tracing: Convert some kmem events to DEFINE_EVENT
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
53d0422c
LZ
56#define CREATE_TRACE_POINTS
57#include <trace/events/kmem.h>
58
1da177e4 59/*
13808910 60 * Array of node states.
1da177e4 61 */
13808910
CL
62nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63 [N_POSSIBLE] = NODE_MASK_ALL,
64 [N_ONLINE] = { { [0] = 1UL } },
65#ifndef CONFIG_NUMA
66 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
67#ifdef CONFIG_HIGHMEM
68 [N_HIGH_MEMORY] = { { [0] = 1UL } },
69#endif
70 [N_CPU] = { { [0] = 1UL } },
71#endif /* NUMA */
72};
73EXPORT_SYMBOL(node_states);
74
6c231b7b 75unsigned long totalram_pages __read_mostly;
cb45b0e9 76unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 77int percpu_pagelist_fraction;
dcce284a 78gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 79
d9c23400
MG
80#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
81int pageblock_order __read_mostly;
82#endif
83
d98c7a09 84static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 85
1da177e4
LT
86/*
87 * results with 256, 32 in the lowmem_reserve sysctl:
88 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
89 * 1G machine -> (16M dma, 784M normal, 224M high)
90 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
91 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
92 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
93 *
94 * TBD: should special case ZONE_DMA32 machines here - in those we normally
95 * don't need any ZONE_NORMAL reservation
1da177e4 96 */
2f1b6248 97int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 98#ifdef CONFIG_ZONE_DMA
2f1b6248 99 256,
4b51d669 100#endif
fb0e7942 101#ifdef CONFIG_ZONE_DMA32
2f1b6248 102 256,
fb0e7942 103#endif
e53ef38d 104#ifdef CONFIG_HIGHMEM
2a1e274a 105 32,
e53ef38d 106#endif
2a1e274a 107 32,
2f1b6248 108};
1da177e4
LT
109
110EXPORT_SYMBOL(totalram_pages);
1da177e4 111
15ad7cdc 112static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 113#ifdef CONFIG_ZONE_DMA
2f1b6248 114 "DMA",
4b51d669 115#endif
fb0e7942 116#ifdef CONFIG_ZONE_DMA32
2f1b6248 117 "DMA32",
fb0e7942 118#endif
2f1b6248 119 "Normal",
e53ef38d 120#ifdef CONFIG_HIGHMEM
2a1e274a 121 "HighMem",
e53ef38d 122#endif
2a1e274a 123 "Movable",
2f1b6248
CL
124};
125
1da177e4
LT
126int min_free_kbytes = 1024;
127
2c85f51d
JB
128static unsigned long __meminitdata nr_kernel_pages;
129static unsigned long __meminitdata nr_all_pages;
a3142c8e 130static unsigned long __meminitdata dma_reserve;
1da177e4 131
c713216d
MG
132#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 /*
183ff22b 134 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
135 * ranges of memory (RAM) that may be registered with add_active_range().
136 * Ranges passed to add_active_range() will be merged if possible
137 * so the number of times add_active_range() can be called is
138 * related to the number of nodes and the number of holes
139 */
140 #ifdef CONFIG_MAX_ACTIVE_REGIONS
141 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
142 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
143 #else
144 #if MAX_NUMNODES >= 32
145 /* If there can be many nodes, allow up to 50 holes per node */
146 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
147 #else
148 /* By default, allow up to 256 distinct regions */
149 #define MAX_ACTIVE_REGIONS 256
150 #endif
151 #endif
152
98011f56
JB
153 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
154 static int __meminitdata nr_nodemap_entries;
155 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 157 static unsigned long __initdata required_kernelcore;
484f51f8 158 static unsigned long __initdata required_movablecore;
b69a7288 159 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
160
161 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 int movable_zone;
163 EXPORT_SYMBOL(movable_zone);
c713216d
MG
164#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165
418508c1
MS
166#if MAX_NUMNODES > 1
167int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 168int nr_online_nodes __read_mostly = 1;
418508c1 169EXPORT_SYMBOL(nr_node_ids);
62bc62a8 170EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
171#endif
172
9ef9acb0
MG
173int page_group_by_mobility_disabled __read_mostly;
174
b2a0ac88
MG
175static void set_pageblock_migratetype(struct page *page, int migratetype)
176{
49255c61
MG
177
178 if (unlikely(page_group_by_mobility_disabled))
179 migratetype = MIGRATE_UNMOVABLE;
180
b2a0ac88
MG
181 set_pageblock_flags_group(page, (unsigned long)migratetype,
182 PB_migrate, PB_migrate_end);
183}
184
7f33d49a
RW
185bool oom_killer_disabled __read_mostly;
186
13e7444b 187#ifdef CONFIG_DEBUG_VM
c6a57e19 188static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 189{
bdc8cb98
DH
190 int ret = 0;
191 unsigned seq;
192 unsigned long pfn = page_to_pfn(page);
c6a57e19 193
bdc8cb98
DH
194 do {
195 seq = zone_span_seqbegin(zone);
196 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
197 ret = 1;
198 else if (pfn < zone->zone_start_pfn)
199 ret = 1;
200 } while (zone_span_seqretry(zone, seq));
201
202 return ret;
c6a57e19
DH
203}
204
205static int page_is_consistent(struct zone *zone, struct page *page)
206{
14e07298 207 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 208 return 0;
1da177e4 209 if (zone != page_zone(page))
c6a57e19
DH
210 return 0;
211
212 return 1;
213}
214/*
215 * Temporary debugging check for pages not lying within a given zone.
216 */
217static int bad_range(struct zone *zone, struct page *page)
218{
219 if (page_outside_zone_boundaries(zone, page))
1da177e4 220 return 1;
c6a57e19
DH
221 if (!page_is_consistent(zone, page))
222 return 1;
223
1da177e4
LT
224 return 0;
225}
13e7444b
NP
226#else
227static inline int bad_range(struct zone *zone, struct page *page)
228{
229 return 0;
230}
231#endif
232
224abf92 233static void bad_page(struct page *page)
1da177e4 234{
d936cf9b
HD
235 static unsigned long resume;
236 static unsigned long nr_shown;
237 static unsigned long nr_unshown;
238
2a7684a2
WF
239 /* Don't complain about poisoned pages */
240 if (PageHWPoison(page)) {
241 __ClearPageBuddy(page);
242 return;
243 }
244
d936cf9b
HD
245 /*
246 * Allow a burst of 60 reports, then keep quiet for that minute;
247 * or allow a steady drip of one report per second.
248 */
249 if (nr_shown == 60) {
250 if (time_before(jiffies, resume)) {
251 nr_unshown++;
252 goto out;
253 }
254 if (nr_unshown) {
1e9e6365
HD
255 printk(KERN_ALERT
256 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
257 nr_unshown);
258 nr_unshown = 0;
259 }
260 nr_shown = 0;
261 }
262 if (nr_shown++ == 0)
263 resume = jiffies + 60 * HZ;
264
1e9e6365 265 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 266 current->comm, page_to_pfn(page));
1e9e6365 267 printk(KERN_ALERT
3dc14741
HD
268 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
269 page, (void *)page->flags, page_count(page),
270 page_mapcount(page), page->mapping, page->index);
3dc14741 271
1da177e4 272 dump_stack();
d936cf9b 273out:
8cc3b392
HD
274 /* Leave bad fields for debug, except PageBuddy could make trouble */
275 __ClearPageBuddy(page);
9f158333 276 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
277}
278
1da177e4
LT
279/*
280 * Higher-order pages are called "compound pages". They are structured thusly:
281 *
282 * The first PAGE_SIZE page is called the "head page".
283 *
284 * The remaining PAGE_SIZE pages are called "tail pages".
285 *
286 * All pages have PG_compound set. All pages have their ->private pointing at
287 * the head page (even the head page has this).
288 *
41d78ba5
HD
289 * The first tail page's ->lru.next holds the address of the compound page's
290 * put_page() function. Its ->lru.prev holds the order of allocation.
291 * This usage means that zero-order pages may not be compound.
1da177e4 292 */
d98c7a09
HD
293
294static void free_compound_page(struct page *page)
295{
d85f3385 296 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
297}
298
01ad1c08 299void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
300{
301 int i;
302 int nr_pages = 1 << order;
303
304 set_compound_page_dtor(page, free_compound_page);
305 set_compound_order(page, order);
306 __SetPageHead(page);
307 for (i = 1; i < nr_pages; i++) {
308 struct page *p = page + i;
309
310 __SetPageTail(p);
311 p->first_page = page;
312 }
313}
314
8cc3b392 315static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
316{
317 int i;
318 int nr_pages = 1 << order;
8cc3b392 319 int bad = 0;
1da177e4 320
8cc3b392
HD
321 if (unlikely(compound_order(page) != order) ||
322 unlikely(!PageHead(page))) {
224abf92 323 bad_page(page);
8cc3b392
HD
324 bad++;
325 }
1da177e4 326
6d777953 327 __ClearPageHead(page);
8cc3b392 328
18229df5
AW
329 for (i = 1; i < nr_pages; i++) {
330 struct page *p = page + i;
1da177e4 331
e713a21d 332 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 333 bad_page(page);
8cc3b392
HD
334 bad++;
335 }
d85f3385 336 __ClearPageTail(p);
1da177e4 337 }
8cc3b392
HD
338
339 return bad;
1da177e4 340}
1da177e4 341
17cf4406
NP
342static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343{
344 int i;
345
6626c5d5
AM
346 /*
347 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
348 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 */
725d704e 350 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
351 for (i = 0; i < (1 << order); i++)
352 clear_highpage(page + i);
353}
354
6aa3001b
AM
355static inline void set_page_order(struct page *page, int order)
356{
4c21e2f2 357 set_page_private(page, order);
676165a8 358 __SetPageBuddy(page);
1da177e4
LT
359}
360
361static inline void rmv_page_order(struct page *page)
362{
676165a8 363 __ClearPageBuddy(page);
4c21e2f2 364 set_page_private(page, 0);
1da177e4
LT
365}
366
367/*
368 * Locate the struct page for both the matching buddy in our
369 * pair (buddy1) and the combined O(n+1) page they form (page).
370 *
371 * 1) Any buddy B1 will have an order O twin B2 which satisfies
372 * the following equation:
373 * B2 = B1 ^ (1 << O)
374 * For example, if the starting buddy (buddy2) is #8 its order
375 * 1 buddy is #10:
376 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 *
378 * 2) Any buddy B will have an order O+1 parent P which
379 * satisfies the following equation:
380 * P = B & ~(1 << O)
381 *
d6e05edc 382 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
383 */
384static inline struct page *
385__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386{
387 unsigned long buddy_idx = page_idx ^ (1 << order);
388
389 return page + (buddy_idx - page_idx);
390}
391
392static inline unsigned long
393__find_combined_index(unsigned long page_idx, unsigned int order)
394{
395 return (page_idx & ~(1 << order));
396}
397
398/*
399 * This function checks whether a page is free && is the buddy
400 * we can do coalesce a page and its buddy if
13e7444b 401 * (a) the buddy is not in a hole &&
676165a8 402 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
403 * (c) a page and its buddy have the same order &&
404 * (d) a page and its buddy are in the same zone.
676165a8
NP
405 *
406 * For recording whether a page is in the buddy system, we use PG_buddy.
407 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 408 *
676165a8 409 * For recording page's order, we use page_private(page).
1da177e4 410 */
cb2b95e1
AW
411static inline int page_is_buddy(struct page *page, struct page *buddy,
412 int order)
1da177e4 413{
14e07298 414 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 415 return 0;
13e7444b 416
cb2b95e1
AW
417 if (page_zone_id(page) != page_zone_id(buddy))
418 return 0;
419
420 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 421 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 422 return 1;
676165a8 423 }
6aa3001b 424 return 0;
1da177e4
LT
425}
426
427/*
428 * Freeing function for a buddy system allocator.
429 *
430 * The concept of a buddy system is to maintain direct-mapped table
431 * (containing bit values) for memory blocks of various "orders".
432 * The bottom level table contains the map for the smallest allocatable
433 * units of memory (here, pages), and each level above it describes
434 * pairs of units from the levels below, hence, "buddies".
435 * At a high level, all that happens here is marking the table entry
436 * at the bottom level available, and propagating the changes upward
437 * as necessary, plus some accounting needed to play nicely with other
438 * parts of the VM system.
439 * At each level, we keep a list of pages, which are heads of continuous
676165a8 440 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 441 * order is recorded in page_private(page) field.
1da177e4
LT
442 * So when we are allocating or freeing one, we can derive the state of the
443 * other. That is, if we allocate a small block, and both were
444 * free, the remainder of the region must be split into blocks.
445 * If a block is freed, and its buddy is also free, then this
446 * triggers coalescing into a block of larger size.
447 *
448 * -- wli
449 */
450
48db57f8 451static inline void __free_one_page(struct page *page,
ed0ae21d
MG
452 struct zone *zone, unsigned int order,
453 int migratetype)
1da177e4
LT
454{
455 unsigned long page_idx;
1da177e4 456
224abf92 457 if (unlikely(PageCompound(page)))
8cc3b392
HD
458 if (unlikely(destroy_compound_page(page, order)))
459 return;
1da177e4 460
ed0ae21d
MG
461 VM_BUG_ON(migratetype == -1);
462
1da177e4
LT
463 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464
f2260e6b 465 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 466 VM_BUG_ON(bad_range(zone, page));
1da177e4 467
1da177e4
LT
468 while (order < MAX_ORDER-1) {
469 unsigned long combined_idx;
1da177e4
LT
470 struct page *buddy;
471
1da177e4 472 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 473 if (!page_is_buddy(page, buddy, order))
3c82d0ce 474 break;
13e7444b 475
3c82d0ce 476 /* Our buddy is free, merge with it and move up one order. */
1da177e4 477 list_del(&buddy->lru);
b2a0ac88 478 zone->free_area[order].nr_free--;
1da177e4 479 rmv_page_order(buddy);
13e7444b 480 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
481 page = page + (combined_idx - page_idx);
482 page_idx = combined_idx;
483 order++;
484 }
485 set_page_order(page, order);
b2a0ac88
MG
486 list_add(&page->lru,
487 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
488 zone->free_area[order].nr_free++;
489}
490
092cead6
KM
491#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
492/*
493 * free_page_mlock() -- clean up attempts to free and mlocked() page.
494 * Page should not be on lru, so no need to fix that up.
495 * free_pages_check() will verify...
496 */
497static inline void free_page_mlock(struct page *page)
498{
092cead6
KM
499 __dec_zone_page_state(page, NR_MLOCK);
500 __count_vm_event(UNEVICTABLE_MLOCKFREED);
501}
502#else
503static void free_page_mlock(struct page *page) { }
504#endif
505
224abf92 506static inline int free_pages_check(struct page *page)
1da177e4 507{
92be2e33
NP
508 if (unlikely(page_mapcount(page) |
509 (page->mapping != NULL) |
a3af9c38 510 (atomic_read(&page->_count) != 0) |
8cc3b392 511 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 512 bad_page(page);
79f4b7bf 513 return 1;
8cc3b392 514 }
79f4b7bf
HD
515 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
516 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
517 return 0;
1da177e4
LT
518}
519
520/*
5f8dcc21 521 * Frees a number of pages from the PCP lists
1da177e4 522 * Assumes all pages on list are in same zone, and of same order.
207f36ee 523 * count is the number of pages to free.
1da177e4
LT
524 *
525 * If the zone was previously in an "all pages pinned" state then look to
526 * see if this freeing clears that state.
527 *
528 * And clear the zone's pages_scanned counter, to hold off the "all pages are
529 * pinned" detection logic.
530 */
5f8dcc21
MG
531static void free_pcppages_bulk(struct zone *zone, int count,
532 struct per_cpu_pages *pcp)
1da177e4 533{
5f8dcc21 534 int migratetype = 0;
a6f9edd6 535 int batch_free = 0;
5f8dcc21 536
c54ad30c 537 spin_lock(&zone->lock);
e815af95 538 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 539 zone->pages_scanned = 0;
f2260e6b 540
5f8dcc21 541 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 542 while (count) {
48db57f8 543 struct page *page;
5f8dcc21
MG
544 struct list_head *list;
545
546 /*
a6f9edd6
MG
547 * Remove pages from lists in a round-robin fashion. A
548 * batch_free count is maintained that is incremented when an
549 * empty list is encountered. This is so more pages are freed
550 * off fuller lists instead of spinning excessively around empty
551 * lists
5f8dcc21
MG
552 */
553 do {
a6f9edd6 554 batch_free++;
5f8dcc21
MG
555 if (++migratetype == MIGRATE_PCPTYPES)
556 migratetype = 0;
557 list = &pcp->lists[migratetype];
558 } while (list_empty(list));
48db57f8 559
a6f9edd6
MG
560 do {
561 page = list_entry(list->prev, struct page, lru);
562 /* must delete as __free_one_page list manipulates */
563 list_del(&page->lru);
564 __free_one_page(page, zone, 0, migratetype);
565 trace_mm_page_pcpu_drain(page, 0, migratetype);
566 } while (--count && --batch_free && !list_empty(list));
1da177e4 567 }
c54ad30c 568 spin_unlock(&zone->lock);
1da177e4
LT
569}
570
ed0ae21d
MG
571static void free_one_page(struct zone *zone, struct page *page, int order,
572 int migratetype)
1da177e4 573{
006d22d9 574 spin_lock(&zone->lock);
e815af95 575 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 576 zone->pages_scanned = 0;
f2260e6b
MG
577
578 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 579 __free_one_page(page, zone, order, migratetype);
006d22d9 580 spin_unlock(&zone->lock);
48db57f8
NP
581}
582
583static void __free_pages_ok(struct page *page, unsigned int order)
584{
585 unsigned long flags;
1da177e4 586 int i;
8cc3b392 587 int bad = 0;
451ea25d 588 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 589
b1eeab67
VN
590 kmemcheck_free_shadow(page, order);
591
1da177e4 592 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
593 bad += free_pages_check(page + i);
594 if (bad)
689bcebf
HD
595 return;
596
3ac7fe5a 597 if (!PageHighMem(page)) {
9858db50 598 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
599 debug_check_no_obj_freed(page_address(page),
600 PAGE_SIZE << order);
601 }
dafb1367 602 arch_free_page(page, order);
48db57f8 603 kernel_map_pages(page, 1 << order, 0);
dafb1367 604
c54ad30c 605 local_irq_save(flags);
c277331d 606 if (unlikely(wasMlocked))
da456f14 607 free_page_mlock(page);
f8891e5e 608 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
609 free_one_page(page_zone(page), page, order,
610 get_pageblock_migratetype(page));
c54ad30c 611 local_irq_restore(flags);
1da177e4
LT
612}
613
a226f6c8
DH
614/*
615 * permit the bootmem allocator to evade page validation on high-order frees
616 */
af370fb8 617void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
618{
619 if (order == 0) {
620 __ClearPageReserved(page);
621 set_page_count(page, 0);
7835e98b 622 set_page_refcounted(page);
545b1ea9 623 __free_page(page);
a226f6c8 624 } else {
a226f6c8
DH
625 int loop;
626
545b1ea9 627 prefetchw(page);
a226f6c8
DH
628 for (loop = 0; loop < BITS_PER_LONG; loop++) {
629 struct page *p = &page[loop];
630
545b1ea9
NP
631 if (loop + 1 < BITS_PER_LONG)
632 prefetchw(p + 1);
a226f6c8
DH
633 __ClearPageReserved(p);
634 set_page_count(p, 0);
635 }
636
7835e98b 637 set_page_refcounted(page);
545b1ea9 638 __free_pages(page, order);
a226f6c8
DH
639 }
640}
641
1da177e4
LT
642
643/*
644 * The order of subdivision here is critical for the IO subsystem.
645 * Please do not alter this order without good reasons and regression
646 * testing. Specifically, as large blocks of memory are subdivided,
647 * the order in which smaller blocks are delivered depends on the order
648 * they're subdivided in this function. This is the primary factor
649 * influencing the order in which pages are delivered to the IO
650 * subsystem according to empirical testing, and this is also justified
651 * by considering the behavior of a buddy system containing a single
652 * large block of memory acted on by a series of small allocations.
653 * This behavior is a critical factor in sglist merging's success.
654 *
655 * -- wli
656 */
085cc7d5 657static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
658 int low, int high, struct free_area *area,
659 int migratetype)
1da177e4
LT
660{
661 unsigned long size = 1 << high;
662
663 while (high > low) {
664 area--;
665 high--;
666 size >>= 1;
725d704e 667 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 668 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
669 area->nr_free++;
670 set_page_order(&page[size], high);
671 }
1da177e4
LT
672}
673
1da177e4
LT
674/*
675 * This page is about to be returned from the page allocator
676 */
2a7684a2 677static inline int check_new_page(struct page *page)
1da177e4 678{
92be2e33
NP
679 if (unlikely(page_mapcount(page) |
680 (page->mapping != NULL) |
a3af9c38 681 (atomic_read(&page->_count) != 0) |
8cc3b392 682 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 683 bad_page(page);
689bcebf 684 return 1;
8cc3b392 685 }
2a7684a2
WF
686 return 0;
687}
688
689static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
690{
691 int i;
692
693 for (i = 0; i < (1 << order); i++) {
694 struct page *p = page + i;
695 if (unlikely(check_new_page(p)))
696 return 1;
697 }
689bcebf 698
4c21e2f2 699 set_page_private(page, 0);
7835e98b 700 set_page_refcounted(page);
cc102509
NP
701
702 arch_alloc_page(page, order);
1da177e4 703 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
704
705 if (gfp_flags & __GFP_ZERO)
706 prep_zero_page(page, order, gfp_flags);
707
708 if (order && (gfp_flags & __GFP_COMP))
709 prep_compound_page(page, order);
710
689bcebf 711 return 0;
1da177e4
LT
712}
713
56fd56b8
MG
714/*
715 * Go through the free lists for the given migratetype and remove
716 * the smallest available page from the freelists
717 */
728ec980
MG
718static inline
719struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
720 int migratetype)
721{
722 unsigned int current_order;
723 struct free_area * area;
724 struct page *page;
725
726 /* Find a page of the appropriate size in the preferred list */
727 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
728 area = &(zone->free_area[current_order]);
729 if (list_empty(&area->free_list[migratetype]))
730 continue;
731
732 page = list_entry(area->free_list[migratetype].next,
733 struct page, lru);
734 list_del(&page->lru);
735 rmv_page_order(page);
736 area->nr_free--;
56fd56b8
MG
737 expand(zone, page, order, current_order, area, migratetype);
738 return page;
739 }
740
741 return NULL;
742}
743
744
b2a0ac88
MG
745/*
746 * This array describes the order lists are fallen back to when
747 * the free lists for the desirable migrate type are depleted
748 */
749static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
750 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
752 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
753 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
754};
755
c361be55
MG
756/*
757 * Move the free pages in a range to the free lists of the requested type.
d9c23400 758 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
759 * boundary. If alignment is required, use move_freepages_block()
760 */
b69a7288
AB
761static int move_freepages(struct zone *zone,
762 struct page *start_page, struct page *end_page,
763 int migratetype)
c361be55
MG
764{
765 struct page *page;
766 unsigned long order;
d100313f 767 int pages_moved = 0;
c361be55
MG
768
769#ifndef CONFIG_HOLES_IN_ZONE
770 /*
771 * page_zone is not safe to call in this context when
772 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
773 * anyway as we check zone boundaries in move_freepages_block().
774 * Remove at a later date when no bug reports exist related to
ac0e5b7a 775 * grouping pages by mobility
c361be55
MG
776 */
777 BUG_ON(page_zone(start_page) != page_zone(end_page));
778#endif
779
780 for (page = start_page; page <= end_page;) {
344c790e
AL
781 /* Make sure we are not inadvertently changing nodes */
782 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
783
c361be55
MG
784 if (!pfn_valid_within(page_to_pfn(page))) {
785 page++;
786 continue;
787 }
788
789 if (!PageBuddy(page)) {
790 page++;
791 continue;
792 }
793
794 order = page_order(page);
795 list_del(&page->lru);
796 list_add(&page->lru,
797 &zone->free_area[order].free_list[migratetype]);
798 page += 1 << order;
d100313f 799 pages_moved += 1 << order;
c361be55
MG
800 }
801
d100313f 802 return pages_moved;
c361be55
MG
803}
804
b69a7288
AB
805static int move_freepages_block(struct zone *zone, struct page *page,
806 int migratetype)
c361be55
MG
807{
808 unsigned long start_pfn, end_pfn;
809 struct page *start_page, *end_page;
810
811 start_pfn = page_to_pfn(page);
d9c23400 812 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 813 start_page = pfn_to_page(start_pfn);
d9c23400
MG
814 end_page = start_page + pageblock_nr_pages - 1;
815 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
816
817 /* Do not cross zone boundaries */
818 if (start_pfn < zone->zone_start_pfn)
819 start_page = page;
820 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
821 return 0;
822
823 return move_freepages(zone, start_page, end_page, migratetype);
824}
825
2f66a68f
MG
826static void change_pageblock_range(struct page *pageblock_page,
827 int start_order, int migratetype)
828{
829 int nr_pageblocks = 1 << (start_order - pageblock_order);
830
831 while (nr_pageblocks--) {
832 set_pageblock_migratetype(pageblock_page, migratetype);
833 pageblock_page += pageblock_nr_pages;
834 }
835}
836
b2a0ac88 837/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
838static inline struct page *
839__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
840{
841 struct free_area * area;
842 int current_order;
843 struct page *page;
844 int migratetype, i;
845
846 /* Find the largest possible block of pages in the other list */
847 for (current_order = MAX_ORDER-1; current_order >= order;
848 --current_order) {
849 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
850 migratetype = fallbacks[start_migratetype][i];
851
56fd56b8
MG
852 /* MIGRATE_RESERVE handled later if necessary */
853 if (migratetype == MIGRATE_RESERVE)
854 continue;
e010487d 855
b2a0ac88
MG
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
859
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 area->nr_free--;
863
864 /*
c361be55 865 * If breaking a large block of pages, move all free
46dafbca
MG
866 * pages to the preferred allocation list. If falling
867 * back for a reclaimable kernel allocation, be more
868 * agressive about taking ownership of free pages
b2a0ac88 869 */
d9c23400 870 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
871 start_migratetype == MIGRATE_RECLAIMABLE ||
872 page_group_by_mobility_disabled) {
46dafbca
MG
873 unsigned long pages;
874 pages = move_freepages_block(zone, page,
875 start_migratetype);
876
877 /* Claim the whole block if over half of it is free */
dd5d241e
MG
878 if (pages >= (1 << (pageblock_order-1)) ||
879 page_group_by_mobility_disabled)
46dafbca
MG
880 set_pageblock_migratetype(page,
881 start_migratetype);
882
b2a0ac88 883 migratetype = start_migratetype;
c361be55 884 }
b2a0ac88
MG
885
886 /* Remove the page from the freelists */
887 list_del(&page->lru);
888 rmv_page_order(page);
b2a0ac88 889
2f66a68f
MG
890 /* Take ownership for orders >= pageblock_order */
891 if (current_order >= pageblock_order)
892 change_pageblock_range(page, current_order,
b2a0ac88
MG
893 start_migratetype);
894
895 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
896
897 trace_mm_page_alloc_extfrag(page, order, current_order,
898 start_migratetype, migratetype);
899
b2a0ac88
MG
900 return page;
901 }
902 }
903
728ec980 904 return NULL;
b2a0ac88
MG
905}
906
56fd56b8 907/*
1da177e4
LT
908 * Do the hard work of removing an element from the buddy allocator.
909 * Call me with the zone->lock already held.
910 */
b2a0ac88
MG
911static struct page *__rmqueue(struct zone *zone, unsigned int order,
912 int migratetype)
1da177e4 913{
1da177e4
LT
914 struct page *page;
915
728ec980 916retry_reserve:
56fd56b8 917 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 918
728ec980 919 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 920 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 921
728ec980
MG
922 /*
923 * Use MIGRATE_RESERVE rather than fail an allocation. goto
924 * is used because __rmqueue_smallest is an inline function
925 * and we want just one call site
926 */
927 if (!page) {
928 migratetype = MIGRATE_RESERVE;
929 goto retry_reserve;
930 }
931 }
932
0d3d062a 933 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 934 return page;
1da177e4
LT
935}
936
937/*
938 * Obtain a specified number of elements from the buddy allocator, all under
939 * a single hold of the lock, for efficiency. Add them to the supplied list.
940 * Returns the number of new pages which were placed at *list.
941 */
942static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 943 unsigned long count, struct list_head *list,
e084b2d9 944 int migratetype, int cold)
1da177e4 945{
1da177e4 946 int i;
1da177e4 947
c54ad30c 948 spin_lock(&zone->lock);
1da177e4 949 for (i = 0; i < count; ++i) {
b2a0ac88 950 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 951 if (unlikely(page == NULL))
1da177e4 952 break;
81eabcbe
MG
953
954 /*
955 * Split buddy pages returned by expand() are received here
956 * in physical page order. The page is added to the callers and
957 * list and the list head then moves forward. From the callers
958 * perspective, the linked list is ordered by page number in
959 * some conditions. This is useful for IO devices that can
960 * merge IO requests if the physical pages are ordered
961 * properly.
962 */
e084b2d9
MG
963 if (likely(cold == 0))
964 list_add(&page->lru, list);
965 else
966 list_add_tail(&page->lru, list);
535131e6 967 set_page_private(page, migratetype);
81eabcbe 968 list = &page->lru;
1da177e4 969 }
f2260e6b 970 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 971 spin_unlock(&zone->lock);
085cc7d5 972 return i;
1da177e4
LT
973}
974
4ae7c039 975#ifdef CONFIG_NUMA
8fce4d8e 976/*
4037d452
CL
977 * Called from the vmstat counter updater to drain pagesets of this
978 * currently executing processor on remote nodes after they have
979 * expired.
980 *
879336c3
CL
981 * Note that this function must be called with the thread pinned to
982 * a single processor.
8fce4d8e 983 */
4037d452 984void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 985{
4ae7c039 986 unsigned long flags;
4037d452 987 int to_drain;
4ae7c039 988
4037d452
CL
989 local_irq_save(flags);
990 if (pcp->count >= pcp->batch)
991 to_drain = pcp->batch;
992 else
993 to_drain = pcp->count;
5f8dcc21 994 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
995 pcp->count -= to_drain;
996 local_irq_restore(flags);
4ae7c039
CL
997}
998#endif
999
9f8f2172
CL
1000/*
1001 * Drain pages of the indicated processor.
1002 *
1003 * The processor must either be the current processor and the
1004 * thread pinned to the current processor or a processor that
1005 * is not online.
1006 */
1007static void drain_pages(unsigned int cpu)
1da177e4 1008{
c54ad30c 1009 unsigned long flags;
1da177e4 1010 struct zone *zone;
1da177e4 1011
ee99c71c 1012 for_each_populated_zone(zone) {
1da177e4 1013 struct per_cpu_pageset *pset;
3dfa5721 1014 struct per_cpu_pages *pcp;
1da177e4 1015
e7c8d5c9 1016 pset = zone_pcp(zone, cpu);
3dfa5721
CL
1017
1018 pcp = &pset->pcp;
1019 local_irq_save(flags);
5f8dcc21 1020 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1021 pcp->count = 0;
1022 local_irq_restore(flags);
1da177e4
LT
1023 }
1024}
1da177e4 1025
9f8f2172
CL
1026/*
1027 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1028 */
1029void drain_local_pages(void *arg)
1030{
1031 drain_pages(smp_processor_id());
1032}
1033
1034/*
1035 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1036 */
1037void drain_all_pages(void)
1038{
15c8b6c1 1039 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1040}
1041
296699de 1042#ifdef CONFIG_HIBERNATION
1da177e4
LT
1043
1044void mark_free_pages(struct zone *zone)
1045{
f623f0db
RW
1046 unsigned long pfn, max_zone_pfn;
1047 unsigned long flags;
b2a0ac88 1048 int order, t;
1da177e4
LT
1049 struct list_head *curr;
1050
1051 if (!zone->spanned_pages)
1052 return;
1053
1054 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1055
1056 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1057 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1058 if (pfn_valid(pfn)) {
1059 struct page *page = pfn_to_page(pfn);
1060
7be98234
RW
1061 if (!swsusp_page_is_forbidden(page))
1062 swsusp_unset_page_free(page);
f623f0db 1063 }
1da177e4 1064
b2a0ac88
MG
1065 for_each_migratetype_order(order, t) {
1066 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1067 unsigned long i;
1da177e4 1068
f623f0db
RW
1069 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1070 for (i = 0; i < (1UL << order); i++)
7be98234 1071 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1072 }
b2a0ac88 1073 }
1da177e4
LT
1074 spin_unlock_irqrestore(&zone->lock, flags);
1075}
e2c55dc8 1076#endif /* CONFIG_PM */
1da177e4 1077
1da177e4
LT
1078/*
1079 * Free a 0-order page
1080 */
920c7a5d 1081static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1082{
1083 struct zone *zone = page_zone(page);
1084 struct per_cpu_pages *pcp;
1085 unsigned long flags;
5f8dcc21 1086 int migratetype;
451ea25d 1087 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1088
b1eeab67
VN
1089 kmemcheck_free_shadow(page, 0);
1090
1da177e4
LT
1091 if (PageAnon(page))
1092 page->mapping = NULL;
224abf92 1093 if (free_pages_check(page))
689bcebf
HD
1094 return;
1095
3ac7fe5a 1096 if (!PageHighMem(page)) {
9858db50 1097 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1098 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1099 }
dafb1367 1100 arch_free_page(page, 0);
689bcebf
HD
1101 kernel_map_pages(page, 1, 0);
1102
3dfa5721 1103 pcp = &zone_pcp(zone, get_cpu())->pcp;
5f8dcc21
MG
1104 migratetype = get_pageblock_migratetype(page);
1105 set_page_private(page, migratetype);
1da177e4 1106 local_irq_save(flags);
c277331d 1107 if (unlikely(wasMlocked))
da456f14 1108 free_page_mlock(page);
f8891e5e 1109 __count_vm_event(PGFREE);
da456f14 1110
5f8dcc21
MG
1111 /*
1112 * We only track unmovable, reclaimable and movable on pcp lists.
1113 * Free ISOLATE pages back to the allocator because they are being
1114 * offlined but treat RESERVE as movable pages so we can get those
1115 * areas back if necessary. Otherwise, we may have to free
1116 * excessively into the page allocator
1117 */
1118 if (migratetype >= MIGRATE_PCPTYPES) {
1119 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1120 free_one_page(zone, page, 0, migratetype);
1121 goto out;
1122 }
1123 migratetype = MIGRATE_MOVABLE;
1124 }
1125
3dfa5721 1126 if (cold)
5f8dcc21 1127 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1128 else
5f8dcc21 1129 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1130 pcp->count++;
48db57f8 1131 if (pcp->count >= pcp->high) {
5f8dcc21 1132 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1133 pcp->count -= pcp->batch;
1134 }
5f8dcc21
MG
1135
1136out:
1da177e4
LT
1137 local_irq_restore(flags);
1138 put_cpu();
1139}
1140
920c7a5d 1141void free_hot_page(struct page *page)
1da177e4 1142{
4b4f278c 1143 trace_mm_page_free_direct(page, 0);
1da177e4
LT
1144 free_hot_cold_page(page, 0);
1145}
1146
8dfcc9ba
NP
1147/*
1148 * split_page takes a non-compound higher-order page, and splits it into
1149 * n (1<<order) sub-pages: page[0..n]
1150 * Each sub-page must be freed individually.
1151 *
1152 * Note: this is probably too low level an operation for use in drivers.
1153 * Please consult with lkml before using this in your driver.
1154 */
1155void split_page(struct page *page, unsigned int order)
1156{
1157 int i;
1158
725d704e
NP
1159 VM_BUG_ON(PageCompound(page));
1160 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1161
1162#ifdef CONFIG_KMEMCHECK
1163 /*
1164 * Split shadow pages too, because free(page[0]) would
1165 * otherwise free the whole shadow.
1166 */
1167 if (kmemcheck_page_is_tracked(page))
1168 split_page(virt_to_page(page[0].shadow), order);
1169#endif
1170
7835e98b
NP
1171 for (i = 1; i < (1 << order); i++)
1172 set_page_refcounted(page + i);
8dfcc9ba 1173}
8dfcc9ba 1174
1da177e4
LT
1175/*
1176 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1177 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1178 * or two.
1179 */
0a15c3e9
MG
1180static inline
1181struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1182 struct zone *zone, int order, gfp_t gfp_flags,
1183 int migratetype)
1da177e4
LT
1184{
1185 unsigned long flags;
689bcebf 1186 struct page *page;
1da177e4 1187 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1188 int cpu;
1da177e4 1189
689bcebf 1190again:
a74609fa 1191 cpu = get_cpu();
48db57f8 1192 if (likely(order == 0)) {
1da177e4 1193 struct per_cpu_pages *pcp;
5f8dcc21 1194 struct list_head *list;
1da177e4 1195
3dfa5721 1196 pcp = &zone_pcp(zone, cpu)->pcp;
5f8dcc21 1197 list = &pcp->lists[migratetype];
1da177e4 1198 local_irq_save(flags);
5f8dcc21 1199 if (list_empty(list)) {
535131e6 1200 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1201 pcp->batch, list,
e084b2d9 1202 migratetype, cold);
5f8dcc21 1203 if (unlikely(list_empty(list)))
6fb332fa 1204 goto failed;
535131e6 1205 }
b92a6edd 1206
5f8dcc21
MG
1207 if (cold)
1208 page = list_entry(list->prev, struct page, lru);
1209 else
1210 page = list_entry(list->next, struct page, lru);
1211
b92a6edd
MG
1212 list_del(&page->lru);
1213 pcp->count--;
7fb1d9fc 1214 } else {
dab48dab
AM
1215 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1216 /*
1217 * __GFP_NOFAIL is not to be used in new code.
1218 *
1219 * All __GFP_NOFAIL callers should be fixed so that they
1220 * properly detect and handle allocation failures.
1221 *
1222 * We most definitely don't want callers attempting to
4923abf9 1223 * allocate greater than order-1 page units with
dab48dab
AM
1224 * __GFP_NOFAIL.
1225 */
4923abf9 1226 WARN_ON_ONCE(order > 1);
dab48dab 1227 }
1da177e4 1228 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1229 page = __rmqueue(zone, order, migratetype);
f2260e6b 1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1231 spin_unlock(&zone->lock);
1232 if (!page)
1233 goto failed;
1da177e4
LT
1234 }
1235
f8891e5e 1236 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1237 zone_statistics(preferred_zone, zone);
a74609fa
NP
1238 local_irq_restore(flags);
1239 put_cpu();
1da177e4 1240
725d704e 1241 VM_BUG_ON(bad_range(zone, page));
17cf4406 1242 if (prep_new_page(page, order, gfp_flags))
a74609fa 1243 goto again;
1da177e4 1244 return page;
a74609fa
NP
1245
1246failed:
1247 local_irq_restore(flags);
1248 put_cpu();
1249 return NULL;
1da177e4
LT
1250}
1251
41858966
MG
1252/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1253#define ALLOC_WMARK_MIN WMARK_MIN
1254#define ALLOC_WMARK_LOW WMARK_LOW
1255#define ALLOC_WMARK_HIGH WMARK_HIGH
1256#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1257
1258/* Mask to get the watermark bits */
1259#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1260
3148890b
NP
1261#define ALLOC_HARDER 0x10 /* try to alloc harder */
1262#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1263#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1264
933e312e
AM
1265#ifdef CONFIG_FAIL_PAGE_ALLOC
1266
1267static struct fail_page_alloc_attr {
1268 struct fault_attr attr;
1269
1270 u32 ignore_gfp_highmem;
1271 u32 ignore_gfp_wait;
54114994 1272 u32 min_order;
933e312e
AM
1273
1274#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275
1276 struct dentry *ignore_gfp_highmem_file;
1277 struct dentry *ignore_gfp_wait_file;
54114994 1278 struct dentry *min_order_file;
933e312e
AM
1279
1280#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1281
1282} fail_page_alloc = {
1283 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1284 .ignore_gfp_wait = 1,
1285 .ignore_gfp_highmem = 1,
54114994 1286 .min_order = 1,
933e312e
AM
1287};
1288
1289static int __init setup_fail_page_alloc(char *str)
1290{
1291 return setup_fault_attr(&fail_page_alloc.attr, str);
1292}
1293__setup("fail_page_alloc=", setup_fail_page_alloc);
1294
1295static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1296{
54114994
AM
1297 if (order < fail_page_alloc.min_order)
1298 return 0;
933e312e
AM
1299 if (gfp_mask & __GFP_NOFAIL)
1300 return 0;
1301 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1302 return 0;
1303 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1304 return 0;
1305
1306 return should_fail(&fail_page_alloc.attr, 1 << order);
1307}
1308
1309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1310
1311static int __init fail_page_alloc_debugfs(void)
1312{
1313 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1314 struct dentry *dir;
1315 int err;
1316
1317 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1318 "fail_page_alloc");
1319 if (err)
1320 return err;
1321 dir = fail_page_alloc.attr.dentries.dir;
1322
1323 fail_page_alloc.ignore_gfp_wait_file =
1324 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1325 &fail_page_alloc.ignore_gfp_wait);
1326
1327 fail_page_alloc.ignore_gfp_highmem_file =
1328 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1329 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1330 fail_page_alloc.min_order_file =
1331 debugfs_create_u32("min-order", mode, dir,
1332 &fail_page_alloc.min_order);
933e312e
AM
1333
1334 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1335 !fail_page_alloc.ignore_gfp_highmem_file ||
1336 !fail_page_alloc.min_order_file) {
933e312e
AM
1337 err = -ENOMEM;
1338 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1339 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1340 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1341 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1342 }
1343
1344 return err;
1345}
1346
1347late_initcall(fail_page_alloc_debugfs);
1348
1349#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1350
1351#else /* CONFIG_FAIL_PAGE_ALLOC */
1352
1353static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1354{
1355 return 0;
1356}
1357
1358#endif /* CONFIG_FAIL_PAGE_ALLOC */
1359
1da177e4
LT
1360/*
1361 * Return 1 if free pages are above 'mark'. This takes into account the order
1362 * of the allocation.
1363 */
1364int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1365 int classzone_idx, int alloc_flags)
1da177e4
LT
1366{
1367 /* free_pages my go negative - that's OK */
d23ad423
CL
1368 long min = mark;
1369 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1370 int o;
1371
7fb1d9fc 1372 if (alloc_flags & ALLOC_HIGH)
1da177e4 1373 min -= min / 2;
7fb1d9fc 1374 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1375 min -= min / 4;
1376
1377 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1378 return 0;
1379 for (o = 0; o < order; o++) {
1380 /* At the next order, this order's pages become unavailable */
1381 free_pages -= z->free_area[o].nr_free << o;
1382
1383 /* Require fewer higher order pages to be free */
1384 min >>= 1;
1385
1386 if (free_pages <= min)
1387 return 0;
1388 }
1389 return 1;
1390}
1391
9276b1bc
PJ
1392#ifdef CONFIG_NUMA
1393/*
1394 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1395 * skip over zones that are not allowed by the cpuset, or that have
1396 * been recently (in last second) found to be nearly full. See further
1397 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1398 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1399 *
1400 * If the zonelist cache is present in the passed in zonelist, then
1401 * returns a pointer to the allowed node mask (either the current
37b07e41 1402 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1403 *
1404 * If the zonelist cache is not available for this zonelist, does
1405 * nothing and returns NULL.
1406 *
1407 * If the fullzones BITMAP in the zonelist cache is stale (more than
1408 * a second since last zap'd) then we zap it out (clear its bits.)
1409 *
1410 * We hold off even calling zlc_setup, until after we've checked the
1411 * first zone in the zonelist, on the theory that most allocations will
1412 * be satisfied from that first zone, so best to examine that zone as
1413 * quickly as we can.
1414 */
1415static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1416{
1417 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1418 nodemask_t *allowednodes; /* zonelist_cache approximation */
1419
1420 zlc = zonelist->zlcache_ptr;
1421 if (!zlc)
1422 return NULL;
1423
f05111f5 1424 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1425 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1426 zlc->last_full_zap = jiffies;
1427 }
1428
1429 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1430 &cpuset_current_mems_allowed :
37b07e41 1431 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1432 return allowednodes;
1433}
1434
1435/*
1436 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1437 * if it is worth looking at further for free memory:
1438 * 1) Check that the zone isn't thought to be full (doesn't have its
1439 * bit set in the zonelist_cache fullzones BITMAP).
1440 * 2) Check that the zones node (obtained from the zonelist_cache
1441 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1442 * Return true (non-zero) if zone is worth looking at further, or
1443 * else return false (zero) if it is not.
1444 *
1445 * This check -ignores- the distinction between various watermarks,
1446 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1447 * found to be full for any variation of these watermarks, it will
1448 * be considered full for up to one second by all requests, unless
1449 * we are so low on memory on all allowed nodes that we are forced
1450 * into the second scan of the zonelist.
1451 *
1452 * In the second scan we ignore this zonelist cache and exactly
1453 * apply the watermarks to all zones, even it is slower to do so.
1454 * We are low on memory in the second scan, and should leave no stone
1455 * unturned looking for a free page.
1456 */
dd1a239f 1457static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1458 nodemask_t *allowednodes)
1459{
1460 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1461 int i; /* index of *z in zonelist zones */
1462 int n; /* node that zone *z is on */
1463
1464 zlc = zonelist->zlcache_ptr;
1465 if (!zlc)
1466 return 1;
1467
dd1a239f 1468 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1469 n = zlc->z_to_n[i];
1470
1471 /* This zone is worth trying if it is allowed but not full */
1472 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1473}
1474
1475/*
1476 * Given 'z' scanning a zonelist, set the corresponding bit in
1477 * zlc->fullzones, so that subsequent attempts to allocate a page
1478 * from that zone don't waste time re-examining it.
1479 */
dd1a239f 1480static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1481{
1482 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1483 int i; /* index of *z in zonelist zones */
1484
1485 zlc = zonelist->zlcache_ptr;
1486 if (!zlc)
1487 return;
1488
dd1a239f 1489 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1490
1491 set_bit(i, zlc->fullzones);
1492}
1493
1494#else /* CONFIG_NUMA */
1495
1496static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1497{
1498 return NULL;
1499}
1500
dd1a239f 1501static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1502 nodemask_t *allowednodes)
1503{
1504 return 1;
1505}
1506
dd1a239f 1507static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1508{
1509}
1510#endif /* CONFIG_NUMA */
1511
7fb1d9fc 1512/*
0798e519 1513 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1514 * a page.
1515 */
1516static struct page *
19770b32 1517get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1518 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1519 struct zone *preferred_zone, int migratetype)
753ee728 1520{
dd1a239f 1521 struct zoneref *z;
7fb1d9fc 1522 struct page *page = NULL;
54a6eb5c 1523 int classzone_idx;
5117f45d 1524 struct zone *zone;
9276b1bc
PJ
1525 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1526 int zlc_active = 0; /* set if using zonelist_cache */
1527 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1528
19770b32 1529 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1530zonelist_scan:
7fb1d9fc 1531 /*
9276b1bc 1532 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1533 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 */
19770b32
MG
1535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1536 high_zoneidx, nodemask) {
9276b1bc
PJ
1537 if (NUMA_BUILD && zlc_active &&
1538 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1539 continue;
7fb1d9fc 1540 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1541 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1542 goto try_next_zone;
7fb1d9fc 1543
41858966 1544 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1545 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1546 unsigned long mark;
fa5e084e
MG
1547 int ret;
1548
41858966 1549 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1550 if (zone_watermark_ok(zone, order, mark,
1551 classzone_idx, alloc_flags))
1552 goto try_this_zone;
1553
1554 if (zone_reclaim_mode == 0)
1555 goto this_zone_full;
1556
1557 ret = zone_reclaim(zone, gfp_mask, order);
1558 switch (ret) {
1559 case ZONE_RECLAIM_NOSCAN:
1560 /* did not scan */
1561 goto try_next_zone;
1562 case ZONE_RECLAIM_FULL:
1563 /* scanned but unreclaimable */
1564 goto this_zone_full;
1565 default:
1566 /* did we reclaim enough */
1567 if (!zone_watermark_ok(zone, order, mark,
1568 classzone_idx, alloc_flags))
9276b1bc 1569 goto this_zone_full;
0798e519 1570 }
7fb1d9fc
RS
1571 }
1572
fa5e084e 1573try_this_zone:
3dd28266
MG
1574 page = buffered_rmqueue(preferred_zone, zone, order,
1575 gfp_mask, migratetype);
0798e519 1576 if (page)
7fb1d9fc 1577 break;
9276b1bc
PJ
1578this_zone_full:
1579 if (NUMA_BUILD)
1580 zlc_mark_zone_full(zonelist, z);
1581try_next_zone:
62bc62a8 1582 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1583 /*
1584 * we do zlc_setup after the first zone is tried but only
1585 * if there are multiple nodes make it worthwhile
1586 */
9276b1bc
PJ
1587 allowednodes = zlc_setup(zonelist, alloc_flags);
1588 zlc_active = 1;
1589 did_zlc_setup = 1;
1590 }
54a6eb5c 1591 }
9276b1bc
PJ
1592
1593 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1594 /* Disable zlc cache for second zonelist scan */
1595 zlc_active = 0;
1596 goto zonelist_scan;
1597 }
7fb1d9fc 1598 return page;
753ee728
MH
1599}
1600
11e33f6a
MG
1601static inline int
1602should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1603 unsigned long pages_reclaimed)
1da177e4 1604{
11e33f6a
MG
1605 /* Do not loop if specifically requested */
1606 if (gfp_mask & __GFP_NORETRY)
1607 return 0;
1da177e4 1608
11e33f6a
MG
1609 /*
1610 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1611 * means __GFP_NOFAIL, but that may not be true in other
1612 * implementations.
1613 */
1614 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1615 return 1;
1616
1617 /*
1618 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1619 * specified, then we retry until we no longer reclaim any pages
1620 * (above), or we've reclaimed an order of pages at least as
1621 * large as the allocation's order. In both cases, if the
1622 * allocation still fails, we stop retrying.
1623 */
1624 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1625 return 1;
cf40bd16 1626
11e33f6a
MG
1627 /*
1628 * Don't let big-order allocations loop unless the caller
1629 * explicitly requests that.
1630 */
1631 if (gfp_mask & __GFP_NOFAIL)
1632 return 1;
1da177e4 1633
11e33f6a
MG
1634 return 0;
1635}
933e312e 1636
11e33f6a
MG
1637static inline struct page *
1638__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1639 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1640 nodemask_t *nodemask, struct zone *preferred_zone,
1641 int migratetype)
11e33f6a
MG
1642{
1643 struct page *page;
1644
1645 /* Acquire the OOM killer lock for the zones in zonelist */
1646 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1647 schedule_timeout_uninterruptible(1);
1da177e4
LT
1648 return NULL;
1649 }
6b1de916 1650
11e33f6a
MG
1651 /*
1652 * Go through the zonelist yet one more time, keep very high watermark
1653 * here, this is only to catch a parallel oom killing, we must fail if
1654 * we're still under heavy pressure.
1655 */
1656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1657 order, zonelist, high_zoneidx,
5117f45d 1658 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1659 preferred_zone, migratetype);
7fb1d9fc 1660 if (page)
11e33f6a
MG
1661 goto out;
1662
1663 /* The OOM killer will not help higher order allocs */
82553a93 1664 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1665 goto out;
1666
1667 /* Exhausted what can be done so it's blamo time */
1668 out_of_memory(zonelist, gfp_mask, order);
1669
1670out:
1671 clear_zonelist_oom(zonelist, gfp_mask);
1672 return page;
1673}
1674
1675/* The really slow allocator path where we enter direct reclaim */
1676static inline struct page *
1677__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1678 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1679 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1680 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1681{
1682 struct page *page = NULL;
1683 struct reclaim_state reclaim_state;
1684 struct task_struct *p = current;
1685
1686 cond_resched();
1687
1688 /* We now go into synchronous reclaim */
1689 cpuset_memory_pressure_bump();
11e33f6a
MG
1690 p->flags |= PF_MEMALLOC;
1691 lockdep_set_current_reclaim_state(gfp_mask);
1692 reclaim_state.reclaimed_slab = 0;
1693 p->reclaim_state = &reclaim_state;
1694
1695 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1696
1697 p->reclaim_state = NULL;
1698 lockdep_clear_current_reclaim_state();
1699 p->flags &= ~PF_MEMALLOC;
1700
1701 cond_resched();
1702
1703 if (order != 0)
1704 drain_all_pages();
1705
1706 if (likely(*did_some_progress))
1707 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1708 zonelist, high_zoneidx,
3dd28266
MG
1709 alloc_flags, preferred_zone,
1710 migratetype);
11e33f6a
MG
1711 return page;
1712}
1713
1da177e4 1714/*
11e33f6a
MG
1715 * This is called in the allocator slow-path if the allocation request is of
1716 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1717 */
11e33f6a
MG
1718static inline struct page *
1719__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1720 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1721 nodemask_t *nodemask, struct zone *preferred_zone,
1722 int migratetype)
11e33f6a
MG
1723{
1724 struct page *page;
1725
1726 do {
1727 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1728 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1729 preferred_zone, migratetype);
11e33f6a
MG
1730
1731 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1732 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1733 } while (!page && (gfp_mask & __GFP_NOFAIL));
1734
1735 return page;
1736}
1737
1738static inline
1739void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1740 enum zone_type high_zoneidx)
1da177e4 1741{
dd1a239f
MG
1742 struct zoneref *z;
1743 struct zone *zone;
1da177e4 1744
11e33f6a
MG
1745 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1746 wakeup_kswapd(zone, order);
1747}
cf40bd16 1748
341ce06f
PZ
1749static inline int
1750gfp_to_alloc_flags(gfp_t gfp_mask)
1751{
1752 struct task_struct *p = current;
1753 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1754 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1755
a56f57ff
MG
1756 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1757 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1758
341ce06f
PZ
1759 /*
1760 * The caller may dip into page reserves a bit more if the caller
1761 * cannot run direct reclaim, or if the caller has realtime scheduling
1762 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1763 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1764 */
a56f57ff 1765 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1766
341ce06f
PZ
1767 if (!wait) {
1768 alloc_flags |= ALLOC_HARDER;
523b9458 1769 /*
341ce06f
PZ
1770 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1771 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1772 */
341ce06f 1773 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1774 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1775 alloc_flags |= ALLOC_HARDER;
1776
1777 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1778 if (!in_interrupt() &&
1779 ((p->flags & PF_MEMALLOC) ||
1780 unlikely(test_thread_flag(TIF_MEMDIE))))
1781 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1782 }
6b1de916 1783
341ce06f
PZ
1784 return alloc_flags;
1785}
1786
11e33f6a
MG
1787static inline struct page *
1788__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1789 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1790 nodemask_t *nodemask, struct zone *preferred_zone,
1791 int migratetype)
11e33f6a
MG
1792{
1793 const gfp_t wait = gfp_mask & __GFP_WAIT;
1794 struct page *page = NULL;
1795 int alloc_flags;
1796 unsigned long pages_reclaimed = 0;
1797 unsigned long did_some_progress;
1798 struct task_struct *p = current;
1da177e4 1799
72807a74
MG
1800 /*
1801 * In the slowpath, we sanity check order to avoid ever trying to
1802 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1803 * be using allocators in order of preference for an area that is
1804 * too large.
1805 */
1fc28b70
MG
1806 if (order >= MAX_ORDER) {
1807 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1808 return NULL;
1fc28b70 1809 }
1da177e4 1810
952f3b51
CL
1811 /*
1812 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1813 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1814 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1815 * using a larger set of nodes after it has established that the
1816 * allowed per node queues are empty and that nodes are
1817 * over allocated.
1818 */
1819 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1820 goto nopage;
1821
cc4a6851 1822restart:
11e33f6a 1823 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1824
9bf2229f 1825 /*
7fb1d9fc
RS
1826 * OK, we're below the kswapd watermark and have kicked background
1827 * reclaim. Now things get more complex, so set up alloc_flags according
1828 * to how we want to proceed.
9bf2229f 1829 */
341ce06f 1830 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1831
341ce06f 1832 /* This is the last chance, in general, before the goto nopage. */
19770b32 1833 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1834 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1835 preferred_zone, migratetype);
7fb1d9fc
RS
1836 if (page)
1837 goto got_pg;
1da177e4 1838
b43a57bb 1839rebalance:
11e33f6a 1840 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1841 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1842 page = __alloc_pages_high_priority(gfp_mask, order,
1843 zonelist, high_zoneidx, nodemask,
1844 preferred_zone, migratetype);
1845 if (page)
1846 goto got_pg;
1da177e4
LT
1847 }
1848
1849 /* Atomic allocations - we can't balance anything */
1850 if (!wait)
1851 goto nopage;
1852
341ce06f
PZ
1853 /* Avoid recursion of direct reclaim */
1854 if (p->flags & PF_MEMALLOC)
1855 goto nopage;
1856
6583bb64
DR
1857 /* Avoid allocations with no watermarks from looping endlessly */
1858 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1859 goto nopage;
1860
11e33f6a
MG
1861 /* Try direct reclaim and then allocating */
1862 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1863 zonelist, high_zoneidx,
1864 nodemask,
5117f45d 1865 alloc_flags, preferred_zone,
3dd28266 1866 migratetype, &did_some_progress);
11e33f6a
MG
1867 if (page)
1868 goto got_pg;
1da177e4 1869
e33c3b5e 1870 /*
11e33f6a
MG
1871 * If we failed to make any progress reclaiming, then we are
1872 * running out of options and have to consider going OOM
e33c3b5e 1873 */
11e33f6a
MG
1874 if (!did_some_progress) {
1875 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1876 if (oom_killer_disabled)
1877 goto nopage;
11e33f6a
MG
1878 page = __alloc_pages_may_oom(gfp_mask, order,
1879 zonelist, high_zoneidx,
3dd28266
MG
1880 nodemask, preferred_zone,
1881 migratetype);
11e33f6a
MG
1882 if (page)
1883 goto got_pg;
1da177e4 1884
11e33f6a 1885 /*
82553a93
DR
1886 * The OOM killer does not trigger for high-order
1887 * ~__GFP_NOFAIL allocations so if no progress is being
1888 * made, there are no other options and retrying is
1889 * unlikely to help.
11e33f6a 1890 */
82553a93
DR
1891 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1892 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1893 goto nopage;
e2c55dc8 1894
ff0ceb9d
DR
1895 goto restart;
1896 }
1da177e4
LT
1897 }
1898
11e33f6a 1899 /* Check if we should retry the allocation */
a41f24ea 1900 pages_reclaimed += did_some_progress;
11e33f6a
MG
1901 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1902 /* Wait for some write requests to complete then retry */
8aa7e847 1903 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1904 goto rebalance;
1905 }
1906
1907nopage:
1908 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1909 printk(KERN_WARNING "%s: page allocation failure."
1910 " order:%d, mode:0x%x\n",
1911 p->comm, order, gfp_mask);
1912 dump_stack();
578c2fd6 1913 show_mem();
1da177e4 1914 }
b1eeab67 1915 return page;
1da177e4 1916got_pg:
b1eeab67
VN
1917 if (kmemcheck_enabled)
1918 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1919 return page;
11e33f6a 1920
1da177e4 1921}
11e33f6a
MG
1922
1923/*
1924 * This is the 'heart' of the zoned buddy allocator.
1925 */
1926struct page *
1927__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1928 struct zonelist *zonelist, nodemask_t *nodemask)
1929{
1930 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1931 struct zone *preferred_zone;
11e33f6a 1932 struct page *page;
3dd28266 1933 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1934
dcce284a
BH
1935 gfp_mask &= gfp_allowed_mask;
1936
11e33f6a
MG
1937 lockdep_trace_alloc(gfp_mask);
1938
1939 might_sleep_if(gfp_mask & __GFP_WAIT);
1940
1941 if (should_fail_alloc_page(gfp_mask, order))
1942 return NULL;
1943
1944 /*
1945 * Check the zones suitable for the gfp_mask contain at least one
1946 * valid zone. It's possible to have an empty zonelist as a result
1947 * of GFP_THISNODE and a memoryless node
1948 */
1949 if (unlikely(!zonelist->_zonerefs->zone))
1950 return NULL;
1951
5117f45d
MG
1952 /* The preferred zone is used for statistics later */
1953 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1954 if (!preferred_zone)
1955 return NULL;
1956
1957 /* First allocation attempt */
11e33f6a 1958 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1959 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1960 preferred_zone, migratetype);
11e33f6a
MG
1961 if (unlikely(!page))
1962 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1963 zonelist, high_zoneidx, nodemask,
3dd28266 1964 preferred_zone, migratetype);
11e33f6a 1965
4b4f278c 1966 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 1967 return page;
1da177e4 1968}
d239171e 1969EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1970
1971/*
1972 * Common helper functions.
1973 */
920c7a5d 1974unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 1975{
945a1113
AM
1976 struct page *page;
1977
1978 /*
1979 * __get_free_pages() returns a 32-bit address, which cannot represent
1980 * a highmem page
1981 */
1982 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1983
1da177e4
LT
1984 page = alloc_pages(gfp_mask, order);
1985 if (!page)
1986 return 0;
1987 return (unsigned long) page_address(page);
1988}
1da177e4
LT
1989EXPORT_SYMBOL(__get_free_pages);
1990
920c7a5d 1991unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 1992{
945a1113 1993 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 1994}
1da177e4
LT
1995EXPORT_SYMBOL(get_zeroed_page);
1996
1997void __pagevec_free(struct pagevec *pvec)
1998{
1999 int i = pagevec_count(pvec);
2000
4b4f278c
MG
2001 while (--i >= 0) {
2002 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2003 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2004 }
1da177e4
LT
2005}
2006
920c7a5d 2007void __free_pages(struct page *page, unsigned int order)
1da177e4 2008{
b5810039 2009 if (put_page_testzero(page)) {
4b4f278c 2010 trace_mm_page_free_direct(page, order);
1da177e4
LT
2011 if (order == 0)
2012 free_hot_page(page);
2013 else
2014 __free_pages_ok(page, order);
2015 }
2016}
2017
2018EXPORT_SYMBOL(__free_pages);
2019
920c7a5d 2020void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2021{
2022 if (addr != 0) {
725d704e 2023 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2024 __free_pages(virt_to_page((void *)addr), order);
2025 }
2026}
2027
2028EXPORT_SYMBOL(free_pages);
2029
2be0ffe2
TT
2030/**
2031 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2032 * @size: the number of bytes to allocate
2033 * @gfp_mask: GFP flags for the allocation
2034 *
2035 * This function is similar to alloc_pages(), except that it allocates the
2036 * minimum number of pages to satisfy the request. alloc_pages() can only
2037 * allocate memory in power-of-two pages.
2038 *
2039 * This function is also limited by MAX_ORDER.
2040 *
2041 * Memory allocated by this function must be released by free_pages_exact().
2042 */
2043void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2044{
2045 unsigned int order = get_order(size);
2046 unsigned long addr;
2047
2048 addr = __get_free_pages(gfp_mask, order);
2049 if (addr) {
2050 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2051 unsigned long used = addr + PAGE_ALIGN(size);
2052
5bfd7560 2053 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2054 while (used < alloc_end) {
2055 free_page(used);
2056 used += PAGE_SIZE;
2057 }
2058 }
2059
2060 return (void *)addr;
2061}
2062EXPORT_SYMBOL(alloc_pages_exact);
2063
2064/**
2065 * free_pages_exact - release memory allocated via alloc_pages_exact()
2066 * @virt: the value returned by alloc_pages_exact.
2067 * @size: size of allocation, same value as passed to alloc_pages_exact().
2068 *
2069 * Release the memory allocated by a previous call to alloc_pages_exact.
2070 */
2071void free_pages_exact(void *virt, size_t size)
2072{
2073 unsigned long addr = (unsigned long)virt;
2074 unsigned long end = addr + PAGE_ALIGN(size);
2075
2076 while (addr < end) {
2077 free_page(addr);
2078 addr += PAGE_SIZE;
2079 }
2080}
2081EXPORT_SYMBOL(free_pages_exact);
2082
1da177e4
LT
2083static unsigned int nr_free_zone_pages(int offset)
2084{
dd1a239f 2085 struct zoneref *z;
54a6eb5c
MG
2086 struct zone *zone;
2087
e310fd43 2088 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2089 unsigned int sum = 0;
2090
0e88460d 2091 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2092
54a6eb5c 2093 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2094 unsigned long size = zone->present_pages;
41858966 2095 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2096 if (size > high)
2097 sum += size - high;
1da177e4
LT
2098 }
2099
2100 return sum;
2101}
2102
2103/*
2104 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2105 */
2106unsigned int nr_free_buffer_pages(void)
2107{
af4ca457 2108 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2109}
c2f1a551 2110EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2111
2112/*
2113 * Amount of free RAM allocatable within all zones
2114 */
2115unsigned int nr_free_pagecache_pages(void)
2116{
2a1e274a 2117 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2118}
08e0f6a9
CL
2119
2120static inline void show_node(struct zone *zone)
1da177e4 2121{
08e0f6a9 2122 if (NUMA_BUILD)
25ba77c1 2123 printk("Node %d ", zone_to_nid(zone));
1da177e4 2124}
1da177e4 2125
1da177e4
LT
2126void si_meminfo(struct sysinfo *val)
2127{
2128 val->totalram = totalram_pages;
2129 val->sharedram = 0;
d23ad423 2130 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2131 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2132 val->totalhigh = totalhigh_pages;
2133 val->freehigh = nr_free_highpages();
1da177e4
LT
2134 val->mem_unit = PAGE_SIZE;
2135}
2136
2137EXPORT_SYMBOL(si_meminfo);
2138
2139#ifdef CONFIG_NUMA
2140void si_meminfo_node(struct sysinfo *val, int nid)
2141{
2142 pg_data_t *pgdat = NODE_DATA(nid);
2143
2144 val->totalram = pgdat->node_present_pages;
d23ad423 2145 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2146#ifdef CONFIG_HIGHMEM
1da177e4 2147 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2148 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2149 NR_FREE_PAGES);
98d2b0eb
CL
2150#else
2151 val->totalhigh = 0;
2152 val->freehigh = 0;
2153#endif
1da177e4
LT
2154 val->mem_unit = PAGE_SIZE;
2155}
2156#endif
2157
2158#define K(x) ((x) << (PAGE_SHIFT-10))
2159
2160/*
2161 * Show free area list (used inside shift_scroll-lock stuff)
2162 * We also calculate the percentage fragmentation. We do this by counting the
2163 * memory on each free list with the exception of the first item on the list.
2164 */
2165void show_free_areas(void)
2166{
c7241913 2167 int cpu;
1da177e4
LT
2168 struct zone *zone;
2169
ee99c71c 2170 for_each_populated_zone(zone) {
c7241913
JS
2171 show_node(zone);
2172 printk("%s per-cpu:\n", zone->name);
1da177e4 2173
6b482c67 2174 for_each_online_cpu(cpu) {
1da177e4
LT
2175 struct per_cpu_pageset *pageset;
2176
e7c8d5c9 2177 pageset = zone_pcp(zone, cpu);
1da177e4 2178
3dfa5721
CL
2179 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2180 cpu, pageset->pcp.high,
2181 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2182 }
2183 }
2184
a731286d
KM
2185 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2186 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2187 " unevictable:%lu"
b76146ed 2188 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2189 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2190 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2191 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2192 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2193 global_page_state(NR_ISOLATED_ANON),
2194 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2195 global_page_state(NR_INACTIVE_FILE),
a731286d 2196 global_page_state(NR_ISOLATED_FILE),
7b854121 2197 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2198 global_page_state(NR_FILE_DIRTY),
ce866b34 2199 global_page_state(NR_WRITEBACK),
fd39fc85 2200 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2201 global_page_state(NR_FREE_PAGES),
3701b033
KM
2202 global_page_state(NR_SLAB_RECLAIMABLE),
2203 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2204 global_page_state(NR_FILE_MAPPED),
4b02108a 2205 global_page_state(NR_SHMEM),
a25700a5
AM
2206 global_page_state(NR_PAGETABLE),
2207 global_page_state(NR_BOUNCE));
1da177e4 2208
ee99c71c 2209 for_each_populated_zone(zone) {
1da177e4
LT
2210 int i;
2211
2212 show_node(zone);
2213 printk("%s"
2214 " free:%lukB"
2215 " min:%lukB"
2216 " low:%lukB"
2217 " high:%lukB"
4f98a2fe
RR
2218 " active_anon:%lukB"
2219 " inactive_anon:%lukB"
2220 " active_file:%lukB"
2221 " inactive_file:%lukB"
7b854121 2222 " unevictable:%lukB"
a731286d
KM
2223 " isolated(anon):%lukB"
2224 " isolated(file):%lukB"
1da177e4 2225 " present:%lukB"
4a0aa73f
KM
2226 " mlocked:%lukB"
2227 " dirty:%lukB"
2228 " writeback:%lukB"
2229 " mapped:%lukB"
4b02108a 2230 " shmem:%lukB"
4a0aa73f
KM
2231 " slab_reclaimable:%lukB"
2232 " slab_unreclaimable:%lukB"
c6a7f572 2233 " kernel_stack:%lukB"
4a0aa73f
KM
2234 " pagetables:%lukB"
2235 " unstable:%lukB"
2236 " bounce:%lukB"
2237 " writeback_tmp:%lukB"
1da177e4
LT
2238 " pages_scanned:%lu"
2239 " all_unreclaimable? %s"
2240 "\n",
2241 zone->name,
d23ad423 2242 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2243 K(min_wmark_pages(zone)),
2244 K(low_wmark_pages(zone)),
2245 K(high_wmark_pages(zone)),
4f98a2fe
RR
2246 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2247 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2248 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2249 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2250 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2251 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2252 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2253 K(zone->present_pages),
4a0aa73f
KM
2254 K(zone_page_state(zone, NR_MLOCK)),
2255 K(zone_page_state(zone, NR_FILE_DIRTY)),
2256 K(zone_page_state(zone, NR_WRITEBACK)),
2257 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2258 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2259 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2260 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2261 zone_page_state(zone, NR_KERNEL_STACK) *
2262 THREAD_SIZE / 1024,
4a0aa73f
KM
2263 K(zone_page_state(zone, NR_PAGETABLE)),
2264 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2265 K(zone_page_state(zone, NR_BOUNCE)),
2266 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2267 zone->pages_scanned,
e815af95 2268 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2269 );
2270 printk("lowmem_reserve[]:");
2271 for (i = 0; i < MAX_NR_ZONES; i++)
2272 printk(" %lu", zone->lowmem_reserve[i]);
2273 printk("\n");
2274 }
2275
ee99c71c 2276 for_each_populated_zone(zone) {
8f9de51a 2277 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2278
2279 show_node(zone);
2280 printk("%s: ", zone->name);
1da177e4
LT
2281
2282 spin_lock_irqsave(&zone->lock, flags);
2283 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2284 nr[order] = zone->free_area[order].nr_free;
2285 total += nr[order] << order;
1da177e4
LT
2286 }
2287 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2288 for (order = 0; order < MAX_ORDER; order++)
2289 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2290 printk("= %lukB\n", K(total));
2291 }
2292
e6f3602d
LW
2293 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2294
1da177e4
LT
2295 show_swap_cache_info();
2296}
2297
19770b32
MG
2298static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2299{
2300 zoneref->zone = zone;
2301 zoneref->zone_idx = zone_idx(zone);
2302}
2303
1da177e4
LT
2304/*
2305 * Builds allocation fallback zone lists.
1a93205b
CL
2306 *
2307 * Add all populated zones of a node to the zonelist.
1da177e4 2308 */
f0c0b2b8
KH
2309static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2310 int nr_zones, enum zone_type zone_type)
1da177e4 2311{
1a93205b
CL
2312 struct zone *zone;
2313
98d2b0eb 2314 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2315 zone_type++;
02a68a5e
CL
2316
2317 do {
2f6726e5 2318 zone_type--;
070f8032 2319 zone = pgdat->node_zones + zone_type;
1a93205b 2320 if (populated_zone(zone)) {
dd1a239f
MG
2321 zoneref_set_zone(zone,
2322 &zonelist->_zonerefs[nr_zones++]);
070f8032 2323 check_highest_zone(zone_type);
1da177e4 2324 }
02a68a5e 2325
2f6726e5 2326 } while (zone_type);
070f8032 2327 return nr_zones;
1da177e4
LT
2328}
2329
f0c0b2b8
KH
2330
2331/*
2332 * zonelist_order:
2333 * 0 = automatic detection of better ordering.
2334 * 1 = order by ([node] distance, -zonetype)
2335 * 2 = order by (-zonetype, [node] distance)
2336 *
2337 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2338 * the same zonelist. So only NUMA can configure this param.
2339 */
2340#define ZONELIST_ORDER_DEFAULT 0
2341#define ZONELIST_ORDER_NODE 1
2342#define ZONELIST_ORDER_ZONE 2
2343
2344/* zonelist order in the kernel.
2345 * set_zonelist_order() will set this to NODE or ZONE.
2346 */
2347static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2348static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2349
2350
1da177e4 2351#ifdef CONFIG_NUMA
f0c0b2b8
KH
2352/* The value user specified ....changed by config */
2353static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2354/* string for sysctl */
2355#define NUMA_ZONELIST_ORDER_LEN 16
2356char numa_zonelist_order[16] = "default";
2357
2358/*
2359 * interface for configure zonelist ordering.
2360 * command line option "numa_zonelist_order"
2361 * = "[dD]efault - default, automatic configuration.
2362 * = "[nN]ode - order by node locality, then by zone within node
2363 * = "[zZ]one - order by zone, then by locality within zone
2364 */
2365
2366static int __parse_numa_zonelist_order(char *s)
2367{
2368 if (*s == 'd' || *s == 'D') {
2369 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2370 } else if (*s == 'n' || *s == 'N') {
2371 user_zonelist_order = ZONELIST_ORDER_NODE;
2372 } else if (*s == 'z' || *s == 'Z') {
2373 user_zonelist_order = ZONELIST_ORDER_ZONE;
2374 } else {
2375 printk(KERN_WARNING
2376 "Ignoring invalid numa_zonelist_order value: "
2377 "%s\n", s);
2378 return -EINVAL;
2379 }
2380 return 0;
2381}
2382
2383static __init int setup_numa_zonelist_order(char *s)
2384{
2385 if (s)
2386 return __parse_numa_zonelist_order(s);
2387 return 0;
2388}
2389early_param("numa_zonelist_order", setup_numa_zonelist_order);
2390
2391/*
2392 * sysctl handler for numa_zonelist_order
2393 */
2394int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2395 void __user *buffer, size_t *length,
f0c0b2b8
KH
2396 loff_t *ppos)
2397{
2398 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2399 int ret;
2400
2401 if (write)
2402 strncpy(saved_string, (char*)table->data,
2403 NUMA_ZONELIST_ORDER_LEN);
8d65af78 2404 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
2405 if (ret)
2406 return ret;
2407 if (write) {
2408 int oldval = user_zonelist_order;
2409 if (__parse_numa_zonelist_order((char*)table->data)) {
2410 /*
2411 * bogus value. restore saved string
2412 */
2413 strncpy((char*)table->data, saved_string,
2414 NUMA_ZONELIST_ORDER_LEN);
2415 user_zonelist_order = oldval;
2416 } else if (oldval != user_zonelist_order)
2417 build_all_zonelists();
2418 }
2419 return 0;
2420}
2421
2422
62bc62a8 2423#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2424static int node_load[MAX_NUMNODES];
2425
1da177e4 2426/**
4dc3b16b 2427 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2428 * @node: node whose fallback list we're appending
2429 * @used_node_mask: nodemask_t of already used nodes
2430 *
2431 * We use a number of factors to determine which is the next node that should
2432 * appear on a given node's fallback list. The node should not have appeared
2433 * already in @node's fallback list, and it should be the next closest node
2434 * according to the distance array (which contains arbitrary distance values
2435 * from each node to each node in the system), and should also prefer nodes
2436 * with no CPUs, since presumably they'll have very little allocation pressure
2437 * on them otherwise.
2438 * It returns -1 if no node is found.
2439 */
f0c0b2b8 2440static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2441{
4cf808eb 2442 int n, val;
1da177e4
LT
2443 int min_val = INT_MAX;
2444 int best_node = -1;
a70f7302 2445 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2446
4cf808eb
LT
2447 /* Use the local node if we haven't already */
2448 if (!node_isset(node, *used_node_mask)) {
2449 node_set(node, *used_node_mask);
2450 return node;
2451 }
1da177e4 2452
37b07e41 2453 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2454
2455 /* Don't want a node to appear more than once */
2456 if (node_isset(n, *used_node_mask))
2457 continue;
2458
1da177e4
LT
2459 /* Use the distance array to find the distance */
2460 val = node_distance(node, n);
2461
4cf808eb
LT
2462 /* Penalize nodes under us ("prefer the next node") */
2463 val += (n < node);
2464
1da177e4 2465 /* Give preference to headless and unused nodes */
a70f7302
RR
2466 tmp = cpumask_of_node(n);
2467 if (!cpumask_empty(tmp))
1da177e4
LT
2468 val += PENALTY_FOR_NODE_WITH_CPUS;
2469
2470 /* Slight preference for less loaded node */
2471 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2472 val += node_load[n];
2473
2474 if (val < min_val) {
2475 min_val = val;
2476 best_node = n;
2477 }
2478 }
2479
2480 if (best_node >= 0)
2481 node_set(best_node, *used_node_mask);
2482
2483 return best_node;
2484}
2485
f0c0b2b8
KH
2486
2487/*
2488 * Build zonelists ordered by node and zones within node.
2489 * This results in maximum locality--normal zone overflows into local
2490 * DMA zone, if any--but risks exhausting DMA zone.
2491 */
2492static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2493{
f0c0b2b8 2494 int j;
1da177e4 2495 struct zonelist *zonelist;
f0c0b2b8 2496
54a6eb5c 2497 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2498 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2499 ;
2500 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2501 MAX_NR_ZONES - 1);
dd1a239f
MG
2502 zonelist->_zonerefs[j].zone = NULL;
2503 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2504}
2505
523b9458
CL
2506/*
2507 * Build gfp_thisnode zonelists
2508 */
2509static void build_thisnode_zonelists(pg_data_t *pgdat)
2510{
523b9458
CL
2511 int j;
2512 struct zonelist *zonelist;
2513
54a6eb5c
MG
2514 zonelist = &pgdat->node_zonelists[1];
2515 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2516 zonelist->_zonerefs[j].zone = NULL;
2517 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2518}
2519
f0c0b2b8
KH
2520/*
2521 * Build zonelists ordered by zone and nodes within zones.
2522 * This results in conserving DMA zone[s] until all Normal memory is
2523 * exhausted, but results in overflowing to remote node while memory
2524 * may still exist in local DMA zone.
2525 */
2526static int node_order[MAX_NUMNODES];
2527
2528static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2529{
f0c0b2b8
KH
2530 int pos, j, node;
2531 int zone_type; /* needs to be signed */
2532 struct zone *z;
2533 struct zonelist *zonelist;
2534
54a6eb5c
MG
2535 zonelist = &pgdat->node_zonelists[0];
2536 pos = 0;
2537 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2538 for (j = 0; j < nr_nodes; j++) {
2539 node = node_order[j];
2540 z = &NODE_DATA(node)->node_zones[zone_type];
2541 if (populated_zone(z)) {
dd1a239f
MG
2542 zoneref_set_zone(z,
2543 &zonelist->_zonerefs[pos++]);
54a6eb5c 2544 check_highest_zone(zone_type);
f0c0b2b8
KH
2545 }
2546 }
f0c0b2b8 2547 }
dd1a239f
MG
2548 zonelist->_zonerefs[pos].zone = NULL;
2549 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2550}
2551
2552static int default_zonelist_order(void)
2553{
2554 int nid, zone_type;
2555 unsigned long low_kmem_size,total_size;
2556 struct zone *z;
2557 int average_size;
2558 /*
2559 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2560 * If they are really small and used heavily, the system can fall
2561 * into OOM very easily.
2562 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2563 */
2564 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2565 low_kmem_size = 0;
2566 total_size = 0;
2567 for_each_online_node(nid) {
2568 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2569 z = &NODE_DATA(nid)->node_zones[zone_type];
2570 if (populated_zone(z)) {
2571 if (zone_type < ZONE_NORMAL)
2572 low_kmem_size += z->present_pages;
2573 total_size += z->present_pages;
2574 }
2575 }
2576 }
2577 if (!low_kmem_size || /* there are no DMA area. */
2578 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2579 return ZONELIST_ORDER_NODE;
2580 /*
2581 * look into each node's config.
2582 * If there is a node whose DMA/DMA32 memory is very big area on
2583 * local memory, NODE_ORDER may be suitable.
2584 */
37b07e41
LS
2585 average_size = total_size /
2586 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2587 for_each_online_node(nid) {
2588 low_kmem_size = 0;
2589 total_size = 0;
2590 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2591 z = &NODE_DATA(nid)->node_zones[zone_type];
2592 if (populated_zone(z)) {
2593 if (zone_type < ZONE_NORMAL)
2594 low_kmem_size += z->present_pages;
2595 total_size += z->present_pages;
2596 }
2597 }
2598 if (low_kmem_size &&
2599 total_size > average_size && /* ignore small node */
2600 low_kmem_size > total_size * 70/100)
2601 return ZONELIST_ORDER_NODE;
2602 }
2603 return ZONELIST_ORDER_ZONE;
2604}
2605
2606static void set_zonelist_order(void)
2607{
2608 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2609 current_zonelist_order = default_zonelist_order();
2610 else
2611 current_zonelist_order = user_zonelist_order;
2612}
2613
2614static void build_zonelists(pg_data_t *pgdat)
2615{
2616 int j, node, load;
2617 enum zone_type i;
1da177e4 2618 nodemask_t used_mask;
f0c0b2b8
KH
2619 int local_node, prev_node;
2620 struct zonelist *zonelist;
2621 int order = current_zonelist_order;
1da177e4
LT
2622
2623 /* initialize zonelists */
523b9458 2624 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2625 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2626 zonelist->_zonerefs[0].zone = NULL;
2627 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2628 }
2629
2630 /* NUMA-aware ordering of nodes */
2631 local_node = pgdat->node_id;
62bc62a8 2632 load = nr_online_nodes;
1da177e4
LT
2633 prev_node = local_node;
2634 nodes_clear(used_mask);
f0c0b2b8 2635
f0c0b2b8
KH
2636 memset(node_order, 0, sizeof(node_order));
2637 j = 0;
2638
1da177e4 2639 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2640 int distance = node_distance(local_node, node);
2641
2642 /*
2643 * If another node is sufficiently far away then it is better
2644 * to reclaim pages in a zone before going off node.
2645 */
2646 if (distance > RECLAIM_DISTANCE)
2647 zone_reclaim_mode = 1;
2648
1da177e4
LT
2649 /*
2650 * We don't want to pressure a particular node.
2651 * So adding penalty to the first node in same
2652 * distance group to make it round-robin.
2653 */
9eeff239 2654 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2655 node_load[node] = load;
2656
1da177e4
LT
2657 prev_node = node;
2658 load--;
f0c0b2b8
KH
2659 if (order == ZONELIST_ORDER_NODE)
2660 build_zonelists_in_node_order(pgdat, node);
2661 else
2662 node_order[j++] = node; /* remember order */
2663 }
1da177e4 2664
f0c0b2b8
KH
2665 if (order == ZONELIST_ORDER_ZONE) {
2666 /* calculate node order -- i.e., DMA last! */
2667 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2668 }
523b9458
CL
2669
2670 build_thisnode_zonelists(pgdat);
1da177e4
LT
2671}
2672
9276b1bc 2673/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2674static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2675{
54a6eb5c
MG
2676 struct zonelist *zonelist;
2677 struct zonelist_cache *zlc;
dd1a239f 2678 struct zoneref *z;
9276b1bc 2679
54a6eb5c
MG
2680 zonelist = &pgdat->node_zonelists[0];
2681 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2682 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2683 for (z = zonelist->_zonerefs; z->zone; z++)
2684 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2685}
2686
f0c0b2b8 2687
1da177e4
LT
2688#else /* CONFIG_NUMA */
2689
f0c0b2b8
KH
2690static void set_zonelist_order(void)
2691{
2692 current_zonelist_order = ZONELIST_ORDER_ZONE;
2693}
2694
2695static void build_zonelists(pg_data_t *pgdat)
1da177e4 2696{
19655d34 2697 int node, local_node;
54a6eb5c
MG
2698 enum zone_type j;
2699 struct zonelist *zonelist;
1da177e4
LT
2700
2701 local_node = pgdat->node_id;
1da177e4 2702
54a6eb5c
MG
2703 zonelist = &pgdat->node_zonelists[0];
2704 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2705
54a6eb5c
MG
2706 /*
2707 * Now we build the zonelist so that it contains the zones
2708 * of all the other nodes.
2709 * We don't want to pressure a particular node, so when
2710 * building the zones for node N, we make sure that the
2711 * zones coming right after the local ones are those from
2712 * node N+1 (modulo N)
2713 */
2714 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2715 if (!node_online(node))
2716 continue;
2717 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2718 MAX_NR_ZONES - 1);
1da177e4 2719 }
54a6eb5c
MG
2720 for (node = 0; node < local_node; node++) {
2721 if (!node_online(node))
2722 continue;
2723 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2724 MAX_NR_ZONES - 1);
2725 }
2726
dd1a239f
MG
2727 zonelist->_zonerefs[j].zone = NULL;
2728 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2729}
2730
9276b1bc 2731/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2732static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2733{
54a6eb5c 2734 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2735}
2736
1da177e4
LT
2737#endif /* CONFIG_NUMA */
2738
9b1a4d38 2739/* return values int ....just for stop_machine() */
f0c0b2b8 2740static int __build_all_zonelists(void *dummy)
1da177e4 2741{
6811378e 2742 int nid;
9276b1bc 2743
7f9cfb31
BL
2744#ifdef CONFIG_NUMA
2745 memset(node_load, 0, sizeof(node_load));
2746#endif
9276b1bc 2747 for_each_online_node(nid) {
7ea1530a
CL
2748 pg_data_t *pgdat = NODE_DATA(nid);
2749
2750 build_zonelists(pgdat);
2751 build_zonelist_cache(pgdat);
9276b1bc 2752 }
6811378e
YG
2753 return 0;
2754}
2755
f0c0b2b8 2756void build_all_zonelists(void)
6811378e 2757{
f0c0b2b8
KH
2758 set_zonelist_order();
2759
6811378e 2760 if (system_state == SYSTEM_BOOTING) {
423b41d7 2761 __build_all_zonelists(NULL);
68ad8df4 2762 mminit_verify_zonelist();
6811378e
YG
2763 cpuset_init_current_mems_allowed();
2764 } else {
183ff22b 2765 /* we have to stop all cpus to guarantee there is no user
6811378e 2766 of zonelist */
9b1a4d38 2767 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2768 /* cpuset refresh routine should be here */
2769 }
bd1e22b8 2770 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2771 /*
2772 * Disable grouping by mobility if the number of pages in the
2773 * system is too low to allow the mechanism to work. It would be
2774 * more accurate, but expensive to check per-zone. This check is
2775 * made on memory-hotadd so a system can start with mobility
2776 * disabled and enable it later
2777 */
d9c23400 2778 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2779 page_group_by_mobility_disabled = 1;
2780 else
2781 page_group_by_mobility_disabled = 0;
2782
2783 printk("Built %i zonelists in %s order, mobility grouping %s. "
2784 "Total pages: %ld\n",
62bc62a8 2785 nr_online_nodes,
f0c0b2b8 2786 zonelist_order_name[current_zonelist_order],
9ef9acb0 2787 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2788 vm_total_pages);
2789#ifdef CONFIG_NUMA
2790 printk("Policy zone: %s\n", zone_names[policy_zone]);
2791#endif
1da177e4
LT
2792}
2793
2794/*
2795 * Helper functions to size the waitqueue hash table.
2796 * Essentially these want to choose hash table sizes sufficiently
2797 * large so that collisions trying to wait on pages are rare.
2798 * But in fact, the number of active page waitqueues on typical
2799 * systems is ridiculously low, less than 200. So this is even
2800 * conservative, even though it seems large.
2801 *
2802 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2803 * waitqueues, i.e. the size of the waitq table given the number of pages.
2804 */
2805#define PAGES_PER_WAITQUEUE 256
2806
cca448fe 2807#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2808static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2809{
2810 unsigned long size = 1;
2811
2812 pages /= PAGES_PER_WAITQUEUE;
2813
2814 while (size < pages)
2815 size <<= 1;
2816
2817 /*
2818 * Once we have dozens or even hundreds of threads sleeping
2819 * on IO we've got bigger problems than wait queue collision.
2820 * Limit the size of the wait table to a reasonable size.
2821 */
2822 size = min(size, 4096UL);
2823
2824 return max(size, 4UL);
2825}
cca448fe
YG
2826#else
2827/*
2828 * A zone's size might be changed by hot-add, so it is not possible to determine
2829 * a suitable size for its wait_table. So we use the maximum size now.
2830 *
2831 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2832 *
2833 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2834 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2835 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2836 *
2837 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2838 * or more by the traditional way. (See above). It equals:
2839 *
2840 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2841 * ia64(16K page size) : = ( 8G + 4M)byte.
2842 * powerpc (64K page size) : = (32G +16M)byte.
2843 */
2844static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2845{
2846 return 4096UL;
2847}
2848#endif
1da177e4
LT
2849
2850/*
2851 * This is an integer logarithm so that shifts can be used later
2852 * to extract the more random high bits from the multiplicative
2853 * hash function before the remainder is taken.
2854 */
2855static inline unsigned long wait_table_bits(unsigned long size)
2856{
2857 return ffz(~size);
2858}
2859
2860#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2861
56fd56b8 2862/*
d9c23400 2863 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2864 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2865 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2866 * higher will lead to a bigger reserve which will get freed as contiguous
2867 * blocks as reclaim kicks in
2868 */
2869static void setup_zone_migrate_reserve(struct zone *zone)
2870{
2871 unsigned long start_pfn, pfn, end_pfn;
2872 struct page *page;
78986a67
MG
2873 unsigned long block_migratetype;
2874 int reserve;
56fd56b8
MG
2875
2876 /* Get the start pfn, end pfn and the number of blocks to reserve */
2877 start_pfn = zone->zone_start_pfn;
2878 end_pfn = start_pfn + zone->spanned_pages;
41858966 2879 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2880 pageblock_order;
56fd56b8 2881
78986a67
MG
2882 /*
2883 * Reserve blocks are generally in place to help high-order atomic
2884 * allocations that are short-lived. A min_free_kbytes value that
2885 * would result in more than 2 reserve blocks for atomic allocations
2886 * is assumed to be in place to help anti-fragmentation for the
2887 * future allocation of hugepages at runtime.
2888 */
2889 reserve = min(2, reserve);
2890
d9c23400 2891 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2892 if (!pfn_valid(pfn))
2893 continue;
2894 page = pfn_to_page(pfn);
2895
344c790e
AL
2896 /* Watch out for overlapping nodes */
2897 if (page_to_nid(page) != zone_to_nid(zone))
2898 continue;
2899
56fd56b8
MG
2900 /* Blocks with reserved pages will never free, skip them. */
2901 if (PageReserved(page))
2902 continue;
2903
2904 block_migratetype = get_pageblock_migratetype(page);
2905
2906 /* If this block is reserved, account for it */
2907 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2908 reserve--;
2909 continue;
2910 }
2911
2912 /* Suitable for reserving if this block is movable */
2913 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2914 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2915 move_freepages_block(zone, page, MIGRATE_RESERVE);
2916 reserve--;
2917 continue;
2918 }
2919
2920 /*
2921 * If the reserve is met and this is a previous reserved block,
2922 * take it back
2923 */
2924 if (block_migratetype == MIGRATE_RESERVE) {
2925 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2926 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2927 }
2928 }
2929}
ac0e5b7a 2930
1da177e4
LT
2931/*
2932 * Initially all pages are reserved - free ones are freed
2933 * up by free_all_bootmem() once the early boot process is
2934 * done. Non-atomic initialization, single-pass.
2935 */
c09b4240 2936void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2937 unsigned long start_pfn, enum memmap_context context)
1da177e4 2938{
1da177e4 2939 struct page *page;
29751f69
AW
2940 unsigned long end_pfn = start_pfn + size;
2941 unsigned long pfn;
86051ca5 2942 struct zone *z;
1da177e4 2943
22b31eec
HD
2944 if (highest_memmap_pfn < end_pfn - 1)
2945 highest_memmap_pfn = end_pfn - 1;
2946
86051ca5 2947 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2948 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2949 /*
2950 * There can be holes in boot-time mem_map[]s
2951 * handed to this function. They do not
2952 * exist on hotplugged memory.
2953 */
2954 if (context == MEMMAP_EARLY) {
2955 if (!early_pfn_valid(pfn))
2956 continue;
2957 if (!early_pfn_in_nid(pfn, nid))
2958 continue;
2959 }
d41dee36
AW
2960 page = pfn_to_page(pfn);
2961 set_page_links(page, zone, nid, pfn);
708614e6 2962 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2963 init_page_count(page);
1da177e4
LT
2964 reset_page_mapcount(page);
2965 SetPageReserved(page);
b2a0ac88
MG
2966 /*
2967 * Mark the block movable so that blocks are reserved for
2968 * movable at startup. This will force kernel allocations
2969 * to reserve their blocks rather than leaking throughout
2970 * the address space during boot when many long-lived
56fd56b8
MG
2971 * kernel allocations are made. Later some blocks near
2972 * the start are marked MIGRATE_RESERVE by
2973 * setup_zone_migrate_reserve()
86051ca5
KH
2974 *
2975 * bitmap is created for zone's valid pfn range. but memmap
2976 * can be created for invalid pages (for alignment)
2977 * check here not to call set_pageblock_migratetype() against
2978 * pfn out of zone.
b2a0ac88 2979 */
86051ca5
KH
2980 if ((z->zone_start_pfn <= pfn)
2981 && (pfn < z->zone_start_pfn + z->spanned_pages)
2982 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2983 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2984
1da177e4
LT
2985 INIT_LIST_HEAD(&page->lru);
2986#ifdef WANT_PAGE_VIRTUAL
2987 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2988 if (!is_highmem_idx(zone))
3212c6be 2989 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2990#endif
1da177e4
LT
2991 }
2992}
2993
1e548deb 2994static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2995{
b2a0ac88
MG
2996 int order, t;
2997 for_each_migratetype_order(order, t) {
2998 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2999 zone->free_area[order].nr_free = 0;
3000 }
3001}
3002
3003#ifndef __HAVE_ARCH_MEMMAP_INIT
3004#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3005 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3006#endif
3007
1d6f4e60 3008static int zone_batchsize(struct zone *zone)
e7c8d5c9 3009{
3a6be87f 3010#ifdef CONFIG_MMU
e7c8d5c9
CL
3011 int batch;
3012
3013 /*
3014 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3015 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3016 *
3017 * OK, so we don't know how big the cache is. So guess.
3018 */
3019 batch = zone->present_pages / 1024;
ba56e91c
SR
3020 if (batch * PAGE_SIZE > 512 * 1024)
3021 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3022 batch /= 4; /* We effectively *= 4 below */
3023 if (batch < 1)
3024 batch = 1;
3025
3026 /*
0ceaacc9
NP
3027 * Clamp the batch to a 2^n - 1 value. Having a power
3028 * of 2 value was found to be more likely to have
3029 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3030 *
0ceaacc9
NP
3031 * For example if 2 tasks are alternately allocating
3032 * batches of pages, one task can end up with a lot
3033 * of pages of one half of the possible page colors
3034 * and the other with pages of the other colors.
e7c8d5c9 3035 */
9155203a 3036 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3037
e7c8d5c9 3038 return batch;
3a6be87f
DH
3039
3040#else
3041 /* The deferral and batching of frees should be suppressed under NOMMU
3042 * conditions.
3043 *
3044 * The problem is that NOMMU needs to be able to allocate large chunks
3045 * of contiguous memory as there's no hardware page translation to
3046 * assemble apparent contiguous memory from discontiguous pages.
3047 *
3048 * Queueing large contiguous runs of pages for batching, however,
3049 * causes the pages to actually be freed in smaller chunks. As there
3050 * can be a significant delay between the individual batches being
3051 * recycled, this leads to the once large chunks of space being
3052 * fragmented and becoming unavailable for high-order allocations.
3053 */
3054 return 0;
3055#endif
e7c8d5c9
CL
3056}
3057
b69a7288 3058static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3059{
3060 struct per_cpu_pages *pcp;
5f8dcc21 3061 int migratetype;
2caaad41 3062
1c6fe946
MD
3063 memset(p, 0, sizeof(*p));
3064
3dfa5721 3065 pcp = &p->pcp;
2caaad41 3066 pcp->count = 0;
2caaad41
CL
3067 pcp->high = 6 * batch;
3068 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3069 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3070 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3071}
3072
8ad4b1fb
RS
3073/*
3074 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3075 * to the value high for the pageset p.
3076 */
3077
3078static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3079 unsigned long high)
3080{
3081 struct per_cpu_pages *pcp;
3082
3dfa5721 3083 pcp = &p->pcp;
8ad4b1fb
RS
3084 pcp->high = high;
3085 pcp->batch = max(1UL, high/4);
3086 if ((high/4) > (PAGE_SHIFT * 8))
3087 pcp->batch = PAGE_SHIFT * 8;
3088}
3089
3090
e7c8d5c9
CL
3091#ifdef CONFIG_NUMA
3092/*
2caaad41
CL
3093 * Boot pageset table. One per cpu which is going to be used for all
3094 * zones and all nodes. The parameters will be set in such a way
3095 * that an item put on a list will immediately be handed over to
3096 * the buddy list. This is safe since pageset manipulation is done
3097 * with interrupts disabled.
3098 *
3099 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
3100 *
3101 * The boot_pagesets must be kept even after bootup is complete for
3102 * unused processors and/or zones. They do play a role for bootstrapping
3103 * hotplugged processors.
3104 *
3105 * zoneinfo_show() and maybe other functions do
3106 * not check if the processor is online before following the pageset pointer.
3107 * Other parts of the kernel may not check if the zone is available.
2caaad41 3108 */
88a2a4ac 3109static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3110
3111/*
3112 * Dynamically allocate memory for the
e7c8d5c9
CL
3113 * per cpu pageset array in struct zone.
3114 */
6292d9aa 3115static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3116{
3117 struct zone *zone, *dzone;
37c0708d
CL
3118 int node = cpu_to_node(cpu);
3119
3120 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3121
ee99c71c 3122 for_each_populated_zone(zone) {
23316bc8 3123 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3124 GFP_KERNEL, node);
23316bc8 3125 if (!zone_pcp(zone, cpu))
e7c8d5c9 3126 goto bad;
e7c8d5c9 3127
23316bc8 3128 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3129
3130 if (percpu_pagelist_fraction)
3131 setup_pagelist_highmark(zone_pcp(zone, cpu),
3132 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3133 }
3134
3135 return 0;
3136bad:
3137 for_each_zone(dzone) {
64191688
AM
3138 if (!populated_zone(dzone))
3139 continue;
e7c8d5c9
CL
3140 if (dzone == zone)
3141 break;
23316bc8 3142 kfree(zone_pcp(dzone, cpu));
364df0eb 3143 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3144 }
3145 return -ENOMEM;
3146}
3147
3148static inline void free_zone_pagesets(int cpu)
3149{
e7c8d5c9
CL
3150 struct zone *zone;
3151
3152 for_each_zone(zone) {
3153 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3154
f3ef9ead
DR
3155 /* Free per_cpu_pageset if it is slab allocated */
3156 if (pset != &boot_pageset[cpu])
3157 kfree(pset);
364df0eb 3158 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3159 }
e7c8d5c9
CL
3160}
3161
9c7b216d 3162static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3163 unsigned long action,
3164 void *hcpu)
3165{
3166 int cpu = (long)hcpu;
3167 int ret = NOTIFY_OK;
3168
3169 switch (action) {
ce421c79 3170 case CPU_UP_PREPARE:
8bb78442 3171 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3172 if (process_zones(cpu))
3173 ret = NOTIFY_BAD;
3174 break;
3175 case CPU_UP_CANCELED:
8bb78442 3176 case CPU_UP_CANCELED_FROZEN:
ce421c79 3177 case CPU_DEAD:
8bb78442 3178 case CPU_DEAD_FROZEN:
ce421c79
AW
3179 free_zone_pagesets(cpu);
3180 break;
3181 default:
3182 break;
e7c8d5c9
CL
3183 }
3184 return ret;
3185}
3186
74b85f37 3187static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3188 { &pageset_cpuup_callback, NULL, 0 };
3189
78d9955b 3190void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3191{
3192 int err;
3193
3194 /* Initialize per_cpu_pageset for cpu 0.
3195 * A cpuup callback will do this for every cpu
3196 * as it comes online
3197 */
3198 err = process_zones(smp_processor_id());
3199 BUG_ON(err);
3200 register_cpu_notifier(&pageset_notifier);
3201}
3202
3203#endif
3204
577a32f6 3205static noinline __init_refok
cca448fe 3206int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3207{
3208 int i;
3209 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3210 size_t alloc_size;
ed8ece2e
DH
3211
3212 /*
3213 * The per-page waitqueue mechanism uses hashed waitqueues
3214 * per zone.
3215 */
02b694de
YG
3216 zone->wait_table_hash_nr_entries =
3217 wait_table_hash_nr_entries(zone_size_pages);
3218 zone->wait_table_bits =
3219 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3220 alloc_size = zone->wait_table_hash_nr_entries
3221 * sizeof(wait_queue_head_t);
3222
cd94b9db 3223 if (!slab_is_available()) {
cca448fe
YG
3224 zone->wait_table = (wait_queue_head_t *)
3225 alloc_bootmem_node(pgdat, alloc_size);
3226 } else {
3227 /*
3228 * This case means that a zone whose size was 0 gets new memory
3229 * via memory hot-add.
3230 * But it may be the case that a new node was hot-added. In
3231 * this case vmalloc() will not be able to use this new node's
3232 * memory - this wait_table must be initialized to use this new
3233 * node itself as well.
3234 * To use this new node's memory, further consideration will be
3235 * necessary.
3236 */
8691f3a7 3237 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3238 }
3239 if (!zone->wait_table)
3240 return -ENOMEM;
ed8ece2e 3241
02b694de 3242 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3243 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3244
3245 return 0;
ed8ece2e
DH
3246}
3247
112067f0
SL
3248static int __zone_pcp_update(void *data)
3249{
3250 struct zone *zone = data;
3251 int cpu;
3252 unsigned long batch = zone_batchsize(zone), flags;
3253
3254 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3255 struct per_cpu_pageset *pset;
3256 struct per_cpu_pages *pcp;
3257
3258 pset = zone_pcp(zone, cpu);
3259 pcp = &pset->pcp;
3260
3261 local_irq_save(flags);
5f8dcc21 3262 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3263 setup_pageset(pset, batch);
3264 local_irq_restore(flags);
3265 }
3266 return 0;
3267}
3268
3269void zone_pcp_update(struct zone *zone)
3270{
3271 stop_machine(__zone_pcp_update, zone, NULL);
3272}
3273
c09b4240 3274static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3275{
3276 int cpu;
3277 unsigned long batch = zone_batchsize(zone);
3278
3279 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3280#ifdef CONFIG_NUMA
3281 /* Early boot. Slab allocator not functional yet */
23316bc8 3282 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3283 setup_pageset(&boot_pageset[cpu],0);
3284#else
3285 setup_pageset(zone_pcp(zone,cpu), batch);
3286#endif
3287 }
f5335c0f
AB
3288 if (zone->present_pages)
3289 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3290 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3291}
3292
718127cc
YG
3293__meminit int init_currently_empty_zone(struct zone *zone,
3294 unsigned long zone_start_pfn,
a2f3aa02
DH
3295 unsigned long size,
3296 enum memmap_context context)
ed8ece2e
DH
3297{
3298 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3299 int ret;
3300 ret = zone_wait_table_init(zone, size);
3301 if (ret)
3302 return ret;
ed8ece2e
DH
3303 pgdat->nr_zones = zone_idx(zone) + 1;
3304
ed8ece2e
DH
3305 zone->zone_start_pfn = zone_start_pfn;
3306
708614e6
MG
3307 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3308 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3309 pgdat->node_id,
3310 (unsigned long)zone_idx(zone),
3311 zone_start_pfn, (zone_start_pfn + size));
3312
1e548deb 3313 zone_init_free_lists(zone);
718127cc
YG
3314
3315 return 0;
ed8ece2e
DH
3316}
3317
c713216d
MG
3318#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3319/*
3320 * Basic iterator support. Return the first range of PFNs for a node
3321 * Note: nid == MAX_NUMNODES returns first region regardless of node
3322 */
a3142c8e 3323static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3324{
3325 int i;
3326
3327 for (i = 0; i < nr_nodemap_entries; i++)
3328 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3329 return i;
3330
3331 return -1;
3332}
3333
3334/*
3335 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3336 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3337 */
a3142c8e 3338static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3339{
3340 for (index = index + 1; index < nr_nodemap_entries; index++)
3341 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3342 return index;
3343
3344 return -1;
3345}
3346
3347#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3348/*
3349 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3350 * Architectures may implement their own version but if add_active_range()
3351 * was used and there are no special requirements, this is a convenient
3352 * alternative
3353 */
f2dbcfa7 3354int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3355{
3356 int i;
3357
3358 for (i = 0; i < nr_nodemap_entries; i++) {
3359 unsigned long start_pfn = early_node_map[i].start_pfn;
3360 unsigned long end_pfn = early_node_map[i].end_pfn;
3361
3362 if (start_pfn <= pfn && pfn < end_pfn)
3363 return early_node_map[i].nid;
3364 }
cc2559bc
KH
3365 /* This is a memory hole */
3366 return -1;
c713216d
MG
3367}
3368#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3369
f2dbcfa7
KH
3370int __meminit early_pfn_to_nid(unsigned long pfn)
3371{
cc2559bc
KH
3372 int nid;
3373
3374 nid = __early_pfn_to_nid(pfn);
3375 if (nid >= 0)
3376 return nid;
3377 /* just returns 0 */
3378 return 0;
f2dbcfa7
KH
3379}
3380
cc2559bc
KH
3381#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3382bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3383{
3384 int nid;
3385
3386 nid = __early_pfn_to_nid(pfn);
3387 if (nid >= 0 && nid != node)
3388 return false;
3389 return true;
3390}
3391#endif
f2dbcfa7 3392
c713216d
MG
3393/* Basic iterator support to walk early_node_map[] */
3394#define for_each_active_range_index_in_nid(i, nid) \
3395 for (i = first_active_region_index_in_nid(nid); i != -1; \
3396 i = next_active_region_index_in_nid(i, nid))
3397
3398/**
3399 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3400 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3401 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3402 *
3403 * If an architecture guarantees that all ranges registered with
3404 * add_active_ranges() contain no holes and may be freed, this
3405 * this function may be used instead of calling free_bootmem() manually.
3406 */
3407void __init free_bootmem_with_active_regions(int nid,
3408 unsigned long max_low_pfn)
3409{
3410 int i;
3411
3412 for_each_active_range_index_in_nid(i, nid) {
3413 unsigned long size_pages = 0;
3414 unsigned long end_pfn = early_node_map[i].end_pfn;
3415
3416 if (early_node_map[i].start_pfn >= max_low_pfn)
3417 continue;
3418
3419 if (end_pfn > max_low_pfn)
3420 end_pfn = max_low_pfn;
3421
3422 size_pages = end_pfn - early_node_map[i].start_pfn;
3423 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3424 PFN_PHYS(early_node_map[i].start_pfn),
3425 size_pages << PAGE_SHIFT);
3426 }
3427}
3428
b5bc6c0e
YL
3429void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3430{
3431 int i;
d52d53b8 3432 int ret;
b5bc6c0e 3433
d52d53b8
YL
3434 for_each_active_range_index_in_nid(i, nid) {
3435 ret = work_fn(early_node_map[i].start_pfn,
3436 early_node_map[i].end_pfn, data);
3437 if (ret)
3438 break;
3439 }
b5bc6c0e 3440}
c713216d
MG
3441/**
3442 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3443 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3444 *
3445 * If an architecture guarantees that all ranges registered with
3446 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3447 * function may be used instead of calling memory_present() manually.
c713216d
MG
3448 */
3449void __init sparse_memory_present_with_active_regions(int nid)
3450{
3451 int i;
3452
3453 for_each_active_range_index_in_nid(i, nid)
3454 memory_present(early_node_map[i].nid,
3455 early_node_map[i].start_pfn,
3456 early_node_map[i].end_pfn);
3457}
3458
3459/**
3460 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3461 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3462 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3463 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3464 *
3465 * It returns the start and end page frame of a node based on information
3466 * provided by an arch calling add_active_range(). If called for a node
3467 * with no available memory, a warning is printed and the start and end
88ca3b94 3468 * PFNs will be 0.
c713216d 3469 */
a3142c8e 3470void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3471 unsigned long *start_pfn, unsigned long *end_pfn)
3472{
3473 int i;
3474 *start_pfn = -1UL;
3475 *end_pfn = 0;
3476
3477 for_each_active_range_index_in_nid(i, nid) {
3478 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3479 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3480 }
3481
633c0666 3482 if (*start_pfn == -1UL)
c713216d 3483 *start_pfn = 0;
c713216d
MG
3484}
3485
2a1e274a
MG
3486/*
3487 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3488 * assumption is made that zones within a node are ordered in monotonic
3489 * increasing memory addresses so that the "highest" populated zone is used
3490 */
b69a7288 3491static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3492{
3493 int zone_index;
3494 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3495 if (zone_index == ZONE_MOVABLE)
3496 continue;
3497
3498 if (arch_zone_highest_possible_pfn[zone_index] >
3499 arch_zone_lowest_possible_pfn[zone_index])
3500 break;
3501 }
3502
3503 VM_BUG_ON(zone_index == -1);
3504 movable_zone = zone_index;
3505}
3506
3507/*
3508 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3509 * because it is sized independant of architecture. Unlike the other zones,
3510 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3511 * in each node depending on the size of each node and how evenly kernelcore
3512 * is distributed. This helper function adjusts the zone ranges
3513 * provided by the architecture for a given node by using the end of the
3514 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3515 * zones within a node are in order of monotonic increases memory addresses
3516 */
b69a7288 3517static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3518 unsigned long zone_type,
3519 unsigned long node_start_pfn,
3520 unsigned long node_end_pfn,
3521 unsigned long *zone_start_pfn,
3522 unsigned long *zone_end_pfn)
3523{
3524 /* Only adjust if ZONE_MOVABLE is on this node */
3525 if (zone_movable_pfn[nid]) {
3526 /* Size ZONE_MOVABLE */
3527 if (zone_type == ZONE_MOVABLE) {
3528 *zone_start_pfn = zone_movable_pfn[nid];
3529 *zone_end_pfn = min(node_end_pfn,
3530 arch_zone_highest_possible_pfn[movable_zone]);
3531
3532 /* Adjust for ZONE_MOVABLE starting within this range */
3533 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3534 *zone_end_pfn > zone_movable_pfn[nid]) {
3535 *zone_end_pfn = zone_movable_pfn[nid];
3536
3537 /* Check if this whole range is within ZONE_MOVABLE */
3538 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3539 *zone_start_pfn = *zone_end_pfn;
3540 }
3541}
3542
c713216d
MG
3543/*
3544 * Return the number of pages a zone spans in a node, including holes
3545 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3546 */
6ea6e688 3547static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3548 unsigned long zone_type,
3549 unsigned long *ignored)
3550{
3551 unsigned long node_start_pfn, node_end_pfn;
3552 unsigned long zone_start_pfn, zone_end_pfn;
3553
3554 /* Get the start and end of the node and zone */
3555 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3556 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3557 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3558 adjust_zone_range_for_zone_movable(nid, zone_type,
3559 node_start_pfn, node_end_pfn,
3560 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3561
3562 /* Check that this node has pages within the zone's required range */
3563 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3564 return 0;
3565
3566 /* Move the zone boundaries inside the node if necessary */
3567 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3568 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3569
3570 /* Return the spanned pages */
3571 return zone_end_pfn - zone_start_pfn;
3572}
3573
3574/*
3575 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3576 * then all holes in the requested range will be accounted for.
c713216d 3577 */
b69a7288 3578static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3579 unsigned long range_start_pfn,
3580 unsigned long range_end_pfn)
3581{
3582 int i = 0;
3583 unsigned long prev_end_pfn = 0, hole_pages = 0;
3584 unsigned long start_pfn;
3585
3586 /* Find the end_pfn of the first active range of pfns in the node */
3587 i = first_active_region_index_in_nid(nid);
3588 if (i == -1)
3589 return 0;
3590
b5445f95
MG
3591 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3592
9c7cd687
MG
3593 /* Account for ranges before physical memory on this node */
3594 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3595 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3596
3597 /* Find all holes for the zone within the node */
3598 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3599
3600 /* No need to continue if prev_end_pfn is outside the zone */
3601 if (prev_end_pfn >= range_end_pfn)
3602 break;
3603
3604 /* Make sure the end of the zone is not within the hole */
3605 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3606 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3607
3608 /* Update the hole size cound and move on */
3609 if (start_pfn > range_start_pfn) {
3610 BUG_ON(prev_end_pfn > start_pfn);
3611 hole_pages += start_pfn - prev_end_pfn;
3612 }
3613 prev_end_pfn = early_node_map[i].end_pfn;
3614 }
3615
9c7cd687
MG
3616 /* Account for ranges past physical memory on this node */
3617 if (range_end_pfn > prev_end_pfn)
0c6cb974 3618 hole_pages += range_end_pfn -
9c7cd687
MG
3619 max(range_start_pfn, prev_end_pfn);
3620
c713216d
MG
3621 return hole_pages;
3622}
3623
3624/**
3625 * absent_pages_in_range - Return number of page frames in holes within a range
3626 * @start_pfn: The start PFN to start searching for holes
3627 * @end_pfn: The end PFN to stop searching for holes
3628 *
88ca3b94 3629 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3630 */
3631unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3632 unsigned long end_pfn)
3633{
3634 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3635}
3636
3637/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3638static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3639 unsigned long zone_type,
3640 unsigned long *ignored)
3641{
9c7cd687
MG
3642 unsigned long node_start_pfn, node_end_pfn;
3643 unsigned long zone_start_pfn, zone_end_pfn;
3644
3645 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3646 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3647 node_start_pfn);
3648 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3649 node_end_pfn);
3650
2a1e274a
MG
3651 adjust_zone_range_for_zone_movable(nid, zone_type,
3652 node_start_pfn, node_end_pfn,
3653 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3654 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3655}
0e0b864e 3656
c713216d 3657#else
6ea6e688 3658static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3659 unsigned long zone_type,
3660 unsigned long *zones_size)
3661{
3662 return zones_size[zone_type];
3663}
3664
6ea6e688 3665static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3666 unsigned long zone_type,
3667 unsigned long *zholes_size)
3668{
3669 if (!zholes_size)
3670 return 0;
3671
3672 return zholes_size[zone_type];
3673}
0e0b864e 3674
c713216d
MG
3675#endif
3676
a3142c8e 3677static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3678 unsigned long *zones_size, unsigned long *zholes_size)
3679{
3680 unsigned long realtotalpages, totalpages = 0;
3681 enum zone_type i;
3682
3683 for (i = 0; i < MAX_NR_ZONES; i++)
3684 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3685 zones_size);
3686 pgdat->node_spanned_pages = totalpages;
3687
3688 realtotalpages = totalpages;
3689 for (i = 0; i < MAX_NR_ZONES; i++)
3690 realtotalpages -=
3691 zone_absent_pages_in_node(pgdat->node_id, i,
3692 zholes_size);
3693 pgdat->node_present_pages = realtotalpages;
3694 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3695 realtotalpages);
3696}
3697
835c134e
MG
3698#ifndef CONFIG_SPARSEMEM
3699/*
3700 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3701 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3702 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3703 * round what is now in bits to nearest long in bits, then return it in
3704 * bytes.
3705 */
3706static unsigned long __init usemap_size(unsigned long zonesize)
3707{
3708 unsigned long usemapsize;
3709
d9c23400
MG
3710 usemapsize = roundup(zonesize, pageblock_nr_pages);
3711 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3712 usemapsize *= NR_PAGEBLOCK_BITS;
3713 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3714
3715 return usemapsize / 8;
3716}
3717
3718static void __init setup_usemap(struct pglist_data *pgdat,
3719 struct zone *zone, unsigned long zonesize)
3720{
3721 unsigned long usemapsize = usemap_size(zonesize);
3722 zone->pageblock_flags = NULL;
58a01a45 3723 if (usemapsize)
835c134e 3724 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3725}
3726#else
3727static void inline setup_usemap(struct pglist_data *pgdat,
3728 struct zone *zone, unsigned long zonesize) {}
3729#endif /* CONFIG_SPARSEMEM */
3730
d9c23400 3731#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3732
3733/* Return a sensible default order for the pageblock size. */
3734static inline int pageblock_default_order(void)
3735{
3736 if (HPAGE_SHIFT > PAGE_SHIFT)
3737 return HUGETLB_PAGE_ORDER;
3738
3739 return MAX_ORDER-1;
3740}
3741
d9c23400
MG
3742/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3743static inline void __init set_pageblock_order(unsigned int order)
3744{
3745 /* Check that pageblock_nr_pages has not already been setup */
3746 if (pageblock_order)
3747 return;
3748
3749 /*
3750 * Assume the largest contiguous order of interest is a huge page.
3751 * This value may be variable depending on boot parameters on IA64
3752 */
3753 pageblock_order = order;
3754}
3755#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3756
ba72cb8c
MG
3757/*
3758 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3759 * and pageblock_default_order() are unused as pageblock_order is set
3760 * at compile-time. See include/linux/pageblock-flags.h for the values of
3761 * pageblock_order based on the kernel config
3762 */
3763static inline int pageblock_default_order(unsigned int order)
3764{
3765 return MAX_ORDER-1;
3766}
d9c23400
MG
3767#define set_pageblock_order(x) do {} while (0)
3768
3769#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3770
1da177e4
LT
3771/*
3772 * Set up the zone data structures:
3773 * - mark all pages reserved
3774 * - mark all memory queues empty
3775 * - clear the memory bitmaps
3776 */
b5a0e011 3777static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3778 unsigned long *zones_size, unsigned long *zholes_size)
3779{
2f1b6248 3780 enum zone_type j;
ed8ece2e 3781 int nid = pgdat->node_id;
1da177e4 3782 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3783 int ret;
1da177e4 3784
208d54e5 3785 pgdat_resize_init(pgdat);
1da177e4
LT
3786 pgdat->nr_zones = 0;
3787 init_waitqueue_head(&pgdat->kswapd_wait);
3788 pgdat->kswapd_max_order = 0;
52d4b9ac 3789 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3790
3791 for (j = 0; j < MAX_NR_ZONES; j++) {
3792 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3793 unsigned long size, realsize, memmap_pages;
b69408e8 3794 enum lru_list l;
1da177e4 3795
c713216d
MG
3796 size = zone_spanned_pages_in_node(nid, j, zones_size);
3797 realsize = size - zone_absent_pages_in_node(nid, j,
3798 zholes_size);
1da177e4 3799
0e0b864e
MG
3800 /*
3801 * Adjust realsize so that it accounts for how much memory
3802 * is used by this zone for memmap. This affects the watermark
3803 * and per-cpu initialisations
3804 */
f7232154
JW
3805 memmap_pages =
3806 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3807 if (realsize >= memmap_pages) {
3808 realsize -= memmap_pages;
5594c8c8
YL
3809 if (memmap_pages)
3810 printk(KERN_DEBUG
3811 " %s zone: %lu pages used for memmap\n",
3812 zone_names[j], memmap_pages);
0e0b864e
MG
3813 } else
3814 printk(KERN_WARNING
3815 " %s zone: %lu pages exceeds realsize %lu\n",
3816 zone_names[j], memmap_pages, realsize);
3817
6267276f
CL
3818 /* Account for reserved pages */
3819 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3820 realsize -= dma_reserve;
d903ef9f 3821 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3822 zone_names[0], dma_reserve);
0e0b864e
MG
3823 }
3824
98d2b0eb 3825 if (!is_highmem_idx(j))
1da177e4
LT
3826 nr_kernel_pages += realsize;
3827 nr_all_pages += realsize;
3828
3829 zone->spanned_pages = size;
3830 zone->present_pages = realsize;
9614634f 3831#ifdef CONFIG_NUMA
d5f541ed 3832 zone->node = nid;
8417bba4 3833 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3834 / 100;
0ff38490 3835 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3836#endif
1da177e4
LT
3837 zone->name = zone_names[j];
3838 spin_lock_init(&zone->lock);
3839 spin_lock_init(&zone->lru_lock);
bdc8cb98 3840 zone_seqlock_init(zone);
1da177e4 3841 zone->zone_pgdat = pgdat;
1da177e4 3842
3bb1a852 3843 zone->prev_priority = DEF_PRIORITY;
1da177e4 3844
ed8ece2e 3845 zone_pcp_init(zone);
b69408e8
CL
3846 for_each_lru(l) {
3847 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 3848 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 3849 }
6e901571
KM
3850 zone->reclaim_stat.recent_rotated[0] = 0;
3851 zone->reclaim_stat.recent_rotated[1] = 0;
3852 zone->reclaim_stat.recent_scanned[0] = 0;
3853 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3854 zap_zone_vm_stats(zone);
e815af95 3855 zone->flags = 0;
1da177e4
LT
3856 if (!size)
3857 continue;
3858
ba72cb8c 3859 set_pageblock_order(pageblock_default_order());
835c134e 3860 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3861 ret = init_currently_empty_zone(zone, zone_start_pfn,
3862 size, MEMMAP_EARLY);
718127cc 3863 BUG_ON(ret);
76cdd58e 3864 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3865 zone_start_pfn += size;
1da177e4
LT
3866 }
3867}
3868
577a32f6 3869static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3870{
1da177e4
LT
3871 /* Skip empty nodes */
3872 if (!pgdat->node_spanned_pages)
3873 return;
3874
d41dee36 3875#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3876 /* ia64 gets its own node_mem_map, before this, without bootmem */
3877 if (!pgdat->node_mem_map) {
e984bb43 3878 unsigned long size, start, end;
d41dee36
AW
3879 struct page *map;
3880
e984bb43
BP
3881 /*
3882 * The zone's endpoints aren't required to be MAX_ORDER
3883 * aligned but the node_mem_map endpoints must be in order
3884 * for the buddy allocator to function correctly.
3885 */
3886 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3887 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3888 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3889 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3890 map = alloc_remap(pgdat->node_id, size);
3891 if (!map)
3892 map = alloc_bootmem_node(pgdat, size);
e984bb43 3893 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3894 }
12d810c1 3895#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3896 /*
3897 * With no DISCONTIG, the global mem_map is just set as node 0's
3898 */
c713216d 3899 if (pgdat == NODE_DATA(0)) {
1da177e4 3900 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3901#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3902 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3903 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3904#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3905 }
1da177e4 3906#endif
d41dee36 3907#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3908}
3909
9109fb7b
JW
3910void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3911 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3912{
9109fb7b
JW
3913 pg_data_t *pgdat = NODE_DATA(nid);
3914
1da177e4
LT
3915 pgdat->node_id = nid;
3916 pgdat->node_start_pfn = node_start_pfn;
c713216d 3917 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3918
3919 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3920#ifdef CONFIG_FLAT_NODE_MEM_MAP
3921 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3922 nid, (unsigned long)pgdat,
3923 (unsigned long)pgdat->node_mem_map);
3924#endif
1da177e4
LT
3925
3926 free_area_init_core(pgdat, zones_size, zholes_size);
3927}
3928
c713216d 3929#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3930
3931#if MAX_NUMNODES > 1
3932/*
3933 * Figure out the number of possible node ids.
3934 */
3935static void __init setup_nr_node_ids(void)
3936{
3937 unsigned int node;
3938 unsigned int highest = 0;
3939
3940 for_each_node_mask(node, node_possible_map)
3941 highest = node;
3942 nr_node_ids = highest + 1;
3943}
3944#else
3945static inline void setup_nr_node_ids(void)
3946{
3947}
3948#endif
3949
c713216d
MG
3950/**
3951 * add_active_range - Register a range of PFNs backed by physical memory
3952 * @nid: The node ID the range resides on
3953 * @start_pfn: The start PFN of the available physical memory
3954 * @end_pfn: The end PFN of the available physical memory
3955 *
3956 * These ranges are stored in an early_node_map[] and later used by
3957 * free_area_init_nodes() to calculate zone sizes and holes. If the
3958 * range spans a memory hole, it is up to the architecture to ensure
3959 * the memory is not freed by the bootmem allocator. If possible
3960 * the range being registered will be merged with existing ranges.
3961 */
3962void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3963 unsigned long end_pfn)
3964{
3965 int i;
3966
6b74ab97
MG
3967 mminit_dprintk(MMINIT_TRACE, "memory_register",
3968 "Entering add_active_range(%d, %#lx, %#lx) "
3969 "%d entries of %d used\n",
3970 nid, start_pfn, end_pfn,
3971 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3972
2dbb51c4
MG
3973 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3974
c713216d
MG
3975 /* Merge with existing active regions if possible */
3976 for (i = 0; i < nr_nodemap_entries; i++) {
3977 if (early_node_map[i].nid != nid)
3978 continue;
3979
3980 /* Skip if an existing region covers this new one */
3981 if (start_pfn >= early_node_map[i].start_pfn &&
3982 end_pfn <= early_node_map[i].end_pfn)
3983 return;
3984
3985 /* Merge forward if suitable */
3986 if (start_pfn <= early_node_map[i].end_pfn &&
3987 end_pfn > early_node_map[i].end_pfn) {
3988 early_node_map[i].end_pfn = end_pfn;
3989 return;
3990 }
3991
3992 /* Merge backward if suitable */
3993 if (start_pfn < early_node_map[i].end_pfn &&
3994 end_pfn >= early_node_map[i].start_pfn) {
3995 early_node_map[i].start_pfn = start_pfn;
3996 return;
3997 }
3998 }
3999
4000 /* Check that early_node_map is large enough */
4001 if (i >= MAX_ACTIVE_REGIONS) {
4002 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4003 MAX_ACTIVE_REGIONS);
4004 return;
4005 }
4006
4007 early_node_map[i].nid = nid;
4008 early_node_map[i].start_pfn = start_pfn;
4009 early_node_map[i].end_pfn = end_pfn;
4010 nr_nodemap_entries = i + 1;
4011}
4012
4013/**
cc1050ba 4014 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4015 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4016 * @start_pfn: The new PFN of the range
4017 * @end_pfn: The new PFN of the range
c713216d
MG
4018 *
4019 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4020 * The map is kept near the end physical page range that has already been
4021 * registered. This function allows an arch to shrink an existing registered
4022 * range.
c713216d 4023 */
cc1050ba
YL
4024void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4025 unsigned long end_pfn)
c713216d 4026{
cc1a9d86
YL
4027 int i, j;
4028 int removed = 0;
c713216d 4029
cc1050ba
YL
4030 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4031 nid, start_pfn, end_pfn);
4032
c713216d 4033 /* Find the old active region end and shrink */
cc1a9d86 4034 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4035 if (early_node_map[i].start_pfn >= start_pfn &&
4036 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4037 /* clear it */
cc1050ba 4038 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4039 early_node_map[i].end_pfn = 0;
4040 removed = 1;
4041 continue;
4042 }
cc1050ba
YL
4043 if (early_node_map[i].start_pfn < start_pfn &&
4044 early_node_map[i].end_pfn > start_pfn) {
4045 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4046 early_node_map[i].end_pfn = start_pfn;
4047 if (temp_end_pfn > end_pfn)
4048 add_active_range(nid, end_pfn, temp_end_pfn);
4049 continue;
4050 }
4051 if (early_node_map[i].start_pfn >= start_pfn &&
4052 early_node_map[i].end_pfn > end_pfn &&
4053 early_node_map[i].start_pfn < end_pfn) {
4054 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4055 continue;
c713216d 4056 }
cc1a9d86
YL
4057 }
4058
4059 if (!removed)
4060 return;
4061
4062 /* remove the blank ones */
4063 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4064 if (early_node_map[i].nid != nid)
4065 continue;
4066 if (early_node_map[i].end_pfn)
4067 continue;
4068 /* we found it, get rid of it */
4069 for (j = i; j < nr_nodemap_entries - 1; j++)
4070 memcpy(&early_node_map[j], &early_node_map[j+1],
4071 sizeof(early_node_map[j]));
4072 j = nr_nodemap_entries - 1;
4073 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4074 nr_nodemap_entries--;
4075 }
c713216d
MG
4076}
4077
4078/**
4079 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4080 *
c713216d
MG
4081 * During discovery, it may be found that a table like SRAT is invalid
4082 * and an alternative discovery method must be used. This function removes
4083 * all currently registered regions.
4084 */
88ca3b94 4085void __init remove_all_active_ranges(void)
c713216d
MG
4086{
4087 memset(early_node_map, 0, sizeof(early_node_map));
4088 nr_nodemap_entries = 0;
4089}
4090
4091/* Compare two active node_active_regions */
4092static int __init cmp_node_active_region(const void *a, const void *b)
4093{
4094 struct node_active_region *arange = (struct node_active_region *)a;
4095 struct node_active_region *brange = (struct node_active_region *)b;
4096
4097 /* Done this way to avoid overflows */
4098 if (arange->start_pfn > brange->start_pfn)
4099 return 1;
4100 if (arange->start_pfn < brange->start_pfn)
4101 return -1;
4102
4103 return 0;
4104}
4105
4106/* sort the node_map by start_pfn */
4107static void __init sort_node_map(void)
4108{
4109 sort(early_node_map, (size_t)nr_nodemap_entries,
4110 sizeof(struct node_active_region),
4111 cmp_node_active_region, NULL);
4112}
4113
a6af2bc3 4114/* Find the lowest pfn for a node */
b69a7288 4115static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4116{
4117 int i;
a6af2bc3 4118 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4119
c713216d
MG
4120 /* Assuming a sorted map, the first range found has the starting pfn */
4121 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4122 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4123
a6af2bc3
MG
4124 if (min_pfn == ULONG_MAX) {
4125 printk(KERN_WARNING
2bc0d261 4126 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4127 return 0;
4128 }
4129
4130 return min_pfn;
c713216d
MG
4131}
4132
4133/**
4134 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4135 *
4136 * It returns the minimum PFN based on information provided via
88ca3b94 4137 * add_active_range().
c713216d
MG
4138 */
4139unsigned long __init find_min_pfn_with_active_regions(void)
4140{
4141 return find_min_pfn_for_node(MAX_NUMNODES);
4142}
4143
37b07e41
LS
4144/*
4145 * early_calculate_totalpages()
4146 * Sum pages in active regions for movable zone.
4147 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4148 */
484f51f8 4149static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4150{
4151 int i;
4152 unsigned long totalpages = 0;
4153
37b07e41
LS
4154 for (i = 0; i < nr_nodemap_entries; i++) {
4155 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4156 early_node_map[i].start_pfn;
37b07e41
LS
4157 totalpages += pages;
4158 if (pages)
4159 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4160 }
4161 return totalpages;
7e63efef
MG
4162}
4163
2a1e274a
MG
4164/*
4165 * Find the PFN the Movable zone begins in each node. Kernel memory
4166 * is spread evenly between nodes as long as the nodes have enough
4167 * memory. When they don't, some nodes will have more kernelcore than
4168 * others
4169 */
b69a7288 4170static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4171{
4172 int i, nid;
4173 unsigned long usable_startpfn;
4174 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4175 /* save the state before borrow the nodemask */
4176 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4177 unsigned long totalpages = early_calculate_totalpages();
4178 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4179
7e63efef
MG
4180 /*
4181 * If movablecore was specified, calculate what size of
4182 * kernelcore that corresponds so that memory usable for
4183 * any allocation type is evenly spread. If both kernelcore
4184 * and movablecore are specified, then the value of kernelcore
4185 * will be used for required_kernelcore if it's greater than
4186 * what movablecore would have allowed.
4187 */
4188 if (required_movablecore) {
7e63efef
MG
4189 unsigned long corepages;
4190
4191 /*
4192 * Round-up so that ZONE_MOVABLE is at least as large as what
4193 * was requested by the user
4194 */
4195 required_movablecore =
4196 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4197 corepages = totalpages - required_movablecore;
4198
4199 required_kernelcore = max(required_kernelcore, corepages);
4200 }
4201
2a1e274a
MG
4202 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4203 if (!required_kernelcore)
66918dcd 4204 goto out;
2a1e274a
MG
4205
4206 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4207 find_usable_zone_for_movable();
4208 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4209
4210restart:
4211 /* Spread kernelcore memory as evenly as possible throughout nodes */
4212 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4213 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4214 /*
4215 * Recalculate kernelcore_node if the division per node
4216 * now exceeds what is necessary to satisfy the requested
4217 * amount of memory for the kernel
4218 */
4219 if (required_kernelcore < kernelcore_node)
4220 kernelcore_node = required_kernelcore / usable_nodes;
4221
4222 /*
4223 * As the map is walked, we track how much memory is usable
4224 * by the kernel using kernelcore_remaining. When it is
4225 * 0, the rest of the node is usable by ZONE_MOVABLE
4226 */
4227 kernelcore_remaining = kernelcore_node;
4228
4229 /* Go through each range of PFNs within this node */
4230 for_each_active_range_index_in_nid(i, nid) {
4231 unsigned long start_pfn, end_pfn;
4232 unsigned long size_pages;
4233
4234 start_pfn = max(early_node_map[i].start_pfn,
4235 zone_movable_pfn[nid]);
4236 end_pfn = early_node_map[i].end_pfn;
4237 if (start_pfn >= end_pfn)
4238 continue;
4239
4240 /* Account for what is only usable for kernelcore */
4241 if (start_pfn < usable_startpfn) {
4242 unsigned long kernel_pages;
4243 kernel_pages = min(end_pfn, usable_startpfn)
4244 - start_pfn;
4245
4246 kernelcore_remaining -= min(kernel_pages,
4247 kernelcore_remaining);
4248 required_kernelcore -= min(kernel_pages,
4249 required_kernelcore);
4250
4251 /* Continue if range is now fully accounted */
4252 if (end_pfn <= usable_startpfn) {
4253
4254 /*
4255 * Push zone_movable_pfn to the end so
4256 * that if we have to rebalance
4257 * kernelcore across nodes, we will
4258 * not double account here
4259 */
4260 zone_movable_pfn[nid] = end_pfn;
4261 continue;
4262 }
4263 start_pfn = usable_startpfn;
4264 }
4265
4266 /*
4267 * The usable PFN range for ZONE_MOVABLE is from
4268 * start_pfn->end_pfn. Calculate size_pages as the
4269 * number of pages used as kernelcore
4270 */
4271 size_pages = end_pfn - start_pfn;
4272 if (size_pages > kernelcore_remaining)
4273 size_pages = kernelcore_remaining;
4274 zone_movable_pfn[nid] = start_pfn + size_pages;
4275
4276 /*
4277 * Some kernelcore has been met, update counts and
4278 * break if the kernelcore for this node has been
4279 * satisified
4280 */
4281 required_kernelcore -= min(required_kernelcore,
4282 size_pages);
4283 kernelcore_remaining -= size_pages;
4284 if (!kernelcore_remaining)
4285 break;
4286 }
4287 }
4288
4289 /*
4290 * If there is still required_kernelcore, we do another pass with one
4291 * less node in the count. This will push zone_movable_pfn[nid] further
4292 * along on the nodes that still have memory until kernelcore is
4293 * satisified
4294 */
4295 usable_nodes--;
4296 if (usable_nodes && required_kernelcore > usable_nodes)
4297 goto restart;
4298
4299 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4300 for (nid = 0; nid < MAX_NUMNODES; nid++)
4301 zone_movable_pfn[nid] =
4302 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4303
4304out:
4305 /* restore the node_state */
4306 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4307}
4308
37b07e41
LS
4309/* Any regular memory on that node ? */
4310static void check_for_regular_memory(pg_data_t *pgdat)
4311{
4312#ifdef CONFIG_HIGHMEM
4313 enum zone_type zone_type;
4314
4315 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4316 struct zone *zone = &pgdat->node_zones[zone_type];
4317 if (zone->present_pages)
4318 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4319 }
4320#endif
4321}
4322
c713216d
MG
4323/**
4324 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4325 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4326 *
4327 * This will call free_area_init_node() for each active node in the system.
4328 * Using the page ranges provided by add_active_range(), the size of each
4329 * zone in each node and their holes is calculated. If the maximum PFN
4330 * between two adjacent zones match, it is assumed that the zone is empty.
4331 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4332 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4333 * starts where the previous one ended. For example, ZONE_DMA32 starts
4334 * at arch_max_dma_pfn.
4335 */
4336void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4337{
4338 unsigned long nid;
db99100d 4339 int i;
c713216d 4340
a6af2bc3
MG
4341 /* Sort early_node_map as initialisation assumes it is sorted */
4342 sort_node_map();
4343
c713216d
MG
4344 /* Record where the zone boundaries are */
4345 memset(arch_zone_lowest_possible_pfn, 0,
4346 sizeof(arch_zone_lowest_possible_pfn));
4347 memset(arch_zone_highest_possible_pfn, 0,
4348 sizeof(arch_zone_highest_possible_pfn));
4349 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4350 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4351 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4352 if (i == ZONE_MOVABLE)
4353 continue;
c713216d
MG
4354 arch_zone_lowest_possible_pfn[i] =
4355 arch_zone_highest_possible_pfn[i-1];
4356 arch_zone_highest_possible_pfn[i] =
4357 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4358 }
2a1e274a
MG
4359 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4360 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4361
4362 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4363 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4364 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4365
c713216d
MG
4366 /* Print out the zone ranges */
4367 printk("Zone PFN ranges:\n");
2a1e274a
MG
4368 for (i = 0; i < MAX_NR_ZONES; i++) {
4369 if (i == ZONE_MOVABLE)
4370 continue;
5dab8ec1 4371 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4372 zone_names[i],
4373 arch_zone_lowest_possible_pfn[i],
4374 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4375 }
4376
4377 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4378 printk("Movable zone start PFN for each node\n");
4379 for (i = 0; i < MAX_NUMNODES; i++) {
4380 if (zone_movable_pfn[i])
4381 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4382 }
c713216d
MG
4383
4384 /* Print out the early_node_map[] */
4385 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4386 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4387 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4388 early_node_map[i].start_pfn,
4389 early_node_map[i].end_pfn);
4390
4391 /* Initialise every node */
708614e6 4392 mminit_verify_pageflags_layout();
8ef82866 4393 setup_nr_node_ids();
c713216d
MG
4394 for_each_online_node(nid) {
4395 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4396 free_area_init_node(nid, NULL,
c713216d 4397 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4398
4399 /* Any memory on that node */
4400 if (pgdat->node_present_pages)
4401 node_set_state(nid, N_HIGH_MEMORY);
4402 check_for_regular_memory(pgdat);
c713216d
MG
4403 }
4404}
2a1e274a 4405
7e63efef 4406static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4407{
4408 unsigned long long coremem;
4409 if (!p)
4410 return -EINVAL;
4411
4412 coremem = memparse(p, &p);
7e63efef 4413 *core = coremem >> PAGE_SHIFT;
2a1e274a 4414
7e63efef 4415 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4416 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4417
4418 return 0;
4419}
ed7ed365 4420
7e63efef
MG
4421/*
4422 * kernelcore=size sets the amount of memory for use for allocations that
4423 * cannot be reclaimed or migrated.
4424 */
4425static int __init cmdline_parse_kernelcore(char *p)
4426{
4427 return cmdline_parse_core(p, &required_kernelcore);
4428}
4429
4430/*
4431 * movablecore=size sets the amount of memory for use for allocations that
4432 * can be reclaimed or migrated.
4433 */
4434static int __init cmdline_parse_movablecore(char *p)
4435{
4436 return cmdline_parse_core(p, &required_movablecore);
4437}
4438
ed7ed365 4439early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4440early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4441
c713216d
MG
4442#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4443
0e0b864e 4444/**
88ca3b94
RD
4445 * set_dma_reserve - set the specified number of pages reserved in the first zone
4446 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4447 *
4448 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4449 * In the DMA zone, a significant percentage may be consumed by kernel image
4450 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4451 * function may optionally be used to account for unfreeable pages in the
4452 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4453 * smaller per-cpu batchsize.
0e0b864e
MG
4454 */
4455void __init set_dma_reserve(unsigned long new_dma_reserve)
4456{
4457 dma_reserve = new_dma_reserve;
4458}
4459
93b7504e 4460#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4461struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4462EXPORT_SYMBOL(contig_page_data);
93b7504e 4463#endif
1da177e4
LT
4464
4465void __init free_area_init(unsigned long *zones_size)
4466{
9109fb7b 4467 free_area_init_node(0, zones_size,
1da177e4
LT
4468 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4469}
1da177e4 4470
1da177e4
LT
4471static int page_alloc_cpu_notify(struct notifier_block *self,
4472 unsigned long action, void *hcpu)
4473{
4474 int cpu = (unsigned long)hcpu;
1da177e4 4475
8bb78442 4476 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4477 drain_pages(cpu);
4478
4479 /*
4480 * Spill the event counters of the dead processor
4481 * into the current processors event counters.
4482 * This artificially elevates the count of the current
4483 * processor.
4484 */
f8891e5e 4485 vm_events_fold_cpu(cpu);
9f8f2172
CL
4486
4487 /*
4488 * Zero the differential counters of the dead processor
4489 * so that the vm statistics are consistent.
4490 *
4491 * This is only okay since the processor is dead and cannot
4492 * race with what we are doing.
4493 */
2244b95a 4494 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4495 }
4496 return NOTIFY_OK;
4497}
1da177e4
LT
4498
4499void __init page_alloc_init(void)
4500{
4501 hotcpu_notifier(page_alloc_cpu_notify, 0);
4502}
4503
cb45b0e9
HA
4504/*
4505 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4506 * or min_free_kbytes changes.
4507 */
4508static void calculate_totalreserve_pages(void)
4509{
4510 struct pglist_data *pgdat;
4511 unsigned long reserve_pages = 0;
2f6726e5 4512 enum zone_type i, j;
cb45b0e9
HA
4513
4514 for_each_online_pgdat(pgdat) {
4515 for (i = 0; i < MAX_NR_ZONES; i++) {
4516 struct zone *zone = pgdat->node_zones + i;
4517 unsigned long max = 0;
4518
4519 /* Find valid and maximum lowmem_reserve in the zone */
4520 for (j = i; j < MAX_NR_ZONES; j++) {
4521 if (zone->lowmem_reserve[j] > max)
4522 max = zone->lowmem_reserve[j];
4523 }
4524
41858966
MG
4525 /* we treat the high watermark as reserved pages. */
4526 max += high_wmark_pages(zone);
cb45b0e9
HA
4527
4528 if (max > zone->present_pages)
4529 max = zone->present_pages;
4530 reserve_pages += max;
4531 }
4532 }
4533 totalreserve_pages = reserve_pages;
4534}
4535
1da177e4
LT
4536/*
4537 * setup_per_zone_lowmem_reserve - called whenever
4538 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4539 * has a correct pages reserved value, so an adequate number of
4540 * pages are left in the zone after a successful __alloc_pages().
4541 */
4542static void setup_per_zone_lowmem_reserve(void)
4543{
4544 struct pglist_data *pgdat;
2f6726e5 4545 enum zone_type j, idx;
1da177e4 4546
ec936fc5 4547 for_each_online_pgdat(pgdat) {
1da177e4
LT
4548 for (j = 0; j < MAX_NR_ZONES; j++) {
4549 struct zone *zone = pgdat->node_zones + j;
4550 unsigned long present_pages = zone->present_pages;
4551
4552 zone->lowmem_reserve[j] = 0;
4553
2f6726e5
CL
4554 idx = j;
4555 while (idx) {
1da177e4
LT
4556 struct zone *lower_zone;
4557
2f6726e5
CL
4558 idx--;
4559
1da177e4
LT
4560 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4561 sysctl_lowmem_reserve_ratio[idx] = 1;
4562
4563 lower_zone = pgdat->node_zones + idx;
4564 lower_zone->lowmem_reserve[j] = present_pages /
4565 sysctl_lowmem_reserve_ratio[idx];
4566 present_pages += lower_zone->present_pages;
4567 }
4568 }
4569 }
cb45b0e9
HA
4570
4571 /* update totalreserve_pages */
4572 calculate_totalreserve_pages();
1da177e4
LT
4573}
4574
88ca3b94 4575/**
bc75d33f 4576 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4577 * or when memory is hot-{added|removed}
88ca3b94 4578 *
bc75d33f
MK
4579 * Ensures that the watermark[min,low,high] values for each zone are set
4580 * correctly with respect to min_free_kbytes.
1da177e4 4581 */
bc75d33f 4582void setup_per_zone_wmarks(void)
1da177e4
LT
4583{
4584 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4585 unsigned long lowmem_pages = 0;
4586 struct zone *zone;
4587 unsigned long flags;
4588
4589 /* Calculate total number of !ZONE_HIGHMEM pages */
4590 for_each_zone(zone) {
4591 if (!is_highmem(zone))
4592 lowmem_pages += zone->present_pages;
4593 }
4594
4595 for_each_zone(zone) {
ac924c60
AM
4596 u64 tmp;
4597
1125b4e3 4598 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4599 tmp = (u64)pages_min * zone->present_pages;
4600 do_div(tmp, lowmem_pages);
1da177e4
LT
4601 if (is_highmem(zone)) {
4602 /*
669ed175
NP
4603 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4604 * need highmem pages, so cap pages_min to a small
4605 * value here.
4606 *
41858966 4607 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4608 * deltas controls asynch page reclaim, and so should
4609 * not be capped for highmem.
1da177e4
LT
4610 */
4611 int min_pages;
4612
4613 min_pages = zone->present_pages / 1024;
4614 if (min_pages < SWAP_CLUSTER_MAX)
4615 min_pages = SWAP_CLUSTER_MAX;
4616 if (min_pages > 128)
4617 min_pages = 128;
41858966 4618 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4619 } else {
669ed175
NP
4620 /*
4621 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4622 * proportionate to the zone's size.
4623 */
41858966 4624 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4625 }
4626
41858966
MG
4627 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4628 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4629 setup_zone_migrate_reserve(zone);
1125b4e3 4630 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4631 }
cb45b0e9
HA
4632
4633 /* update totalreserve_pages */
4634 calculate_totalreserve_pages();
1da177e4
LT
4635}
4636
55a4462a 4637/*
556adecb
RR
4638 * The inactive anon list should be small enough that the VM never has to
4639 * do too much work, but large enough that each inactive page has a chance
4640 * to be referenced again before it is swapped out.
4641 *
4642 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4643 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4644 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4645 * the anonymous pages are kept on the inactive list.
4646 *
4647 * total target max
4648 * memory ratio inactive anon
4649 * -------------------------------------
4650 * 10MB 1 5MB
4651 * 100MB 1 50MB
4652 * 1GB 3 250MB
4653 * 10GB 10 0.9GB
4654 * 100GB 31 3GB
4655 * 1TB 101 10GB
4656 * 10TB 320 32GB
4657 */
96cb4df5 4658void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4659{
96cb4df5 4660 unsigned int gb, ratio;
556adecb 4661
96cb4df5
MK
4662 /* Zone size in gigabytes */
4663 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4664 if (gb)
556adecb 4665 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4666 else
4667 ratio = 1;
556adecb 4668
96cb4df5
MK
4669 zone->inactive_ratio = ratio;
4670}
556adecb 4671
96cb4df5
MK
4672static void __init setup_per_zone_inactive_ratio(void)
4673{
4674 struct zone *zone;
4675
4676 for_each_zone(zone)
4677 calculate_zone_inactive_ratio(zone);
556adecb
RR
4678}
4679
1da177e4
LT
4680/*
4681 * Initialise min_free_kbytes.
4682 *
4683 * For small machines we want it small (128k min). For large machines
4684 * we want it large (64MB max). But it is not linear, because network
4685 * bandwidth does not increase linearly with machine size. We use
4686 *
4687 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4688 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4689 *
4690 * which yields
4691 *
4692 * 16MB: 512k
4693 * 32MB: 724k
4694 * 64MB: 1024k
4695 * 128MB: 1448k
4696 * 256MB: 2048k
4697 * 512MB: 2896k
4698 * 1024MB: 4096k
4699 * 2048MB: 5792k
4700 * 4096MB: 8192k
4701 * 8192MB: 11584k
4702 * 16384MB: 16384k
4703 */
bc75d33f 4704static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4705{
4706 unsigned long lowmem_kbytes;
4707
4708 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4709
4710 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4711 if (min_free_kbytes < 128)
4712 min_free_kbytes = 128;
4713 if (min_free_kbytes > 65536)
4714 min_free_kbytes = 65536;
bc75d33f 4715 setup_per_zone_wmarks();
1da177e4 4716 setup_per_zone_lowmem_reserve();
556adecb 4717 setup_per_zone_inactive_ratio();
1da177e4
LT
4718 return 0;
4719}
bc75d33f 4720module_init(init_per_zone_wmark_min)
1da177e4
LT
4721
4722/*
4723 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4724 * that we can call two helper functions whenever min_free_kbytes
4725 * changes.
4726 */
4727int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4728 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4729{
8d65af78 4730 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4731 if (write)
bc75d33f 4732 setup_per_zone_wmarks();
1da177e4
LT
4733 return 0;
4734}
4735
9614634f
CL
4736#ifdef CONFIG_NUMA
4737int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4738 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4739{
4740 struct zone *zone;
4741 int rc;
4742
8d65af78 4743 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4744 if (rc)
4745 return rc;
4746
4747 for_each_zone(zone)
8417bba4 4748 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4749 sysctl_min_unmapped_ratio) / 100;
4750 return 0;
4751}
0ff38490
CL
4752
4753int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4754 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4755{
4756 struct zone *zone;
4757 int rc;
4758
8d65af78 4759 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4760 if (rc)
4761 return rc;
4762
4763 for_each_zone(zone)
4764 zone->min_slab_pages = (zone->present_pages *
4765 sysctl_min_slab_ratio) / 100;
4766 return 0;
4767}
9614634f
CL
4768#endif
4769
1da177e4
LT
4770/*
4771 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4772 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4773 * whenever sysctl_lowmem_reserve_ratio changes.
4774 *
4775 * The reserve ratio obviously has absolutely no relation with the
41858966 4776 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4777 * if in function of the boot time zone sizes.
4778 */
4779int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4780 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4781{
8d65af78 4782 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4783 setup_per_zone_lowmem_reserve();
4784 return 0;
4785}
4786
8ad4b1fb
RS
4787/*
4788 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4789 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4790 * can have before it gets flushed back to buddy allocator.
4791 */
4792
4793int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4794 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4795{
4796 struct zone *zone;
4797 unsigned int cpu;
4798 int ret;
4799
8d65af78 4800 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4801 if (!write || (ret == -EINVAL))
4802 return ret;
364df0eb 4803 for_each_populated_zone(zone) {
8ad4b1fb
RS
4804 for_each_online_cpu(cpu) {
4805 unsigned long high;
4806 high = zone->present_pages / percpu_pagelist_fraction;
4807 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4808 }
4809 }
4810 return 0;
4811}
4812
f034b5d4 4813int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4814
4815#ifdef CONFIG_NUMA
4816static int __init set_hashdist(char *str)
4817{
4818 if (!str)
4819 return 0;
4820 hashdist = simple_strtoul(str, &str, 0);
4821 return 1;
4822}
4823__setup("hashdist=", set_hashdist);
4824#endif
4825
4826/*
4827 * allocate a large system hash table from bootmem
4828 * - it is assumed that the hash table must contain an exact power-of-2
4829 * quantity of entries
4830 * - limit is the number of hash buckets, not the total allocation size
4831 */
4832void *__init alloc_large_system_hash(const char *tablename,
4833 unsigned long bucketsize,
4834 unsigned long numentries,
4835 int scale,
4836 int flags,
4837 unsigned int *_hash_shift,
4838 unsigned int *_hash_mask,
4839 unsigned long limit)
4840{
4841 unsigned long long max = limit;
4842 unsigned long log2qty, size;
4843 void *table = NULL;
4844
4845 /* allow the kernel cmdline to have a say */
4846 if (!numentries) {
4847 /* round applicable memory size up to nearest megabyte */
04903664 4848 numentries = nr_kernel_pages;
1da177e4
LT
4849 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4850 numentries >>= 20 - PAGE_SHIFT;
4851 numentries <<= 20 - PAGE_SHIFT;
4852
4853 /* limit to 1 bucket per 2^scale bytes of low memory */
4854 if (scale > PAGE_SHIFT)
4855 numentries >>= (scale - PAGE_SHIFT);
4856 else
4857 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4858
4859 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
4860 if (unlikely(flags & HASH_SMALL)) {
4861 /* Makes no sense without HASH_EARLY */
4862 WARN_ON(!(flags & HASH_EARLY));
4863 if (!(numentries >> *_hash_shift)) {
4864 numentries = 1UL << *_hash_shift;
4865 BUG_ON(!numentries);
4866 }
4867 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 4868 numentries = PAGE_SIZE / bucketsize;
1da177e4 4869 }
6e692ed3 4870 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4871
4872 /* limit allocation size to 1/16 total memory by default */
4873 if (max == 0) {
4874 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4875 do_div(max, bucketsize);
4876 }
4877
4878 if (numentries > max)
4879 numentries = max;
4880
f0d1b0b3 4881 log2qty = ilog2(numentries);
1da177e4
LT
4882
4883 do {
4884 size = bucketsize << log2qty;
4885 if (flags & HASH_EARLY)
74768ed8 4886 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4887 else if (hashdist)
4888 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4889 else {
1037b83b
ED
4890 /*
4891 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4892 * some pages at the end of hash table which
4893 * alloc_pages_exact() automatically does
1037b83b 4894 */
264ef8a9 4895 if (get_order(size) < MAX_ORDER) {
a1dd268c 4896 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4897 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4898 }
1da177e4
LT
4899 }
4900 } while (!table && size > PAGE_SIZE && --log2qty);
4901
4902 if (!table)
4903 panic("Failed to allocate %s hash table\n", tablename);
4904
b49ad484 4905 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4906 tablename,
4907 (1U << log2qty),
f0d1b0b3 4908 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4909 size);
4910
4911 if (_hash_shift)
4912 *_hash_shift = log2qty;
4913 if (_hash_mask)
4914 *_hash_mask = (1 << log2qty) - 1;
4915
4916 return table;
4917}
a117e66e 4918
835c134e
MG
4919/* Return a pointer to the bitmap storing bits affecting a block of pages */
4920static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4921 unsigned long pfn)
4922{
4923#ifdef CONFIG_SPARSEMEM
4924 return __pfn_to_section(pfn)->pageblock_flags;
4925#else
4926 return zone->pageblock_flags;
4927#endif /* CONFIG_SPARSEMEM */
4928}
4929
4930static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4931{
4932#ifdef CONFIG_SPARSEMEM
4933 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4934 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4935#else
4936 pfn = pfn - zone->zone_start_pfn;
d9c23400 4937 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4938#endif /* CONFIG_SPARSEMEM */
4939}
4940
4941/**
d9c23400 4942 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4943 * @page: The page within the block of interest
4944 * @start_bitidx: The first bit of interest to retrieve
4945 * @end_bitidx: The last bit of interest
4946 * returns pageblock_bits flags
4947 */
4948unsigned long get_pageblock_flags_group(struct page *page,
4949 int start_bitidx, int end_bitidx)
4950{
4951 struct zone *zone;
4952 unsigned long *bitmap;
4953 unsigned long pfn, bitidx;
4954 unsigned long flags = 0;
4955 unsigned long value = 1;
4956
4957 zone = page_zone(page);
4958 pfn = page_to_pfn(page);
4959 bitmap = get_pageblock_bitmap(zone, pfn);
4960 bitidx = pfn_to_bitidx(zone, pfn);
4961
4962 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4963 if (test_bit(bitidx + start_bitidx, bitmap))
4964 flags |= value;
6220ec78 4965
835c134e
MG
4966 return flags;
4967}
4968
4969/**
d9c23400 4970 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4971 * @page: The page within the block of interest
4972 * @start_bitidx: The first bit of interest
4973 * @end_bitidx: The last bit of interest
4974 * @flags: The flags to set
4975 */
4976void set_pageblock_flags_group(struct page *page, unsigned long flags,
4977 int start_bitidx, int end_bitidx)
4978{
4979 struct zone *zone;
4980 unsigned long *bitmap;
4981 unsigned long pfn, bitidx;
4982 unsigned long value = 1;
4983
4984 zone = page_zone(page);
4985 pfn = page_to_pfn(page);
4986 bitmap = get_pageblock_bitmap(zone, pfn);
4987 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4988 VM_BUG_ON(pfn < zone->zone_start_pfn);
4989 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4990
4991 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4992 if (flags & value)
4993 __set_bit(bitidx + start_bitidx, bitmap);
4994 else
4995 __clear_bit(bitidx + start_bitidx, bitmap);
4996}
a5d76b54
KH
4997
4998/*
4999 * This is designed as sub function...plz see page_isolation.c also.
5000 * set/clear page block's type to be ISOLATE.
5001 * page allocater never alloc memory from ISOLATE block.
5002 */
5003
5004int set_migratetype_isolate(struct page *page)
5005{
5006 struct zone *zone;
5007 unsigned long flags;
5008 int ret = -EBUSY;
8e7e40d9 5009 int zone_idx;
a5d76b54
KH
5010
5011 zone = page_zone(page);
8e7e40d9 5012 zone_idx = zone_idx(zone);
a5d76b54
KH
5013 spin_lock_irqsave(&zone->lock, flags);
5014 /*
5015 * In future, more migrate types will be able to be isolation target.
5016 */
8e7e40d9
SL
5017 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5018 zone_idx != ZONE_MOVABLE)
a5d76b54
KH
5019 goto out;
5020 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5021 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5022 ret = 0;
5023out:
5024 spin_unlock_irqrestore(&zone->lock, flags);
5025 if (!ret)
9f8f2172 5026 drain_all_pages();
a5d76b54
KH
5027 return ret;
5028}
5029
5030void unset_migratetype_isolate(struct page *page)
5031{
5032 struct zone *zone;
5033 unsigned long flags;
5034 zone = page_zone(page);
5035 spin_lock_irqsave(&zone->lock, flags);
5036 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5037 goto out;
5038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5039 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5040out:
5041 spin_unlock_irqrestore(&zone->lock, flags);
5042}
0c0e6195
KH
5043
5044#ifdef CONFIG_MEMORY_HOTREMOVE
5045/*
5046 * All pages in the range must be isolated before calling this.
5047 */
5048void
5049__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5050{
5051 struct page *page;
5052 struct zone *zone;
5053 int order, i;
5054 unsigned long pfn;
5055 unsigned long flags;
5056 /* find the first valid pfn */
5057 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5058 if (pfn_valid(pfn))
5059 break;
5060 if (pfn == end_pfn)
5061 return;
5062 zone = page_zone(pfn_to_page(pfn));
5063 spin_lock_irqsave(&zone->lock, flags);
5064 pfn = start_pfn;
5065 while (pfn < end_pfn) {
5066 if (!pfn_valid(pfn)) {
5067 pfn++;
5068 continue;
5069 }
5070 page = pfn_to_page(pfn);
5071 BUG_ON(page_count(page));
5072 BUG_ON(!PageBuddy(page));
5073 order = page_order(page);
5074#ifdef CONFIG_DEBUG_VM
5075 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5076 pfn, 1 << order, end_pfn);
5077#endif
5078 list_del(&page->lru);
5079 rmv_page_order(page);
5080 zone->free_area[order].nr_free--;
5081 __mod_zone_page_state(zone, NR_FREE_PAGES,
5082 - (1UL << order));
5083 for (i = 0; i < (1 << order); i++)
5084 SetPageReserved((page+i));
5085 pfn += (1 << order);
5086 }
5087 spin_unlock_irqrestore(&zone->lock, flags);
5088}
5089#endif
This page took 1.167029 seconds and 5 git commands to generate.