);
3517
3518 /*
3519 * The adjusted alloc_flags might result in immediate success, so try
3520 * that first
3521 */
3522 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3523 if (page)
3524 goto got_pg;
3525
a8161d1e
VB
3526 /*
3527 * For costly allocations, try direct compaction first, as it's likely
3528 * that we have enough base pages and don't need to reclaim. Don't try
3529 * that for allocations that are allowed to ignore watermarks, as the
3530 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3531 */
3532 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3533 !gfp_pfmemalloc_allowed(gfp_mask)) {
3534 page = __alloc_pages_direct_compact(gfp_mask, order,
3535 alloc_flags, ac,
a5508cd8 3536 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3537 &compact_result);
3538 if (page)
3539 goto got_pg;
3540
3eb2771b
VB
3541 /*
3542 * Checks for costly allocations with __GFP_NORETRY, which
3543 * includes THP page fault allocations
3544 */
3545 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3546 /*
3547 * If compaction is deferred for high-order allocations,
3548 * it is because sync compaction recently failed. If
3549 * this is the case and the caller requested a THP
3550 * allocation, we do not want to heavily disrupt the
3551 * system, so we fail the allocation instead of entering
3552 * direct reclaim.
3553 */
3554 if (compact_result == COMPACT_DEFERRED)
3555 goto nopage;
3556
a8161d1e 3557 /*
3eb2771b
VB
3558 * Looks like reclaim/compaction is worth trying, but
3559 * sync compaction could be very expensive, so keep
25160354 3560 * using async compaction.
a8161d1e 3561 */
a5508cd8 3562 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3563 }
3564 }
23771235 3565
31a6c190 3566retry:
23771235 3567 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3568 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3569 wake_all_kswapds(order, ac);
3570
23771235
VB
3571 if (gfp_pfmemalloc_allowed(gfp_mask))
3572 alloc_flags = ALLOC_NO_WATERMARKS;
3573
e46e7b77
MG
3574 /*
3575 * Reset the zonelist iterators if memory policies can be ignored.
3576 * These allocations are high priority and system rather than user
3577 * orientated.
3578 */
23771235 3579 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3580 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3581 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3582 ac->high_zoneidx, ac->nodemask);
3583 }
3584
23771235 3585 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3586 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3587 if (page)
3588 goto got_pg;
1da177e4 3589
d0164adc
MG
3590 /* Caller is not willing to reclaim, we can't balance anything */
3591 if (!can_direct_reclaim) {
aed0a0e3 3592 /*
33d53103
MH
3593 * All existing users of the __GFP_NOFAIL are blockable, so warn
3594 * of any new users that actually allow this type of allocation
3595 * to fail.
aed0a0e3
DR
3596 */
3597 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3598 goto nopage;
aed0a0e3 3599 }
1da177e4 3600
341ce06f 3601 /* Avoid recursion of direct reclaim */
33d53103
MH
3602 if (current->flags & PF_MEMALLOC) {
3603 /*
3604 * __GFP_NOFAIL request from this context is rather bizarre
3605 * because we cannot reclaim anything and only can loop waiting
3606 * for somebody to do a work for us.
3607 */
3608 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3609 cond_resched();
3610 goto retry;
3611 }
341ce06f 3612 goto nopage;
33d53103 3613 }
341ce06f 3614
6583bb64
DR
3615 /* Avoid allocations with no watermarks from looping endlessly */
3616 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3617 goto nopage;
3618
a8161d1e
VB
3619
3620 /* Try direct reclaim and then allocating */
3621 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3622 &did_some_progress);
3623 if (page)
3624 goto got_pg;
3625
3626 /* Try direct compaction and then allocating */
a9263751 3627 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3628 compact_priority, &compact_result);
56de7263
MG
3629 if (page)
3630 goto got_pg;
75f30861 3631
33c2d214
MH
3632 if (order && compaction_made_progress(compact_result))
3633 compaction_retries++;
8fe78048 3634
9083905a
JW
3635 /* Do not loop if specifically requested */
3636 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3637 goto nopage;
9083905a 3638
0a0337e0
MH
3639 /*
3640 * Do not retry costly high order allocations unless they are
3641 * __GFP_REPEAT
3642 */
3643 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3644 goto nopage;
0a0337e0 3645
7854ea6c
MH
3646 /*
3647 * Costly allocations might have made a progress but this doesn't mean
3648 * their order will become available due to high fragmentation so
3649 * always increment the no progress counter for them
3650 */
3651 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3652 no_progress_loops = 0;
7854ea6c 3653 else
0a0337e0 3654 no_progress_loops++;
1da177e4 3655
0a0337e0 3656 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3657 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3658 goto retry;
3659
33c2d214
MH
3660 /*
3661 * It doesn't make any sense to retry for the compaction if the order-0
3662 * reclaim is not able to make any progress because the current
3663 * implementation of the compaction depends on the sufficient amount
3664 * of free memory (see __compaction_suitable)
3665 */
3666 if (did_some_progress > 0 &&
86a294a8 3667 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3668 compact_result, &compact_priority,
86a294a8 3669 compaction_retries))
33c2d214
MH
3670 goto retry;
3671
9083905a
JW
3672 /* Reclaim has failed us, start killing things */
3673 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3674 if (page)
3675 goto got_pg;
3676
3677 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3678 if (did_some_progress) {
3679 no_progress_loops = 0;
9083905a 3680 goto retry;
0a0337e0 3681 }
9083905a 3682
1da177e4 3683nopage:
a238ab5b 3684 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3685got_pg:
072bb0aa 3686 return page;
1da177e4 3687}
11e33f6a
MG
3688
3689/*
3690 * This is the 'heart' of the zoned buddy allocator.
3691 */
3692struct page *
3693__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3694 struct zonelist *zonelist, nodemask_t *nodemask)
3695{
5bb1b169 3696 struct page *page;
cc9a6c87 3697 unsigned int cpuset_mems_cookie;
e6cbd7f2 3698 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3699 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3700 struct alloc_context ac = {
3701 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3702 .zonelist = zonelist,
a9263751
VB
3703 .nodemask = nodemask,
3704 .migratetype = gfpflags_to_migratetype(gfp_mask),
3705 };
11e33f6a 3706
682a3385 3707 if (cpusets_enabled()) {
83d4ca81 3708 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3709 alloc_flags |= ALLOC_CPUSET;
3710 if (!ac.nodemask)
3711 ac.nodemask = &cpuset_current_mems_allowed;
3712 }
3713
dcce284a
BH
3714 gfp_mask &= gfp_allowed_mask;
3715
11e33f6a
MG
3716 lockdep_trace_alloc(gfp_mask);
3717
d0164adc 3718 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3719
3720 if (should_fail_alloc_page(gfp_mask, order))
3721 return NULL;
3722
3723 /*
3724 * Check the zones suitable for the gfp_mask contain at least one
3725 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3726 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3727 */
3728 if (unlikely(!zonelist->_zonerefs->zone))
3729 return NULL;
3730
a9263751 3731 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3732 alloc_flags |= ALLOC_CMA;
3733
cc9a6c87 3734retry_cpuset:
d26914d1 3735 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3736
c9ab0c4f
MG
3737 /* Dirty zone balancing only done in the fast path */
3738 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3739
e46e7b77
MG
3740 /*
3741 * The preferred zone is used for statistics but crucially it is
3742 * also used as the starting point for the zonelist iterator. It
3743 * may get reset for allocations that ignore memory policies.
3744 */
c33d6c06
MG
3745 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3746 ac.high_zoneidx, ac.nodemask);
3747 if (!ac.preferred_zoneref) {
5bb1b169 3748 page = NULL;
4fcb0971 3749 goto no_zone;
5bb1b169
MG
3750 }
3751
5117f45d 3752 /* First allocation attempt */
a9263751 3753 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3754 if (likely(page))
3755 goto out;
11e33f6a 3756
4fcb0971
MG
3757 /*
3758 * Runtime PM, block IO and its error handling path can deadlock
3759 * because I/O on the device might not complete.
3760 */
3761 alloc_mask = memalloc_noio_flags(gfp_mask);
3762 ac.spread_dirty_pages = false;
23f086f9 3763
4741526b
MG
3764 /*
3765 * Restore the original nodemask if it was potentially replaced with
3766 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3767 */
3768 if (cpusets_enabled())
3769 ac.nodemask = nodemask;
4fcb0971 3770 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3771
4fcb0971 3772no_zone:
cc9a6c87
MG
3773 /*
3774 * When updating a task's mems_allowed, it is possible to race with
3775 * parallel threads in such a way that an allocation can fail while
3776 * the mask is being updated. If a page allocation is about to fail,
3777 * check if the cpuset changed during allocation and if so, retry.
3778 */
83d4ca81
MG
3779 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3780 alloc_mask = gfp_mask;
cc9a6c87 3781 goto retry_cpuset;
83d4ca81 3782 }
cc9a6c87 3783
4fcb0971 3784out:
4949148a
VD
3785 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3786 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3787 __free_pages(page, order);
3788 page = NULL;
3789 } else
3790 __SetPageKmemcg(page);
3791 }
3792
4fcb0971
MG
3793 if (kmemcheck_enabled && page)
3794 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3795
3796 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3797
11e33f6a 3798 return page;
1da177e4 3799}
d239171e 3800EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3801
3802/*
3803 * Common helper functions.
3804 */
920c7a5d 3805unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3806{
945a1113
AM
3807 struct page *page;
3808
3809 /*
3810 * __get_free_pages() returns a 32-bit address, which cannot represent
3811 * a highmem page
3812 */
3813 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3814
1da177e4
LT
3815 page = alloc_pages(gfp_mask, order);
3816 if (!page)
3817 return 0;
3818 return (unsigned long) page_address(page);
3819}
1da177e4
LT
3820EXPORT_SYMBOL(__get_free_pages);
3821
920c7a5d 3822unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3823{
945a1113 3824 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3825}
1da177e4
LT
3826EXPORT_SYMBOL(get_zeroed_page);
3827
920c7a5d 3828void __free_pages(struct page *page, unsigned int order)
1da177e4 3829{
b5810039 3830 if (put_page_testzero(page)) {
1da177e4 3831 if (order == 0)
b745bc85 3832 free_hot_cold_page(page, false);
1da177e4
LT
3833 else
3834 __free_pages_ok(page, order);
3835 }
3836}
3837
3838EXPORT_SYMBOL(__free_pages);
3839
920c7a5d 3840void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3841{
3842 if (addr != 0) {
725d704e 3843 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3844 __free_pages(virt_to_page((void *)addr), order);
3845 }
3846}
3847
3848EXPORT_SYMBOL(free_pages);
3849
b63ae8ca
AD
3850/*
3851 * Page Fragment:
3852 * An arbitrary-length arbitrary-offset area of memory which resides
3853 * within a 0 or higher order page. Multiple fragments within that page
3854 * are individually refcounted, in the page's reference counter.
3855 *
3856 * The page_frag functions below provide a simple allocation framework for
3857 * page fragments. This is used by the network stack and network device
3858 * drivers to provide a backing region of memory for use as either an
3859 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3860 */
3861static struct page *__page_frag_refill(struct page_frag_cache *nc,
3862 gfp_t gfp_mask)
3863{
3864 struct page *page = NULL;
3865 gfp_t gfp = gfp_mask;
3866
3867#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3868 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3869 __GFP_NOMEMALLOC;
3870 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3871 PAGE_FRAG_CACHE_MAX_ORDER);
3872 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3873#endif
3874 if (unlikely(!page))
3875 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3876
3877 nc->va = page ? page_address(page) : NULL;
3878
3879 return page;
3880}
3881
3882void *__alloc_page_frag(struct page_frag_cache *nc,
3883 unsigned int fragsz, gfp_t gfp_mask)
3884{
3885 unsigned int size = PAGE_SIZE;
3886 struct page *page;
3887 int offset;
3888
3889 if (unlikely(!nc->va)) {
3890refill:
3891 page = __page_frag_refill(nc, gfp_mask);
3892 if (!page)
3893 return NULL;
3894
3895#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3896 /* if size can vary use size else just use PAGE_SIZE */
3897 size = nc->size;
3898#endif
3899 /* Even if we own the page, we do not use atomic_set().
3900 * This would break get_page_unless_zero() users.
3901 */
fe896d18 3902 page_ref_add(page, size - 1);
b63ae8ca
AD
3903
3904 /* reset page count bias and offset to start of new frag */
2f064f34 3905 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3906 nc->pagecnt_bias = size;
3907 nc->offset = size;
3908 }
3909
3910 offset = nc->offset - fragsz;
3911 if (unlikely(offset < 0)) {
3912 page = virt_to_page(nc->va);
3913
fe896d18 3914 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3915 goto refill;
3916
3917#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3918 /* if size can vary use size else just use PAGE_SIZE */
3919 size = nc->size;
3920#endif
3921 /* OK, page count is 0, we can safely set it */
fe896d18 3922 set_page_count(page, size);
b63ae8ca
AD
3923
3924 /* reset page count bias and offset to start of new frag */
3925 nc->pagecnt_bias = size;
3926 offset = size - fragsz;
3927 }
3928
3929 nc->pagecnt_bias--;
3930 nc->offset = offset;
3931
3932 return nc->va + offset;
3933}
3934EXPORT_SYMBOL(__alloc_page_frag);
3935
3936/*
3937 * Frees a page fragment allocated out of either a compound or order 0 page.
3938 */
3939void __free_page_frag(void *addr)
3940{
3941 struct page *page = virt_to_head_page(addr);
3942
3943 if (unlikely(put_page_testzero(page)))
3944 __free_pages_ok(page, compound_order(page));
3945}
3946EXPORT_SYMBOL(__free_page_frag);
3947
d00181b9
KS
3948static void *make_alloc_exact(unsigned long addr, unsigned int order,
3949 size_t size)
ee85c2e1
AK
3950{
3951 if (addr) {
3952 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3953 unsigned long used = addr + PAGE_ALIGN(size);
3954
3955 split_page(virt_to_page((void *)addr), order);
3956 while (used < alloc_end) {
3957 free_page(used);
3958 used += PAGE_SIZE;
3959 }
3960 }
3961 return (void *)addr;
3962}
3963
2be0ffe2
TT
3964/**
3965 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3966 * @size: the number of bytes to allocate
3967 * @gfp_mask: GFP flags for the allocation
3968 *
3969 * This function is similar to alloc_pages(), except that it allocates the
3970 * minimum number of pages to satisfy the request. alloc_pages() can only
3971 * allocate memory in power-of-two pages.
3972 *
3973 * This function is also limited by MAX_ORDER.
3974 *
3975 * Memory allocated by this function must be released by free_pages_exact().
3976 */
3977void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3978{
3979 unsigned int order = get_order(size);
3980 unsigned long addr;
3981
3982 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3983 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3984}
3985EXPORT_SYMBOL(alloc_pages_exact);
3986
ee85c2e1
AK
3987/**
3988 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3989 * pages on a node.
b5e6ab58 3990 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3991 * @size: the number of bytes to allocate
3992 * @gfp_mask: GFP flags for the allocation
3993 *
3994 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3995 * back.
ee85c2e1 3996 */
e1931811 3997void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3998{
d00181b9 3999 unsigned int order = get_order(size);
ee85c2e1
AK
4000 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4001 if (!p)
4002 return NULL;
4003 return make_alloc_exact((unsigned long)page_address(p), order, size);
4004}
ee85c2e1 4005
2be0ffe2
TT
4006/**
4007 * free_pages_exact - release memory allocated via alloc_pages_exact()
4008 * @virt: the value returned by alloc_pages_exact.
4009 * @size: size of allocation, same value as passed to alloc_pages_exact().
4010 *
4011 * Release the memory allocated by a previous call to alloc_pages_exact.
4012 */
4013void free_pages_exact(void *virt, size_t size)
4014{
4015 unsigned long addr = (unsigned long)virt;
4016 unsigned long end = addr + PAGE_ALIGN(size);
4017
4018 while (addr < end) {
4019 free_page(addr);
4020 addr += PAGE_SIZE;
4021 }
4022}
4023EXPORT_SYMBOL(free_pages_exact);
4024
e0fb5815
ZY
4025/**
4026 * nr_free_zone_pages - count number of pages beyond high watermark
4027 * @offset: The zone index of the highest zone
4028 *
4029 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4030 * high watermark within all zones at or below a given zone index. For each
4031 * zone, the number of pages is calculated as:
834405c3 4032 * managed_pages - high_pages
e0fb5815 4033 */
ebec3862 4034static unsigned long nr_free_zone_pages(int offset)
1da177e4 4035{
dd1a239f 4036 struct zoneref *z;
54a6eb5c
MG
4037 struct zone *zone;
4038
e310fd43 4039 /* Just pick one node, since fallback list is circular */
ebec3862 4040 unsigned long sum = 0;
1da177e4 4041
0e88460d 4042 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4043
54a6eb5c 4044 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4045 unsigned long size = zone->managed_pages;
41858966 4046 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4047 if (size > high)
4048 sum += size - high;
1da177e4
LT
4049 }
4050
4051 return sum;
4052}
4053
e0fb5815
ZY
4054/**
4055 * nr_free_buffer_pages - count number of pages beyond high watermark
4056 *
4057 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4058 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4059 */
ebec3862 4060unsigned long nr_free_buffer_pages(void)
1da177e4 4061{
af4ca457 4062 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4063}
c2f1a551 4064EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4065
e0fb5815
ZY
4066/**
4067 * nr_free_pagecache_pages - count number of pages beyond high watermark
4068 *
4069 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4070 * high watermark within all zones.
1da177e4 4071 */
ebec3862 4072unsigned long nr_free_pagecache_pages(void)
1da177e4 4073{
2a1e274a 4074 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4075}
08e0f6a9
CL
4076
4077static inline void show_node(struct zone *zone)
1da177e4 4078{
e5adfffc 4079 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4080 printk("Node %d ", zone_to_nid(zone));
1da177e4 4081}
1da177e4 4082
d02bd27b
IR
4083long si_mem_available(void)
4084{
4085 long available;
4086 unsigned long pagecache;
4087 unsigned long wmark_low = 0;
4088 unsigned long pages[NR_LRU_LISTS];
4089 struct zone *zone;
4090 int lru;
4091
4092 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4093 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4094
4095 for_each_zone(zone)
4096 wmark_low += zone->watermark[WMARK_LOW];
4097
4098 /*
4099 * Estimate the amount of memory available for userspace allocations,
4100 * without causing swapping.
4101 */
4102 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4103
4104 /*
4105 * Not all the page cache can be freed, otherwise the system will
4106 * start swapping. Assume at least half of the page cache, or the
4107 * low watermark worth of cache, needs to stay.
4108 */
4109 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4110 pagecache -= min(pagecache / 2, wmark_low);
4111 available += pagecache;
4112
4113 /*
4114 * Part of the reclaimable slab consists of items that are in use,
4115 * and cannot be freed. Cap this estimate at the low watermark.
4116 */
4117 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4118 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4119
4120 if (available < 0)
4121 available = 0;
4122 return available;
4123}
4124EXPORT_SYMBOL_GPL(si_mem_available);
4125
1da177e4
LT
4126void si_meminfo(struct sysinfo *val)
4127{
4128 val->totalram = totalram_pages;
11fb9989 4129 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4130 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4131 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4132 val->totalhigh = totalhigh_pages;
4133 val->freehigh = nr_free_highpages();
1da177e4
LT
4134 val->mem_unit = PAGE_SIZE;
4135}
4136
4137EXPORT_SYMBOL(si_meminfo);
4138
4139#ifdef CONFIG_NUMA
4140void si_meminfo_node(struct sysinfo *val, int nid)
4141{
cdd91a77
JL
4142 int zone_type; /* needs to be signed */
4143 unsigned long managed_pages = 0;
fc2bd799
JK
4144 unsigned long managed_highpages = 0;
4145 unsigned long free_highpages = 0;
1da177e4
LT
4146 pg_data_t *pgdat = NODE_DATA(nid);
4147
cdd91a77
JL
4148 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4149 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4150 val->totalram = managed_pages;
11fb9989 4151 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4152 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4153#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4154 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4155 struct zone *zone = &pgdat->node_zones[zone_type];
4156
4157 if (is_highmem(zone)) {
4158 managed_highpages += zone->managed_pages;
4159 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4160 }
4161 }
4162 val->totalhigh = managed_highpages;
4163 val->freehigh = free_highpages;
98d2b0eb 4164#else
fc2bd799
JK
4165 val->totalhigh = managed_highpages;
4166 val->freehigh = free_highpages;
98d2b0eb 4167#endif
1da177e4
LT
4168 val->mem_unit = PAGE_SIZE;
4169}
4170#endif
4171
ddd588b5 4172/*
7bf02ea2
DR
4173 * Determine whether the node should be displayed or not, depending on whether
4174 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4175 */
7bf02ea2 4176bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4177{
4178 bool ret = false;
cc9a6c87 4179 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4180
4181 if (!(flags & SHOW_MEM_FILTER_NODES))
4182 goto out;
4183
cc9a6c87 4184 do {
d26914d1 4185 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4186 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4187 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4188out:
4189 return ret;
4190}
4191
1da177e4
LT
4192#define K(x) ((x) << (PAGE_SHIFT-10))
4193
377e4f16
RV
4194static void show_migration_types(unsigned char type)
4195{
4196 static const char types[MIGRATE_TYPES] = {
4197 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4198 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4199 [MIGRATE_RECLAIMABLE] = 'E',
4200 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4201#ifdef CONFIG_CMA
4202 [MIGRATE_CMA] = 'C',
4203#endif
194159fb 4204#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4205 [MIGRATE_ISOLATE] = 'I',
194159fb 4206#endif
377e4f16
RV
4207 };
4208 char tmp[MIGRATE_TYPES + 1];
4209 char *p = tmp;
4210 int i;
4211
4212 for (i = 0; i < MIGRATE_TYPES; i++) {
4213 if (type & (1 << i))
4214 *p++ = types[i];
4215 }
4216
4217 *p = '\0';
4218 printk("(%s) ", tmp);
4219}
4220
1da177e4
LT
4221/*
4222 * Show free area list (used inside shift_scroll-lock stuff)
4223 * We also calculate the percentage fragmentation. We do this by counting the
4224 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4225 *
4226 * Bits in @filter:
4227 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4228 * cpuset.
1da177e4 4229 */
7bf02ea2 4230void show_free_areas(unsigned int filter)
1da177e4 4231{
d1bfcdb8 4232 unsigned long free_pcp = 0;
c7241913 4233 int cpu;
1da177e4 4234 struct zone *zone;
599d0c95 4235 pg_data_t *pgdat;
1da177e4 4236
ee99c71c 4237 for_each_populated_zone(zone) {
7bf02ea2 4238 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4239 continue;
d1bfcdb8 4240
761b0677
KK
4241 for_each_online_cpu(cpu)
4242 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4243 }
4244
a731286d
KM
4245 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4246 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4247 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4248 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4249 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4250 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4251 global_node_page_state(NR_ACTIVE_ANON),
4252 global_node_page_state(NR_INACTIVE_ANON),
4253 global_node_page_state(NR_ISOLATED_ANON),
4254 global_node_page_state(NR_ACTIVE_FILE),
4255 global_node_page_state(NR_INACTIVE_FILE),
4256 global_node_page_state(NR_ISOLATED_FILE),
4257 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4258 global_node_page_state(NR_FILE_DIRTY),
4259 global_node_page_state(NR_WRITEBACK),
4260 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4261 global_page_state(NR_SLAB_RECLAIMABLE),
4262 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4263 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4264 global_node_page_state(NR_SHMEM),
a25700a5 4265 global_page_state(NR_PAGETABLE),
d1ce749a 4266 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4267 global_page_state(NR_FREE_PAGES),
4268 free_pcp,
d1ce749a 4269 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4270
599d0c95
MG
4271 for_each_online_pgdat(pgdat) {
4272 printk("Node %d"
4273 " active_anon:%lukB"
4274 " inactive_anon:%lukB"
4275 " active_file:%lukB"
4276 " inactive_file:%lukB"
4277 " unevictable:%lukB"
4278 " isolated(anon):%lukB"
4279 " isolated(file):%lukB"
50658e2e 4280 " mapped:%lukB"
11fb9989
MG
4281 " dirty:%lukB"
4282 " writeback:%lukB"
4283 " shmem:%lukB"
4284#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4285 " shmem_thp: %lukB"
4286 " shmem_pmdmapped: %lukB"
4287 " anon_thp: %lukB"
4288#endif
4289 " writeback_tmp:%lukB"
4290 " unstable:%lukB"
33e077bd 4291 " pages_scanned:%lu"
599d0c95
MG
4292 " all_unreclaimable? %s"
4293 "\n",
4294 pgdat->node_id,
4295 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4296 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4297 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4298 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4299 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4300 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4301 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4302 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4303 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4304 K(node_page_state(pgdat, NR_WRITEBACK)),
4305#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4306 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4307 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4308 * HPAGE_PMD_NR),
4309 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4310#endif
4311 K(node_page_state(pgdat, NR_SHMEM)),
4312 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4313 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4314 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4315 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4316 }
4317
ee99c71c 4318 for_each_populated_zone(zone) {
1da177e4
LT
4319 int i;
4320
7bf02ea2 4321 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4322 continue;
d1bfcdb8
KK
4323
4324 free_pcp = 0;
4325 for_each_online_cpu(cpu)
4326 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4327
1da177e4
LT
4328 show_node(zone);
4329 printk("%s"
4330 " free:%lukB"
4331 " min:%lukB"
4332 " low:%lukB"
4333 " high:%lukB"
71c799f4
MK
4334 " active_anon:%lukB"
4335 " inactive_anon:%lukB"
4336 " active_file:%lukB"
4337 " inactive_file:%lukB"
4338 " unevictable:%lukB"
5a1c84b4 4339 " writepending:%lukB"
1da177e4 4340 " present:%lukB"
9feedc9d 4341 " managed:%lukB"
4a0aa73f 4342 " mlocked:%lukB"
4a0aa73f
KM
4343 " slab_reclaimable:%lukB"
4344 " slab_unreclaimable:%lukB"
c6a7f572 4345 " kernel_stack:%lukB"
4a0aa73f 4346 " pagetables:%lukB"
4a0aa73f 4347 " bounce:%lukB"
d1bfcdb8
KK
4348 " free_pcp:%lukB"
4349 " local_pcp:%ukB"
d1ce749a 4350 " free_cma:%lukB"
1da177e4
LT
4351 "\n",
4352 zone->name,
88f5acf8 4353 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4354 K(min_wmark_pages(zone)),
4355 K(low_wmark_pages(zone)),
4356 K(high_wmark_pages(zone)),
71c799f4
MK
4357 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4358 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4359 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4360 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4361 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4362 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4363 K(zone->present_pages),
9feedc9d 4364 K(zone->managed_pages),
4a0aa73f 4365 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4366 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4367 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4368 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4369 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4370 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4371 K(free_pcp),
4372 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4373 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4374 printk("lowmem_reserve[]:");
4375 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4376 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4377 printk("\n");
4378 }
4379
ee99c71c 4380 for_each_populated_zone(zone) {
d00181b9
KS
4381 unsigned int order;
4382 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4383 unsigned char types[MAX_ORDER];
1da177e4 4384
7bf02ea2 4385 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4386 continue;
1da177e4
LT
4387 show_node(zone);
4388 printk("%s: ", zone->name);
1da177e4
LT
4389
4390 spin_lock_irqsave(&zone->lock, flags);
4391 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4392 struct free_area *area = &zone->free_area[order];
4393 int type;
4394
4395 nr[order] = area->nr_free;
8f9de51a 4396 total += nr[order] << order;
377e4f16
RV
4397
4398 types[order] = 0;
4399 for (type = 0; type < MIGRATE_TYPES; type++) {
4400 if (!list_empty(&area->free_list[type]))
4401 types[order] |= 1 << type;
4402 }
1da177e4
LT
4403 }
4404 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4405 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4406 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4407 if (nr[order])
4408 show_migration_types(types[order]);
4409 }
1da177e4
LT
4410 printk("= %lukB\n", K(total));
4411 }
4412
949f7ec5
DR
4413 hugetlb_show_meminfo();
4414
11fb9989 4415 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4416
1da177e4
LT
4417 show_swap_cache_info();
4418}
4419
19770b32
MG
4420static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4421{
4422 zoneref->zone = zone;
4423 zoneref->zone_idx = zone_idx(zone);
4424}
4425
1da177e4
LT
4426/*
4427 * Builds allocation fallback zone lists.
1a93205b
CL
4428 *
4429 * Add all populated zones of a node to the zonelist.
1da177e4 4430 */
f0c0b2b8 4431static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4432 int nr_zones)
1da177e4 4433{
1a93205b 4434 struct zone *zone;
bc732f1d 4435 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4436
4437 do {
2f6726e5 4438 zone_type--;
070f8032 4439 zone = pgdat->node_zones + zone_type;
1a93205b 4440 if (populated_zone(zone)) {
dd1a239f
MG
4441 zoneref_set_zone(zone,
4442 &zonelist->_zonerefs[nr_zones++]);
070f8032 4443 check_highest_zone(zone_type);
1da177e4 4444 }
2f6726e5 4445 } while (zone_type);
bc732f1d 4446
070f8032 4447 return nr_zones;
1da177e4
LT
4448}
4449
f0c0b2b8
KH
4450
4451/*
4452 * zonelist_order:
4453 * 0 = automatic detection of better ordering.
4454 * 1 = order by ([node] distance, -zonetype)
4455 * 2 = order by (-zonetype, [node] distance)
4456 *
4457 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4458 * the same zonelist. So only NUMA can configure this param.
4459 */
4460#define ZONELIST_ORDER_DEFAULT 0
4461#define ZONELIST_ORDER_NODE 1
4462#define ZONELIST_ORDER_ZONE 2
4463
4464/* zonelist order in the kernel.
4465 * set_zonelist_order() will set this to NODE or ZONE.
4466 */
4467static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4468static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4469
4470
1da177e4 4471#ifdef CONFIG_NUMA
f0c0b2b8
KH
4472/* The value user specified ....changed by config */
4473static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4474/* string for sysctl */
4475#define NUMA_ZONELIST_ORDER_LEN 16
4476char numa_zonelist_order[16] = "default";
4477
4478/*
4479 * interface for configure zonelist ordering.
4480 * command line option "numa_zonelist_order"
4481 * = "[dD]efault - default, automatic configuration.
4482 * = "[nN]ode - order by node locality, then by zone within node
4483 * = "[zZ]one - order by zone, then by locality within zone
4484 */
4485
4486static int __parse_numa_zonelist_order(char *s)
4487{
4488 if (*s == 'd' || *s == 'D') {
4489 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4490 } else if (*s == 'n' || *s == 'N') {
4491 user_zonelist_order = ZONELIST_ORDER_NODE;
4492 } else if (*s == 'z' || *s == 'Z') {
4493 user_zonelist_order = ZONELIST_ORDER_ZONE;
4494 } else {
1170532b 4495 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4496 return -EINVAL;
4497 }
4498 return 0;
4499}
4500
4501static __init int setup_numa_zonelist_order(char *s)
4502{
ecb256f8
VL
4503 int ret;
4504
4505 if (!s)
4506 return 0;
4507
4508 ret = __parse_numa_zonelist_order(s);
4509 if (ret == 0)
4510 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4511
4512 return ret;
f0c0b2b8
KH
4513}
4514early_param("numa_zonelist_order", setup_numa_zonelist_order);
4515
4516/*
4517 * sysctl handler for numa_zonelist_order
4518 */
cccad5b9 4519int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4520 void __user *buffer, size_t *length,
f0c0b2b8
KH
4521 loff_t *ppos)
4522{
4523 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4524 int ret;
443c6f14 4525 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4526
443c6f14 4527 mutex_lock(&zl_order_mutex);
dacbde09
CG
4528 if (write) {
4529 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533 strcpy(saved_string, (char *)table->data);
4534 }
8d65af78 4535 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4536 if (ret)
443c6f14 4537 goto out;
f0c0b2b8
KH
4538 if (write) {
4539 int oldval = user_zonelist_order;
dacbde09
CG
4540
4541 ret = __parse_numa_zonelist_order((char *)table->data);
4542 if (ret) {
f0c0b2b8
KH
4543 /*
4544 * bogus value. restore saved string
4545 */
dacbde09 4546 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4547 NUMA_ZONELIST_ORDER_LEN);
4548 user_zonelist_order = oldval;
4eaf3f64
HL
4549 } else if (oldval != user_zonelist_order) {
4550 mutex_lock(&zonelists_mutex);
9adb62a5 4551 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4552 mutex_unlock(&zonelists_mutex);
4553 }
f0c0b2b8 4554 }
443c6f14
AK
4555out:
4556 mutex_unlock(&zl_order_mutex);
4557 return ret;
f0c0b2b8
KH
4558}
4559
4560
62bc62a8 4561#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4562static int node_load[MAX_NUMNODES];
4563
1da177e4 4564/**
4dc3b16b 4565 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4566 * @node: node whose fallback list we're appending
4567 * @used_node_mask: nodemask_t of already used nodes
4568 *
4569 * We use a number of factors to determine which is the next node that should
4570 * appear on a given node's fallback list. The node should not have appeared
4571 * already in @node's fallback list, and it should be the next closest node
4572 * according to the distance array (which contains arbitrary distance values
4573 * from each node to each node in the system), and should also prefer nodes
4574 * with no CPUs, since presumably they'll have very little allocation pressure
4575 * on them otherwise.
4576 * It returns -1 if no node is found.
4577 */
f0c0b2b8 4578static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4579{
4cf808eb 4580 int n, val;
1da177e4 4581 int min_val = INT_MAX;
00ef2d2f 4582 int best_node = NUMA_NO_NODE;
a70f7302 4583 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4584
4cf808eb
LT
4585 /* Use the local node if we haven't already */
4586 if (!node_isset(node, *used_node_mask)) {
4587 node_set(node, *used_node_mask);
4588 return node;
4589 }
1da177e4 4590
4b0ef1fe 4591 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4592
4593 /* Don't want a node to appear more than once */
4594 if (node_isset(n, *used_node_mask))
4595 continue;
4596
1da177e4
LT
4597 /* Use the distance array to find the distance */
4598 val = node_distance(node, n);
4599
4cf808eb
LT
4600 /* Penalize nodes under us ("prefer the next node") */
4601 val += (n < node);
4602
1da177e4 4603 /* Give preference to headless and unused nodes */
a70f7302
RR
4604 tmp = cpumask_of_node(n);
4605 if (!cpumask_empty(tmp))
1da177e4
LT
4606 val += PENALTY_FOR_NODE_WITH_CPUS;
4607
4608 /* Slight preference for less loaded node */
4609 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4610 val += node_load[n];
4611
4612 if (val < min_val) {
4613 min_val = val;
4614 best_node = n;
4615 }
4616 }
4617
4618 if (best_node >= 0)
4619 node_set(best_node, *used_node_mask);
4620
4621 return best_node;
4622}
4623
f0c0b2b8
KH
4624
4625/*
4626 * Build zonelists ordered by node and zones within node.
4627 * This results in maximum locality--normal zone overflows into local
4628 * DMA zone, if any--but risks exhausting DMA zone.
4629 */
4630static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4631{
f0c0b2b8 4632 int j;
1da177e4 4633 struct zonelist *zonelist;
f0c0b2b8 4634
54a6eb5c 4635 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4636 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4637 ;
bc732f1d 4638 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4639 zonelist->_zonerefs[j].zone = NULL;
4640 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4641}
4642
523b9458
CL
4643/*
4644 * Build gfp_thisnode zonelists
4645 */
4646static void build_thisnode_zonelists(pg_data_t *pgdat)
4647{
523b9458
CL
4648 int j;
4649 struct zonelist *zonelist;
4650
54a6eb5c 4651 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4652 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4653 zonelist->_zonerefs[j].zone = NULL;
4654 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4655}
4656
f0c0b2b8
KH
4657/*
4658 * Build zonelists ordered by zone and nodes within zones.
4659 * This results in conserving DMA zone[s] until all Normal memory is
4660 * exhausted, but results in overflowing to remote node while memory
4661 * may still exist in local DMA zone.
4662 */
4663static int node_order[MAX_NUMNODES];
4664
4665static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4666{
f0c0b2b8
KH
4667 int pos, j, node;
4668 int zone_type; /* needs to be signed */
4669 struct zone *z;
4670 struct zonelist *zonelist;
4671
54a6eb5c
MG
4672 zonelist = &pgdat->node_zonelists[0];
4673 pos = 0;
4674 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4675 for (j = 0; j < nr_nodes; j++) {
4676 node = node_order[j];
4677 z = &NODE_DATA(node)->node_zones[zone_type];
4678 if (populated_zone(z)) {
dd1a239f
MG
4679 zoneref_set_zone(z,
4680 &zonelist->_zonerefs[pos++]);
54a6eb5c 4681 check_highest_zone(zone_type);
f0c0b2b8
KH
4682 }
4683 }
f0c0b2b8 4684 }
dd1a239f
MG
4685 zonelist->_zonerefs[pos].zone = NULL;
4686 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4687}
4688
3193913c
MG
4689#if defined(CONFIG_64BIT)
4690/*
4691 * Devices that require DMA32/DMA are relatively rare and do not justify a
4692 * penalty to every machine in case the specialised case applies. Default
4693 * to Node-ordering on 64-bit NUMA machines
4694 */
4695static int default_zonelist_order(void)
4696{
4697 return ZONELIST_ORDER_NODE;
4698}
4699#else
4700/*
4701 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4702 * by the kernel. If processes running on node 0 deplete the low memory zone
4703 * then reclaim will occur more frequency increasing stalls and potentially
4704 * be easier to OOM if a large percentage of the zone is under writeback or
4705 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4706 * Hence, default to zone ordering on 32-bit.
4707 */
f0c0b2b8
KH
4708static int default_zonelist_order(void)
4709{
f0c0b2b8
KH
4710 return ZONELIST_ORDER_ZONE;
4711}
3193913c 4712#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4713
4714static void set_zonelist_order(void)
4715{
4716 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4717 current_zonelist_order = default_zonelist_order();
4718 else
4719 current_zonelist_order = user_zonelist_order;
4720}
4721
4722static void build_zonelists(pg_data_t *pgdat)
4723{
c00eb15a 4724 int i, node, load;
1da177e4 4725 nodemask_t used_mask;
f0c0b2b8
KH
4726 int local_node, prev_node;
4727 struct zonelist *zonelist;
d00181b9 4728 unsigned int order = current_zonelist_order;
1da177e4
LT
4729
4730 /* initialize zonelists */
523b9458 4731 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4732 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4733 zonelist->_zonerefs[0].zone = NULL;
4734 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4735 }
4736
4737 /* NUMA-aware ordering of nodes */
4738 local_node = pgdat->node_id;
62bc62a8 4739 load = nr_online_nodes;
1da177e4
LT
4740 prev_node = local_node;
4741 nodes_clear(used_mask);
f0c0b2b8 4742
f0c0b2b8 4743 memset(node_order, 0, sizeof(node_order));
c00eb15a 4744 i = 0;
f0c0b2b8 4745
1da177e4
LT
4746 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4747 /*
4748 * We don't want to pressure a particular node.
4749 * So adding penalty to the first node in same
4750 * distance group to make it round-robin.
4751 */
957f822a
DR
4752 if (node_distance(local_node, node) !=
4753 node_distance(local_node, prev_node))
f0c0b2b8
KH
4754 node_load[node] = load;
4755
1da177e4
LT
4756 prev_node = node;
4757 load--;
f0c0b2b8
KH
4758 if (order == ZONELIST_ORDER_NODE)
4759 build_zonelists_in_node_order(pgdat, node);
4760 else
c00eb15a 4761 node_order[i++] = node; /* remember order */
f0c0b2b8 4762 }
1da177e4 4763
f0c0b2b8
KH
4764 if (order == ZONELIST_ORDER_ZONE) {
4765 /* calculate node order -- i.e., DMA last! */
c00eb15a 4766 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4767 }
523b9458
CL
4768
4769 build_thisnode_zonelists(pgdat);
1da177e4
LT
4770}
4771
7aac7898
LS
4772#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4773/*
4774 * Return node id of node used for "local" allocations.
4775 * I.e., first node id of first zone in arg node's generic zonelist.
4776 * Used for initializing percpu 'numa_mem', which is used primarily
4777 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4778 */
4779int local_memory_node(int node)
4780{
c33d6c06 4781 struct zoneref *z;
7aac7898 4782
c33d6c06 4783 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4784 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4785 NULL);
4786 return z->zone->node;
7aac7898
LS
4787}
4788#endif
f0c0b2b8 4789
1da177e4
LT
4790#else /* CONFIG_NUMA */
4791
f0c0b2b8
KH
4792static void set_zonelist_order(void)
4793{
4794 current_zonelist_order = ZONELIST_ORDER_ZONE;
4795}
4796
4797static void build_zonelists(pg_data_t *pgdat)
1da177e4 4798{
19655d34 4799 int node, local_node;
54a6eb5c
MG
4800 enum zone_type j;
4801 struct zonelist *zonelist;
1da177e4
LT
4802
4803 local_node = pgdat->node_id;
1da177e4 4804
54a6eb5c 4805 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4806 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4807
54a6eb5c
MG
4808 /*
4809 * Now we build the zonelist so that it contains the zones
4810 * of all the other nodes.
4811 * We don't want to pressure a particular node, so when
4812 * building the zones for node N, we make sure that the
4813 * zones coming right after the local ones are those from
4814 * node N+1 (modulo N)
4815 */
4816 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4817 if (!node_online(node))
4818 continue;
bc732f1d 4819 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4820 }
54a6eb5c
MG
4821 for (node = 0; node < local_node; node++) {
4822 if (!node_online(node))
4823 continue;
bc732f1d 4824 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4825 }
4826
dd1a239f
MG
4827 zonelist->_zonerefs[j].zone = NULL;
4828 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4829}
4830
4831#endif /* CONFIG_NUMA */
4832
99dcc3e5
CL
4833/*
4834 * Boot pageset table. One per cpu which is going to be used for all
4835 * zones and all nodes. The parameters will be set in such a way
4836 * that an item put on a list will immediately be handed over to
4837 * the buddy list. This is safe since pageset manipulation is done
4838 * with interrupts disabled.
4839 *
4840 * The boot_pagesets must be kept even after bootup is complete for
4841 * unused processors and/or zones. They do play a role for bootstrapping
4842 * hotplugged processors.
4843 *
4844 * zoneinfo_show() and maybe other functions do
4845 * not check if the processor is online before following the pageset pointer.
4846 * Other parts of the kernel may not check if the zone is available.
4847 */
4848static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4849static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4850static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4851
4eaf3f64
HL
4852/*
4853 * Global mutex to protect against size modification of zonelists
4854 * as well as to serialize pageset setup for the new populated zone.
4855 */
4856DEFINE_MUTEX(zonelists_mutex);
4857
9b1a4d38 4858/* return values int ....just for stop_machine() */
4ed7e022 4859static int __build_all_zonelists(void *data)
1da177e4 4860{
6811378e 4861 int nid;
99dcc3e5 4862 int cpu;
9adb62a5 4863 pg_data_t *self = data;
9276b1bc 4864
7f9cfb31
BL
4865#ifdef CONFIG_NUMA
4866 memset(node_load, 0, sizeof(node_load));
4867#endif
9adb62a5
JL
4868
4869 if (self && !node_online(self->node_id)) {
4870 build_zonelists(self);
9adb62a5
JL
4871 }
4872
9276b1bc 4873 for_each_online_node(nid) {
7ea1530a
CL
4874 pg_data_t *pgdat = NODE_DATA(nid);
4875
4876 build_zonelists(pgdat);
9276b1bc 4877 }
99dcc3e5
CL
4878
4879 /*
4880 * Initialize the boot_pagesets that are going to be used
4881 * for bootstrapping processors. The real pagesets for
4882 * each zone will be allocated later when the per cpu
4883 * allocator is available.
4884 *
4885 * boot_pagesets are used also for bootstrapping offline
4886 * cpus if the system is already booted because the pagesets
4887 * are needed to initialize allocators on a specific cpu too.
4888 * F.e. the percpu allocator needs the page allocator which
4889 * needs the percpu allocator in order to allocate its pagesets
4890 * (a chicken-egg dilemma).
4891 */
7aac7898 4892 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4893 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4894
7aac7898
LS
4895#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4896 /*
4897 * We now know the "local memory node" for each node--
4898 * i.e., the node of the first zone in the generic zonelist.
4899 * Set up numa_mem percpu variable for on-line cpus. During
4900 * boot, only the boot cpu should be on-line; we'll init the
4901 * secondary cpus' numa_mem as they come on-line. During
4902 * node/memory hotplug, we'll fixup all on-line cpus.
4903 */
4904 if (cpu_online(cpu))
4905 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4906#endif
4907 }
4908
6811378e
YG
4909 return 0;
4910}
4911
061f67bc
RV
4912static noinline void __init
4913build_all_zonelists_init(void)
4914{
4915 __build_all_zonelists(NULL);
4916 mminit_verify_zonelist();
4917 cpuset_init_current_mems_allowed();
4918}
4919
4eaf3f64
HL
4920/*
4921 * Called with zonelists_mutex held always
4922 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4923 *
4924 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4925 * [we're only called with non-NULL zone through __meminit paths] and
4926 * (2) call of __init annotated helper build_all_zonelists_init
4927 * [protected by SYSTEM_BOOTING].
4eaf3f64 4928 */
9adb62a5 4929void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4930{
f0c0b2b8
KH
4931 set_zonelist_order();
4932
6811378e 4933 if (system_state == SYSTEM_BOOTING) {
061f67bc 4934 build_all_zonelists_init();
6811378e 4935 } else {
e9959f0f 4936#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4937 if (zone)
4938 setup_zone_pageset(zone);
e9959f0f 4939#endif
dd1895e2
CS
4940 /* we have to stop all cpus to guarantee there is no user
4941 of zonelist */
9adb62a5 4942 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4943 /* cpuset refresh routine should be here */
4944 }
bd1e22b8 4945 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4946 /*
4947 * Disable grouping by mobility if the number of pages in the
4948 * system is too low to allow the mechanism to work. It would be
4949 * more accurate, but expensive to check per-zone. This check is
4950 * made on memory-hotadd so a system can start with mobility
4951 * disabled and enable it later
4952 */
d9c23400 4953 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4954 page_group_by_mobility_disabled = 1;
4955 else
4956 page_group_by_mobility_disabled = 0;
4957
756a025f
JP
4958 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4959 nr_online_nodes,
4960 zonelist_order_name[current_zonelist_order],
4961 page_group_by_mobility_disabled ? "off" : "on",
4962 vm_total_pages);
f0c0b2b8 4963#ifdef CONFIG_NUMA
f88dfff5 4964 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4965#endif
1da177e4
LT
4966}
4967
4968/*
4969 * Helper functions to size the waitqueue hash table.
4970 * Essentially these want to choose hash table sizes sufficiently
4971 * large so that collisions trying to wait on pages are rare.
4972 * But in fact, the number of active page waitqueues on typical
4973 * systems is ridiculously low, less than 200. So this is even
4974 * conservative, even though it seems large.
4975 *
4976 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4977 * waitqueues, i.e. the size of the waitq table given the number of pages.
4978 */
4979#define PAGES_PER_WAITQUEUE 256
4980
cca448fe 4981#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4982static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4983{
4984 unsigned long size = 1;
4985
4986 pages /= PAGES_PER_WAITQUEUE;
4987
4988 while (size < pages)
4989 size <<= 1;
4990
4991 /*
4992 * Once we have dozens or even hundreds of threads sleeping
4993 * on IO we've got bigger problems than wait queue collision.
4994 * Limit the size of the wait table to a reasonable size.
4995 */
4996 size = min(size, 4096UL);
4997
4998 return max(size, 4UL);
4999}
cca448fe
YG
5000#else
5001/*
5002 * A zone's size might be changed by hot-add, so it is not possible to determine
5003 * a suitable size for its wait_table. So we use the maximum size now.
5004 *
5005 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5006 *
5007 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5008 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5009 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5010 *
5011 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5012 * or more by the traditional way. (See above). It equals:
5013 *
5014 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5015 * ia64(16K page size) : = ( 8G + 4M)byte.
5016 * powerpc (64K page size) : = (32G +16M)byte.
5017 */
5018static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5019{
5020 return 4096UL;
5021}
5022#endif
1da177e4
LT
5023
5024/*
5025 * This is an integer logarithm so that shifts can be used later
5026 * to extract the more random high bits from the multiplicative
5027 * hash function before the remainder is taken.
5028 */
5029static inline unsigned long wait_table_bits(unsigned long size)
5030{
5031 return ffz(~size);
5032}
5033
1da177e4
LT
5034/*
5035 * Initially all pages are reserved - free ones are freed
5036 * up by free_all_bootmem() once the early boot process is
5037 * done. Non-atomic initialization, single-pass.
5038 */
c09b4240 5039void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5040 unsigned long start_pfn, enum memmap_context context)
1da177e4 5041{
4b94ffdc 5042 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5043 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5044 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5045 unsigned long pfn;
3a80a7fa 5046 unsigned long nr_initialised = 0;
342332e6
TI
5047#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5048 struct memblock_region *r = NULL, *tmp;
5049#endif
1da177e4 5050
22b31eec
HD
5051 if (highest_memmap_pfn < end_pfn - 1)
5052 highest_memmap_pfn = end_pfn - 1;
5053
4b94ffdc
DW
5054 /*
5055 * Honor reservation requested by the driver for this ZONE_DEVICE
5056 * memory
5057 */
5058 if (altmap && start_pfn == altmap->base_pfn)
5059 start_pfn += altmap->reserve;
5060
cbe8dd4a 5061 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5062 /*
b72d0ffb
AM
5063 * There can be holes in boot-time mem_map[]s handed to this
5064 * function. They do not exist on hotplugged memory.
a2f3aa02 5065 */
b72d0ffb
AM
5066 if (context != MEMMAP_EARLY)
5067 goto not_early;
5068
5069 if (!early_pfn_valid(pfn))
5070 continue;
5071 if (!early_pfn_in_nid(pfn, nid))
5072 continue;
5073 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5074 break;
342332e6
TI
5075
5076#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5077 /*
5078 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5079 * from zone_movable_pfn[nid] to end of each node should be
5080 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5081 */
5082 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5083 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5084 continue;
342332e6 5085
b72d0ffb
AM
5086 /*
5087 * Check given memblock attribute by firmware which can affect
5088 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5089 * mirrored, it's an overlapped memmap init. skip it.
5090 */
5091 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5092 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5093 for_each_memblock(memory, tmp)
5094 if (pfn < memblock_region_memory_end_pfn(tmp))
5095 break;
5096 r = tmp;
5097 }
5098 if (pfn >= memblock_region_memory_base_pfn(r) &&
5099 memblock_is_mirror(r)) {
5100 /* already initialized as NORMAL */
5101 pfn = memblock_region_memory_end_pfn(r);
5102 continue;
342332e6 5103 }
a2f3aa02 5104 }
b72d0ffb 5105#endif
ac5d2539 5106
b72d0ffb 5107not_early:
ac5d2539
MG
5108 /*
5109 * Mark the block movable so that blocks are reserved for
5110 * movable at startup. This will force kernel allocations
5111 * to reserve their blocks rather than leaking throughout
5112 * the address space during boot when many long-lived
974a786e 5113 * kernel allocations are made.
ac5d2539
MG
5114 *
5115 * bitmap is created for zone's valid pfn range. but memmap
5116 * can be created for invalid pages (for alignment)
5117 * check here not to call set_pageblock_migratetype() against
5118 * pfn out of zone.
5119 */
5120 if (!(pfn & (pageblock_nr_pages - 1))) {
5121 struct page *page = pfn_to_page(pfn);
5122
5123 __init_single_page(page, pfn, zone, nid);
5124 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5125 } else {
5126 __init_single_pfn(pfn, zone, nid);
5127 }
1da177e4
LT
5128 }
5129}
5130
1e548deb 5131static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5132{
7aeb09f9 5133 unsigned int order, t;
b2a0ac88
MG
5134 for_each_migratetype_order(order, t) {
5135 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5136 zone->free_area[order].nr_free = 0;
5137 }
5138}
5139
5140#ifndef __HAVE_ARCH_MEMMAP_INIT
5141#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5142 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5143#endif
5144
7cd2b0a3 5145static int zone_batchsize(struct zone *zone)
e7c8d5c9 5146{
3a6be87f 5147#ifdef CONFIG_MMU
e7c8d5c9
CL
5148 int batch;
5149
5150 /*
5151 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5152 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5153 *
5154 * OK, so we don't know how big the cache is. So guess.
5155 */
b40da049 5156 batch = zone->managed_pages / 1024;
ba56e91c
SR
5157 if (batch * PAGE_SIZE > 512 * 1024)
5158 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5159 batch /= 4; /* We effectively *= 4 below */
5160 if (batch < 1)
5161 batch = 1;
5162
5163 /*
0ceaacc9
NP
5164 * Clamp the batch to a 2^n - 1 value. Having a power
5165 * of 2 value was found to be more likely to have
5166 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5167 *
0ceaacc9
NP
5168 * For example if 2 tasks are alternately allocating
5169 * batches of pages, one task can end up with a lot
5170 * of pages of one half of the possible page colors
5171 * and the other with pages of the other colors.
e7c8d5c9 5172 */
9155203a 5173 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5174
e7c8d5c9 5175 return batch;
3a6be87f
DH
5176
5177#else
5178 /* The deferral and batching of frees should be suppressed under NOMMU
5179 * conditions.
5180 *
5181 * The problem is that NOMMU needs to be able to allocate large chunks
5182 * of contiguous memory as there's no hardware page translation to
5183 * assemble apparent contiguous memory from discontiguous pages.
5184 *
5185 * Queueing large contiguous runs of pages for batching, however,
5186 * causes the pages to actually be freed in smaller chunks. As there
5187 * can be a significant delay between the individual batches being
5188 * recycled, this leads to the once large chunks of space being
5189 * fragmented and becoming unavailable for high-order allocations.
5190 */
5191 return 0;
5192#endif
e7c8d5c9
CL
5193}
5194
8d7a8fa9
CS
5195/*
5196 * pcp->high and pcp->batch values are related and dependent on one another:
5197 * ->batch must never be higher then ->high.
5198 * The following function updates them in a safe manner without read side
5199 * locking.
5200 *
5201 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5202 * those fields changing asynchronously (acording the the above rule).
5203 *
5204 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5205 * outside of boot time (or some other assurance that no concurrent updaters
5206 * exist).
5207 */
5208static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5209 unsigned long batch)
5210{
5211 /* start with a fail safe value for batch */
5212 pcp->batch = 1;
5213 smp_wmb();
5214
5215 /* Update high, then batch, in order */
5216 pcp->high = high;
5217 smp_wmb();
5218
5219 pcp->batch = batch;
5220}
5221
3664033c 5222/* a companion to pageset_set_high() */
4008bab7
CS
5223static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5224{
8d7a8fa9 5225 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5226}
5227
88c90dbc 5228static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5229{
5230 struct per_cpu_pages *pcp;
5f8dcc21 5231 int migratetype;
2caaad41 5232
1c6fe946
MD
5233 memset(p, 0, sizeof(*p));
5234
3dfa5721 5235 pcp = &p->pcp;
2caaad41 5236 pcp->count = 0;
5f8dcc21
MG
5237 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5238 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5239}
5240
88c90dbc
CS
5241static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5242{
5243 pageset_init(p);
5244 pageset_set_batch(p, batch);
5245}
5246
8ad4b1fb 5247/*
3664033c 5248 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5249 * to the value high for the pageset p.
5250 */
3664033c 5251static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5252 unsigned long high)
5253{
8d7a8fa9
CS
5254 unsigned long batch = max(1UL, high / 4);
5255 if ((high / 4) > (PAGE_SHIFT * 8))
5256 batch = PAGE_SHIFT * 8;
8ad4b1fb 5257
8d7a8fa9 5258 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5259}
5260
7cd2b0a3
DR
5261static void pageset_set_high_and_batch(struct zone *zone,
5262 struct per_cpu_pageset *pcp)
56cef2b8 5263{
56cef2b8 5264 if (percpu_pagelist_fraction)
3664033c 5265 pageset_set_high(pcp,
56cef2b8
CS
5266 (zone->managed_pages /
5267 percpu_pagelist_fraction));
5268 else
5269 pageset_set_batch(pcp, zone_batchsize(zone));
5270}
5271
169f6c19
CS
5272static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5273{
5274 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5275
5276 pageset_init(pcp);
5277 pageset_set_high_and_batch(zone, pcp);
5278}
5279
4ed7e022 5280static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5281{
5282 int cpu;
319774e2 5283 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5284 for_each_possible_cpu(cpu)
5285 zone_pageset_init(zone, cpu);
319774e2
WF
5286}
5287
2caaad41 5288/*
99dcc3e5
CL
5289 * Allocate per cpu pagesets and initialize them.
5290 * Before this call only boot pagesets were available.
e7c8d5c9 5291 */
99dcc3e5 5292void __init setup_per_cpu_pageset(void)
e7c8d5c9 5293{
b4911ea2 5294 struct pglist_data *pgdat;
99dcc3e5 5295 struct zone *zone;
e7c8d5c9 5296
319774e2
WF
5297 for_each_populated_zone(zone)
5298 setup_zone_pageset(zone);
b4911ea2
MG
5299
5300 for_each_online_pgdat(pgdat)
5301 pgdat->per_cpu_nodestats =
5302 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5303}
5304
bd721ea7 5305static noinline __ref
cca448fe 5306int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5307{
5308 int i;
cca448fe 5309 size_t alloc_size;
ed8ece2e
DH
5310
5311 /*
5312 * The per-page waitqueue mechanism uses hashed waitqueues
5313 * per zone.
5314 */
02b694de
YG
5315 zone->wait_table_hash_nr_entries =
5316 wait_table_hash_nr_entries(zone_size_pages);
5317 zone->wait_table_bits =
5318 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5319 alloc_size = zone->wait_table_hash_nr_entries
5320 * sizeof(wait_queue_head_t);
5321
cd94b9db 5322 if (!slab_is_available()) {
cca448fe 5323 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5324 memblock_virt_alloc_node_nopanic(
5325 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5326 } else {
5327 /*
5328 * This case means that a zone whose size was 0 gets new memory
5329 * via memory hot-add.
5330 * But it may be the case that a new node was hot-added. In
5331 * this case vmalloc() will not be able to use this new node's
5332 * memory - this wait_table must be initialized to use this new
5333 * node itself as well.
5334 * To use this new node's memory, further consideration will be
5335 * necessary.
5336 */
8691f3a7 5337 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5338 }
5339 if (!zone->wait_table)
5340 return -ENOMEM;
ed8ece2e 5341
b8af2941 5342 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5343 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5344
5345 return 0;
ed8ece2e
DH
5346}
5347
c09b4240 5348static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5349{
99dcc3e5
CL
5350 /*
5351 * per cpu subsystem is not up at this point. The following code
5352 * relies on the ability of the linker to provide the
5353 * offset of a (static) per cpu variable into the per cpu area.
5354 */
5355 zone->pageset = &boot_pageset;
ed8ece2e 5356
b38a8725 5357 if (populated_zone(zone))
99dcc3e5
CL
5358 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5359 zone->name, zone->present_pages,
5360 zone_batchsize(zone));
ed8ece2e
DH
5361}
5362
4ed7e022 5363int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5364 unsigned long zone_start_pfn,
b171e409 5365 unsigned long size)
ed8ece2e
DH
5366{
5367 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5368 int ret;
5369 ret = zone_wait_table_init(zone, size);
5370 if (ret)
5371 return ret;
ed8ece2e
DH
5372 pgdat->nr_zones = zone_idx(zone) + 1;
5373
ed8ece2e
DH
5374 zone->zone_start_pfn = zone_start_pfn;
5375
708614e6
MG
5376 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5377 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5378 pgdat->node_id,
5379 (unsigned long)zone_idx(zone),
5380 zone_start_pfn, (zone_start_pfn + size));
5381
1e548deb 5382 zone_init_free_lists(zone);
718127cc
YG
5383
5384 return 0;
ed8ece2e
DH
5385}
5386
0ee332c1 5387#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5388#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5389
c713216d
MG
5390/*
5391 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5392 */
8a942fde
MG
5393int __meminit __early_pfn_to_nid(unsigned long pfn,
5394 struct mminit_pfnnid_cache *state)
c713216d 5395{
c13291a5 5396 unsigned long start_pfn, end_pfn;
e76b63f8 5397 int nid;
7c243c71 5398
8a942fde
MG
5399 if (state->last_start <= pfn && pfn < state->last_end)
5400 return state->last_nid;
c713216d 5401
e76b63f8
YL
5402 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5403 if (nid != -1) {
8a942fde
MG
5404 state->last_start = start_pfn;
5405 state->last_end = end_pfn;
5406 state->last_nid = nid;
e76b63f8
YL
5407 }
5408
5409 return nid;
c713216d
MG
5410}
5411#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5412
c713216d 5413/**
6782832e 5414 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5415 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5416 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5417 *
7d018176
ZZ
5418 * If an architecture guarantees that all ranges registered contain no holes
5419 * and may be freed, this this function may be used instead of calling
5420 * memblock_free_early_nid() manually.
c713216d 5421 */
c13291a5 5422void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5423{
c13291a5
TH
5424 unsigned long start_pfn, end_pfn;
5425 int i, this_nid;
edbe7d23 5426
c13291a5
TH
5427 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5428 start_pfn = min(start_pfn, max_low_pfn);
5429 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5430
c13291a5 5431 if (start_pfn < end_pfn)
6782832e
SS
5432 memblock_free_early_nid(PFN_PHYS(start_pfn),
5433 (end_pfn - start_pfn) << PAGE_SHIFT,
5434 this_nid);
edbe7d23 5435 }
edbe7d23 5436}
edbe7d23 5437
c713216d
MG
5438/**
5439 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5440 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5441 *
7d018176
ZZ
5442 * If an architecture guarantees that all ranges registered contain no holes and may
5443 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5444 */
5445void __init sparse_memory_present_with_active_regions(int nid)
5446{
c13291a5
TH
5447 unsigned long start_pfn, end_pfn;
5448 int i, this_nid;
c713216d 5449
c13291a5
TH
5450 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5451 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5452}
5453
5454/**
5455 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5456 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5457 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5458 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5459 *
5460 * It returns the start and end page frame of a node based on information
7d018176 5461 * provided by memblock_set_node(). If called for a node
c713216d 5462 * with no available memory, a warning is printed and the start and end
88ca3b94 5463 * PFNs will be 0.
c713216d 5464 */
a3142c8e 5465void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5466 unsigned long *start_pfn, unsigned long *end_pfn)
5467{
c13291a5 5468 unsigned long this_start_pfn, this_end_pfn;
c713216d 5469 int i;
c13291a5 5470
c713216d
MG
5471 *start_pfn = -1UL;
5472 *end_pfn = 0;
5473
c13291a5
TH
5474 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5475 *start_pfn = min(*start_pfn, this_start_pfn);
5476 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5477 }
5478
633c0666 5479 if (*start_pfn == -1UL)
c713216d 5480 *start_pfn = 0;
c713216d
MG
5481}
5482
2a1e274a
MG
5483/*
5484 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5485 * assumption is made that zones within a node are ordered in monotonic
5486 * increasing memory addresses so that the "highest" populated zone is used
5487 */
b69a7288 5488static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5489{
5490 int zone_index;
5491 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5492 if (zone_index == ZONE_MOVABLE)
5493 continue;
5494
5495 if (arch_zone_highest_possible_pfn[zone_index] >
5496 arch_zone_lowest_possible_pfn[zone_index])
5497 break;
5498 }
5499
5500 VM_BUG_ON(zone_index == -1);
5501 movable_zone = zone_index;
5502}
5503
5504/*
5505 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5506 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5507 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5508 * in each node depending on the size of each node and how evenly kernelcore
5509 * is distributed. This helper function adjusts the zone ranges
5510 * provided by the architecture for a given node by using the end of the
5511 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5512 * zones within a node are in order of monotonic increases memory addresses
5513 */
b69a7288 5514static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5515 unsigned long zone_type,
5516 unsigned long node_start_pfn,
5517 unsigned long node_end_pfn,
5518 unsigned long *zone_start_pfn,
5519 unsigned long *zone_end_pfn)
5520{
5521 /* Only adjust if ZONE_MOVABLE is on this node */
5522 if (zone_movable_pfn[nid]) {
5523 /* Size ZONE_MOVABLE */
5524 if (zone_type == ZONE_MOVABLE) {
5525 *zone_start_pfn = zone_movable_pfn[nid];
5526 *zone_end_pfn = min(node_end_pfn,
5527 arch_zone_highest_possible_pfn[movable_zone]);
5528
2a1e274a
MG
5529 /* Check if this whole range is within ZONE_MOVABLE */
5530 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5531 *zone_start_pfn = *zone_end_pfn;
5532 }
5533}
5534
c713216d
MG
5535/*
5536 * Return the number of pages a zone spans in a node, including holes
5537 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5538 */
6ea6e688 5539static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5540 unsigned long zone_type,
7960aedd
ZY
5541 unsigned long node_start_pfn,
5542 unsigned long node_end_pfn,
d91749c1
TI
5543 unsigned long *zone_start_pfn,
5544 unsigned long *zone_end_pfn,
c713216d
MG
5545 unsigned long *ignored)
5546{
b5685e92 5547 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5548 if (!node_start_pfn && !node_end_pfn)
5549 return 0;
5550
7960aedd 5551 /* Get the start and end of the zone */
d91749c1
TI
5552 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5553 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5554 adjust_zone_range_for_zone_movable(nid, zone_type,
5555 node_start_pfn, node_end_pfn,
d91749c1 5556 zone_start_pfn, zone_end_pfn);
c713216d
MG
5557
5558 /* Check that this node has pages within the zone's required range */
d91749c1 5559 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5560 return 0;
5561
5562 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5563 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5564 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5565
5566 /* Return the spanned pages */
d91749c1 5567 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5568}
5569
5570/*
5571 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5572 * then all holes in the requested range will be accounted for.
c713216d 5573 */
32996250 5574unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5575 unsigned long range_start_pfn,
5576 unsigned long range_end_pfn)
5577{
96e907d1
TH
5578 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5579 unsigned long start_pfn, end_pfn;
5580 int i;
c713216d 5581
96e907d1
TH
5582 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5583 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5584 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5585 nr_absent -= end_pfn - start_pfn;
c713216d 5586 }
96e907d1 5587 return nr_absent;
c713216d
MG
5588}
5589
5590/**
5591 * absent_pages_in_range - Return number of page frames in holes within a range
5592 * @start_pfn: The start PFN to start searching for holes
5593 * @end_pfn: The end PFN to stop searching for holes
5594 *
88ca3b94 5595 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5596 */
5597unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5598 unsigned long end_pfn)
5599{
5600 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5601}
5602
5603/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5604static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5605 unsigned long zone_type,
7960aedd
ZY
5606 unsigned long node_start_pfn,
5607 unsigned long node_end_pfn,
c713216d
MG
5608 unsigned long *ignored)
5609{
96e907d1
TH
5610 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5611 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5612 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5613 unsigned long nr_absent;
9c7cd687 5614
b5685e92 5615 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5616 if (!node_start_pfn && !node_end_pfn)
5617 return 0;
5618
96e907d1
TH
5619 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5620 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5621
2a1e274a
MG
5622 adjust_zone_range_for_zone_movable(nid, zone_type,
5623 node_start_pfn, node_end_pfn,
5624 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5625 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5626
5627 /*
5628 * ZONE_MOVABLE handling.
5629 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5630 * and vice versa.
5631 */
5632 if (zone_movable_pfn[nid]) {
5633 if (mirrored_kernelcore) {
5634 unsigned long start_pfn, end_pfn;
5635 struct memblock_region *r;
5636
5637 for_each_memblock(memory, r) {
5638 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5639 zone_start_pfn, zone_end_pfn);
5640 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5641 zone_start_pfn, zone_end_pfn);
5642
5643 if (zone_type == ZONE_MOVABLE &&
5644 memblock_is_mirror(r))
5645 nr_absent += end_pfn - start_pfn;
5646
5647 if (zone_type == ZONE_NORMAL &&
5648 !memblock_is_mirror(r))
5649 nr_absent += end_pfn - start_pfn;
5650 }
5651 } else {
5652 if (zone_type == ZONE_NORMAL)
5653 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5654 }
5655 }
5656
5657 return nr_absent;
c713216d 5658}
0e0b864e 5659
0ee332c1 5660#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5661static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5662 unsigned long zone_type,
7960aedd
ZY
5663 unsigned long node_start_pfn,
5664 unsigned long node_end_pfn,
d91749c1
TI
5665 unsigned long *zone_start_pfn,
5666 unsigned long *zone_end_pfn,
c713216d
MG
5667 unsigned long *zones_size)
5668{
d91749c1
TI
5669 unsigned int zone;
5670
5671 *zone_start_pfn = node_start_pfn;
5672 for (zone = 0; zone < zone_type; zone++)
5673 *zone_start_pfn += zones_size[zone];
5674
5675 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5676
c713216d
MG
5677 return zones_size[zone_type];
5678}
5679
6ea6e688 5680static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5681 unsigned long zone_type,
7960aedd
ZY
5682 unsigned long node_start_pfn,
5683 unsigned long node_end_pfn,
c713216d
MG
5684 unsigned long *zholes_size)
5685{
5686 if (!zholes_size)
5687 return 0;
5688
5689 return zholes_size[zone_type];
5690}
20e6926d 5691
0ee332c1 5692#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5693
a3142c8e 5694static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5695 unsigned long node_start_pfn,
5696 unsigned long node_end_pfn,
5697 unsigned long *zones_size,
5698 unsigned long *zholes_size)
c713216d 5699{
febd5949 5700 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5701 enum zone_type i;
5702
febd5949
GZ
5703 for (i = 0; i < MAX_NR_ZONES; i++) {
5704 struct zone *zone = pgdat->node_zones + i;
d91749c1 5705 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5706 unsigned long size, real_size;
c713216d 5707
febd5949
GZ
5708 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5709 node_start_pfn,
5710 node_end_pfn,
d91749c1
TI
5711 &zone_start_pfn,
5712 &zone_end_pfn,
febd5949
GZ
5713 zones_size);
5714 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5715 node_start_pfn, node_end_pfn,
5716 zholes_size);
d91749c1
TI
5717 if (size)
5718 zone->zone_start_pfn = zone_start_pfn;
5719 else
5720 zone->zone_start_pfn = 0;
febd5949
GZ
5721 zone->spanned_pages = size;
5722 zone->present_pages = real_size;
5723
5724 totalpages += size;
5725 realtotalpages += real_size;
5726 }
5727
5728 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5729 pgdat->node_present_pages = realtotalpages;
5730 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5731 realtotalpages);
5732}
5733
835c134e
MG
5734#ifndef CONFIG_SPARSEMEM
5735/*
5736 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5737 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5738 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5739 * round what is now in bits to nearest long in bits, then return it in
5740 * bytes.
5741 */
7c45512d 5742static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5743{
5744 unsigned long usemapsize;
5745
7c45512d 5746 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5747 usemapsize = roundup(zonesize, pageblock_nr_pages);
5748 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5749 usemapsize *= NR_PAGEBLOCK_BITS;
5750 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5751
5752 return usemapsize / 8;
5753}
5754
5755static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5756 struct zone *zone,
5757 unsigned long zone_start_pfn,
5758 unsigned long zonesize)
835c134e 5759{
7c45512d 5760 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5761 zone->pageblock_flags = NULL;
58a01a45 5762 if (usemapsize)
6782832e
SS
5763 zone->pageblock_flags =
5764 memblock_virt_alloc_node_nopanic(usemapsize,
5765 pgdat->node_id);
835c134e
MG
5766}
5767#else
7c45512d
LT
5768static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5769 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5770#endif /* CONFIG_SPARSEMEM */
5771
d9c23400 5772#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5773
d9c23400 5774/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5775void __paginginit set_pageblock_order(void)
d9c23400 5776{
955c1cd7
AM
5777 unsigned int order;
5778
d9c23400
MG
5779 /* Check that pageblock_nr_pages has not already been setup */
5780 if (pageblock_order)
5781 return;
5782
955c1cd7
AM
5783 if (HPAGE_SHIFT > PAGE_SHIFT)
5784 order = HUGETLB_PAGE_ORDER;
5785 else
5786 order = MAX_ORDER - 1;
5787
d9c23400
MG
5788 /*
5789 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5790 * This value may be variable depending on boot parameters on IA64 and
5791 * powerpc.
d9c23400
MG
5792 */
5793 pageblock_order = order;
5794}
5795#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5796
ba72cb8c
MG
5797/*
5798 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5799 * is unused as pageblock_order is set at compile-time. See
5800 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5801 * the kernel config
ba72cb8c 5802 */
15ca220e 5803void __paginginit set_pageblock_order(void)
ba72cb8c 5804{
ba72cb8c 5805}
d9c23400
MG
5806
5807#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5808
01cefaef
JL
5809static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5810 unsigned long present_pages)
5811{
5812 unsigned long pages = spanned_pages;
5813
5814 /*
5815 * Provide a more accurate estimation if there are holes within
5816 * the zone and SPARSEMEM is in use. If there are holes within the
5817 * zone, each populated memory region may cost us one or two extra
5818 * memmap pages due to alignment because memmap pages for each
5819 * populated regions may not naturally algined on page boundary.
5820 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5821 */
5822 if (spanned_pages > present_pages + (present_pages >> 4) &&
5823 IS_ENABLED(CONFIG_SPARSEMEM))
5824 pages = present_pages;
5825
5826 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5827}
5828
1da177e4
LT
5829/*
5830 * Set up the zone data structures:
5831 * - mark all pages reserved
5832 * - mark all memory queues empty
5833 * - clear the memory bitmaps
6527af5d
MK
5834 *
5835 * NOTE: pgdat should get zeroed by caller.
1da177e4 5836 */
7f3eb55b 5837static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5838{
2f1b6248 5839 enum zone_type j;
ed8ece2e 5840 int nid = pgdat->node_id;
718127cc 5841 int ret;
1da177e4 5842
208d54e5 5843 pgdat_resize_init(pgdat);
8177a420
AA
5844#ifdef CONFIG_NUMA_BALANCING
5845 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5846 pgdat->numabalancing_migrate_nr_pages = 0;
5847 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5848#endif
5849#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5850 spin_lock_init(&pgdat->split_queue_lock);
5851 INIT_LIST_HEAD(&pgdat->split_queue);
5852 pgdat->split_queue_len = 0;
8177a420 5853#endif
1da177e4 5854 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5855 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5856#ifdef CONFIG_COMPACTION
5857 init_waitqueue_head(&pgdat->kcompactd_wait);
5858#endif
eefa864b 5859 pgdat_page_ext_init(pgdat);
a52633d8 5860 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5861 lruvec_init(node_lruvec(pgdat));
5f63b720 5862
1da177e4
LT
5863 for (j = 0; j < MAX_NR_ZONES; j++) {
5864 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5865 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5866 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5867
febd5949
GZ
5868 size = zone->spanned_pages;
5869 realsize = freesize = zone->present_pages;
1da177e4 5870
0e0b864e 5871 /*
9feedc9d 5872 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5873 * is used by this zone for memmap. This affects the watermark
5874 * and per-cpu initialisations
5875 */
01cefaef 5876 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5877 if (!is_highmem_idx(j)) {
5878 if (freesize >= memmap_pages) {
5879 freesize -= memmap_pages;
5880 if (memmap_pages)
5881 printk(KERN_DEBUG
5882 " %s zone: %lu pages used for memmap\n",
5883 zone_names[j], memmap_pages);
5884 } else
1170532b 5885 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5886 zone_names[j], memmap_pages, freesize);
5887 }
0e0b864e 5888
6267276f 5889 /* Account for reserved pages */
9feedc9d
JL
5890 if (j == 0 && freesize > dma_reserve) {
5891 freesize -= dma_reserve;
d903ef9f 5892 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5893 zone_names[0], dma_reserve);
0e0b864e
MG
5894 }
5895
98d2b0eb 5896 if (!is_highmem_idx(j))
9feedc9d 5897 nr_kernel_pages += freesize;
01cefaef
JL
5898 /* Charge for highmem memmap if there are enough kernel pages */
5899 else if (nr_kernel_pages > memmap_pages * 2)
5900 nr_kernel_pages -= memmap_pages;
9feedc9d 5901 nr_all_pages += freesize;
1da177e4 5902
9feedc9d
JL
5903 /*
5904 * Set an approximate value for lowmem here, it will be adjusted
5905 * when the bootmem allocator frees pages into the buddy system.
5906 * And all highmem pages will be managed by the buddy system.
5907 */
5908 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5909#ifdef CONFIG_NUMA
d5f541ed 5910 zone->node = nid;
a5f5f91d 5911 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
9614634f 5912 / 100;
a5f5f91d 5913 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5914#endif
1da177e4 5915 zone->name = zone_names[j];
a52633d8 5916 zone->zone_pgdat = pgdat;
1da177e4 5917 spin_lock_init(&zone->lock);
bdc8cb98 5918 zone_seqlock_init(zone);
ed8ece2e 5919 zone_pcp_init(zone);
81c0a2bb 5920
1da177e4
LT
5921 if (!size)
5922 continue;
5923
955c1cd7 5924 set_pageblock_order();
7c45512d 5925 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5926 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5927 BUG_ON(ret);
76cdd58e 5928 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5929 }
5930}
5931
bd721ea7 5932static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5933{
b0aeba74 5934 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5935 unsigned long __maybe_unused offset = 0;
5936
1da177e4
LT
5937 /* Skip empty nodes */
5938 if (!pgdat->node_spanned_pages)
5939 return;
5940
d41dee36 5941#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5942 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5943 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5944 /* ia64 gets its own node_mem_map, before this, without bootmem */
5945 if (!pgdat->node_mem_map) {
b0aeba74 5946 unsigned long size, end;
d41dee36
AW
5947 struct page *map;
5948
e984bb43
BP
5949 /*
5950 * The zone's endpoints aren't required to be MAX_ORDER
5951 * aligned but the node_mem_map endpoints must be in order
5952 * for the buddy allocator to function correctly.
5953 */
108bcc96 5954 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5955 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5956 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5957 map = alloc_remap(pgdat->node_id, size);
5958 if (!map)
6782832e
SS
5959 map = memblock_virt_alloc_node_nopanic(size,
5960 pgdat->node_id);
a1c34a3b 5961 pgdat->node_mem_map = map + offset;
1da177e4 5962 }
12d810c1 5963#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5964 /*
5965 * With no DISCONTIG, the global mem_map is just set as node 0's
5966 */
c713216d 5967 if (pgdat == NODE_DATA(0)) {
1da177e4 5968 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5969#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5970 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5971 mem_map -= offset;
0ee332c1 5972#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5973 }
1da177e4 5974#endif
d41dee36 5975#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5976}
5977
9109fb7b
JW
5978void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5979 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5980{
9109fb7b 5981 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5982 unsigned long start_pfn = 0;
5983 unsigned long end_pfn = 0;
9109fb7b 5984
88fdf75d 5985 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5986 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5987
3a80a7fa 5988 reset_deferred_meminit(pgdat);
1da177e4
LT
5989 pgdat->node_id = nid;
5990 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5991 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5992#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5993 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5994 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5995 (u64)start_pfn << PAGE_SHIFT,
5996 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5997#else
5998 start_pfn = node_start_pfn;
7960aedd
ZY
5999#endif
6000 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6001 zones_size, zholes_size);
1da177e4
LT
6002
6003 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6004#ifdef CONFIG_FLAT_NODE_MEM_MAP
6005 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6006 nid, (unsigned long)pgdat,
6007 (unsigned long)pgdat->node_mem_map);
6008#endif
1da177e4 6009
7f3eb55b 6010 free_area_init_core(pgdat);
1da177e4
LT
6011}
6012
0ee332c1 6013#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6014
6015#if MAX_NUMNODES > 1
6016/*
6017 * Figure out the number of possible node ids.
6018 */
f9872caf 6019void __init setup_nr_node_ids(void)
418508c1 6020{
904a9553 6021 unsigned int highest;
418508c1 6022
904a9553 6023 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6024 nr_node_ids = highest + 1;
6025}
418508c1
MS
6026#endif
6027
1e01979c
TH
6028/**
6029 * node_map_pfn_alignment - determine the maximum internode alignment
6030 *
6031 * This function should be called after node map is populated and sorted.
6032 * It calculates the maximum power of two alignment which can distinguish
6033 * all the nodes.
6034 *
6035 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6036 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6037 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6038 * shifted, 1GiB is enough and this function will indicate so.
6039 *
6040 * This is used to test whether pfn -> nid mapping of the chosen memory
6041 * model has fine enough granularity to avoid incorrect mapping for the
6042 * populated node map.
6043 *
6044 * Returns the determined alignment in pfn's. 0 if there is no alignment
6045 * requirement (single node).
6046 */
6047unsigned long __init node_map_pfn_alignment(void)
6048{
6049 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6050 unsigned long start, end, mask;
1e01979c 6051 int last_nid = -1;
c13291a5 6052 int i, nid;
1e01979c 6053
c13291a5 6054 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6055 if (!start || last_nid < 0 || last_nid == nid) {
6056 last_nid = nid;
6057 last_end = end;
6058 continue;
6059 }
6060
6061 /*
6062 * Start with a mask granular enough to pin-point to the
6063 * start pfn and tick off bits one-by-one until it becomes
6064 * too coarse to separate the current node from the last.
6065 */
6066 mask = ~((1 << __ffs(start)) - 1);
6067 while (mask && last_end <= (start & (mask << 1)))
6068 mask <<= 1;
6069
6070 /* accumulate all internode masks */
6071 accl_mask |= mask;
6072 }
6073
6074 /* convert mask to number of pages */
6075 return ~accl_mask + 1;
6076}
6077
a6af2bc3 6078/* Find the lowest pfn for a node */
b69a7288 6079static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6080{
a6af2bc3 6081 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6082 unsigned long start_pfn;
6083 int i;
1abbfb41 6084
c13291a5
TH
6085 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6086 min_pfn = min(min_pfn, start_pfn);
c713216d 6087
a6af2bc3 6088 if (min_pfn == ULONG_MAX) {
1170532b 6089 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6090 return 0;
6091 }
6092
6093 return min_pfn;
c713216d
MG
6094}
6095
6096/**
6097 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6098 *
6099 * It returns the minimum PFN based on information provided via
7d018176 6100 * memblock_set_node().
c713216d
MG
6101 */
6102unsigned long __init find_min_pfn_with_active_regions(void)
6103{
6104 return find_min_pfn_for_node(MAX_NUMNODES);
6105}
6106
37b07e41
LS
6107/*
6108 * early_calculate_totalpages()
6109 * Sum pages in active regions for movable zone.
4b0ef1fe 6110 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6111 */
484f51f8 6112static unsigned long __init early_calculate_totalpages(void)
7e63efef 6113{
7e63efef 6114 unsigned long totalpages = 0;
c13291a5
TH
6115 unsigned long start_pfn, end_pfn;
6116 int i, nid;
6117
6118 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6119 unsigned long pages = end_pfn - start_pfn;
7e63efef 6120
37b07e41
LS
6121 totalpages += pages;
6122 if (pages)
4b0ef1fe 6123 node_set_state(nid, N_MEMORY);
37b07e41 6124 }
b8af2941 6125 return totalpages;
7e63efef
MG
6126}
6127
2a1e274a
MG
6128/*
6129 * Find the PFN the Movable zone begins in each node. Kernel memory
6130 * is spread evenly between nodes as long as the nodes have enough
6131 * memory. When they don't, some nodes will have more kernelcore than
6132 * others
6133 */
b224ef85 6134static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6135{
6136 int i, nid;
6137 unsigned long usable_startpfn;
6138 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6139 /* save the state before borrow the nodemask */
4b0ef1fe 6140 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6141 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6142 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6143 struct memblock_region *r;
b2f3eebe
TC
6144
6145 /* Need to find movable_zone earlier when movable_node is specified. */
6146 find_usable_zone_for_movable();
6147
6148 /*
6149 * If movable_node is specified, ignore kernelcore and movablecore
6150 * options.
6151 */
6152 if (movable_node_is_enabled()) {
136199f0
EM
6153 for_each_memblock(memory, r) {
6154 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6155 continue;
6156
136199f0 6157 nid = r->nid;
b2f3eebe 6158
136199f0 6159 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6160 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6161 min(usable_startpfn, zone_movable_pfn[nid]) :
6162 usable_startpfn;
6163 }
6164
6165 goto out2;
6166 }
2a1e274a 6167
342332e6
TI
6168 /*
6169 * If kernelcore=mirror is specified, ignore movablecore option
6170 */
6171 if (mirrored_kernelcore) {
6172 bool mem_below_4gb_not_mirrored = false;
6173
6174 for_each_memblock(memory, r) {
6175 if (memblock_is_mirror(r))
6176 continue;
6177
6178 nid = r->nid;
6179
6180 usable_startpfn = memblock_region_memory_base_pfn(r);
6181
6182 if (usable_startpfn < 0x100000) {
6183 mem_below_4gb_not_mirrored = true;
6184 continue;
6185 }
6186
6187 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6188 min(usable_startpfn, zone_movable_pfn[nid]) :
6189 usable_startpfn;
6190 }
6191
6192 if (mem_below_4gb_not_mirrored)
6193 pr_warn("This configuration results in unmirrored kernel memory.");
6194
6195 goto out2;
6196 }
6197
7e63efef 6198 /*
b2f3eebe 6199 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6200 * kernelcore that corresponds so that memory usable for
6201 * any allocation type is evenly spread. If both kernelcore
6202 * and movablecore are specified, then the value of kernelcore
6203 * will be used for required_kernelcore if it's greater than
6204 * what movablecore would have allowed.
6205 */
6206 if (required_movablecore) {
7e63efef
MG
6207 unsigned long corepages;
6208
6209 /*
6210 * Round-up so that ZONE_MOVABLE is at least as large as what
6211 * was requested by the user
6212 */
6213 required_movablecore =
6214 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6215 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6216 corepages = totalpages - required_movablecore;
6217
6218 required_kernelcore = max(required_kernelcore, corepages);
6219 }
6220
bde304bd
XQ
6221 /*
6222 * If kernelcore was not specified or kernelcore size is larger
6223 * than totalpages, there is no ZONE_MOVABLE.
6224 */
6225 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6226 goto out;
2a1e274a
MG
6227
6228 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6229 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6230
6231restart:
6232 /* Spread kernelcore memory as evenly as possible throughout nodes */
6233 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6234 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6235 unsigned long start_pfn, end_pfn;
6236
2a1e274a
MG
6237 /*
6238 * Recalculate kernelcore_node if the division per node
6239 * now exceeds what is necessary to satisfy the requested
6240 * amount of memory for the kernel
6241 */
6242 if (required_kernelcore < kernelcore_node)
6243 kernelcore_node = required_kernelcore / usable_nodes;
6244
6245 /*
6246 * As the map is walked, we track how much memory is usable
6247 * by the kernel using kernelcore_remaining. When it is
6248 * 0, the rest of the node is usable by ZONE_MOVABLE
6249 */
6250 kernelcore_remaining = kernelcore_node;
6251
6252 /* Go through each range of PFNs within this node */
c13291a5 6253 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6254 unsigned long size_pages;
6255
c13291a5 6256 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6257 if (start_pfn >= end_pfn)
6258 continue;
6259
6260 /* Account for what is only usable for kernelcore */
6261 if (start_pfn < usable_startpfn) {
6262 unsigned long kernel_pages;
6263 kernel_pages = min(end_pfn, usable_startpfn)
6264 - start_pfn;
6265
6266 kernelcore_remaining -= min(kernel_pages,
6267 kernelcore_remaining);
6268 required_kernelcore -= min(kernel_pages,
6269 required_kernelcore);
6270
6271 /* Continue if range is now fully accounted */
6272 if (end_pfn <= usable_startpfn) {
6273
6274 /*
6275 * Push zone_movable_pfn to the end so
6276 * that if we have to rebalance
6277 * kernelcore across nodes, we will
6278 * not double account here
6279 */
6280 zone_movable_pfn[nid] = end_pfn;
6281 continue;
6282 }
6283 start_pfn = usable_startpfn;
6284 }
6285
6286 /*
6287 * The usable PFN range for ZONE_MOVABLE is from
6288 * start_pfn->end_pfn. Calculate size_pages as the
6289 * number of pages used as kernelcore
6290 */
6291 size_pages = end_pfn - start_pfn;
6292 if (size_pages > kernelcore_remaining)
6293 size_pages = kernelcore_remaining;
6294 zone_movable_pfn[nid] = start_pfn + size_pages;
6295
6296 /*
6297 * Some kernelcore has been met, update counts and
6298 * break if the kernelcore for this node has been
b8af2941 6299 * satisfied
2a1e274a
MG
6300 */
6301 required_kernelcore -= min(required_kernelcore,
6302 size_pages);
6303 kernelcore_remaining -= size_pages;
6304 if (!kernelcore_remaining)
6305 break;
6306 }
6307 }
6308
6309 /*
6310 * If there is still required_kernelcore, we do another pass with one
6311 * less node in the count. This will push zone_movable_pfn[nid] further
6312 * along on the nodes that still have memory until kernelcore is
b8af2941 6313 * satisfied
2a1e274a
MG
6314 */
6315 usable_nodes--;
6316 if (usable_nodes && required_kernelcore > usable_nodes)
6317 goto restart;
6318
b2f3eebe 6319out2:
2a1e274a
MG
6320 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6321 for (nid = 0; nid < MAX_NUMNODES; nid++)
6322 zone_movable_pfn[nid] =
6323 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6324
20e6926d 6325out:
66918dcd 6326 /* restore the node_state */
4b0ef1fe 6327 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6328}
6329
4b0ef1fe
LJ
6330/* Any regular or high memory on that node ? */
6331static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6332{
37b07e41
LS
6333 enum zone_type zone_type;
6334
4b0ef1fe
LJ
6335 if (N_MEMORY == N_NORMAL_MEMORY)
6336 return;
6337
6338 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6339 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6340 if (populated_zone(zone)) {
4b0ef1fe
LJ
6341 node_set_state(nid, N_HIGH_MEMORY);
6342 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6343 zone_type <= ZONE_NORMAL)
6344 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6345 break;
6346 }
37b07e41 6347 }
37b07e41
LS
6348}
6349
c713216d
MG
6350/**
6351 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6352 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6353 *
6354 * This will call free_area_init_node() for each active node in the system.
7d018176 6355 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6356 * zone in each node and their holes is calculated. If the maximum PFN
6357 * between two adjacent zones match, it is assumed that the zone is empty.
6358 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6359 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6360 * starts where the previous one ended. For example, ZONE_DMA32 starts
6361 * at arch_max_dma_pfn.
6362 */
6363void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6364{
c13291a5
TH
6365 unsigned long start_pfn, end_pfn;
6366 int i, nid;
a6af2bc3 6367
c713216d
MG
6368 /* Record where the zone boundaries are */
6369 memset(arch_zone_lowest_possible_pfn, 0,
6370 sizeof(arch_zone_lowest_possible_pfn));
6371 memset(arch_zone_highest_possible_pfn, 0,
6372 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6373
6374 start_pfn = find_min_pfn_with_active_regions();
6375
6376 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6377 if (i == ZONE_MOVABLE)
6378 continue;
90cae1fe
OH
6379
6380 end_pfn = max(max_zone_pfn[i], start_pfn);
6381 arch_zone_lowest_possible_pfn[i] = start_pfn;
6382 arch_zone_highest_possible_pfn[i] = end_pfn;
6383
6384 start_pfn = end_pfn;
c713216d 6385 }
2a1e274a
MG
6386 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6387 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6388
6389 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6390 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6391 find_zone_movable_pfns_for_nodes();
c713216d 6392
c713216d 6393 /* Print out the zone ranges */
f88dfff5 6394 pr_info("Zone ranges:\n");
2a1e274a
MG
6395 for (i = 0; i < MAX_NR_ZONES; i++) {
6396 if (i == ZONE_MOVABLE)
6397 continue;
f88dfff5 6398 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6399 if (arch_zone_lowest_possible_pfn[i] ==
6400 arch_zone_highest_possible_pfn[i])
f88dfff5 6401 pr_cont("empty\n");
72f0ba02 6402 else
8d29e18a
JG
6403 pr_cont("[mem %#018Lx-%#018Lx]\n",
6404 (u64)arch_zone_lowest_possible_pfn[i]
6405 << PAGE_SHIFT,
6406 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6407 << PAGE_SHIFT) - 1);
2a1e274a
MG
6408 }
6409
6410 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6411 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6412 for (i = 0; i < MAX_NUMNODES; i++) {
6413 if (zone_movable_pfn[i])
8d29e18a
JG
6414 pr_info(" Node %d: %#018Lx\n", i,
6415 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6416 }
c713216d 6417
f2d52fe5 6418 /* Print out the early node map */
f88dfff5 6419 pr_info("Early memory node ranges\n");
c13291a5 6420 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6421 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6422 (u64)start_pfn << PAGE_SHIFT,
6423 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6424
6425 /* Initialise every node */
708614e6 6426 mminit_verify_pageflags_layout();
8ef82866 6427 setup_nr_node_ids();
c713216d
MG
6428 for_each_online_node(nid) {
6429 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6430 free_area_init_node(nid, NULL,
c713216d 6431 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6432
6433 /* Any memory on that node */
6434 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6435 node_set_state(nid, N_MEMORY);
6436 check_for_memory(pgdat, nid);
c713216d
MG
6437 }
6438}
2a1e274a 6439
7e63efef 6440static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6441{
6442 unsigned long long coremem;
6443 if (!p)
6444 return -EINVAL;
6445
6446 coremem = memparse(p, &p);
7e63efef 6447 *core = coremem >> PAGE_SHIFT;
2a1e274a 6448
7e63efef 6449 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6450 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6451
6452 return 0;
6453}
ed7ed365 6454
7e63efef
MG
6455/*
6456 * kernelcore=size sets the amount of memory for use for allocations that
6457 * cannot be reclaimed or migrated.
6458 */
6459static int __init cmdline_parse_kernelcore(char *p)
6460{
342332e6
TI
6461 /* parse kernelcore=mirror */
6462 if (parse_option_str(p, "mirror")) {
6463 mirrored_kernelcore = true;
6464 return 0;
6465 }
6466
7e63efef
MG
6467 return cmdline_parse_core(p, &required_kernelcore);
6468}
6469
6470/*
6471 * movablecore=size sets the amount of memory for use for allocations that
6472 * can be reclaimed or migrated.
6473 */
6474static int __init cmdline_parse_movablecore(char *p)
6475{
6476 return cmdline_parse_core(p, &required_movablecore);
6477}
6478
ed7ed365 6479early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6480early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6481
0ee332c1 6482#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6483
c3d5f5f0
JL
6484void adjust_managed_page_count(struct page *page, long count)
6485{
6486 spin_lock(&managed_page_count_lock);
6487 page_zone(page)->managed_pages += count;
6488 totalram_pages += count;
3dcc0571
JL
6489#ifdef CONFIG_HIGHMEM
6490 if (PageHighMem(page))
6491 totalhigh_pages += count;
6492#endif
c3d5f5f0
JL
6493 spin_unlock(&managed_page_count_lock);
6494}
3dcc0571 6495EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6496
11199692 6497unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6498{
11199692
JL
6499 void *pos;
6500 unsigned long pages = 0;
69afade7 6501
11199692
JL
6502 start = (void *)PAGE_ALIGN((unsigned long)start);
6503 end = (void *)((unsigned long)end & PAGE_MASK);
6504 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6505 if ((unsigned int)poison <= 0xFF)
11199692
JL
6506 memset(pos, poison, PAGE_SIZE);
6507 free_reserved_page(virt_to_page(pos));
69afade7
JL
6508 }
6509
6510 if (pages && s)
11199692 6511 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6512 s, pages << (PAGE_SHIFT - 10), start, end);
6513
6514 return pages;
6515}
11199692 6516EXPORT_SYMBOL(free_reserved_area);
69afade7 6517
cfa11e08
JL
6518#ifdef CONFIG_HIGHMEM
6519void free_highmem_page(struct page *page)
6520{
6521 __free_reserved_page(page);
6522 totalram_pages++;
7b4b2a0d 6523 page_zone(page)->managed_pages++;
cfa11e08
JL
6524 totalhigh_pages++;
6525}
6526#endif
6527
7ee3d4e8
JL
6528
6529void __init mem_init_print_info(const char *str)
6530{
6531 unsigned long physpages, codesize, datasize, rosize, bss_size;
6532 unsigned long init_code_size, init_data_size;
6533
6534 physpages = get_num_physpages();
6535 codesize = _etext - _stext;
6536 datasize = _edata - _sdata;
6537 rosize = __end_rodata - __start_rodata;
6538 bss_size = __bss_stop - __bss_start;
6539 init_data_size = __init_end - __init_begin;
6540 init_code_size = _einittext - _sinittext;
6541
6542 /*
6543 * Detect special cases and adjust section sizes accordingly:
6544 * 1) .init.* may be embedded into .data sections
6545 * 2) .init.text.* may be out of [__init_begin, __init_end],
6546 * please refer to arch/tile/kernel/vmlinux.lds.S.
6547 * 3) .rodata.* may be embedded into .text or .data sections.
6548 */
6549#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6550 do { \
6551 if (start <= pos && pos < end && size > adj) \
6552 size -= adj; \
6553 } while (0)
7ee3d4e8
JL
6554
6555 adj_init_size(__init_begin, __init_end, init_data_size,
6556 _sinittext, init_code_size);
6557 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6558 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6559 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6560 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6561
6562#undef adj_init_size
6563
756a025f 6564 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6565#ifdef CONFIG_HIGHMEM
756a025f 6566 ", %luK highmem"
7ee3d4e8 6567#endif
756a025f
JP
6568 "%s%s)\n",
6569 nr_free_pages() << (PAGE_SHIFT - 10),
6570 physpages << (PAGE_SHIFT - 10),
6571 codesize >> 10, datasize >> 10, rosize >> 10,
6572 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6573 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6574 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6575#ifdef CONFIG_HIGHMEM
756a025f 6576 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6577#endif
756a025f 6578 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6579}
6580
0e0b864e 6581/**
88ca3b94
RD
6582 * set_dma_reserve - set the specified number of pages reserved in the first zone
6583 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6584 *
013110a7 6585 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6586 * In the DMA zone, a significant percentage may be consumed by kernel image
6587 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6588 * function may optionally be used to account for unfreeable pages in the
6589 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6590 * smaller per-cpu batchsize.
0e0b864e
MG
6591 */
6592void __init set_dma_reserve(unsigned long new_dma_reserve)
6593{
6594 dma_reserve = new_dma_reserve;
6595}
6596
1da177e4
LT
6597void __init free_area_init(unsigned long *zones_size)
6598{
9109fb7b 6599 free_area_init_node(0, zones_size,
1da177e4
LT
6600 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6601}
1da177e4 6602
1da177e4
LT
6603static int page_alloc_cpu_notify(struct notifier_block *self,
6604 unsigned long action, void *hcpu)
6605{
6606 int cpu = (unsigned long)hcpu;
1da177e4 6607
8bb78442 6608 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6609 lru_add_drain_cpu(cpu);
9f8f2172
CL
6610 drain_pages(cpu);
6611
6612 /*
6613 * Spill the event counters of the dead processor
6614 * into the current processors event counters.
6615 * This artificially elevates the count of the current
6616 * processor.
6617 */
f8891e5e 6618 vm_events_fold_cpu(cpu);
9f8f2172
CL
6619
6620 /*
6621 * Zero the differential counters of the dead processor
6622 * so that the vm statistics are consistent.
6623 *
6624 * This is only okay since the processor is dead and cannot
6625 * race with what we are doing.
6626 */
2bb921e5 6627 cpu_vm_stats_fold(cpu);
1da177e4
LT
6628 }
6629 return NOTIFY_OK;
6630}
1da177e4
LT
6631
6632void __init page_alloc_init(void)
6633{
6634 hotcpu_notifier(page_alloc_cpu_notify, 0);
6635}
6636
cb45b0e9 6637/*
34b10060 6638 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6639 * or min_free_kbytes changes.
6640 */
6641static void calculate_totalreserve_pages(void)
6642{
6643 struct pglist_data *pgdat;
6644 unsigned long reserve_pages = 0;
2f6726e5 6645 enum zone_type i, j;
cb45b0e9
HA
6646
6647 for_each_online_pgdat(pgdat) {
281e3726
MG
6648
6649 pgdat->totalreserve_pages = 0;
6650
cb45b0e9
HA
6651 for (i = 0; i < MAX_NR_ZONES; i++) {
6652 struct zone *zone = pgdat->node_zones + i;
3484b2de 6653 long max = 0;
cb45b0e9
HA
6654
6655 /* Find valid and maximum lowmem_reserve in the zone */
6656 for (j = i; j < MAX_NR_ZONES; j++) {
6657 if (zone->lowmem_reserve[j] > max)
6658 max = zone->lowmem_reserve[j];
6659 }
6660
41858966
MG
6661 /* we treat the high watermark as reserved pages. */
6662 max += high_wmark_pages(zone);
cb45b0e9 6663
b40da049
JL
6664 if (max > zone->managed_pages)
6665 max = zone->managed_pages;
a8d01437 6666
281e3726 6667 pgdat->totalreserve_pages += max;
a8d01437 6668
cb45b0e9
HA
6669 reserve_pages += max;
6670 }
6671 }
6672 totalreserve_pages = reserve_pages;
6673}
6674
1da177e4
LT
6675/*
6676 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6677 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6678 * has a correct pages reserved value, so an adequate number of
6679 * pages are left in the zone after a successful __alloc_pages().
6680 */
6681static void setup_per_zone_lowmem_reserve(void)
6682{
6683 struct pglist_data *pgdat;
2f6726e5 6684 enum zone_type j, idx;
1da177e4 6685
ec936fc5 6686 for_each_online_pgdat(pgdat) {
1da177e4
LT
6687 for (j = 0; j < MAX_NR_ZONES; j++) {
6688 struct zone *zone = pgdat->node_zones + j;
b40da049 6689 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6690
6691 zone->lowmem_reserve[j] = 0;
6692
2f6726e5
CL
6693 idx = j;
6694 while (idx) {
1da177e4
LT
6695 struct zone *lower_zone;
6696
2f6726e5
CL
6697 idx--;
6698
1da177e4
LT
6699 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6700 sysctl_lowmem_reserve_ratio[idx] = 1;
6701
6702 lower_zone = pgdat->node_zones + idx;
b40da049 6703 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6704 sysctl_lowmem_reserve_ratio[idx];
b40da049 6705 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6706 }
6707 }
6708 }
cb45b0e9
HA
6709
6710 /* update totalreserve_pages */
6711 calculate_totalreserve_pages();
1da177e4
LT
6712}
6713
cfd3da1e 6714static void __setup_per_zone_wmarks(void)
1da177e4
LT
6715{
6716 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6717 unsigned long lowmem_pages = 0;
6718 struct zone *zone;
6719 unsigned long flags;
6720
6721 /* Calculate total number of !ZONE_HIGHMEM pages */
6722 for_each_zone(zone) {
6723 if (!is_highmem(zone))
b40da049 6724 lowmem_pages += zone->managed_pages;
1da177e4
LT
6725 }
6726
6727 for_each_zone(zone) {
ac924c60
AM
6728 u64 tmp;
6729
1125b4e3 6730 spin_lock_irqsave(&zone->lock, flags);
b40da049 6731 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6732 do_div(tmp, lowmem_pages);
1da177e4
LT
6733 if (is_highmem(zone)) {
6734 /*
669ed175
NP
6735 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6736 * need highmem pages, so cap pages_min to a small
6737 * value here.
6738 *
41858966 6739 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6740 * deltas control asynch page reclaim, and so should
669ed175 6741 * not be capped for highmem.
1da177e4 6742 */
90ae8d67 6743 unsigned long min_pages;
1da177e4 6744
b40da049 6745 min_pages = zone->managed_pages / 1024;
90ae8d67 6746 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6747 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6748 } else {
669ed175
NP
6749 /*
6750 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6751 * proportionate to the zone's size.
6752 */
41858966 6753 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6754 }
6755
795ae7a0
JW
6756 /*
6757 * Set the kswapd watermarks distance according to the
6758 * scale factor in proportion to available memory, but
6759 * ensure a minimum size on small systems.
6760 */
6761 tmp = max_t(u64, tmp >> 2,
6762 mult_frac(zone->managed_pages,
6763 watermark_scale_factor, 10000));
6764
6765 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6766 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6767
1125b4e3 6768 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6769 }
cb45b0e9
HA
6770
6771 /* update totalreserve_pages */
6772 calculate_totalreserve_pages();
1da177e4
LT
6773}
6774
cfd3da1e
MG
6775/**
6776 * setup_per_zone_wmarks - called when min_free_kbytes changes
6777 * or when memory is hot-{added|removed}
6778 *
6779 * Ensures that the watermark[min,low,high] values for each zone are set
6780 * correctly with respect to min_free_kbytes.
6781 */
6782void setup_per_zone_wmarks(void)
6783{
6784 mutex_lock(&zonelists_mutex);
6785 __setup_per_zone_wmarks();
6786 mutex_unlock(&zonelists_mutex);
6787}
6788
1da177e4
LT
6789/*
6790 * Initialise min_free_kbytes.
6791 *
6792 * For small machines we want it small (128k min). For large machines
6793 * we want it large (64MB max). But it is not linear, because network
6794 * bandwidth does not increase linearly with machine size. We use
6795 *
b8af2941 6796 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6797 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6798 *
6799 * which yields
6800 *
6801 * 16MB: 512k
6802 * 32MB: 724k
6803 * 64MB: 1024k
6804 * 128MB: 1448k
6805 * 256MB: 2048k
6806 * 512MB: 2896k
6807 * 1024MB: 4096k
6808 * 2048MB: 5792k
6809 * 4096MB: 8192k
6810 * 8192MB: 11584k
6811 * 16384MB: 16384k
6812 */
1b79acc9 6813int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6814{
6815 unsigned long lowmem_kbytes;
5f12733e 6816 int new_min_free_kbytes;
1da177e4
LT
6817
6818 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6819 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6820
6821 if (new_min_free_kbytes > user_min_free_kbytes) {
6822 min_free_kbytes = new_min_free_kbytes;
6823 if (min_free_kbytes < 128)
6824 min_free_kbytes = 128;
6825 if (min_free_kbytes > 65536)
6826 min_free_kbytes = 65536;
6827 } else {
6828 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6829 new_min_free_kbytes, user_min_free_kbytes);
6830 }
bc75d33f 6831 setup_per_zone_wmarks();
a6cccdc3 6832 refresh_zone_stat_thresholds();
1da177e4
LT
6833 setup_per_zone_lowmem_reserve();
6834 return 0;
6835}
bc22af74 6836core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6837
6838/*
b8af2941 6839 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6840 * that we can call two helper functions whenever min_free_kbytes
6841 * changes.
6842 */
cccad5b9 6843int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6844 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6845{
da8c757b
HP
6846 int rc;
6847
6848 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6849 if (rc)
6850 return rc;
6851
5f12733e
MH
6852 if (write) {
6853 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6854 setup_per_zone_wmarks();
5f12733e 6855 }
1da177e4
LT
6856 return 0;
6857}
6858
795ae7a0
JW
6859int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6860 void __user *buffer, size_t *length, loff_t *ppos)
6861{
6862 int rc;
6863
6864 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6865 if (rc)
6866 return rc;
6867
6868 if (write)
6869 setup_per_zone_wmarks();
6870
6871 return 0;
6872}
6873
9614634f 6874#ifdef CONFIG_NUMA
cccad5b9 6875int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6876 void __user *buffer, size_t *length, loff_t *ppos)
9614634f 6877{
a5f5f91d 6878 struct pglist_data *pgdat;
9614634f
CL
6879 struct zone *zone;
6880 int rc;
6881
8d65af78 6882 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6883 if (rc)
6884 return rc;
6885
a5f5f91d
MG
6886 for_each_online_pgdat(pgdat)
6887 pgdat->min_slab_pages = 0;
6888
9614634f 6889 for_each_zone(zone)
a5f5f91d 6890 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f
CL
6891 sysctl_min_unmapped_ratio) / 100;
6892 return 0;
6893}
0ff38490 6894
cccad5b9 6895int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6896 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6897{
a5f5f91d 6898 struct pglist_data *pgdat;
0ff38490
CL
6899 struct zone *zone;
6900 int rc;
6901
8d65af78 6902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6903 if (rc)
6904 return rc;
6905
a5f5f91d
MG
6906 for_each_online_pgdat(pgdat)
6907 pgdat->min_slab_pages = 0;
6908
0ff38490 6909 for_each_zone(zone)
a5f5f91d 6910 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490
CL
6911 sysctl_min_slab_ratio) / 100;
6912 return 0;
6913}
9614634f
CL
6914#endif
6915
1da177e4
LT
6916/*
6917 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6918 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6919 * whenever sysctl_lowmem_reserve_ratio changes.
6920 *
6921 * The reserve ratio obviously has absolutely no relation with the
41858966 6922 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6923 * if in function of the boot time zone sizes.
6924 */
cccad5b9 6925int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6926 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6927{
8d65af78 6928 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6929 setup_per_zone_lowmem_reserve();
6930 return 0;
6931}
6932
8ad4b1fb
RS
6933/*
6934 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6935 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6936 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6937 */
cccad5b9 6938int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6939 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6940{
6941 struct zone *zone;
7cd2b0a3 6942 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6943 int ret;
6944
7cd2b0a3
DR
6945 mutex_lock(&pcp_batch_high_lock);
6946 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6947
8d65af78 6948 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6949 if (!write || ret < 0)
6950 goto out;
6951
6952 /* Sanity checking to avoid pcp imbalance */
6953 if (percpu_pagelist_fraction &&
6954 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6955 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6956 ret = -EINVAL;
6957 goto out;
6958 }
6959
6960 /* No change? */
6961 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6962 goto out;
c8e251fa 6963
364df0eb 6964 for_each_populated_zone(zone) {
7cd2b0a3
DR
6965 unsigned int cpu;
6966
22a7f12b 6967 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6968 pageset_set_high_and_batch(zone,
6969 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6970 }
7cd2b0a3 6971out:
c8e251fa 6972 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6973 return ret;
8ad4b1fb
RS
6974}
6975
a9919c79 6976#ifdef CONFIG_NUMA
f034b5d4 6977int hashdist = HASHDIST_DEFAULT;
1da177e4 6978
1da177e4
LT
6979static int __init set_hashdist(char *str)
6980{
6981 if (!str)
6982 return 0;
6983 hashdist = simple_strtoul(str, &str, 0);
6984 return 1;
6985}
6986__setup("hashdist=", set_hashdist);
6987#endif
6988
6989/*
6990 * allocate a large system hash table from bootmem
6991 * - it is assumed that the hash table must contain an exact power-of-2
6992 * quantity of entries
6993 * - limit is the number of hash buckets, not the total allocation size
6994 */
6995void *__init alloc_large_system_hash(const char *tablename,
6996 unsigned long bucketsize,
6997 unsigned long numentries,
6998 int scale,
6999 int flags,
7000 unsigned int *_hash_shift,
7001 unsigned int *_hash_mask,
31fe62b9
TB
7002 unsigned long low_limit,
7003 unsigned long high_limit)
1da177e4 7004{
31fe62b9 7005 unsigned long long max = high_limit;
1da177e4
LT
7006 unsigned long log2qty, size;
7007 void *table = NULL;
7008
7009 /* allow the kernel cmdline to have a say */
7010 if (!numentries) {
7011 /* round applicable memory size up to nearest megabyte */
04903664 7012 numentries = nr_kernel_pages;
a7e83318
JZ
7013
7014 /* It isn't necessary when PAGE_SIZE >= 1MB */
7015 if (PAGE_SHIFT < 20)
7016 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7017
7018 /* limit to 1 bucket per 2^scale bytes of low memory */
7019 if (scale > PAGE_SHIFT)
7020 numentries >>= (scale - PAGE_SHIFT);
7021 else
7022 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7023
7024 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7025 if (unlikely(flags & HASH_SMALL)) {
7026 /* Makes no sense without HASH_EARLY */
7027 WARN_ON(!(flags & HASH_EARLY));
7028 if (!(numentries >> *_hash_shift)) {
7029 numentries = 1UL << *_hash_shift;
7030 BUG_ON(!numentries);
7031 }
7032 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7033 numentries = PAGE_SIZE / bucketsize;
1da177e4 7034 }
6e692ed3 7035 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7036
7037 /* limit allocation size to 1/16 total memory by default */
7038 if (max == 0) {
7039 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7040 do_div(max, bucketsize);
7041 }
074b8517 7042 max = min(max, 0x80000000ULL);
1da177e4 7043
31fe62b9
TB
7044 if (numentries < low_limit)
7045 numentries = low_limit;
1da177e4
LT
7046 if (numentries > max)
7047 numentries = max;
7048
f0d1b0b3 7049 log2qty = ilog2(numentries);
1da177e4
LT
7050
7051 do {
7052 size = bucketsize << log2qty;
7053 if (flags & HASH_EARLY)
6782832e 7054 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7055 else if (hashdist)
7056 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7057 else {
1037b83b
ED
7058 /*
7059 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7060 * some pages at the end of hash table which
7061 * alloc_pages_exact() automatically does
1037b83b 7062 */
264ef8a9 7063 if (get_order(size) < MAX_ORDER) {
a1dd268c 7064 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7065 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7066 }
1da177e4
LT
7067 }
7068 } while (!table && size > PAGE_SIZE && --log2qty);
7069
7070 if (!table)
7071 panic("Failed to allocate %s hash table\n", tablename);
7072
1170532b
JP
7073 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7074 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7075
7076 if (_hash_shift)
7077 *_hash_shift = log2qty;
7078 if (_hash_mask)
7079 *_hash_mask = (1 << log2qty) - 1;
7080
7081 return table;
7082}
a117e66e 7083
a5d76b54 7084/*
80934513
MK
7085 * This function checks whether pageblock includes unmovable pages or not.
7086 * If @count is not zero, it is okay to include less @count unmovable pages
7087 *
b8af2941 7088 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7089 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7090 * expect this function should be exact.
a5d76b54 7091 */
b023f468
WC
7092bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7093 bool skip_hwpoisoned_pages)
49ac8255
KH
7094{
7095 unsigned long pfn, iter, found;
47118af0
MN
7096 int mt;
7097
49ac8255
KH
7098 /*
7099 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7100 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7101 */
7102 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7103 return false;
47118af0
MN
7104 mt = get_pageblock_migratetype(page);
7105 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7106 return false;
49ac8255
KH
7107
7108 pfn = page_to_pfn(page);
7109 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7110 unsigned long check = pfn + iter;
7111
29723fcc 7112 if (!pfn_valid_within(check))
49ac8255 7113 continue;
29723fcc 7114
49ac8255 7115 page = pfn_to_page(check);
c8721bbb
NH
7116
7117 /*
7118 * Hugepages are not in LRU lists, but they're movable.
7119 * We need not scan over tail pages bacause we don't
7120 * handle each tail page individually in migration.
7121 */
7122 if (PageHuge(page)) {
7123 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7124 continue;
7125 }
7126
97d255c8
MK
7127 /*
7128 * We can't use page_count without pin a page
7129 * because another CPU can free compound page.
7130 * This check already skips compound tails of THP
0139aa7b 7131 * because their page->_refcount is zero at all time.
97d255c8 7132 */
fe896d18 7133 if (!page_ref_count(page)) {
49ac8255
KH
7134 if (PageBuddy(page))
7135 iter += (1 << page_order(page)) - 1;
7136 continue;
7137 }
97d255c8 7138
b023f468
WC
7139 /*
7140 * The HWPoisoned page may be not in buddy system, and
7141 * page_count() is not 0.
7142 */
7143 if (skip_hwpoisoned_pages && PageHWPoison(page))
7144 continue;
7145
49ac8255
KH
7146 if (!PageLRU(page))
7147 found++;
7148 /*
6b4f7799
JW
7149 * If there are RECLAIMABLE pages, we need to check
7150 * it. But now, memory offline itself doesn't call
7151 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7152 */
7153 /*
7154 * If the page is not RAM, page_count()should be 0.
7155 * we don't need more check. This is an _used_ not-movable page.
7156 *
7157 * The problematic thing here is PG_reserved pages. PG_reserved
7158 * is set to both of a memory hole page and a _used_ kernel
7159 * page at boot.
7160 */
7161 if (found > count)
80934513 7162 return true;
49ac8255 7163 }
80934513 7164 return false;
49ac8255
KH
7165}
7166
7167bool is_pageblock_removable_nolock(struct page *page)
7168{
656a0706
MH
7169 struct zone *zone;
7170 unsigned long pfn;
687875fb
MH
7171
7172 /*
7173 * We have to be careful here because we are iterating over memory
7174 * sections which are not zone aware so we might end up outside of
7175 * the zone but still within the section.
656a0706
MH
7176 * We have to take care about the node as well. If the node is offline
7177 * its NODE_DATA will be NULL - see page_zone.
687875fb 7178 */
656a0706
MH
7179 if (!node_online(page_to_nid(page)))
7180 return false;
7181
7182 zone = page_zone(page);
7183 pfn = page_to_pfn(page);
108bcc96 7184 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7185 return false;
7186
b023f468 7187 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7188}
0c0e6195 7189
080fe206 7190#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7191
7192static unsigned long pfn_max_align_down(unsigned long pfn)
7193{
7194 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7195 pageblock_nr_pages) - 1);
7196}
7197
7198static unsigned long pfn_max_align_up(unsigned long pfn)
7199{
7200 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7201 pageblock_nr_pages));
7202}
7203
041d3a8c 7204/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7205static int __alloc_contig_migrate_range(struct compact_control *cc,
7206 unsigned long start, unsigned long end)
041d3a8c
MN
7207{
7208 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7209 unsigned long nr_reclaimed;
041d3a8c
MN
7210 unsigned long pfn = start;
7211 unsigned int tries = 0;
7212 int ret = 0;
7213
be49a6e1 7214 migrate_prep();
041d3a8c 7215
bb13ffeb 7216 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7217 if (fatal_signal_pending(current)) {
7218 ret = -EINTR;
7219 break;
7220 }
7221
bb13ffeb
MG
7222 if (list_empty(&cc->migratepages)) {
7223 cc->nr_migratepages = 0;
edc2ca61 7224 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7225 if (!pfn) {
7226 ret = -EINTR;
7227 break;
7228 }
7229 tries = 0;
7230 } else if (++tries == 5) {
7231 ret = ret < 0 ? ret : -EBUSY;
7232 break;
7233 }
7234
beb51eaa
MK
7235 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7236 &cc->migratepages);
7237 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7238
9c620e2b 7239 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7240 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7241 }
2a6f5124
SP
7242 if (ret < 0) {
7243 putback_movable_pages(&cc->migratepages);
7244 return ret;
7245 }
7246 return 0;
041d3a8c
MN
7247}
7248
7249/**
7250 * alloc_contig_range() -- tries to allocate given range of pages
7251 * @start: start PFN to allocate
7252 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7253 * @migratetype: migratetype of the underlaying pageblocks (either
7254 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7255 * in range must have the same migratetype and it must
7256 * be either of the two.
041d3a8c
MN
7257 *
7258 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7259 * aligned, however it's the caller's responsibility to guarantee that
7260 * we are the only thread that changes migrate type of pageblocks the
7261 * pages fall in.
7262 *
7263 * The PFN range must belong to a single zone.
7264 *
7265 * Returns zero on success or negative error code. On success all
7266 * pages which PFN is in [start, end) are allocated for the caller and
7267 * need to be freed with free_contig_range().
7268 */
0815f3d8
MN
7269int alloc_contig_range(unsigned long start, unsigned long end,
7270 unsigned migratetype)
041d3a8c 7271{
041d3a8c 7272 unsigned long outer_start, outer_end;
d00181b9
KS
7273 unsigned int order;
7274 int ret = 0;
041d3a8c 7275
bb13ffeb
MG
7276 struct compact_control cc = {
7277 .nr_migratepages = 0,
7278 .order = -1,
7279 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7280 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7281 .ignore_skip_hint = true,
7282 };
7283 INIT_LIST_HEAD(&cc.migratepages);
7284
041d3a8c
MN
7285 /*
7286 * What we do here is we mark all pageblocks in range as
7287 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7288 * have different sizes, and due to the way page allocator
7289 * work, we align the range to biggest of the two pages so
7290 * that page allocator won't try to merge buddies from
7291 * different pageblocks and change MIGRATE_ISOLATE to some
7292 * other migration type.
7293 *
7294 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7295 * migrate the pages from an unaligned range (ie. pages that
7296 * we are interested in). This will put all the pages in
7297 * range back to page allocator as MIGRATE_ISOLATE.
7298 *
7299 * When this is done, we take the pages in range from page
7300 * allocator removing them from the buddy system. This way
7301 * page allocator will never consider using them.
7302 *
7303 * This lets us mark the pageblocks back as
7304 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7305 * aligned range but not in the unaligned, original range are
7306 * put back to page allocator so that buddy can use them.
7307 */
7308
7309 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7310 pfn_max_align_up(end), migratetype,
7311 false);
041d3a8c 7312 if (ret)
86a595f9 7313 return ret;
041d3a8c 7314
8ef5849f
JK
7315 /*
7316 * In case of -EBUSY, we'd like to know which page causes problem.
7317 * So, just fall through. We will check it in test_pages_isolated().
7318 */
bb13ffeb 7319 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7320 if (ret && ret != -EBUSY)
041d3a8c
MN
7321 goto done;
7322
7323 /*
7324 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7325 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7326 * more, all pages in [start, end) are free in page allocator.
7327 * What we are going to do is to allocate all pages from
7328 * [start, end) (that is remove them from page allocator).
7329 *
7330 * The only problem is that pages at the beginning and at the
7331 * end of interesting range may be not aligned with pages that
7332 * page allocator holds, ie. they can be part of higher order
7333 * pages. Because of this, we reserve the bigger range and
7334 * once this is done free the pages we are not interested in.
7335 *
7336 * We don't have to hold zone->lock here because the pages are
7337 * isolated thus they won't get removed from buddy.
7338 */
7339
7340 lru_add_drain_all();
510f5507 7341 drain_all_pages(cc.zone);
041d3a8c
MN
7342
7343 order = 0;
7344 outer_start = start;
7345 while (!PageBuddy(pfn_to_page(outer_start))) {
7346 if (++order >= MAX_ORDER) {
8ef5849f
JK
7347 outer_start = start;
7348 break;
041d3a8c
MN
7349 }
7350 outer_start &= ~0UL << order;
7351 }
7352
8ef5849f
JK
7353 if (outer_start != start) {
7354 order = page_order(pfn_to_page(outer_start));
7355
7356 /*
7357 * outer_start page could be small order buddy page and
7358 * it doesn't include start page. Adjust outer_start
7359 * in this case to report failed page properly
7360 * on tracepoint in test_pages_isolated()
7361 */
7362 if (outer_start + (1UL << order) <= start)
7363 outer_start = start;
7364 }
7365
041d3a8c 7366 /* Make sure the range is really isolated. */
b023f468 7367 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7368 pr_info("%s: [%lx, %lx) PFNs busy\n",
7369 __func__, outer_start, end);
041d3a8c
MN
7370 ret = -EBUSY;
7371 goto done;
7372 }
7373
49f223a9 7374 /* Grab isolated pages from freelists. */
bb13ffeb 7375 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7376 if (!outer_end) {
7377 ret = -EBUSY;
7378 goto done;
7379 }
7380
7381 /* Free head and tail (if any) */
7382 if (start != outer_start)
7383 free_contig_range(outer_start, start - outer_start);
7384 if (end != outer_end)
7385 free_contig_range(end, outer_end - end);
7386
7387done:
7388 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7389 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7390 return ret;
7391}
7392
7393void free_contig_range(unsigned long pfn, unsigned nr_pages)
7394{
bcc2b02f
MS
7395 unsigned int count = 0;
7396
7397 for (; nr_pages--; pfn++) {
7398 struct page *page = pfn_to_page(pfn);
7399
7400 count += page_count(page) != 1;
7401 __free_page(page);
7402 }
7403 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7404}
7405#endif
7406
4ed7e022 7407#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7408/*
7409 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7410 * page high values need to be recalulated.
7411 */
4ed7e022
JL
7412void __meminit zone_pcp_update(struct zone *zone)
7413{
0a647f38 7414 unsigned cpu;
c8e251fa 7415 mutex_lock(&pcp_batch_high_lock);
0a647f38 7416 for_each_possible_cpu(cpu)
169f6c19
CS
7417 pageset_set_high_and_batch(zone,
7418 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7419 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7420}
7421#endif
7422
340175b7
JL
7423void zone_pcp_reset(struct zone *zone)
7424{
7425 unsigned long flags;
5a883813
MK
7426 int cpu;
7427 struct per_cpu_pageset *pset;
340175b7
JL
7428
7429 /* avoid races with drain_pages() */
7430 local_irq_save(flags);
7431 if (zone->pageset != &boot_pageset) {
5a883813
MK
7432 for_each_online_cpu(cpu) {
7433 pset = per_cpu_ptr(zone->pageset, cpu);
7434 drain_zonestat(zone, pset);
7435 }
340175b7
JL
7436 free_percpu(zone->pageset);
7437 zone->pageset = &boot_pageset;
7438 }
7439 local_irq_restore(flags);
7440}
7441
6dcd73d7 7442#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7443/*
b9eb6319
JK
7444 * All pages in the range must be in a single zone and isolated
7445 * before calling this.
0c0e6195
KH
7446 */
7447void
7448__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7449{
7450 struct page *page;
7451 struct zone *zone;
7aeb09f9 7452 unsigned int order, i;
0c0e6195
KH
7453 unsigned long pfn;
7454 unsigned long flags;
7455 /* find the first valid pfn */
7456 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7457 if (pfn_valid(pfn))
7458 break;
7459 if (pfn == end_pfn)
7460 return;
7461 zone = page_zone(pfn_to_page(pfn));
7462 spin_lock_irqsave(&zone->lock, flags);
7463 pfn = start_pfn;
7464 while (pfn < end_pfn) {
7465 if (!pfn_valid(pfn)) {
7466 pfn++;
7467 continue;
7468 }
7469 page = pfn_to_page(pfn);
b023f468
WC
7470 /*
7471 * The HWPoisoned page may be not in buddy system, and
7472 * page_count() is not 0.
7473 */
7474 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7475 pfn++;
7476 SetPageReserved(page);
7477 continue;
7478 }
7479
0c0e6195
KH
7480 BUG_ON(page_count(page));
7481 BUG_ON(!PageBuddy(page));
7482 order = page_order(page);
7483#ifdef CONFIG_DEBUG_VM
1170532b
JP
7484 pr_info("remove from free list %lx %d %lx\n",
7485 pfn, 1 << order, end_pfn);
0c0e6195
KH
7486#endif
7487 list_del(&page->lru);
7488 rmv_page_order(page);
7489 zone->free_area[order].nr_free--;
0c0e6195
KH
7490 for (i = 0; i < (1 << order); i++)
7491 SetPageReserved((page+i));
7492 pfn += (1 << order);
7493 }
7494 spin_unlock_irqrestore(&zone->lock, flags);
7495}
7496#endif
8d22ba1b 7497
8d22ba1b
WF
7498bool is_free_buddy_page(struct page *page)
7499{
7500 struct zone *zone = page_zone(page);
7501 unsigned long pfn = page_to_pfn(page);
7502 unsigned long flags;
7aeb09f9 7503 unsigned int order;
8d22ba1b
WF
7504
7505 spin_lock_irqsave(&zone->lock, flags);
7506 for (order = 0; order < MAX_ORDER; order++) {
7507 struct page *page_head = page - (pfn & ((1 << order) - 1));
7508
7509 if (PageBuddy(page_head) && page_order(page_head) >= order)
7510 break;
7511 }
7512 spin_unlock_irqrestore(&zone->lock, flags);
7513
7514 return order < MAX_ORDER;
7515}
This page took 2.641421 seconds and 5 git commands to generate.