staging: unisys: added virthba rqwait entry
[deliverable/linux.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
fdd2e5f8
AB
83}
84
01d8b20d 85static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 86{
01d8b20d 87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
88
89 /*
4fc3f1d6 90 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 97 *
4fc3f1d6
IM
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
88c22088 100 * LOCK MB
4fc3f1d6 101 * atomic_read() rwsem_is_locked()
88c22088
PZ
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
7f39dda9 106 might_sleep();
5a505085 107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 108 anon_vma_lock_write(anon_vma);
08b52706 109 anon_vma_unlock_write(anon_vma);
88c22088
PZ
110 }
111
fdd2e5f8
AB
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113}
1da177e4 114
dd34739c 115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 116{
dd34739c 117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
118}
119
e574b5fd 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
121{
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
6583a843
KC
125static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128{
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
133}
134
d9d332e0
LT
135/**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
23a0790a 144 * not we either need to find an adjacent mapping that we
d9d332e0
LT
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
1da177e4
LT
162int anon_vma_prepare(struct vm_area_struct *vma)
163{
164 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 165 struct anon_vma_chain *avc;
1da177e4
LT
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
d9d332e0 170 struct anon_vma *allocated;
1da177e4 171
dd34739c 172 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
173 if (!avc)
174 goto out_enomem;
175
1da177e4 176 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
177 allocated = NULL;
178 if (!anon_vma) {
1da177e4
LT
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
5beb4930 181 goto out_enomem_free_avc;
1da177e4 182 allocated = anon_vma;
1da177e4
LT
183 }
184
4fc3f1d6 185 anon_vma_lock_write(anon_vma);
1da177e4
LT
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
6583a843 190 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 191 allocated = NULL;
31f2b0eb 192 avc = NULL;
1da177e4
LT
193 }
194 spin_unlock(&mm->page_table_lock);
08b52706 195 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
196
197 if (unlikely(allocated))
01d8b20d 198 put_anon_vma(allocated);
31f2b0eb 199 if (unlikely(avc))
5beb4930 200 anon_vma_chain_free(avc);
1da177e4
LT
201 }
202 return 0;
5beb4930
RR
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
1da177e4
LT
208}
209
bb4aa396
LT
210/*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219{
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
5a505085 223 up_write(&root->rwsem);
bb4aa396 224 root = new_root;
5a505085 225 down_write(&root->rwsem);
bb4aa396
LT
226 }
227 return root;
228}
229
230static inline void unlock_anon_vma_root(struct anon_vma *root)
231{
232 if (root)
5a505085 233 up_write(&root->rwsem);
bb4aa396
LT
234}
235
5beb4930
RR
236/*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 241{
5beb4930 242 struct anon_vma_chain *avc, *pavc;
bb4aa396 243 struct anon_vma *root = NULL;
5beb4930 244
646d87b4 245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
246 struct anon_vma *anon_vma;
247
dd34739c
LT
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
bb4aa396
LT
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 259 }
bb4aa396 260 unlock_anon_vma_root(root);
5beb4930 261 return 0;
1da177e4 262
5beb4930
RR
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
1da177e4
LT
266}
267
5beb4930
RR
268/*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 274{
5beb4930
RR
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
1da177e4 277
5beb4930
RR
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
281
282 /*
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
285 */
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
288
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
dd34739c 293 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
294 if (!avc)
295 goto out_error_free_anon_vma;
5c341ee1
RR
296
297 /*
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
300 */
301 anon_vma->root = pvma->anon_vma->root;
76545066 302 /*
01d8b20d
PZ
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
306 */
307 get_anon_vma(anon_vma->root);
5beb4930
RR
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
4fc3f1d6 310 anon_vma_lock_write(anon_vma);
5c341ee1 311 anon_vma_chain_link(vma, avc, anon_vma);
08b52706 312 anon_vma_unlock_write(anon_vma);
5beb4930
RR
313
314 return 0;
315
316 out_error_free_anon_vma:
01d8b20d 317 put_anon_vma(anon_vma);
5beb4930 318 out_error:
4946d54c 319 unlink_anon_vmas(vma);
5beb4930 320 return -ENOMEM;
1da177e4
LT
321}
322
5beb4930
RR
323void unlink_anon_vmas(struct vm_area_struct *vma)
324{
325 struct anon_vma_chain *avc, *next;
eee2acba 326 struct anon_vma *root = NULL;
5beb4930 327
5c341ee1
RR
328 /*
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 */
5beb4930 332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
333 struct anon_vma *anon_vma = avc->anon_vma;
334
335 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
337
338 /*
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
341 */
bf181b9f 342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
343 continue;
344
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
347 }
348 unlock_anon_vma_root(root);
349
350 /*
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 353 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
357
358 put_anon_vma(anon_vma);
359
5beb4930
RR
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
362 }
363}
364
51cc5068 365static void anon_vma_ctor(void *data)
1da177e4 366{
a35afb83 367 struct anon_vma *anon_vma = data;
1da177e4 368
5a505085 369 init_rwsem(&anon_vma->rwsem);
83813267 370 atomic_set(&anon_vma->refcount, 0);
bf181b9f 371 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
372}
373
374void __init anon_vma_init(void)
375{
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
379}
380
381/*
6111e4ca
PZ
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 *
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
387 *
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
390 *
bc658c96
PZ
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 *
6111e4ca
PZ
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
399 *
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 403 */
746b18d4 404struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 405{
746b18d4 406 struct anon_vma *anon_vma = NULL;
1da177e4
LT
407 unsigned long anon_mapping;
408
409 rcu_read_lock();
80e14822 410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
412 goto out;
413 if (!page_mapped(page))
414 goto out;
415
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
420 }
f1819427
HD
421
422 /*
423 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
f1819427 428 */
746b18d4 429 if (!page_mapped(page)) {
7f39dda9 430 rcu_read_unlock();
746b18d4 431 put_anon_vma(anon_vma);
7f39dda9 432 return NULL;
746b18d4 433 }
1da177e4
LT
434out:
435 rcu_read_unlock();
746b18d4
PZ
436
437 return anon_vma;
438}
439
88c22088
PZ
440/*
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
442 *
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
446 */
4fc3f1d6 447struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 448{
88c22088 449 struct anon_vma *anon_vma = NULL;
eee0f252 450 struct anon_vma *root_anon_vma;
88c22088 451 unsigned long anon_mapping;
746b18d4 452
88c22088
PZ
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
459
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 462 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 463 /*
eee0f252
HD
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
bc658c96 466 * not go away, see anon_vma_free().
88c22088 467 */
eee0f252 468 if (!page_mapped(page)) {
4fc3f1d6 469 up_read(&root_anon_vma->rwsem);
88c22088
PZ
470 anon_vma = NULL;
471 }
472 goto out;
473 }
746b18d4 474
88c22088
PZ
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 if (!page_mapped(page)) {
7f39dda9 482 rcu_read_unlock();
88c22088 483 put_anon_vma(anon_vma);
7f39dda9 484 return NULL;
88c22088
PZ
485 }
486
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
4fc3f1d6 489 anon_vma_lock_read(anon_vma);
88c22088
PZ
490
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
492 /*
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 495 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 496 */
4fc3f1d6 497 anon_vma_unlock_read(anon_vma);
88c22088
PZ
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
500 }
501
502 return anon_vma;
503
504out:
505 rcu_read_unlock();
746b18d4 506 return anon_vma;
34bbd704
ON
507}
508
4fc3f1d6 509void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 510{
4fc3f1d6 511 anon_vma_unlock_read(anon_vma);
1da177e4
LT
512}
513
514/*
3ad33b24 515 * At what user virtual address is page expected in @vma?
1da177e4 516 */
86c2ad19
ML
517static inline unsigned long
518__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4
LT
519{
520 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1da177e4 521
0fe6e20b
NH
522 if (unlikely(is_vm_hugetlb_page(vma)))
523 pgoff = page->index << huge_page_order(page_hstate(page));
86c2ad19
ML
524
525 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526}
527
528inline unsigned long
529vma_address(struct page *page, struct vm_area_struct *vma)
530{
531 unsigned long address = __vma_address(page, vma);
532
533 /* page should be within @vma mapping range */
534 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
535
1da177e4
LT
536 return address;
537}
538
539/*
bf89c8c8 540 * At what user virtual address is page expected in vma?
ab941e0f 541 * Caller should check the page is actually part of the vma.
1da177e4
LT
542 */
543unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
544{
86c2ad19 545 unsigned long address;
21d0d443 546 if (PageAnon(page)) {
4829b906
HD
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
548 /*
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
551 */
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
558 return -EFAULT;
559 } else
560 return -EFAULT;
86c2ad19
ML
561 address = __vma_address(page, vma);
562 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
563 return -EFAULT;
564 return address;
1da177e4
LT
565}
566
6219049a
BL
567pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
568{
569 pgd_t *pgd;
570 pud_t *pud;
571 pmd_t *pmd = NULL;
f72e7dcd 572 pmd_t pmde;
6219049a
BL
573
574 pgd = pgd_offset(mm, address);
575 if (!pgd_present(*pgd))
576 goto out;
577
578 pud = pud_offset(pgd, address);
579 if (!pud_present(*pud))
580 goto out;
581
582 pmd = pmd_offset(pud, address);
f72e7dcd
HD
583 /*
584 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
585 * without holding anon_vma lock for write. So when looking for a
586 * genuine pmde (in which to find pte), test present and !THP together.
587 */
588 pmde = ACCESS_ONCE(*pmd);
589 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
590 pmd = NULL;
591out:
592 return pmd;
593}
594
81b4082d
ND
595/*
596 * Check that @page is mapped at @address into @mm.
597 *
479db0bf
NP
598 * If @sync is false, page_check_address may perform a racy check to avoid
599 * the page table lock when the pte is not present (helpful when reclaiming
600 * highly shared pages).
601 *
b8072f09 602 * On success returns with pte mapped and locked.
81b4082d 603 */
e9a81a82 604pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 605 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 606{
81b4082d
ND
607 pmd_t *pmd;
608 pte_t *pte;
c0718806 609 spinlock_t *ptl;
81b4082d 610
0fe6e20b 611 if (unlikely(PageHuge(page))) {
98398c32 612 /* when pud is not present, pte will be NULL */
0fe6e20b 613 pte = huge_pte_offset(mm, address);
98398c32
JW
614 if (!pte)
615 return NULL;
616
cb900f41 617 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
618 goto check;
619 }
620
6219049a
BL
621 pmd = mm_find_pmd(mm, address);
622 if (!pmd)
c0718806
HD
623 return NULL;
624
c0718806
HD
625 pte = pte_offset_map(pmd, address);
626 /* Make a quick check before getting the lock */
479db0bf 627 if (!sync && !pte_present(*pte)) {
c0718806
HD
628 pte_unmap(pte);
629 return NULL;
630 }
631
4c21e2f2 632 ptl = pte_lockptr(mm, pmd);
0fe6e20b 633check:
c0718806
HD
634 spin_lock(ptl);
635 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
636 *ptlp = ptl;
637 return pte;
81b4082d 638 }
c0718806
HD
639 pte_unmap_unlock(pte, ptl);
640 return NULL;
81b4082d
ND
641}
642
b291f000
NP
643/**
644 * page_mapped_in_vma - check whether a page is really mapped in a VMA
645 * @page: the page to test
646 * @vma: the VMA to test
647 *
648 * Returns 1 if the page is mapped into the page tables of the VMA, 0
649 * if the page is not mapped into the page tables of this VMA. Only
650 * valid for normal file or anonymous VMAs.
651 */
6a46079c 652int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
653{
654 unsigned long address;
655 pte_t *pte;
656 spinlock_t *ptl;
657
86c2ad19
ML
658 address = __vma_address(page, vma);
659 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
660 return 0;
661 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
662 if (!pte) /* the page is not in this mm */
663 return 0;
664 pte_unmap_unlock(pte, ptl);
665
666 return 1;
667}
668
9f32624b
JK
669struct page_referenced_arg {
670 int mapcount;
671 int referenced;
672 unsigned long vm_flags;
673 struct mem_cgroup *memcg;
674};
1da177e4 675/*
9f32624b 676 * arg: page_referenced_arg will be passed
1da177e4 677 */
ac769501 678static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 679 unsigned long address, void *arg)
1da177e4
LT
680{
681 struct mm_struct *mm = vma->vm_mm;
117b0791 682 spinlock_t *ptl;
1da177e4 683 int referenced = 0;
9f32624b 684 struct page_referenced_arg *pra = arg;
1da177e4 685
71e3aac0
AA
686 if (unlikely(PageTransHuge(page))) {
687 pmd_t *pmd;
688
2da28bfd
AA
689 /*
690 * rmap might return false positives; we must filter
691 * these out using page_check_address_pmd().
692 */
71e3aac0 693 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
694 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
695 if (!pmd)
9f32624b 696 return SWAP_AGAIN;
2da28bfd
AA
697
698 if (vma->vm_flags & VM_LOCKED) {
117b0791 699 spin_unlock(ptl);
9f32624b
JK
700 pra->vm_flags |= VM_LOCKED;
701 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
702 }
703
704 /* go ahead even if the pmd is pmd_trans_splitting() */
705 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 706 referenced++;
117b0791 707 spin_unlock(ptl);
71e3aac0
AA
708 } else {
709 pte_t *pte;
71e3aac0 710
2da28bfd
AA
711 /*
712 * rmap might return false positives; we must filter
713 * these out using page_check_address().
714 */
71e3aac0
AA
715 pte = page_check_address(page, mm, address, &ptl, 0);
716 if (!pte)
9f32624b 717 return SWAP_AGAIN;
71e3aac0 718
2da28bfd
AA
719 if (vma->vm_flags & VM_LOCKED) {
720 pte_unmap_unlock(pte, ptl);
9f32624b
JK
721 pra->vm_flags |= VM_LOCKED;
722 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
723 }
724
71e3aac0
AA
725 if (ptep_clear_flush_young_notify(vma, address, pte)) {
726 /*
727 * Don't treat a reference through a sequentially read
728 * mapping as such. If the page has been used in
729 * another mapping, we will catch it; if this other
730 * mapping is already gone, the unmap path will have
731 * set PG_referenced or activated the page.
732 */
64363aad 733 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
734 referenced++;
735 }
736 pte_unmap_unlock(pte, ptl);
737 }
738
9f32624b
JK
739 if (referenced) {
740 pra->referenced++;
741 pra->vm_flags |= vma->vm_flags;
1da177e4 742 }
34bbd704 743
9f32624b
JK
744 pra->mapcount--;
745 if (!pra->mapcount)
746 return SWAP_SUCCESS; /* To break the loop */
747
748 return SWAP_AGAIN;
1da177e4
LT
749}
750
9f32624b 751static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 752{
9f32624b
JK
753 struct page_referenced_arg *pra = arg;
754 struct mem_cgroup *memcg = pra->memcg;
1da177e4 755
9f32624b
JK
756 if (!mm_match_cgroup(vma->vm_mm, memcg))
757 return true;
1da177e4 758
9f32624b 759 return false;
1da177e4
LT
760}
761
762/**
763 * page_referenced - test if the page was referenced
764 * @page: the page to test
765 * @is_locked: caller holds lock on the page
72835c86 766 * @memcg: target memory cgroup
6fe6b7e3 767 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
768 *
769 * Quick test_and_clear_referenced for all mappings to a page,
770 * returns the number of ptes which referenced the page.
771 */
6fe6b7e3
WF
772int page_referenced(struct page *page,
773 int is_locked,
72835c86 774 struct mem_cgroup *memcg,
6fe6b7e3 775 unsigned long *vm_flags)
1da177e4 776{
9f32624b 777 int ret;
5ad64688 778 int we_locked = 0;
9f32624b
JK
779 struct page_referenced_arg pra = {
780 .mapcount = page_mapcount(page),
781 .memcg = memcg,
782 };
783 struct rmap_walk_control rwc = {
784 .rmap_one = page_referenced_one,
785 .arg = (void *)&pra,
786 .anon_lock = page_lock_anon_vma_read,
787 };
1da177e4 788
6fe6b7e3 789 *vm_flags = 0;
9f32624b
JK
790 if (!page_mapped(page))
791 return 0;
792
793 if (!page_rmapping(page))
794 return 0;
795
796 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
797 we_locked = trylock_page(page);
798 if (!we_locked)
799 return 1;
1da177e4 800 }
9f32624b
JK
801
802 /*
803 * If we are reclaiming on behalf of a cgroup, skip
804 * counting on behalf of references from different
805 * cgroups
806 */
807 if (memcg) {
808 rwc.invalid_vma = invalid_page_referenced_vma;
809 }
810
811 ret = rmap_walk(page, &rwc);
812 *vm_flags = pra.vm_flags;
813
814 if (we_locked)
815 unlock_page(page);
816
817 return pra.referenced;
1da177e4
LT
818}
819
1cb1729b 820static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 821 unsigned long address, void *arg)
d08b3851
PZ
822{
823 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 824 pte_t *pte;
d08b3851
PZ
825 spinlock_t *ptl;
826 int ret = 0;
9853a407 827 int *cleaned = arg;
d08b3851 828
479db0bf 829 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
830 if (!pte)
831 goto out;
832
c2fda5fe
PZ
833 if (pte_dirty(*pte) || pte_write(*pte)) {
834 pte_t entry;
d08b3851 835
c2fda5fe 836 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 837 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
838 entry = pte_wrprotect(entry);
839 entry = pte_mkclean(entry);
d6e88e67 840 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
841 ret = 1;
842 }
d08b3851 843
d08b3851 844 pte_unmap_unlock(pte, ptl);
2ec74c3e 845
9853a407 846 if (ret) {
2ec74c3e 847 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
848 (*cleaned)++;
849 }
d08b3851 850out:
9853a407 851 return SWAP_AGAIN;
d08b3851
PZ
852}
853
9853a407 854static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 855{
9853a407 856 if (vma->vm_flags & VM_SHARED)
871beb8c 857 return false;
d08b3851 858
871beb8c 859 return true;
d08b3851
PZ
860}
861
862int page_mkclean(struct page *page)
863{
9853a407
JK
864 int cleaned = 0;
865 struct address_space *mapping;
866 struct rmap_walk_control rwc = {
867 .arg = (void *)&cleaned,
868 .rmap_one = page_mkclean_one,
869 .invalid_vma = invalid_mkclean_vma,
870 };
d08b3851
PZ
871
872 BUG_ON(!PageLocked(page));
873
9853a407
JK
874 if (!page_mapped(page))
875 return 0;
876
877 mapping = page_mapping(page);
878 if (!mapping)
879 return 0;
880
881 rmap_walk(page, &rwc);
d08b3851 882
9853a407 883 return cleaned;
d08b3851 884}
60b59bea 885EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 886
c44b6743
RR
887/**
888 * page_move_anon_rmap - move a page to our anon_vma
889 * @page: the page to move to our anon_vma
890 * @vma: the vma the page belongs to
891 * @address: the user virtual address mapped
892 *
893 * When a page belongs exclusively to one process after a COW event,
894 * that page can be moved into the anon_vma that belongs to just that
895 * process, so the rmap code will not search the parent or sibling
896 * processes.
897 */
898void page_move_anon_rmap(struct page *page,
899 struct vm_area_struct *vma, unsigned long address)
900{
901 struct anon_vma *anon_vma = vma->anon_vma;
902
309381fe 903 VM_BUG_ON_PAGE(!PageLocked(page), page);
c44b6743 904 VM_BUG_ON(!anon_vma);
309381fe 905 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
906
907 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
908 page->mapping = (struct address_space *) anon_vma;
909}
910
9617d95e 911/**
4e1c1975
AK
912 * __page_set_anon_rmap - set up new anonymous rmap
913 * @page: Page to add to rmap
914 * @vma: VM area to add page to.
915 * @address: User virtual address of the mapping
e8a03feb 916 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
917 */
918static void __page_set_anon_rmap(struct page *page,
e8a03feb 919 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 920{
e8a03feb 921 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 922
e8a03feb 923 BUG_ON(!anon_vma);
ea90002b 924
4e1c1975
AK
925 if (PageAnon(page))
926 return;
927
ea90002b 928 /*
e8a03feb
RR
929 * If the page isn't exclusively mapped into this vma,
930 * we must use the _oldest_ possible anon_vma for the
931 * page mapping!
ea90002b 932 */
4e1c1975 933 if (!exclusive)
288468c3 934 anon_vma = anon_vma->root;
9617d95e 935
9617d95e
NP
936 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
937 page->mapping = (struct address_space *) anon_vma;
9617d95e 938 page->index = linear_page_index(vma, address);
9617d95e
NP
939}
940
c97a9e10 941/**
43d8eac4 942 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
943 * @page: the page to add the mapping to
944 * @vma: the vm area in which the mapping is added
945 * @address: the user virtual address mapped
946 */
947static void __page_check_anon_rmap(struct page *page,
948 struct vm_area_struct *vma, unsigned long address)
949{
950#ifdef CONFIG_DEBUG_VM
951 /*
952 * The page's anon-rmap details (mapping and index) are guaranteed to
953 * be set up correctly at this point.
954 *
955 * We have exclusion against page_add_anon_rmap because the caller
956 * always holds the page locked, except if called from page_dup_rmap,
957 * in which case the page is already known to be setup.
958 *
959 * We have exclusion against page_add_new_anon_rmap because those pages
960 * are initially only visible via the pagetables, and the pte is locked
961 * over the call to page_add_new_anon_rmap.
962 */
44ab57a0 963 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
964 BUG_ON(page->index != linear_page_index(vma, address));
965#endif
966}
967
1da177e4
LT
968/**
969 * page_add_anon_rmap - add pte mapping to an anonymous page
970 * @page: the page to add the mapping to
971 * @vma: the vm area in which the mapping is added
972 * @address: the user virtual address mapped
973 *
5ad64688 974 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
975 * the anon_vma case: to serialize mapping,index checking after setting,
976 * and to ensure that PageAnon is not being upgraded racily to PageKsm
977 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
978 */
979void page_add_anon_rmap(struct page *page,
980 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
981{
982 do_page_add_anon_rmap(page, vma, address, 0);
983}
984
985/*
986 * Special version of the above for do_swap_page, which often runs
987 * into pages that are exclusively owned by the current process.
988 * Everybody else should continue to use page_add_anon_rmap above.
989 */
990void do_page_add_anon_rmap(struct page *page,
991 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 992{
5ad64688 993 int first = atomic_inc_and_test(&page->_mapcount);
79134171 994 if (first) {
bea04b07
JZ
995 /*
996 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
997 * these counters are not modified in interrupt context, and
998 * pte lock(a spinlock) is held, which implies preemption
999 * disabled.
1000 */
3cd14fcd 1001 if (PageTransHuge(page))
79134171
AA
1002 __inc_zone_page_state(page,
1003 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1004 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1005 hpage_nr_pages(page));
79134171 1006 }
5ad64688
HD
1007 if (unlikely(PageKsm(page)))
1008 return;
1009
309381fe 1010 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1011 /* address might be in next vma when migration races vma_adjust */
5ad64688 1012 if (first)
ad8c2ee8 1013 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1014 else
c97a9e10 1015 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1016}
1017
43d8eac4 1018/**
9617d95e
NP
1019 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1020 * @page: the page to add the mapping to
1021 * @vma: the vm area in which the mapping is added
1022 * @address: the user virtual address mapped
1023 *
1024 * Same as page_add_anon_rmap but must only be called on *new* pages.
1025 * This means the inc-and-test can be bypassed.
c97a9e10 1026 * Page does not have to be locked.
9617d95e
NP
1027 */
1028void page_add_new_anon_rmap(struct page *page,
1029 struct vm_area_struct *vma, unsigned long address)
1030{
b5934c53 1031 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1032 SetPageSwapBacked(page);
1033 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1034 if (PageTransHuge(page))
79134171 1035 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1036 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1037 hpage_nr_pages(page));
e8a03feb 1038 __page_set_anon_rmap(page, vma, address, 1);
7ee07a44
JZ
1039
1040 VM_BUG_ON_PAGE(PageLRU(page), page);
1041 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
c53954a0
MG
1042 SetPageActive(page);
1043 lru_cache_add(page);
7ee07a44
JZ
1044 return;
1045 }
1046
1047 if (!TestSetPageMlocked(page)) {
1048 /*
1049 * We use the irq-unsafe __mod_zone_page_stat because this
1050 * counter is not modified from interrupt context, and the pte
1051 * lock is held(spinlock), which implies preemption disabled.
1052 */
1053 __mod_zone_page_state(page_zone(page), NR_MLOCK,
1054 hpage_nr_pages(page));
1055 count_vm_event(UNEVICTABLE_PGMLOCKED);
1056 }
1057 add_page_to_unevictable_list(page);
9617d95e
NP
1058}
1059
1da177e4
LT
1060/**
1061 * page_add_file_rmap - add pte mapping to a file page
1062 * @page: the page to add the mapping to
1063 *
b8072f09 1064 * The caller needs to hold the pte lock.
1da177e4
LT
1065 */
1066void page_add_file_rmap(struct page *page)
1067{
89c06bd5
KH
1068 bool locked;
1069 unsigned long flags;
1070
1071 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1072 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1073 __inc_zone_page_state(page, NR_FILE_MAPPED);
68b4876d 1074 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1075 }
89c06bd5 1076 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1077}
1078
1079/**
1080 * page_remove_rmap - take down pte mapping from a page
1081 * @page: page to remove mapping from
1082 *
b8072f09 1083 * The caller needs to hold the pte lock.
1da177e4 1084 */
edc315fd 1085void page_remove_rmap(struct page *page)
1da177e4 1086{
89c06bd5
KH
1087 bool anon = PageAnon(page);
1088 bool locked;
1089 unsigned long flags;
1090
1091 /*
1092 * The anon case has no mem_cgroup page_stat to update; but may
1093 * uncharge_page() below, where the lock ordering can deadlock if
1094 * we hold the lock against page_stat move: so avoid it on anon.
1095 */
1096 if (!anon)
1097 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1098
b904dcfe
KM
1099 /* page still mapped by someone else? */
1100 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1101 goto out;
b904dcfe 1102
0fe6e20b
NH
1103 /*
1104 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1105 * and not charged by memcg for now.
bea04b07
JZ
1106 *
1107 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1108 * these counters are not modified in interrupt context, and
1109 * these counters are not modified in interrupt context, and
1110 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b
NH
1111 */
1112 if (unlikely(PageHuge(page)))
89c06bd5
KH
1113 goto out;
1114 if (anon) {
b904dcfe 1115 mem_cgroup_uncharge_page(page);
3cd14fcd 1116 if (PageTransHuge(page))
79134171
AA
1117 __dec_zone_page_state(page,
1118 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1119 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1120 -hpage_nr_pages(page));
b904dcfe
KM
1121 } else {
1122 __dec_zone_page_state(page, NR_FILE_MAPPED);
68b4876d 1123 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
e6c509f8 1124 mem_cgroup_end_update_page_stat(page, &locked, &flags);
b904dcfe 1125 }
e6c509f8
HD
1126 if (unlikely(PageMlocked(page)))
1127 clear_page_mlock(page);
b904dcfe
KM
1128 /*
1129 * It would be tidy to reset the PageAnon mapping here,
1130 * but that might overwrite a racing page_add_anon_rmap
1131 * which increments mapcount after us but sets mapping
1132 * before us: so leave the reset to free_hot_cold_page,
1133 * and remember that it's only reliable while mapped.
1134 * Leaving it set also helps swapoff to reinstate ptes
1135 * faster for those pages still in swapcache.
1136 */
e6c509f8 1137 return;
89c06bd5
KH
1138out:
1139 if (!anon)
1140 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1141}
1142
1143/*
52629506 1144 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1145 */
ac769501 1146static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1147 unsigned long address, void *arg)
1da177e4
LT
1148{
1149 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1150 pte_t *pte;
1151 pte_t pteval;
c0718806 1152 spinlock_t *ptl;
1da177e4 1153 int ret = SWAP_AGAIN;
52629506 1154 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1155
479db0bf 1156 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1157 if (!pte)
81b4082d 1158 goto out;
1da177e4
LT
1159
1160 /*
1161 * If the page is mlock()d, we cannot swap it out.
1162 * If it's recently referenced (perhaps page_referenced
1163 * skipped over this mm) then we should reactivate it.
1164 */
14fa31b8 1165 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1166 if (vma->vm_flags & VM_LOCKED)
1167 goto out_mlock;
1168
daa5ba76 1169 if (flags & TTU_MUNLOCK)
53f79acb 1170 goto out_unmap;
14fa31b8
AK
1171 }
1172 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1173 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1174 ret = SWAP_FAIL;
1175 goto out_unmap;
1176 }
1177 }
1da177e4 1178
1da177e4
LT
1179 /* Nuke the page table entry. */
1180 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1181 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1182
1183 /* Move the dirty bit to the physical page now the pte is gone. */
1184 if (pte_dirty(pteval))
1185 set_page_dirty(page);
1186
365e9c87
HD
1187 /* Update high watermark before we lower rss */
1188 update_hiwater_rss(mm);
1189
888b9f7c 1190 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1191 if (!PageHuge(page)) {
1192 if (PageAnon(page))
1193 dec_mm_counter(mm, MM_ANONPAGES);
1194 else
1195 dec_mm_counter(mm, MM_FILEPAGES);
1196 }
888b9f7c 1197 set_pte_at(mm, address, pte,
5f24ae58 1198 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1199 } else if (pte_unused(pteval)) {
1200 /*
1201 * The guest indicated that the page content is of no
1202 * interest anymore. Simply discard the pte, vmscan
1203 * will take care of the rest.
1204 */
1205 if (PageAnon(page))
1206 dec_mm_counter(mm, MM_ANONPAGES);
1207 else
1208 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1209 } else if (PageAnon(page)) {
4c21e2f2 1210 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1211 pte_t swp_pte;
0697212a
CL
1212
1213 if (PageSwapCache(page)) {
1214 /*
1215 * Store the swap location in the pte.
1216 * See handle_pte_fault() ...
1217 */
570a335b
HD
1218 if (swap_duplicate(entry) < 0) {
1219 set_pte_at(mm, address, pte, pteval);
1220 ret = SWAP_FAIL;
1221 goto out_unmap;
1222 }
0697212a
CL
1223 if (list_empty(&mm->mmlist)) {
1224 spin_lock(&mmlist_lock);
1225 if (list_empty(&mm->mmlist))
1226 list_add(&mm->mmlist, &init_mm.mmlist);
1227 spin_unlock(&mmlist_lock);
1228 }
d559db08 1229 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1230 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1231 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1232 /*
1233 * Store the pfn of the page in a special migration
1234 * pte. do_swap_page() will wait until the migration
1235 * pte is removed and then restart fault handling.
1236 */
daa5ba76 1237 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1238 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1239 }
179ef71c
CG
1240 swp_pte = swp_entry_to_pte(entry);
1241 if (pte_soft_dirty(pteval))
1242 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1243 set_pte_at(mm, address, pte, swp_pte);
1da177e4 1244 BUG_ON(pte_file(*pte));
ce1744f4 1245 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1246 (flags & TTU_MIGRATION)) {
04e62a29
CL
1247 /* Establish migration entry for a file page */
1248 swp_entry_t entry;
1249 entry = make_migration_entry(page, pte_write(pteval));
1250 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1251 } else
d559db08 1252 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1253
edc315fd 1254 page_remove_rmap(page);
1da177e4
LT
1255 page_cache_release(page);
1256
1257out_unmap:
c0718806 1258 pte_unmap_unlock(pte, ptl);
daa5ba76 1259 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1260 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1261out:
1262 return ret;
53f79acb 1263
caed0f48
KM
1264out_mlock:
1265 pte_unmap_unlock(pte, ptl);
1266
1267
1268 /*
1269 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1270 * unstable result and race. Plus, We can't wait here because
5a505085 1271 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
caed0f48
KM
1272 * if trylock failed, the page remain in evictable lru and later
1273 * vmscan could retry to move the page to unevictable lru if the
1274 * page is actually mlocked.
1275 */
1276 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1277 if (vma->vm_flags & VM_LOCKED) {
1278 mlock_vma_page(page);
1279 ret = SWAP_MLOCK;
53f79acb 1280 }
caed0f48 1281 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1282 }
1da177e4
LT
1283 return ret;
1284}
1285
1286/*
1287 * objrmap doesn't work for nonlinear VMAs because the assumption that
1288 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1289 * Consequently, given a particular page and its ->index, we cannot locate the
1290 * ptes which are mapping that page without an exhaustive linear search.
1291 *
1292 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1293 * maps the file to which the target page belongs. The ->vm_private_data field
1294 * holds the current cursor into that scan. Successive searches will circulate
1295 * around the vma's virtual address space.
1296 *
1297 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1298 * more scanning pressure is placed against them as well. Eventually pages
1299 * will become fully unmapped and are eligible for eviction.
1300 *
1301 * For very sparsely populated VMAs this is a little inefficient - chances are
1302 * there there won't be many ptes located within the scan cluster. In this case
1303 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1304 *
1305 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1306 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1307 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1308 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1309 */
1310#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1311#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1312
b291f000
NP
1313static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1314 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1315{
1316 struct mm_struct *mm = vma->vm_mm;
1da177e4 1317 pmd_t *pmd;
c0718806 1318 pte_t *pte;
1da177e4 1319 pte_t pteval;
c0718806 1320 spinlock_t *ptl;
1da177e4
LT
1321 struct page *page;
1322 unsigned long address;
2ec74c3e
SG
1323 unsigned long mmun_start; /* For mmu_notifiers */
1324 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1325 unsigned long end;
b291f000
NP
1326 int ret = SWAP_AGAIN;
1327 int locked_vma = 0;
1da177e4 1328
1da177e4
LT
1329 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1330 end = address + CLUSTER_SIZE;
1331 if (address < vma->vm_start)
1332 address = vma->vm_start;
1333 if (end > vma->vm_end)
1334 end = vma->vm_end;
1335
6219049a
BL
1336 pmd = mm_find_pmd(mm, address);
1337 if (!pmd)
b291f000
NP
1338 return ret;
1339
2ec74c3e
SG
1340 mmun_start = address;
1341 mmun_end = end;
1342 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1343
b291f000 1344 /*
af8e3354 1345 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1346 * keep the sem while scanning the cluster for mlocking pages.
1347 */
af8e3354 1348 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1349 locked_vma = (vma->vm_flags & VM_LOCKED);
1350 if (!locked_vma)
1351 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1352 }
c0718806
HD
1353
1354 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1355
365e9c87
HD
1356 /* Update high watermark before we lower rss */
1357 update_hiwater_rss(mm);
1358
c0718806 1359 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1360 if (!pte_present(*pte))
1361 continue;
6aab341e
LT
1362 page = vm_normal_page(vma, address, *pte);
1363 BUG_ON(!page || PageAnon(page));
1da177e4 1364
b291f000 1365 if (locked_vma) {
57e68e9c
VB
1366 if (page == check_page) {
1367 /* we know we have check_page locked */
1368 mlock_vma_page(page);
b291f000 1369 ret = SWAP_MLOCK;
57e68e9c
VB
1370 } else if (trylock_page(page)) {
1371 /*
1372 * If we can lock the page, perform mlock.
1373 * Otherwise leave the page alone, it will be
1374 * eventually encountered again later.
1375 */
1376 mlock_vma_page(page);
1377 unlock_page(page);
1378 }
b291f000
NP
1379 continue; /* don't unmap */
1380 }
1381
cddb8a5c 1382 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1383 continue;
1384
1385 /* Nuke the page table entry. */
eca35133 1386 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1387 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1388
1389 /* If nonlinear, store the file page offset in the pte. */
41bb3476
CG
1390 if (page->index != linear_page_index(vma, address)) {
1391 pte_t ptfile = pgoff_to_pte(page->index);
1392 if (pte_soft_dirty(pteval))
b43790ee 1393 ptfile = pte_file_mksoft_dirty(ptfile);
41bb3476
CG
1394 set_pte_at(mm, address, pte, ptfile);
1395 }
1da177e4
LT
1396
1397 /* Move the dirty bit to the physical page now the pte is gone. */
1398 if (pte_dirty(pteval))
1399 set_page_dirty(page);
1400
edc315fd 1401 page_remove_rmap(page);
1da177e4 1402 page_cache_release(page);
d559db08 1403 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1404 (*mapcount)--;
1405 }
c0718806 1406 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1407 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1408 if (locked_vma)
1409 up_read(&vma->vm_mm->mmap_sem);
1410 return ret;
1da177e4
LT
1411}
1412
0f843c6a 1413static int try_to_unmap_nonlinear(struct page *page,
7e09e738 1414 struct address_space *mapping, void *arg)
0f843c6a 1415{
7e09e738 1416 struct vm_area_struct *vma;
0f843c6a
JK
1417 int ret = SWAP_AGAIN;
1418 unsigned long cursor;
1419 unsigned long max_nl_cursor = 0;
1420 unsigned long max_nl_size = 0;
1421 unsigned int mapcount;
1422
1423 list_for_each_entry(vma,
1424 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1425
1426 cursor = (unsigned long) vma->vm_private_data;
1427 if (cursor > max_nl_cursor)
1428 max_nl_cursor = cursor;
1429 cursor = vma->vm_end - vma->vm_start;
1430 if (cursor > max_nl_size)
1431 max_nl_size = cursor;
1432 }
1433
1434 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1435 return SWAP_FAIL;
1436 }
1437
1438 /*
1439 * We don't try to search for this page in the nonlinear vmas,
1440 * and page_referenced wouldn't have found it anyway. Instead
1441 * just walk the nonlinear vmas trying to age and unmap some.
1442 * The mapcount of the page we came in with is irrelevant,
1443 * but even so use it as a guide to how hard we should try?
1444 */
1445 mapcount = page_mapcount(page);
1446 if (!mapcount)
1447 return ret;
1448
1449 cond_resched();
1450
1451 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1452 if (max_nl_cursor == 0)
1453 max_nl_cursor = CLUSTER_SIZE;
1454
1455 do {
1456 list_for_each_entry(vma,
1457 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1458
1459 cursor = (unsigned long) vma->vm_private_data;
1460 while (cursor < max_nl_cursor &&
1461 cursor < vma->vm_end - vma->vm_start) {
1462 if (try_to_unmap_cluster(cursor, &mapcount,
1463 vma, page) == SWAP_MLOCK)
1464 ret = SWAP_MLOCK;
1465 cursor += CLUSTER_SIZE;
1466 vma->vm_private_data = (void *) cursor;
1467 if ((int)mapcount <= 0)
1468 return ret;
1469 }
1470 vma->vm_private_data = (void *) max_nl_cursor;
1471 }
1472 cond_resched();
1473 max_nl_cursor += CLUSTER_SIZE;
1474 } while (max_nl_cursor <= max_nl_size);
1475
1476 /*
1477 * Don't loop forever (perhaps all the remaining pages are
1478 * in locked vmas). Reset cursor on all unreserved nonlinear
1479 * vmas, now forgetting on which ones it had fallen behind.
1480 */
1481 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1482 vma->vm_private_data = NULL;
1483
1484 return ret;
1485}
1486
71e3aac0 1487bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1488{
1489 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1490
1491 if (!maybe_stack)
1492 return false;
1493
1494 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1495 VM_STACK_INCOMPLETE_SETUP)
1496 return true;
1497
1498 return false;
1499}
1500
52629506
JK
1501static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1502{
1503 return is_vma_temporary_stack(vma);
1504}
1505
52629506
JK
1506static int page_not_mapped(struct page *page)
1507{
1508 return !page_mapped(page);
1509};
1510
1da177e4
LT
1511/**
1512 * try_to_unmap - try to remove all page table mappings to a page
1513 * @page: the page to get unmapped
14fa31b8 1514 * @flags: action and flags
1da177e4
LT
1515 *
1516 * Tries to remove all the page table entries which are mapping this
1517 * page, used in the pageout path. Caller must hold the page lock.
1518 * Return values are:
1519 *
1520 * SWAP_SUCCESS - we succeeded in removing all mappings
1521 * SWAP_AGAIN - we missed a mapping, try again later
1522 * SWAP_FAIL - the page is unswappable
b291f000 1523 * SWAP_MLOCK - page is mlocked.
1da177e4 1524 */
14fa31b8 1525int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1526{
1527 int ret;
52629506
JK
1528 struct rmap_walk_control rwc = {
1529 .rmap_one = try_to_unmap_one,
1530 .arg = (void *)flags,
1531 .done = page_not_mapped,
1532 .file_nonlinear = try_to_unmap_nonlinear,
1533 .anon_lock = page_lock_anon_vma_read,
1534 };
1da177e4 1535
309381fe 1536 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1537
52629506
JK
1538 /*
1539 * During exec, a temporary VMA is setup and later moved.
1540 * The VMA is moved under the anon_vma lock but not the
1541 * page tables leading to a race where migration cannot
1542 * find the migration ptes. Rather than increasing the
1543 * locking requirements of exec(), migration skips
1544 * temporary VMAs until after exec() completes.
1545 */
daa5ba76 1546 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1547 rwc.invalid_vma = invalid_migration_vma;
1548
1549 ret = rmap_walk(page, &rwc);
1550
b291f000 1551 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1552 ret = SWAP_SUCCESS;
1553 return ret;
1554}
81b4082d 1555
b291f000
NP
1556/**
1557 * try_to_munlock - try to munlock a page
1558 * @page: the page to be munlocked
1559 *
1560 * Called from munlock code. Checks all of the VMAs mapping the page
1561 * to make sure nobody else has this page mlocked. The page will be
1562 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1563 *
1564 * Return values are:
1565 *
53f79acb 1566 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1567 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1568 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1569 * SWAP_MLOCK - page is now mlocked.
1570 */
1571int try_to_munlock(struct page *page)
1572{
e8351ac9
JK
1573 int ret;
1574 struct rmap_walk_control rwc = {
1575 .rmap_one = try_to_unmap_one,
1576 .arg = (void *)TTU_MUNLOCK,
1577 .done = page_not_mapped,
1578 /*
1579 * We don't bother to try to find the munlocked page in
1580 * nonlinears. It's costly. Instead, later, page reclaim logic
1581 * may call try_to_unmap() and recover PG_mlocked lazily.
1582 */
1583 .file_nonlinear = NULL,
1584 .anon_lock = page_lock_anon_vma_read,
1585
1586 };
1587
309381fe 1588 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1589
e8351ac9
JK
1590 ret = rmap_walk(page, &rwc);
1591 return ret;
b291f000 1592}
e9995ef9 1593
01d8b20d 1594void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1595{
01d8b20d 1596 struct anon_vma *root = anon_vma->root;
76545066 1597
624483f3 1598 anon_vma_free(anon_vma);
01d8b20d
PZ
1599 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1600 anon_vma_free(root);
76545066 1601}
76545066 1602
0dd1c7bb
JK
1603static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1604 struct rmap_walk_control *rwc)
faecd8dd
JK
1605{
1606 struct anon_vma *anon_vma;
1607
0dd1c7bb
JK
1608 if (rwc->anon_lock)
1609 return rwc->anon_lock(page);
1610
faecd8dd
JK
1611 /*
1612 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1613 * because that depends on page_mapped(); but not all its usages
1614 * are holding mmap_sem. Users without mmap_sem are required to
1615 * take a reference count to prevent the anon_vma disappearing
1616 */
1617 anon_vma = page_anon_vma(page);
1618 if (!anon_vma)
1619 return NULL;
1620
1621 anon_vma_lock_read(anon_vma);
1622 return anon_vma;
1623}
1624
e9995ef9 1625/*
e8351ac9
JK
1626 * rmap_walk_anon - do something to anonymous page using the object-based
1627 * rmap method
1628 * @page: the page to be handled
1629 * @rwc: control variable according to each walk type
1630 *
1631 * Find all the mappings of a page using the mapping pointer and the vma chains
1632 * contained in the anon_vma struct it points to.
1633 *
1634 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1635 * where the page was found will be held for write. So, we won't recheck
1636 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1637 * LOCKED.
e9995ef9 1638 */
051ac83a 1639static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1640{
1641 struct anon_vma *anon_vma;
bf181b9f 1642 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1643 struct anon_vma_chain *avc;
e9995ef9
HD
1644 int ret = SWAP_AGAIN;
1645
0dd1c7bb 1646 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1647 if (!anon_vma)
1648 return ret;
faecd8dd 1649
bf181b9f 1650 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1651 struct vm_area_struct *vma = avc->vma;
e9995ef9 1652 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1653
1654 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1655 continue;
1656
051ac83a 1657 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1658 if (ret != SWAP_AGAIN)
1659 break;
0dd1c7bb
JK
1660 if (rwc->done && rwc->done(page))
1661 break;
e9995ef9 1662 }
4fc3f1d6 1663 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1664 return ret;
1665}
1666
e8351ac9
JK
1667/*
1668 * rmap_walk_file - do something to file page using the object-based rmap method
1669 * @page: the page to be handled
1670 * @rwc: control variable according to each walk type
1671 *
1672 * Find all the mappings of a page using the mapping pointer and the vma chains
1673 * contained in the address_space struct it points to.
1674 *
1675 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1676 * where the page was found will be held for write. So, we won't recheck
1677 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1678 * LOCKED.
1679 */
051ac83a 1680static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1681{
1682 struct address_space *mapping = page->mapping;
b854f711 1683 pgoff_t pgoff = page->index << compound_order(page);
e9995ef9 1684 struct vm_area_struct *vma;
e9995ef9
HD
1685 int ret = SWAP_AGAIN;
1686
9f32624b
JK
1687 /*
1688 * The page lock not only makes sure that page->mapping cannot
1689 * suddenly be NULLified by truncation, it makes sure that the
1690 * structure at mapping cannot be freed and reused yet,
1691 * so we can safely take mapping->i_mmap_mutex.
1692 */
1693 VM_BUG_ON(!PageLocked(page));
1694
e9995ef9
HD
1695 if (!mapping)
1696 return ret;
3d48ae45 1697 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1699 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1700
1701 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 continue;
1703
051ac83a 1704 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1705 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1706 goto done;
1707 if (rwc->done && rwc->done(page))
1708 goto done;
e9995ef9 1709 }
0dd1c7bb
JK
1710
1711 if (!rwc->file_nonlinear)
1712 goto done;
1713
1714 if (list_empty(&mapping->i_mmap_nonlinear))
1715 goto done;
1716
7e09e738 1717 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
0dd1c7bb
JK
1718
1719done:
3d48ae45 1720 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1721 return ret;
1722}
1723
051ac83a 1724int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1725{
e9995ef9 1726 if (unlikely(PageKsm(page)))
051ac83a 1727 return rmap_walk_ksm(page, rwc);
e9995ef9 1728 else if (PageAnon(page))
051ac83a 1729 return rmap_walk_anon(page, rwc);
e9995ef9 1730 else
051ac83a 1731 return rmap_walk_file(page, rwc);
e9995ef9 1732}
0fe6e20b 1733
e3390f67 1734#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1735/*
1736 * The following three functions are for anonymous (private mapped) hugepages.
1737 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1738 * and no lru code, because we handle hugepages differently from common pages.
1739 */
1740static void __hugepage_set_anon_rmap(struct page *page,
1741 struct vm_area_struct *vma, unsigned long address, int exclusive)
1742{
1743 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1744
0fe6e20b 1745 BUG_ON(!anon_vma);
433abed6
NH
1746
1747 if (PageAnon(page))
1748 return;
1749 if (!exclusive)
1750 anon_vma = anon_vma->root;
1751
0fe6e20b
NH
1752 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1753 page->mapping = (struct address_space *) anon_vma;
1754 page->index = linear_page_index(vma, address);
1755}
1756
1757void hugepage_add_anon_rmap(struct page *page,
1758 struct vm_area_struct *vma, unsigned long address)
1759{
1760 struct anon_vma *anon_vma = vma->anon_vma;
1761 int first;
a850ea30
NH
1762
1763 BUG_ON(!PageLocked(page));
0fe6e20b 1764 BUG_ON(!anon_vma);
5dbe0af4 1765 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1766 first = atomic_inc_and_test(&page->_mapcount);
1767 if (first)
1768 __hugepage_set_anon_rmap(page, vma, address, 0);
1769}
1770
1771void hugepage_add_new_anon_rmap(struct page *page,
1772 struct vm_area_struct *vma, unsigned long address)
1773{
1774 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1775 atomic_set(&page->_mapcount, 0);
1776 __hugepage_set_anon_rmap(page, vma, address, 1);
1777}
e3390f67 1778#endif /* CONFIG_HUGETLB_PAGE */
This page took 0.858138 seconds and 5 git commands to generate.