mm: factor out memory isolate functions
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
ee6f509c 221void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 222{
49255c61
MG
223
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
226
b2a0ac88
MG
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
229}
230
7f33d49a
RW
231bool oom_killer_disabled __read_mostly;
232
13e7444b 233#ifdef CONFIG_DEBUG_VM
c6a57e19 234static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 235{
bdc8cb98
DH
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
c6a57e19 239
bdc8cb98
DH
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
247
248 return ret;
c6a57e19
DH
249}
250
251static int page_is_consistent(struct zone *zone, struct page *page)
252{
14e07298 253 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 254 return 0;
1da177e4 255 if (zone != page_zone(page))
c6a57e19
DH
256 return 0;
257
258 return 1;
259}
260/*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
263static int bad_range(struct zone *zone, struct page *page)
264{
265 if (page_outside_zone_boundaries(zone, page))
1da177e4 266 return 1;
c6a57e19
DH
267 if (!page_is_consistent(zone, page))
268 return 1;
269
1da177e4
LT
270 return 0;
271}
13e7444b
NP
272#else
273static inline int bad_range(struct zone *zone, struct page *page)
274{
275 return 0;
276}
277#endif
278
224abf92 279static void bad_page(struct page *page)
1da177e4 280{
d936cf9b
HD
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
284
2a7684a2
WF
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
ef2b4b95 287 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
288 return;
289 }
290
d936cf9b
HD
291 /*
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
294 */
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
299 }
300 if (nr_unshown) {
1e9e6365
HD
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
303 nr_unshown);
304 nr_unshown = 0;
305 }
306 nr_shown = 0;
307 }
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
310
1e9e6365 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 312 current->comm, page_to_pfn(page));
718a3821 313 dump_page(page);
3dc14741 314
4f31888c 315 print_modules();
1da177e4 316 dump_stack();
d936cf9b 317out:
8cc3b392 318 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 319 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 320 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
321}
322
1da177e4
LT
323/*
324 * Higher-order pages are called "compound pages". They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
6416b9fa
WSH
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
1da177e4 332 *
41d78ba5
HD
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
1da177e4 336 */
d98c7a09
HD
337
338static void free_compound_page(struct page *page)
339{
d85f3385 340 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
341}
342
01ad1c08 343void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
344{
345 int i;
346 int nr_pages = 1 << order;
347
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
18229df5 353 __SetPageTail(p);
58a84aa9 354 set_page_count(p, 0);
18229df5
AW
355 p->first_page = page;
356 }
357}
358
59ff4216 359/* update __split_huge_page_refcount if you change this function */
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
c0a32fc5
SG
400#ifdef CONFIG_DEBUG_PAGEALLOC
401unsigned int _debug_guardpage_minorder;
402
403static int __init debug_guardpage_minorder_setup(char *buf)
404{
405 unsigned long res;
406
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
410 }
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
414}
415__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
417static inline void set_page_guard_flag(struct page *page)
418{
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420}
421
422static inline void clear_page_guard_flag(struct page *page)
423{
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426#else
427static inline void set_page_guard_flag(struct page *page) { }
428static inline void clear_page_guard_flag(struct page *page) { }
429#endif
430
6aa3001b
AM
431static inline void set_page_order(struct page *page, int order)
432{
4c21e2f2 433 set_page_private(page, order);
676165a8 434 __SetPageBuddy(page);
1da177e4
LT
435}
436
437static inline void rmv_page_order(struct page *page)
438{
676165a8 439 __ClearPageBuddy(page);
4c21e2f2 440 set_page_private(page, 0);
1da177e4
LT
441}
442
443/*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
457 *
d6e05edc 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 459 */
1da177e4 460static inline unsigned long
43506fad 461__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 462{
43506fad 463 return page_idx ^ (1 << order);
1da177e4
LT
464}
465
466/*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
13e7444b 469 * (a) the buddy is not in a hole &&
676165a8 470 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
676165a8 473 *
5f24ce5f
AA
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 476 *
676165a8 477 * For recording page's order, we use page_private(page).
1da177e4 478 */
cb2b95e1
AW
479static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
1da177e4 481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 483 return 0;
13e7444b 484
cb2b95e1
AW
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
487
c0a32fc5
SG
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
491 }
492
cb2b95e1 493 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 494 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 495 return 1;
676165a8 496 }
6aa3001b 497 return 0;
1da177e4
LT
498}
499
500/*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 514 * order is recorded in page_private(page) field.
1da177e4 515 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
1da177e4 518 * If a block is freed, and its buddy is also free, then this
5f63b720 519 * triggers coalescing into a block of larger size.
1da177e4
LT
520 *
521 * -- wli
522 */
523
48db57f8 524static inline void __free_one_page(struct page *page,
ed0ae21d
MG
525 struct zone *zone, unsigned int order,
526 int migratetype)
1da177e4
LT
527{
528 unsigned long page_idx;
6dda9d55 529 unsigned long combined_idx;
43506fad 530 unsigned long uninitialized_var(buddy_idx);
6dda9d55 531 struct page *buddy;
1da177e4 532
224abf92 533 if (unlikely(PageCompound(page)))
8cc3b392
HD
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
1da177e4 536
ed0ae21d
MG
537 VM_BUG_ON(migratetype == -1);
538
1da177e4
LT
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
f2260e6b 541 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 542 VM_BUG_ON(bad_range(zone, page));
1da177e4 543
1da177e4 544 while (order < MAX_ORDER-1) {
43506fad
KC
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
cb2b95e1 547 if (!page_is_buddy(page, buddy, order))
3c82d0ce 548 break;
c0a32fc5
SG
549 /*
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
552 */
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
561 }
43506fad 562 combined_idx = buddy_idx & page_idx;
1da177e4
LT
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
566 }
567 set_page_order(page, order);
6dda9d55
CZ
568
569 /*
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
576 */
b7f50cfa 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 578 struct page *higher_page, *higher_buddy;
43506fad
KC
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
587 }
588 }
589
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591out:
1da177e4
LT
592 zone->free_area[order].nr_free++;
593}
594
092cead6
KM
595/*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
600static inline void free_page_mlock(struct page *page)
601{
092cead6
KM
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
604}
092cead6 605
224abf92 606static inline int free_pages_check(struct page *page)
1da177e4 607{
92be2e33
NP
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
a3af9c38 610 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
224abf92 613 bad_page(page);
79f4b7bf 614 return 1;
8cc3b392 615 }
79f4b7bf
HD
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
1da177e4
LT
619}
620
621/*
5f8dcc21 622 * Frees a number of pages from the PCP lists
1da177e4 623 * Assumes all pages on list are in same zone, and of same order.
207f36ee 624 * count is the number of pages to free.
1da177e4
LT
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
5f8dcc21
MG
632static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
1da177e4 634{
5f8dcc21 635 int migratetype = 0;
a6f9edd6 636 int batch_free = 0;
72853e29 637 int to_free = count;
5f8dcc21 638
c54ad30c 639 spin_lock(&zone->lock);
93e4a89a 640 zone->all_unreclaimable = 0;
1da177e4 641 zone->pages_scanned = 0;
f2260e6b 642
72853e29 643 while (to_free) {
48db57f8 644 struct page *page;
5f8dcc21
MG
645 struct list_head *list;
646
647 /*
a6f9edd6
MG
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
5f8dcc21
MG
653 */
654 do {
a6f9edd6 655 batch_free++;
5f8dcc21
MG
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
48db57f8 660
1d16871d
NK
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
664
a6f9edd6
MG
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
a7016235
HD
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
72853e29 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 687 spin_unlock(&zone->lock);
48db57f8
NP
688}
689
ec95f53a 690static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 691{
1da177e4 692 int i;
8cc3b392 693 int bad = 0;
1da177e4 694
b413d48a 695 trace_mm_page_free(page, order);
b1eeab67
VN
696 kmemcheck_free_shadow(page, order);
697
8dd60a3a
AA
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
8cc3b392 702 if (bad)
ec95f53a 703 return false;
689bcebf 704
3ac7fe5a 705 if (!PageHighMem(page)) {
9858db50 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
709 }
dafb1367 710 arch_free_page(page, order);
48db57f8 711 kernel_map_pages(page, 1 << order, 0);
dafb1367 712
ec95f53a
KM
713 return true;
714}
715
716static void __free_pages_ok(struct page *page, unsigned int order)
717{
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
720
721 if (!free_pages_prepare(page, order))
722 return;
723
c54ad30c 724 local_irq_save(flags);
c277331d 725 if (unlikely(wasMlocked))
da456f14 726 free_page_mlock(page);
f8891e5e 727 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
47118af0
MN
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
1da177e4
LT
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
085cc7d5 785static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
786 int low, int high, struct free_area *area,
787 int migratetype)
1da177e4
LT
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
725d704e 795 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
809 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
810 continue;
811 }
812#endif
b2a0ac88 813 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
814 area->nr_free++;
815 set_page_order(&page[size], high);
816 }
1da177e4
LT
817}
818
1da177e4
LT
819/*
820 * This page is about to be returned from the page allocator
821 */
2a7684a2 822static inline int check_new_page(struct page *page)
1da177e4 823{
92be2e33
NP
824 if (unlikely(page_mapcount(page) |
825 (page->mapping != NULL) |
a3af9c38 826 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
827 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
828 (mem_cgroup_bad_page_check(page)))) {
224abf92 829 bad_page(page);
689bcebf 830 return 1;
8cc3b392 831 }
2a7684a2
WF
832 return 0;
833}
834
835static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
836{
837 int i;
838
839 for (i = 0; i < (1 << order); i++) {
840 struct page *p = page + i;
841 if (unlikely(check_new_page(p)))
842 return 1;
843 }
689bcebf 844
4c21e2f2 845 set_page_private(page, 0);
7835e98b 846 set_page_refcounted(page);
cc102509
NP
847
848 arch_alloc_page(page, order);
1da177e4 849 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
850
851 if (gfp_flags & __GFP_ZERO)
852 prep_zero_page(page, order, gfp_flags);
853
854 if (order && (gfp_flags & __GFP_COMP))
855 prep_compound_page(page, order);
856
689bcebf 857 return 0;
1da177e4
LT
858}
859
56fd56b8
MG
860/*
861 * Go through the free lists for the given migratetype and remove
862 * the smallest available page from the freelists
863 */
728ec980
MG
864static inline
865struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
866 int migratetype)
867{
868 unsigned int current_order;
869 struct free_area * area;
870 struct page *page;
871
872 /* Find a page of the appropriate size in the preferred list */
873 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
874 area = &(zone->free_area[current_order]);
875 if (list_empty(&area->free_list[migratetype]))
876 continue;
877
878 page = list_entry(area->free_list[migratetype].next,
879 struct page, lru);
880 list_del(&page->lru);
881 rmv_page_order(page);
882 area->nr_free--;
56fd56b8
MG
883 expand(zone, page, order, current_order, area, migratetype);
884 return page;
885 }
886
887 return NULL;
888}
889
890
b2a0ac88
MG
891/*
892 * This array describes the order lists are fallen back to when
893 * the free lists for the desirable migrate type are depleted
894 */
47118af0
MN
895static int fallbacks[MIGRATE_TYPES][4] = {
896 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
897 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898#ifdef CONFIG_CMA
899 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
900 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
901#else
902 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
903#endif
6d4a4916
MN
904 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
905 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
906};
907
c361be55
MG
908/*
909 * Move the free pages in a range to the free lists of the requested type.
d9c23400 910 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
911 * boundary. If alignment is required, use move_freepages_block()
912 */
b69a7288
AB
913static int move_freepages(struct zone *zone,
914 struct page *start_page, struct page *end_page,
915 int migratetype)
c361be55
MG
916{
917 struct page *page;
918 unsigned long order;
d100313f 919 int pages_moved = 0;
c361be55
MG
920
921#ifndef CONFIG_HOLES_IN_ZONE
922 /*
923 * page_zone is not safe to call in this context when
924 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
925 * anyway as we check zone boundaries in move_freepages_block().
926 * Remove at a later date when no bug reports exist related to
ac0e5b7a 927 * grouping pages by mobility
c361be55
MG
928 */
929 BUG_ON(page_zone(start_page) != page_zone(end_page));
930#endif
931
932 for (page = start_page; page <= end_page;) {
344c790e
AL
933 /* Make sure we are not inadvertently changing nodes */
934 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
935
c361be55
MG
936 if (!pfn_valid_within(page_to_pfn(page))) {
937 page++;
938 continue;
939 }
940
941 if (!PageBuddy(page)) {
942 page++;
943 continue;
944 }
945
946 order = page_order(page);
84be48d8
KS
947 list_move(&page->lru,
948 &zone->free_area[order].free_list[migratetype]);
c361be55 949 page += 1 << order;
d100313f 950 pages_moved += 1 << order;
c361be55
MG
951 }
952
d100313f 953 return pages_moved;
c361be55
MG
954}
955
ee6f509c 956int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 957 int migratetype)
c361be55
MG
958{
959 unsigned long start_pfn, end_pfn;
960 struct page *start_page, *end_page;
961
962 start_pfn = page_to_pfn(page);
d9c23400 963 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 964 start_page = pfn_to_page(start_pfn);
d9c23400
MG
965 end_page = start_page + pageblock_nr_pages - 1;
966 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
967
968 /* Do not cross zone boundaries */
969 if (start_pfn < zone->zone_start_pfn)
970 start_page = page;
971 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
972 return 0;
973
974 return move_freepages(zone, start_page, end_page, migratetype);
975}
976
2f66a68f
MG
977static void change_pageblock_range(struct page *pageblock_page,
978 int start_order, int migratetype)
979{
980 int nr_pageblocks = 1 << (start_order - pageblock_order);
981
982 while (nr_pageblocks--) {
983 set_pageblock_migratetype(pageblock_page, migratetype);
984 pageblock_page += pageblock_nr_pages;
985 }
986}
987
b2a0ac88 988/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
989static inline struct page *
990__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
991{
992 struct free_area * area;
993 int current_order;
994 struct page *page;
995 int migratetype, i;
996
997 /* Find the largest possible block of pages in the other list */
998 for (current_order = MAX_ORDER-1; current_order >= order;
999 --current_order) {
6d4a4916 1000 for (i = 0;; i++) {
b2a0ac88
MG
1001 migratetype = fallbacks[start_migratetype][i];
1002
56fd56b8
MG
1003 /* MIGRATE_RESERVE handled later if necessary */
1004 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1005 break;
e010487d 1006
b2a0ac88
MG
1007 area = &(zone->free_area[current_order]);
1008 if (list_empty(&area->free_list[migratetype]))
1009 continue;
1010
1011 page = list_entry(area->free_list[migratetype].next,
1012 struct page, lru);
1013 area->nr_free--;
1014
1015 /*
c361be55 1016 * If breaking a large block of pages, move all free
46dafbca
MG
1017 * pages to the preferred allocation list. If falling
1018 * back for a reclaimable kernel allocation, be more
25985edc 1019 * aggressive about taking ownership of free pages
47118af0
MN
1020 *
1021 * On the other hand, never change migration
1022 * type of MIGRATE_CMA pageblocks nor move CMA
1023 * pages on different free lists. We don't
1024 * want unmovable pages to be allocated from
1025 * MIGRATE_CMA areas.
b2a0ac88 1026 */
47118af0
MN
1027 if (!is_migrate_cma(migratetype) &&
1028 (unlikely(current_order >= pageblock_order / 2) ||
1029 start_migratetype == MIGRATE_RECLAIMABLE ||
1030 page_group_by_mobility_disabled)) {
1031 int pages;
46dafbca
MG
1032 pages = move_freepages_block(zone, page,
1033 start_migratetype);
1034
1035 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1036 if (pages >= (1 << (pageblock_order-1)) ||
1037 page_group_by_mobility_disabled)
46dafbca
MG
1038 set_pageblock_migratetype(page,
1039 start_migratetype);
1040
b2a0ac88 1041 migratetype = start_migratetype;
c361be55 1042 }
b2a0ac88
MG
1043
1044 /* Remove the page from the freelists */
1045 list_del(&page->lru);
1046 rmv_page_order(page);
b2a0ac88 1047
2f66a68f 1048 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1049 if (current_order >= pageblock_order &&
1050 !is_migrate_cma(migratetype))
2f66a68f 1051 change_pageblock_range(page, current_order,
b2a0ac88
MG
1052 start_migratetype);
1053
47118af0
MN
1054 expand(zone, page, order, current_order, area,
1055 is_migrate_cma(migratetype)
1056 ? migratetype : start_migratetype);
e0fff1bd
MG
1057
1058 trace_mm_page_alloc_extfrag(page, order, current_order,
1059 start_migratetype, migratetype);
1060
b2a0ac88
MG
1061 return page;
1062 }
1063 }
1064
728ec980 1065 return NULL;
b2a0ac88
MG
1066}
1067
56fd56b8 1068/*
1da177e4
LT
1069 * Do the hard work of removing an element from the buddy allocator.
1070 * Call me with the zone->lock already held.
1071 */
b2a0ac88
MG
1072static struct page *__rmqueue(struct zone *zone, unsigned int order,
1073 int migratetype)
1da177e4 1074{
1da177e4
LT
1075 struct page *page;
1076
728ec980 1077retry_reserve:
56fd56b8 1078 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1079
728ec980 1080 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1081 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1082
728ec980
MG
1083 /*
1084 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1085 * is used because __rmqueue_smallest is an inline function
1086 * and we want just one call site
1087 */
1088 if (!page) {
1089 migratetype = MIGRATE_RESERVE;
1090 goto retry_reserve;
1091 }
1092 }
1093
0d3d062a 1094 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1095 return page;
1da177e4
LT
1096}
1097
5f63b720 1098/*
1da177e4
LT
1099 * Obtain a specified number of elements from the buddy allocator, all under
1100 * a single hold of the lock, for efficiency. Add them to the supplied list.
1101 * Returns the number of new pages which were placed at *list.
1102 */
5f63b720 1103static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1104 unsigned long count, struct list_head *list,
e084b2d9 1105 int migratetype, int cold)
1da177e4 1106{
47118af0 1107 int mt = migratetype, i;
5f63b720 1108
c54ad30c 1109 spin_lock(&zone->lock);
1da177e4 1110 for (i = 0; i < count; ++i) {
b2a0ac88 1111 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1112 if (unlikely(page == NULL))
1da177e4 1113 break;
81eabcbe
MG
1114
1115 /*
1116 * Split buddy pages returned by expand() are received here
1117 * in physical page order. The page is added to the callers and
1118 * list and the list head then moves forward. From the callers
1119 * perspective, the linked list is ordered by page number in
1120 * some conditions. This is useful for IO devices that can
1121 * merge IO requests if the physical pages are ordered
1122 * properly.
1123 */
e084b2d9
MG
1124 if (likely(cold == 0))
1125 list_add(&page->lru, list);
1126 else
1127 list_add_tail(&page->lru, list);
47118af0
MN
1128 if (IS_ENABLED(CONFIG_CMA)) {
1129 mt = get_pageblock_migratetype(page);
1130 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1131 mt = migratetype;
1132 }
1133 set_page_private(page, mt);
81eabcbe 1134 list = &page->lru;
1da177e4 1135 }
f2260e6b 1136 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1137 spin_unlock(&zone->lock);
085cc7d5 1138 return i;
1da177e4
LT
1139}
1140
4ae7c039 1141#ifdef CONFIG_NUMA
8fce4d8e 1142/*
4037d452
CL
1143 * Called from the vmstat counter updater to drain pagesets of this
1144 * currently executing processor on remote nodes after they have
1145 * expired.
1146 *
879336c3
CL
1147 * Note that this function must be called with the thread pinned to
1148 * a single processor.
8fce4d8e 1149 */
4037d452 1150void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1151{
4ae7c039 1152 unsigned long flags;
4037d452 1153 int to_drain;
4ae7c039 1154
4037d452
CL
1155 local_irq_save(flags);
1156 if (pcp->count >= pcp->batch)
1157 to_drain = pcp->batch;
1158 else
1159 to_drain = pcp->count;
2a13515c
KM
1160 if (to_drain > 0) {
1161 free_pcppages_bulk(zone, to_drain, pcp);
1162 pcp->count -= to_drain;
1163 }
4037d452 1164 local_irq_restore(flags);
4ae7c039
CL
1165}
1166#endif
1167
9f8f2172
CL
1168/*
1169 * Drain pages of the indicated processor.
1170 *
1171 * The processor must either be the current processor and the
1172 * thread pinned to the current processor or a processor that
1173 * is not online.
1174 */
1175static void drain_pages(unsigned int cpu)
1da177e4 1176{
c54ad30c 1177 unsigned long flags;
1da177e4 1178 struct zone *zone;
1da177e4 1179
ee99c71c 1180 for_each_populated_zone(zone) {
1da177e4 1181 struct per_cpu_pageset *pset;
3dfa5721 1182 struct per_cpu_pages *pcp;
1da177e4 1183
99dcc3e5
CL
1184 local_irq_save(flags);
1185 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1186
1187 pcp = &pset->pcp;
2ff754fa
DR
1188 if (pcp->count) {
1189 free_pcppages_bulk(zone, pcp->count, pcp);
1190 pcp->count = 0;
1191 }
3dfa5721 1192 local_irq_restore(flags);
1da177e4
LT
1193 }
1194}
1da177e4 1195
9f8f2172
CL
1196/*
1197 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1198 */
1199void drain_local_pages(void *arg)
1200{
1201 drain_pages(smp_processor_id());
1202}
1203
1204/*
74046494
GBY
1205 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1206 *
1207 * Note that this code is protected against sending an IPI to an offline
1208 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1209 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1210 * nothing keeps CPUs from showing up after we populated the cpumask and
1211 * before the call to on_each_cpu_mask().
9f8f2172
CL
1212 */
1213void drain_all_pages(void)
1214{
74046494
GBY
1215 int cpu;
1216 struct per_cpu_pageset *pcp;
1217 struct zone *zone;
1218
1219 /*
1220 * Allocate in the BSS so we wont require allocation in
1221 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1222 */
1223 static cpumask_t cpus_with_pcps;
1224
1225 /*
1226 * We don't care about racing with CPU hotplug event
1227 * as offline notification will cause the notified
1228 * cpu to drain that CPU pcps and on_each_cpu_mask
1229 * disables preemption as part of its processing
1230 */
1231 for_each_online_cpu(cpu) {
1232 bool has_pcps = false;
1233 for_each_populated_zone(zone) {
1234 pcp = per_cpu_ptr(zone->pageset, cpu);
1235 if (pcp->pcp.count) {
1236 has_pcps = true;
1237 break;
1238 }
1239 }
1240 if (has_pcps)
1241 cpumask_set_cpu(cpu, &cpus_with_pcps);
1242 else
1243 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1244 }
1245 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1246}
1247
296699de 1248#ifdef CONFIG_HIBERNATION
1da177e4
LT
1249
1250void mark_free_pages(struct zone *zone)
1251{
f623f0db
RW
1252 unsigned long pfn, max_zone_pfn;
1253 unsigned long flags;
b2a0ac88 1254 int order, t;
1da177e4
LT
1255 struct list_head *curr;
1256
1257 if (!zone->spanned_pages)
1258 return;
1259
1260 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1261
1262 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1263 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1264 if (pfn_valid(pfn)) {
1265 struct page *page = pfn_to_page(pfn);
1266
7be98234
RW
1267 if (!swsusp_page_is_forbidden(page))
1268 swsusp_unset_page_free(page);
f623f0db 1269 }
1da177e4 1270
b2a0ac88
MG
1271 for_each_migratetype_order(order, t) {
1272 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1273 unsigned long i;
1da177e4 1274
f623f0db
RW
1275 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1276 for (i = 0; i < (1UL << order); i++)
7be98234 1277 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1278 }
b2a0ac88 1279 }
1da177e4
LT
1280 spin_unlock_irqrestore(&zone->lock, flags);
1281}
e2c55dc8 1282#endif /* CONFIG_PM */
1da177e4 1283
1da177e4
LT
1284/*
1285 * Free a 0-order page
fc91668e 1286 * cold == 1 ? free a cold page : free a hot page
1da177e4 1287 */
fc91668e 1288void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1289{
1290 struct zone *zone = page_zone(page);
1291 struct per_cpu_pages *pcp;
1292 unsigned long flags;
5f8dcc21 1293 int migratetype;
451ea25d 1294 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1295
ec95f53a 1296 if (!free_pages_prepare(page, 0))
689bcebf
HD
1297 return;
1298
5f8dcc21
MG
1299 migratetype = get_pageblock_migratetype(page);
1300 set_page_private(page, migratetype);
1da177e4 1301 local_irq_save(flags);
c277331d 1302 if (unlikely(wasMlocked))
da456f14 1303 free_page_mlock(page);
f8891e5e 1304 __count_vm_event(PGFREE);
da456f14 1305
5f8dcc21
MG
1306 /*
1307 * We only track unmovable, reclaimable and movable on pcp lists.
1308 * Free ISOLATE pages back to the allocator because they are being
1309 * offlined but treat RESERVE as movable pages so we can get those
1310 * areas back if necessary. Otherwise, we may have to free
1311 * excessively into the page allocator
1312 */
1313 if (migratetype >= MIGRATE_PCPTYPES) {
1314 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1315 free_one_page(zone, page, 0, migratetype);
1316 goto out;
1317 }
1318 migratetype = MIGRATE_MOVABLE;
1319 }
1320
99dcc3e5 1321 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1322 if (cold)
5f8dcc21 1323 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1324 else
5f8dcc21 1325 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1326 pcp->count++;
48db57f8 1327 if (pcp->count >= pcp->high) {
5f8dcc21 1328 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1329 pcp->count -= pcp->batch;
1330 }
5f8dcc21
MG
1331
1332out:
1da177e4 1333 local_irq_restore(flags);
1da177e4
LT
1334}
1335
cc59850e
KK
1336/*
1337 * Free a list of 0-order pages
1338 */
1339void free_hot_cold_page_list(struct list_head *list, int cold)
1340{
1341 struct page *page, *next;
1342
1343 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1344 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1345 free_hot_cold_page(page, cold);
1346 }
1347}
1348
8dfcc9ba
NP
1349/*
1350 * split_page takes a non-compound higher-order page, and splits it into
1351 * n (1<<order) sub-pages: page[0..n]
1352 * Each sub-page must be freed individually.
1353 *
1354 * Note: this is probably too low level an operation for use in drivers.
1355 * Please consult with lkml before using this in your driver.
1356 */
1357void split_page(struct page *page, unsigned int order)
1358{
1359 int i;
1360
725d704e
NP
1361 VM_BUG_ON(PageCompound(page));
1362 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1363
1364#ifdef CONFIG_KMEMCHECK
1365 /*
1366 * Split shadow pages too, because free(page[0]) would
1367 * otherwise free the whole shadow.
1368 */
1369 if (kmemcheck_page_is_tracked(page))
1370 split_page(virt_to_page(page[0].shadow), order);
1371#endif
1372
7835e98b
NP
1373 for (i = 1; i < (1 << order); i++)
1374 set_page_refcounted(page + i);
8dfcc9ba 1375}
8dfcc9ba 1376
748446bb
MG
1377/*
1378 * Similar to split_page except the page is already free. As this is only
1379 * being used for migration, the migratetype of the block also changes.
1380 * As this is called with interrupts disabled, the caller is responsible
1381 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1382 * are enabled.
1383 *
1384 * Note: this is probably too low level an operation for use in drivers.
1385 * Please consult with lkml before using this in your driver.
1386 */
1387int split_free_page(struct page *page)
1388{
1389 unsigned int order;
1390 unsigned long watermark;
1391 struct zone *zone;
1392
1393 BUG_ON(!PageBuddy(page));
1394
1395 zone = page_zone(page);
1396 order = page_order(page);
1397
1398 /* Obey watermarks as if the page was being allocated */
1399 watermark = low_wmark_pages(zone) + (1 << order);
1400 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1401 return 0;
1402
1403 /* Remove page from free list */
1404 list_del(&page->lru);
1405 zone->free_area[order].nr_free--;
1406 rmv_page_order(page);
1407 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1408
1409 /* Split into individual pages */
1410 set_page_refcounted(page);
1411 split_page(page, order);
1412
1413 if (order >= pageblock_order - 1) {
1414 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1415 for (; page < endpage; page += pageblock_nr_pages) {
1416 int mt = get_pageblock_migratetype(page);
1417 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1418 set_pageblock_migratetype(page,
1419 MIGRATE_MOVABLE);
1420 }
748446bb
MG
1421 }
1422
1423 return 1 << order;
1424}
1425
1da177e4
LT
1426/*
1427 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1428 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1429 * or two.
1430 */
0a15c3e9
MG
1431static inline
1432struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1433 struct zone *zone, int order, gfp_t gfp_flags,
1434 int migratetype)
1da177e4
LT
1435{
1436 unsigned long flags;
689bcebf 1437 struct page *page;
1da177e4
LT
1438 int cold = !!(gfp_flags & __GFP_COLD);
1439
689bcebf 1440again:
48db57f8 1441 if (likely(order == 0)) {
1da177e4 1442 struct per_cpu_pages *pcp;
5f8dcc21 1443 struct list_head *list;
1da177e4 1444
1da177e4 1445 local_irq_save(flags);
99dcc3e5
CL
1446 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1447 list = &pcp->lists[migratetype];
5f8dcc21 1448 if (list_empty(list)) {
535131e6 1449 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1450 pcp->batch, list,
e084b2d9 1451 migratetype, cold);
5f8dcc21 1452 if (unlikely(list_empty(list)))
6fb332fa 1453 goto failed;
535131e6 1454 }
b92a6edd 1455
5f8dcc21
MG
1456 if (cold)
1457 page = list_entry(list->prev, struct page, lru);
1458 else
1459 page = list_entry(list->next, struct page, lru);
1460
b92a6edd
MG
1461 list_del(&page->lru);
1462 pcp->count--;
7fb1d9fc 1463 } else {
dab48dab
AM
1464 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1465 /*
1466 * __GFP_NOFAIL is not to be used in new code.
1467 *
1468 * All __GFP_NOFAIL callers should be fixed so that they
1469 * properly detect and handle allocation failures.
1470 *
1471 * We most definitely don't want callers attempting to
4923abf9 1472 * allocate greater than order-1 page units with
dab48dab
AM
1473 * __GFP_NOFAIL.
1474 */
4923abf9 1475 WARN_ON_ONCE(order > 1);
dab48dab 1476 }
1da177e4 1477 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1478 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1479 spin_unlock(&zone->lock);
1480 if (!page)
1481 goto failed;
6ccf80eb 1482 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1483 }
1484
f8891e5e 1485 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1486 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1487 local_irq_restore(flags);
1da177e4 1488
725d704e 1489 VM_BUG_ON(bad_range(zone, page));
17cf4406 1490 if (prep_new_page(page, order, gfp_flags))
a74609fa 1491 goto again;
1da177e4 1492 return page;
a74609fa
NP
1493
1494failed:
1495 local_irq_restore(flags);
a74609fa 1496 return NULL;
1da177e4
LT
1497}
1498
41858966
MG
1499/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1500#define ALLOC_WMARK_MIN WMARK_MIN
1501#define ALLOC_WMARK_LOW WMARK_LOW
1502#define ALLOC_WMARK_HIGH WMARK_HIGH
1503#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1504
1505/* Mask to get the watermark bits */
1506#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1507
3148890b
NP
1508#define ALLOC_HARDER 0x10 /* try to alloc harder */
1509#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1510#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1511
933e312e
AM
1512#ifdef CONFIG_FAIL_PAGE_ALLOC
1513
b2588c4b 1514static struct {
933e312e
AM
1515 struct fault_attr attr;
1516
1517 u32 ignore_gfp_highmem;
1518 u32 ignore_gfp_wait;
54114994 1519 u32 min_order;
933e312e
AM
1520} fail_page_alloc = {
1521 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1522 .ignore_gfp_wait = 1,
1523 .ignore_gfp_highmem = 1,
54114994 1524 .min_order = 1,
933e312e
AM
1525};
1526
1527static int __init setup_fail_page_alloc(char *str)
1528{
1529 return setup_fault_attr(&fail_page_alloc.attr, str);
1530}
1531__setup("fail_page_alloc=", setup_fail_page_alloc);
1532
deaf386e 1533static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1534{
54114994 1535 if (order < fail_page_alloc.min_order)
deaf386e 1536 return false;
933e312e 1537 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1538 return false;
933e312e 1539 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1540 return false;
933e312e 1541 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1542 return false;
933e312e
AM
1543
1544 return should_fail(&fail_page_alloc.attr, 1 << order);
1545}
1546
1547#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1548
1549static int __init fail_page_alloc_debugfs(void)
1550{
f4ae40a6 1551 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1552 struct dentry *dir;
933e312e 1553
dd48c085
AM
1554 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1555 &fail_page_alloc.attr);
1556 if (IS_ERR(dir))
1557 return PTR_ERR(dir);
933e312e 1558
b2588c4b
AM
1559 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1560 &fail_page_alloc.ignore_gfp_wait))
1561 goto fail;
1562 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1563 &fail_page_alloc.ignore_gfp_highmem))
1564 goto fail;
1565 if (!debugfs_create_u32("min-order", mode, dir,
1566 &fail_page_alloc.min_order))
1567 goto fail;
1568
1569 return 0;
1570fail:
dd48c085 1571 debugfs_remove_recursive(dir);
933e312e 1572
b2588c4b 1573 return -ENOMEM;
933e312e
AM
1574}
1575
1576late_initcall(fail_page_alloc_debugfs);
1577
1578#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1579
1580#else /* CONFIG_FAIL_PAGE_ALLOC */
1581
deaf386e 1582static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1583{
deaf386e 1584 return false;
933e312e
AM
1585}
1586
1587#endif /* CONFIG_FAIL_PAGE_ALLOC */
1588
1da177e4 1589/*
88f5acf8 1590 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1591 * of the allocation.
1592 */
88f5acf8
MG
1593static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1594 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1595{
1596 /* free_pages my go negative - that's OK */
d23ad423 1597 long min = mark;
1da177e4
LT
1598 int o;
1599
df0a6daa 1600 free_pages -= (1 << order) - 1;
7fb1d9fc 1601 if (alloc_flags & ALLOC_HIGH)
1da177e4 1602 min -= min / 2;
7fb1d9fc 1603 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1604 min -= min / 4;
1605
1606 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1607 return false;
1da177e4
LT
1608 for (o = 0; o < order; o++) {
1609 /* At the next order, this order's pages become unavailable */
1610 free_pages -= z->free_area[o].nr_free << o;
1611
1612 /* Require fewer higher order pages to be free */
1613 min >>= 1;
1614
1615 if (free_pages <= min)
88f5acf8 1616 return false;
1da177e4 1617 }
88f5acf8
MG
1618 return true;
1619}
1620
1621bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1622 int classzone_idx, int alloc_flags)
1623{
1624 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1625 zone_page_state(z, NR_FREE_PAGES));
1626}
1627
1628bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1629 int classzone_idx, int alloc_flags)
1630{
1631 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1632
1633 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1634 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1635
1636 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1637 free_pages);
1da177e4
LT
1638}
1639
9276b1bc
PJ
1640#ifdef CONFIG_NUMA
1641/*
1642 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1643 * skip over zones that are not allowed by the cpuset, or that have
1644 * been recently (in last second) found to be nearly full. See further
1645 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1646 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1647 *
1648 * If the zonelist cache is present in the passed in zonelist, then
1649 * returns a pointer to the allowed node mask (either the current
37b07e41 1650 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1651 *
1652 * If the zonelist cache is not available for this zonelist, does
1653 * nothing and returns NULL.
1654 *
1655 * If the fullzones BITMAP in the zonelist cache is stale (more than
1656 * a second since last zap'd) then we zap it out (clear its bits.)
1657 *
1658 * We hold off even calling zlc_setup, until after we've checked the
1659 * first zone in the zonelist, on the theory that most allocations will
1660 * be satisfied from that first zone, so best to examine that zone as
1661 * quickly as we can.
1662 */
1663static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1664{
1665 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1666 nodemask_t *allowednodes; /* zonelist_cache approximation */
1667
1668 zlc = zonelist->zlcache_ptr;
1669 if (!zlc)
1670 return NULL;
1671
f05111f5 1672 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1673 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1674 zlc->last_full_zap = jiffies;
1675 }
1676
1677 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1678 &cpuset_current_mems_allowed :
37b07e41 1679 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1680 return allowednodes;
1681}
1682
1683/*
1684 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1685 * if it is worth looking at further for free memory:
1686 * 1) Check that the zone isn't thought to be full (doesn't have its
1687 * bit set in the zonelist_cache fullzones BITMAP).
1688 * 2) Check that the zones node (obtained from the zonelist_cache
1689 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1690 * Return true (non-zero) if zone is worth looking at further, or
1691 * else return false (zero) if it is not.
1692 *
1693 * This check -ignores- the distinction between various watermarks,
1694 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1695 * found to be full for any variation of these watermarks, it will
1696 * be considered full for up to one second by all requests, unless
1697 * we are so low on memory on all allowed nodes that we are forced
1698 * into the second scan of the zonelist.
1699 *
1700 * In the second scan we ignore this zonelist cache and exactly
1701 * apply the watermarks to all zones, even it is slower to do so.
1702 * We are low on memory in the second scan, and should leave no stone
1703 * unturned looking for a free page.
1704 */
dd1a239f 1705static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1706 nodemask_t *allowednodes)
1707{
1708 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1709 int i; /* index of *z in zonelist zones */
1710 int n; /* node that zone *z is on */
1711
1712 zlc = zonelist->zlcache_ptr;
1713 if (!zlc)
1714 return 1;
1715
dd1a239f 1716 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1717 n = zlc->z_to_n[i];
1718
1719 /* This zone is worth trying if it is allowed but not full */
1720 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1721}
1722
1723/*
1724 * Given 'z' scanning a zonelist, set the corresponding bit in
1725 * zlc->fullzones, so that subsequent attempts to allocate a page
1726 * from that zone don't waste time re-examining it.
1727 */
dd1a239f 1728static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1729{
1730 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1731 int i; /* index of *z in zonelist zones */
1732
1733 zlc = zonelist->zlcache_ptr;
1734 if (!zlc)
1735 return;
1736
dd1a239f 1737 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1738
1739 set_bit(i, zlc->fullzones);
1740}
1741
76d3fbf8
MG
1742/*
1743 * clear all zones full, called after direct reclaim makes progress so that
1744 * a zone that was recently full is not skipped over for up to a second
1745 */
1746static void zlc_clear_zones_full(struct zonelist *zonelist)
1747{
1748 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1749
1750 zlc = zonelist->zlcache_ptr;
1751 if (!zlc)
1752 return;
1753
1754 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1755}
1756
9276b1bc
PJ
1757#else /* CONFIG_NUMA */
1758
1759static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1760{
1761 return NULL;
1762}
1763
dd1a239f 1764static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1765 nodemask_t *allowednodes)
1766{
1767 return 1;
1768}
1769
dd1a239f 1770static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1771{
1772}
76d3fbf8
MG
1773
1774static void zlc_clear_zones_full(struct zonelist *zonelist)
1775{
1776}
9276b1bc
PJ
1777#endif /* CONFIG_NUMA */
1778
7fb1d9fc 1779/*
0798e519 1780 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1781 * a page.
1782 */
1783static struct page *
19770b32 1784get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1785 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1786 struct zone *preferred_zone, int migratetype)
753ee728 1787{
dd1a239f 1788 struct zoneref *z;
7fb1d9fc 1789 struct page *page = NULL;
54a6eb5c 1790 int classzone_idx;
5117f45d 1791 struct zone *zone;
9276b1bc
PJ
1792 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1793 int zlc_active = 0; /* set if using zonelist_cache */
1794 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1795
19770b32 1796 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1797zonelist_scan:
7fb1d9fc 1798 /*
9276b1bc 1799 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1800 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1801 */
19770b32
MG
1802 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1803 high_zoneidx, nodemask) {
9276b1bc
PJ
1804 if (NUMA_BUILD && zlc_active &&
1805 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1806 continue;
7fb1d9fc 1807 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1808 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1809 continue;
a756cf59
JW
1810 /*
1811 * When allocating a page cache page for writing, we
1812 * want to get it from a zone that is within its dirty
1813 * limit, such that no single zone holds more than its
1814 * proportional share of globally allowed dirty pages.
1815 * The dirty limits take into account the zone's
1816 * lowmem reserves and high watermark so that kswapd
1817 * should be able to balance it without having to
1818 * write pages from its LRU list.
1819 *
1820 * This may look like it could increase pressure on
1821 * lower zones by failing allocations in higher zones
1822 * before they are full. But the pages that do spill
1823 * over are limited as the lower zones are protected
1824 * by this very same mechanism. It should not become
1825 * a practical burden to them.
1826 *
1827 * XXX: For now, allow allocations to potentially
1828 * exceed the per-zone dirty limit in the slowpath
1829 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1830 * which is important when on a NUMA setup the allowed
1831 * zones are together not big enough to reach the
1832 * global limit. The proper fix for these situations
1833 * will require awareness of zones in the
1834 * dirty-throttling and the flusher threads.
1835 */
1836 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1837 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1838 goto this_zone_full;
7fb1d9fc 1839
41858966 1840 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1841 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1842 unsigned long mark;
fa5e084e
MG
1843 int ret;
1844
41858966 1845 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1846 if (zone_watermark_ok(zone, order, mark,
1847 classzone_idx, alloc_flags))
1848 goto try_this_zone;
1849
cd38b115
MG
1850 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1851 /*
1852 * we do zlc_setup if there are multiple nodes
1853 * and before considering the first zone allowed
1854 * by the cpuset.
1855 */
1856 allowednodes = zlc_setup(zonelist, alloc_flags);
1857 zlc_active = 1;
1858 did_zlc_setup = 1;
1859 }
1860
fa5e084e
MG
1861 if (zone_reclaim_mode == 0)
1862 goto this_zone_full;
1863
cd38b115
MG
1864 /*
1865 * As we may have just activated ZLC, check if the first
1866 * eligible zone has failed zone_reclaim recently.
1867 */
1868 if (NUMA_BUILD && zlc_active &&
1869 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1870 continue;
1871
fa5e084e
MG
1872 ret = zone_reclaim(zone, gfp_mask, order);
1873 switch (ret) {
1874 case ZONE_RECLAIM_NOSCAN:
1875 /* did not scan */
cd38b115 1876 continue;
fa5e084e
MG
1877 case ZONE_RECLAIM_FULL:
1878 /* scanned but unreclaimable */
cd38b115 1879 continue;
fa5e084e
MG
1880 default:
1881 /* did we reclaim enough */
1882 if (!zone_watermark_ok(zone, order, mark,
1883 classzone_idx, alloc_flags))
9276b1bc 1884 goto this_zone_full;
0798e519 1885 }
7fb1d9fc
RS
1886 }
1887
fa5e084e 1888try_this_zone:
3dd28266
MG
1889 page = buffered_rmqueue(preferred_zone, zone, order,
1890 gfp_mask, migratetype);
0798e519 1891 if (page)
7fb1d9fc 1892 break;
9276b1bc
PJ
1893this_zone_full:
1894 if (NUMA_BUILD)
1895 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1896 }
9276b1bc
PJ
1897
1898 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1899 /* Disable zlc cache for second zonelist scan */
1900 zlc_active = 0;
1901 goto zonelist_scan;
1902 }
7fb1d9fc 1903 return page;
753ee728
MH
1904}
1905
29423e77
DR
1906/*
1907 * Large machines with many possible nodes should not always dump per-node
1908 * meminfo in irq context.
1909 */
1910static inline bool should_suppress_show_mem(void)
1911{
1912 bool ret = false;
1913
1914#if NODES_SHIFT > 8
1915 ret = in_interrupt();
1916#endif
1917 return ret;
1918}
1919
a238ab5b
DH
1920static DEFINE_RATELIMIT_STATE(nopage_rs,
1921 DEFAULT_RATELIMIT_INTERVAL,
1922 DEFAULT_RATELIMIT_BURST);
1923
1924void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1925{
a238ab5b
DH
1926 unsigned int filter = SHOW_MEM_FILTER_NODES;
1927
c0a32fc5
SG
1928 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1929 debug_guardpage_minorder() > 0)
a238ab5b
DH
1930 return;
1931
1932 /*
1933 * This documents exceptions given to allocations in certain
1934 * contexts that are allowed to allocate outside current's set
1935 * of allowed nodes.
1936 */
1937 if (!(gfp_mask & __GFP_NOMEMALLOC))
1938 if (test_thread_flag(TIF_MEMDIE) ||
1939 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1940 filter &= ~SHOW_MEM_FILTER_NODES;
1941 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1942 filter &= ~SHOW_MEM_FILTER_NODES;
1943
1944 if (fmt) {
3ee9a4f0
JP
1945 struct va_format vaf;
1946 va_list args;
1947
a238ab5b 1948 va_start(args, fmt);
3ee9a4f0
JP
1949
1950 vaf.fmt = fmt;
1951 vaf.va = &args;
1952
1953 pr_warn("%pV", &vaf);
1954
a238ab5b
DH
1955 va_end(args);
1956 }
1957
3ee9a4f0
JP
1958 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1959 current->comm, order, gfp_mask);
a238ab5b
DH
1960
1961 dump_stack();
1962 if (!should_suppress_show_mem())
1963 show_mem(filter);
1964}
1965
11e33f6a
MG
1966static inline int
1967should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1968 unsigned long did_some_progress,
11e33f6a 1969 unsigned long pages_reclaimed)
1da177e4 1970{
11e33f6a
MG
1971 /* Do not loop if specifically requested */
1972 if (gfp_mask & __GFP_NORETRY)
1973 return 0;
1da177e4 1974
f90ac398
MG
1975 /* Always retry if specifically requested */
1976 if (gfp_mask & __GFP_NOFAIL)
1977 return 1;
1978
1979 /*
1980 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1981 * making forward progress without invoking OOM. Suspend also disables
1982 * storage devices so kswapd will not help. Bail if we are suspending.
1983 */
1984 if (!did_some_progress && pm_suspended_storage())
1985 return 0;
1986
11e33f6a
MG
1987 /*
1988 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1989 * means __GFP_NOFAIL, but that may not be true in other
1990 * implementations.
1991 */
1992 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1993 return 1;
1994
1995 /*
1996 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1997 * specified, then we retry until we no longer reclaim any pages
1998 * (above), or we've reclaimed an order of pages at least as
1999 * large as the allocation's order. In both cases, if the
2000 * allocation still fails, we stop retrying.
2001 */
2002 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2003 return 1;
cf40bd16 2004
11e33f6a
MG
2005 return 0;
2006}
933e312e 2007
11e33f6a
MG
2008static inline struct page *
2009__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2010 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2011 nodemask_t *nodemask, struct zone *preferred_zone,
2012 int migratetype)
11e33f6a
MG
2013{
2014 struct page *page;
2015
2016 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2017 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2018 schedule_timeout_uninterruptible(1);
1da177e4
LT
2019 return NULL;
2020 }
6b1de916 2021
11e33f6a
MG
2022 /*
2023 * Go through the zonelist yet one more time, keep very high watermark
2024 * here, this is only to catch a parallel oom killing, we must fail if
2025 * we're still under heavy pressure.
2026 */
2027 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2028 order, zonelist, high_zoneidx,
5117f45d 2029 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2030 preferred_zone, migratetype);
7fb1d9fc 2031 if (page)
11e33f6a
MG
2032 goto out;
2033
4365a567
KH
2034 if (!(gfp_mask & __GFP_NOFAIL)) {
2035 /* The OOM killer will not help higher order allocs */
2036 if (order > PAGE_ALLOC_COSTLY_ORDER)
2037 goto out;
03668b3c
DR
2038 /* The OOM killer does not needlessly kill tasks for lowmem */
2039 if (high_zoneidx < ZONE_NORMAL)
2040 goto out;
4365a567
KH
2041 /*
2042 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2043 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2044 * The caller should handle page allocation failure by itself if
2045 * it specifies __GFP_THISNODE.
2046 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2047 */
2048 if (gfp_mask & __GFP_THISNODE)
2049 goto out;
2050 }
11e33f6a 2051 /* Exhausted what can be done so it's blamo time */
08ab9b10 2052 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2053
2054out:
2055 clear_zonelist_oom(zonelist, gfp_mask);
2056 return page;
2057}
2058
56de7263
MG
2059#ifdef CONFIG_COMPACTION
2060/* Try memory compaction for high-order allocations before reclaim */
2061static struct page *
2062__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2063 struct zonelist *zonelist, enum zone_type high_zoneidx,
2064 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2065 int migratetype, bool sync_migration,
2066 bool *deferred_compaction,
2067 unsigned long *did_some_progress)
56de7263
MG
2068{
2069 struct page *page;
2070
66199712 2071 if (!order)
56de7263
MG
2072 return NULL;
2073
aff62249 2074 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2075 *deferred_compaction = true;
2076 return NULL;
2077 }
2078
c06b1fca 2079 current->flags |= PF_MEMALLOC;
56de7263 2080 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2081 nodemask, sync_migration);
c06b1fca 2082 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2083 if (*did_some_progress != COMPACT_SKIPPED) {
2084
2085 /* Page migration frees to the PCP lists but we want merging */
2086 drain_pages(get_cpu());
2087 put_cpu();
2088
2089 page = get_page_from_freelist(gfp_mask, nodemask,
2090 order, zonelist, high_zoneidx,
2091 alloc_flags, preferred_zone,
2092 migratetype);
2093 if (page) {
4f92e258
MG
2094 preferred_zone->compact_considered = 0;
2095 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2096 if (order >= preferred_zone->compact_order_failed)
2097 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2098 count_vm_event(COMPACTSUCCESS);
2099 return page;
2100 }
2101
2102 /*
2103 * It's bad if compaction run occurs and fails.
2104 * The most likely reason is that pages exist,
2105 * but not enough to satisfy watermarks.
2106 */
2107 count_vm_event(COMPACTFAIL);
66199712
MG
2108
2109 /*
2110 * As async compaction considers a subset of pageblocks, only
2111 * defer if the failure was a sync compaction failure.
2112 */
2113 if (sync_migration)
aff62249 2114 defer_compaction(preferred_zone, order);
56de7263
MG
2115
2116 cond_resched();
2117 }
2118
2119 return NULL;
2120}
2121#else
2122static inline struct page *
2123__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2124 struct zonelist *zonelist, enum zone_type high_zoneidx,
2125 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2126 int migratetype, bool sync_migration,
2127 bool *deferred_compaction,
2128 unsigned long *did_some_progress)
56de7263
MG
2129{
2130 return NULL;
2131}
2132#endif /* CONFIG_COMPACTION */
2133
bba90710
MS
2134/* Perform direct synchronous page reclaim */
2135static int
2136__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2137 nodemask_t *nodemask)
11e33f6a 2138{
11e33f6a 2139 struct reclaim_state reclaim_state;
bba90710 2140 int progress;
11e33f6a
MG
2141
2142 cond_resched();
2143
2144 /* We now go into synchronous reclaim */
2145 cpuset_memory_pressure_bump();
c06b1fca 2146 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2147 lockdep_set_current_reclaim_state(gfp_mask);
2148 reclaim_state.reclaimed_slab = 0;
c06b1fca 2149 current->reclaim_state = &reclaim_state;
11e33f6a 2150
bba90710 2151 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2152
c06b1fca 2153 current->reclaim_state = NULL;
11e33f6a 2154 lockdep_clear_current_reclaim_state();
c06b1fca 2155 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2156
2157 cond_resched();
2158
bba90710
MS
2159 return progress;
2160}
2161
2162/* The really slow allocator path where we enter direct reclaim */
2163static inline struct page *
2164__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2165 struct zonelist *zonelist, enum zone_type high_zoneidx,
2166 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2167 int migratetype, unsigned long *did_some_progress)
2168{
2169 struct page *page = NULL;
2170 bool drained = false;
2171
2172 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2173 nodemask);
9ee493ce
MG
2174 if (unlikely(!(*did_some_progress)))
2175 return NULL;
11e33f6a 2176
76d3fbf8
MG
2177 /* After successful reclaim, reconsider all zones for allocation */
2178 if (NUMA_BUILD)
2179 zlc_clear_zones_full(zonelist);
2180
9ee493ce
MG
2181retry:
2182 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2183 zonelist, high_zoneidx,
3dd28266
MG
2184 alloc_flags, preferred_zone,
2185 migratetype);
9ee493ce
MG
2186
2187 /*
2188 * If an allocation failed after direct reclaim, it could be because
2189 * pages are pinned on the per-cpu lists. Drain them and try again
2190 */
2191 if (!page && !drained) {
2192 drain_all_pages();
2193 drained = true;
2194 goto retry;
2195 }
2196
11e33f6a
MG
2197 return page;
2198}
2199
1da177e4 2200/*
11e33f6a
MG
2201 * This is called in the allocator slow-path if the allocation request is of
2202 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2203 */
11e33f6a
MG
2204static inline struct page *
2205__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2206 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2207 nodemask_t *nodemask, struct zone *preferred_zone,
2208 int migratetype)
11e33f6a
MG
2209{
2210 struct page *page;
2211
2212 do {
2213 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2214 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2215 preferred_zone, migratetype);
11e33f6a
MG
2216
2217 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2218 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2219 } while (!page && (gfp_mask & __GFP_NOFAIL));
2220
2221 return page;
2222}
2223
2224static inline
2225void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2226 enum zone_type high_zoneidx,
2227 enum zone_type classzone_idx)
1da177e4 2228{
dd1a239f
MG
2229 struct zoneref *z;
2230 struct zone *zone;
1da177e4 2231
11e33f6a 2232 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2233 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2234}
cf40bd16 2235
341ce06f
PZ
2236static inline int
2237gfp_to_alloc_flags(gfp_t gfp_mask)
2238{
341ce06f
PZ
2239 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2240 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2241
a56f57ff 2242 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2243 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2244
341ce06f
PZ
2245 /*
2246 * The caller may dip into page reserves a bit more if the caller
2247 * cannot run direct reclaim, or if the caller has realtime scheduling
2248 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2249 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2250 */
e6223a3b 2251 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2252
341ce06f 2253 if (!wait) {
5c3240d9
AA
2254 /*
2255 * Not worth trying to allocate harder for
2256 * __GFP_NOMEMALLOC even if it can't schedule.
2257 */
2258 if (!(gfp_mask & __GFP_NOMEMALLOC))
2259 alloc_flags |= ALLOC_HARDER;
523b9458 2260 /*
341ce06f
PZ
2261 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2262 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2263 */
341ce06f 2264 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2265 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2266 alloc_flags |= ALLOC_HARDER;
2267
2268 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2269 if (!in_interrupt() &&
c06b1fca 2270 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2271 unlikely(test_thread_flag(TIF_MEMDIE))))
2272 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2273 }
6b1de916 2274
341ce06f
PZ
2275 return alloc_flags;
2276}
2277
11e33f6a
MG
2278static inline struct page *
2279__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2280 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2281 nodemask_t *nodemask, struct zone *preferred_zone,
2282 int migratetype)
11e33f6a
MG
2283{
2284 const gfp_t wait = gfp_mask & __GFP_WAIT;
2285 struct page *page = NULL;
2286 int alloc_flags;
2287 unsigned long pages_reclaimed = 0;
2288 unsigned long did_some_progress;
77f1fe6b 2289 bool sync_migration = false;
66199712 2290 bool deferred_compaction = false;
1da177e4 2291
72807a74
MG
2292 /*
2293 * In the slowpath, we sanity check order to avoid ever trying to
2294 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2295 * be using allocators in order of preference for an area that is
2296 * too large.
2297 */
1fc28b70
MG
2298 if (order >= MAX_ORDER) {
2299 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2300 return NULL;
1fc28b70 2301 }
1da177e4 2302
952f3b51
CL
2303 /*
2304 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2305 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2306 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2307 * using a larger set of nodes after it has established that the
2308 * allowed per node queues are empty and that nodes are
2309 * over allocated.
2310 */
2311 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2312 goto nopage;
2313
cc4a6851 2314restart:
32dba98e
AA
2315 if (!(gfp_mask & __GFP_NO_KSWAPD))
2316 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2317 zone_idx(preferred_zone));
1da177e4 2318
9bf2229f 2319 /*
7fb1d9fc
RS
2320 * OK, we're below the kswapd watermark and have kicked background
2321 * reclaim. Now things get more complex, so set up alloc_flags according
2322 * to how we want to proceed.
9bf2229f 2323 */
341ce06f 2324 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2325
f33261d7
DR
2326 /*
2327 * Find the true preferred zone if the allocation is unconstrained by
2328 * cpusets.
2329 */
2330 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2331 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2332 &preferred_zone);
2333
cfa54a0f 2334rebalance:
341ce06f 2335 /* This is the last chance, in general, before the goto nopage. */
19770b32 2336 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2337 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2338 preferred_zone, migratetype);
7fb1d9fc
RS
2339 if (page)
2340 goto got_pg;
1da177e4 2341
11e33f6a 2342 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2343 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2344 page = __alloc_pages_high_priority(gfp_mask, order,
2345 zonelist, high_zoneidx, nodemask,
2346 preferred_zone, migratetype);
2347 if (page)
2348 goto got_pg;
1da177e4
LT
2349 }
2350
2351 /* Atomic allocations - we can't balance anything */
2352 if (!wait)
2353 goto nopage;
2354
341ce06f 2355 /* Avoid recursion of direct reclaim */
c06b1fca 2356 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2357 goto nopage;
2358
6583bb64
DR
2359 /* Avoid allocations with no watermarks from looping endlessly */
2360 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2361 goto nopage;
2362
77f1fe6b
MG
2363 /*
2364 * Try direct compaction. The first pass is asynchronous. Subsequent
2365 * attempts after direct reclaim are synchronous
2366 */
56de7263
MG
2367 page = __alloc_pages_direct_compact(gfp_mask, order,
2368 zonelist, high_zoneidx,
2369 nodemask,
2370 alloc_flags, preferred_zone,
66199712
MG
2371 migratetype, sync_migration,
2372 &deferred_compaction,
2373 &did_some_progress);
56de7263
MG
2374 if (page)
2375 goto got_pg;
c6a140bf 2376 sync_migration = true;
56de7263 2377
66199712
MG
2378 /*
2379 * If compaction is deferred for high-order allocations, it is because
2380 * sync compaction recently failed. In this is the case and the caller
2381 * has requested the system not be heavily disrupted, fail the
2382 * allocation now instead of entering direct reclaim
2383 */
2384 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2385 goto nopage;
2386
11e33f6a
MG
2387 /* Try direct reclaim and then allocating */
2388 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2389 zonelist, high_zoneidx,
2390 nodemask,
5117f45d 2391 alloc_flags, preferred_zone,
3dd28266 2392 migratetype, &did_some_progress);
11e33f6a
MG
2393 if (page)
2394 goto got_pg;
1da177e4 2395
e33c3b5e 2396 /*
11e33f6a
MG
2397 * If we failed to make any progress reclaiming, then we are
2398 * running out of options and have to consider going OOM
e33c3b5e 2399 */
11e33f6a
MG
2400 if (!did_some_progress) {
2401 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2402 if (oom_killer_disabled)
2403 goto nopage;
29fd66d2
DR
2404 /* Coredumps can quickly deplete all memory reserves */
2405 if ((current->flags & PF_DUMPCORE) &&
2406 !(gfp_mask & __GFP_NOFAIL))
2407 goto nopage;
11e33f6a
MG
2408 page = __alloc_pages_may_oom(gfp_mask, order,
2409 zonelist, high_zoneidx,
3dd28266
MG
2410 nodemask, preferred_zone,
2411 migratetype);
11e33f6a
MG
2412 if (page)
2413 goto got_pg;
1da177e4 2414
03668b3c
DR
2415 if (!(gfp_mask & __GFP_NOFAIL)) {
2416 /*
2417 * The oom killer is not called for high-order
2418 * allocations that may fail, so if no progress
2419 * is being made, there are no other options and
2420 * retrying is unlikely to help.
2421 */
2422 if (order > PAGE_ALLOC_COSTLY_ORDER)
2423 goto nopage;
2424 /*
2425 * The oom killer is not called for lowmem
2426 * allocations to prevent needlessly killing
2427 * innocent tasks.
2428 */
2429 if (high_zoneidx < ZONE_NORMAL)
2430 goto nopage;
2431 }
e2c55dc8 2432
ff0ceb9d
DR
2433 goto restart;
2434 }
1da177e4
LT
2435 }
2436
11e33f6a 2437 /* Check if we should retry the allocation */
a41f24ea 2438 pages_reclaimed += did_some_progress;
f90ac398
MG
2439 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2440 pages_reclaimed)) {
11e33f6a 2441 /* Wait for some write requests to complete then retry */
0e093d99 2442 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2443 goto rebalance;
3e7d3449
MG
2444 } else {
2445 /*
2446 * High-order allocations do not necessarily loop after
2447 * direct reclaim and reclaim/compaction depends on compaction
2448 * being called after reclaim so call directly if necessary
2449 */
2450 page = __alloc_pages_direct_compact(gfp_mask, order,
2451 zonelist, high_zoneidx,
2452 nodemask,
2453 alloc_flags, preferred_zone,
66199712
MG
2454 migratetype, sync_migration,
2455 &deferred_compaction,
2456 &did_some_progress);
3e7d3449
MG
2457 if (page)
2458 goto got_pg;
1da177e4
LT
2459 }
2460
2461nopage:
a238ab5b 2462 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2463 return page;
1da177e4 2464got_pg:
b1eeab67
VN
2465 if (kmemcheck_enabled)
2466 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2467 return page;
11e33f6a 2468
1da177e4 2469}
11e33f6a
MG
2470
2471/*
2472 * This is the 'heart' of the zoned buddy allocator.
2473 */
2474struct page *
2475__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2476 struct zonelist *zonelist, nodemask_t *nodemask)
2477{
2478 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2479 struct zone *preferred_zone;
cc9a6c87 2480 struct page *page = NULL;
3dd28266 2481 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2482 unsigned int cpuset_mems_cookie;
11e33f6a 2483
dcce284a
BH
2484 gfp_mask &= gfp_allowed_mask;
2485
11e33f6a
MG
2486 lockdep_trace_alloc(gfp_mask);
2487
2488 might_sleep_if(gfp_mask & __GFP_WAIT);
2489
2490 if (should_fail_alloc_page(gfp_mask, order))
2491 return NULL;
2492
2493 /*
2494 * Check the zones suitable for the gfp_mask contain at least one
2495 * valid zone. It's possible to have an empty zonelist as a result
2496 * of GFP_THISNODE and a memoryless node
2497 */
2498 if (unlikely(!zonelist->_zonerefs->zone))
2499 return NULL;
2500
cc9a6c87
MG
2501retry_cpuset:
2502 cpuset_mems_cookie = get_mems_allowed();
2503
5117f45d 2504 /* The preferred zone is used for statistics later */
f33261d7
DR
2505 first_zones_zonelist(zonelist, high_zoneidx,
2506 nodemask ? : &cpuset_current_mems_allowed,
2507 &preferred_zone);
cc9a6c87
MG
2508 if (!preferred_zone)
2509 goto out;
5117f45d
MG
2510
2511 /* First allocation attempt */
11e33f6a 2512 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2513 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2514 preferred_zone, migratetype);
11e33f6a
MG
2515 if (unlikely(!page))
2516 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2517 zonelist, high_zoneidx, nodemask,
3dd28266 2518 preferred_zone, migratetype);
11e33f6a 2519
4b4f278c 2520 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2521
2522out:
2523 /*
2524 * When updating a task's mems_allowed, it is possible to race with
2525 * parallel threads in such a way that an allocation can fail while
2526 * the mask is being updated. If a page allocation is about to fail,
2527 * check if the cpuset changed during allocation and if so, retry.
2528 */
2529 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2530 goto retry_cpuset;
2531
11e33f6a 2532 return page;
1da177e4 2533}
d239171e 2534EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2535
2536/*
2537 * Common helper functions.
2538 */
920c7a5d 2539unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2540{
945a1113
AM
2541 struct page *page;
2542
2543 /*
2544 * __get_free_pages() returns a 32-bit address, which cannot represent
2545 * a highmem page
2546 */
2547 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2548
1da177e4
LT
2549 page = alloc_pages(gfp_mask, order);
2550 if (!page)
2551 return 0;
2552 return (unsigned long) page_address(page);
2553}
1da177e4
LT
2554EXPORT_SYMBOL(__get_free_pages);
2555
920c7a5d 2556unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2557{
945a1113 2558 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2559}
1da177e4
LT
2560EXPORT_SYMBOL(get_zeroed_page);
2561
920c7a5d 2562void __free_pages(struct page *page, unsigned int order)
1da177e4 2563{
b5810039 2564 if (put_page_testzero(page)) {
1da177e4 2565 if (order == 0)
fc91668e 2566 free_hot_cold_page(page, 0);
1da177e4
LT
2567 else
2568 __free_pages_ok(page, order);
2569 }
2570}
2571
2572EXPORT_SYMBOL(__free_pages);
2573
920c7a5d 2574void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2575{
2576 if (addr != 0) {
725d704e 2577 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2578 __free_pages(virt_to_page((void *)addr), order);
2579 }
2580}
2581
2582EXPORT_SYMBOL(free_pages);
2583
ee85c2e1
AK
2584static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2585{
2586 if (addr) {
2587 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2588 unsigned long used = addr + PAGE_ALIGN(size);
2589
2590 split_page(virt_to_page((void *)addr), order);
2591 while (used < alloc_end) {
2592 free_page(used);
2593 used += PAGE_SIZE;
2594 }
2595 }
2596 return (void *)addr;
2597}
2598
2be0ffe2
TT
2599/**
2600 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2601 * @size: the number of bytes to allocate
2602 * @gfp_mask: GFP flags for the allocation
2603 *
2604 * This function is similar to alloc_pages(), except that it allocates the
2605 * minimum number of pages to satisfy the request. alloc_pages() can only
2606 * allocate memory in power-of-two pages.
2607 *
2608 * This function is also limited by MAX_ORDER.
2609 *
2610 * Memory allocated by this function must be released by free_pages_exact().
2611 */
2612void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2613{
2614 unsigned int order = get_order(size);
2615 unsigned long addr;
2616
2617 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2618 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2619}
2620EXPORT_SYMBOL(alloc_pages_exact);
2621
ee85c2e1
AK
2622/**
2623 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2624 * pages on a node.
b5e6ab58 2625 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2626 * @size: the number of bytes to allocate
2627 * @gfp_mask: GFP flags for the allocation
2628 *
2629 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2630 * back.
2631 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2632 * but is not exact.
2633 */
2634void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2635{
2636 unsigned order = get_order(size);
2637 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2638 if (!p)
2639 return NULL;
2640 return make_alloc_exact((unsigned long)page_address(p), order, size);
2641}
2642EXPORT_SYMBOL(alloc_pages_exact_nid);
2643
2be0ffe2
TT
2644/**
2645 * free_pages_exact - release memory allocated via alloc_pages_exact()
2646 * @virt: the value returned by alloc_pages_exact.
2647 * @size: size of allocation, same value as passed to alloc_pages_exact().
2648 *
2649 * Release the memory allocated by a previous call to alloc_pages_exact.
2650 */
2651void free_pages_exact(void *virt, size_t size)
2652{
2653 unsigned long addr = (unsigned long)virt;
2654 unsigned long end = addr + PAGE_ALIGN(size);
2655
2656 while (addr < end) {
2657 free_page(addr);
2658 addr += PAGE_SIZE;
2659 }
2660}
2661EXPORT_SYMBOL(free_pages_exact);
2662
1da177e4
LT
2663static unsigned int nr_free_zone_pages(int offset)
2664{
dd1a239f 2665 struct zoneref *z;
54a6eb5c
MG
2666 struct zone *zone;
2667
e310fd43 2668 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2669 unsigned int sum = 0;
2670
0e88460d 2671 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2672
54a6eb5c 2673 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2674 unsigned long size = zone->present_pages;
41858966 2675 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2676 if (size > high)
2677 sum += size - high;
1da177e4
LT
2678 }
2679
2680 return sum;
2681}
2682
2683/*
2684 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2685 */
2686unsigned int nr_free_buffer_pages(void)
2687{
af4ca457 2688 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2689}
c2f1a551 2690EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2691
2692/*
2693 * Amount of free RAM allocatable within all zones
2694 */
2695unsigned int nr_free_pagecache_pages(void)
2696{
2a1e274a 2697 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2698}
08e0f6a9
CL
2699
2700static inline void show_node(struct zone *zone)
1da177e4 2701{
08e0f6a9 2702 if (NUMA_BUILD)
25ba77c1 2703 printk("Node %d ", zone_to_nid(zone));
1da177e4 2704}
1da177e4 2705
1da177e4
LT
2706void si_meminfo(struct sysinfo *val)
2707{
2708 val->totalram = totalram_pages;
2709 val->sharedram = 0;
d23ad423 2710 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2711 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2712 val->totalhigh = totalhigh_pages;
2713 val->freehigh = nr_free_highpages();
1da177e4
LT
2714 val->mem_unit = PAGE_SIZE;
2715}
2716
2717EXPORT_SYMBOL(si_meminfo);
2718
2719#ifdef CONFIG_NUMA
2720void si_meminfo_node(struct sysinfo *val, int nid)
2721{
2722 pg_data_t *pgdat = NODE_DATA(nid);
2723
2724 val->totalram = pgdat->node_present_pages;
d23ad423 2725 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2726#ifdef CONFIG_HIGHMEM
1da177e4 2727 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2728 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2729 NR_FREE_PAGES);
98d2b0eb
CL
2730#else
2731 val->totalhigh = 0;
2732 val->freehigh = 0;
2733#endif
1da177e4
LT
2734 val->mem_unit = PAGE_SIZE;
2735}
2736#endif
2737
ddd588b5 2738/*
7bf02ea2
DR
2739 * Determine whether the node should be displayed or not, depending on whether
2740 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2741 */
7bf02ea2 2742bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2743{
2744 bool ret = false;
cc9a6c87 2745 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2746
2747 if (!(flags & SHOW_MEM_FILTER_NODES))
2748 goto out;
2749
cc9a6c87
MG
2750 do {
2751 cpuset_mems_cookie = get_mems_allowed();
2752 ret = !node_isset(nid, cpuset_current_mems_allowed);
2753 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2754out:
2755 return ret;
2756}
2757
1da177e4
LT
2758#define K(x) ((x) << (PAGE_SHIFT-10))
2759
2760/*
2761 * Show free area list (used inside shift_scroll-lock stuff)
2762 * We also calculate the percentage fragmentation. We do this by counting the
2763 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2764 * Suppresses nodes that are not allowed by current's cpuset if
2765 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2766 */
7bf02ea2 2767void show_free_areas(unsigned int filter)
1da177e4 2768{
c7241913 2769 int cpu;
1da177e4
LT
2770 struct zone *zone;
2771
ee99c71c 2772 for_each_populated_zone(zone) {
7bf02ea2 2773 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2774 continue;
c7241913
JS
2775 show_node(zone);
2776 printk("%s per-cpu:\n", zone->name);
1da177e4 2777
6b482c67 2778 for_each_online_cpu(cpu) {
1da177e4
LT
2779 struct per_cpu_pageset *pageset;
2780
99dcc3e5 2781 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2782
3dfa5721
CL
2783 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2784 cpu, pageset->pcp.high,
2785 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2786 }
2787 }
2788
a731286d
KM
2789 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2790 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2791 " unevictable:%lu"
b76146ed 2792 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2793 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2794 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2795 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2796 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2797 global_page_state(NR_ISOLATED_ANON),
2798 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2799 global_page_state(NR_INACTIVE_FILE),
a731286d 2800 global_page_state(NR_ISOLATED_FILE),
7b854121 2801 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2802 global_page_state(NR_FILE_DIRTY),
ce866b34 2803 global_page_state(NR_WRITEBACK),
fd39fc85 2804 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2805 global_page_state(NR_FREE_PAGES),
3701b033
KM
2806 global_page_state(NR_SLAB_RECLAIMABLE),
2807 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2808 global_page_state(NR_FILE_MAPPED),
4b02108a 2809 global_page_state(NR_SHMEM),
a25700a5
AM
2810 global_page_state(NR_PAGETABLE),
2811 global_page_state(NR_BOUNCE));
1da177e4 2812
ee99c71c 2813 for_each_populated_zone(zone) {
1da177e4
LT
2814 int i;
2815
7bf02ea2 2816 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2817 continue;
1da177e4
LT
2818 show_node(zone);
2819 printk("%s"
2820 " free:%lukB"
2821 " min:%lukB"
2822 " low:%lukB"
2823 " high:%lukB"
4f98a2fe
RR
2824 " active_anon:%lukB"
2825 " inactive_anon:%lukB"
2826 " active_file:%lukB"
2827 " inactive_file:%lukB"
7b854121 2828 " unevictable:%lukB"
a731286d
KM
2829 " isolated(anon):%lukB"
2830 " isolated(file):%lukB"
1da177e4 2831 " present:%lukB"
4a0aa73f
KM
2832 " mlocked:%lukB"
2833 " dirty:%lukB"
2834 " writeback:%lukB"
2835 " mapped:%lukB"
4b02108a 2836 " shmem:%lukB"
4a0aa73f
KM
2837 " slab_reclaimable:%lukB"
2838 " slab_unreclaimable:%lukB"
c6a7f572 2839 " kernel_stack:%lukB"
4a0aa73f
KM
2840 " pagetables:%lukB"
2841 " unstable:%lukB"
2842 " bounce:%lukB"
2843 " writeback_tmp:%lukB"
1da177e4
LT
2844 " pages_scanned:%lu"
2845 " all_unreclaimable? %s"
2846 "\n",
2847 zone->name,
88f5acf8 2848 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2849 K(min_wmark_pages(zone)),
2850 K(low_wmark_pages(zone)),
2851 K(high_wmark_pages(zone)),
4f98a2fe
RR
2852 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2853 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2854 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2855 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2856 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2857 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2858 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2859 K(zone->present_pages),
4a0aa73f
KM
2860 K(zone_page_state(zone, NR_MLOCK)),
2861 K(zone_page_state(zone, NR_FILE_DIRTY)),
2862 K(zone_page_state(zone, NR_WRITEBACK)),
2863 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2864 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2865 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2866 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2867 zone_page_state(zone, NR_KERNEL_STACK) *
2868 THREAD_SIZE / 1024,
4a0aa73f
KM
2869 K(zone_page_state(zone, NR_PAGETABLE)),
2870 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2871 K(zone_page_state(zone, NR_BOUNCE)),
2872 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2873 zone->pages_scanned,
93e4a89a 2874 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2875 );
2876 printk("lowmem_reserve[]:");
2877 for (i = 0; i < MAX_NR_ZONES; i++)
2878 printk(" %lu", zone->lowmem_reserve[i]);
2879 printk("\n");
2880 }
2881
ee99c71c 2882 for_each_populated_zone(zone) {
8f9de51a 2883 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2884
7bf02ea2 2885 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2886 continue;
1da177e4
LT
2887 show_node(zone);
2888 printk("%s: ", zone->name);
1da177e4
LT
2889
2890 spin_lock_irqsave(&zone->lock, flags);
2891 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2892 nr[order] = zone->free_area[order].nr_free;
2893 total += nr[order] << order;
1da177e4
LT
2894 }
2895 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2896 for (order = 0; order < MAX_ORDER; order++)
2897 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2898 printk("= %lukB\n", K(total));
2899 }
2900
e6f3602d
LW
2901 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2902
1da177e4
LT
2903 show_swap_cache_info();
2904}
2905
19770b32
MG
2906static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2907{
2908 zoneref->zone = zone;
2909 zoneref->zone_idx = zone_idx(zone);
2910}
2911
1da177e4
LT
2912/*
2913 * Builds allocation fallback zone lists.
1a93205b
CL
2914 *
2915 * Add all populated zones of a node to the zonelist.
1da177e4 2916 */
f0c0b2b8
KH
2917static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2918 int nr_zones, enum zone_type zone_type)
1da177e4 2919{
1a93205b
CL
2920 struct zone *zone;
2921
98d2b0eb 2922 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2923 zone_type++;
02a68a5e
CL
2924
2925 do {
2f6726e5 2926 zone_type--;
070f8032 2927 zone = pgdat->node_zones + zone_type;
1a93205b 2928 if (populated_zone(zone)) {
dd1a239f
MG
2929 zoneref_set_zone(zone,
2930 &zonelist->_zonerefs[nr_zones++]);
070f8032 2931 check_highest_zone(zone_type);
1da177e4 2932 }
02a68a5e 2933
2f6726e5 2934 } while (zone_type);
070f8032 2935 return nr_zones;
1da177e4
LT
2936}
2937
f0c0b2b8
KH
2938
2939/*
2940 * zonelist_order:
2941 * 0 = automatic detection of better ordering.
2942 * 1 = order by ([node] distance, -zonetype)
2943 * 2 = order by (-zonetype, [node] distance)
2944 *
2945 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2946 * the same zonelist. So only NUMA can configure this param.
2947 */
2948#define ZONELIST_ORDER_DEFAULT 0
2949#define ZONELIST_ORDER_NODE 1
2950#define ZONELIST_ORDER_ZONE 2
2951
2952/* zonelist order in the kernel.
2953 * set_zonelist_order() will set this to NODE or ZONE.
2954 */
2955static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2956static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2957
2958
1da177e4 2959#ifdef CONFIG_NUMA
f0c0b2b8
KH
2960/* The value user specified ....changed by config */
2961static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2962/* string for sysctl */
2963#define NUMA_ZONELIST_ORDER_LEN 16
2964char numa_zonelist_order[16] = "default";
2965
2966/*
2967 * interface for configure zonelist ordering.
2968 * command line option "numa_zonelist_order"
2969 * = "[dD]efault - default, automatic configuration.
2970 * = "[nN]ode - order by node locality, then by zone within node
2971 * = "[zZ]one - order by zone, then by locality within zone
2972 */
2973
2974static int __parse_numa_zonelist_order(char *s)
2975{
2976 if (*s == 'd' || *s == 'D') {
2977 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2978 } else if (*s == 'n' || *s == 'N') {
2979 user_zonelist_order = ZONELIST_ORDER_NODE;
2980 } else if (*s == 'z' || *s == 'Z') {
2981 user_zonelist_order = ZONELIST_ORDER_ZONE;
2982 } else {
2983 printk(KERN_WARNING
2984 "Ignoring invalid numa_zonelist_order value: "
2985 "%s\n", s);
2986 return -EINVAL;
2987 }
2988 return 0;
2989}
2990
2991static __init int setup_numa_zonelist_order(char *s)
2992{
ecb256f8
VL
2993 int ret;
2994
2995 if (!s)
2996 return 0;
2997
2998 ret = __parse_numa_zonelist_order(s);
2999 if (ret == 0)
3000 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3001
3002 return ret;
f0c0b2b8
KH
3003}
3004early_param("numa_zonelist_order", setup_numa_zonelist_order);
3005
3006/*
3007 * sysctl handler for numa_zonelist_order
3008 */
3009int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3010 void __user *buffer, size_t *length,
f0c0b2b8
KH
3011 loff_t *ppos)
3012{
3013 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3014 int ret;
443c6f14 3015 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3016
443c6f14 3017 mutex_lock(&zl_order_mutex);
f0c0b2b8 3018 if (write)
443c6f14 3019 strcpy(saved_string, (char*)table->data);
8d65af78 3020 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3021 if (ret)
443c6f14 3022 goto out;
f0c0b2b8
KH
3023 if (write) {
3024 int oldval = user_zonelist_order;
3025 if (__parse_numa_zonelist_order((char*)table->data)) {
3026 /*
3027 * bogus value. restore saved string
3028 */
3029 strncpy((char*)table->data, saved_string,
3030 NUMA_ZONELIST_ORDER_LEN);
3031 user_zonelist_order = oldval;
4eaf3f64
HL
3032 } else if (oldval != user_zonelist_order) {
3033 mutex_lock(&zonelists_mutex);
9adb62a5 3034 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3035 mutex_unlock(&zonelists_mutex);
3036 }
f0c0b2b8 3037 }
443c6f14
AK
3038out:
3039 mutex_unlock(&zl_order_mutex);
3040 return ret;
f0c0b2b8
KH
3041}
3042
3043
62bc62a8 3044#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3045static int node_load[MAX_NUMNODES];
3046
1da177e4 3047/**
4dc3b16b 3048 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3049 * @node: node whose fallback list we're appending
3050 * @used_node_mask: nodemask_t of already used nodes
3051 *
3052 * We use a number of factors to determine which is the next node that should
3053 * appear on a given node's fallback list. The node should not have appeared
3054 * already in @node's fallback list, and it should be the next closest node
3055 * according to the distance array (which contains arbitrary distance values
3056 * from each node to each node in the system), and should also prefer nodes
3057 * with no CPUs, since presumably they'll have very little allocation pressure
3058 * on them otherwise.
3059 * It returns -1 if no node is found.
3060 */
f0c0b2b8 3061static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3062{
4cf808eb 3063 int n, val;
1da177e4
LT
3064 int min_val = INT_MAX;
3065 int best_node = -1;
a70f7302 3066 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3067
4cf808eb
LT
3068 /* Use the local node if we haven't already */
3069 if (!node_isset(node, *used_node_mask)) {
3070 node_set(node, *used_node_mask);
3071 return node;
3072 }
1da177e4 3073
37b07e41 3074 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3075
3076 /* Don't want a node to appear more than once */
3077 if (node_isset(n, *used_node_mask))
3078 continue;
3079
1da177e4
LT
3080 /* Use the distance array to find the distance */
3081 val = node_distance(node, n);
3082
4cf808eb
LT
3083 /* Penalize nodes under us ("prefer the next node") */
3084 val += (n < node);
3085
1da177e4 3086 /* Give preference to headless and unused nodes */
a70f7302
RR
3087 tmp = cpumask_of_node(n);
3088 if (!cpumask_empty(tmp))
1da177e4
LT
3089 val += PENALTY_FOR_NODE_WITH_CPUS;
3090
3091 /* Slight preference for less loaded node */
3092 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3093 val += node_load[n];
3094
3095 if (val < min_val) {
3096 min_val = val;
3097 best_node = n;
3098 }
3099 }
3100
3101 if (best_node >= 0)
3102 node_set(best_node, *used_node_mask);
3103
3104 return best_node;
3105}
3106
f0c0b2b8
KH
3107
3108/*
3109 * Build zonelists ordered by node and zones within node.
3110 * This results in maximum locality--normal zone overflows into local
3111 * DMA zone, if any--but risks exhausting DMA zone.
3112 */
3113static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3114{
f0c0b2b8 3115 int j;
1da177e4 3116 struct zonelist *zonelist;
f0c0b2b8 3117
54a6eb5c 3118 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3119 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3120 ;
3121 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3122 MAX_NR_ZONES - 1);
dd1a239f
MG
3123 zonelist->_zonerefs[j].zone = NULL;
3124 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3125}
3126
523b9458
CL
3127/*
3128 * Build gfp_thisnode zonelists
3129 */
3130static void build_thisnode_zonelists(pg_data_t *pgdat)
3131{
523b9458
CL
3132 int j;
3133 struct zonelist *zonelist;
3134
54a6eb5c
MG
3135 zonelist = &pgdat->node_zonelists[1];
3136 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3137 zonelist->_zonerefs[j].zone = NULL;
3138 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3139}
3140
f0c0b2b8
KH
3141/*
3142 * Build zonelists ordered by zone and nodes within zones.
3143 * This results in conserving DMA zone[s] until all Normal memory is
3144 * exhausted, but results in overflowing to remote node while memory
3145 * may still exist in local DMA zone.
3146 */
3147static int node_order[MAX_NUMNODES];
3148
3149static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3150{
f0c0b2b8
KH
3151 int pos, j, node;
3152 int zone_type; /* needs to be signed */
3153 struct zone *z;
3154 struct zonelist *zonelist;
3155
54a6eb5c
MG
3156 zonelist = &pgdat->node_zonelists[0];
3157 pos = 0;
3158 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3159 for (j = 0; j < nr_nodes; j++) {
3160 node = node_order[j];
3161 z = &NODE_DATA(node)->node_zones[zone_type];
3162 if (populated_zone(z)) {
dd1a239f
MG
3163 zoneref_set_zone(z,
3164 &zonelist->_zonerefs[pos++]);
54a6eb5c 3165 check_highest_zone(zone_type);
f0c0b2b8
KH
3166 }
3167 }
f0c0b2b8 3168 }
dd1a239f
MG
3169 zonelist->_zonerefs[pos].zone = NULL;
3170 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3171}
3172
3173static int default_zonelist_order(void)
3174{
3175 int nid, zone_type;
3176 unsigned long low_kmem_size,total_size;
3177 struct zone *z;
3178 int average_size;
3179 /*
88393161 3180 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3181 * If they are really small and used heavily, the system can fall
3182 * into OOM very easily.
e325c90f 3183 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3184 */
3185 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3186 low_kmem_size = 0;
3187 total_size = 0;
3188 for_each_online_node(nid) {
3189 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3190 z = &NODE_DATA(nid)->node_zones[zone_type];
3191 if (populated_zone(z)) {
3192 if (zone_type < ZONE_NORMAL)
3193 low_kmem_size += z->present_pages;
3194 total_size += z->present_pages;
e325c90f
DR
3195 } else if (zone_type == ZONE_NORMAL) {
3196 /*
3197 * If any node has only lowmem, then node order
3198 * is preferred to allow kernel allocations
3199 * locally; otherwise, they can easily infringe
3200 * on other nodes when there is an abundance of
3201 * lowmem available to allocate from.
3202 */
3203 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3204 }
3205 }
3206 }
3207 if (!low_kmem_size || /* there are no DMA area. */
3208 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3209 return ZONELIST_ORDER_NODE;
3210 /*
3211 * look into each node's config.
3212 * If there is a node whose DMA/DMA32 memory is very big area on
3213 * local memory, NODE_ORDER may be suitable.
3214 */
37b07e41
LS
3215 average_size = total_size /
3216 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3217 for_each_online_node(nid) {
3218 low_kmem_size = 0;
3219 total_size = 0;
3220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3221 z = &NODE_DATA(nid)->node_zones[zone_type];
3222 if (populated_zone(z)) {
3223 if (zone_type < ZONE_NORMAL)
3224 low_kmem_size += z->present_pages;
3225 total_size += z->present_pages;
3226 }
3227 }
3228 if (low_kmem_size &&
3229 total_size > average_size && /* ignore small node */
3230 low_kmem_size > total_size * 70/100)
3231 return ZONELIST_ORDER_NODE;
3232 }
3233 return ZONELIST_ORDER_ZONE;
3234}
3235
3236static void set_zonelist_order(void)
3237{
3238 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3239 current_zonelist_order = default_zonelist_order();
3240 else
3241 current_zonelist_order = user_zonelist_order;
3242}
3243
3244static void build_zonelists(pg_data_t *pgdat)
3245{
3246 int j, node, load;
3247 enum zone_type i;
1da177e4 3248 nodemask_t used_mask;
f0c0b2b8
KH
3249 int local_node, prev_node;
3250 struct zonelist *zonelist;
3251 int order = current_zonelist_order;
1da177e4
LT
3252
3253 /* initialize zonelists */
523b9458 3254 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3255 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3256 zonelist->_zonerefs[0].zone = NULL;
3257 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3258 }
3259
3260 /* NUMA-aware ordering of nodes */
3261 local_node = pgdat->node_id;
62bc62a8 3262 load = nr_online_nodes;
1da177e4
LT
3263 prev_node = local_node;
3264 nodes_clear(used_mask);
f0c0b2b8 3265
f0c0b2b8
KH
3266 memset(node_order, 0, sizeof(node_order));
3267 j = 0;
3268
1da177e4 3269 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3270 int distance = node_distance(local_node, node);
3271
3272 /*
3273 * If another node is sufficiently far away then it is better
3274 * to reclaim pages in a zone before going off node.
3275 */
3276 if (distance > RECLAIM_DISTANCE)
3277 zone_reclaim_mode = 1;
3278
1da177e4
LT
3279 /*
3280 * We don't want to pressure a particular node.
3281 * So adding penalty to the first node in same
3282 * distance group to make it round-robin.
3283 */
9eeff239 3284 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3285 node_load[node] = load;
3286
1da177e4
LT
3287 prev_node = node;
3288 load--;
f0c0b2b8
KH
3289 if (order == ZONELIST_ORDER_NODE)
3290 build_zonelists_in_node_order(pgdat, node);
3291 else
3292 node_order[j++] = node; /* remember order */
3293 }
1da177e4 3294
f0c0b2b8
KH
3295 if (order == ZONELIST_ORDER_ZONE) {
3296 /* calculate node order -- i.e., DMA last! */
3297 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3298 }
523b9458
CL
3299
3300 build_thisnode_zonelists(pgdat);
1da177e4
LT
3301}
3302
9276b1bc 3303/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3304static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3305{
54a6eb5c
MG
3306 struct zonelist *zonelist;
3307 struct zonelist_cache *zlc;
dd1a239f 3308 struct zoneref *z;
9276b1bc 3309
54a6eb5c
MG
3310 zonelist = &pgdat->node_zonelists[0];
3311 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3312 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3313 for (z = zonelist->_zonerefs; z->zone; z++)
3314 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3315}
3316
7aac7898
LS
3317#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3318/*
3319 * Return node id of node used for "local" allocations.
3320 * I.e., first node id of first zone in arg node's generic zonelist.
3321 * Used for initializing percpu 'numa_mem', which is used primarily
3322 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3323 */
3324int local_memory_node(int node)
3325{
3326 struct zone *zone;
3327
3328 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3329 gfp_zone(GFP_KERNEL),
3330 NULL,
3331 &zone);
3332 return zone->node;
3333}
3334#endif
f0c0b2b8 3335
1da177e4
LT
3336#else /* CONFIG_NUMA */
3337
f0c0b2b8
KH
3338static void set_zonelist_order(void)
3339{
3340 current_zonelist_order = ZONELIST_ORDER_ZONE;
3341}
3342
3343static void build_zonelists(pg_data_t *pgdat)
1da177e4 3344{
19655d34 3345 int node, local_node;
54a6eb5c
MG
3346 enum zone_type j;
3347 struct zonelist *zonelist;
1da177e4
LT
3348
3349 local_node = pgdat->node_id;
1da177e4 3350
54a6eb5c
MG
3351 zonelist = &pgdat->node_zonelists[0];
3352 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3353
54a6eb5c
MG
3354 /*
3355 * Now we build the zonelist so that it contains the zones
3356 * of all the other nodes.
3357 * We don't want to pressure a particular node, so when
3358 * building the zones for node N, we make sure that the
3359 * zones coming right after the local ones are those from
3360 * node N+1 (modulo N)
3361 */
3362 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3363 if (!node_online(node))
3364 continue;
3365 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3366 MAX_NR_ZONES - 1);
1da177e4 3367 }
54a6eb5c
MG
3368 for (node = 0; node < local_node; node++) {
3369 if (!node_online(node))
3370 continue;
3371 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3372 MAX_NR_ZONES - 1);
3373 }
3374
dd1a239f
MG
3375 zonelist->_zonerefs[j].zone = NULL;
3376 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3377}
3378
9276b1bc 3379/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3380static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3381{
54a6eb5c 3382 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3383}
3384
1da177e4
LT
3385#endif /* CONFIG_NUMA */
3386
99dcc3e5
CL
3387/*
3388 * Boot pageset table. One per cpu which is going to be used for all
3389 * zones and all nodes. The parameters will be set in such a way
3390 * that an item put on a list will immediately be handed over to
3391 * the buddy list. This is safe since pageset manipulation is done
3392 * with interrupts disabled.
3393 *
3394 * The boot_pagesets must be kept even after bootup is complete for
3395 * unused processors and/or zones. They do play a role for bootstrapping
3396 * hotplugged processors.
3397 *
3398 * zoneinfo_show() and maybe other functions do
3399 * not check if the processor is online before following the pageset pointer.
3400 * Other parts of the kernel may not check if the zone is available.
3401 */
3402static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3403static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3404static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3405
4eaf3f64
HL
3406/*
3407 * Global mutex to protect against size modification of zonelists
3408 * as well as to serialize pageset setup for the new populated zone.
3409 */
3410DEFINE_MUTEX(zonelists_mutex);
3411
9b1a4d38 3412/* return values int ....just for stop_machine() */
4ed7e022 3413static int __build_all_zonelists(void *data)
1da177e4 3414{
6811378e 3415 int nid;
99dcc3e5 3416 int cpu;
9adb62a5 3417 pg_data_t *self = data;
9276b1bc 3418
7f9cfb31
BL
3419#ifdef CONFIG_NUMA
3420 memset(node_load, 0, sizeof(node_load));
3421#endif
9adb62a5
JL
3422
3423 if (self && !node_online(self->node_id)) {
3424 build_zonelists(self);
3425 build_zonelist_cache(self);
3426 }
3427
9276b1bc 3428 for_each_online_node(nid) {
7ea1530a
CL
3429 pg_data_t *pgdat = NODE_DATA(nid);
3430
3431 build_zonelists(pgdat);
3432 build_zonelist_cache(pgdat);
9276b1bc 3433 }
99dcc3e5
CL
3434
3435 /*
3436 * Initialize the boot_pagesets that are going to be used
3437 * for bootstrapping processors. The real pagesets for
3438 * each zone will be allocated later when the per cpu
3439 * allocator is available.
3440 *
3441 * boot_pagesets are used also for bootstrapping offline
3442 * cpus if the system is already booted because the pagesets
3443 * are needed to initialize allocators on a specific cpu too.
3444 * F.e. the percpu allocator needs the page allocator which
3445 * needs the percpu allocator in order to allocate its pagesets
3446 * (a chicken-egg dilemma).
3447 */
7aac7898 3448 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3449 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3450
7aac7898
LS
3451#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3452 /*
3453 * We now know the "local memory node" for each node--
3454 * i.e., the node of the first zone in the generic zonelist.
3455 * Set up numa_mem percpu variable for on-line cpus. During
3456 * boot, only the boot cpu should be on-line; we'll init the
3457 * secondary cpus' numa_mem as they come on-line. During
3458 * node/memory hotplug, we'll fixup all on-line cpus.
3459 */
3460 if (cpu_online(cpu))
3461 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3462#endif
3463 }
3464
6811378e
YG
3465 return 0;
3466}
3467
4eaf3f64
HL
3468/*
3469 * Called with zonelists_mutex held always
3470 * unless system_state == SYSTEM_BOOTING.
3471 */
9adb62a5 3472void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3473{
f0c0b2b8
KH
3474 set_zonelist_order();
3475
6811378e 3476 if (system_state == SYSTEM_BOOTING) {
423b41d7 3477 __build_all_zonelists(NULL);
68ad8df4 3478 mminit_verify_zonelist();
6811378e
YG
3479 cpuset_init_current_mems_allowed();
3480 } else {
183ff22b 3481 /* we have to stop all cpus to guarantee there is no user
6811378e 3482 of zonelist */
e9959f0f 3483#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3484 if (zone)
3485 setup_zone_pageset(zone);
e9959f0f 3486#endif
9adb62a5 3487 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3488 /* cpuset refresh routine should be here */
3489 }
bd1e22b8 3490 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3491 /*
3492 * Disable grouping by mobility if the number of pages in the
3493 * system is too low to allow the mechanism to work. It would be
3494 * more accurate, but expensive to check per-zone. This check is
3495 * made on memory-hotadd so a system can start with mobility
3496 * disabled and enable it later
3497 */
d9c23400 3498 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3499 page_group_by_mobility_disabled = 1;
3500 else
3501 page_group_by_mobility_disabled = 0;
3502
3503 printk("Built %i zonelists in %s order, mobility grouping %s. "
3504 "Total pages: %ld\n",
62bc62a8 3505 nr_online_nodes,
f0c0b2b8 3506 zonelist_order_name[current_zonelist_order],
9ef9acb0 3507 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3508 vm_total_pages);
3509#ifdef CONFIG_NUMA
3510 printk("Policy zone: %s\n", zone_names[policy_zone]);
3511#endif
1da177e4
LT
3512}
3513
3514/*
3515 * Helper functions to size the waitqueue hash table.
3516 * Essentially these want to choose hash table sizes sufficiently
3517 * large so that collisions trying to wait on pages are rare.
3518 * But in fact, the number of active page waitqueues on typical
3519 * systems is ridiculously low, less than 200. So this is even
3520 * conservative, even though it seems large.
3521 *
3522 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3523 * waitqueues, i.e. the size of the waitq table given the number of pages.
3524 */
3525#define PAGES_PER_WAITQUEUE 256
3526
cca448fe 3527#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3528static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3529{
3530 unsigned long size = 1;
3531
3532 pages /= PAGES_PER_WAITQUEUE;
3533
3534 while (size < pages)
3535 size <<= 1;
3536
3537 /*
3538 * Once we have dozens or even hundreds of threads sleeping
3539 * on IO we've got bigger problems than wait queue collision.
3540 * Limit the size of the wait table to a reasonable size.
3541 */
3542 size = min(size, 4096UL);
3543
3544 return max(size, 4UL);
3545}
cca448fe
YG
3546#else
3547/*
3548 * A zone's size might be changed by hot-add, so it is not possible to determine
3549 * a suitable size for its wait_table. So we use the maximum size now.
3550 *
3551 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3552 *
3553 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3554 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3555 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3556 *
3557 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3558 * or more by the traditional way. (See above). It equals:
3559 *
3560 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3561 * ia64(16K page size) : = ( 8G + 4M)byte.
3562 * powerpc (64K page size) : = (32G +16M)byte.
3563 */
3564static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3565{
3566 return 4096UL;
3567}
3568#endif
1da177e4
LT
3569
3570/*
3571 * This is an integer logarithm so that shifts can be used later
3572 * to extract the more random high bits from the multiplicative
3573 * hash function before the remainder is taken.
3574 */
3575static inline unsigned long wait_table_bits(unsigned long size)
3576{
3577 return ffz(~size);
3578}
3579
3580#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3581
6d3163ce
AH
3582/*
3583 * Check if a pageblock contains reserved pages
3584 */
3585static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3586{
3587 unsigned long pfn;
3588
3589 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3590 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3591 return 1;
3592 }
3593 return 0;
3594}
3595
56fd56b8 3596/*
d9c23400 3597 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3598 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3599 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3600 * higher will lead to a bigger reserve which will get freed as contiguous
3601 * blocks as reclaim kicks in
3602 */
3603static void setup_zone_migrate_reserve(struct zone *zone)
3604{
6d3163ce 3605 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3606 struct page *page;
78986a67
MG
3607 unsigned long block_migratetype;
3608 int reserve;
56fd56b8 3609
d0215638
MH
3610 /*
3611 * Get the start pfn, end pfn and the number of blocks to reserve
3612 * We have to be careful to be aligned to pageblock_nr_pages to
3613 * make sure that we always check pfn_valid for the first page in
3614 * the block.
3615 */
56fd56b8
MG
3616 start_pfn = zone->zone_start_pfn;
3617 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3618 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3619 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3620 pageblock_order;
56fd56b8 3621
78986a67
MG
3622 /*
3623 * Reserve blocks are generally in place to help high-order atomic
3624 * allocations that are short-lived. A min_free_kbytes value that
3625 * would result in more than 2 reserve blocks for atomic allocations
3626 * is assumed to be in place to help anti-fragmentation for the
3627 * future allocation of hugepages at runtime.
3628 */
3629 reserve = min(2, reserve);
3630
d9c23400 3631 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3632 if (!pfn_valid(pfn))
3633 continue;
3634 page = pfn_to_page(pfn);
3635
344c790e
AL
3636 /* Watch out for overlapping nodes */
3637 if (page_to_nid(page) != zone_to_nid(zone))
3638 continue;
3639
56fd56b8
MG
3640 block_migratetype = get_pageblock_migratetype(page);
3641
938929f1
MG
3642 /* Only test what is necessary when the reserves are not met */
3643 if (reserve > 0) {
3644 /*
3645 * Blocks with reserved pages will never free, skip
3646 * them.
3647 */
3648 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3649 if (pageblock_is_reserved(pfn, block_end_pfn))
3650 continue;
56fd56b8 3651
938929f1
MG
3652 /* If this block is reserved, account for it */
3653 if (block_migratetype == MIGRATE_RESERVE) {
3654 reserve--;
3655 continue;
3656 }
3657
3658 /* Suitable for reserving if this block is movable */
3659 if (block_migratetype == MIGRATE_MOVABLE) {
3660 set_pageblock_migratetype(page,
3661 MIGRATE_RESERVE);
3662 move_freepages_block(zone, page,
3663 MIGRATE_RESERVE);
3664 reserve--;
3665 continue;
3666 }
56fd56b8
MG
3667 }
3668
3669 /*
3670 * If the reserve is met and this is a previous reserved block,
3671 * take it back
3672 */
3673 if (block_migratetype == MIGRATE_RESERVE) {
3674 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3675 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3676 }
3677 }
3678}
ac0e5b7a 3679
1da177e4
LT
3680/*
3681 * Initially all pages are reserved - free ones are freed
3682 * up by free_all_bootmem() once the early boot process is
3683 * done. Non-atomic initialization, single-pass.
3684 */
c09b4240 3685void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3686 unsigned long start_pfn, enum memmap_context context)
1da177e4 3687{
1da177e4 3688 struct page *page;
29751f69
AW
3689 unsigned long end_pfn = start_pfn + size;
3690 unsigned long pfn;
86051ca5 3691 struct zone *z;
1da177e4 3692
22b31eec
HD
3693 if (highest_memmap_pfn < end_pfn - 1)
3694 highest_memmap_pfn = end_pfn - 1;
3695
86051ca5 3696 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3697 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3698 /*
3699 * There can be holes in boot-time mem_map[]s
3700 * handed to this function. They do not
3701 * exist on hotplugged memory.
3702 */
3703 if (context == MEMMAP_EARLY) {
3704 if (!early_pfn_valid(pfn))
3705 continue;
3706 if (!early_pfn_in_nid(pfn, nid))
3707 continue;
3708 }
d41dee36
AW
3709 page = pfn_to_page(pfn);
3710 set_page_links(page, zone, nid, pfn);
708614e6 3711 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3712 init_page_count(page);
1da177e4
LT
3713 reset_page_mapcount(page);
3714 SetPageReserved(page);
b2a0ac88
MG
3715 /*
3716 * Mark the block movable so that blocks are reserved for
3717 * movable at startup. This will force kernel allocations
3718 * to reserve their blocks rather than leaking throughout
3719 * the address space during boot when many long-lived
56fd56b8
MG
3720 * kernel allocations are made. Later some blocks near
3721 * the start are marked MIGRATE_RESERVE by
3722 * setup_zone_migrate_reserve()
86051ca5
KH
3723 *
3724 * bitmap is created for zone's valid pfn range. but memmap
3725 * can be created for invalid pages (for alignment)
3726 * check here not to call set_pageblock_migratetype() against
3727 * pfn out of zone.
b2a0ac88 3728 */
86051ca5
KH
3729 if ((z->zone_start_pfn <= pfn)
3730 && (pfn < z->zone_start_pfn + z->spanned_pages)
3731 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3732 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3733
1da177e4
LT
3734 INIT_LIST_HEAD(&page->lru);
3735#ifdef WANT_PAGE_VIRTUAL
3736 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3737 if (!is_highmem_idx(zone))
3212c6be 3738 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3739#endif
1da177e4
LT
3740 }
3741}
3742
1e548deb 3743static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3744{
b2a0ac88
MG
3745 int order, t;
3746 for_each_migratetype_order(order, t) {
3747 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3748 zone->free_area[order].nr_free = 0;
3749 }
3750}
3751
3752#ifndef __HAVE_ARCH_MEMMAP_INIT
3753#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3754 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3755#endif
3756
4ed7e022 3757static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3758{
3a6be87f 3759#ifdef CONFIG_MMU
e7c8d5c9
CL
3760 int batch;
3761
3762 /*
3763 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3764 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3765 *
3766 * OK, so we don't know how big the cache is. So guess.
3767 */
3768 batch = zone->present_pages / 1024;
ba56e91c
SR
3769 if (batch * PAGE_SIZE > 512 * 1024)
3770 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3771 batch /= 4; /* We effectively *= 4 below */
3772 if (batch < 1)
3773 batch = 1;
3774
3775 /*
0ceaacc9
NP
3776 * Clamp the batch to a 2^n - 1 value. Having a power
3777 * of 2 value was found to be more likely to have
3778 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3779 *
0ceaacc9
NP
3780 * For example if 2 tasks are alternately allocating
3781 * batches of pages, one task can end up with a lot
3782 * of pages of one half of the possible page colors
3783 * and the other with pages of the other colors.
e7c8d5c9 3784 */
9155203a 3785 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3786
e7c8d5c9 3787 return batch;
3a6be87f
DH
3788
3789#else
3790 /* The deferral and batching of frees should be suppressed under NOMMU
3791 * conditions.
3792 *
3793 * The problem is that NOMMU needs to be able to allocate large chunks
3794 * of contiguous memory as there's no hardware page translation to
3795 * assemble apparent contiguous memory from discontiguous pages.
3796 *
3797 * Queueing large contiguous runs of pages for batching, however,
3798 * causes the pages to actually be freed in smaller chunks. As there
3799 * can be a significant delay between the individual batches being
3800 * recycled, this leads to the once large chunks of space being
3801 * fragmented and becoming unavailable for high-order allocations.
3802 */
3803 return 0;
3804#endif
e7c8d5c9
CL
3805}
3806
b69a7288 3807static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3808{
3809 struct per_cpu_pages *pcp;
5f8dcc21 3810 int migratetype;
2caaad41 3811
1c6fe946
MD
3812 memset(p, 0, sizeof(*p));
3813
3dfa5721 3814 pcp = &p->pcp;
2caaad41 3815 pcp->count = 0;
2caaad41
CL
3816 pcp->high = 6 * batch;
3817 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3818 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3819 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3820}
3821
8ad4b1fb
RS
3822/*
3823 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3824 * to the value high for the pageset p.
3825 */
3826
3827static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3828 unsigned long high)
3829{
3830 struct per_cpu_pages *pcp;
3831
3dfa5721 3832 pcp = &p->pcp;
8ad4b1fb
RS
3833 pcp->high = high;
3834 pcp->batch = max(1UL, high/4);
3835 if ((high/4) > (PAGE_SHIFT * 8))
3836 pcp->batch = PAGE_SHIFT * 8;
3837}
3838
4ed7e022 3839static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3840{
3841 int cpu;
3842
3843 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3844
3845 for_each_possible_cpu(cpu) {
3846 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3847
3848 setup_pageset(pcp, zone_batchsize(zone));
3849
3850 if (percpu_pagelist_fraction)
3851 setup_pagelist_highmark(pcp,
3852 (zone->present_pages /
3853 percpu_pagelist_fraction));
3854 }
3855}
3856
2caaad41 3857/*
99dcc3e5
CL
3858 * Allocate per cpu pagesets and initialize them.
3859 * Before this call only boot pagesets were available.
e7c8d5c9 3860 */
99dcc3e5 3861void __init setup_per_cpu_pageset(void)
e7c8d5c9 3862{
99dcc3e5 3863 struct zone *zone;
e7c8d5c9 3864
319774e2
WF
3865 for_each_populated_zone(zone)
3866 setup_zone_pageset(zone);
e7c8d5c9
CL
3867}
3868
577a32f6 3869static noinline __init_refok
cca448fe 3870int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3871{
3872 int i;
3873 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3874 size_t alloc_size;
ed8ece2e
DH
3875
3876 /*
3877 * The per-page waitqueue mechanism uses hashed waitqueues
3878 * per zone.
3879 */
02b694de
YG
3880 zone->wait_table_hash_nr_entries =
3881 wait_table_hash_nr_entries(zone_size_pages);
3882 zone->wait_table_bits =
3883 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3884 alloc_size = zone->wait_table_hash_nr_entries
3885 * sizeof(wait_queue_head_t);
3886
cd94b9db 3887 if (!slab_is_available()) {
cca448fe 3888 zone->wait_table = (wait_queue_head_t *)
8f389a99 3889 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3890 } else {
3891 /*
3892 * This case means that a zone whose size was 0 gets new memory
3893 * via memory hot-add.
3894 * But it may be the case that a new node was hot-added. In
3895 * this case vmalloc() will not be able to use this new node's
3896 * memory - this wait_table must be initialized to use this new
3897 * node itself as well.
3898 * To use this new node's memory, further consideration will be
3899 * necessary.
3900 */
8691f3a7 3901 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3902 }
3903 if (!zone->wait_table)
3904 return -ENOMEM;
ed8ece2e 3905
02b694de 3906 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3907 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3908
3909 return 0;
ed8ece2e
DH
3910}
3911
c09b4240 3912static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3913{
99dcc3e5
CL
3914 /*
3915 * per cpu subsystem is not up at this point. The following code
3916 * relies on the ability of the linker to provide the
3917 * offset of a (static) per cpu variable into the per cpu area.
3918 */
3919 zone->pageset = &boot_pageset;
ed8ece2e 3920
f5335c0f 3921 if (zone->present_pages)
99dcc3e5
CL
3922 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3923 zone->name, zone->present_pages,
3924 zone_batchsize(zone));
ed8ece2e
DH
3925}
3926
4ed7e022 3927int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 3928 unsigned long zone_start_pfn,
a2f3aa02
DH
3929 unsigned long size,
3930 enum memmap_context context)
ed8ece2e
DH
3931{
3932 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3933 int ret;
3934 ret = zone_wait_table_init(zone, size);
3935 if (ret)
3936 return ret;
ed8ece2e
DH
3937 pgdat->nr_zones = zone_idx(zone) + 1;
3938
ed8ece2e
DH
3939 zone->zone_start_pfn = zone_start_pfn;
3940
708614e6
MG
3941 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3942 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3943 pgdat->node_id,
3944 (unsigned long)zone_idx(zone),
3945 zone_start_pfn, (zone_start_pfn + size));
3946
1e548deb 3947 zone_init_free_lists(zone);
718127cc
YG
3948
3949 return 0;
ed8ece2e
DH
3950}
3951
0ee332c1 3952#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3953#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3954/*
3955 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3956 * Architectures may implement their own version but if add_active_range()
3957 * was used and there are no special requirements, this is a convenient
3958 * alternative
3959 */
f2dbcfa7 3960int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3961{
c13291a5
TH
3962 unsigned long start_pfn, end_pfn;
3963 int i, nid;
c713216d 3964
c13291a5 3965 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3966 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3967 return nid;
cc2559bc
KH
3968 /* This is a memory hole */
3969 return -1;
c713216d
MG
3970}
3971#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3972
f2dbcfa7
KH
3973int __meminit early_pfn_to_nid(unsigned long pfn)
3974{
cc2559bc
KH
3975 int nid;
3976
3977 nid = __early_pfn_to_nid(pfn);
3978 if (nid >= 0)
3979 return nid;
3980 /* just returns 0 */
3981 return 0;
f2dbcfa7
KH
3982}
3983
cc2559bc
KH
3984#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3985bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3986{
3987 int nid;
3988
3989 nid = __early_pfn_to_nid(pfn);
3990 if (nid >= 0 && nid != node)
3991 return false;
3992 return true;
3993}
3994#endif
f2dbcfa7 3995
c713216d
MG
3996/**
3997 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3998 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3999 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4000 *
4001 * If an architecture guarantees that all ranges registered with
4002 * add_active_ranges() contain no holes and may be freed, this
4003 * this function may be used instead of calling free_bootmem() manually.
4004 */
c13291a5 4005void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4006{
c13291a5
TH
4007 unsigned long start_pfn, end_pfn;
4008 int i, this_nid;
edbe7d23 4009
c13291a5
TH
4010 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4011 start_pfn = min(start_pfn, max_low_pfn);
4012 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4013
c13291a5
TH
4014 if (start_pfn < end_pfn)
4015 free_bootmem_node(NODE_DATA(this_nid),
4016 PFN_PHYS(start_pfn),
4017 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4018 }
edbe7d23 4019}
edbe7d23 4020
c713216d
MG
4021/**
4022 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4023 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4024 *
4025 * If an architecture guarantees that all ranges registered with
4026 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4027 * function may be used instead of calling memory_present() manually.
c713216d
MG
4028 */
4029void __init sparse_memory_present_with_active_regions(int nid)
4030{
c13291a5
TH
4031 unsigned long start_pfn, end_pfn;
4032 int i, this_nid;
c713216d 4033
c13291a5
TH
4034 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4035 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4036}
4037
4038/**
4039 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4040 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4041 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4042 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4043 *
4044 * It returns the start and end page frame of a node based on information
4045 * provided by an arch calling add_active_range(). If called for a node
4046 * with no available memory, a warning is printed and the start and end
88ca3b94 4047 * PFNs will be 0.
c713216d 4048 */
a3142c8e 4049void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4050 unsigned long *start_pfn, unsigned long *end_pfn)
4051{
c13291a5 4052 unsigned long this_start_pfn, this_end_pfn;
c713216d 4053 int i;
c13291a5 4054
c713216d
MG
4055 *start_pfn = -1UL;
4056 *end_pfn = 0;
4057
c13291a5
TH
4058 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4059 *start_pfn = min(*start_pfn, this_start_pfn);
4060 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4061 }
4062
633c0666 4063 if (*start_pfn == -1UL)
c713216d 4064 *start_pfn = 0;
c713216d
MG
4065}
4066
2a1e274a
MG
4067/*
4068 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4069 * assumption is made that zones within a node are ordered in monotonic
4070 * increasing memory addresses so that the "highest" populated zone is used
4071 */
b69a7288 4072static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4073{
4074 int zone_index;
4075 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4076 if (zone_index == ZONE_MOVABLE)
4077 continue;
4078
4079 if (arch_zone_highest_possible_pfn[zone_index] >
4080 arch_zone_lowest_possible_pfn[zone_index])
4081 break;
4082 }
4083
4084 VM_BUG_ON(zone_index == -1);
4085 movable_zone = zone_index;
4086}
4087
4088/*
4089 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4090 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4091 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4092 * in each node depending on the size of each node and how evenly kernelcore
4093 * is distributed. This helper function adjusts the zone ranges
4094 * provided by the architecture for a given node by using the end of the
4095 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4096 * zones within a node are in order of monotonic increases memory addresses
4097 */
b69a7288 4098static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4099 unsigned long zone_type,
4100 unsigned long node_start_pfn,
4101 unsigned long node_end_pfn,
4102 unsigned long *zone_start_pfn,
4103 unsigned long *zone_end_pfn)
4104{
4105 /* Only adjust if ZONE_MOVABLE is on this node */
4106 if (zone_movable_pfn[nid]) {
4107 /* Size ZONE_MOVABLE */
4108 if (zone_type == ZONE_MOVABLE) {
4109 *zone_start_pfn = zone_movable_pfn[nid];
4110 *zone_end_pfn = min(node_end_pfn,
4111 arch_zone_highest_possible_pfn[movable_zone]);
4112
4113 /* Adjust for ZONE_MOVABLE starting within this range */
4114 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4115 *zone_end_pfn > zone_movable_pfn[nid]) {
4116 *zone_end_pfn = zone_movable_pfn[nid];
4117
4118 /* Check if this whole range is within ZONE_MOVABLE */
4119 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4120 *zone_start_pfn = *zone_end_pfn;
4121 }
4122}
4123
c713216d
MG
4124/*
4125 * Return the number of pages a zone spans in a node, including holes
4126 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4127 */
6ea6e688 4128static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4129 unsigned long zone_type,
4130 unsigned long *ignored)
4131{
4132 unsigned long node_start_pfn, node_end_pfn;
4133 unsigned long zone_start_pfn, zone_end_pfn;
4134
4135 /* Get the start and end of the node and zone */
4136 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4137 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4138 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4139 adjust_zone_range_for_zone_movable(nid, zone_type,
4140 node_start_pfn, node_end_pfn,
4141 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4142
4143 /* Check that this node has pages within the zone's required range */
4144 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4145 return 0;
4146
4147 /* Move the zone boundaries inside the node if necessary */
4148 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4149 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4150
4151 /* Return the spanned pages */
4152 return zone_end_pfn - zone_start_pfn;
4153}
4154
4155/*
4156 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4157 * then all holes in the requested range will be accounted for.
c713216d 4158 */
32996250 4159unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4160 unsigned long range_start_pfn,
4161 unsigned long range_end_pfn)
4162{
96e907d1
TH
4163 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4164 unsigned long start_pfn, end_pfn;
4165 int i;
c713216d 4166
96e907d1
TH
4167 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4168 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4169 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4170 nr_absent -= end_pfn - start_pfn;
c713216d 4171 }
96e907d1 4172 return nr_absent;
c713216d
MG
4173}
4174
4175/**
4176 * absent_pages_in_range - Return number of page frames in holes within a range
4177 * @start_pfn: The start PFN to start searching for holes
4178 * @end_pfn: The end PFN to stop searching for holes
4179 *
88ca3b94 4180 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4181 */
4182unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4183 unsigned long end_pfn)
4184{
4185 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4186}
4187
4188/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4189static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4190 unsigned long zone_type,
4191 unsigned long *ignored)
4192{
96e907d1
TH
4193 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4194 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4195 unsigned long node_start_pfn, node_end_pfn;
4196 unsigned long zone_start_pfn, zone_end_pfn;
4197
4198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4199 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4200 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4201
2a1e274a
MG
4202 adjust_zone_range_for_zone_movable(nid, zone_type,
4203 node_start_pfn, node_end_pfn,
4204 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4205 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4206}
0e0b864e 4207
0ee332c1 4208#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4209static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4210 unsigned long zone_type,
4211 unsigned long *zones_size)
4212{
4213 return zones_size[zone_type];
4214}
4215
6ea6e688 4216static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4217 unsigned long zone_type,
4218 unsigned long *zholes_size)
4219{
4220 if (!zholes_size)
4221 return 0;
4222
4223 return zholes_size[zone_type];
4224}
0e0b864e 4225
0ee332c1 4226#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4227
a3142c8e 4228static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4229 unsigned long *zones_size, unsigned long *zholes_size)
4230{
4231 unsigned long realtotalpages, totalpages = 0;
4232 enum zone_type i;
4233
4234 for (i = 0; i < MAX_NR_ZONES; i++)
4235 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4236 zones_size);
4237 pgdat->node_spanned_pages = totalpages;
4238
4239 realtotalpages = totalpages;
4240 for (i = 0; i < MAX_NR_ZONES; i++)
4241 realtotalpages -=
4242 zone_absent_pages_in_node(pgdat->node_id, i,
4243 zholes_size);
4244 pgdat->node_present_pages = realtotalpages;
4245 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4246 realtotalpages);
4247}
4248
835c134e
MG
4249#ifndef CONFIG_SPARSEMEM
4250/*
4251 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4252 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4253 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4254 * round what is now in bits to nearest long in bits, then return it in
4255 * bytes.
4256 */
4257static unsigned long __init usemap_size(unsigned long zonesize)
4258{
4259 unsigned long usemapsize;
4260
d9c23400
MG
4261 usemapsize = roundup(zonesize, pageblock_nr_pages);
4262 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4263 usemapsize *= NR_PAGEBLOCK_BITS;
4264 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4265
4266 return usemapsize / 8;
4267}
4268
4269static void __init setup_usemap(struct pglist_data *pgdat,
4270 struct zone *zone, unsigned long zonesize)
4271{
4272 unsigned long usemapsize = usemap_size(zonesize);
4273 zone->pageblock_flags = NULL;
58a01a45 4274 if (usemapsize)
8f389a99
YL
4275 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4276 usemapsize);
835c134e
MG
4277}
4278#else
fa9f90be 4279static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4280 struct zone *zone, unsigned long zonesize) {}
4281#endif /* CONFIG_SPARSEMEM */
4282
d9c23400 4283#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4284
d9c23400 4285/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4286void __init set_pageblock_order(void)
d9c23400 4287{
955c1cd7
AM
4288 unsigned int order;
4289
d9c23400
MG
4290 /* Check that pageblock_nr_pages has not already been setup */
4291 if (pageblock_order)
4292 return;
4293
955c1cd7
AM
4294 if (HPAGE_SHIFT > PAGE_SHIFT)
4295 order = HUGETLB_PAGE_ORDER;
4296 else
4297 order = MAX_ORDER - 1;
4298
d9c23400
MG
4299 /*
4300 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4301 * This value may be variable depending on boot parameters on IA64 and
4302 * powerpc.
d9c23400
MG
4303 */
4304 pageblock_order = order;
4305}
4306#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4307
ba72cb8c
MG
4308/*
4309 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4310 * is unused as pageblock_order is set at compile-time. See
4311 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4312 * the kernel config
ba72cb8c 4313 */
ca57df79 4314void __init set_pageblock_order(void)
ba72cb8c 4315{
ba72cb8c 4316}
d9c23400
MG
4317
4318#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4319
1da177e4
LT
4320/*
4321 * Set up the zone data structures:
4322 * - mark all pages reserved
4323 * - mark all memory queues empty
4324 * - clear the memory bitmaps
4325 */
b5a0e011 4326static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4327 unsigned long *zones_size, unsigned long *zholes_size)
4328{
2f1b6248 4329 enum zone_type j;
ed8ece2e 4330 int nid = pgdat->node_id;
1da177e4 4331 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4332 int ret;
1da177e4 4333
208d54e5 4334 pgdat_resize_init(pgdat);
1da177e4
LT
4335 pgdat->nr_zones = 0;
4336 init_waitqueue_head(&pgdat->kswapd_wait);
4337 pgdat->kswapd_max_order = 0;
52d4b9ac 4338 pgdat_page_cgroup_init(pgdat);
5f63b720 4339
1da177e4
LT
4340 for (j = 0; j < MAX_NR_ZONES; j++) {
4341 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4342 unsigned long size, realsize, memmap_pages;
1da177e4 4343
c713216d
MG
4344 size = zone_spanned_pages_in_node(nid, j, zones_size);
4345 realsize = size - zone_absent_pages_in_node(nid, j,
4346 zholes_size);
1da177e4 4347
0e0b864e
MG
4348 /*
4349 * Adjust realsize so that it accounts for how much memory
4350 * is used by this zone for memmap. This affects the watermark
4351 * and per-cpu initialisations
4352 */
f7232154
JW
4353 memmap_pages =
4354 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4355 if (realsize >= memmap_pages) {
4356 realsize -= memmap_pages;
5594c8c8
YL
4357 if (memmap_pages)
4358 printk(KERN_DEBUG
4359 " %s zone: %lu pages used for memmap\n",
4360 zone_names[j], memmap_pages);
0e0b864e
MG
4361 } else
4362 printk(KERN_WARNING
4363 " %s zone: %lu pages exceeds realsize %lu\n",
4364 zone_names[j], memmap_pages, realsize);
4365
6267276f
CL
4366 /* Account for reserved pages */
4367 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4368 realsize -= dma_reserve;
d903ef9f 4369 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4370 zone_names[0], dma_reserve);
0e0b864e
MG
4371 }
4372
98d2b0eb 4373 if (!is_highmem_idx(j))
1da177e4
LT
4374 nr_kernel_pages += realsize;
4375 nr_all_pages += realsize;
4376
4377 zone->spanned_pages = size;
4378 zone->present_pages = realsize;
7db8889a
RR
4379#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4380 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4381 zone->spanned_pages;
4382 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4383#endif
9614634f 4384#ifdef CONFIG_NUMA
d5f541ed 4385 zone->node = nid;
8417bba4 4386 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4387 / 100;
0ff38490 4388 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4389#endif
1da177e4
LT
4390 zone->name = zone_names[j];
4391 spin_lock_init(&zone->lock);
4392 spin_lock_init(&zone->lru_lock);
bdc8cb98 4393 zone_seqlock_init(zone);
1da177e4 4394 zone->zone_pgdat = pgdat;
1da177e4 4395
ed8ece2e 4396 zone_pcp_init(zone);
7f5e86c2 4397 lruvec_init(&zone->lruvec, zone);
2244b95a 4398 zap_zone_vm_stats(zone);
e815af95 4399 zone->flags = 0;
1da177e4
LT
4400 if (!size)
4401 continue;
4402
955c1cd7 4403 set_pageblock_order();
835c134e 4404 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4405 ret = init_currently_empty_zone(zone, zone_start_pfn,
4406 size, MEMMAP_EARLY);
718127cc 4407 BUG_ON(ret);
76cdd58e 4408 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4409 zone_start_pfn += size;
1da177e4
LT
4410 }
4411}
4412
577a32f6 4413static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4414{
1da177e4
LT
4415 /* Skip empty nodes */
4416 if (!pgdat->node_spanned_pages)
4417 return;
4418
d41dee36 4419#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4420 /* ia64 gets its own node_mem_map, before this, without bootmem */
4421 if (!pgdat->node_mem_map) {
e984bb43 4422 unsigned long size, start, end;
d41dee36
AW
4423 struct page *map;
4424
e984bb43
BP
4425 /*
4426 * The zone's endpoints aren't required to be MAX_ORDER
4427 * aligned but the node_mem_map endpoints must be in order
4428 * for the buddy allocator to function correctly.
4429 */
4430 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4431 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4432 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4433 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4434 map = alloc_remap(pgdat->node_id, size);
4435 if (!map)
8f389a99 4436 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4437 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4438 }
12d810c1 4439#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4440 /*
4441 * With no DISCONTIG, the global mem_map is just set as node 0's
4442 */
c713216d 4443 if (pgdat == NODE_DATA(0)) {
1da177e4 4444 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4445#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4446 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4447 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4448#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4449 }
1da177e4 4450#endif
d41dee36 4451#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4452}
4453
9109fb7b
JW
4454void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4455 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4456{
9109fb7b
JW
4457 pg_data_t *pgdat = NODE_DATA(nid);
4458
1da177e4
LT
4459 pgdat->node_id = nid;
4460 pgdat->node_start_pfn = node_start_pfn;
c713216d 4461 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4462
4463 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4464#ifdef CONFIG_FLAT_NODE_MEM_MAP
4465 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4466 nid, (unsigned long)pgdat,
4467 (unsigned long)pgdat->node_mem_map);
4468#endif
1da177e4
LT
4469
4470 free_area_init_core(pgdat, zones_size, zholes_size);
4471}
4472
0ee332c1 4473#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4474
4475#if MAX_NUMNODES > 1
4476/*
4477 * Figure out the number of possible node ids.
4478 */
4479static void __init setup_nr_node_ids(void)
4480{
4481 unsigned int node;
4482 unsigned int highest = 0;
4483
4484 for_each_node_mask(node, node_possible_map)
4485 highest = node;
4486 nr_node_ids = highest + 1;
4487}
4488#else
4489static inline void setup_nr_node_ids(void)
4490{
4491}
4492#endif
4493
1e01979c
TH
4494/**
4495 * node_map_pfn_alignment - determine the maximum internode alignment
4496 *
4497 * This function should be called after node map is populated and sorted.
4498 * It calculates the maximum power of two alignment which can distinguish
4499 * all the nodes.
4500 *
4501 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4502 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4503 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4504 * shifted, 1GiB is enough and this function will indicate so.
4505 *
4506 * This is used to test whether pfn -> nid mapping of the chosen memory
4507 * model has fine enough granularity to avoid incorrect mapping for the
4508 * populated node map.
4509 *
4510 * Returns the determined alignment in pfn's. 0 if there is no alignment
4511 * requirement (single node).
4512 */
4513unsigned long __init node_map_pfn_alignment(void)
4514{
4515 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4516 unsigned long start, end, mask;
1e01979c 4517 int last_nid = -1;
c13291a5 4518 int i, nid;
1e01979c 4519
c13291a5 4520 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4521 if (!start || last_nid < 0 || last_nid == nid) {
4522 last_nid = nid;
4523 last_end = end;
4524 continue;
4525 }
4526
4527 /*
4528 * Start with a mask granular enough to pin-point to the
4529 * start pfn and tick off bits one-by-one until it becomes
4530 * too coarse to separate the current node from the last.
4531 */
4532 mask = ~((1 << __ffs(start)) - 1);
4533 while (mask && last_end <= (start & (mask << 1)))
4534 mask <<= 1;
4535
4536 /* accumulate all internode masks */
4537 accl_mask |= mask;
4538 }
4539
4540 /* convert mask to number of pages */
4541 return ~accl_mask + 1;
4542}
4543
a6af2bc3 4544/* Find the lowest pfn for a node */
b69a7288 4545static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4546{
a6af2bc3 4547 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4548 unsigned long start_pfn;
4549 int i;
1abbfb41 4550
c13291a5
TH
4551 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4552 min_pfn = min(min_pfn, start_pfn);
c713216d 4553
a6af2bc3
MG
4554 if (min_pfn == ULONG_MAX) {
4555 printk(KERN_WARNING
2bc0d261 4556 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4557 return 0;
4558 }
4559
4560 return min_pfn;
c713216d
MG
4561}
4562
4563/**
4564 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4565 *
4566 * It returns the minimum PFN based on information provided via
88ca3b94 4567 * add_active_range().
c713216d
MG
4568 */
4569unsigned long __init find_min_pfn_with_active_regions(void)
4570{
4571 return find_min_pfn_for_node(MAX_NUMNODES);
4572}
4573
37b07e41
LS
4574/*
4575 * early_calculate_totalpages()
4576 * Sum pages in active regions for movable zone.
4577 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4578 */
484f51f8 4579static unsigned long __init early_calculate_totalpages(void)
7e63efef 4580{
7e63efef 4581 unsigned long totalpages = 0;
c13291a5
TH
4582 unsigned long start_pfn, end_pfn;
4583 int i, nid;
4584
4585 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4586 unsigned long pages = end_pfn - start_pfn;
7e63efef 4587
37b07e41
LS
4588 totalpages += pages;
4589 if (pages)
c13291a5 4590 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4591 }
4592 return totalpages;
7e63efef
MG
4593}
4594
2a1e274a
MG
4595/*
4596 * Find the PFN the Movable zone begins in each node. Kernel memory
4597 * is spread evenly between nodes as long as the nodes have enough
4598 * memory. When they don't, some nodes will have more kernelcore than
4599 * others
4600 */
b224ef85 4601static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4602{
4603 int i, nid;
4604 unsigned long usable_startpfn;
4605 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4606 /* save the state before borrow the nodemask */
4607 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4608 unsigned long totalpages = early_calculate_totalpages();
4609 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4610
7e63efef
MG
4611 /*
4612 * If movablecore was specified, calculate what size of
4613 * kernelcore that corresponds so that memory usable for
4614 * any allocation type is evenly spread. If both kernelcore
4615 * and movablecore are specified, then the value of kernelcore
4616 * will be used for required_kernelcore if it's greater than
4617 * what movablecore would have allowed.
4618 */
4619 if (required_movablecore) {
7e63efef
MG
4620 unsigned long corepages;
4621
4622 /*
4623 * Round-up so that ZONE_MOVABLE is at least as large as what
4624 * was requested by the user
4625 */
4626 required_movablecore =
4627 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4628 corepages = totalpages - required_movablecore;
4629
4630 required_kernelcore = max(required_kernelcore, corepages);
4631 }
4632
2a1e274a
MG
4633 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4634 if (!required_kernelcore)
66918dcd 4635 goto out;
2a1e274a
MG
4636
4637 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4638 find_usable_zone_for_movable();
4639 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4640
4641restart:
4642 /* Spread kernelcore memory as evenly as possible throughout nodes */
4643 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4644 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4645 unsigned long start_pfn, end_pfn;
4646
2a1e274a
MG
4647 /*
4648 * Recalculate kernelcore_node if the division per node
4649 * now exceeds what is necessary to satisfy the requested
4650 * amount of memory for the kernel
4651 */
4652 if (required_kernelcore < kernelcore_node)
4653 kernelcore_node = required_kernelcore / usable_nodes;
4654
4655 /*
4656 * As the map is walked, we track how much memory is usable
4657 * by the kernel using kernelcore_remaining. When it is
4658 * 0, the rest of the node is usable by ZONE_MOVABLE
4659 */
4660 kernelcore_remaining = kernelcore_node;
4661
4662 /* Go through each range of PFNs within this node */
c13291a5 4663 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4664 unsigned long size_pages;
4665
c13291a5 4666 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4667 if (start_pfn >= end_pfn)
4668 continue;
4669
4670 /* Account for what is only usable for kernelcore */
4671 if (start_pfn < usable_startpfn) {
4672 unsigned long kernel_pages;
4673 kernel_pages = min(end_pfn, usable_startpfn)
4674 - start_pfn;
4675
4676 kernelcore_remaining -= min(kernel_pages,
4677 kernelcore_remaining);
4678 required_kernelcore -= min(kernel_pages,
4679 required_kernelcore);
4680
4681 /* Continue if range is now fully accounted */
4682 if (end_pfn <= usable_startpfn) {
4683
4684 /*
4685 * Push zone_movable_pfn to the end so
4686 * that if we have to rebalance
4687 * kernelcore across nodes, we will
4688 * not double account here
4689 */
4690 zone_movable_pfn[nid] = end_pfn;
4691 continue;
4692 }
4693 start_pfn = usable_startpfn;
4694 }
4695
4696 /*
4697 * The usable PFN range for ZONE_MOVABLE is from
4698 * start_pfn->end_pfn. Calculate size_pages as the
4699 * number of pages used as kernelcore
4700 */
4701 size_pages = end_pfn - start_pfn;
4702 if (size_pages > kernelcore_remaining)
4703 size_pages = kernelcore_remaining;
4704 zone_movable_pfn[nid] = start_pfn + size_pages;
4705
4706 /*
4707 * Some kernelcore has been met, update counts and
4708 * break if the kernelcore for this node has been
4709 * satisified
4710 */
4711 required_kernelcore -= min(required_kernelcore,
4712 size_pages);
4713 kernelcore_remaining -= size_pages;
4714 if (!kernelcore_remaining)
4715 break;
4716 }
4717 }
4718
4719 /*
4720 * If there is still required_kernelcore, we do another pass with one
4721 * less node in the count. This will push zone_movable_pfn[nid] further
4722 * along on the nodes that still have memory until kernelcore is
4723 * satisified
4724 */
4725 usable_nodes--;
4726 if (usable_nodes && required_kernelcore > usable_nodes)
4727 goto restart;
4728
4729 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4730 for (nid = 0; nid < MAX_NUMNODES; nid++)
4731 zone_movable_pfn[nid] =
4732 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4733
4734out:
4735 /* restore the node_state */
4736 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4737}
4738
37b07e41 4739/* Any regular memory on that node ? */
4ed7e022 4740static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4741{
4742#ifdef CONFIG_HIGHMEM
4743 enum zone_type zone_type;
4744
4745 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4746 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4747 if (zone->present_pages) {
37b07e41 4748 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4749 break;
4750 }
37b07e41
LS
4751 }
4752#endif
4753}
4754
c713216d
MG
4755/**
4756 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4757 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4758 *
4759 * This will call free_area_init_node() for each active node in the system.
4760 * Using the page ranges provided by add_active_range(), the size of each
4761 * zone in each node and their holes is calculated. If the maximum PFN
4762 * between two adjacent zones match, it is assumed that the zone is empty.
4763 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4764 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4765 * starts where the previous one ended. For example, ZONE_DMA32 starts
4766 * at arch_max_dma_pfn.
4767 */
4768void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4769{
c13291a5
TH
4770 unsigned long start_pfn, end_pfn;
4771 int i, nid;
a6af2bc3 4772
c713216d
MG
4773 /* Record where the zone boundaries are */
4774 memset(arch_zone_lowest_possible_pfn, 0,
4775 sizeof(arch_zone_lowest_possible_pfn));
4776 memset(arch_zone_highest_possible_pfn, 0,
4777 sizeof(arch_zone_highest_possible_pfn));
4778 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4779 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4780 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4781 if (i == ZONE_MOVABLE)
4782 continue;
c713216d
MG
4783 arch_zone_lowest_possible_pfn[i] =
4784 arch_zone_highest_possible_pfn[i-1];
4785 arch_zone_highest_possible_pfn[i] =
4786 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4787 }
2a1e274a
MG
4788 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4789 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4790
4791 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4792 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4793 find_zone_movable_pfns_for_nodes();
c713216d 4794
c713216d 4795 /* Print out the zone ranges */
a62e2f4f 4796 printk("Zone ranges:\n");
2a1e274a
MG
4797 for (i = 0; i < MAX_NR_ZONES; i++) {
4798 if (i == ZONE_MOVABLE)
4799 continue;
155cbfc8 4800 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4801 if (arch_zone_lowest_possible_pfn[i] ==
4802 arch_zone_highest_possible_pfn[i])
155cbfc8 4803 printk(KERN_CONT "empty\n");
72f0ba02 4804 else
a62e2f4f
BH
4805 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4806 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4807 (arch_zone_highest_possible_pfn[i]
4808 << PAGE_SHIFT) - 1);
2a1e274a
MG
4809 }
4810
4811 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4812 printk("Movable zone start for each node\n");
2a1e274a
MG
4813 for (i = 0; i < MAX_NUMNODES; i++) {
4814 if (zone_movable_pfn[i])
a62e2f4f
BH
4815 printk(" Node %d: %#010lx\n", i,
4816 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4817 }
c713216d
MG
4818
4819 /* Print out the early_node_map[] */
a62e2f4f 4820 printk("Early memory node ranges\n");
c13291a5 4821 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4822 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4823 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4824
4825 /* Initialise every node */
708614e6 4826 mminit_verify_pageflags_layout();
8ef82866 4827 setup_nr_node_ids();
c713216d
MG
4828 for_each_online_node(nid) {
4829 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4830 free_area_init_node(nid, NULL,
c713216d 4831 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4832
4833 /* Any memory on that node */
4834 if (pgdat->node_present_pages)
4835 node_set_state(nid, N_HIGH_MEMORY);
4836 check_for_regular_memory(pgdat);
c713216d
MG
4837 }
4838}
2a1e274a 4839
7e63efef 4840static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4841{
4842 unsigned long long coremem;
4843 if (!p)
4844 return -EINVAL;
4845
4846 coremem = memparse(p, &p);
7e63efef 4847 *core = coremem >> PAGE_SHIFT;
2a1e274a 4848
7e63efef 4849 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4850 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4851
4852 return 0;
4853}
ed7ed365 4854
7e63efef
MG
4855/*
4856 * kernelcore=size sets the amount of memory for use for allocations that
4857 * cannot be reclaimed or migrated.
4858 */
4859static int __init cmdline_parse_kernelcore(char *p)
4860{
4861 return cmdline_parse_core(p, &required_kernelcore);
4862}
4863
4864/*
4865 * movablecore=size sets the amount of memory for use for allocations that
4866 * can be reclaimed or migrated.
4867 */
4868static int __init cmdline_parse_movablecore(char *p)
4869{
4870 return cmdline_parse_core(p, &required_movablecore);
4871}
4872
ed7ed365 4873early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4874early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4875
0ee332c1 4876#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4877
0e0b864e 4878/**
88ca3b94
RD
4879 * set_dma_reserve - set the specified number of pages reserved in the first zone
4880 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4881 *
4882 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4883 * In the DMA zone, a significant percentage may be consumed by kernel image
4884 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4885 * function may optionally be used to account for unfreeable pages in the
4886 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4887 * smaller per-cpu batchsize.
0e0b864e
MG
4888 */
4889void __init set_dma_reserve(unsigned long new_dma_reserve)
4890{
4891 dma_reserve = new_dma_reserve;
4892}
4893
1da177e4
LT
4894void __init free_area_init(unsigned long *zones_size)
4895{
9109fb7b 4896 free_area_init_node(0, zones_size,
1da177e4
LT
4897 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4898}
1da177e4 4899
1da177e4
LT
4900static int page_alloc_cpu_notify(struct notifier_block *self,
4901 unsigned long action, void *hcpu)
4902{
4903 int cpu = (unsigned long)hcpu;
1da177e4 4904
8bb78442 4905 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4906 lru_add_drain_cpu(cpu);
9f8f2172
CL
4907 drain_pages(cpu);
4908
4909 /*
4910 * Spill the event counters of the dead processor
4911 * into the current processors event counters.
4912 * This artificially elevates the count of the current
4913 * processor.
4914 */
f8891e5e 4915 vm_events_fold_cpu(cpu);
9f8f2172
CL
4916
4917 /*
4918 * Zero the differential counters of the dead processor
4919 * so that the vm statistics are consistent.
4920 *
4921 * This is only okay since the processor is dead and cannot
4922 * race with what we are doing.
4923 */
2244b95a 4924 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4925 }
4926 return NOTIFY_OK;
4927}
1da177e4
LT
4928
4929void __init page_alloc_init(void)
4930{
4931 hotcpu_notifier(page_alloc_cpu_notify, 0);
4932}
4933
cb45b0e9
HA
4934/*
4935 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4936 * or min_free_kbytes changes.
4937 */
4938static void calculate_totalreserve_pages(void)
4939{
4940 struct pglist_data *pgdat;
4941 unsigned long reserve_pages = 0;
2f6726e5 4942 enum zone_type i, j;
cb45b0e9
HA
4943
4944 for_each_online_pgdat(pgdat) {
4945 for (i = 0; i < MAX_NR_ZONES; i++) {
4946 struct zone *zone = pgdat->node_zones + i;
4947 unsigned long max = 0;
4948
4949 /* Find valid and maximum lowmem_reserve in the zone */
4950 for (j = i; j < MAX_NR_ZONES; j++) {
4951 if (zone->lowmem_reserve[j] > max)
4952 max = zone->lowmem_reserve[j];
4953 }
4954
41858966
MG
4955 /* we treat the high watermark as reserved pages. */
4956 max += high_wmark_pages(zone);
cb45b0e9
HA
4957
4958 if (max > zone->present_pages)
4959 max = zone->present_pages;
4960 reserve_pages += max;
ab8fabd4
JW
4961 /*
4962 * Lowmem reserves are not available to
4963 * GFP_HIGHUSER page cache allocations and
4964 * kswapd tries to balance zones to their high
4965 * watermark. As a result, neither should be
4966 * regarded as dirtyable memory, to prevent a
4967 * situation where reclaim has to clean pages
4968 * in order to balance the zones.
4969 */
4970 zone->dirty_balance_reserve = max;
cb45b0e9
HA
4971 }
4972 }
ab8fabd4 4973 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
4974 totalreserve_pages = reserve_pages;
4975}
4976
1da177e4
LT
4977/*
4978 * setup_per_zone_lowmem_reserve - called whenever
4979 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4980 * has a correct pages reserved value, so an adequate number of
4981 * pages are left in the zone after a successful __alloc_pages().
4982 */
4983static void setup_per_zone_lowmem_reserve(void)
4984{
4985 struct pglist_data *pgdat;
2f6726e5 4986 enum zone_type j, idx;
1da177e4 4987
ec936fc5 4988 for_each_online_pgdat(pgdat) {
1da177e4
LT
4989 for (j = 0; j < MAX_NR_ZONES; j++) {
4990 struct zone *zone = pgdat->node_zones + j;
4991 unsigned long present_pages = zone->present_pages;
4992
4993 zone->lowmem_reserve[j] = 0;
4994
2f6726e5
CL
4995 idx = j;
4996 while (idx) {
1da177e4
LT
4997 struct zone *lower_zone;
4998
2f6726e5
CL
4999 idx--;
5000
1da177e4
LT
5001 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5002 sysctl_lowmem_reserve_ratio[idx] = 1;
5003
5004 lower_zone = pgdat->node_zones + idx;
5005 lower_zone->lowmem_reserve[j] = present_pages /
5006 sysctl_lowmem_reserve_ratio[idx];
5007 present_pages += lower_zone->present_pages;
5008 }
5009 }
5010 }
cb45b0e9
HA
5011
5012 /* update totalreserve_pages */
5013 calculate_totalreserve_pages();
1da177e4
LT
5014}
5015
cfd3da1e 5016static void __setup_per_zone_wmarks(void)
1da177e4
LT
5017{
5018 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5019 unsigned long lowmem_pages = 0;
5020 struct zone *zone;
5021 unsigned long flags;
5022
5023 /* Calculate total number of !ZONE_HIGHMEM pages */
5024 for_each_zone(zone) {
5025 if (!is_highmem(zone))
5026 lowmem_pages += zone->present_pages;
5027 }
5028
5029 for_each_zone(zone) {
ac924c60
AM
5030 u64 tmp;
5031
1125b4e3 5032 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5033 tmp = (u64)pages_min * zone->present_pages;
5034 do_div(tmp, lowmem_pages);
1da177e4
LT
5035 if (is_highmem(zone)) {
5036 /*
669ed175
NP
5037 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5038 * need highmem pages, so cap pages_min to a small
5039 * value here.
5040 *
41858966 5041 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5042 * deltas controls asynch page reclaim, and so should
5043 * not be capped for highmem.
1da177e4
LT
5044 */
5045 int min_pages;
5046
5047 min_pages = zone->present_pages / 1024;
5048 if (min_pages < SWAP_CLUSTER_MAX)
5049 min_pages = SWAP_CLUSTER_MAX;
5050 if (min_pages > 128)
5051 min_pages = 128;
41858966 5052 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5053 } else {
669ed175
NP
5054 /*
5055 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5056 * proportionate to the zone's size.
5057 */
41858966 5058 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5059 }
5060
41858966
MG
5061 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5062 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5063
5064 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5065 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5066 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5067
56fd56b8 5068 setup_zone_migrate_reserve(zone);
1125b4e3 5069 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5070 }
cb45b0e9
HA
5071
5072 /* update totalreserve_pages */
5073 calculate_totalreserve_pages();
1da177e4
LT
5074}
5075
cfd3da1e
MG
5076/**
5077 * setup_per_zone_wmarks - called when min_free_kbytes changes
5078 * or when memory is hot-{added|removed}
5079 *
5080 * Ensures that the watermark[min,low,high] values for each zone are set
5081 * correctly with respect to min_free_kbytes.
5082 */
5083void setup_per_zone_wmarks(void)
5084{
5085 mutex_lock(&zonelists_mutex);
5086 __setup_per_zone_wmarks();
5087 mutex_unlock(&zonelists_mutex);
5088}
5089
55a4462a 5090/*
556adecb
RR
5091 * The inactive anon list should be small enough that the VM never has to
5092 * do too much work, but large enough that each inactive page has a chance
5093 * to be referenced again before it is swapped out.
5094 *
5095 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5096 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5097 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5098 * the anonymous pages are kept on the inactive list.
5099 *
5100 * total target max
5101 * memory ratio inactive anon
5102 * -------------------------------------
5103 * 10MB 1 5MB
5104 * 100MB 1 50MB
5105 * 1GB 3 250MB
5106 * 10GB 10 0.9GB
5107 * 100GB 31 3GB
5108 * 1TB 101 10GB
5109 * 10TB 320 32GB
5110 */
1b79acc9 5111static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5112{
96cb4df5 5113 unsigned int gb, ratio;
556adecb 5114
96cb4df5
MK
5115 /* Zone size in gigabytes */
5116 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5117 if (gb)
556adecb 5118 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5119 else
5120 ratio = 1;
556adecb 5121
96cb4df5
MK
5122 zone->inactive_ratio = ratio;
5123}
556adecb 5124
839a4fcc 5125static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5126{
5127 struct zone *zone;
5128
5129 for_each_zone(zone)
5130 calculate_zone_inactive_ratio(zone);
556adecb
RR
5131}
5132
1da177e4
LT
5133/*
5134 * Initialise min_free_kbytes.
5135 *
5136 * For small machines we want it small (128k min). For large machines
5137 * we want it large (64MB max). But it is not linear, because network
5138 * bandwidth does not increase linearly with machine size. We use
5139 *
5140 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5141 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5142 *
5143 * which yields
5144 *
5145 * 16MB: 512k
5146 * 32MB: 724k
5147 * 64MB: 1024k
5148 * 128MB: 1448k
5149 * 256MB: 2048k
5150 * 512MB: 2896k
5151 * 1024MB: 4096k
5152 * 2048MB: 5792k
5153 * 4096MB: 8192k
5154 * 8192MB: 11584k
5155 * 16384MB: 16384k
5156 */
1b79acc9 5157int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5158{
5159 unsigned long lowmem_kbytes;
5160
5161 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5162
5163 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5164 if (min_free_kbytes < 128)
5165 min_free_kbytes = 128;
5166 if (min_free_kbytes > 65536)
5167 min_free_kbytes = 65536;
bc75d33f 5168 setup_per_zone_wmarks();
a6cccdc3 5169 refresh_zone_stat_thresholds();
1da177e4 5170 setup_per_zone_lowmem_reserve();
556adecb 5171 setup_per_zone_inactive_ratio();
1da177e4
LT
5172 return 0;
5173}
bc75d33f 5174module_init(init_per_zone_wmark_min)
1da177e4
LT
5175
5176/*
5177 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5178 * that we can call two helper functions whenever min_free_kbytes
5179 * changes.
5180 */
5181int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5182 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5183{
8d65af78 5184 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5185 if (write)
bc75d33f 5186 setup_per_zone_wmarks();
1da177e4
LT
5187 return 0;
5188}
5189
9614634f
CL
5190#ifdef CONFIG_NUMA
5191int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5192 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5193{
5194 struct zone *zone;
5195 int rc;
5196
8d65af78 5197 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5198 if (rc)
5199 return rc;
5200
5201 for_each_zone(zone)
8417bba4 5202 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5203 sysctl_min_unmapped_ratio) / 100;
5204 return 0;
5205}
0ff38490
CL
5206
5207int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5208 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5209{
5210 struct zone *zone;
5211 int rc;
5212
8d65af78 5213 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5214 if (rc)
5215 return rc;
5216
5217 for_each_zone(zone)
5218 zone->min_slab_pages = (zone->present_pages *
5219 sysctl_min_slab_ratio) / 100;
5220 return 0;
5221}
9614634f
CL
5222#endif
5223
1da177e4
LT
5224/*
5225 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5226 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5227 * whenever sysctl_lowmem_reserve_ratio changes.
5228 *
5229 * The reserve ratio obviously has absolutely no relation with the
41858966 5230 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5231 * if in function of the boot time zone sizes.
5232 */
5233int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5234 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5235{
8d65af78 5236 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5237 setup_per_zone_lowmem_reserve();
5238 return 0;
5239}
5240
8ad4b1fb
RS
5241/*
5242 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5243 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5244 * can have before it gets flushed back to buddy allocator.
5245 */
5246
5247int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5248 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5249{
5250 struct zone *zone;
5251 unsigned int cpu;
5252 int ret;
5253
8d65af78 5254 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5255 if (!write || (ret < 0))
8ad4b1fb 5256 return ret;
364df0eb 5257 for_each_populated_zone(zone) {
99dcc3e5 5258 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5259 unsigned long high;
5260 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5261 setup_pagelist_highmark(
5262 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5263 }
5264 }
5265 return 0;
5266}
5267
f034b5d4 5268int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5269
5270#ifdef CONFIG_NUMA
5271static int __init set_hashdist(char *str)
5272{
5273 if (!str)
5274 return 0;
5275 hashdist = simple_strtoul(str, &str, 0);
5276 return 1;
5277}
5278__setup("hashdist=", set_hashdist);
5279#endif
5280
5281/*
5282 * allocate a large system hash table from bootmem
5283 * - it is assumed that the hash table must contain an exact power-of-2
5284 * quantity of entries
5285 * - limit is the number of hash buckets, not the total allocation size
5286 */
5287void *__init alloc_large_system_hash(const char *tablename,
5288 unsigned long bucketsize,
5289 unsigned long numentries,
5290 int scale,
5291 int flags,
5292 unsigned int *_hash_shift,
5293 unsigned int *_hash_mask,
31fe62b9
TB
5294 unsigned long low_limit,
5295 unsigned long high_limit)
1da177e4 5296{
31fe62b9 5297 unsigned long long max = high_limit;
1da177e4
LT
5298 unsigned long log2qty, size;
5299 void *table = NULL;
5300
5301 /* allow the kernel cmdline to have a say */
5302 if (!numentries) {
5303 /* round applicable memory size up to nearest megabyte */
04903664 5304 numentries = nr_kernel_pages;
1da177e4
LT
5305 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5306 numentries >>= 20 - PAGE_SHIFT;
5307 numentries <<= 20 - PAGE_SHIFT;
5308
5309 /* limit to 1 bucket per 2^scale bytes of low memory */
5310 if (scale > PAGE_SHIFT)
5311 numentries >>= (scale - PAGE_SHIFT);
5312 else
5313 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5314
5315 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5316 if (unlikely(flags & HASH_SMALL)) {
5317 /* Makes no sense without HASH_EARLY */
5318 WARN_ON(!(flags & HASH_EARLY));
5319 if (!(numentries >> *_hash_shift)) {
5320 numentries = 1UL << *_hash_shift;
5321 BUG_ON(!numentries);
5322 }
5323 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5324 numentries = PAGE_SIZE / bucketsize;
1da177e4 5325 }
6e692ed3 5326 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5327
5328 /* limit allocation size to 1/16 total memory by default */
5329 if (max == 0) {
5330 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5331 do_div(max, bucketsize);
5332 }
074b8517 5333 max = min(max, 0x80000000ULL);
1da177e4 5334
31fe62b9
TB
5335 if (numentries < low_limit)
5336 numentries = low_limit;
1da177e4
LT
5337 if (numentries > max)
5338 numentries = max;
5339
f0d1b0b3 5340 log2qty = ilog2(numentries);
1da177e4
LT
5341
5342 do {
5343 size = bucketsize << log2qty;
5344 if (flags & HASH_EARLY)
74768ed8 5345 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5346 else if (hashdist)
5347 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5348 else {
1037b83b
ED
5349 /*
5350 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5351 * some pages at the end of hash table which
5352 * alloc_pages_exact() automatically does
1037b83b 5353 */
264ef8a9 5354 if (get_order(size) < MAX_ORDER) {
a1dd268c 5355 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5356 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5357 }
1da177e4
LT
5358 }
5359 } while (!table && size > PAGE_SIZE && --log2qty);
5360
5361 if (!table)
5362 panic("Failed to allocate %s hash table\n", tablename);
5363
f241e660 5364 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5365 tablename,
f241e660 5366 (1UL << log2qty),
f0d1b0b3 5367 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5368 size);
5369
5370 if (_hash_shift)
5371 *_hash_shift = log2qty;
5372 if (_hash_mask)
5373 *_hash_mask = (1 << log2qty) - 1;
5374
5375 return table;
5376}
a117e66e 5377
835c134e
MG
5378/* Return a pointer to the bitmap storing bits affecting a block of pages */
5379static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5380 unsigned long pfn)
5381{
5382#ifdef CONFIG_SPARSEMEM
5383 return __pfn_to_section(pfn)->pageblock_flags;
5384#else
5385 return zone->pageblock_flags;
5386#endif /* CONFIG_SPARSEMEM */
5387}
5388
5389static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5390{
5391#ifdef CONFIG_SPARSEMEM
5392 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5393 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5394#else
5395 pfn = pfn - zone->zone_start_pfn;
d9c23400 5396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5397#endif /* CONFIG_SPARSEMEM */
5398}
5399
5400/**
d9c23400 5401 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5402 * @page: The page within the block of interest
5403 * @start_bitidx: The first bit of interest to retrieve
5404 * @end_bitidx: The last bit of interest
5405 * returns pageblock_bits flags
5406 */
5407unsigned long get_pageblock_flags_group(struct page *page,
5408 int start_bitidx, int end_bitidx)
5409{
5410 struct zone *zone;
5411 unsigned long *bitmap;
5412 unsigned long pfn, bitidx;
5413 unsigned long flags = 0;
5414 unsigned long value = 1;
5415
5416 zone = page_zone(page);
5417 pfn = page_to_pfn(page);
5418 bitmap = get_pageblock_bitmap(zone, pfn);
5419 bitidx = pfn_to_bitidx(zone, pfn);
5420
5421 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5422 if (test_bit(bitidx + start_bitidx, bitmap))
5423 flags |= value;
6220ec78 5424
835c134e
MG
5425 return flags;
5426}
5427
5428/**
d9c23400 5429 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5430 * @page: The page within the block of interest
5431 * @start_bitidx: The first bit of interest
5432 * @end_bitidx: The last bit of interest
5433 * @flags: The flags to set
5434 */
5435void set_pageblock_flags_group(struct page *page, unsigned long flags,
5436 int start_bitidx, int end_bitidx)
5437{
5438 struct zone *zone;
5439 unsigned long *bitmap;
5440 unsigned long pfn, bitidx;
5441 unsigned long value = 1;
5442
5443 zone = page_zone(page);
5444 pfn = page_to_pfn(page);
5445 bitmap = get_pageblock_bitmap(zone, pfn);
5446 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5447 VM_BUG_ON(pfn < zone->zone_start_pfn);
5448 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5449
5450 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5451 if (flags & value)
5452 __set_bit(bitidx + start_bitidx, bitmap);
5453 else
5454 __clear_bit(bitidx + start_bitidx, bitmap);
5455}
a5d76b54
KH
5456
5457/*
80934513
MK
5458 * This function checks whether pageblock includes unmovable pages or not.
5459 * If @count is not zero, it is okay to include less @count unmovable pages
5460 *
5461 * PageLRU check wihtout isolation or lru_lock could race so that
5462 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5463 * expect this function should be exact.
a5d76b54 5464 */
ee6f509c 5465bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5466{
5467 unsigned long pfn, iter, found;
47118af0
MN
5468 int mt;
5469
49ac8255
KH
5470 /*
5471 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5472 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5473 */
5474 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5475 return false;
47118af0
MN
5476 mt = get_pageblock_migratetype(page);
5477 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5478 return false;
49ac8255
KH
5479
5480 pfn = page_to_pfn(page);
5481 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5482 unsigned long check = pfn + iter;
5483
29723fcc 5484 if (!pfn_valid_within(check))
49ac8255 5485 continue;
29723fcc 5486
49ac8255 5487 page = pfn_to_page(check);
97d255c8
MK
5488 /*
5489 * We can't use page_count without pin a page
5490 * because another CPU can free compound page.
5491 * This check already skips compound tails of THP
5492 * because their page->_count is zero at all time.
5493 */
5494 if (!atomic_read(&page->_count)) {
49ac8255
KH
5495 if (PageBuddy(page))
5496 iter += (1 << page_order(page)) - 1;
5497 continue;
5498 }
97d255c8 5499
49ac8255
KH
5500 if (!PageLRU(page))
5501 found++;
5502 /*
5503 * If there are RECLAIMABLE pages, we need to check it.
5504 * But now, memory offline itself doesn't call shrink_slab()
5505 * and it still to be fixed.
5506 */
5507 /*
5508 * If the page is not RAM, page_count()should be 0.
5509 * we don't need more check. This is an _used_ not-movable page.
5510 *
5511 * The problematic thing here is PG_reserved pages. PG_reserved
5512 * is set to both of a memory hole page and a _used_ kernel
5513 * page at boot.
5514 */
5515 if (found > count)
80934513 5516 return true;
49ac8255 5517 }
80934513 5518 return false;
49ac8255
KH
5519}
5520
5521bool is_pageblock_removable_nolock(struct page *page)
5522{
656a0706
MH
5523 struct zone *zone;
5524 unsigned long pfn;
687875fb
MH
5525
5526 /*
5527 * We have to be careful here because we are iterating over memory
5528 * sections which are not zone aware so we might end up outside of
5529 * the zone but still within the section.
656a0706
MH
5530 * We have to take care about the node as well. If the node is offline
5531 * its NODE_DATA will be NULL - see page_zone.
687875fb 5532 */
656a0706
MH
5533 if (!node_online(page_to_nid(page)))
5534 return false;
5535
5536 zone = page_zone(page);
5537 pfn = page_to_pfn(page);
5538 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5539 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5540 return false;
5541
ee6f509c 5542 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5543}
0c0e6195 5544
041d3a8c
MN
5545#ifdef CONFIG_CMA
5546
5547static unsigned long pfn_max_align_down(unsigned long pfn)
5548{
5549 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5550 pageblock_nr_pages) - 1);
5551}
5552
5553static unsigned long pfn_max_align_up(unsigned long pfn)
5554{
5555 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5556 pageblock_nr_pages));
5557}
5558
5559static struct page *
5560__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5561 int **resultp)
5562{
6a6dccba
RV
5563 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5564
5565 if (PageHighMem(page))
5566 gfp_mask |= __GFP_HIGHMEM;
5567
5568 return alloc_page(gfp_mask);
041d3a8c
MN
5569}
5570
5571/* [start, end) must belong to a single zone. */
5572static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5573{
5574 /* This function is based on compact_zone() from compaction.c. */
5575
5576 unsigned long pfn = start;
5577 unsigned int tries = 0;
5578 int ret = 0;
5579
5580 struct compact_control cc = {
5581 .nr_migratepages = 0,
5582 .order = -1,
5583 .zone = page_zone(pfn_to_page(start)),
68e3e926 5584 .sync = true,
041d3a8c
MN
5585 };
5586 INIT_LIST_HEAD(&cc.migratepages);
5587
5588 migrate_prep_local();
5589
5590 while (pfn < end || !list_empty(&cc.migratepages)) {
5591 if (fatal_signal_pending(current)) {
5592 ret = -EINTR;
5593 break;
5594 }
5595
5596 if (list_empty(&cc.migratepages)) {
5597 cc.nr_migratepages = 0;
5598 pfn = isolate_migratepages_range(cc.zone, &cc,
5599 pfn, end);
5600 if (!pfn) {
5601 ret = -EINTR;
5602 break;
5603 }
5604 tries = 0;
5605 } else if (++tries == 5) {
5606 ret = ret < 0 ? ret : -EBUSY;
5607 break;
5608 }
5609
5610 ret = migrate_pages(&cc.migratepages,
5611 __alloc_contig_migrate_alloc,
58f42fd5 5612 0, false, MIGRATE_SYNC);
041d3a8c
MN
5613 }
5614
5615 putback_lru_pages(&cc.migratepages);
5616 return ret > 0 ? 0 : ret;
5617}
5618
49f223a9
MS
5619/*
5620 * Update zone's cma pages counter used for watermark level calculation.
5621 */
5622static inline void __update_cma_watermarks(struct zone *zone, int count)
5623{
5624 unsigned long flags;
5625 spin_lock_irqsave(&zone->lock, flags);
5626 zone->min_cma_pages += count;
5627 spin_unlock_irqrestore(&zone->lock, flags);
5628 setup_per_zone_wmarks();
5629}
5630
5631/*
5632 * Trigger memory pressure bump to reclaim some pages in order to be able to
5633 * allocate 'count' pages in single page units. Does similar work as
5634 *__alloc_pages_slowpath() function.
5635 */
5636static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5637{
5638 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5639 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5640 int did_some_progress = 0;
5641 int order = 1;
5642
5643 /*
5644 * Increase level of watermarks to force kswapd do his job
5645 * to stabilise at new watermark level.
5646 */
5647 __update_cma_watermarks(zone, count);
5648
5649 /* Obey watermarks as if the page was being allocated */
5650 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5651 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5652
5653 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5654 NULL);
5655 if (!did_some_progress) {
5656 /* Exhausted what can be done so it's blamo time */
5657 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5658 }
5659 }
5660
5661 /* Restore original watermark levels. */
5662 __update_cma_watermarks(zone, -count);
5663
5664 return count;
5665}
5666
041d3a8c
MN
5667/**
5668 * alloc_contig_range() -- tries to allocate given range of pages
5669 * @start: start PFN to allocate
5670 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5671 * @migratetype: migratetype of the underlaying pageblocks (either
5672 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5673 * in range must have the same migratetype and it must
5674 * be either of the two.
041d3a8c
MN
5675 *
5676 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5677 * aligned, however it's the caller's responsibility to guarantee that
5678 * we are the only thread that changes migrate type of pageblocks the
5679 * pages fall in.
5680 *
5681 * The PFN range must belong to a single zone.
5682 *
5683 * Returns zero on success or negative error code. On success all
5684 * pages which PFN is in [start, end) are allocated for the caller and
5685 * need to be freed with free_contig_range().
5686 */
0815f3d8
MN
5687int alloc_contig_range(unsigned long start, unsigned long end,
5688 unsigned migratetype)
041d3a8c
MN
5689{
5690 struct zone *zone = page_zone(pfn_to_page(start));
5691 unsigned long outer_start, outer_end;
5692 int ret = 0, order;
5693
5694 /*
5695 * What we do here is we mark all pageblocks in range as
5696 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5697 * have different sizes, and due to the way page allocator
5698 * work, we align the range to biggest of the two pages so
5699 * that page allocator won't try to merge buddies from
5700 * different pageblocks and change MIGRATE_ISOLATE to some
5701 * other migration type.
5702 *
5703 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5704 * migrate the pages from an unaligned range (ie. pages that
5705 * we are interested in). This will put all the pages in
5706 * range back to page allocator as MIGRATE_ISOLATE.
5707 *
5708 * When this is done, we take the pages in range from page
5709 * allocator removing them from the buddy system. This way
5710 * page allocator will never consider using them.
5711 *
5712 * This lets us mark the pageblocks back as
5713 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5714 * aligned range but not in the unaligned, original range are
5715 * put back to page allocator so that buddy can use them.
5716 */
5717
5718 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5719 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5720 if (ret)
5721 goto done;
5722
5723 ret = __alloc_contig_migrate_range(start, end);
5724 if (ret)
5725 goto done;
5726
5727 /*
5728 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5729 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5730 * more, all pages in [start, end) are free in page allocator.
5731 * What we are going to do is to allocate all pages from
5732 * [start, end) (that is remove them from page allocator).
5733 *
5734 * The only problem is that pages at the beginning and at the
5735 * end of interesting range may be not aligned with pages that
5736 * page allocator holds, ie. they can be part of higher order
5737 * pages. Because of this, we reserve the bigger range and
5738 * once this is done free the pages we are not interested in.
5739 *
5740 * We don't have to hold zone->lock here because the pages are
5741 * isolated thus they won't get removed from buddy.
5742 */
5743
5744 lru_add_drain_all();
5745 drain_all_pages();
5746
5747 order = 0;
5748 outer_start = start;
5749 while (!PageBuddy(pfn_to_page(outer_start))) {
5750 if (++order >= MAX_ORDER) {
5751 ret = -EBUSY;
5752 goto done;
5753 }
5754 outer_start &= ~0UL << order;
5755 }
5756
5757 /* Make sure the range is really isolated. */
5758 if (test_pages_isolated(outer_start, end)) {
5759 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5760 outer_start, end);
5761 ret = -EBUSY;
5762 goto done;
5763 }
5764
49f223a9
MS
5765 /*
5766 * Reclaim enough pages to make sure that contiguous allocation
5767 * will not starve the system.
5768 */
5769 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5770
5771 /* Grab isolated pages from freelists. */
041d3a8c
MN
5772 outer_end = isolate_freepages_range(outer_start, end);
5773 if (!outer_end) {
5774 ret = -EBUSY;
5775 goto done;
5776 }
5777
5778 /* Free head and tail (if any) */
5779 if (start != outer_start)
5780 free_contig_range(outer_start, start - outer_start);
5781 if (end != outer_end)
5782 free_contig_range(end, outer_end - end);
5783
5784done:
5785 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5786 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5787 return ret;
5788}
5789
5790void free_contig_range(unsigned long pfn, unsigned nr_pages)
5791{
5792 for (; nr_pages--; ++pfn)
5793 __free_page(pfn_to_page(pfn));
5794}
5795#endif
5796
4ed7e022
JL
5797#ifdef CONFIG_MEMORY_HOTPLUG
5798static int __meminit __zone_pcp_update(void *data)
5799{
5800 struct zone *zone = data;
5801 int cpu;
5802 unsigned long batch = zone_batchsize(zone), flags;
5803
5804 for_each_possible_cpu(cpu) {
5805 struct per_cpu_pageset *pset;
5806 struct per_cpu_pages *pcp;
5807
5808 pset = per_cpu_ptr(zone->pageset, cpu);
5809 pcp = &pset->pcp;
5810
5811 local_irq_save(flags);
5812 if (pcp->count > 0)
5813 free_pcppages_bulk(zone, pcp->count, pcp);
5814 setup_pageset(pset, batch);
5815 local_irq_restore(flags);
5816 }
5817 return 0;
5818}
5819
5820void __meminit zone_pcp_update(struct zone *zone)
5821{
5822 stop_machine(__zone_pcp_update, zone, NULL);
5823}
5824#endif
5825
0c0e6195 5826#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5827void zone_pcp_reset(struct zone *zone)
5828{
5829 unsigned long flags;
5830
5831 /* avoid races with drain_pages() */
5832 local_irq_save(flags);
5833 if (zone->pageset != &boot_pageset) {
5834 free_percpu(zone->pageset);
5835 zone->pageset = &boot_pageset;
5836 }
5837 local_irq_restore(flags);
5838}
5839
0c0e6195
KH
5840/*
5841 * All pages in the range must be isolated before calling this.
5842 */
5843void
5844__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5845{
5846 struct page *page;
5847 struct zone *zone;
5848 int order, i;
5849 unsigned long pfn;
5850 unsigned long flags;
5851 /* find the first valid pfn */
5852 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5853 if (pfn_valid(pfn))
5854 break;
5855 if (pfn == end_pfn)
5856 return;
5857 zone = page_zone(pfn_to_page(pfn));
5858 spin_lock_irqsave(&zone->lock, flags);
5859 pfn = start_pfn;
5860 while (pfn < end_pfn) {
5861 if (!pfn_valid(pfn)) {
5862 pfn++;
5863 continue;
5864 }
5865 page = pfn_to_page(pfn);
5866 BUG_ON(page_count(page));
5867 BUG_ON(!PageBuddy(page));
5868 order = page_order(page);
5869#ifdef CONFIG_DEBUG_VM
5870 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5871 pfn, 1 << order, end_pfn);
5872#endif
5873 list_del(&page->lru);
5874 rmv_page_order(page);
5875 zone->free_area[order].nr_free--;
5876 __mod_zone_page_state(zone, NR_FREE_PAGES,
5877 - (1UL << order));
5878 for (i = 0; i < (1 << order); i++)
5879 SetPageReserved((page+i));
5880 pfn += (1 << order);
5881 }
5882 spin_unlock_irqrestore(&zone->lock, flags);
5883}
5884#endif
8d22ba1b
WF
5885
5886#ifdef CONFIG_MEMORY_FAILURE
5887bool is_free_buddy_page(struct page *page)
5888{
5889 struct zone *zone = page_zone(page);
5890 unsigned long pfn = page_to_pfn(page);
5891 unsigned long flags;
5892 int order;
5893
5894 spin_lock_irqsave(&zone->lock, flags);
5895 for (order = 0; order < MAX_ORDER; order++) {
5896 struct page *page_head = page - (pfn & ((1 << order) - 1));
5897
5898 if (PageBuddy(page_head) && page_order(page_head) >= order)
5899 break;
5900 }
5901 spin_unlock_irqrestore(&zone->lock, flags);
5902
5903 return order < MAX_ORDER;
5904}
5905#endif
718a3821 5906
51300cef 5907static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
5908 {1UL << PG_locked, "locked" },
5909 {1UL << PG_error, "error" },
5910 {1UL << PG_referenced, "referenced" },
5911 {1UL << PG_uptodate, "uptodate" },
5912 {1UL << PG_dirty, "dirty" },
5913 {1UL << PG_lru, "lru" },
5914 {1UL << PG_active, "active" },
5915 {1UL << PG_slab, "slab" },
5916 {1UL << PG_owner_priv_1, "owner_priv_1" },
5917 {1UL << PG_arch_1, "arch_1" },
5918 {1UL << PG_reserved, "reserved" },
5919 {1UL << PG_private, "private" },
5920 {1UL << PG_private_2, "private_2" },
5921 {1UL << PG_writeback, "writeback" },
5922#ifdef CONFIG_PAGEFLAGS_EXTENDED
5923 {1UL << PG_head, "head" },
5924 {1UL << PG_tail, "tail" },
5925#else
5926 {1UL << PG_compound, "compound" },
5927#endif
5928 {1UL << PG_swapcache, "swapcache" },
5929 {1UL << PG_mappedtodisk, "mappedtodisk" },
5930 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5931 {1UL << PG_swapbacked, "swapbacked" },
5932 {1UL << PG_unevictable, "unevictable" },
5933#ifdef CONFIG_MMU
5934 {1UL << PG_mlocked, "mlocked" },
5935#endif
5936#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5937 {1UL << PG_uncached, "uncached" },
5938#endif
5939#ifdef CONFIG_MEMORY_FAILURE
5940 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
5941#endif
5942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 {1UL << PG_compound_lock, "compound_lock" },
718a3821 5944#endif
718a3821
WF
5945};
5946
5947static void dump_page_flags(unsigned long flags)
5948{
5949 const char *delim = "";
5950 unsigned long mask;
5951 int i;
5952
51300cef 5953 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 5954
718a3821
WF
5955 printk(KERN_ALERT "page flags: %#lx(", flags);
5956
5957 /* remove zone id */
5958 flags &= (1UL << NR_PAGEFLAGS) - 1;
5959
51300cef 5960 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
5961
5962 mask = pageflag_names[i].mask;
5963 if ((flags & mask) != mask)
5964 continue;
5965
5966 flags &= ~mask;
5967 printk("%s%s", delim, pageflag_names[i].name);
5968 delim = "|";
5969 }
5970
5971 /* check for left over flags */
5972 if (flags)
5973 printk("%s%#lx", delim, flags);
5974
5975 printk(")\n");
5976}
5977
5978void dump_page(struct page *page)
5979{
5980 printk(KERN_ALERT
5981 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5982 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5983 page->mapping, page->index);
5984 dump_page_flags(page->flags);
f212ad7c 5985 mem_cgroup_print_bad_page(page);
718a3821 5986}
This page took 1.509029 seconds and 5 git commands to generate.