lib: percpu_counter_init_irq
[deliverable/linux.git] / mm / readahead.c
CommitLineData
1da177e4
LT
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
8bde37f0 16#include <linux/task_io_accounting_ops.h>
1da177e4 17#include <linux/pagevec.h>
f5ff8422 18#include <linux/pagemap.h>
1da177e4
LT
19
20void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
21{
22}
23EXPORT_SYMBOL(default_unplug_io_fn);
24
25struct backing_dev_info default_backing_dev_info = {
535443f5 26 .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
1da177e4
LT
27 .state = 0,
28 .capabilities = BDI_CAP_MAP_COPY,
29 .unplug_io_fn = default_unplug_io_fn,
30};
31EXPORT_SYMBOL_GPL(default_backing_dev_info);
32
33/*
34 * Initialise a struct file's readahead state. Assumes that the caller has
35 * memset *ra to zero.
36 */
37void
38file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
39{
40 ra->ra_pages = mapping->backing_dev_info->ra_pages;
f4e6b498 41 ra->prev_pos = -1;
1da177e4 42}
d41cc702 43EXPORT_SYMBOL_GPL(file_ra_state_init);
1da177e4 44
1da177e4
LT
45#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
46
47/**
bd40cdda 48 * read_cache_pages - populate an address space with some pages & start reads against them
1da177e4
LT
49 * @mapping: the address_space
50 * @pages: The address of a list_head which contains the target pages. These
51 * pages have their ->index populated and are otherwise uninitialised.
52 * @filler: callback routine for filling a single page.
53 * @data: private data for the callback routine.
54 *
55 * Hides the details of the LRU cache etc from the filesystems.
56 */
57int read_cache_pages(struct address_space *mapping, struct list_head *pages,
58 int (*filler)(void *, struct page *), void *data)
59{
60 struct page *page;
1da177e4
LT
61 int ret = 0;
62
1da177e4
LT
63 while (!list_empty(pages)) {
64 page = list_to_page(pages);
65 list_del(&page->lru);
eb2be189
NP
66 if (add_to_page_cache_lru(page, mapping,
67 page->index, GFP_KERNEL)) {
1da177e4
LT
68 page_cache_release(page);
69 continue;
70 }
eb2be189
NP
71 page_cache_release(page);
72
1da177e4 73 ret = filler(data, page);
eb2be189 74 if (unlikely(ret)) {
38da288b 75 put_pages_list(pages);
1da177e4
LT
76 break;
77 }
8bde37f0 78 task_io_account_read(PAGE_CACHE_SIZE);
1da177e4 79 }
1da177e4
LT
80 return ret;
81}
82
83EXPORT_SYMBOL(read_cache_pages);
84
85static int read_pages(struct address_space *mapping, struct file *filp,
86 struct list_head *pages, unsigned nr_pages)
87{
88 unsigned page_idx;
994fc28c 89 int ret;
1da177e4
LT
90
91 if (mapping->a_ops->readpages) {
92 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
029e332e
OH
93 /* Clean up the remaining pages */
94 put_pages_list(pages);
1da177e4
LT
95 goto out;
96 }
97
1da177e4
LT
98 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
99 struct page *page = list_to_page(pages);
100 list_del(&page->lru);
eb2be189 101 if (!add_to_page_cache_lru(page, mapping,
1da177e4 102 page->index, GFP_KERNEL)) {
9f1a3cfc 103 mapping->a_ops->readpage(filp, page);
eb2be189
NP
104 }
105 page_cache_release(page);
1da177e4 106 }
994fc28c 107 ret = 0;
1da177e4
LT
108out:
109 return ret;
110}
111
1da177e4
LT
112/*
113 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
114 * the pages first, then submits them all for I/O. This avoids the very bad
115 * behaviour which would occur if page allocations are causing VM writeback.
116 * We really don't want to intermingle reads and writes like that.
117 *
118 * Returns the number of pages requested, or the maximum amount of I/O allowed.
119 *
120 * do_page_cache_readahead() returns -1 if it encountered request queue
121 * congestion.
122 */
123static int
124__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
46fc3e7b
FW
125 pgoff_t offset, unsigned long nr_to_read,
126 unsigned long lookahead_size)
1da177e4
LT
127{
128 struct inode *inode = mapping->host;
129 struct page *page;
130 unsigned long end_index; /* The last page we want to read */
131 LIST_HEAD(page_pool);
132 int page_idx;
133 int ret = 0;
134 loff_t isize = i_size_read(inode);
135
136 if (isize == 0)
137 goto out;
138
46fc3e7b 139 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
1da177e4
LT
140
141 /*
142 * Preallocate as many pages as we will need.
143 */
1da177e4 144 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
7361f4d8 145 pgoff_t page_offset = offset + page_idx;
c743d96b 146
1da177e4
LT
147 if (page_offset > end_index)
148 break;
149
00128188 150 rcu_read_lock();
1da177e4 151 page = radix_tree_lookup(&mapping->page_tree, page_offset);
00128188 152 rcu_read_unlock();
1da177e4
LT
153 if (page)
154 continue;
155
1da177e4 156 page = page_cache_alloc_cold(mapping);
1da177e4
LT
157 if (!page)
158 break;
159 page->index = page_offset;
160 list_add(&page->lru, &page_pool);
46fc3e7b
FW
161 if (page_idx == nr_to_read - lookahead_size)
162 SetPageReadahead(page);
1da177e4
LT
163 ret++;
164 }
1da177e4
LT
165
166 /*
167 * Now start the IO. We ignore I/O errors - if the page is not
168 * uptodate then the caller will launch readpage again, and
169 * will then handle the error.
170 */
171 if (ret)
172 read_pages(mapping, filp, &page_pool, ret);
173 BUG_ON(!list_empty(&page_pool));
174out:
175 return ret;
176}
177
178/*
179 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
180 * memory at once.
181 */
182int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 183 pgoff_t offset, unsigned long nr_to_read)
1da177e4
LT
184{
185 int ret = 0;
186
187 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
188 return -EINVAL;
189
190 while (nr_to_read) {
191 int err;
192
193 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
194
195 if (this_chunk > nr_to_read)
196 this_chunk = nr_to_read;
197 err = __do_page_cache_readahead(mapping, filp,
46fc3e7b 198 offset, this_chunk, 0);
1da177e4
LT
199 if (err < 0) {
200 ret = err;
201 break;
202 }
203 ret += err;
204 offset += this_chunk;
205 nr_to_read -= this_chunk;
206 }
207 return ret;
208}
209
1da177e4
LT
210/*
211 * This version skips the IO if the queue is read-congested, and will tell the
212 * block layer to abandon the readahead if request allocation would block.
213 *
214 * force_page_cache_readahead() will ignore queue congestion and will block on
215 * request queues.
216 */
217int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 218 pgoff_t offset, unsigned long nr_to_read)
1da177e4
LT
219{
220 if (bdi_read_congested(mapping->backing_dev_info))
221 return -1;
222
46fc3e7b 223 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
1da177e4
LT
224}
225
1da177e4
LT
226/*
227 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
228 * sensible upper limit.
229 */
230unsigned long max_sane_readahead(unsigned long nr)
231{
05a0416b
CL
232 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
233 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
1da177e4 234}
5ce1110b
FW
235
236/*
237 * Submit IO for the read-ahead request in file_ra_state.
238 */
f9acc8c7 239static unsigned long ra_submit(struct file_ra_state *ra,
5ce1110b
FW
240 struct address_space *mapping, struct file *filp)
241{
5ce1110b
FW
242 int actual;
243
5ce1110b 244 actual = __do_page_cache_readahead(mapping, filp,
f9acc8c7 245 ra->start, ra->size, ra->async_size);
5ce1110b
FW
246
247 return actual;
248}
122a21d1 249
c743d96b
FW
250/*
251 * Set the initial window size, round to next power of 2 and square
252 * for small size, x 4 for medium, and x 2 for large
253 * for 128k (32 page) max ra
254 * 1-8 page = 32k initial, > 8 page = 128k initial
255 */
256static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
257{
258 unsigned long newsize = roundup_pow_of_two(size);
259
260 if (newsize <= max / 32)
261 newsize = newsize * 4;
262 else if (newsize <= max / 4)
263 newsize = newsize * 2;
264 else
265 newsize = max;
266
267 return newsize;
268}
269
122a21d1
FW
270/*
271 * Get the previous window size, ramp it up, and
272 * return it as the new window size.
273 */
c743d96b 274static unsigned long get_next_ra_size(struct file_ra_state *ra,
122a21d1
FW
275 unsigned long max)
276{
f9acc8c7 277 unsigned long cur = ra->size;
122a21d1
FW
278 unsigned long newsize;
279
280 if (cur < max / 16)
c743d96b 281 newsize = 4 * cur;
122a21d1 282 else
c743d96b 283 newsize = 2 * cur;
122a21d1
FW
284
285 return min(newsize, max);
286}
287
288/*
289 * On-demand readahead design.
290 *
291 * The fields in struct file_ra_state represent the most-recently-executed
292 * readahead attempt:
293 *
f9acc8c7
FW
294 * |<----- async_size ---------|
295 * |------------------- size -------------------->|
296 * |==================#===========================|
297 * ^start ^page marked with PG_readahead
122a21d1
FW
298 *
299 * To overlap application thinking time and disk I/O time, we do
300 * `readahead pipelining': Do not wait until the application consumed all
301 * readahead pages and stalled on the missing page at readahead_index;
f9acc8c7
FW
302 * Instead, submit an asynchronous readahead I/O as soon as there are
303 * only async_size pages left in the readahead window. Normally async_size
304 * will be equal to size, for maximum pipelining.
122a21d1
FW
305 *
306 * In interleaved sequential reads, concurrent streams on the same fd can
307 * be invalidating each other's readahead state. So we flag the new readahead
f9acc8c7 308 * page at (start+size-async_size) with PG_readahead, and use it as readahead
122a21d1
FW
309 * indicator. The flag won't be set on already cached pages, to avoid the
310 * readahead-for-nothing fuss, saving pointless page cache lookups.
311 *
f4e6b498 312 * prev_pos tracks the last visited byte in the _previous_ read request.
122a21d1
FW
313 * It should be maintained by the caller, and will be used for detecting
314 * small random reads. Note that the readahead algorithm checks loosely
315 * for sequential patterns. Hence interleaved reads might be served as
316 * sequential ones.
317 *
318 * There is a special-case: if the first page which the application tries to
319 * read happens to be the first page of the file, it is assumed that a linear
320 * read is about to happen and the window is immediately set to the initial size
321 * based on I/O request size and the max_readahead.
322 *
323 * The code ramps up the readahead size aggressively at first, but slow down as
324 * it approaches max_readhead.
325 */
326
327/*
328 * A minimal readahead algorithm for trivial sequential/random reads.
329 */
330static unsigned long
331ondemand_readahead(struct address_space *mapping,
332 struct file_ra_state *ra, struct file *filp,
cf914a7d 333 bool hit_readahead_marker, pgoff_t offset,
122a21d1
FW
334 unsigned long req_size)
335{
f4e6b498
FW
336 int max = ra->ra_pages; /* max readahead pages */
337 pgoff_t prev_offset;
338 int sequential;
122a21d1
FW
339
340 /*
f9acc8c7 341 * It's the expected callback offset, assume sequential access.
122a21d1
FW
342 * Ramp up sizes, and push forward the readahead window.
343 */
f9acc8c7
FW
344 if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
345 offset == (ra->start + ra->size))) {
346 ra->start += ra->size;
347 ra->size = get_next_ra_size(ra, max);
348 ra->async_size = ra->size;
349 goto readit;
122a21d1
FW
350 }
351
f4e6b498
FW
352 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
353 sequential = offset - prev_offset <= 1UL || req_size > max;
354
122a21d1
FW
355 /*
356 * Standalone, small read.
357 * Read as is, and do not pollute the readahead state.
358 */
cf914a7d 359 if (!hit_readahead_marker && !sequential) {
122a21d1
FW
360 return __do_page_cache_readahead(mapping, filp,
361 offset, req_size, 0);
362 }
363
6b10c6c9
FW
364 /*
365 * Hit a marked page without valid readahead state.
366 * E.g. interleaved reads.
367 * Query the pagecache for async_size, which normally equals to
368 * readahead size. Ramp it up and use it as the new readahead size.
369 */
370 if (hit_readahead_marker) {
371 pgoff_t start;
372
373 read_lock_irq(&mapping->tree_lock);
374 start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
375 read_unlock_irq(&mapping->tree_lock);
376
377 if (!start || start - offset > max)
378 return 0;
379
380 ra->start = start;
381 ra->size = start - offset; /* old async_size */
382 ra->size = get_next_ra_size(ra, max);
383 ra->async_size = ra->size;
384 goto readit;
385 }
386
122a21d1
FW
387 /*
388 * It may be one of
389 * - first read on start of file
390 * - sequential cache miss
391 * - oversize random read
392 * Start readahead for it.
393 */
f9acc8c7
FW
394 ra->start = offset;
395 ra->size = get_init_ra_size(req_size, max);
396 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
122a21d1 397
f9acc8c7 398readit:
122a21d1
FW
399 return ra_submit(ra, mapping, filp);
400}
401
402/**
cf914a7d 403 * page_cache_sync_readahead - generic file readahead
122a21d1
FW
404 * @mapping: address_space which holds the pagecache and I/O vectors
405 * @ra: file_ra_state which holds the readahead state
406 * @filp: passed on to ->readpage() and ->readpages()
cf914a7d 407 * @offset: start offset into @mapping, in pagecache page-sized units
122a21d1 408 * @req_size: hint: total size of the read which the caller is performing in
cf914a7d 409 * pagecache pages
122a21d1 410 *
cf914a7d
RR
411 * page_cache_sync_readahead() should be called when a cache miss happened:
412 * it will submit the read. The readahead logic may decide to piggyback more
413 * pages onto the read request if access patterns suggest it will improve
414 * performance.
122a21d1 415 */
cf914a7d
RR
416void page_cache_sync_readahead(struct address_space *mapping,
417 struct file_ra_state *ra, struct file *filp,
418 pgoff_t offset, unsigned long req_size)
122a21d1
FW
419{
420 /* no read-ahead */
421 if (!ra->ra_pages)
cf914a7d
RR
422 return;
423
424 /* do read-ahead */
425 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
426}
427EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
428
429/**
430 * page_cache_async_readahead - file readahead for marked pages
431 * @mapping: address_space which holds the pagecache and I/O vectors
432 * @ra: file_ra_state which holds the readahead state
433 * @filp: passed on to ->readpage() and ->readpages()
434 * @page: the page at @offset which has the PG_readahead flag set
435 * @offset: start offset into @mapping, in pagecache page-sized units
436 * @req_size: hint: total size of the read which the caller is performing in
437 * pagecache pages
438 *
439 * page_cache_async_ondemand() should be called when a page is used which
440 * has the PG_readahead flag: this is a marker to suggest that the application
441 * has used up enough of the readahead window that we should start pulling in
442 * more pages. */
443void
444page_cache_async_readahead(struct address_space *mapping,
445 struct file_ra_state *ra, struct file *filp,
446 struct page *page, pgoff_t offset,
447 unsigned long req_size)
448{
449 /* no read-ahead */
450 if (!ra->ra_pages)
451 return;
452
453 /*
454 * Same bit is used for PG_readahead and PG_reclaim.
455 */
456 if (PageWriteback(page))
457 return;
458
459 ClearPageReadahead(page);
460
461 /*
462 * Defer asynchronous read-ahead on IO congestion.
463 */
464 if (bdi_read_congested(mapping->backing_dev_info))
465 return;
122a21d1
FW
466
467 /* do read-ahead */
cf914a7d 468 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
122a21d1 469}
cf914a7d 470EXPORT_SYMBOL_GPL(page_cache_async_readahead);
This page took 0.217012 seconds and 5 git commands to generate.