memblock: introduce a for_each_reserved_mem_region iterator
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
ee6f509c 238void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 239{
5d0f3f72
KM
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
242 migratetype = MIGRATE_UNMOVABLE;
243
b2a0ac88
MG
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246}
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
c0a32fc5
SG
383#ifdef CONFIG_DEBUG_PAGEALLOC
384unsigned int _debug_guardpage_minorder;
031bc574 385bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
386bool _debug_guardpage_enabled __read_mostly;
387
031bc574
JK
388static int __init early_debug_pagealloc(char *buf)
389{
390 if (!buf)
391 return -EINVAL;
392
393 if (strcmp(buf, "on") == 0)
394 _debug_pagealloc_enabled = true;
395
396 return 0;
397}
398early_param("debug_pagealloc", early_debug_pagealloc);
399
e30825f1
JK
400static bool need_debug_guardpage(void)
401{
031bc574
JK
402 /* If we don't use debug_pagealloc, we don't need guard page */
403 if (!debug_pagealloc_enabled())
404 return false;
405
e30825f1
JK
406 return true;
407}
408
409static void init_debug_guardpage(void)
410{
031bc574
JK
411 if (!debug_pagealloc_enabled())
412 return;
413
e30825f1
JK
414 _debug_guardpage_enabled = true;
415}
416
417struct page_ext_operations debug_guardpage_ops = {
418 .need = need_debug_guardpage,
419 .init = init_debug_guardpage,
420};
c0a32fc5
SG
421
422static int __init debug_guardpage_minorder_setup(char *buf)
423{
424 unsigned long res;
425
426 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
427 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
428 return 0;
429 }
430 _debug_guardpage_minorder = res;
431 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
432 return 0;
433}
434__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
435
2847cf95
JK
436static inline void set_page_guard(struct zone *zone, struct page *page,
437 unsigned int order, int migratetype)
c0a32fc5 438{
e30825f1
JK
439 struct page_ext *page_ext;
440
441 if (!debug_guardpage_enabled())
442 return;
443
444 page_ext = lookup_page_ext(page);
445 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
446
2847cf95
JK
447 INIT_LIST_HEAD(&page->lru);
448 set_page_private(page, order);
449 /* Guard pages are not available for any usage */
450 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
451}
452
2847cf95
JK
453static inline void clear_page_guard(struct zone *zone, struct page *page,
454 unsigned int order, int migratetype)
c0a32fc5 455{
e30825f1
JK
456 struct page_ext *page_ext;
457
458 if (!debug_guardpage_enabled())
459 return;
460
461 page_ext = lookup_page_ext(page);
462 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
463
2847cf95
JK
464 set_page_private(page, 0);
465 if (!is_migrate_isolate(migratetype))
466 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
467}
468#else
e30825f1 469struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
470static inline void set_page_guard(struct zone *zone, struct page *page,
471 unsigned int order, int migratetype) {}
472static inline void clear_page_guard(struct zone *zone, struct page *page,
473 unsigned int order, int migratetype) {}
c0a32fc5
SG
474#endif
475
7aeb09f9 476static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 477{
4c21e2f2 478 set_page_private(page, order);
676165a8 479 __SetPageBuddy(page);
1da177e4
LT
480}
481
482static inline void rmv_page_order(struct page *page)
483{
676165a8 484 __ClearPageBuddy(page);
4c21e2f2 485 set_page_private(page, 0);
1da177e4
LT
486}
487
1da177e4
LT
488/*
489 * This function checks whether a page is free && is the buddy
490 * we can do coalesce a page and its buddy if
13e7444b 491 * (a) the buddy is not in a hole &&
676165a8 492 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
493 * (c) a page and its buddy have the same order &&
494 * (d) a page and its buddy are in the same zone.
676165a8 495 *
cf6fe945
WSH
496 * For recording whether a page is in the buddy system, we set ->_mapcount
497 * PAGE_BUDDY_MAPCOUNT_VALUE.
498 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
499 * serialized by zone->lock.
1da177e4 500 *
676165a8 501 * For recording page's order, we use page_private(page).
1da177e4 502 */
cb2b95e1 503static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 504 unsigned int order)
1da177e4 505{
14e07298 506 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 507 return 0;
13e7444b 508
c0a32fc5 509 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
510 if (page_zone_id(page) != page_zone_id(buddy))
511 return 0;
512
4c5018ce
WY
513 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
514
c0a32fc5
SG
515 return 1;
516 }
517
cb2b95e1 518 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
519 /*
520 * zone check is done late to avoid uselessly
521 * calculating zone/node ids for pages that could
522 * never merge.
523 */
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
4c5018ce
WY
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
6aa3001b 529 return 1;
676165a8 530 }
6aa3001b 531 return 0;
1da177e4
LT
532}
533
534/*
535 * Freeing function for a buddy system allocator.
536 *
537 * The concept of a buddy system is to maintain direct-mapped table
538 * (containing bit values) for memory blocks of various "orders".
539 * The bottom level table contains the map for the smallest allocatable
540 * units of memory (here, pages), and each level above it describes
541 * pairs of units from the levels below, hence, "buddies".
542 * At a high level, all that happens here is marking the table entry
543 * at the bottom level available, and propagating the changes upward
544 * as necessary, plus some accounting needed to play nicely with other
545 * parts of the VM system.
546 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
547 * free pages of length of (1 << order) and marked with _mapcount
548 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
549 * field.
1da177e4 550 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
551 * other. That is, if we allocate a small block, and both were
552 * free, the remainder of the region must be split into blocks.
1da177e4 553 * If a block is freed, and its buddy is also free, then this
5f63b720 554 * triggers coalescing into a block of larger size.
1da177e4 555 *
6d49e352 556 * -- nyc
1da177e4
LT
557 */
558
48db57f8 559static inline void __free_one_page(struct page *page,
dc4b0caf 560 unsigned long pfn,
ed0ae21d
MG
561 struct zone *zone, unsigned int order,
562 int migratetype)
1da177e4
LT
563{
564 unsigned long page_idx;
6dda9d55 565 unsigned long combined_idx;
43506fad 566 unsigned long uninitialized_var(buddy_idx);
6dda9d55 567 struct page *buddy;
3c605096 568 int max_order = MAX_ORDER;
1da177e4 569
d29bb978 570 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 571 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 572
ed0ae21d 573 VM_BUG_ON(migratetype == -1);
3c605096
JK
574 if (is_migrate_isolate(migratetype)) {
575 /*
576 * We restrict max order of merging to prevent merge
577 * between freepages on isolate pageblock and normal
578 * pageblock. Without this, pageblock isolation
579 * could cause incorrect freepage accounting.
580 */
581 max_order = min(MAX_ORDER, pageblock_order + 1);
582 } else {
8f82b55d 583 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 584 }
ed0ae21d 585
3c605096 586 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 587
309381fe
SL
588 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
589 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 590
3c605096 591 while (order < max_order - 1) {
43506fad
KC
592 buddy_idx = __find_buddy_index(page_idx, order);
593 buddy = page + (buddy_idx - page_idx);
cb2b95e1 594 if (!page_is_buddy(page, buddy, order))
3c82d0ce 595 break;
c0a32fc5
SG
596 /*
597 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
598 * merge with it and move up one order.
599 */
600 if (page_is_guard(buddy)) {
2847cf95 601 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
43506fad 607 combined_idx = buddy_idx & page_idx;
1da177e4
LT
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
6dda9d55
CZ
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
b7f50cfa 622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 623 struct page *higher_page, *higher_buddy;
43506fad
KC
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 627 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636out:
1da177e4
LT
637 zone->free_area[order].nr_free++;
638}
639
224abf92 640static inline int free_pages_check(struct page *page)
1da177e4 641{
d230dec1 642 const char *bad_reason = NULL;
f0b791a3
DH
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
9edad6ea
JW
655#ifdef CONFIG_MEMCG
656 if (unlikely(page->mem_cgroup))
657 bad_reason = "page still charged to cgroup";
658#endif
f0b791a3
DH
659 if (unlikely(bad_reason)) {
660 bad_page(page, bad_reason, bad_flags);
79f4b7bf 661 return 1;
8cc3b392 662 }
90572890 663 page_cpupid_reset_last(page);
79f4b7bf
HD
664 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
665 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
666 return 0;
1da177e4
LT
667}
668
669/*
5f8dcc21 670 * Frees a number of pages from the PCP lists
1da177e4 671 * Assumes all pages on list are in same zone, and of same order.
207f36ee 672 * count is the number of pages to free.
1da177e4
LT
673 *
674 * If the zone was previously in an "all pages pinned" state then look to
675 * see if this freeing clears that state.
676 *
677 * And clear the zone's pages_scanned counter, to hold off the "all pages are
678 * pinned" detection logic.
679 */
5f8dcc21
MG
680static void free_pcppages_bulk(struct zone *zone, int count,
681 struct per_cpu_pages *pcp)
1da177e4 682{
5f8dcc21 683 int migratetype = 0;
a6f9edd6 684 int batch_free = 0;
72853e29 685 int to_free = count;
0d5d823a 686 unsigned long nr_scanned;
5f8dcc21 687
c54ad30c 688 spin_lock(&zone->lock);
0d5d823a
MG
689 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
690 if (nr_scanned)
691 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 692
72853e29 693 while (to_free) {
48db57f8 694 struct page *page;
5f8dcc21
MG
695 struct list_head *list;
696
697 /*
a6f9edd6
MG
698 * Remove pages from lists in a round-robin fashion. A
699 * batch_free count is maintained that is incremented when an
700 * empty list is encountered. This is so more pages are freed
701 * off fuller lists instead of spinning excessively around empty
702 * lists
5f8dcc21
MG
703 */
704 do {
a6f9edd6 705 batch_free++;
5f8dcc21
MG
706 if (++migratetype == MIGRATE_PCPTYPES)
707 migratetype = 0;
708 list = &pcp->lists[migratetype];
709 } while (list_empty(list));
48db57f8 710
1d16871d
NK
711 /* This is the only non-empty list. Free them all. */
712 if (batch_free == MIGRATE_PCPTYPES)
713 batch_free = to_free;
714
a6f9edd6 715 do {
770c8aaa
BZ
716 int mt; /* migratetype of the to-be-freed page */
717
a6f9edd6
MG
718 page = list_entry(list->prev, struct page, lru);
719 /* must delete as __free_one_page list manipulates */
720 list_del(&page->lru);
b12c4ad1 721 mt = get_freepage_migratetype(page);
8f82b55d 722 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 723 mt = get_pageblock_migratetype(page);
51bb1a40 724
a7016235 725 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 726 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 727 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 728 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 729 }
c54ad30c 730 spin_unlock(&zone->lock);
1da177e4
LT
731}
732
dc4b0caf
MG
733static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
7aeb09f9 735 unsigned int order,
ed0ae21d 736 int migratetype)
1da177e4 737{
0d5d823a 738 unsigned long nr_scanned;
006d22d9 739 spin_lock(&zone->lock);
0d5d823a
MG
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 743
ad53f92e
JK
744 if (unlikely(has_isolate_pageblock(zone) ||
745 is_migrate_isolate(migratetype))) {
746 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 747 }
dc4b0caf 748 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 749 spin_unlock(&zone->lock);
48db57f8
NP
750}
751
81422f29
KS
752static int free_tail_pages_check(struct page *head_page, struct page *page)
753{
754 if (!IS_ENABLED(CONFIG_DEBUG_VM))
755 return 0;
756 if (unlikely(!PageTail(page))) {
757 bad_page(page, "PageTail not set", 0);
758 return 1;
759 }
760 if (unlikely(page->first_page != head_page)) {
761 bad_page(page, "first_page not consistent", 0);
762 return 1;
763 }
764 return 0;
765}
766
ec95f53a 767static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 768{
81422f29
KS
769 bool compound = PageCompound(page);
770 int i, bad = 0;
1da177e4 771
ab1f306f 772 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 773 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 774
b413d48a 775 trace_mm_page_free(page, order);
b1eeab67 776 kmemcheck_free_shadow(page, order);
b8c73fc2 777 kasan_free_pages(page, order);
b1eeab67 778
8dd60a3a
AA
779 if (PageAnon(page))
780 page->mapping = NULL;
81422f29
KS
781 bad += free_pages_check(page);
782 for (i = 1; i < (1 << order); i++) {
783 if (compound)
784 bad += free_tail_pages_check(page, page + i);
8dd60a3a 785 bad += free_pages_check(page + i);
81422f29 786 }
8cc3b392 787 if (bad)
ec95f53a 788 return false;
689bcebf 789
48c96a36
JK
790 reset_page_owner(page, order);
791
3ac7fe5a 792 if (!PageHighMem(page)) {
b8af2941
PK
793 debug_check_no_locks_freed(page_address(page),
794 PAGE_SIZE << order);
3ac7fe5a
TG
795 debug_check_no_obj_freed(page_address(page),
796 PAGE_SIZE << order);
797 }
dafb1367 798 arch_free_page(page, order);
48db57f8 799 kernel_map_pages(page, 1 << order, 0);
dafb1367 800
ec95f53a
KM
801 return true;
802}
803
804static void __free_pages_ok(struct page *page, unsigned int order)
805{
806 unsigned long flags;
95e34412 807 int migratetype;
dc4b0caf 808 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
809
810 if (!free_pages_prepare(page, order))
811 return;
812
cfc47a28 813 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 814 local_irq_save(flags);
f8891e5e 815 __count_vm_events(PGFREE, 1 << order);
95e34412 816 set_freepage_migratetype(page, migratetype);
dc4b0caf 817 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 818 local_irq_restore(flags);
1da177e4
LT
819}
820
170a5a7e 821void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 822{
c3993076 823 unsigned int nr_pages = 1 << order;
e2d0bd2b 824 struct page *p = page;
c3993076 825 unsigned int loop;
a226f6c8 826
e2d0bd2b
YL
827 prefetchw(p);
828 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
829 prefetchw(p + 1);
c3993076
JW
830 __ClearPageReserved(p);
831 set_page_count(p, 0);
a226f6c8 832 }
e2d0bd2b
YL
833 __ClearPageReserved(p);
834 set_page_count(p, 0);
c3993076 835
e2d0bd2b 836 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
837 set_page_refcounted(page);
838 __free_pages(page, order);
a226f6c8
DH
839}
840
47118af0 841#ifdef CONFIG_CMA
9cf510a5 842/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
843void __init init_cma_reserved_pageblock(struct page *page)
844{
845 unsigned i = pageblock_nr_pages;
846 struct page *p = page;
847
848 do {
849 __ClearPageReserved(p);
850 set_page_count(p, 0);
851 } while (++p, --i);
852
47118af0 853 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
854
855 if (pageblock_order >= MAX_ORDER) {
856 i = pageblock_nr_pages;
857 p = page;
858 do {
859 set_page_refcounted(p);
860 __free_pages(p, MAX_ORDER - 1);
861 p += MAX_ORDER_NR_PAGES;
862 } while (i -= MAX_ORDER_NR_PAGES);
863 } else {
864 set_page_refcounted(page);
865 __free_pages(page, pageblock_order);
866 }
867
3dcc0571 868 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
869}
870#endif
1da177e4
LT
871
872/*
873 * The order of subdivision here is critical for the IO subsystem.
874 * Please do not alter this order without good reasons and regression
875 * testing. Specifically, as large blocks of memory are subdivided,
876 * the order in which smaller blocks are delivered depends on the order
877 * they're subdivided in this function. This is the primary factor
878 * influencing the order in which pages are delivered to the IO
879 * subsystem according to empirical testing, and this is also justified
880 * by considering the behavior of a buddy system containing a single
881 * large block of memory acted on by a series of small allocations.
882 * This behavior is a critical factor in sglist merging's success.
883 *
6d49e352 884 * -- nyc
1da177e4 885 */
085cc7d5 886static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
887 int low, int high, struct free_area *area,
888 int migratetype)
1da177e4
LT
889{
890 unsigned long size = 1 << high;
891
892 while (high > low) {
893 area--;
894 high--;
895 size >>= 1;
309381fe 896 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 897
2847cf95 898 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 899 debug_guardpage_enabled() &&
2847cf95 900 high < debug_guardpage_minorder()) {
c0a32fc5
SG
901 /*
902 * Mark as guard pages (or page), that will allow to
903 * merge back to allocator when buddy will be freed.
904 * Corresponding page table entries will not be touched,
905 * pages will stay not present in virtual address space
906 */
2847cf95 907 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
908 continue;
909 }
b2a0ac88 910 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
911 area->nr_free++;
912 set_page_order(&page[size], high);
913 }
1da177e4
LT
914}
915
1da177e4
LT
916/*
917 * This page is about to be returned from the page allocator
918 */
2a7684a2 919static inline int check_new_page(struct page *page)
1da177e4 920{
d230dec1 921 const char *bad_reason = NULL;
f0b791a3
DH
922 unsigned long bad_flags = 0;
923
924 if (unlikely(page_mapcount(page)))
925 bad_reason = "nonzero mapcount";
926 if (unlikely(page->mapping != NULL))
927 bad_reason = "non-NULL mapping";
928 if (unlikely(atomic_read(&page->_count) != 0))
929 bad_reason = "nonzero _count";
930 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
931 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
932 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
933 }
9edad6ea
JW
934#ifdef CONFIG_MEMCG
935 if (unlikely(page->mem_cgroup))
936 bad_reason = "page still charged to cgroup";
937#endif
f0b791a3
DH
938 if (unlikely(bad_reason)) {
939 bad_page(page, bad_reason, bad_flags);
689bcebf 940 return 1;
8cc3b392 941 }
2a7684a2
WF
942 return 0;
943}
944
75379191
VB
945static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
946 int alloc_flags)
2a7684a2
WF
947{
948 int i;
949
950 for (i = 0; i < (1 << order); i++) {
951 struct page *p = page + i;
952 if (unlikely(check_new_page(p)))
953 return 1;
954 }
689bcebf 955
4c21e2f2 956 set_page_private(page, 0);
7835e98b 957 set_page_refcounted(page);
cc102509
NP
958
959 arch_alloc_page(page, order);
1da177e4 960 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 961 kasan_alloc_pages(page, order);
17cf4406
NP
962
963 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
964 for (i = 0; i < (1 << order); i++)
965 clear_highpage(page + i);
17cf4406
NP
966
967 if (order && (gfp_flags & __GFP_COMP))
968 prep_compound_page(page, order);
969
48c96a36
JK
970 set_page_owner(page, order, gfp_flags);
971
75379191
VB
972 /*
973 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
974 * allocate the page. The expectation is that the caller is taking
975 * steps that will free more memory. The caller should avoid the page
976 * being used for !PFMEMALLOC purposes.
977 */
978 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
979
689bcebf 980 return 0;
1da177e4
LT
981}
982
56fd56b8
MG
983/*
984 * Go through the free lists for the given migratetype and remove
985 * the smallest available page from the freelists
986 */
728ec980
MG
987static inline
988struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
989 int migratetype)
990{
991 unsigned int current_order;
b8af2941 992 struct free_area *area;
56fd56b8
MG
993 struct page *page;
994
995 /* Find a page of the appropriate size in the preferred list */
996 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
997 area = &(zone->free_area[current_order]);
998 if (list_empty(&area->free_list[migratetype]))
999 continue;
1000
1001 page = list_entry(area->free_list[migratetype].next,
1002 struct page, lru);
1003 list_del(&page->lru);
1004 rmv_page_order(page);
1005 area->nr_free--;
56fd56b8 1006 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1007 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1008 return page;
1009 }
1010
1011 return NULL;
1012}
1013
1014
b2a0ac88
MG
1015/*
1016 * This array describes the order lists are fallen back to when
1017 * the free lists for the desirable migrate type are depleted
1018 */
47118af0
MN
1019static int fallbacks[MIGRATE_TYPES][4] = {
1020 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1021 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1022 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1023#ifdef CONFIG_CMA
47118af0 1024 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1025#endif
6d4a4916 1026 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1027#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1028 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1029#endif
b2a0ac88
MG
1030};
1031
dc67647b
JK
1032#ifdef CONFIG_CMA
1033static struct page *__rmqueue_cma_fallback(struct zone *zone,
1034 unsigned int order)
1035{
1036 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1037}
1038#else
1039static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1040 unsigned int order) { return NULL; }
1041#endif
1042
c361be55
MG
1043/*
1044 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1045 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1046 * boundary. If alignment is required, use move_freepages_block()
1047 */
435b405c 1048int move_freepages(struct zone *zone,
b69a7288
AB
1049 struct page *start_page, struct page *end_page,
1050 int migratetype)
c361be55
MG
1051{
1052 struct page *page;
1053 unsigned long order;
d100313f 1054 int pages_moved = 0;
c361be55
MG
1055
1056#ifndef CONFIG_HOLES_IN_ZONE
1057 /*
1058 * page_zone is not safe to call in this context when
1059 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1060 * anyway as we check zone boundaries in move_freepages_block().
1061 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1062 * grouping pages by mobility
c361be55 1063 */
97ee4ba7 1064 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1065#endif
1066
1067 for (page = start_page; page <= end_page;) {
344c790e 1068 /* Make sure we are not inadvertently changing nodes */
309381fe 1069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1070
c361be55
MG
1071 if (!pfn_valid_within(page_to_pfn(page))) {
1072 page++;
1073 continue;
1074 }
1075
1076 if (!PageBuddy(page)) {
1077 page++;
1078 continue;
1079 }
1080
1081 order = page_order(page);
84be48d8
KS
1082 list_move(&page->lru,
1083 &zone->free_area[order].free_list[migratetype]);
95e34412 1084 set_freepage_migratetype(page, migratetype);
c361be55 1085 page += 1 << order;
d100313f 1086 pages_moved += 1 << order;
c361be55
MG
1087 }
1088
d100313f 1089 return pages_moved;
c361be55
MG
1090}
1091
ee6f509c 1092int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1093 int migratetype)
c361be55
MG
1094{
1095 unsigned long start_pfn, end_pfn;
1096 struct page *start_page, *end_page;
1097
1098 start_pfn = page_to_pfn(page);
d9c23400 1099 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1100 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1101 end_page = start_page + pageblock_nr_pages - 1;
1102 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1103
1104 /* Do not cross zone boundaries */
108bcc96 1105 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1106 start_page = page;
108bcc96 1107 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1108 return 0;
1109
1110 return move_freepages(zone, start_page, end_page, migratetype);
1111}
1112
2f66a68f
MG
1113static void change_pageblock_range(struct page *pageblock_page,
1114 int start_order, int migratetype)
1115{
1116 int nr_pageblocks = 1 << (start_order - pageblock_order);
1117
1118 while (nr_pageblocks--) {
1119 set_pageblock_migratetype(pageblock_page, migratetype);
1120 pageblock_page += pageblock_nr_pages;
1121 }
1122}
1123
fef903ef 1124/*
9c0415eb
VB
1125 * When we are falling back to another migratetype during allocation, try to
1126 * steal extra free pages from the same pageblocks to satisfy further
1127 * allocations, instead of polluting multiple pageblocks.
1128 *
1129 * If we are stealing a relatively large buddy page, it is likely there will
1130 * be more free pages in the pageblock, so try to steal them all. For
1131 * reclaimable and unmovable allocations, we steal regardless of page size,
1132 * as fragmentation caused by those allocations polluting movable pageblocks
1133 * is worse than movable allocations stealing from unmovable and reclaimable
1134 * pageblocks.
fef903ef 1135 */
4eb7dce6
JK
1136static bool can_steal_fallback(unsigned int order, int start_mt)
1137{
1138 /*
1139 * Leaving this order check is intended, although there is
1140 * relaxed order check in next check. The reason is that
1141 * we can actually steal whole pageblock if this condition met,
1142 * but, below check doesn't guarantee it and that is just heuristic
1143 * so could be changed anytime.
1144 */
1145 if (order >= pageblock_order)
1146 return true;
1147
1148 if (order >= pageblock_order / 2 ||
1149 start_mt == MIGRATE_RECLAIMABLE ||
1150 start_mt == MIGRATE_UNMOVABLE ||
1151 page_group_by_mobility_disabled)
1152 return true;
1153
1154 return false;
1155}
1156
1157/*
1158 * This function implements actual steal behaviour. If order is large enough,
1159 * we can steal whole pageblock. If not, we first move freepages in this
1160 * pageblock and check whether half of pages are moved or not. If half of
1161 * pages are moved, we can change migratetype of pageblock and permanently
1162 * use it's pages as requested migratetype in the future.
1163 */
1164static void steal_suitable_fallback(struct zone *zone, struct page *page,
1165 int start_type)
fef903ef
SB
1166{
1167 int current_order = page_order(page);
4eb7dce6 1168 int pages;
fef903ef 1169
fef903ef
SB
1170 /* Take ownership for orders >= pageblock_order */
1171 if (current_order >= pageblock_order) {
1172 change_pageblock_range(page, current_order, start_type);
3a1086fb 1173 return;
fef903ef
SB
1174 }
1175
4eb7dce6 1176 pages = move_freepages_block(zone, page, start_type);
fef903ef 1177
4eb7dce6
JK
1178 /* Claim the whole block if over half of it is free */
1179 if (pages >= (1 << (pageblock_order-1)) ||
1180 page_group_by_mobility_disabled)
1181 set_pageblock_migratetype(page, start_type);
1182}
1183
2149cdae
JK
1184/*
1185 * Check whether there is a suitable fallback freepage with requested order.
1186 * If only_stealable is true, this function returns fallback_mt only if
1187 * we can steal other freepages all together. This would help to reduce
1188 * fragmentation due to mixed migratetype pages in one pageblock.
1189 */
1190int find_suitable_fallback(struct free_area *area, unsigned int order,
1191 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1192{
1193 int i;
1194 int fallback_mt;
1195
1196 if (area->nr_free == 0)
1197 return -1;
1198
1199 *can_steal = false;
1200 for (i = 0;; i++) {
1201 fallback_mt = fallbacks[migratetype][i];
1202 if (fallback_mt == MIGRATE_RESERVE)
1203 break;
1204
1205 if (list_empty(&area->free_list[fallback_mt]))
1206 continue;
fef903ef 1207
4eb7dce6
JK
1208 if (can_steal_fallback(order, migratetype))
1209 *can_steal = true;
1210
2149cdae
JK
1211 if (!only_stealable)
1212 return fallback_mt;
1213
1214 if (*can_steal)
1215 return fallback_mt;
fef903ef 1216 }
4eb7dce6
JK
1217
1218 return -1;
fef903ef
SB
1219}
1220
b2a0ac88 1221/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1222static inline struct page *
7aeb09f9 1223__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1224{
b8af2941 1225 struct free_area *area;
7aeb09f9 1226 unsigned int current_order;
b2a0ac88 1227 struct page *page;
4eb7dce6
JK
1228 int fallback_mt;
1229 bool can_steal;
b2a0ac88
MG
1230
1231 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1232 for (current_order = MAX_ORDER-1;
1233 current_order >= order && current_order <= MAX_ORDER-1;
1234 --current_order) {
4eb7dce6
JK
1235 area = &(zone->free_area[current_order]);
1236 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1237 start_migratetype, false, &can_steal);
4eb7dce6
JK
1238 if (fallback_mt == -1)
1239 continue;
b2a0ac88 1240
4eb7dce6
JK
1241 page = list_entry(area->free_list[fallback_mt].next,
1242 struct page, lru);
1243 if (can_steal)
1244 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1245
4eb7dce6
JK
1246 /* Remove the page from the freelists */
1247 area->nr_free--;
1248 list_del(&page->lru);
1249 rmv_page_order(page);
3a1086fb 1250
4eb7dce6
JK
1251 expand(zone, page, order, current_order, area,
1252 start_migratetype);
1253 /*
1254 * The freepage_migratetype may differ from pageblock's
1255 * migratetype depending on the decisions in
1256 * try_to_steal_freepages(). This is OK as long as it
1257 * does not differ for MIGRATE_CMA pageblocks. For CMA
1258 * we need to make sure unallocated pages flushed from
1259 * pcp lists are returned to the correct freelist.
1260 */
1261 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1262
4eb7dce6
JK
1263 trace_mm_page_alloc_extfrag(page, order, current_order,
1264 start_migratetype, fallback_mt);
e0fff1bd 1265
4eb7dce6 1266 return page;
b2a0ac88
MG
1267 }
1268
728ec980 1269 return NULL;
b2a0ac88
MG
1270}
1271
56fd56b8 1272/*
1da177e4
LT
1273 * Do the hard work of removing an element from the buddy allocator.
1274 * Call me with the zone->lock already held.
1275 */
b2a0ac88
MG
1276static struct page *__rmqueue(struct zone *zone, unsigned int order,
1277 int migratetype)
1da177e4 1278{
1da177e4
LT
1279 struct page *page;
1280
728ec980 1281retry_reserve:
56fd56b8 1282 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1283
728ec980 1284 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1285 if (migratetype == MIGRATE_MOVABLE)
1286 page = __rmqueue_cma_fallback(zone, order);
1287
1288 if (!page)
1289 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1290
728ec980
MG
1291 /*
1292 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1293 * is used because __rmqueue_smallest is an inline function
1294 * and we want just one call site
1295 */
1296 if (!page) {
1297 migratetype = MIGRATE_RESERVE;
1298 goto retry_reserve;
1299 }
1300 }
1301
0d3d062a 1302 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1303 return page;
1da177e4
LT
1304}
1305
5f63b720 1306/*
1da177e4
LT
1307 * Obtain a specified number of elements from the buddy allocator, all under
1308 * a single hold of the lock, for efficiency. Add them to the supplied list.
1309 * Returns the number of new pages which were placed at *list.
1310 */
5f63b720 1311static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1312 unsigned long count, struct list_head *list,
b745bc85 1313 int migratetype, bool cold)
1da177e4 1314{
5bcc9f86 1315 int i;
5f63b720 1316
c54ad30c 1317 spin_lock(&zone->lock);
1da177e4 1318 for (i = 0; i < count; ++i) {
b2a0ac88 1319 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1320 if (unlikely(page == NULL))
1da177e4 1321 break;
81eabcbe
MG
1322
1323 /*
1324 * Split buddy pages returned by expand() are received here
1325 * in physical page order. The page is added to the callers and
1326 * list and the list head then moves forward. From the callers
1327 * perspective, the linked list is ordered by page number in
1328 * some conditions. This is useful for IO devices that can
1329 * merge IO requests if the physical pages are ordered
1330 * properly.
1331 */
b745bc85 1332 if (likely(!cold))
e084b2d9
MG
1333 list_add(&page->lru, list);
1334 else
1335 list_add_tail(&page->lru, list);
81eabcbe 1336 list = &page->lru;
5bcc9f86 1337 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1338 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1339 -(1 << order));
1da177e4 1340 }
f2260e6b 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1342 spin_unlock(&zone->lock);
085cc7d5 1343 return i;
1da177e4
LT
1344}
1345
4ae7c039 1346#ifdef CONFIG_NUMA
8fce4d8e 1347/*
4037d452
CL
1348 * Called from the vmstat counter updater to drain pagesets of this
1349 * currently executing processor on remote nodes after they have
1350 * expired.
1351 *
879336c3
CL
1352 * Note that this function must be called with the thread pinned to
1353 * a single processor.
8fce4d8e 1354 */
4037d452 1355void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1356{
4ae7c039 1357 unsigned long flags;
7be12fc9 1358 int to_drain, batch;
4ae7c039 1359
4037d452 1360 local_irq_save(flags);
4db0c3c2 1361 batch = READ_ONCE(pcp->batch);
7be12fc9 1362 to_drain = min(pcp->count, batch);
2a13515c
KM
1363 if (to_drain > 0) {
1364 free_pcppages_bulk(zone, to_drain, pcp);
1365 pcp->count -= to_drain;
1366 }
4037d452 1367 local_irq_restore(flags);
4ae7c039
CL
1368}
1369#endif
1370
9f8f2172 1371/*
93481ff0 1372 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1373 *
1374 * The processor must either be the current processor and the
1375 * thread pinned to the current processor or a processor that
1376 * is not online.
1377 */
93481ff0 1378static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1379{
c54ad30c 1380 unsigned long flags;
93481ff0
VB
1381 struct per_cpu_pageset *pset;
1382 struct per_cpu_pages *pcp;
1da177e4 1383
93481ff0
VB
1384 local_irq_save(flags);
1385 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1386
93481ff0
VB
1387 pcp = &pset->pcp;
1388 if (pcp->count) {
1389 free_pcppages_bulk(zone, pcp->count, pcp);
1390 pcp->count = 0;
1391 }
1392 local_irq_restore(flags);
1393}
3dfa5721 1394
93481ff0
VB
1395/*
1396 * Drain pcplists of all zones on the indicated processor.
1397 *
1398 * The processor must either be the current processor and the
1399 * thread pinned to the current processor or a processor that
1400 * is not online.
1401 */
1402static void drain_pages(unsigned int cpu)
1403{
1404 struct zone *zone;
1405
1406 for_each_populated_zone(zone) {
1407 drain_pages_zone(cpu, zone);
1da177e4
LT
1408 }
1409}
1da177e4 1410
9f8f2172
CL
1411/*
1412 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1413 *
1414 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1415 * the single zone's pages.
9f8f2172 1416 */
93481ff0 1417void drain_local_pages(struct zone *zone)
9f8f2172 1418{
93481ff0
VB
1419 int cpu = smp_processor_id();
1420
1421 if (zone)
1422 drain_pages_zone(cpu, zone);
1423 else
1424 drain_pages(cpu);
9f8f2172
CL
1425}
1426
1427/*
74046494
GBY
1428 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1429 *
93481ff0
VB
1430 * When zone parameter is non-NULL, spill just the single zone's pages.
1431 *
74046494
GBY
1432 * Note that this code is protected against sending an IPI to an offline
1433 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1434 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1435 * nothing keeps CPUs from showing up after we populated the cpumask and
1436 * before the call to on_each_cpu_mask().
9f8f2172 1437 */
93481ff0 1438void drain_all_pages(struct zone *zone)
9f8f2172 1439{
74046494 1440 int cpu;
74046494
GBY
1441
1442 /*
1443 * Allocate in the BSS so we wont require allocation in
1444 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1445 */
1446 static cpumask_t cpus_with_pcps;
1447
1448 /*
1449 * We don't care about racing with CPU hotplug event
1450 * as offline notification will cause the notified
1451 * cpu to drain that CPU pcps and on_each_cpu_mask
1452 * disables preemption as part of its processing
1453 */
1454 for_each_online_cpu(cpu) {
93481ff0
VB
1455 struct per_cpu_pageset *pcp;
1456 struct zone *z;
74046494 1457 bool has_pcps = false;
93481ff0
VB
1458
1459 if (zone) {
74046494 1460 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1461 if (pcp->pcp.count)
74046494 1462 has_pcps = true;
93481ff0
VB
1463 } else {
1464 for_each_populated_zone(z) {
1465 pcp = per_cpu_ptr(z->pageset, cpu);
1466 if (pcp->pcp.count) {
1467 has_pcps = true;
1468 break;
1469 }
74046494
GBY
1470 }
1471 }
93481ff0 1472
74046494
GBY
1473 if (has_pcps)
1474 cpumask_set_cpu(cpu, &cpus_with_pcps);
1475 else
1476 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1477 }
93481ff0
VB
1478 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1479 zone, 1);
9f8f2172
CL
1480}
1481
296699de 1482#ifdef CONFIG_HIBERNATION
1da177e4
LT
1483
1484void mark_free_pages(struct zone *zone)
1485{
f623f0db
RW
1486 unsigned long pfn, max_zone_pfn;
1487 unsigned long flags;
7aeb09f9 1488 unsigned int order, t;
1da177e4
LT
1489 struct list_head *curr;
1490
8080fc03 1491 if (zone_is_empty(zone))
1da177e4
LT
1492 return;
1493
1494 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1495
108bcc96 1496 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1497 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1498 if (pfn_valid(pfn)) {
1499 struct page *page = pfn_to_page(pfn);
1500
7be98234
RW
1501 if (!swsusp_page_is_forbidden(page))
1502 swsusp_unset_page_free(page);
f623f0db 1503 }
1da177e4 1504
b2a0ac88
MG
1505 for_each_migratetype_order(order, t) {
1506 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1507 unsigned long i;
1da177e4 1508
f623f0db
RW
1509 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1510 for (i = 0; i < (1UL << order); i++)
7be98234 1511 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1512 }
b2a0ac88 1513 }
1da177e4
LT
1514 spin_unlock_irqrestore(&zone->lock, flags);
1515}
e2c55dc8 1516#endif /* CONFIG_PM */
1da177e4 1517
1da177e4
LT
1518/*
1519 * Free a 0-order page
b745bc85 1520 * cold == true ? free a cold page : free a hot page
1da177e4 1521 */
b745bc85 1522void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1523{
1524 struct zone *zone = page_zone(page);
1525 struct per_cpu_pages *pcp;
1526 unsigned long flags;
dc4b0caf 1527 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1528 int migratetype;
1da177e4 1529
ec95f53a 1530 if (!free_pages_prepare(page, 0))
689bcebf
HD
1531 return;
1532
dc4b0caf 1533 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1534 set_freepage_migratetype(page, migratetype);
1da177e4 1535 local_irq_save(flags);
f8891e5e 1536 __count_vm_event(PGFREE);
da456f14 1537
5f8dcc21
MG
1538 /*
1539 * We only track unmovable, reclaimable and movable on pcp lists.
1540 * Free ISOLATE pages back to the allocator because they are being
1541 * offlined but treat RESERVE as movable pages so we can get those
1542 * areas back if necessary. Otherwise, we may have to free
1543 * excessively into the page allocator
1544 */
1545 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1546 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1547 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1548 goto out;
1549 }
1550 migratetype = MIGRATE_MOVABLE;
1551 }
1552
99dcc3e5 1553 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1554 if (!cold)
5f8dcc21 1555 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1556 else
1557 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1558 pcp->count++;
48db57f8 1559 if (pcp->count >= pcp->high) {
4db0c3c2 1560 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1561 free_pcppages_bulk(zone, batch, pcp);
1562 pcp->count -= batch;
48db57f8 1563 }
5f8dcc21
MG
1564
1565out:
1da177e4 1566 local_irq_restore(flags);
1da177e4
LT
1567}
1568
cc59850e
KK
1569/*
1570 * Free a list of 0-order pages
1571 */
b745bc85 1572void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1573{
1574 struct page *page, *next;
1575
1576 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1577 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1578 free_hot_cold_page(page, cold);
1579 }
1580}
1581
8dfcc9ba
NP
1582/*
1583 * split_page takes a non-compound higher-order page, and splits it into
1584 * n (1<<order) sub-pages: page[0..n]
1585 * Each sub-page must be freed individually.
1586 *
1587 * Note: this is probably too low level an operation for use in drivers.
1588 * Please consult with lkml before using this in your driver.
1589 */
1590void split_page(struct page *page, unsigned int order)
1591{
1592 int i;
1593
309381fe
SL
1594 VM_BUG_ON_PAGE(PageCompound(page), page);
1595 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1596
1597#ifdef CONFIG_KMEMCHECK
1598 /*
1599 * Split shadow pages too, because free(page[0]) would
1600 * otherwise free the whole shadow.
1601 */
1602 if (kmemcheck_page_is_tracked(page))
1603 split_page(virt_to_page(page[0].shadow), order);
1604#endif
1605
48c96a36
JK
1606 set_page_owner(page, 0, 0);
1607 for (i = 1; i < (1 << order); i++) {
7835e98b 1608 set_page_refcounted(page + i);
48c96a36
JK
1609 set_page_owner(page + i, 0, 0);
1610 }
8dfcc9ba 1611}
5853ff23 1612EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1613
3c605096 1614int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1615{
748446bb
MG
1616 unsigned long watermark;
1617 struct zone *zone;
2139cbe6 1618 int mt;
748446bb
MG
1619
1620 BUG_ON(!PageBuddy(page));
1621
1622 zone = page_zone(page);
2e30abd1 1623 mt = get_pageblock_migratetype(page);
748446bb 1624
194159fb 1625 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1626 /* Obey watermarks as if the page was being allocated */
1627 watermark = low_wmark_pages(zone) + (1 << order);
1628 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1629 return 0;
1630
8fb74b9f 1631 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1632 }
748446bb
MG
1633
1634 /* Remove page from free list */
1635 list_del(&page->lru);
1636 zone->free_area[order].nr_free--;
1637 rmv_page_order(page);
2139cbe6 1638
8fb74b9f 1639 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1640 if (order >= pageblock_order - 1) {
1641 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1642 for (; page < endpage; page += pageblock_nr_pages) {
1643 int mt = get_pageblock_migratetype(page);
194159fb 1644 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1645 set_pageblock_migratetype(page,
1646 MIGRATE_MOVABLE);
1647 }
748446bb
MG
1648 }
1649
48c96a36 1650 set_page_owner(page, order, 0);
8fb74b9f 1651 return 1UL << order;
1fb3f8ca
MG
1652}
1653
1654/*
1655 * Similar to split_page except the page is already free. As this is only
1656 * being used for migration, the migratetype of the block also changes.
1657 * As this is called with interrupts disabled, the caller is responsible
1658 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1659 * are enabled.
1660 *
1661 * Note: this is probably too low level an operation for use in drivers.
1662 * Please consult with lkml before using this in your driver.
1663 */
1664int split_free_page(struct page *page)
1665{
1666 unsigned int order;
1667 int nr_pages;
1668
1fb3f8ca
MG
1669 order = page_order(page);
1670
8fb74b9f 1671 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1672 if (!nr_pages)
1673 return 0;
1674
1675 /* Split into individual pages */
1676 set_page_refcounted(page);
1677 split_page(page, order);
1678 return nr_pages;
748446bb
MG
1679}
1680
1da177e4 1681/*
75379191 1682 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1683 */
0a15c3e9
MG
1684static inline
1685struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1686 struct zone *zone, unsigned int order,
1687 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1688{
1689 unsigned long flags;
689bcebf 1690 struct page *page;
b745bc85 1691 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1692
48db57f8 1693 if (likely(order == 0)) {
1da177e4 1694 struct per_cpu_pages *pcp;
5f8dcc21 1695 struct list_head *list;
1da177e4 1696
1da177e4 1697 local_irq_save(flags);
99dcc3e5
CL
1698 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1699 list = &pcp->lists[migratetype];
5f8dcc21 1700 if (list_empty(list)) {
535131e6 1701 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1702 pcp->batch, list,
e084b2d9 1703 migratetype, cold);
5f8dcc21 1704 if (unlikely(list_empty(list)))
6fb332fa 1705 goto failed;
535131e6 1706 }
b92a6edd 1707
5f8dcc21
MG
1708 if (cold)
1709 page = list_entry(list->prev, struct page, lru);
1710 else
1711 page = list_entry(list->next, struct page, lru);
1712
b92a6edd
MG
1713 list_del(&page->lru);
1714 pcp->count--;
7fb1d9fc 1715 } else {
dab48dab
AM
1716 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1717 /*
1718 * __GFP_NOFAIL is not to be used in new code.
1719 *
1720 * All __GFP_NOFAIL callers should be fixed so that they
1721 * properly detect and handle allocation failures.
1722 *
1723 * We most definitely don't want callers attempting to
4923abf9 1724 * allocate greater than order-1 page units with
dab48dab
AM
1725 * __GFP_NOFAIL.
1726 */
4923abf9 1727 WARN_ON_ONCE(order > 1);
dab48dab 1728 }
1da177e4 1729 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1730 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1731 spin_unlock(&zone->lock);
1732 if (!page)
1733 goto failed;
d1ce749a 1734 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1735 get_freepage_migratetype(page));
1da177e4
LT
1736 }
1737
3a025760 1738 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1739 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1740 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1741 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1742
f8891e5e 1743 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1744 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1745 local_irq_restore(flags);
1da177e4 1746
309381fe 1747 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1748 return page;
a74609fa
NP
1749
1750failed:
1751 local_irq_restore(flags);
a74609fa 1752 return NULL;
1da177e4
LT
1753}
1754
933e312e
AM
1755#ifdef CONFIG_FAIL_PAGE_ALLOC
1756
b2588c4b 1757static struct {
933e312e
AM
1758 struct fault_attr attr;
1759
1760 u32 ignore_gfp_highmem;
1761 u32 ignore_gfp_wait;
54114994 1762 u32 min_order;
933e312e
AM
1763} fail_page_alloc = {
1764 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1765 .ignore_gfp_wait = 1,
1766 .ignore_gfp_highmem = 1,
54114994 1767 .min_order = 1,
933e312e
AM
1768};
1769
1770static int __init setup_fail_page_alloc(char *str)
1771{
1772 return setup_fault_attr(&fail_page_alloc.attr, str);
1773}
1774__setup("fail_page_alloc=", setup_fail_page_alloc);
1775
deaf386e 1776static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1777{
54114994 1778 if (order < fail_page_alloc.min_order)
deaf386e 1779 return false;
933e312e 1780 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1781 return false;
933e312e 1782 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1783 return false;
933e312e 1784 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1785 return false;
933e312e
AM
1786
1787 return should_fail(&fail_page_alloc.attr, 1 << order);
1788}
1789
1790#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1791
1792static int __init fail_page_alloc_debugfs(void)
1793{
f4ae40a6 1794 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1795 struct dentry *dir;
933e312e 1796
dd48c085
AM
1797 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1798 &fail_page_alloc.attr);
1799 if (IS_ERR(dir))
1800 return PTR_ERR(dir);
933e312e 1801
b2588c4b
AM
1802 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1803 &fail_page_alloc.ignore_gfp_wait))
1804 goto fail;
1805 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1806 &fail_page_alloc.ignore_gfp_highmem))
1807 goto fail;
1808 if (!debugfs_create_u32("min-order", mode, dir,
1809 &fail_page_alloc.min_order))
1810 goto fail;
1811
1812 return 0;
1813fail:
dd48c085 1814 debugfs_remove_recursive(dir);
933e312e 1815
b2588c4b 1816 return -ENOMEM;
933e312e
AM
1817}
1818
1819late_initcall(fail_page_alloc_debugfs);
1820
1821#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1822
1823#else /* CONFIG_FAIL_PAGE_ALLOC */
1824
deaf386e 1825static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1826{
deaf386e 1827 return false;
933e312e
AM
1828}
1829
1830#endif /* CONFIG_FAIL_PAGE_ALLOC */
1831
1da177e4 1832/*
88f5acf8 1833 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1834 * of the allocation.
1835 */
7aeb09f9
MG
1836static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1837 unsigned long mark, int classzone_idx, int alloc_flags,
1838 long free_pages)
1da177e4 1839{
26086de3 1840 /* free_pages may go negative - that's OK */
d23ad423 1841 long min = mark;
1da177e4 1842 int o;
026b0814 1843 long free_cma = 0;
1da177e4 1844
df0a6daa 1845 free_pages -= (1 << order) - 1;
7fb1d9fc 1846 if (alloc_flags & ALLOC_HIGH)
1da177e4 1847 min -= min / 2;
7fb1d9fc 1848 if (alloc_flags & ALLOC_HARDER)
1da177e4 1849 min -= min / 4;
d95ea5d1
BZ
1850#ifdef CONFIG_CMA
1851 /* If allocation can't use CMA areas don't use free CMA pages */
1852 if (!(alloc_flags & ALLOC_CMA))
026b0814 1853 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1854#endif
026b0814 1855
3484b2de 1856 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1857 return false;
1da177e4
LT
1858 for (o = 0; o < order; o++) {
1859 /* At the next order, this order's pages become unavailable */
1860 free_pages -= z->free_area[o].nr_free << o;
1861
1862 /* Require fewer higher order pages to be free */
1863 min >>= 1;
1864
1865 if (free_pages <= min)
88f5acf8 1866 return false;
1da177e4 1867 }
88f5acf8
MG
1868 return true;
1869}
1870
7aeb09f9 1871bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1872 int classzone_idx, int alloc_flags)
1873{
1874 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1875 zone_page_state(z, NR_FREE_PAGES));
1876}
1877
7aeb09f9
MG
1878bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1879 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1880{
1881 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1882
1883 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1884 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1885
1886 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1887 free_pages);
1da177e4
LT
1888}
1889
9276b1bc
PJ
1890#ifdef CONFIG_NUMA
1891/*
1892 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1893 * skip over zones that are not allowed by the cpuset, or that have
1894 * been recently (in last second) found to be nearly full. See further
1895 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1896 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1897 *
a1aeb65a 1898 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1899 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1900 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1901 *
1902 * If the zonelist cache is not available for this zonelist, does
1903 * nothing and returns NULL.
1904 *
1905 * If the fullzones BITMAP in the zonelist cache is stale (more than
1906 * a second since last zap'd) then we zap it out (clear its bits.)
1907 *
1908 * We hold off even calling zlc_setup, until after we've checked the
1909 * first zone in the zonelist, on the theory that most allocations will
1910 * be satisfied from that first zone, so best to examine that zone as
1911 * quickly as we can.
1912 */
1913static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1914{
1915 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1916 nodemask_t *allowednodes; /* zonelist_cache approximation */
1917
1918 zlc = zonelist->zlcache_ptr;
1919 if (!zlc)
1920 return NULL;
1921
f05111f5 1922 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1923 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1924 zlc->last_full_zap = jiffies;
1925 }
1926
1927 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1928 &cpuset_current_mems_allowed :
4b0ef1fe 1929 &node_states[N_MEMORY];
9276b1bc
PJ
1930 return allowednodes;
1931}
1932
1933/*
1934 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1935 * if it is worth looking at further for free memory:
1936 * 1) Check that the zone isn't thought to be full (doesn't have its
1937 * bit set in the zonelist_cache fullzones BITMAP).
1938 * 2) Check that the zones node (obtained from the zonelist_cache
1939 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1940 * Return true (non-zero) if zone is worth looking at further, or
1941 * else return false (zero) if it is not.
1942 *
1943 * This check -ignores- the distinction between various watermarks,
1944 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1945 * found to be full for any variation of these watermarks, it will
1946 * be considered full for up to one second by all requests, unless
1947 * we are so low on memory on all allowed nodes that we are forced
1948 * into the second scan of the zonelist.
1949 *
1950 * In the second scan we ignore this zonelist cache and exactly
1951 * apply the watermarks to all zones, even it is slower to do so.
1952 * We are low on memory in the second scan, and should leave no stone
1953 * unturned looking for a free page.
1954 */
dd1a239f 1955static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1956 nodemask_t *allowednodes)
1957{
1958 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1959 int i; /* index of *z in zonelist zones */
1960 int n; /* node that zone *z is on */
1961
1962 zlc = zonelist->zlcache_ptr;
1963 if (!zlc)
1964 return 1;
1965
dd1a239f 1966 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1967 n = zlc->z_to_n[i];
1968
1969 /* This zone is worth trying if it is allowed but not full */
1970 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1971}
1972
1973/*
1974 * Given 'z' scanning a zonelist, set the corresponding bit in
1975 * zlc->fullzones, so that subsequent attempts to allocate a page
1976 * from that zone don't waste time re-examining it.
1977 */
dd1a239f 1978static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1979{
1980 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1981 int i; /* index of *z in zonelist zones */
1982
1983 zlc = zonelist->zlcache_ptr;
1984 if (!zlc)
1985 return;
1986
dd1a239f 1987 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1988
1989 set_bit(i, zlc->fullzones);
1990}
1991
76d3fbf8
MG
1992/*
1993 * clear all zones full, called after direct reclaim makes progress so that
1994 * a zone that was recently full is not skipped over for up to a second
1995 */
1996static void zlc_clear_zones_full(struct zonelist *zonelist)
1997{
1998 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1999
2000 zlc = zonelist->zlcache_ptr;
2001 if (!zlc)
2002 return;
2003
2004 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2005}
2006
81c0a2bb
JW
2007static bool zone_local(struct zone *local_zone, struct zone *zone)
2008{
fff4068c 2009 return local_zone->node == zone->node;
81c0a2bb
JW
2010}
2011
957f822a
DR
2012static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2013{
5f7a75ac
MG
2014 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2015 RECLAIM_DISTANCE;
957f822a
DR
2016}
2017
9276b1bc
PJ
2018#else /* CONFIG_NUMA */
2019
2020static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2021{
2022 return NULL;
2023}
2024
dd1a239f 2025static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2026 nodemask_t *allowednodes)
2027{
2028 return 1;
2029}
2030
dd1a239f 2031static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2032{
2033}
76d3fbf8
MG
2034
2035static void zlc_clear_zones_full(struct zonelist *zonelist)
2036{
2037}
957f822a 2038
81c0a2bb
JW
2039static bool zone_local(struct zone *local_zone, struct zone *zone)
2040{
2041 return true;
2042}
2043
957f822a
DR
2044static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2045{
2046 return true;
2047}
2048
9276b1bc
PJ
2049#endif /* CONFIG_NUMA */
2050
4ffeaf35
MG
2051static void reset_alloc_batches(struct zone *preferred_zone)
2052{
2053 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2054
2055 do {
2056 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2057 high_wmark_pages(zone) - low_wmark_pages(zone) -
2058 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2059 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2060 } while (zone++ != preferred_zone);
2061}
2062
7fb1d9fc 2063/*
0798e519 2064 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2065 * a page.
2066 */
2067static struct page *
a9263751
VB
2068get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2069 const struct alloc_context *ac)
753ee728 2070{
a9263751 2071 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2072 struct zoneref *z;
7fb1d9fc 2073 struct page *page = NULL;
5117f45d 2074 struct zone *zone;
9276b1bc
PJ
2075 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2076 int zlc_active = 0; /* set if using zonelist_cache */
2077 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2078 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2079 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2080 int nr_fair_skipped = 0;
2081 bool zonelist_rescan;
54a6eb5c 2082
9276b1bc 2083zonelist_scan:
4ffeaf35
MG
2084 zonelist_rescan = false;
2085
7fb1d9fc 2086 /*
9276b1bc 2087 * Scan zonelist, looking for a zone with enough free.
344736f2 2088 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2089 */
a9263751
VB
2090 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2091 ac->nodemask) {
e085dbc5
JW
2092 unsigned long mark;
2093
e5adfffc 2094 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2095 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2096 continue;
664eedde
MG
2097 if (cpusets_enabled() &&
2098 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2099 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2100 continue;
81c0a2bb
JW
2101 /*
2102 * Distribute pages in proportion to the individual
2103 * zone size to ensure fair page aging. The zone a
2104 * page was allocated in should have no effect on the
2105 * time the page has in memory before being reclaimed.
81c0a2bb 2106 */
3a025760 2107 if (alloc_flags & ALLOC_FAIR) {
a9263751 2108 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2109 break;
57054651 2110 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2111 nr_fair_skipped++;
3a025760 2112 continue;
4ffeaf35 2113 }
81c0a2bb 2114 }
a756cf59
JW
2115 /*
2116 * When allocating a page cache page for writing, we
2117 * want to get it from a zone that is within its dirty
2118 * limit, such that no single zone holds more than its
2119 * proportional share of globally allowed dirty pages.
2120 * The dirty limits take into account the zone's
2121 * lowmem reserves and high watermark so that kswapd
2122 * should be able to balance it without having to
2123 * write pages from its LRU list.
2124 *
2125 * This may look like it could increase pressure on
2126 * lower zones by failing allocations in higher zones
2127 * before they are full. But the pages that do spill
2128 * over are limited as the lower zones are protected
2129 * by this very same mechanism. It should not become
2130 * a practical burden to them.
2131 *
2132 * XXX: For now, allow allocations to potentially
2133 * exceed the per-zone dirty limit in the slowpath
2134 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2135 * which is important when on a NUMA setup the allowed
2136 * zones are together not big enough to reach the
2137 * global limit. The proper fix for these situations
2138 * will require awareness of zones in the
2139 * dirty-throttling and the flusher threads.
2140 */
a6e21b14 2141 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2142 continue;
7fb1d9fc 2143
e085dbc5
JW
2144 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2145 if (!zone_watermark_ok(zone, order, mark,
a9263751 2146 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2147 int ret;
2148
5dab2911
MG
2149 /* Checked here to keep the fast path fast */
2150 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2151 if (alloc_flags & ALLOC_NO_WATERMARKS)
2152 goto try_this_zone;
2153
e5adfffc
KS
2154 if (IS_ENABLED(CONFIG_NUMA) &&
2155 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2156 /*
2157 * we do zlc_setup if there are multiple nodes
2158 * and before considering the first zone allowed
2159 * by the cpuset.
2160 */
2161 allowednodes = zlc_setup(zonelist, alloc_flags);
2162 zlc_active = 1;
2163 did_zlc_setup = 1;
2164 }
2165
957f822a 2166 if (zone_reclaim_mode == 0 ||
a9263751 2167 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2168 goto this_zone_full;
2169
cd38b115
MG
2170 /*
2171 * As we may have just activated ZLC, check if the first
2172 * eligible zone has failed zone_reclaim recently.
2173 */
e5adfffc 2174 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2175 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2176 continue;
2177
fa5e084e
MG
2178 ret = zone_reclaim(zone, gfp_mask, order);
2179 switch (ret) {
2180 case ZONE_RECLAIM_NOSCAN:
2181 /* did not scan */
cd38b115 2182 continue;
fa5e084e
MG
2183 case ZONE_RECLAIM_FULL:
2184 /* scanned but unreclaimable */
cd38b115 2185 continue;
fa5e084e
MG
2186 default:
2187 /* did we reclaim enough */
fed2719e 2188 if (zone_watermark_ok(zone, order, mark,
a9263751 2189 ac->classzone_idx, alloc_flags))
fed2719e
MG
2190 goto try_this_zone;
2191
2192 /*
2193 * Failed to reclaim enough to meet watermark.
2194 * Only mark the zone full if checking the min
2195 * watermark or if we failed to reclaim just
2196 * 1<<order pages or else the page allocator
2197 * fastpath will prematurely mark zones full
2198 * when the watermark is between the low and
2199 * min watermarks.
2200 */
2201 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2202 ret == ZONE_RECLAIM_SOME)
9276b1bc 2203 goto this_zone_full;
fed2719e
MG
2204
2205 continue;
0798e519 2206 }
7fb1d9fc
RS
2207 }
2208
fa5e084e 2209try_this_zone:
a9263751
VB
2210 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2211 gfp_mask, ac->migratetype);
75379191
VB
2212 if (page) {
2213 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2214 goto try_this_zone;
2215 return page;
2216 }
9276b1bc 2217this_zone_full:
65bb3719 2218 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2219 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2220 }
9276b1bc 2221
4ffeaf35
MG
2222 /*
2223 * The first pass makes sure allocations are spread fairly within the
2224 * local node. However, the local node might have free pages left
2225 * after the fairness batches are exhausted, and remote zones haven't
2226 * even been considered yet. Try once more without fairness, and
2227 * include remote zones now, before entering the slowpath and waking
2228 * kswapd: prefer spilling to a remote zone over swapping locally.
2229 */
2230 if (alloc_flags & ALLOC_FAIR) {
2231 alloc_flags &= ~ALLOC_FAIR;
2232 if (nr_fair_skipped) {
2233 zonelist_rescan = true;
a9263751 2234 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2235 }
2236 if (nr_online_nodes > 1)
2237 zonelist_rescan = true;
2238 }
2239
2240 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2241 /* Disable zlc cache for second zonelist scan */
2242 zlc_active = 0;
2243 zonelist_rescan = true;
2244 }
2245
2246 if (zonelist_rescan)
2247 goto zonelist_scan;
2248
2249 return NULL;
753ee728
MH
2250}
2251
29423e77
DR
2252/*
2253 * Large machines with many possible nodes should not always dump per-node
2254 * meminfo in irq context.
2255 */
2256static inline bool should_suppress_show_mem(void)
2257{
2258 bool ret = false;
2259
2260#if NODES_SHIFT > 8
2261 ret = in_interrupt();
2262#endif
2263 return ret;
2264}
2265
a238ab5b
DH
2266static DEFINE_RATELIMIT_STATE(nopage_rs,
2267 DEFAULT_RATELIMIT_INTERVAL,
2268 DEFAULT_RATELIMIT_BURST);
2269
2270void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2271{
a238ab5b
DH
2272 unsigned int filter = SHOW_MEM_FILTER_NODES;
2273
c0a32fc5
SG
2274 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2275 debug_guardpage_minorder() > 0)
a238ab5b
DH
2276 return;
2277
2278 /*
2279 * This documents exceptions given to allocations in certain
2280 * contexts that are allowed to allocate outside current's set
2281 * of allowed nodes.
2282 */
2283 if (!(gfp_mask & __GFP_NOMEMALLOC))
2284 if (test_thread_flag(TIF_MEMDIE) ||
2285 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2286 filter &= ~SHOW_MEM_FILTER_NODES;
2287 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2288 filter &= ~SHOW_MEM_FILTER_NODES;
2289
2290 if (fmt) {
3ee9a4f0
JP
2291 struct va_format vaf;
2292 va_list args;
2293
a238ab5b 2294 va_start(args, fmt);
3ee9a4f0
JP
2295
2296 vaf.fmt = fmt;
2297 vaf.va = &args;
2298
2299 pr_warn("%pV", &vaf);
2300
a238ab5b
DH
2301 va_end(args);
2302 }
2303
3ee9a4f0
JP
2304 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2305 current->comm, order, gfp_mask);
a238ab5b
DH
2306
2307 dump_stack();
2308 if (!should_suppress_show_mem())
2309 show_mem(filter);
2310}
2311
11e33f6a
MG
2312static inline struct page *
2313__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2314 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2315{
2316 struct page *page;
2317
9879de73
JW
2318 *did_some_progress = 0;
2319
9879de73 2320 /*
dc56401f
JW
2321 * Acquire the oom lock. If that fails, somebody else is
2322 * making progress for us.
9879de73 2323 */
dc56401f 2324 if (!mutex_trylock(&oom_lock)) {
9879de73 2325 *did_some_progress = 1;
11e33f6a 2326 schedule_timeout_uninterruptible(1);
1da177e4
LT
2327 return NULL;
2328 }
6b1de916 2329
11e33f6a
MG
2330 /*
2331 * Go through the zonelist yet one more time, keep very high watermark
2332 * here, this is only to catch a parallel oom killing, we must fail if
2333 * we're still under heavy pressure.
2334 */
a9263751
VB
2335 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2336 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2337 if (page)
11e33f6a
MG
2338 goto out;
2339
4365a567 2340 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2341 /* Coredumps can quickly deplete all memory reserves */
2342 if (current->flags & PF_DUMPCORE)
2343 goto out;
4365a567
KH
2344 /* The OOM killer will not help higher order allocs */
2345 if (order > PAGE_ALLOC_COSTLY_ORDER)
2346 goto out;
03668b3c 2347 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2348 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2349 goto out;
9083905a 2350 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2351 if (!(gfp_mask & __GFP_FS)) {
2352 /*
2353 * XXX: Page reclaim didn't yield anything,
2354 * and the OOM killer can't be invoked, but
9083905a 2355 * keep looping as per tradition.
cc873177
JW
2356 */
2357 *did_some_progress = 1;
9879de73 2358 goto out;
cc873177 2359 }
9083905a
JW
2360 if (pm_suspended_storage())
2361 goto out;
4167e9b2 2362 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2363 if (gfp_mask & __GFP_THISNODE)
2364 goto out;
2365 }
11e33f6a 2366 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2367 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2368 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2369 *did_some_progress = 1;
11e33f6a 2370out:
dc56401f 2371 mutex_unlock(&oom_lock);
11e33f6a
MG
2372 return page;
2373}
2374
56de7263
MG
2375#ifdef CONFIG_COMPACTION
2376/* Try memory compaction for high-order allocations before reclaim */
2377static struct page *
2378__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2379 int alloc_flags, const struct alloc_context *ac,
2380 enum migrate_mode mode, int *contended_compaction,
2381 bool *deferred_compaction)
56de7263 2382{
53853e2d 2383 unsigned long compact_result;
98dd3b48 2384 struct page *page;
53853e2d
VB
2385
2386 if (!order)
66199712 2387 return NULL;
66199712 2388
c06b1fca 2389 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2390 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2391 mode, contended_compaction);
c06b1fca 2392 current->flags &= ~PF_MEMALLOC;
56de7263 2393
98dd3b48
VB
2394 switch (compact_result) {
2395 case COMPACT_DEFERRED:
53853e2d 2396 *deferred_compaction = true;
98dd3b48
VB
2397 /* fall-through */
2398 case COMPACT_SKIPPED:
2399 return NULL;
2400 default:
2401 break;
2402 }
53853e2d 2403
98dd3b48
VB
2404 /*
2405 * At least in one zone compaction wasn't deferred or skipped, so let's
2406 * count a compaction stall
2407 */
2408 count_vm_event(COMPACTSTALL);
8fb74b9f 2409
a9263751
VB
2410 page = get_page_from_freelist(gfp_mask, order,
2411 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2412
98dd3b48
VB
2413 if (page) {
2414 struct zone *zone = page_zone(page);
53853e2d 2415
98dd3b48
VB
2416 zone->compact_blockskip_flush = false;
2417 compaction_defer_reset(zone, order, true);
2418 count_vm_event(COMPACTSUCCESS);
2419 return page;
2420 }
56de7263 2421
98dd3b48
VB
2422 /*
2423 * It's bad if compaction run occurs and fails. The most likely reason
2424 * is that pages exist, but not enough to satisfy watermarks.
2425 */
2426 count_vm_event(COMPACTFAIL);
66199712 2427
98dd3b48 2428 cond_resched();
56de7263
MG
2429
2430 return NULL;
2431}
2432#else
2433static inline struct page *
2434__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2435 int alloc_flags, const struct alloc_context *ac,
2436 enum migrate_mode mode, int *contended_compaction,
2437 bool *deferred_compaction)
56de7263
MG
2438{
2439 return NULL;
2440}
2441#endif /* CONFIG_COMPACTION */
2442
bba90710
MS
2443/* Perform direct synchronous page reclaim */
2444static int
a9263751
VB
2445__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2446 const struct alloc_context *ac)
11e33f6a 2447{
11e33f6a 2448 struct reclaim_state reclaim_state;
bba90710 2449 int progress;
11e33f6a
MG
2450
2451 cond_resched();
2452
2453 /* We now go into synchronous reclaim */
2454 cpuset_memory_pressure_bump();
c06b1fca 2455 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2456 lockdep_set_current_reclaim_state(gfp_mask);
2457 reclaim_state.reclaimed_slab = 0;
c06b1fca 2458 current->reclaim_state = &reclaim_state;
11e33f6a 2459
a9263751
VB
2460 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2461 ac->nodemask);
11e33f6a 2462
c06b1fca 2463 current->reclaim_state = NULL;
11e33f6a 2464 lockdep_clear_current_reclaim_state();
c06b1fca 2465 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2466
2467 cond_resched();
2468
bba90710
MS
2469 return progress;
2470}
2471
2472/* The really slow allocator path where we enter direct reclaim */
2473static inline struct page *
2474__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2475 int alloc_flags, const struct alloc_context *ac,
2476 unsigned long *did_some_progress)
bba90710
MS
2477{
2478 struct page *page = NULL;
2479 bool drained = false;
2480
a9263751 2481 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2482 if (unlikely(!(*did_some_progress)))
2483 return NULL;
11e33f6a 2484
76d3fbf8 2485 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2486 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2487 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2488
9ee493ce 2489retry:
a9263751
VB
2490 page = get_page_from_freelist(gfp_mask, order,
2491 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2492
2493 /*
2494 * If an allocation failed after direct reclaim, it could be because
2495 * pages are pinned on the per-cpu lists. Drain them and try again
2496 */
2497 if (!page && !drained) {
93481ff0 2498 drain_all_pages(NULL);
9ee493ce
MG
2499 drained = true;
2500 goto retry;
2501 }
2502
11e33f6a
MG
2503 return page;
2504}
2505
1da177e4 2506/*
11e33f6a
MG
2507 * This is called in the allocator slow-path if the allocation request is of
2508 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2509 */
11e33f6a
MG
2510static inline struct page *
2511__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2512 const struct alloc_context *ac)
11e33f6a
MG
2513{
2514 struct page *page;
2515
2516 do {
a9263751
VB
2517 page = get_page_from_freelist(gfp_mask, order,
2518 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2519
2520 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2521 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2522 HZ/50);
11e33f6a
MG
2523 } while (!page && (gfp_mask & __GFP_NOFAIL));
2524
2525 return page;
2526}
2527
a9263751 2528static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2529{
2530 struct zoneref *z;
2531 struct zone *zone;
2532
a9263751
VB
2533 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2534 ac->high_zoneidx, ac->nodemask)
2535 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2536}
2537
341ce06f
PZ
2538static inline int
2539gfp_to_alloc_flags(gfp_t gfp_mask)
2540{
341ce06f 2541 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2542 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2543
a56f57ff 2544 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2545 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2546
341ce06f
PZ
2547 /*
2548 * The caller may dip into page reserves a bit more if the caller
2549 * cannot run direct reclaim, or if the caller has realtime scheduling
2550 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2551 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2552 */
e6223a3b 2553 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2554
b104a35d 2555 if (atomic) {
5c3240d9 2556 /*
b104a35d
DR
2557 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2558 * if it can't schedule.
5c3240d9 2559 */
b104a35d 2560 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2561 alloc_flags |= ALLOC_HARDER;
523b9458 2562 /*
b104a35d 2563 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2564 * comment for __cpuset_node_allowed().
523b9458 2565 */
341ce06f 2566 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2567 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2568 alloc_flags |= ALLOC_HARDER;
2569
b37f1dd0
MG
2570 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2571 if (gfp_mask & __GFP_MEMALLOC)
2572 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2573 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2574 alloc_flags |= ALLOC_NO_WATERMARKS;
2575 else if (!in_interrupt() &&
2576 ((current->flags & PF_MEMALLOC) ||
2577 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2578 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2579 }
d95ea5d1 2580#ifdef CONFIG_CMA
43e7a34d 2581 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2582 alloc_flags |= ALLOC_CMA;
2583#endif
341ce06f
PZ
2584 return alloc_flags;
2585}
2586
072bb0aa
MG
2587bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2588{
b37f1dd0 2589 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2590}
2591
11e33f6a
MG
2592static inline struct page *
2593__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2594 struct alloc_context *ac)
11e33f6a
MG
2595{
2596 const gfp_t wait = gfp_mask & __GFP_WAIT;
2597 struct page *page = NULL;
2598 int alloc_flags;
2599 unsigned long pages_reclaimed = 0;
2600 unsigned long did_some_progress;
e0b9daeb 2601 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2602 bool deferred_compaction = false;
1f9efdef 2603 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2604
72807a74
MG
2605 /*
2606 * In the slowpath, we sanity check order to avoid ever trying to
2607 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2608 * be using allocators in order of preference for an area that is
2609 * too large.
2610 */
1fc28b70
MG
2611 if (order >= MAX_ORDER) {
2612 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2613 return NULL;
1fc28b70 2614 }
1da177e4 2615
952f3b51 2616 /*
4167e9b2
DR
2617 * If this allocation cannot block and it is for a specific node, then
2618 * fail early. There's no need to wakeup kswapd or retry for a
2619 * speculative node-specific allocation.
952f3b51 2620 */
4167e9b2 2621 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2622 goto nopage;
2623
9879de73 2624retry:
3a025760 2625 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2626 wake_all_kswapds(order, ac);
1da177e4 2627
9bf2229f 2628 /*
7fb1d9fc
RS
2629 * OK, we're below the kswapd watermark and have kicked background
2630 * reclaim. Now things get more complex, so set up alloc_flags according
2631 * to how we want to proceed.
9bf2229f 2632 */
341ce06f 2633 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2634
f33261d7
DR
2635 /*
2636 * Find the true preferred zone if the allocation is unconstrained by
2637 * cpusets.
2638 */
a9263751 2639 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2640 struct zoneref *preferred_zoneref;
a9263751
VB
2641 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2642 ac->high_zoneidx, NULL, &ac->preferred_zone);
2643 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2644 }
f33261d7 2645
341ce06f 2646 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2647 page = get_page_from_freelist(gfp_mask, order,
2648 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2649 if (page)
2650 goto got_pg;
1da177e4 2651
11e33f6a 2652 /* Allocate without watermarks if the context allows */
341ce06f 2653 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2654 /*
2655 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2656 * the allocation is high priority and these type of
2657 * allocations are system rather than user orientated
2658 */
a9263751
VB
2659 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2660
2661 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2662
cfd19c5a 2663 if (page) {
341ce06f 2664 goto got_pg;
cfd19c5a 2665 }
1da177e4
LT
2666 }
2667
2668 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2669 if (!wait) {
2670 /*
2671 * All existing users of the deprecated __GFP_NOFAIL are
2672 * blockable, so warn of any new users that actually allow this
2673 * type of allocation to fail.
2674 */
2675 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2676 goto nopage;
aed0a0e3 2677 }
1da177e4 2678
341ce06f 2679 /* Avoid recursion of direct reclaim */
c06b1fca 2680 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2681 goto nopage;
2682
6583bb64
DR
2683 /* Avoid allocations with no watermarks from looping endlessly */
2684 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2685 goto nopage;
2686
77f1fe6b
MG
2687 /*
2688 * Try direct compaction. The first pass is asynchronous. Subsequent
2689 * attempts after direct reclaim are synchronous
2690 */
a9263751
VB
2691 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2692 migration_mode,
2693 &contended_compaction,
53853e2d 2694 &deferred_compaction);
56de7263
MG
2695 if (page)
2696 goto got_pg;
75f30861 2697
1f9efdef
VB
2698 /* Checks for THP-specific high-order allocations */
2699 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2700 /*
2701 * If compaction is deferred for high-order allocations, it is
2702 * because sync compaction recently failed. If this is the case
2703 * and the caller requested a THP allocation, we do not want
2704 * to heavily disrupt the system, so we fail the allocation
2705 * instead of entering direct reclaim.
2706 */
2707 if (deferred_compaction)
2708 goto nopage;
2709
2710 /*
2711 * In all zones where compaction was attempted (and not
2712 * deferred or skipped), lock contention has been detected.
2713 * For THP allocation we do not want to disrupt the others
2714 * so we fallback to base pages instead.
2715 */
2716 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2717 goto nopage;
2718
2719 /*
2720 * If compaction was aborted due to need_resched(), we do not
2721 * want to further increase allocation latency, unless it is
2722 * khugepaged trying to collapse.
2723 */
2724 if (contended_compaction == COMPACT_CONTENDED_SCHED
2725 && !(current->flags & PF_KTHREAD))
2726 goto nopage;
2727 }
66199712 2728
8fe78048
DR
2729 /*
2730 * It can become very expensive to allocate transparent hugepages at
2731 * fault, so use asynchronous memory compaction for THP unless it is
2732 * khugepaged trying to collapse.
2733 */
2734 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2735 (current->flags & PF_KTHREAD))
2736 migration_mode = MIGRATE_SYNC_LIGHT;
2737
11e33f6a 2738 /* Try direct reclaim and then allocating */
a9263751
VB
2739 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2740 &did_some_progress);
11e33f6a
MG
2741 if (page)
2742 goto got_pg;
1da177e4 2743
9083905a
JW
2744 /* Do not loop if specifically requested */
2745 if (gfp_mask & __GFP_NORETRY)
2746 goto noretry;
2747
2748 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 2749 pages_reclaimed += did_some_progress;
9083905a
JW
2750 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
2751 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 2752 /* Wait for some write requests to complete then retry */
a9263751 2753 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2754 goto retry;
1da177e4
LT
2755 }
2756
9083905a
JW
2757 /* Reclaim has failed us, start killing things */
2758 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
2759 if (page)
2760 goto got_pg;
2761
2762 /* Retry as long as the OOM killer is making progress */
2763 if (did_some_progress)
2764 goto retry;
2765
2766noretry:
2767 /*
2768 * High-order allocations do not necessarily loop after
2769 * direct reclaim and reclaim/compaction depends on compaction
2770 * being called after reclaim so call directly if necessary
2771 */
2772 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
2773 ac, migration_mode,
2774 &contended_compaction,
2775 &deferred_compaction);
2776 if (page)
2777 goto got_pg;
1da177e4 2778nopage:
a238ab5b 2779 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2780got_pg:
072bb0aa 2781 return page;
1da177e4 2782}
11e33f6a
MG
2783
2784/*
2785 * This is the 'heart' of the zoned buddy allocator.
2786 */
2787struct page *
2788__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2789 struct zonelist *zonelist, nodemask_t *nodemask)
2790{
d8846374 2791 struct zoneref *preferred_zoneref;
cc9a6c87 2792 struct page *page = NULL;
cc9a6c87 2793 unsigned int cpuset_mems_cookie;
3a025760 2794 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2795 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2796 struct alloc_context ac = {
2797 .high_zoneidx = gfp_zone(gfp_mask),
2798 .nodemask = nodemask,
2799 .migratetype = gfpflags_to_migratetype(gfp_mask),
2800 };
11e33f6a 2801
dcce284a
BH
2802 gfp_mask &= gfp_allowed_mask;
2803
11e33f6a
MG
2804 lockdep_trace_alloc(gfp_mask);
2805
2806 might_sleep_if(gfp_mask & __GFP_WAIT);
2807
2808 if (should_fail_alloc_page(gfp_mask, order))
2809 return NULL;
2810
2811 /*
2812 * Check the zones suitable for the gfp_mask contain at least one
2813 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 2814 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
2815 */
2816 if (unlikely(!zonelist->_zonerefs->zone))
2817 return NULL;
2818
a9263751 2819 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2820 alloc_flags |= ALLOC_CMA;
2821
cc9a6c87 2822retry_cpuset:
d26914d1 2823 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2824
a9263751
VB
2825 /* We set it here, as __alloc_pages_slowpath might have changed it */
2826 ac.zonelist = zonelist;
5117f45d 2827 /* The preferred zone is used for statistics later */
a9263751
VB
2828 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2829 ac.nodemask ? : &cpuset_current_mems_allowed,
2830 &ac.preferred_zone);
2831 if (!ac.preferred_zone)
cc9a6c87 2832 goto out;
a9263751 2833 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2834
2835 /* First allocation attempt */
91fbdc0f 2836 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2837 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2838 if (unlikely(!page)) {
2839 /*
2840 * Runtime PM, block IO and its error handling path
2841 * can deadlock because I/O on the device might not
2842 * complete.
2843 */
91fbdc0f
AM
2844 alloc_mask = memalloc_noio_flags(gfp_mask);
2845
a9263751 2846 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2847 }
11e33f6a 2848
23f086f9
XQ
2849 if (kmemcheck_enabled && page)
2850 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2851
a9263751 2852 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2853
2854out:
2855 /*
2856 * When updating a task's mems_allowed, it is possible to race with
2857 * parallel threads in such a way that an allocation can fail while
2858 * the mask is being updated. If a page allocation is about to fail,
2859 * check if the cpuset changed during allocation and if so, retry.
2860 */
d26914d1 2861 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2862 goto retry_cpuset;
2863
11e33f6a 2864 return page;
1da177e4 2865}
d239171e 2866EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2867
2868/*
2869 * Common helper functions.
2870 */
920c7a5d 2871unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2872{
945a1113
AM
2873 struct page *page;
2874
2875 /*
2876 * __get_free_pages() returns a 32-bit address, which cannot represent
2877 * a highmem page
2878 */
2879 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2880
1da177e4
LT
2881 page = alloc_pages(gfp_mask, order);
2882 if (!page)
2883 return 0;
2884 return (unsigned long) page_address(page);
2885}
1da177e4
LT
2886EXPORT_SYMBOL(__get_free_pages);
2887
920c7a5d 2888unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2889{
945a1113 2890 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2891}
1da177e4
LT
2892EXPORT_SYMBOL(get_zeroed_page);
2893
920c7a5d 2894void __free_pages(struct page *page, unsigned int order)
1da177e4 2895{
b5810039 2896 if (put_page_testzero(page)) {
1da177e4 2897 if (order == 0)
b745bc85 2898 free_hot_cold_page(page, false);
1da177e4
LT
2899 else
2900 __free_pages_ok(page, order);
2901 }
2902}
2903
2904EXPORT_SYMBOL(__free_pages);
2905
920c7a5d 2906void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2907{
2908 if (addr != 0) {
725d704e 2909 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2910 __free_pages(virt_to_page((void *)addr), order);
2911 }
2912}
2913
2914EXPORT_SYMBOL(free_pages);
2915
b63ae8ca
AD
2916/*
2917 * Page Fragment:
2918 * An arbitrary-length arbitrary-offset area of memory which resides
2919 * within a 0 or higher order page. Multiple fragments within that page
2920 * are individually refcounted, in the page's reference counter.
2921 *
2922 * The page_frag functions below provide a simple allocation framework for
2923 * page fragments. This is used by the network stack and network device
2924 * drivers to provide a backing region of memory for use as either an
2925 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
2926 */
2927static struct page *__page_frag_refill(struct page_frag_cache *nc,
2928 gfp_t gfp_mask)
2929{
2930 struct page *page = NULL;
2931 gfp_t gfp = gfp_mask;
2932
2933#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
2934 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
2935 __GFP_NOMEMALLOC;
2936 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
2937 PAGE_FRAG_CACHE_MAX_ORDER);
2938 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
2939#endif
2940 if (unlikely(!page))
2941 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
2942
2943 nc->va = page ? page_address(page) : NULL;
2944
2945 return page;
2946}
2947
2948void *__alloc_page_frag(struct page_frag_cache *nc,
2949 unsigned int fragsz, gfp_t gfp_mask)
2950{
2951 unsigned int size = PAGE_SIZE;
2952 struct page *page;
2953 int offset;
2954
2955 if (unlikely(!nc->va)) {
2956refill:
2957 page = __page_frag_refill(nc, gfp_mask);
2958 if (!page)
2959 return NULL;
2960
2961#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
2962 /* if size can vary use size else just use PAGE_SIZE */
2963 size = nc->size;
2964#endif
2965 /* Even if we own the page, we do not use atomic_set().
2966 * This would break get_page_unless_zero() users.
2967 */
2968 atomic_add(size - 1, &page->_count);
2969
2970 /* reset page count bias and offset to start of new frag */
2971 nc->pfmemalloc = page->pfmemalloc;
2972 nc->pagecnt_bias = size;
2973 nc->offset = size;
2974 }
2975
2976 offset = nc->offset - fragsz;
2977 if (unlikely(offset < 0)) {
2978 page = virt_to_page(nc->va);
2979
2980 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
2981 goto refill;
2982
2983#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
2984 /* if size can vary use size else just use PAGE_SIZE */
2985 size = nc->size;
2986#endif
2987 /* OK, page count is 0, we can safely set it */
2988 atomic_set(&page->_count, size);
2989
2990 /* reset page count bias and offset to start of new frag */
2991 nc->pagecnt_bias = size;
2992 offset = size - fragsz;
2993 }
2994
2995 nc->pagecnt_bias--;
2996 nc->offset = offset;
2997
2998 return nc->va + offset;
2999}
3000EXPORT_SYMBOL(__alloc_page_frag);
3001
3002/*
3003 * Frees a page fragment allocated out of either a compound or order 0 page.
3004 */
3005void __free_page_frag(void *addr)
3006{
3007 struct page *page = virt_to_head_page(addr);
3008
3009 if (unlikely(put_page_testzero(page)))
3010 __free_pages_ok(page, compound_order(page));
3011}
3012EXPORT_SYMBOL(__free_page_frag);
3013
6a1a0d3b 3014/*
52383431
VD
3015 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3016 * of the current memory cgroup.
6a1a0d3b 3017 *
52383431
VD
3018 * It should be used when the caller would like to use kmalloc, but since the
3019 * allocation is large, it has to fall back to the page allocator.
3020 */
3021struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3022{
3023 struct page *page;
3024 struct mem_cgroup *memcg = NULL;
3025
3026 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3027 return NULL;
3028 page = alloc_pages(gfp_mask, order);
3029 memcg_kmem_commit_charge(page, memcg, order);
3030 return page;
3031}
3032
3033struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3034{
3035 struct page *page;
3036 struct mem_cgroup *memcg = NULL;
3037
3038 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3039 return NULL;
3040 page = alloc_pages_node(nid, gfp_mask, order);
3041 memcg_kmem_commit_charge(page, memcg, order);
3042 return page;
3043}
3044
3045/*
3046 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3047 * alloc_kmem_pages.
6a1a0d3b 3048 */
52383431 3049void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3050{
3051 memcg_kmem_uncharge_pages(page, order);
3052 __free_pages(page, order);
3053}
3054
52383431 3055void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3056{
3057 if (addr != 0) {
3058 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3059 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3060 }
3061}
3062
ee85c2e1
AK
3063static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3064{
3065 if (addr) {
3066 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3067 unsigned long used = addr + PAGE_ALIGN(size);
3068
3069 split_page(virt_to_page((void *)addr), order);
3070 while (used < alloc_end) {
3071 free_page(used);
3072 used += PAGE_SIZE;
3073 }
3074 }
3075 return (void *)addr;
3076}
3077
2be0ffe2
TT
3078/**
3079 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3080 * @size: the number of bytes to allocate
3081 * @gfp_mask: GFP flags for the allocation
3082 *
3083 * This function is similar to alloc_pages(), except that it allocates the
3084 * minimum number of pages to satisfy the request. alloc_pages() can only
3085 * allocate memory in power-of-two pages.
3086 *
3087 * This function is also limited by MAX_ORDER.
3088 *
3089 * Memory allocated by this function must be released by free_pages_exact().
3090 */
3091void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3092{
3093 unsigned int order = get_order(size);
3094 unsigned long addr;
3095
3096 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3097 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3098}
3099EXPORT_SYMBOL(alloc_pages_exact);
3100
ee85c2e1
AK
3101/**
3102 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3103 * pages on a node.
b5e6ab58 3104 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3105 * @size: the number of bytes to allocate
3106 * @gfp_mask: GFP flags for the allocation
3107 *
3108 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3109 * back.
3110 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3111 * but is not exact.
3112 */
e1931811 3113void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3114{
3115 unsigned order = get_order(size);
3116 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3117 if (!p)
3118 return NULL;
3119 return make_alloc_exact((unsigned long)page_address(p), order, size);
3120}
ee85c2e1 3121
2be0ffe2
TT
3122/**
3123 * free_pages_exact - release memory allocated via alloc_pages_exact()
3124 * @virt: the value returned by alloc_pages_exact.
3125 * @size: size of allocation, same value as passed to alloc_pages_exact().
3126 *
3127 * Release the memory allocated by a previous call to alloc_pages_exact.
3128 */
3129void free_pages_exact(void *virt, size_t size)
3130{
3131 unsigned long addr = (unsigned long)virt;
3132 unsigned long end = addr + PAGE_ALIGN(size);
3133
3134 while (addr < end) {
3135 free_page(addr);
3136 addr += PAGE_SIZE;
3137 }
3138}
3139EXPORT_SYMBOL(free_pages_exact);
3140
e0fb5815
ZY
3141/**
3142 * nr_free_zone_pages - count number of pages beyond high watermark
3143 * @offset: The zone index of the highest zone
3144 *
3145 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3146 * high watermark within all zones at or below a given zone index. For each
3147 * zone, the number of pages is calculated as:
834405c3 3148 * managed_pages - high_pages
e0fb5815 3149 */
ebec3862 3150static unsigned long nr_free_zone_pages(int offset)
1da177e4 3151{
dd1a239f 3152 struct zoneref *z;
54a6eb5c
MG
3153 struct zone *zone;
3154
e310fd43 3155 /* Just pick one node, since fallback list is circular */
ebec3862 3156 unsigned long sum = 0;
1da177e4 3157
0e88460d 3158 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3159
54a6eb5c 3160 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3161 unsigned long size = zone->managed_pages;
41858966 3162 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3163 if (size > high)
3164 sum += size - high;
1da177e4
LT
3165 }
3166
3167 return sum;
3168}
3169
e0fb5815
ZY
3170/**
3171 * nr_free_buffer_pages - count number of pages beyond high watermark
3172 *
3173 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3174 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3175 */
ebec3862 3176unsigned long nr_free_buffer_pages(void)
1da177e4 3177{
af4ca457 3178 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3179}
c2f1a551 3180EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3181
e0fb5815
ZY
3182/**
3183 * nr_free_pagecache_pages - count number of pages beyond high watermark
3184 *
3185 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3186 * high watermark within all zones.
1da177e4 3187 */
ebec3862 3188unsigned long nr_free_pagecache_pages(void)
1da177e4 3189{
2a1e274a 3190 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3191}
08e0f6a9
CL
3192
3193static inline void show_node(struct zone *zone)
1da177e4 3194{
e5adfffc 3195 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3196 printk("Node %d ", zone_to_nid(zone));
1da177e4 3197}
1da177e4 3198
1da177e4
LT
3199void si_meminfo(struct sysinfo *val)
3200{
3201 val->totalram = totalram_pages;
cc7452b6 3202 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3203 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3204 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3205 val->totalhigh = totalhigh_pages;
3206 val->freehigh = nr_free_highpages();
1da177e4
LT
3207 val->mem_unit = PAGE_SIZE;
3208}
3209
3210EXPORT_SYMBOL(si_meminfo);
3211
3212#ifdef CONFIG_NUMA
3213void si_meminfo_node(struct sysinfo *val, int nid)
3214{
cdd91a77
JL
3215 int zone_type; /* needs to be signed */
3216 unsigned long managed_pages = 0;
1da177e4
LT
3217 pg_data_t *pgdat = NODE_DATA(nid);
3218
cdd91a77
JL
3219 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3220 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3221 val->totalram = managed_pages;
cc7452b6 3222 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3223 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3224#ifdef CONFIG_HIGHMEM
b40da049 3225 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3226 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3227 NR_FREE_PAGES);
98d2b0eb
CL
3228#else
3229 val->totalhigh = 0;
3230 val->freehigh = 0;
3231#endif
1da177e4
LT
3232 val->mem_unit = PAGE_SIZE;
3233}
3234#endif
3235
ddd588b5 3236/*
7bf02ea2
DR
3237 * Determine whether the node should be displayed or not, depending on whether
3238 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3239 */
7bf02ea2 3240bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3241{
3242 bool ret = false;
cc9a6c87 3243 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3244
3245 if (!(flags & SHOW_MEM_FILTER_NODES))
3246 goto out;
3247
cc9a6c87 3248 do {
d26914d1 3249 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3250 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3251 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3252out:
3253 return ret;
3254}
3255
1da177e4
LT
3256#define K(x) ((x) << (PAGE_SHIFT-10))
3257
377e4f16
RV
3258static void show_migration_types(unsigned char type)
3259{
3260 static const char types[MIGRATE_TYPES] = {
3261 [MIGRATE_UNMOVABLE] = 'U',
3262 [MIGRATE_RECLAIMABLE] = 'E',
3263 [MIGRATE_MOVABLE] = 'M',
3264 [MIGRATE_RESERVE] = 'R',
3265#ifdef CONFIG_CMA
3266 [MIGRATE_CMA] = 'C',
3267#endif
194159fb 3268#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3269 [MIGRATE_ISOLATE] = 'I',
194159fb 3270#endif
377e4f16
RV
3271 };
3272 char tmp[MIGRATE_TYPES + 1];
3273 char *p = tmp;
3274 int i;
3275
3276 for (i = 0; i < MIGRATE_TYPES; i++) {
3277 if (type & (1 << i))
3278 *p++ = types[i];
3279 }
3280
3281 *p = '\0';
3282 printk("(%s) ", tmp);
3283}
3284
1da177e4
LT
3285/*
3286 * Show free area list (used inside shift_scroll-lock stuff)
3287 * We also calculate the percentage fragmentation. We do this by counting the
3288 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3289 *
3290 * Bits in @filter:
3291 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3292 * cpuset.
1da177e4 3293 */
7bf02ea2 3294void show_free_areas(unsigned int filter)
1da177e4 3295{
d1bfcdb8 3296 unsigned long free_pcp = 0;
c7241913 3297 int cpu;
1da177e4
LT
3298 struct zone *zone;
3299
ee99c71c 3300 for_each_populated_zone(zone) {
7bf02ea2 3301 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3302 continue;
d1bfcdb8 3303
761b0677
KK
3304 for_each_online_cpu(cpu)
3305 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3306 }
3307
a731286d
KM
3308 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3309 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3310 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3311 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3312 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3313 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3314 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3315 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3316 global_page_state(NR_ISOLATED_ANON),
3317 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3318 global_page_state(NR_INACTIVE_FILE),
a731286d 3319 global_page_state(NR_ISOLATED_FILE),
7b854121 3320 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3321 global_page_state(NR_FILE_DIRTY),
ce866b34 3322 global_page_state(NR_WRITEBACK),
fd39fc85 3323 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3324 global_page_state(NR_SLAB_RECLAIMABLE),
3325 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3326 global_page_state(NR_FILE_MAPPED),
4b02108a 3327 global_page_state(NR_SHMEM),
a25700a5 3328 global_page_state(NR_PAGETABLE),
d1ce749a 3329 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3330 global_page_state(NR_FREE_PAGES),
3331 free_pcp,
d1ce749a 3332 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3333
ee99c71c 3334 for_each_populated_zone(zone) {
1da177e4
LT
3335 int i;
3336
7bf02ea2 3337 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3338 continue;
d1bfcdb8
KK
3339
3340 free_pcp = 0;
3341 for_each_online_cpu(cpu)
3342 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3343
1da177e4
LT
3344 show_node(zone);
3345 printk("%s"
3346 " free:%lukB"
3347 " min:%lukB"
3348 " low:%lukB"
3349 " high:%lukB"
4f98a2fe
RR
3350 " active_anon:%lukB"
3351 " inactive_anon:%lukB"
3352 " active_file:%lukB"
3353 " inactive_file:%lukB"
7b854121 3354 " unevictable:%lukB"
a731286d
KM
3355 " isolated(anon):%lukB"
3356 " isolated(file):%lukB"
1da177e4 3357 " present:%lukB"
9feedc9d 3358 " managed:%lukB"
4a0aa73f
KM
3359 " mlocked:%lukB"
3360 " dirty:%lukB"
3361 " writeback:%lukB"
3362 " mapped:%lukB"
4b02108a 3363 " shmem:%lukB"
4a0aa73f
KM
3364 " slab_reclaimable:%lukB"
3365 " slab_unreclaimable:%lukB"
c6a7f572 3366 " kernel_stack:%lukB"
4a0aa73f
KM
3367 " pagetables:%lukB"
3368 " unstable:%lukB"
3369 " bounce:%lukB"
d1bfcdb8
KK
3370 " free_pcp:%lukB"
3371 " local_pcp:%ukB"
d1ce749a 3372 " free_cma:%lukB"
4a0aa73f 3373 " writeback_tmp:%lukB"
1da177e4
LT
3374 " pages_scanned:%lu"
3375 " all_unreclaimable? %s"
3376 "\n",
3377 zone->name,
88f5acf8 3378 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3379 K(min_wmark_pages(zone)),
3380 K(low_wmark_pages(zone)),
3381 K(high_wmark_pages(zone)),
4f98a2fe
RR
3382 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3383 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3384 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3385 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3386 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3387 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3388 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3389 K(zone->present_pages),
9feedc9d 3390 K(zone->managed_pages),
4a0aa73f
KM
3391 K(zone_page_state(zone, NR_MLOCK)),
3392 K(zone_page_state(zone, NR_FILE_DIRTY)),
3393 K(zone_page_state(zone, NR_WRITEBACK)),
3394 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3395 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3396 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3397 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3398 zone_page_state(zone, NR_KERNEL_STACK) *
3399 THREAD_SIZE / 1024,
4a0aa73f
KM
3400 K(zone_page_state(zone, NR_PAGETABLE)),
3401 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3402 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3403 K(free_pcp),
3404 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3405 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3406 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3407 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3408 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3409 );
3410 printk("lowmem_reserve[]:");
3411 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3412 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3413 printk("\n");
3414 }
3415
ee99c71c 3416 for_each_populated_zone(zone) {
b8af2941 3417 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3418 unsigned char types[MAX_ORDER];
1da177e4 3419
7bf02ea2 3420 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3421 continue;
1da177e4
LT
3422 show_node(zone);
3423 printk("%s: ", zone->name);
1da177e4
LT
3424
3425 spin_lock_irqsave(&zone->lock, flags);
3426 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3427 struct free_area *area = &zone->free_area[order];
3428 int type;
3429
3430 nr[order] = area->nr_free;
8f9de51a 3431 total += nr[order] << order;
377e4f16
RV
3432
3433 types[order] = 0;
3434 for (type = 0; type < MIGRATE_TYPES; type++) {
3435 if (!list_empty(&area->free_list[type]))
3436 types[order] |= 1 << type;
3437 }
1da177e4
LT
3438 }
3439 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3440 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3441 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3442 if (nr[order])
3443 show_migration_types(types[order]);
3444 }
1da177e4
LT
3445 printk("= %lukB\n", K(total));
3446 }
3447
949f7ec5
DR
3448 hugetlb_show_meminfo();
3449
e6f3602d
LW
3450 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3451
1da177e4
LT
3452 show_swap_cache_info();
3453}
3454
19770b32
MG
3455static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3456{
3457 zoneref->zone = zone;
3458 zoneref->zone_idx = zone_idx(zone);
3459}
3460
1da177e4
LT
3461/*
3462 * Builds allocation fallback zone lists.
1a93205b
CL
3463 *
3464 * Add all populated zones of a node to the zonelist.
1da177e4 3465 */
f0c0b2b8 3466static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3467 int nr_zones)
1da177e4 3468{
1a93205b 3469 struct zone *zone;
bc732f1d 3470 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3471
3472 do {
2f6726e5 3473 zone_type--;
070f8032 3474 zone = pgdat->node_zones + zone_type;
1a93205b 3475 if (populated_zone(zone)) {
dd1a239f
MG
3476 zoneref_set_zone(zone,
3477 &zonelist->_zonerefs[nr_zones++]);
070f8032 3478 check_highest_zone(zone_type);
1da177e4 3479 }
2f6726e5 3480 } while (zone_type);
bc732f1d 3481
070f8032 3482 return nr_zones;
1da177e4
LT
3483}
3484
f0c0b2b8
KH
3485
3486/*
3487 * zonelist_order:
3488 * 0 = automatic detection of better ordering.
3489 * 1 = order by ([node] distance, -zonetype)
3490 * 2 = order by (-zonetype, [node] distance)
3491 *
3492 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3493 * the same zonelist. So only NUMA can configure this param.
3494 */
3495#define ZONELIST_ORDER_DEFAULT 0
3496#define ZONELIST_ORDER_NODE 1
3497#define ZONELIST_ORDER_ZONE 2
3498
3499/* zonelist order in the kernel.
3500 * set_zonelist_order() will set this to NODE or ZONE.
3501 */
3502static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3503static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3504
3505
1da177e4 3506#ifdef CONFIG_NUMA
f0c0b2b8
KH
3507/* The value user specified ....changed by config */
3508static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3509/* string for sysctl */
3510#define NUMA_ZONELIST_ORDER_LEN 16
3511char numa_zonelist_order[16] = "default";
3512
3513/*
3514 * interface for configure zonelist ordering.
3515 * command line option "numa_zonelist_order"
3516 * = "[dD]efault - default, automatic configuration.
3517 * = "[nN]ode - order by node locality, then by zone within node
3518 * = "[zZ]one - order by zone, then by locality within zone
3519 */
3520
3521static int __parse_numa_zonelist_order(char *s)
3522{
3523 if (*s == 'd' || *s == 'D') {
3524 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3525 } else if (*s == 'n' || *s == 'N') {
3526 user_zonelist_order = ZONELIST_ORDER_NODE;
3527 } else if (*s == 'z' || *s == 'Z') {
3528 user_zonelist_order = ZONELIST_ORDER_ZONE;
3529 } else {
3530 printk(KERN_WARNING
3531 "Ignoring invalid numa_zonelist_order value: "
3532 "%s\n", s);
3533 return -EINVAL;
3534 }
3535 return 0;
3536}
3537
3538static __init int setup_numa_zonelist_order(char *s)
3539{
ecb256f8
VL
3540 int ret;
3541
3542 if (!s)
3543 return 0;
3544
3545 ret = __parse_numa_zonelist_order(s);
3546 if (ret == 0)
3547 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3548
3549 return ret;
f0c0b2b8
KH
3550}
3551early_param("numa_zonelist_order", setup_numa_zonelist_order);
3552
3553/*
3554 * sysctl handler for numa_zonelist_order
3555 */
cccad5b9 3556int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3557 void __user *buffer, size_t *length,
f0c0b2b8
KH
3558 loff_t *ppos)
3559{
3560 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3561 int ret;
443c6f14 3562 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3563
443c6f14 3564 mutex_lock(&zl_order_mutex);
dacbde09
CG
3565 if (write) {
3566 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3567 ret = -EINVAL;
3568 goto out;
3569 }
3570 strcpy(saved_string, (char *)table->data);
3571 }
8d65af78 3572 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3573 if (ret)
443c6f14 3574 goto out;
f0c0b2b8
KH
3575 if (write) {
3576 int oldval = user_zonelist_order;
dacbde09
CG
3577
3578 ret = __parse_numa_zonelist_order((char *)table->data);
3579 if (ret) {
f0c0b2b8
KH
3580 /*
3581 * bogus value. restore saved string
3582 */
dacbde09 3583 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3584 NUMA_ZONELIST_ORDER_LEN);
3585 user_zonelist_order = oldval;
4eaf3f64
HL
3586 } else if (oldval != user_zonelist_order) {
3587 mutex_lock(&zonelists_mutex);
9adb62a5 3588 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3589 mutex_unlock(&zonelists_mutex);
3590 }
f0c0b2b8 3591 }
443c6f14
AK
3592out:
3593 mutex_unlock(&zl_order_mutex);
3594 return ret;
f0c0b2b8
KH
3595}
3596
3597
62bc62a8 3598#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3599static int node_load[MAX_NUMNODES];
3600
1da177e4 3601/**
4dc3b16b 3602 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3603 * @node: node whose fallback list we're appending
3604 * @used_node_mask: nodemask_t of already used nodes
3605 *
3606 * We use a number of factors to determine which is the next node that should
3607 * appear on a given node's fallback list. The node should not have appeared
3608 * already in @node's fallback list, and it should be the next closest node
3609 * according to the distance array (which contains arbitrary distance values
3610 * from each node to each node in the system), and should also prefer nodes
3611 * with no CPUs, since presumably they'll have very little allocation pressure
3612 * on them otherwise.
3613 * It returns -1 if no node is found.
3614 */
f0c0b2b8 3615static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3616{
4cf808eb 3617 int n, val;
1da177e4 3618 int min_val = INT_MAX;
00ef2d2f 3619 int best_node = NUMA_NO_NODE;
a70f7302 3620 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3621
4cf808eb
LT
3622 /* Use the local node if we haven't already */
3623 if (!node_isset(node, *used_node_mask)) {
3624 node_set(node, *used_node_mask);
3625 return node;
3626 }
1da177e4 3627
4b0ef1fe 3628 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3629
3630 /* Don't want a node to appear more than once */
3631 if (node_isset(n, *used_node_mask))
3632 continue;
3633
1da177e4
LT
3634 /* Use the distance array to find the distance */
3635 val = node_distance(node, n);
3636
4cf808eb
LT
3637 /* Penalize nodes under us ("prefer the next node") */
3638 val += (n < node);
3639
1da177e4 3640 /* Give preference to headless and unused nodes */
a70f7302
RR
3641 tmp = cpumask_of_node(n);
3642 if (!cpumask_empty(tmp))
1da177e4
LT
3643 val += PENALTY_FOR_NODE_WITH_CPUS;
3644
3645 /* Slight preference for less loaded node */
3646 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3647 val += node_load[n];
3648
3649 if (val < min_val) {
3650 min_val = val;
3651 best_node = n;
3652 }
3653 }
3654
3655 if (best_node >= 0)
3656 node_set(best_node, *used_node_mask);
3657
3658 return best_node;
3659}
3660
f0c0b2b8
KH
3661
3662/*
3663 * Build zonelists ordered by node and zones within node.
3664 * This results in maximum locality--normal zone overflows into local
3665 * DMA zone, if any--but risks exhausting DMA zone.
3666 */
3667static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3668{
f0c0b2b8 3669 int j;
1da177e4 3670 struct zonelist *zonelist;
f0c0b2b8 3671
54a6eb5c 3672 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3673 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3674 ;
bc732f1d 3675 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3676 zonelist->_zonerefs[j].zone = NULL;
3677 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3678}
3679
523b9458
CL
3680/*
3681 * Build gfp_thisnode zonelists
3682 */
3683static void build_thisnode_zonelists(pg_data_t *pgdat)
3684{
523b9458
CL
3685 int j;
3686 struct zonelist *zonelist;
3687
54a6eb5c 3688 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3689 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3690 zonelist->_zonerefs[j].zone = NULL;
3691 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3692}
3693
f0c0b2b8
KH
3694/*
3695 * Build zonelists ordered by zone and nodes within zones.
3696 * This results in conserving DMA zone[s] until all Normal memory is
3697 * exhausted, but results in overflowing to remote node while memory
3698 * may still exist in local DMA zone.
3699 */
3700static int node_order[MAX_NUMNODES];
3701
3702static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3703{
f0c0b2b8
KH
3704 int pos, j, node;
3705 int zone_type; /* needs to be signed */
3706 struct zone *z;
3707 struct zonelist *zonelist;
3708
54a6eb5c
MG
3709 zonelist = &pgdat->node_zonelists[0];
3710 pos = 0;
3711 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3712 for (j = 0; j < nr_nodes; j++) {
3713 node = node_order[j];
3714 z = &NODE_DATA(node)->node_zones[zone_type];
3715 if (populated_zone(z)) {
dd1a239f
MG
3716 zoneref_set_zone(z,
3717 &zonelist->_zonerefs[pos++]);
54a6eb5c 3718 check_highest_zone(zone_type);
f0c0b2b8
KH
3719 }
3720 }
f0c0b2b8 3721 }
dd1a239f
MG
3722 zonelist->_zonerefs[pos].zone = NULL;
3723 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3724}
3725
3193913c
MG
3726#if defined(CONFIG_64BIT)
3727/*
3728 * Devices that require DMA32/DMA are relatively rare and do not justify a
3729 * penalty to every machine in case the specialised case applies. Default
3730 * to Node-ordering on 64-bit NUMA machines
3731 */
3732static int default_zonelist_order(void)
3733{
3734 return ZONELIST_ORDER_NODE;
3735}
3736#else
3737/*
3738 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3739 * by the kernel. If processes running on node 0 deplete the low memory zone
3740 * then reclaim will occur more frequency increasing stalls and potentially
3741 * be easier to OOM if a large percentage of the zone is under writeback or
3742 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3743 * Hence, default to zone ordering on 32-bit.
3744 */
f0c0b2b8
KH
3745static int default_zonelist_order(void)
3746{
f0c0b2b8
KH
3747 return ZONELIST_ORDER_ZONE;
3748}
3193913c 3749#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3750
3751static void set_zonelist_order(void)
3752{
3753 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3754 current_zonelist_order = default_zonelist_order();
3755 else
3756 current_zonelist_order = user_zonelist_order;
3757}
3758
3759static void build_zonelists(pg_data_t *pgdat)
3760{
3761 int j, node, load;
3762 enum zone_type i;
1da177e4 3763 nodemask_t used_mask;
f0c0b2b8
KH
3764 int local_node, prev_node;
3765 struct zonelist *zonelist;
3766 int order = current_zonelist_order;
1da177e4
LT
3767
3768 /* initialize zonelists */
523b9458 3769 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3770 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3771 zonelist->_zonerefs[0].zone = NULL;
3772 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3773 }
3774
3775 /* NUMA-aware ordering of nodes */
3776 local_node = pgdat->node_id;
62bc62a8 3777 load = nr_online_nodes;
1da177e4
LT
3778 prev_node = local_node;
3779 nodes_clear(used_mask);
f0c0b2b8 3780
f0c0b2b8
KH
3781 memset(node_order, 0, sizeof(node_order));
3782 j = 0;
3783
1da177e4
LT
3784 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3785 /*
3786 * We don't want to pressure a particular node.
3787 * So adding penalty to the first node in same
3788 * distance group to make it round-robin.
3789 */
957f822a
DR
3790 if (node_distance(local_node, node) !=
3791 node_distance(local_node, prev_node))
f0c0b2b8
KH
3792 node_load[node] = load;
3793
1da177e4
LT
3794 prev_node = node;
3795 load--;
f0c0b2b8
KH
3796 if (order == ZONELIST_ORDER_NODE)
3797 build_zonelists_in_node_order(pgdat, node);
3798 else
3799 node_order[j++] = node; /* remember order */
3800 }
1da177e4 3801
f0c0b2b8
KH
3802 if (order == ZONELIST_ORDER_ZONE) {
3803 /* calculate node order -- i.e., DMA last! */
3804 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3805 }
523b9458
CL
3806
3807 build_thisnode_zonelists(pgdat);
1da177e4
LT
3808}
3809
9276b1bc 3810/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3811static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3812{
54a6eb5c
MG
3813 struct zonelist *zonelist;
3814 struct zonelist_cache *zlc;
dd1a239f 3815 struct zoneref *z;
9276b1bc 3816
54a6eb5c
MG
3817 zonelist = &pgdat->node_zonelists[0];
3818 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3819 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3820 for (z = zonelist->_zonerefs; z->zone; z++)
3821 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3822}
3823
7aac7898
LS
3824#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3825/*
3826 * Return node id of node used for "local" allocations.
3827 * I.e., first node id of first zone in arg node's generic zonelist.
3828 * Used for initializing percpu 'numa_mem', which is used primarily
3829 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3830 */
3831int local_memory_node(int node)
3832{
3833 struct zone *zone;
3834
3835 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3836 gfp_zone(GFP_KERNEL),
3837 NULL,
3838 &zone);
3839 return zone->node;
3840}
3841#endif
f0c0b2b8 3842
1da177e4
LT
3843#else /* CONFIG_NUMA */
3844
f0c0b2b8
KH
3845static void set_zonelist_order(void)
3846{
3847 current_zonelist_order = ZONELIST_ORDER_ZONE;
3848}
3849
3850static void build_zonelists(pg_data_t *pgdat)
1da177e4 3851{
19655d34 3852 int node, local_node;
54a6eb5c
MG
3853 enum zone_type j;
3854 struct zonelist *zonelist;
1da177e4
LT
3855
3856 local_node = pgdat->node_id;
1da177e4 3857
54a6eb5c 3858 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3859 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3860
54a6eb5c
MG
3861 /*
3862 * Now we build the zonelist so that it contains the zones
3863 * of all the other nodes.
3864 * We don't want to pressure a particular node, so when
3865 * building the zones for node N, we make sure that the
3866 * zones coming right after the local ones are those from
3867 * node N+1 (modulo N)
3868 */
3869 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3870 if (!node_online(node))
3871 continue;
bc732f1d 3872 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3873 }
54a6eb5c
MG
3874 for (node = 0; node < local_node; node++) {
3875 if (!node_online(node))
3876 continue;
bc732f1d 3877 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3878 }
3879
dd1a239f
MG
3880 zonelist->_zonerefs[j].zone = NULL;
3881 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3882}
3883
9276b1bc 3884/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3885static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3886{
54a6eb5c 3887 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3888}
3889
1da177e4
LT
3890#endif /* CONFIG_NUMA */
3891
99dcc3e5
CL
3892/*
3893 * Boot pageset table. One per cpu which is going to be used for all
3894 * zones and all nodes. The parameters will be set in such a way
3895 * that an item put on a list will immediately be handed over to
3896 * the buddy list. This is safe since pageset manipulation is done
3897 * with interrupts disabled.
3898 *
3899 * The boot_pagesets must be kept even after bootup is complete for
3900 * unused processors and/or zones. They do play a role for bootstrapping
3901 * hotplugged processors.
3902 *
3903 * zoneinfo_show() and maybe other functions do
3904 * not check if the processor is online before following the pageset pointer.
3905 * Other parts of the kernel may not check if the zone is available.
3906 */
3907static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3908static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3909static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3910
4eaf3f64
HL
3911/*
3912 * Global mutex to protect against size modification of zonelists
3913 * as well as to serialize pageset setup for the new populated zone.
3914 */
3915DEFINE_MUTEX(zonelists_mutex);
3916
9b1a4d38 3917/* return values int ....just for stop_machine() */
4ed7e022 3918static int __build_all_zonelists(void *data)
1da177e4 3919{
6811378e 3920 int nid;
99dcc3e5 3921 int cpu;
9adb62a5 3922 pg_data_t *self = data;
9276b1bc 3923
7f9cfb31
BL
3924#ifdef CONFIG_NUMA
3925 memset(node_load, 0, sizeof(node_load));
3926#endif
9adb62a5
JL
3927
3928 if (self && !node_online(self->node_id)) {
3929 build_zonelists(self);
3930 build_zonelist_cache(self);
3931 }
3932
9276b1bc 3933 for_each_online_node(nid) {
7ea1530a
CL
3934 pg_data_t *pgdat = NODE_DATA(nid);
3935
3936 build_zonelists(pgdat);
3937 build_zonelist_cache(pgdat);
9276b1bc 3938 }
99dcc3e5
CL
3939
3940 /*
3941 * Initialize the boot_pagesets that are going to be used
3942 * for bootstrapping processors. The real pagesets for
3943 * each zone will be allocated later when the per cpu
3944 * allocator is available.
3945 *
3946 * boot_pagesets are used also for bootstrapping offline
3947 * cpus if the system is already booted because the pagesets
3948 * are needed to initialize allocators on a specific cpu too.
3949 * F.e. the percpu allocator needs the page allocator which
3950 * needs the percpu allocator in order to allocate its pagesets
3951 * (a chicken-egg dilemma).
3952 */
7aac7898 3953 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3954 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3955
7aac7898
LS
3956#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3957 /*
3958 * We now know the "local memory node" for each node--
3959 * i.e., the node of the first zone in the generic zonelist.
3960 * Set up numa_mem percpu variable for on-line cpus. During
3961 * boot, only the boot cpu should be on-line; we'll init the
3962 * secondary cpus' numa_mem as they come on-line. During
3963 * node/memory hotplug, we'll fixup all on-line cpus.
3964 */
3965 if (cpu_online(cpu))
3966 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3967#endif
3968 }
3969
6811378e
YG
3970 return 0;
3971}
3972
061f67bc
RV
3973static noinline void __init
3974build_all_zonelists_init(void)
3975{
3976 __build_all_zonelists(NULL);
3977 mminit_verify_zonelist();
3978 cpuset_init_current_mems_allowed();
3979}
3980
4eaf3f64
HL
3981/*
3982 * Called with zonelists_mutex held always
3983 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
3984 *
3985 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3986 * [we're only called with non-NULL zone through __meminit paths] and
3987 * (2) call of __init annotated helper build_all_zonelists_init
3988 * [protected by SYSTEM_BOOTING].
4eaf3f64 3989 */
9adb62a5 3990void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3991{
f0c0b2b8
KH
3992 set_zonelist_order();
3993
6811378e 3994 if (system_state == SYSTEM_BOOTING) {
061f67bc 3995 build_all_zonelists_init();
6811378e 3996 } else {
e9959f0f 3997#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3998 if (zone)
3999 setup_zone_pageset(zone);
e9959f0f 4000#endif
dd1895e2
CS
4001 /* we have to stop all cpus to guarantee there is no user
4002 of zonelist */
9adb62a5 4003 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4004 /* cpuset refresh routine should be here */
4005 }
bd1e22b8 4006 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4007 /*
4008 * Disable grouping by mobility if the number of pages in the
4009 * system is too low to allow the mechanism to work. It would be
4010 * more accurate, but expensive to check per-zone. This check is
4011 * made on memory-hotadd so a system can start with mobility
4012 * disabled and enable it later
4013 */
d9c23400 4014 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4015 page_group_by_mobility_disabled = 1;
4016 else
4017 page_group_by_mobility_disabled = 0;
4018
f88dfff5 4019 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4020 "Total pages: %ld\n",
62bc62a8 4021 nr_online_nodes,
f0c0b2b8 4022 zonelist_order_name[current_zonelist_order],
9ef9acb0 4023 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4024 vm_total_pages);
4025#ifdef CONFIG_NUMA
f88dfff5 4026 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4027#endif
1da177e4
LT
4028}
4029
4030/*
4031 * Helper functions to size the waitqueue hash table.
4032 * Essentially these want to choose hash table sizes sufficiently
4033 * large so that collisions trying to wait on pages are rare.
4034 * But in fact, the number of active page waitqueues on typical
4035 * systems is ridiculously low, less than 200. So this is even
4036 * conservative, even though it seems large.
4037 *
4038 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4039 * waitqueues, i.e. the size of the waitq table given the number of pages.
4040 */
4041#define PAGES_PER_WAITQUEUE 256
4042
cca448fe 4043#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4044static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4045{
4046 unsigned long size = 1;
4047
4048 pages /= PAGES_PER_WAITQUEUE;
4049
4050 while (size < pages)
4051 size <<= 1;
4052
4053 /*
4054 * Once we have dozens or even hundreds of threads sleeping
4055 * on IO we've got bigger problems than wait queue collision.
4056 * Limit the size of the wait table to a reasonable size.
4057 */
4058 size = min(size, 4096UL);
4059
4060 return max(size, 4UL);
4061}
cca448fe
YG
4062#else
4063/*
4064 * A zone's size might be changed by hot-add, so it is not possible to determine
4065 * a suitable size for its wait_table. So we use the maximum size now.
4066 *
4067 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4068 *
4069 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4070 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4071 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4072 *
4073 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4074 * or more by the traditional way. (See above). It equals:
4075 *
4076 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4077 * ia64(16K page size) : = ( 8G + 4M)byte.
4078 * powerpc (64K page size) : = (32G +16M)byte.
4079 */
4080static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4081{
4082 return 4096UL;
4083}
4084#endif
1da177e4
LT
4085
4086/*
4087 * This is an integer logarithm so that shifts can be used later
4088 * to extract the more random high bits from the multiplicative
4089 * hash function before the remainder is taken.
4090 */
4091static inline unsigned long wait_table_bits(unsigned long size)
4092{
4093 return ffz(~size);
4094}
4095
6d3163ce
AH
4096/*
4097 * Check if a pageblock contains reserved pages
4098 */
4099static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4100{
4101 unsigned long pfn;
4102
4103 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4104 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4105 return 1;
4106 }
4107 return 0;
4108}
4109
56fd56b8 4110/*
d9c23400 4111 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4112 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4113 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4114 * higher will lead to a bigger reserve which will get freed as contiguous
4115 * blocks as reclaim kicks in
4116 */
4117static void setup_zone_migrate_reserve(struct zone *zone)
4118{
6d3163ce 4119 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4120 struct page *page;
78986a67
MG
4121 unsigned long block_migratetype;
4122 int reserve;
943dca1a 4123 int old_reserve;
56fd56b8 4124
d0215638
MH
4125 /*
4126 * Get the start pfn, end pfn and the number of blocks to reserve
4127 * We have to be careful to be aligned to pageblock_nr_pages to
4128 * make sure that we always check pfn_valid for the first page in
4129 * the block.
4130 */
56fd56b8 4131 start_pfn = zone->zone_start_pfn;
108bcc96 4132 end_pfn = zone_end_pfn(zone);
d0215638 4133 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4134 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4135 pageblock_order;
56fd56b8 4136
78986a67
MG
4137 /*
4138 * Reserve blocks are generally in place to help high-order atomic
4139 * allocations that are short-lived. A min_free_kbytes value that
4140 * would result in more than 2 reserve blocks for atomic allocations
4141 * is assumed to be in place to help anti-fragmentation for the
4142 * future allocation of hugepages at runtime.
4143 */
4144 reserve = min(2, reserve);
943dca1a
YI
4145 old_reserve = zone->nr_migrate_reserve_block;
4146
4147 /* When memory hot-add, we almost always need to do nothing */
4148 if (reserve == old_reserve)
4149 return;
4150 zone->nr_migrate_reserve_block = reserve;
78986a67 4151
d9c23400 4152 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4153 if (!pfn_valid(pfn))
4154 continue;
4155 page = pfn_to_page(pfn);
4156
344c790e
AL
4157 /* Watch out for overlapping nodes */
4158 if (page_to_nid(page) != zone_to_nid(zone))
4159 continue;
4160
56fd56b8
MG
4161 block_migratetype = get_pageblock_migratetype(page);
4162
938929f1
MG
4163 /* Only test what is necessary when the reserves are not met */
4164 if (reserve > 0) {
4165 /*
4166 * Blocks with reserved pages will never free, skip
4167 * them.
4168 */
4169 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4170 if (pageblock_is_reserved(pfn, block_end_pfn))
4171 continue;
56fd56b8 4172
938929f1
MG
4173 /* If this block is reserved, account for it */
4174 if (block_migratetype == MIGRATE_RESERVE) {
4175 reserve--;
4176 continue;
4177 }
4178
4179 /* Suitable for reserving if this block is movable */
4180 if (block_migratetype == MIGRATE_MOVABLE) {
4181 set_pageblock_migratetype(page,
4182 MIGRATE_RESERVE);
4183 move_freepages_block(zone, page,
4184 MIGRATE_RESERVE);
4185 reserve--;
4186 continue;
4187 }
943dca1a
YI
4188 } else if (!old_reserve) {
4189 /*
4190 * At boot time we don't need to scan the whole zone
4191 * for turning off MIGRATE_RESERVE.
4192 */
4193 break;
56fd56b8
MG
4194 }
4195
4196 /*
4197 * If the reserve is met and this is a previous reserved block,
4198 * take it back
4199 */
4200 if (block_migratetype == MIGRATE_RESERVE) {
4201 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4202 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4203 }
4204 }
4205}
ac0e5b7a 4206
1da177e4
LT
4207/*
4208 * Initially all pages are reserved - free ones are freed
4209 * up by free_all_bootmem() once the early boot process is
4210 * done. Non-atomic initialization, single-pass.
4211 */
c09b4240 4212void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4213 unsigned long start_pfn, enum memmap_context context)
1da177e4 4214{
1da177e4 4215 struct page *page;
29751f69
AW
4216 unsigned long end_pfn = start_pfn + size;
4217 unsigned long pfn;
86051ca5 4218 struct zone *z;
1da177e4 4219
22b31eec
HD
4220 if (highest_memmap_pfn < end_pfn - 1)
4221 highest_memmap_pfn = end_pfn - 1;
4222
86051ca5 4223 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4224 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4225 /*
4226 * There can be holes in boot-time mem_map[]s
4227 * handed to this function. They do not
4228 * exist on hotplugged memory.
4229 */
4230 if (context == MEMMAP_EARLY) {
4231 if (!early_pfn_valid(pfn))
4232 continue;
4233 if (!early_pfn_in_nid(pfn, nid))
4234 continue;
4235 }
d41dee36
AW
4236 page = pfn_to_page(pfn);
4237 set_page_links(page, zone, nid, pfn);
708614e6 4238 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4239 init_page_count(page);
22b751c3 4240 page_mapcount_reset(page);
90572890 4241 page_cpupid_reset_last(page);
1da177e4 4242 SetPageReserved(page);
b2a0ac88
MG
4243 /*
4244 * Mark the block movable so that blocks are reserved for
4245 * movable at startup. This will force kernel allocations
4246 * to reserve their blocks rather than leaking throughout
4247 * the address space during boot when many long-lived
56fd56b8
MG
4248 * kernel allocations are made. Later some blocks near
4249 * the start are marked MIGRATE_RESERVE by
4250 * setup_zone_migrate_reserve()
86051ca5
KH
4251 *
4252 * bitmap is created for zone's valid pfn range. but memmap
4253 * can be created for invalid pages (for alignment)
4254 * check here not to call set_pageblock_migratetype() against
4255 * pfn out of zone.
b2a0ac88 4256 */
86051ca5 4257 if ((z->zone_start_pfn <= pfn)
108bcc96 4258 && (pfn < zone_end_pfn(z))
86051ca5 4259 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4260 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4261
1da177e4
LT
4262 INIT_LIST_HEAD(&page->lru);
4263#ifdef WANT_PAGE_VIRTUAL
4264 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4265 if (!is_highmem_idx(zone))
3212c6be 4266 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4267#endif
1da177e4
LT
4268 }
4269}
4270
1e548deb 4271static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4272{
7aeb09f9 4273 unsigned int order, t;
b2a0ac88
MG
4274 for_each_migratetype_order(order, t) {
4275 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4276 zone->free_area[order].nr_free = 0;
4277 }
4278}
4279
4280#ifndef __HAVE_ARCH_MEMMAP_INIT
4281#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4282 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4283#endif
4284
7cd2b0a3 4285static int zone_batchsize(struct zone *zone)
e7c8d5c9 4286{
3a6be87f 4287#ifdef CONFIG_MMU
e7c8d5c9
CL
4288 int batch;
4289
4290 /*
4291 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4292 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4293 *
4294 * OK, so we don't know how big the cache is. So guess.
4295 */
b40da049 4296 batch = zone->managed_pages / 1024;
ba56e91c
SR
4297 if (batch * PAGE_SIZE > 512 * 1024)
4298 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4299 batch /= 4; /* We effectively *= 4 below */
4300 if (batch < 1)
4301 batch = 1;
4302
4303 /*
0ceaacc9
NP
4304 * Clamp the batch to a 2^n - 1 value. Having a power
4305 * of 2 value was found to be more likely to have
4306 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4307 *
0ceaacc9
NP
4308 * For example if 2 tasks are alternately allocating
4309 * batches of pages, one task can end up with a lot
4310 * of pages of one half of the possible page colors
4311 * and the other with pages of the other colors.
e7c8d5c9 4312 */
9155203a 4313 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4314
e7c8d5c9 4315 return batch;
3a6be87f
DH
4316
4317#else
4318 /* The deferral and batching of frees should be suppressed under NOMMU
4319 * conditions.
4320 *
4321 * The problem is that NOMMU needs to be able to allocate large chunks
4322 * of contiguous memory as there's no hardware page translation to
4323 * assemble apparent contiguous memory from discontiguous pages.
4324 *
4325 * Queueing large contiguous runs of pages for batching, however,
4326 * causes the pages to actually be freed in smaller chunks. As there
4327 * can be a significant delay between the individual batches being
4328 * recycled, this leads to the once large chunks of space being
4329 * fragmented and becoming unavailable for high-order allocations.
4330 */
4331 return 0;
4332#endif
e7c8d5c9
CL
4333}
4334
8d7a8fa9
CS
4335/*
4336 * pcp->high and pcp->batch values are related and dependent on one another:
4337 * ->batch must never be higher then ->high.
4338 * The following function updates them in a safe manner without read side
4339 * locking.
4340 *
4341 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4342 * those fields changing asynchronously (acording the the above rule).
4343 *
4344 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4345 * outside of boot time (or some other assurance that no concurrent updaters
4346 * exist).
4347 */
4348static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4349 unsigned long batch)
4350{
4351 /* start with a fail safe value for batch */
4352 pcp->batch = 1;
4353 smp_wmb();
4354
4355 /* Update high, then batch, in order */
4356 pcp->high = high;
4357 smp_wmb();
4358
4359 pcp->batch = batch;
4360}
4361
3664033c 4362/* a companion to pageset_set_high() */
4008bab7
CS
4363static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4364{
8d7a8fa9 4365 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4366}
4367
88c90dbc 4368static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4369{
4370 struct per_cpu_pages *pcp;
5f8dcc21 4371 int migratetype;
2caaad41 4372
1c6fe946
MD
4373 memset(p, 0, sizeof(*p));
4374
3dfa5721 4375 pcp = &p->pcp;
2caaad41 4376 pcp->count = 0;
5f8dcc21
MG
4377 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4378 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4379}
4380
88c90dbc
CS
4381static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4382{
4383 pageset_init(p);
4384 pageset_set_batch(p, batch);
4385}
4386
8ad4b1fb 4387/*
3664033c 4388 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4389 * to the value high for the pageset p.
4390 */
3664033c 4391static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4392 unsigned long high)
4393{
8d7a8fa9
CS
4394 unsigned long batch = max(1UL, high / 4);
4395 if ((high / 4) > (PAGE_SHIFT * 8))
4396 batch = PAGE_SHIFT * 8;
8ad4b1fb 4397
8d7a8fa9 4398 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4399}
4400
7cd2b0a3
DR
4401static void pageset_set_high_and_batch(struct zone *zone,
4402 struct per_cpu_pageset *pcp)
56cef2b8 4403{
56cef2b8 4404 if (percpu_pagelist_fraction)
3664033c 4405 pageset_set_high(pcp,
56cef2b8
CS
4406 (zone->managed_pages /
4407 percpu_pagelist_fraction));
4408 else
4409 pageset_set_batch(pcp, zone_batchsize(zone));
4410}
4411
169f6c19
CS
4412static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4413{
4414 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4415
4416 pageset_init(pcp);
4417 pageset_set_high_and_batch(zone, pcp);
4418}
4419
4ed7e022 4420static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4421{
4422 int cpu;
319774e2 4423 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4424 for_each_possible_cpu(cpu)
4425 zone_pageset_init(zone, cpu);
319774e2
WF
4426}
4427
2caaad41 4428/*
99dcc3e5
CL
4429 * Allocate per cpu pagesets and initialize them.
4430 * Before this call only boot pagesets were available.
e7c8d5c9 4431 */
99dcc3e5 4432void __init setup_per_cpu_pageset(void)
e7c8d5c9 4433{
99dcc3e5 4434 struct zone *zone;
e7c8d5c9 4435
319774e2
WF
4436 for_each_populated_zone(zone)
4437 setup_zone_pageset(zone);
e7c8d5c9
CL
4438}
4439
577a32f6 4440static noinline __init_refok
cca448fe 4441int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4442{
4443 int i;
cca448fe 4444 size_t alloc_size;
ed8ece2e
DH
4445
4446 /*
4447 * The per-page waitqueue mechanism uses hashed waitqueues
4448 * per zone.
4449 */
02b694de
YG
4450 zone->wait_table_hash_nr_entries =
4451 wait_table_hash_nr_entries(zone_size_pages);
4452 zone->wait_table_bits =
4453 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4454 alloc_size = zone->wait_table_hash_nr_entries
4455 * sizeof(wait_queue_head_t);
4456
cd94b9db 4457 if (!slab_is_available()) {
cca448fe 4458 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4459 memblock_virt_alloc_node_nopanic(
4460 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4461 } else {
4462 /*
4463 * This case means that a zone whose size was 0 gets new memory
4464 * via memory hot-add.
4465 * But it may be the case that a new node was hot-added. In
4466 * this case vmalloc() will not be able to use this new node's
4467 * memory - this wait_table must be initialized to use this new
4468 * node itself as well.
4469 * To use this new node's memory, further consideration will be
4470 * necessary.
4471 */
8691f3a7 4472 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4473 }
4474 if (!zone->wait_table)
4475 return -ENOMEM;
ed8ece2e 4476
b8af2941 4477 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4478 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4479
4480 return 0;
ed8ece2e
DH
4481}
4482
c09b4240 4483static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4484{
99dcc3e5
CL
4485 /*
4486 * per cpu subsystem is not up at this point. The following code
4487 * relies on the ability of the linker to provide the
4488 * offset of a (static) per cpu variable into the per cpu area.
4489 */
4490 zone->pageset = &boot_pageset;
ed8ece2e 4491
b38a8725 4492 if (populated_zone(zone))
99dcc3e5
CL
4493 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4494 zone->name, zone->present_pages,
4495 zone_batchsize(zone));
ed8ece2e
DH
4496}
4497
4ed7e022 4498int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4499 unsigned long zone_start_pfn,
a2f3aa02
DH
4500 unsigned long size,
4501 enum memmap_context context)
ed8ece2e
DH
4502{
4503 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4504 int ret;
4505 ret = zone_wait_table_init(zone, size);
4506 if (ret)
4507 return ret;
ed8ece2e
DH
4508 pgdat->nr_zones = zone_idx(zone) + 1;
4509
ed8ece2e
DH
4510 zone->zone_start_pfn = zone_start_pfn;
4511
708614e6
MG
4512 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4513 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4514 pgdat->node_id,
4515 (unsigned long)zone_idx(zone),
4516 zone_start_pfn, (zone_start_pfn + size));
4517
1e548deb 4518 zone_init_free_lists(zone);
718127cc
YG
4519
4520 return 0;
ed8ece2e
DH
4521}
4522
0ee332c1 4523#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4524#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4525/*
4526 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4527 */
f2dbcfa7 4528int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4529{
c13291a5 4530 unsigned long start_pfn, end_pfn;
e76b63f8 4531 int nid;
7c243c71
RA
4532 /*
4533 * NOTE: The following SMP-unsafe globals are only used early in boot
4534 * when the kernel is running single-threaded.
4535 */
4536 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4537 static int __meminitdata last_nid;
4538
4539 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4540 return last_nid;
c713216d 4541
e76b63f8
YL
4542 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4543 if (nid != -1) {
4544 last_start_pfn = start_pfn;
4545 last_end_pfn = end_pfn;
4546 last_nid = nid;
4547 }
4548
4549 return nid;
c713216d
MG
4550}
4551#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4552
f2dbcfa7
KH
4553int __meminit early_pfn_to_nid(unsigned long pfn)
4554{
cc2559bc
KH
4555 int nid;
4556
4557 nid = __early_pfn_to_nid(pfn);
4558 if (nid >= 0)
4559 return nid;
4560 /* just returns 0 */
4561 return 0;
f2dbcfa7
KH
4562}
4563
cc2559bc
KH
4564#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4565bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4566{
4567 int nid;
4568
4569 nid = __early_pfn_to_nid(pfn);
4570 if (nid >= 0 && nid != node)
4571 return false;
4572 return true;
4573}
4574#endif
f2dbcfa7 4575
c713216d 4576/**
6782832e 4577 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4578 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4579 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4580 *
7d018176
ZZ
4581 * If an architecture guarantees that all ranges registered contain no holes
4582 * and may be freed, this this function may be used instead of calling
4583 * memblock_free_early_nid() manually.
c713216d 4584 */
c13291a5 4585void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4586{
c13291a5
TH
4587 unsigned long start_pfn, end_pfn;
4588 int i, this_nid;
edbe7d23 4589
c13291a5
TH
4590 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4591 start_pfn = min(start_pfn, max_low_pfn);
4592 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4593
c13291a5 4594 if (start_pfn < end_pfn)
6782832e
SS
4595 memblock_free_early_nid(PFN_PHYS(start_pfn),
4596 (end_pfn - start_pfn) << PAGE_SHIFT,
4597 this_nid);
edbe7d23 4598 }
edbe7d23 4599}
edbe7d23 4600
c713216d
MG
4601/**
4602 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4603 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4604 *
7d018176
ZZ
4605 * If an architecture guarantees that all ranges registered contain no holes and may
4606 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4607 */
4608void __init sparse_memory_present_with_active_regions(int nid)
4609{
c13291a5
TH
4610 unsigned long start_pfn, end_pfn;
4611 int i, this_nid;
c713216d 4612
c13291a5
TH
4613 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4614 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4615}
4616
4617/**
4618 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4619 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4620 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4621 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4622 *
4623 * It returns the start and end page frame of a node based on information
7d018176 4624 * provided by memblock_set_node(). If called for a node
c713216d 4625 * with no available memory, a warning is printed and the start and end
88ca3b94 4626 * PFNs will be 0.
c713216d 4627 */
a3142c8e 4628void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4629 unsigned long *start_pfn, unsigned long *end_pfn)
4630{
c13291a5 4631 unsigned long this_start_pfn, this_end_pfn;
c713216d 4632 int i;
c13291a5 4633
c713216d
MG
4634 *start_pfn = -1UL;
4635 *end_pfn = 0;
4636
c13291a5
TH
4637 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4638 *start_pfn = min(*start_pfn, this_start_pfn);
4639 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4640 }
4641
633c0666 4642 if (*start_pfn == -1UL)
c713216d 4643 *start_pfn = 0;
c713216d
MG
4644}
4645
2a1e274a
MG
4646/*
4647 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4648 * assumption is made that zones within a node are ordered in monotonic
4649 * increasing memory addresses so that the "highest" populated zone is used
4650 */
b69a7288 4651static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4652{
4653 int zone_index;
4654 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4655 if (zone_index == ZONE_MOVABLE)
4656 continue;
4657
4658 if (arch_zone_highest_possible_pfn[zone_index] >
4659 arch_zone_lowest_possible_pfn[zone_index])
4660 break;
4661 }
4662
4663 VM_BUG_ON(zone_index == -1);
4664 movable_zone = zone_index;
4665}
4666
4667/*
4668 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4669 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4670 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4671 * in each node depending on the size of each node and how evenly kernelcore
4672 * is distributed. This helper function adjusts the zone ranges
4673 * provided by the architecture for a given node by using the end of the
4674 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4675 * zones within a node are in order of monotonic increases memory addresses
4676 */
b69a7288 4677static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4678 unsigned long zone_type,
4679 unsigned long node_start_pfn,
4680 unsigned long node_end_pfn,
4681 unsigned long *zone_start_pfn,
4682 unsigned long *zone_end_pfn)
4683{
4684 /* Only adjust if ZONE_MOVABLE is on this node */
4685 if (zone_movable_pfn[nid]) {
4686 /* Size ZONE_MOVABLE */
4687 if (zone_type == ZONE_MOVABLE) {
4688 *zone_start_pfn = zone_movable_pfn[nid];
4689 *zone_end_pfn = min(node_end_pfn,
4690 arch_zone_highest_possible_pfn[movable_zone]);
4691
4692 /* Adjust for ZONE_MOVABLE starting within this range */
4693 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4694 *zone_end_pfn > zone_movable_pfn[nid]) {
4695 *zone_end_pfn = zone_movable_pfn[nid];
4696
4697 /* Check if this whole range is within ZONE_MOVABLE */
4698 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4699 *zone_start_pfn = *zone_end_pfn;
4700 }
4701}
4702
c713216d
MG
4703/*
4704 * Return the number of pages a zone spans in a node, including holes
4705 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4706 */
6ea6e688 4707static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4708 unsigned long zone_type,
7960aedd
ZY
4709 unsigned long node_start_pfn,
4710 unsigned long node_end_pfn,
c713216d
MG
4711 unsigned long *ignored)
4712{
c713216d
MG
4713 unsigned long zone_start_pfn, zone_end_pfn;
4714
7960aedd 4715 /* Get the start and end of the zone */
c713216d
MG
4716 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4717 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4718 adjust_zone_range_for_zone_movable(nid, zone_type,
4719 node_start_pfn, node_end_pfn,
4720 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4721
4722 /* Check that this node has pages within the zone's required range */
4723 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4724 return 0;
4725
4726 /* Move the zone boundaries inside the node if necessary */
4727 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4728 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4729
4730 /* Return the spanned pages */
4731 return zone_end_pfn - zone_start_pfn;
4732}
4733
4734/*
4735 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4736 * then all holes in the requested range will be accounted for.
c713216d 4737 */
32996250 4738unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4739 unsigned long range_start_pfn,
4740 unsigned long range_end_pfn)
4741{
96e907d1
TH
4742 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4743 unsigned long start_pfn, end_pfn;
4744 int i;
c713216d 4745
96e907d1
TH
4746 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4747 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4748 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4749 nr_absent -= end_pfn - start_pfn;
c713216d 4750 }
96e907d1 4751 return nr_absent;
c713216d
MG
4752}
4753
4754/**
4755 * absent_pages_in_range - Return number of page frames in holes within a range
4756 * @start_pfn: The start PFN to start searching for holes
4757 * @end_pfn: The end PFN to stop searching for holes
4758 *
88ca3b94 4759 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4760 */
4761unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4762 unsigned long end_pfn)
4763{
4764 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4765}
4766
4767/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4768static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4769 unsigned long zone_type,
7960aedd
ZY
4770 unsigned long node_start_pfn,
4771 unsigned long node_end_pfn,
c713216d
MG
4772 unsigned long *ignored)
4773{
96e907d1
TH
4774 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4775 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4776 unsigned long zone_start_pfn, zone_end_pfn;
4777
96e907d1
TH
4778 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4779 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4780
2a1e274a
MG
4781 adjust_zone_range_for_zone_movable(nid, zone_type,
4782 node_start_pfn, node_end_pfn,
4783 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4784 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4785}
0e0b864e 4786
0ee332c1 4787#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4788static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4789 unsigned long zone_type,
7960aedd
ZY
4790 unsigned long node_start_pfn,
4791 unsigned long node_end_pfn,
c713216d
MG
4792 unsigned long *zones_size)
4793{
4794 return zones_size[zone_type];
4795}
4796
6ea6e688 4797static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4798 unsigned long zone_type,
7960aedd
ZY
4799 unsigned long node_start_pfn,
4800 unsigned long node_end_pfn,
c713216d
MG
4801 unsigned long *zholes_size)
4802{
4803 if (!zholes_size)
4804 return 0;
4805
4806 return zholes_size[zone_type];
4807}
20e6926d 4808
0ee332c1 4809#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4810
a3142c8e 4811static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4812 unsigned long node_start_pfn,
4813 unsigned long node_end_pfn,
4814 unsigned long *zones_size,
4815 unsigned long *zholes_size)
c713216d 4816{
febd5949 4817 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
4818 enum zone_type i;
4819
febd5949
GZ
4820 for (i = 0; i < MAX_NR_ZONES; i++) {
4821 struct zone *zone = pgdat->node_zones + i;
4822 unsigned long size, real_size;
c713216d 4823
febd5949
GZ
4824 size = zone_spanned_pages_in_node(pgdat->node_id, i,
4825 node_start_pfn,
4826 node_end_pfn,
4827 zones_size);
4828 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4829 node_start_pfn, node_end_pfn,
4830 zholes_size);
febd5949
GZ
4831 zone->spanned_pages = size;
4832 zone->present_pages = real_size;
4833
4834 totalpages += size;
4835 realtotalpages += real_size;
4836 }
4837
4838 pgdat->node_spanned_pages = totalpages;
c713216d
MG
4839 pgdat->node_present_pages = realtotalpages;
4840 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4841 realtotalpages);
4842}
4843
835c134e
MG
4844#ifndef CONFIG_SPARSEMEM
4845/*
4846 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4847 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4848 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4849 * round what is now in bits to nearest long in bits, then return it in
4850 * bytes.
4851 */
7c45512d 4852static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4853{
4854 unsigned long usemapsize;
4855
7c45512d 4856 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4857 usemapsize = roundup(zonesize, pageblock_nr_pages);
4858 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4859 usemapsize *= NR_PAGEBLOCK_BITS;
4860 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4861
4862 return usemapsize / 8;
4863}
4864
4865static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4866 struct zone *zone,
4867 unsigned long zone_start_pfn,
4868 unsigned long zonesize)
835c134e 4869{
7c45512d 4870 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4871 zone->pageblock_flags = NULL;
58a01a45 4872 if (usemapsize)
6782832e
SS
4873 zone->pageblock_flags =
4874 memblock_virt_alloc_node_nopanic(usemapsize,
4875 pgdat->node_id);
835c134e
MG
4876}
4877#else
7c45512d
LT
4878static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4879 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4880#endif /* CONFIG_SPARSEMEM */
4881
d9c23400 4882#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4883
d9c23400 4884/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4885void __paginginit set_pageblock_order(void)
d9c23400 4886{
955c1cd7
AM
4887 unsigned int order;
4888
d9c23400
MG
4889 /* Check that pageblock_nr_pages has not already been setup */
4890 if (pageblock_order)
4891 return;
4892
955c1cd7
AM
4893 if (HPAGE_SHIFT > PAGE_SHIFT)
4894 order = HUGETLB_PAGE_ORDER;
4895 else
4896 order = MAX_ORDER - 1;
4897
d9c23400
MG
4898 /*
4899 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4900 * This value may be variable depending on boot parameters on IA64 and
4901 * powerpc.
d9c23400
MG
4902 */
4903 pageblock_order = order;
4904}
4905#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4906
ba72cb8c
MG
4907/*
4908 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4909 * is unused as pageblock_order is set at compile-time. See
4910 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4911 * the kernel config
ba72cb8c 4912 */
15ca220e 4913void __paginginit set_pageblock_order(void)
ba72cb8c 4914{
ba72cb8c 4915}
d9c23400
MG
4916
4917#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4918
01cefaef
JL
4919static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4920 unsigned long present_pages)
4921{
4922 unsigned long pages = spanned_pages;
4923
4924 /*
4925 * Provide a more accurate estimation if there are holes within
4926 * the zone and SPARSEMEM is in use. If there are holes within the
4927 * zone, each populated memory region may cost us one or two extra
4928 * memmap pages due to alignment because memmap pages for each
4929 * populated regions may not naturally algined on page boundary.
4930 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4931 */
4932 if (spanned_pages > present_pages + (present_pages >> 4) &&
4933 IS_ENABLED(CONFIG_SPARSEMEM))
4934 pages = present_pages;
4935
4936 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4937}
4938
1da177e4
LT
4939/*
4940 * Set up the zone data structures:
4941 * - mark all pages reserved
4942 * - mark all memory queues empty
4943 * - clear the memory bitmaps
6527af5d
MK
4944 *
4945 * NOTE: pgdat should get zeroed by caller.
1da177e4 4946 */
b5a0e011 4947static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 4948 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 4949{
2f1b6248 4950 enum zone_type j;
ed8ece2e 4951 int nid = pgdat->node_id;
1da177e4 4952 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4953 int ret;
1da177e4 4954
208d54e5 4955 pgdat_resize_init(pgdat);
8177a420
AA
4956#ifdef CONFIG_NUMA_BALANCING
4957 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4958 pgdat->numabalancing_migrate_nr_pages = 0;
4959 pgdat->numabalancing_migrate_next_window = jiffies;
4960#endif
1da177e4 4961 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4962 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4963 pgdat_page_ext_init(pgdat);
5f63b720 4964
1da177e4
LT
4965 for (j = 0; j < MAX_NR_ZONES; j++) {
4966 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4967 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4968
febd5949
GZ
4969 size = zone->spanned_pages;
4970 realsize = freesize = zone->present_pages;
1da177e4 4971
0e0b864e 4972 /*
9feedc9d 4973 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4974 * is used by this zone for memmap. This affects the watermark
4975 * and per-cpu initialisations
4976 */
01cefaef 4977 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4978 if (!is_highmem_idx(j)) {
4979 if (freesize >= memmap_pages) {
4980 freesize -= memmap_pages;
4981 if (memmap_pages)
4982 printk(KERN_DEBUG
4983 " %s zone: %lu pages used for memmap\n",
4984 zone_names[j], memmap_pages);
4985 } else
4986 printk(KERN_WARNING
4987 " %s zone: %lu pages exceeds freesize %lu\n",
4988 zone_names[j], memmap_pages, freesize);
4989 }
0e0b864e 4990
6267276f 4991 /* Account for reserved pages */
9feedc9d
JL
4992 if (j == 0 && freesize > dma_reserve) {
4993 freesize -= dma_reserve;
d903ef9f 4994 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4995 zone_names[0], dma_reserve);
0e0b864e
MG
4996 }
4997
98d2b0eb 4998 if (!is_highmem_idx(j))
9feedc9d 4999 nr_kernel_pages += freesize;
01cefaef
JL
5000 /* Charge for highmem memmap if there are enough kernel pages */
5001 else if (nr_kernel_pages > memmap_pages * 2)
5002 nr_kernel_pages -= memmap_pages;
9feedc9d 5003 nr_all_pages += freesize;
1da177e4 5004
9feedc9d
JL
5005 /*
5006 * Set an approximate value for lowmem here, it will be adjusted
5007 * when the bootmem allocator frees pages into the buddy system.
5008 * And all highmem pages will be managed by the buddy system.
5009 */
5010 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5011#ifdef CONFIG_NUMA
d5f541ed 5012 zone->node = nid;
9feedc9d 5013 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5014 / 100;
9feedc9d 5015 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5016#endif
1da177e4
LT
5017 zone->name = zone_names[j];
5018 spin_lock_init(&zone->lock);
5019 spin_lock_init(&zone->lru_lock);
bdc8cb98 5020 zone_seqlock_init(zone);
1da177e4 5021 zone->zone_pgdat = pgdat;
ed8ece2e 5022 zone_pcp_init(zone);
81c0a2bb
JW
5023
5024 /* For bootup, initialized properly in watermark setup */
5025 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5026
bea8c150 5027 lruvec_init(&zone->lruvec);
1da177e4
LT
5028 if (!size)
5029 continue;
5030
955c1cd7 5031 set_pageblock_order();
7c45512d 5032 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5033 ret = init_currently_empty_zone(zone, zone_start_pfn,
5034 size, MEMMAP_EARLY);
718127cc 5035 BUG_ON(ret);
76cdd58e 5036 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5037 zone_start_pfn += size;
1da177e4
LT
5038 }
5039}
5040
577a32f6 5041static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5042{
1da177e4
LT
5043 /* Skip empty nodes */
5044 if (!pgdat->node_spanned_pages)
5045 return;
5046
d41dee36 5047#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5048 /* ia64 gets its own node_mem_map, before this, without bootmem */
5049 if (!pgdat->node_mem_map) {
e984bb43 5050 unsigned long size, start, end;
d41dee36
AW
5051 struct page *map;
5052
e984bb43
BP
5053 /*
5054 * The zone's endpoints aren't required to be MAX_ORDER
5055 * aligned but the node_mem_map endpoints must be in order
5056 * for the buddy allocator to function correctly.
5057 */
5058 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5059 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5060 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5061 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5062 map = alloc_remap(pgdat->node_id, size);
5063 if (!map)
6782832e
SS
5064 map = memblock_virt_alloc_node_nopanic(size,
5065 pgdat->node_id);
e984bb43 5066 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5067 }
12d810c1 5068#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5069 /*
5070 * With no DISCONTIG, the global mem_map is just set as node 0's
5071 */
c713216d 5072 if (pgdat == NODE_DATA(0)) {
1da177e4 5073 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5074#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5075 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5076 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5077#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5078 }
1da177e4 5079#endif
d41dee36 5080#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5081}
5082
9109fb7b
JW
5083void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5084 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5085{
9109fb7b 5086 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5087 unsigned long start_pfn = 0;
5088 unsigned long end_pfn = 0;
9109fb7b 5089
88fdf75d 5090 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5091 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5092
1da177e4
LT
5093 pgdat->node_id = nid;
5094 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5095#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5096 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5097 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5098 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5099#endif
5100 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5101 zones_size, zholes_size);
1da177e4
LT
5102
5103 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5104#ifdef CONFIG_FLAT_NODE_MEM_MAP
5105 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5106 nid, (unsigned long)pgdat,
5107 (unsigned long)pgdat->node_mem_map);
5108#endif
1da177e4 5109
febd5949 5110 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5111}
5112
0ee332c1 5113#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5114
5115#if MAX_NUMNODES > 1
5116/*
5117 * Figure out the number of possible node ids.
5118 */
f9872caf 5119void __init setup_nr_node_ids(void)
418508c1
MS
5120{
5121 unsigned int node;
5122 unsigned int highest = 0;
5123
5124 for_each_node_mask(node, node_possible_map)
5125 highest = node;
5126 nr_node_ids = highest + 1;
5127}
418508c1
MS
5128#endif
5129
1e01979c
TH
5130/**
5131 * node_map_pfn_alignment - determine the maximum internode alignment
5132 *
5133 * This function should be called after node map is populated and sorted.
5134 * It calculates the maximum power of two alignment which can distinguish
5135 * all the nodes.
5136 *
5137 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5138 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5139 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5140 * shifted, 1GiB is enough and this function will indicate so.
5141 *
5142 * This is used to test whether pfn -> nid mapping of the chosen memory
5143 * model has fine enough granularity to avoid incorrect mapping for the
5144 * populated node map.
5145 *
5146 * Returns the determined alignment in pfn's. 0 if there is no alignment
5147 * requirement (single node).
5148 */
5149unsigned long __init node_map_pfn_alignment(void)
5150{
5151 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5152 unsigned long start, end, mask;
1e01979c 5153 int last_nid = -1;
c13291a5 5154 int i, nid;
1e01979c 5155
c13291a5 5156 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5157 if (!start || last_nid < 0 || last_nid == nid) {
5158 last_nid = nid;
5159 last_end = end;
5160 continue;
5161 }
5162
5163 /*
5164 * Start with a mask granular enough to pin-point to the
5165 * start pfn and tick off bits one-by-one until it becomes
5166 * too coarse to separate the current node from the last.
5167 */
5168 mask = ~((1 << __ffs(start)) - 1);
5169 while (mask && last_end <= (start & (mask << 1)))
5170 mask <<= 1;
5171
5172 /* accumulate all internode masks */
5173 accl_mask |= mask;
5174 }
5175
5176 /* convert mask to number of pages */
5177 return ~accl_mask + 1;
5178}
5179
a6af2bc3 5180/* Find the lowest pfn for a node */
b69a7288 5181static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5182{
a6af2bc3 5183 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5184 unsigned long start_pfn;
5185 int i;
1abbfb41 5186
c13291a5
TH
5187 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5188 min_pfn = min(min_pfn, start_pfn);
c713216d 5189
a6af2bc3
MG
5190 if (min_pfn == ULONG_MAX) {
5191 printk(KERN_WARNING
2bc0d261 5192 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5193 return 0;
5194 }
5195
5196 return min_pfn;
c713216d
MG
5197}
5198
5199/**
5200 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5201 *
5202 * It returns the minimum PFN based on information provided via
7d018176 5203 * memblock_set_node().
c713216d
MG
5204 */
5205unsigned long __init find_min_pfn_with_active_regions(void)
5206{
5207 return find_min_pfn_for_node(MAX_NUMNODES);
5208}
5209
37b07e41
LS
5210/*
5211 * early_calculate_totalpages()
5212 * Sum pages in active regions for movable zone.
4b0ef1fe 5213 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5214 */
484f51f8 5215static unsigned long __init early_calculate_totalpages(void)
7e63efef 5216{
7e63efef 5217 unsigned long totalpages = 0;
c13291a5
TH
5218 unsigned long start_pfn, end_pfn;
5219 int i, nid;
5220
5221 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5222 unsigned long pages = end_pfn - start_pfn;
7e63efef 5223
37b07e41
LS
5224 totalpages += pages;
5225 if (pages)
4b0ef1fe 5226 node_set_state(nid, N_MEMORY);
37b07e41 5227 }
b8af2941 5228 return totalpages;
7e63efef
MG
5229}
5230
2a1e274a
MG
5231/*
5232 * Find the PFN the Movable zone begins in each node. Kernel memory
5233 * is spread evenly between nodes as long as the nodes have enough
5234 * memory. When they don't, some nodes will have more kernelcore than
5235 * others
5236 */
b224ef85 5237static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5238{
5239 int i, nid;
5240 unsigned long usable_startpfn;
5241 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5242 /* save the state before borrow the nodemask */
4b0ef1fe 5243 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5244 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5245 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5246 struct memblock_region *r;
b2f3eebe
TC
5247
5248 /* Need to find movable_zone earlier when movable_node is specified. */
5249 find_usable_zone_for_movable();
5250
5251 /*
5252 * If movable_node is specified, ignore kernelcore and movablecore
5253 * options.
5254 */
5255 if (movable_node_is_enabled()) {
136199f0
EM
5256 for_each_memblock(memory, r) {
5257 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5258 continue;
5259
136199f0 5260 nid = r->nid;
b2f3eebe 5261
136199f0 5262 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5263 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5264 min(usable_startpfn, zone_movable_pfn[nid]) :
5265 usable_startpfn;
5266 }
5267
5268 goto out2;
5269 }
2a1e274a 5270
7e63efef 5271 /*
b2f3eebe 5272 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5273 * kernelcore that corresponds so that memory usable for
5274 * any allocation type is evenly spread. If both kernelcore
5275 * and movablecore are specified, then the value of kernelcore
5276 * will be used for required_kernelcore if it's greater than
5277 * what movablecore would have allowed.
5278 */
5279 if (required_movablecore) {
7e63efef
MG
5280 unsigned long corepages;
5281
5282 /*
5283 * Round-up so that ZONE_MOVABLE is at least as large as what
5284 * was requested by the user
5285 */
5286 required_movablecore =
5287 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5288 corepages = totalpages - required_movablecore;
5289
5290 required_kernelcore = max(required_kernelcore, corepages);
5291 }
5292
20e6926d
YL
5293 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5294 if (!required_kernelcore)
66918dcd 5295 goto out;
2a1e274a
MG
5296
5297 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5298 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5299
5300restart:
5301 /* Spread kernelcore memory as evenly as possible throughout nodes */
5302 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5303 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5304 unsigned long start_pfn, end_pfn;
5305
2a1e274a
MG
5306 /*
5307 * Recalculate kernelcore_node if the division per node
5308 * now exceeds what is necessary to satisfy the requested
5309 * amount of memory for the kernel
5310 */
5311 if (required_kernelcore < kernelcore_node)
5312 kernelcore_node = required_kernelcore / usable_nodes;
5313
5314 /*
5315 * As the map is walked, we track how much memory is usable
5316 * by the kernel using kernelcore_remaining. When it is
5317 * 0, the rest of the node is usable by ZONE_MOVABLE
5318 */
5319 kernelcore_remaining = kernelcore_node;
5320
5321 /* Go through each range of PFNs within this node */
c13291a5 5322 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5323 unsigned long size_pages;
5324
c13291a5 5325 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5326 if (start_pfn >= end_pfn)
5327 continue;
5328
5329 /* Account for what is only usable for kernelcore */
5330 if (start_pfn < usable_startpfn) {
5331 unsigned long kernel_pages;
5332 kernel_pages = min(end_pfn, usable_startpfn)
5333 - start_pfn;
5334
5335 kernelcore_remaining -= min(kernel_pages,
5336 kernelcore_remaining);
5337 required_kernelcore -= min(kernel_pages,
5338 required_kernelcore);
5339
5340 /* Continue if range is now fully accounted */
5341 if (end_pfn <= usable_startpfn) {
5342
5343 /*
5344 * Push zone_movable_pfn to the end so
5345 * that if we have to rebalance
5346 * kernelcore across nodes, we will
5347 * not double account here
5348 */
5349 zone_movable_pfn[nid] = end_pfn;
5350 continue;
5351 }
5352 start_pfn = usable_startpfn;
5353 }
5354
5355 /*
5356 * The usable PFN range for ZONE_MOVABLE is from
5357 * start_pfn->end_pfn. Calculate size_pages as the
5358 * number of pages used as kernelcore
5359 */
5360 size_pages = end_pfn - start_pfn;
5361 if (size_pages > kernelcore_remaining)
5362 size_pages = kernelcore_remaining;
5363 zone_movable_pfn[nid] = start_pfn + size_pages;
5364
5365 /*
5366 * Some kernelcore has been met, update counts and
5367 * break if the kernelcore for this node has been
b8af2941 5368 * satisfied
2a1e274a
MG
5369 */
5370 required_kernelcore -= min(required_kernelcore,
5371 size_pages);
5372 kernelcore_remaining -= size_pages;
5373 if (!kernelcore_remaining)
5374 break;
5375 }
5376 }
5377
5378 /*
5379 * If there is still required_kernelcore, we do another pass with one
5380 * less node in the count. This will push zone_movable_pfn[nid] further
5381 * along on the nodes that still have memory until kernelcore is
b8af2941 5382 * satisfied
2a1e274a
MG
5383 */
5384 usable_nodes--;
5385 if (usable_nodes && required_kernelcore > usable_nodes)
5386 goto restart;
5387
b2f3eebe 5388out2:
2a1e274a
MG
5389 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5390 for (nid = 0; nid < MAX_NUMNODES; nid++)
5391 zone_movable_pfn[nid] =
5392 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5393
20e6926d 5394out:
66918dcd 5395 /* restore the node_state */
4b0ef1fe 5396 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5397}
5398
4b0ef1fe
LJ
5399/* Any regular or high memory on that node ? */
5400static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5401{
37b07e41
LS
5402 enum zone_type zone_type;
5403
4b0ef1fe
LJ
5404 if (N_MEMORY == N_NORMAL_MEMORY)
5405 return;
5406
5407 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5408 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5409 if (populated_zone(zone)) {
4b0ef1fe
LJ
5410 node_set_state(nid, N_HIGH_MEMORY);
5411 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5412 zone_type <= ZONE_NORMAL)
5413 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5414 break;
5415 }
37b07e41 5416 }
37b07e41
LS
5417}
5418
c713216d
MG
5419/**
5420 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5421 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5422 *
5423 * This will call free_area_init_node() for each active node in the system.
7d018176 5424 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5425 * zone in each node and their holes is calculated. If the maximum PFN
5426 * between two adjacent zones match, it is assumed that the zone is empty.
5427 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5428 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5429 * starts where the previous one ended. For example, ZONE_DMA32 starts
5430 * at arch_max_dma_pfn.
5431 */
5432void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5433{
c13291a5
TH
5434 unsigned long start_pfn, end_pfn;
5435 int i, nid;
a6af2bc3 5436
c713216d
MG
5437 /* Record where the zone boundaries are */
5438 memset(arch_zone_lowest_possible_pfn, 0,
5439 sizeof(arch_zone_lowest_possible_pfn));
5440 memset(arch_zone_highest_possible_pfn, 0,
5441 sizeof(arch_zone_highest_possible_pfn));
5442 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5443 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5444 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5445 if (i == ZONE_MOVABLE)
5446 continue;
c713216d
MG
5447 arch_zone_lowest_possible_pfn[i] =
5448 arch_zone_highest_possible_pfn[i-1];
5449 arch_zone_highest_possible_pfn[i] =
5450 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5451 }
2a1e274a
MG
5452 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5453 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5454
5455 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5456 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5457 find_zone_movable_pfns_for_nodes();
c713216d 5458
c713216d 5459 /* Print out the zone ranges */
f88dfff5 5460 pr_info("Zone ranges:\n");
2a1e274a
MG
5461 for (i = 0; i < MAX_NR_ZONES; i++) {
5462 if (i == ZONE_MOVABLE)
5463 continue;
f88dfff5 5464 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5465 if (arch_zone_lowest_possible_pfn[i] ==
5466 arch_zone_highest_possible_pfn[i])
f88dfff5 5467 pr_cont("empty\n");
72f0ba02 5468 else
8d29e18a
JG
5469 pr_cont("[mem %#018Lx-%#018Lx]\n",
5470 (u64)arch_zone_lowest_possible_pfn[i]
5471 << PAGE_SHIFT,
5472 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5473 << PAGE_SHIFT) - 1);
2a1e274a
MG
5474 }
5475
5476 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5477 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5478 for (i = 0; i < MAX_NUMNODES; i++) {
5479 if (zone_movable_pfn[i])
8d29e18a
JG
5480 pr_info(" Node %d: %#018Lx\n", i,
5481 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5482 }
c713216d 5483
f2d52fe5 5484 /* Print out the early node map */
f88dfff5 5485 pr_info("Early memory node ranges\n");
c13291a5 5486 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5487 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5488 (u64)start_pfn << PAGE_SHIFT,
5489 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5490
5491 /* Initialise every node */
708614e6 5492 mminit_verify_pageflags_layout();
8ef82866 5493 setup_nr_node_ids();
c713216d
MG
5494 for_each_online_node(nid) {
5495 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5496 free_area_init_node(nid, NULL,
c713216d 5497 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5498
5499 /* Any memory on that node */
5500 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5501 node_set_state(nid, N_MEMORY);
5502 check_for_memory(pgdat, nid);
c713216d
MG
5503 }
5504}
2a1e274a 5505
7e63efef 5506static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5507{
5508 unsigned long long coremem;
5509 if (!p)
5510 return -EINVAL;
5511
5512 coremem = memparse(p, &p);
7e63efef 5513 *core = coremem >> PAGE_SHIFT;
2a1e274a 5514
7e63efef 5515 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5516 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5517
5518 return 0;
5519}
ed7ed365 5520
7e63efef
MG
5521/*
5522 * kernelcore=size sets the amount of memory for use for allocations that
5523 * cannot be reclaimed or migrated.
5524 */
5525static int __init cmdline_parse_kernelcore(char *p)
5526{
5527 return cmdline_parse_core(p, &required_kernelcore);
5528}
5529
5530/*
5531 * movablecore=size sets the amount of memory for use for allocations that
5532 * can be reclaimed or migrated.
5533 */
5534static int __init cmdline_parse_movablecore(char *p)
5535{
5536 return cmdline_parse_core(p, &required_movablecore);
5537}
5538
ed7ed365 5539early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5540early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5541
0ee332c1 5542#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5543
c3d5f5f0
JL
5544void adjust_managed_page_count(struct page *page, long count)
5545{
5546 spin_lock(&managed_page_count_lock);
5547 page_zone(page)->managed_pages += count;
5548 totalram_pages += count;
3dcc0571
JL
5549#ifdef CONFIG_HIGHMEM
5550 if (PageHighMem(page))
5551 totalhigh_pages += count;
5552#endif
c3d5f5f0
JL
5553 spin_unlock(&managed_page_count_lock);
5554}
3dcc0571 5555EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5556
11199692 5557unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5558{
11199692
JL
5559 void *pos;
5560 unsigned long pages = 0;
69afade7 5561
11199692
JL
5562 start = (void *)PAGE_ALIGN((unsigned long)start);
5563 end = (void *)((unsigned long)end & PAGE_MASK);
5564 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5565 if ((unsigned int)poison <= 0xFF)
11199692
JL
5566 memset(pos, poison, PAGE_SIZE);
5567 free_reserved_page(virt_to_page(pos));
69afade7
JL
5568 }
5569
5570 if (pages && s)
11199692 5571 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5572 s, pages << (PAGE_SHIFT - 10), start, end);
5573
5574 return pages;
5575}
11199692 5576EXPORT_SYMBOL(free_reserved_area);
69afade7 5577
cfa11e08
JL
5578#ifdef CONFIG_HIGHMEM
5579void free_highmem_page(struct page *page)
5580{
5581 __free_reserved_page(page);
5582 totalram_pages++;
7b4b2a0d 5583 page_zone(page)->managed_pages++;
cfa11e08
JL
5584 totalhigh_pages++;
5585}
5586#endif
5587
7ee3d4e8
JL
5588
5589void __init mem_init_print_info(const char *str)
5590{
5591 unsigned long physpages, codesize, datasize, rosize, bss_size;
5592 unsigned long init_code_size, init_data_size;
5593
5594 physpages = get_num_physpages();
5595 codesize = _etext - _stext;
5596 datasize = _edata - _sdata;
5597 rosize = __end_rodata - __start_rodata;
5598 bss_size = __bss_stop - __bss_start;
5599 init_data_size = __init_end - __init_begin;
5600 init_code_size = _einittext - _sinittext;
5601
5602 /*
5603 * Detect special cases and adjust section sizes accordingly:
5604 * 1) .init.* may be embedded into .data sections
5605 * 2) .init.text.* may be out of [__init_begin, __init_end],
5606 * please refer to arch/tile/kernel/vmlinux.lds.S.
5607 * 3) .rodata.* may be embedded into .text or .data sections.
5608 */
5609#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5610 do { \
5611 if (start <= pos && pos < end && size > adj) \
5612 size -= adj; \
5613 } while (0)
7ee3d4e8
JL
5614
5615 adj_init_size(__init_begin, __init_end, init_data_size,
5616 _sinittext, init_code_size);
5617 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5618 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5619 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5620 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5621
5622#undef adj_init_size
5623
f88dfff5 5624 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5625 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5626 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5627#ifdef CONFIG_HIGHMEM
5628 ", %luK highmem"
5629#endif
5630 "%s%s)\n",
5631 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5632 codesize >> 10, datasize >> 10, rosize >> 10,
5633 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5634 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5635 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5636#ifdef CONFIG_HIGHMEM
5637 totalhigh_pages << (PAGE_SHIFT-10),
5638#endif
5639 str ? ", " : "", str ? str : "");
5640}
5641
0e0b864e 5642/**
88ca3b94
RD
5643 * set_dma_reserve - set the specified number of pages reserved in the first zone
5644 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5645 *
5646 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5647 * In the DMA zone, a significant percentage may be consumed by kernel image
5648 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5649 * function may optionally be used to account for unfreeable pages in the
5650 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5651 * smaller per-cpu batchsize.
0e0b864e
MG
5652 */
5653void __init set_dma_reserve(unsigned long new_dma_reserve)
5654{
5655 dma_reserve = new_dma_reserve;
5656}
5657
1da177e4
LT
5658void __init free_area_init(unsigned long *zones_size)
5659{
9109fb7b 5660 free_area_init_node(0, zones_size,
1da177e4
LT
5661 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5662}
1da177e4 5663
1da177e4
LT
5664static int page_alloc_cpu_notify(struct notifier_block *self,
5665 unsigned long action, void *hcpu)
5666{
5667 int cpu = (unsigned long)hcpu;
1da177e4 5668
8bb78442 5669 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5670 lru_add_drain_cpu(cpu);
9f8f2172
CL
5671 drain_pages(cpu);
5672
5673 /*
5674 * Spill the event counters of the dead processor
5675 * into the current processors event counters.
5676 * This artificially elevates the count of the current
5677 * processor.
5678 */
f8891e5e 5679 vm_events_fold_cpu(cpu);
9f8f2172
CL
5680
5681 /*
5682 * Zero the differential counters of the dead processor
5683 * so that the vm statistics are consistent.
5684 *
5685 * This is only okay since the processor is dead and cannot
5686 * race with what we are doing.
5687 */
2bb921e5 5688 cpu_vm_stats_fold(cpu);
1da177e4
LT
5689 }
5690 return NOTIFY_OK;
5691}
1da177e4
LT
5692
5693void __init page_alloc_init(void)
5694{
5695 hotcpu_notifier(page_alloc_cpu_notify, 0);
5696}
5697
cb45b0e9
HA
5698/*
5699 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5700 * or min_free_kbytes changes.
5701 */
5702static void calculate_totalreserve_pages(void)
5703{
5704 struct pglist_data *pgdat;
5705 unsigned long reserve_pages = 0;
2f6726e5 5706 enum zone_type i, j;
cb45b0e9
HA
5707
5708 for_each_online_pgdat(pgdat) {
5709 for (i = 0; i < MAX_NR_ZONES; i++) {
5710 struct zone *zone = pgdat->node_zones + i;
3484b2de 5711 long max = 0;
cb45b0e9
HA
5712
5713 /* Find valid and maximum lowmem_reserve in the zone */
5714 for (j = i; j < MAX_NR_ZONES; j++) {
5715 if (zone->lowmem_reserve[j] > max)
5716 max = zone->lowmem_reserve[j];
5717 }
5718
41858966
MG
5719 /* we treat the high watermark as reserved pages. */
5720 max += high_wmark_pages(zone);
cb45b0e9 5721
b40da049
JL
5722 if (max > zone->managed_pages)
5723 max = zone->managed_pages;
cb45b0e9 5724 reserve_pages += max;
ab8fabd4
JW
5725 /*
5726 * Lowmem reserves are not available to
5727 * GFP_HIGHUSER page cache allocations and
5728 * kswapd tries to balance zones to their high
5729 * watermark. As a result, neither should be
5730 * regarded as dirtyable memory, to prevent a
5731 * situation where reclaim has to clean pages
5732 * in order to balance the zones.
5733 */
5734 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5735 }
5736 }
ab8fabd4 5737 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5738 totalreserve_pages = reserve_pages;
5739}
5740
1da177e4
LT
5741/*
5742 * setup_per_zone_lowmem_reserve - called whenever
5743 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5744 * has a correct pages reserved value, so an adequate number of
5745 * pages are left in the zone after a successful __alloc_pages().
5746 */
5747static void setup_per_zone_lowmem_reserve(void)
5748{
5749 struct pglist_data *pgdat;
2f6726e5 5750 enum zone_type j, idx;
1da177e4 5751
ec936fc5 5752 for_each_online_pgdat(pgdat) {
1da177e4
LT
5753 for (j = 0; j < MAX_NR_ZONES; j++) {
5754 struct zone *zone = pgdat->node_zones + j;
b40da049 5755 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5756
5757 zone->lowmem_reserve[j] = 0;
5758
2f6726e5
CL
5759 idx = j;
5760 while (idx) {
1da177e4
LT
5761 struct zone *lower_zone;
5762
2f6726e5
CL
5763 idx--;
5764
1da177e4
LT
5765 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5766 sysctl_lowmem_reserve_ratio[idx] = 1;
5767
5768 lower_zone = pgdat->node_zones + idx;
b40da049 5769 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5770 sysctl_lowmem_reserve_ratio[idx];
b40da049 5771 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5772 }
5773 }
5774 }
cb45b0e9
HA
5775
5776 /* update totalreserve_pages */
5777 calculate_totalreserve_pages();
1da177e4
LT
5778}
5779
cfd3da1e 5780static void __setup_per_zone_wmarks(void)
1da177e4
LT
5781{
5782 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5783 unsigned long lowmem_pages = 0;
5784 struct zone *zone;
5785 unsigned long flags;
5786
5787 /* Calculate total number of !ZONE_HIGHMEM pages */
5788 for_each_zone(zone) {
5789 if (!is_highmem(zone))
b40da049 5790 lowmem_pages += zone->managed_pages;
1da177e4
LT
5791 }
5792
5793 for_each_zone(zone) {
ac924c60
AM
5794 u64 tmp;
5795
1125b4e3 5796 spin_lock_irqsave(&zone->lock, flags);
b40da049 5797 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5798 do_div(tmp, lowmem_pages);
1da177e4
LT
5799 if (is_highmem(zone)) {
5800 /*
669ed175
NP
5801 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5802 * need highmem pages, so cap pages_min to a small
5803 * value here.
5804 *
41858966 5805 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 5806 * deltas control asynch page reclaim, and so should
669ed175 5807 * not be capped for highmem.
1da177e4 5808 */
90ae8d67 5809 unsigned long min_pages;
1da177e4 5810
b40da049 5811 min_pages = zone->managed_pages / 1024;
90ae8d67 5812 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5813 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5814 } else {
669ed175
NP
5815 /*
5816 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5817 * proportionate to the zone's size.
5818 */
41858966 5819 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5820 }
5821
41858966
MG
5822 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5823 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5824
81c0a2bb 5825 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5826 high_wmark_pages(zone) - low_wmark_pages(zone) -
5827 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5828
56fd56b8 5829 setup_zone_migrate_reserve(zone);
1125b4e3 5830 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5831 }
cb45b0e9
HA
5832
5833 /* update totalreserve_pages */
5834 calculate_totalreserve_pages();
1da177e4
LT
5835}
5836
cfd3da1e
MG
5837/**
5838 * setup_per_zone_wmarks - called when min_free_kbytes changes
5839 * or when memory is hot-{added|removed}
5840 *
5841 * Ensures that the watermark[min,low,high] values for each zone are set
5842 * correctly with respect to min_free_kbytes.
5843 */
5844void setup_per_zone_wmarks(void)
5845{
5846 mutex_lock(&zonelists_mutex);
5847 __setup_per_zone_wmarks();
5848 mutex_unlock(&zonelists_mutex);
5849}
5850
55a4462a 5851/*
556adecb
RR
5852 * The inactive anon list should be small enough that the VM never has to
5853 * do too much work, but large enough that each inactive page has a chance
5854 * to be referenced again before it is swapped out.
5855 *
5856 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5857 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5858 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5859 * the anonymous pages are kept on the inactive list.
5860 *
5861 * total target max
5862 * memory ratio inactive anon
5863 * -------------------------------------
5864 * 10MB 1 5MB
5865 * 100MB 1 50MB
5866 * 1GB 3 250MB
5867 * 10GB 10 0.9GB
5868 * 100GB 31 3GB
5869 * 1TB 101 10GB
5870 * 10TB 320 32GB
5871 */
1b79acc9 5872static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5873{
96cb4df5 5874 unsigned int gb, ratio;
556adecb 5875
96cb4df5 5876 /* Zone size in gigabytes */
b40da049 5877 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5878 if (gb)
556adecb 5879 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5880 else
5881 ratio = 1;
556adecb 5882
96cb4df5
MK
5883 zone->inactive_ratio = ratio;
5884}
556adecb 5885
839a4fcc 5886static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5887{
5888 struct zone *zone;
5889
5890 for_each_zone(zone)
5891 calculate_zone_inactive_ratio(zone);
556adecb
RR
5892}
5893
1da177e4
LT
5894/*
5895 * Initialise min_free_kbytes.
5896 *
5897 * For small machines we want it small (128k min). For large machines
5898 * we want it large (64MB max). But it is not linear, because network
5899 * bandwidth does not increase linearly with machine size. We use
5900 *
b8af2941 5901 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5902 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5903 *
5904 * which yields
5905 *
5906 * 16MB: 512k
5907 * 32MB: 724k
5908 * 64MB: 1024k
5909 * 128MB: 1448k
5910 * 256MB: 2048k
5911 * 512MB: 2896k
5912 * 1024MB: 4096k
5913 * 2048MB: 5792k
5914 * 4096MB: 8192k
5915 * 8192MB: 11584k
5916 * 16384MB: 16384k
5917 */
1b79acc9 5918int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5919{
5920 unsigned long lowmem_kbytes;
5f12733e 5921 int new_min_free_kbytes;
1da177e4
LT
5922
5923 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5924 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5925
5926 if (new_min_free_kbytes > user_min_free_kbytes) {
5927 min_free_kbytes = new_min_free_kbytes;
5928 if (min_free_kbytes < 128)
5929 min_free_kbytes = 128;
5930 if (min_free_kbytes > 65536)
5931 min_free_kbytes = 65536;
5932 } else {
5933 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5934 new_min_free_kbytes, user_min_free_kbytes);
5935 }
bc75d33f 5936 setup_per_zone_wmarks();
a6cccdc3 5937 refresh_zone_stat_thresholds();
1da177e4 5938 setup_per_zone_lowmem_reserve();
556adecb 5939 setup_per_zone_inactive_ratio();
1da177e4
LT
5940 return 0;
5941}
bc75d33f 5942module_init(init_per_zone_wmark_min)
1da177e4
LT
5943
5944/*
b8af2941 5945 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5946 * that we can call two helper functions whenever min_free_kbytes
5947 * changes.
5948 */
cccad5b9 5949int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5950 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5951{
da8c757b
HP
5952 int rc;
5953
5954 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5955 if (rc)
5956 return rc;
5957
5f12733e
MH
5958 if (write) {
5959 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5960 setup_per_zone_wmarks();
5f12733e 5961 }
1da177e4
LT
5962 return 0;
5963}
5964
9614634f 5965#ifdef CONFIG_NUMA
cccad5b9 5966int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5967 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5968{
5969 struct zone *zone;
5970 int rc;
5971
8d65af78 5972 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5973 if (rc)
5974 return rc;
5975
5976 for_each_zone(zone)
b40da049 5977 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5978 sysctl_min_unmapped_ratio) / 100;
5979 return 0;
5980}
0ff38490 5981
cccad5b9 5982int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5983 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5984{
5985 struct zone *zone;
5986 int rc;
5987
8d65af78 5988 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5989 if (rc)
5990 return rc;
5991
5992 for_each_zone(zone)
b40da049 5993 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5994 sysctl_min_slab_ratio) / 100;
5995 return 0;
5996}
9614634f
CL
5997#endif
5998
1da177e4
LT
5999/*
6000 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6001 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6002 * whenever sysctl_lowmem_reserve_ratio changes.
6003 *
6004 * The reserve ratio obviously has absolutely no relation with the
41858966 6005 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6006 * if in function of the boot time zone sizes.
6007 */
cccad5b9 6008int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6009 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6010{
8d65af78 6011 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6012 setup_per_zone_lowmem_reserve();
6013 return 0;
6014}
6015
8ad4b1fb
RS
6016/*
6017 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6018 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6019 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6020 */
cccad5b9 6021int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6022 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6023{
6024 struct zone *zone;
7cd2b0a3 6025 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6026 int ret;
6027
7cd2b0a3
DR
6028 mutex_lock(&pcp_batch_high_lock);
6029 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6030
8d65af78 6031 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6032 if (!write || ret < 0)
6033 goto out;
6034
6035 /* Sanity checking to avoid pcp imbalance */
6036 if (percpu_pagelist_fraction &&
6037 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6038 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6039 ret = -EINVAL;
6040 goto out;
6041 }
6042
6043 /* No change? */
6044 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6045 goto out;
c8e251fa 6046
364df0eb 6047 for_each_populated_zone(zone) {
7cd2b0a3
DR
6048 unsigned int cpu;
6049
22a7f12b 6050 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6051 pageset_set_high_and_batch(zone,
6052 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6053 }
7cd2b0a3 6054out:
c8e251fa 6055 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6056 return ret;
8ad4b1fb
RS
6057}
6058
a9919c79 6059#ifdef CONFIG_NUMA
f034b5d4 6060int hashdist = HASHDIST_DEFAULT;
1da177e4 6061
1da177e4
LT
6062static int __init set_hashdist(char *str)
6063{
6064 if (!str)
6065 return 0;
6066 hashdist = simple_strtoul(str, &str, 0);
6067 return 1;
6068}
6069__setup("hashdist=", set_hashdist);
6070#endif
6071
6072/*
6073 * allocate a large system hash table from bootmem
6074 * - it is assumed that the hash table must contain an exact power-of-2
6075 * quantity of entries
6076 * - limit is the number of hash buckets, not the total allocation size
6077 */
6078void *__init alloc_large_system_hash(const char *tablename,
6079 unsigned long bucketsize,
6080 unsigned long numentries,
6081 int scale,
6082 int flags,
6083 unsigned int *_hash_shift,
6084 unsigned int *_hash_mask,
31fe62b9
TB
6085 unsigned long low_limit,
6086 unsigned long high_limit)
1da177e4 6087{
31fe62b9 6088 unsigned long long max = high_limit;
1da177e4
LT
6089 unsigned long log2qty, size;
6090 void *table = NULL;
6091
6092 /* allow the kernel cmdline to have a say */
6093 if (!numentries) {
6094 /* round applicable memory size up to nearest megabyte */
04903664 6095 numentries = nr_kernel_pages;
a7e83318
JZ
6096
6097 /* It isn't necessary when PAGE_SIZE >= 1MB */
6098 if (PAGE_SHIFT < 20)
6099 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6100
6101 /* limit to 1 bucket per 2^scale bytes of low memory */
6102 if (scale > PAGE_SHIFT)
6103 numentries >>= (scale - PAGE_SHIFT);
6104 else
6105 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6106
6107 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6108 if (unlikely(flags & HASH_SMALL)) {
6109 /* Makes no sense without HASH_EARLY */
6110 WARN_ON(!(flags & HASH_EARLY));
6111 if (!(numentries >> *_hash_shift)) {
6112 numentries = 1UL << *_hash_shift;
6113 BUG_ON(!numentries);
6114 }
6115 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6116 numentries = PAGE_SIZE / bucketsize;
1da177e4 6117 }
6e692ed3 6118 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6119
6120 /* limit allocation size to 1/16 total memory by default */
6121 if (max == 0) {
6122 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6123 do_div(max, bucketsize);
6124 }
074b8517 6125 max = min(max, 0x80000000ULL);
1da177e4 6126
31fe62b9
TB
6127 if (numentries < low_limit)
6128 numentries = low_limit;
1da177e4
LT
6129 if (numentries > max)
6130 numentries = max;
6131
f0d1b0b3 6132 log2qty = ilog2(numentries);
1da177e4
LT
6133
6134 do {
6135 size = bucketsize << log2qty;
6136 if (flags & HASH_EARLY)
6782832e 6137 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6138 else if (hashdist)
6139 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6140 else {
1037b83b
ED
6141 /*
6142 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6143 * some pages at the end of hash table which
6144 * alloc_pages_exact() automatically does
1037b83b 6145 */
264ef8a9 6146 if (get_order(size) < MAX_ORDER) {
a1dd268c 6147 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6148 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6149 }
1da177e4
LT
6150 }
6151 } while (!table && size > PAGE_SIZE && --log2qty);
6152
6153 if (!table)
6154 panic("Failed to allocate %s hash table\n", tablename);
6155
f241e660 6156 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6157 tablename,
f241e660 6158 (1UL << log2qty),
f0d1b0b3 6159 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6160 size);
6161
6162 if (_hash_shift)
6163 *_hash_shift = log2qty;
6164 if (_hash_mask)
6165 *_hash_mask = (1 << log2qty) - 1;
6166
6167 return table;
6168}
a117e66e 6169
835c134e
MG
6170/* Return a pointer to the bitmap storing bits affecting a block of pages */
6171static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6172 unsigned long pfn)
6173{
6174#ifdef CONFIG_SPARSEMEM
6175 return __pfn_to_section(pfn)->pageblock_flags;
6176#else
6177 return zone->pageblock_flags;
6178#endif /* CONFIG_SPARSEMEM */
6179}
6180
6181static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6182{
6183#ifdef CONFIG_SPARSEMEM
6184 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6185 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6186#else
c060f943 6187 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6188 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6189#endif /* CONFIG_SPARSEMEM */
6190}
6191
6192/**
1aab4d77 6193 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6194 * @page: The page within the block of interest
1aab4d77
RD
6195 * @pfn: The target page frame number
6196 * @end_bitidx: The last bit of interest to retrieve
6197 * @mask: mask of bits that the caller is interested in
6198 *
6199 * Return: pageblock_bits flags
835c134e 6200 */
dc4b0caf 6201unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6202 unsigned long end_bitidx,
6203 unsigned long mask)
835c134e
MG
6204{
6205 struct zone *zone;
6206 unsigned long *bitmap;
dc4b0caf 6207 unsigned long bitidx, word_bitidx;
e58469ba 6208 unsigned long word;
835c134e
MG
6209
6210 zone = page_zone(page);
835c134e
MG
6211 bitmap = get_pageblock_bitmap(zone, pfn);
6212 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6213 word_bitidx = bitidx / BITS_PER_LONG;
6214 bitidx &= (BITS_PER_LONG-1);
835c134e 6215
e58469ba
MG
6216 word = bitmap[word_bitidx];
6217 bitidx += end_bitidx;
6218 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6219}
6220
6221/**
dc4b0caf 6222 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6223 * @page: The page within the block of interest
835c134e 6224 * @flags: The flags to set
1aab4d77
RD
6225 * @pfn: The target page frame number
6226 * @end_bitidx: The last bit of interest
6227 * @mask: mask of bits that the caller is interested in
835c134e 6228 */
dc4b0caf
MG
6229void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6230 unsigned long pfn,
e58469ba
MG
6231 unsigned long end_bitidx,
6232 unsigned long mask)
835c134e
MG
6233{
6234 struct zone *zone;
6235 unsigned long *bitmap;
dc4b0caf 6236 unsigned long bitidx, word_bitidx;
e58469ba
MG
6237 unsigned long old_word, word;
6238
6239 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6240
6241 zone = page_zone(page);
835c134e
MG
6242 bitmap = get_pageblock_bitmap(zone, pfn);
6243 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6244 word_bitidx = bitidx / BITS_PER_LONG;
6245 bitidx &= (BITS_PER_LONG-1);
6246
309381fe 6247 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6248
e58469ba
MG
6249 bitidx += end_bitidx;
6250 mask <<= (BITS_PER_LONG - bitidx - 1);
6251 flags <<= (BITS_PER_LONG - bitidx - 1);
6252
4db0c3c2 6253 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6254 for (;;) {
6255 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6256 if (word == old_word)
6257 break;
6258 word = old_word;
6259 }
835c134e 6260}
a5d76b54
KH
6261
6262/*
80934513
MK
6263 * This function checks whether pageblock includes unmovable pages or not.
6264 * If @count is not zero, it is okay to include less @count unmovable pages
6265 *
b8af2941 6266 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6267 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6268 * expect this function should be exact.
a5d76b54 6269 */
b023f468
WC
6270bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6271 bool skip_hwpoisoned_pages)
49ac8255
KH
6272{
6273 unsigned long pfn, iter, found;
47118af0
MN
6274 int mt;
6275
49ac8255
KH
6276 /*
6277 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6278 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6279 */
6280 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6281 return false;
47118af0
MN
6282 mt = get_pageblock_migratetype(page);
6283 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6284 return false;
49ac8255
KH
6285
6286 pfn = page_to_pfn(page);
6287 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6288 unsigned long check = pfn + iter;
6289
29723fcc 6290 if (!pfn_valid_within(check))
49ac8255 6291 continue;
29723fcc 6292
49ac8255 6293 page = pfn_to_page(check);
c8721bbb
NH
6294
6295 /*
6296 * Hugepages are not in LRU lists, but they're movable.
6297 * We need not scan over tail pages bacause we don't
6298 * handle each tail page individually in migration.
6299 */
6300 if (PageHuge(page)) {
6301 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6302 continue;
6303 }
6304
97d255c8
MK
6305 /*
6306 * We can't use page_count without pin a page
6307 * because another CPU can free compound page.
6308 * This check already skips compound tails of THP
6309 * because their page->_count is zero at all time.
6310 */
6311 if (!atomic_read(&page->_count)) {
49ac8255
KH
6312 if (PageBuddy(page))
6313 iter += (1 << page_order(page)) - 1;
6314 continue;
6315 }
97d255c8 6316
b023f468
WC
6317 /*
6318 * The HWPoisoned page may be not in buddy system, and
6319 * page_count() is not 0.
6320 */
6321 if (skip_hwpoisoned_pages && PageHWPoison(page))
6322 continue;
6323
49ac8255
KH
6324 if (!PageLRU(page))
6325 found++;
6326 /*
6b4f7799
JW
6327 * If there are RECLAIMABLE pages, we need to check
6328 * it. But now, memory offline itself doesn't call
6329 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6330 */
6331 /*
6332 * If the page is not RAM, page_count()should be 0.
6333 * we don't need more check. This is an _used_ not-movable page.
6334 *
6335 * The problematic thing here is PG_reserved pages. PG_reserved
6336 * is set to both of a memory hole page and a _used_ kernel
6337 * page at boot.
6338 */
6339 if (found > count)
80934513 6340 return true;
49ac8255 6341 }
80934513 6342 return false;
49ac8255
KH
6343}
6344
6345bool is_pageblock_removable_nolock(struct page *page)
6346{
656a0706
MH
6347 struct zone *zone;
6348 unsigned long pfn;
687875fb
MH
6349
6350 /*
6351 * We have to be careful here because we are iterating over memory
6352 * sections which are not zone aware so we might end up outside of
6353 * the zone but still within the section.
656a0706
MH
6354 * We have to take care about the node as well. If the node is offline
6355 * its NODE_DATA will be NULL - see page_zone.
687875fb 6356 */
656a0706
MH
6357 if (!node_online(page_to_nid(page)))
6358 return false;
6359
6360 zone = page_zone(page);
6361 pfn = page_to_pfn(page);
108bcc96 6362 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6363 return false;
6364
b023f468 6365 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6366}
0c0e6195 6367
041d3a8c
MN
6368#ifdef CONFIG_CMA
6369
6370static unsigned long pfn_max_align_down(unsigned long pfn)
6371{
6372 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6373 pageblock_nr_pages) - 1);
6374}
6375
6376static unsigned long pfn_max_align_up(unsigned long pfn)
6377{
6378 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6379 pageblock_nr_pages));
6380}
6381
041d3a8c 6382/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6383static int __alloc_contig_migrate_range(struct compact_control *cc,
6384 unsigned long start, unsigned long end)
041d3a8c
MN
6385{
6386 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6387 unsigned long nr_reclaimed;
041d3a8c
MN
6388 unsigned long pfn = start;
6389 unsigned int tries = 0;
6390 int ret = 0;
6391
be49a6e1 6392 migrate_prep();
041d3a8c 6393
bb13ffeb 6394 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6395 if (fatal_signal_pending(current)) {
6396 ret = -EINTR;
6397 break;
6398 }
6399
bb13ffeb
MG
6400 if (list_empty(&cc->migratepages)) {
6401 cc->nr_migratepages = 0;
edc2ca61 6402 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6403 if (!pfn) {
6404 ret = -EINTR;
6405 break;
6406 }
6407 tries = 0;
6408 } else if (++tries == 5) {
6409 ret = ret < 0 ? ret : -EBUSY;
6410 break;
6411 }
6412
beb51eaa
MK
6413 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6414 &cc->migratepages);
6415 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6416
9c620e2b 6417 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6418 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6419 }
2a6f5124
SP
6420 if (ret < 0) {
6421 putback_movable_pages(&cc->migratepages);
6422 return ret;
6423 }
6424 return 0;
041d3a8c
MN
6425}
6426
6427/**
6428 * alloc_contig_range() -- tries to allocate given range of pages
6429 * @start: start PFN to allocate
6430 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6431 * @migratetype: migratetype of the underlaying pageblocks (either
6432 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6433 * in range must have the same migratetype and it must
6434 * be either of the two.
041d3a8c
MN
6435 *
6436 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6437 * aligned, however it's the caller's responsibility to guarantee that
6438 * we are the only thread that changes migrate type of pageblocks the
6439 * pages fall in.
6440 *
6441 * The PFN range must belong to a single zone.
6442 *
6443 * Returns zero on success or negative error code. On success all
6444 * pages which PFN is in [start, end) are allocated for the caller and
6445 * need to be freed with free_contig_range().
6446 */
0815f3d8
MN
6447int alloc_contig_range(unsigned long start, unsigned long end,
6448 unsigned migratetype)
041d3a8c 6449{
041d3a8c
MN
6450 unsigned long outer_start, outer_end;
6451 int ret = 0, order;
6452
bb13ffeb
MG
6453 struct compact_control cc = {
6454 .nr_migratepages = 0,
6455 .order = -1,
6456 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6457 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6458 .ignore_skip_hint = true,
6459 };
6460 INIT_LIST_HEAD(&cc.migratepages);
6461
041d3a8c
MN
6462 /*
6463 * What we do here is we mark all pageblocks in range as
6464 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6465 * have different sizes, and due to the way page allocator
6466 * work, we align the range to biggest of the two pages so
6467 * that page allocator won't try to merge buddies from
6468 * different pageblocks and change MIGRATE_ISOLATE to some
6469 * other migration type.
6470 *
6471 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6472 * migrate the pages from an unaligned range (ie. pages that
6473 * we are interested in). This will put all the pages in
6474 * range back to page allocator as MIGRATE_ISOLATE.
6475 *
6476 * When this is done, we take the pages in range from page
6477 * allocator removing them from the buddy system. This way
6478 * page allocator will never consider using them.
6479 *
6480 * This lets us mark the pageblocks back as
6481 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6482 * aligned range but not in the unaligned, original range are
6483 * put back to page allocator so that buddy can use them.
6484 */
6485
6486 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6487 pfn_max_align_up(end), migratetype,
6488 false);
041d3a8c 6489 if (ret)
86a595f9 6490 return ret;
041d3a8c 6491
bb13ffeb 6492 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6493 if (ret)
6494 goto done;
6495
6496 /*
6497 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6498 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6499 * more, all pages in [start, end) are free in page allocator.
6500 * What we are going to do is to allocate all pages from
6501 * [start, end) (that is remove them from page allocator).
6502 *
6503 * The only problem is that pages at the beginning and at the
6504 * end of interesting range may be not aligned with pages that
6505 * page allocator holds, ie. they can be part of higher order
6506 * pages. Because of this, we reserve the bigger range and
6507 * once this is done free the pages we are not interested in.
6508 *
6509 * We don't have to hold zone->lock here because the pages are
6510 * isolated thus they won't get removed from buddy.
6511 */
6512
6513 lru_add_drain_all();
510f5507 6514 drain_all_pages(cc.zone);
041d3a8c
MN
6515
6516 order = 0;
6517 outer_start = start;
6518 while (!PageBuddy(pfn_to_page(outer_start))) {
6519 if (++order >= MAX_ORDER) {
6520 ret = -EBUSY;
6521 goto done;
6522 }
6523 outer_start &= ~0UL << order;
6524 }
6525
6526 /* Make sure the range is really isolated. */
b023f468 6527 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6528 pr_info("%s: [%lx, %lx) PFNs busy\n",
6529 __func__, outer_start, end);
041d3a8c
MN
6530 ret = -EBUSY;
6531 goto done;
6532 }
6533
49f223a9 6534 /* Grab isolated pages from freelists. */
bb13ffeb 6535 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6536 if (!outer_end) {
6537 ret = -EBUSY;
6538 goto done;
6539 }
6540
6541 /* Free head and tail (if any) */
6542 if (start != outer_start)
6543 free_contig_range(outer_start, start - outer_start);
6544 if (end != outer_end)
6545 free_contig_range(end, outer_end - end);
6546
6547done:
6548 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6549 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6550 return ret;
6551}
6552
6553void free_contig_range(unsigned long pfn, unsigned nr_pages)
6554{
bcc2b02f
MS
6555 unsigned int count = 0;
6556
6557 for (; nr_pages--; pfn++) {
6558 struct page *page = pfn_to_page(pfn);
6559
6560 count += page_count(page) != 1;
6561 __free_page(page);
6562 }
6563 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6564}
6565#endif
6566
4ed7e022 6567#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6568/*
6569 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6570 * page high values need to be recalulated.
6571 */
4ed7e022
JL
6572void __meminit zone_pcp_update(struct zone *zone)
6573{
0a647f38 6574 unsigned cpu;
c8e251fa 6575 mutex_lock(&pcp_batch_high_lock);
0a647f38 6576 for_each_possible_cpu(cpu)
169f6c19
CS
6577 pageset_set_high_and_batch(zone,
6578 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6579 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6580}
6581#endif
6582
340175b7
JL
6583void zone_pcp_reset(struct zone *zone)
6584{
6585 unsigned long flags;
5a883813
MK
6586 int cpu;
6587 struct per_cpu_pageset *pset;
340175b7
JL
6588
6589 /* avoid races with drain_pages() */
6590 local_irq_save(flags);
6591 if (zone->pageset != &boot_pageset) {
5a883813
MK
6592 for_each_online_cpu(cpu) {
6593 pset = per_cpu_ptr(zone->pageset, cpu);
6594 drain_zonestat(zone, pset);
6595 }
340175b7
JL
6596 free_percpu(zone->pageset);
6597 zone->pageset = &boot_pageset;
6598 }
6599 local_irq_restore(flags);
6600}
6601
6dcd73d7 6602#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6603/*
6604 * All pages in the range must be isolated before calling this.
6605 */
6606void
6607__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6608{
6609 struct page *page;
6610 struct zone *zone;
7aeb09f9 6611 unsigned int order, i;
0c0e6195
KH
6612 unsigned long pfn;
6613 unsigned long flags;
6614 /* find the first valid pfn */
6615 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6616 if (pfn_valid(pfn))
6617 break;
6618 if (pfn == end_pfn)
6619 return;
6620 zone = page_zone(pfn_to_page(pfn));
6621 spin_lock_irqsave(&zone->lock, flags);
6622 pfn = start_pfn;
6623 while (pfn < end_pfn) {
6624 if (!pfn_valid(pfn)) {
6625 pfn++;
6626 continue;
6627 }
6628 page = pfn_to_page(pfn);
b023f468
WC
6629 /*
6630 * The HWPoisoned page may be not in buddy system, and
6631 * page_count() is not 0.
6632 */
6633 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6634 pfn++;
6635 SetPageReserved(page);
6636 continue;
6637 }
6638
0c0e6195
KH
6639 BUG_ON(page_count(page));
6640 BUG_ON(!PageBuddy(page));
6641 order = page_order(page);
6642#ifdef CONFIG_DEBUG_VM
6643 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6644 pfn, 1 << order, end_pfn);
6645#endif
6646 list_del(&page->lru);
6647 rmv_page_order(page);
6648 zone->free_area[order].nr_free--;
0c0e6195
KH
6649 for (i = 0; i < (1 << order); i++)
6650 SetPageReserved((page+i));
6651 pfn += (1 << order);
6652 }
6653 spin_unlock_irqrestore(&zone->lock, flags);
6654}
6655#endif
8d22ba1b
WF
6656
6657#ifdef CONFIG_MEMORY_FAILURE
6658bool is_free_buddy_page(struct page *page)
6659{
6660 struct zone *zone = page_zone(page);
6661 unsigned long pfn = page_to_pfn(page);
6662 unsigned long flags;
7aeb09f9 6663 unsigned int order;
8d22ba1b
WF
6664
6665 spin_lock_irqsave(&zone->lock, flags);
6666 for (order = 0; order < MAX_ORDER; order++) {
6667 struct page *page_head = page - (pfn & ((1 << order) - 1));
6668
6669 if (PageBuddy(page_head) && page_order(page_head) >= order)
6670 break;
6671 }
6672 spin_unlock_irqrestore(&zone->lock, flags);
6673
6674 return order < MAX_ORDER;
6675}
6676#endif
This page took 2.186012 seconds and 5 git commands to generate.