[TCP]: fix memory leak in net/ipv4/tcp_probe.c::tcpprobe_read()
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316static void enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 */
686static struct lock_class_key on_slab_key;
687
688static inline void init_lock_keys(struct cache_sizes *s)
689{
690 int q;
691
692 for (q = 0; q < MAX_NUMNODES; q++) {
693 if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
694 continue;
695 lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
696 &on_slab_key);
697 }
698}
699
700#else
701static inline void init_lock_keys(struct cache_sizes *s)
702{
703}
704#endif
705
706
707
1da177e4 708/* Guard access to the cache-chain. */
fc0abb14 709static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
710static struct list_head cache_chain;
711
712/*
a737b3e2
AM
713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
1da177e4
LT
715 *
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
717 */
718atomic_t slab_reclaim_pages;
1da177e4
LT
719
720/*
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
723 */
724static enum {
725 NONE,
e498be7d
CL
726 PARTIAL_AC,
727 PARTIAL_L3,
1da177e4
LT
728 FULL
729} g_cpucache_up;
730
39d24e64
MK
731/*
732 * used by boot code to determine if it can use slab based allocator
733 */
734int slab_is_available(void)
735{
736 return g_cpucache_up == FULL;
737}
738
1da177e4
LT
739static DEFINE_PER_CPU(struct work_struct, reap_work);
740
343e0d7a 741static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
742{
743 return cachep->array[smp_processor_id()];
744}
745
a737b3e2
AM
746static inline struct kmem_cache *__find_general_cachep(size_t size,
747 gfp_t gfpflags)
1da177e4
LT
748{
749 struct cache_sizes *csizep = malloc_sizes;
750
751#if DEBUG
752 /* This happens if someone tries to call
b28a02de
PE
753 * kmem_cache_create(), or __kmalloc(), before
754 * the generic caches are initialized.
755 */
c7e43c78 756 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
757#endif
758 while (size > csizep->cs_size)
759 csizep++;
760
761 /*
0abf40c1 762 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
763 * has cs_{dma,}cachep==NULL. Thus no special case
764 * for large kmalloc calls required.
765 */
766 if (unlikely(gfpflags & GFP_DMA))
767 return csizep->cs_dmacachep;
768 return csizep->cs_cachep;
769}
770
343e0d7a 771struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
772{
773 return __find_general_cachep(size, gfpflags);
774}
775EXPORT_SYMBOL(kmem_find_general_cachep);
776
fbaccacf 777static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 778{
fbaccacf
SR
779 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
780}
1da177e4 781
a737b3e2
AM
782/*
783 * Calculate the number of objects and left-over bytes for a given buffer size.
784 */
fbaccacf
SR
785static void cache_estimate(unsigned long gfporder, size_t buffer_size,
786 size_t align, int flags, size_t *left_over,
787 unsigned int *num)
788{
789 int nr_objs;
790 size_t mgmt_size;
791 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 792
fbaccacf
SR
793 /*
794 * The slab management structure can be either off the slab or
795 * on it. For the latter case, the memory allocated for a
796 * slab is used for:
797 *
798 * - The struct slab
799 * - One kmem_bufctl_t for each object
800 * - Padding to respect alignment of @align
801 * - @buffer_size bytes for each object
802 *
803 * If the slab management structure is off the slab, then the
804 * alignment will already be calculated into the size. Because
805 * the slabs are all pages aligned, the objects will be at the
806 * correct alignment when allocated.
807 */
808 if (flags & CFLGS_OFF_SLAB) {
809 mgmt_size = 0;
810 nr_objs = slab_size / buffer_size;
811
812 if (nr_objs > SLAB_LIMIT)
813 nr_objs = SLAB_LIMIT;
814 } else {
815 /*
816 * Ignore padding for the initial guess. The padding
817 * is at most @align-1 bytes, and @buffer_size is at
818 * least @align. In the worst case, this result will
819 * be one greater than the number of objects that fit
820 * into the memory allocation when taking the padding
821 * into account.
822 */
823 nr_objs = (slab_size - sizeof(struct slab)) /
824 (buffer_size + sizeof(kmem_bufctl_t));
825
826 /*
827 * This calculated number will be either the right
828 * amount, or one greater than what we want.
829 */
830 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
831 > slab_size)
832 nr_objs--;
833
834 if (nr_objs > SLAB_LIMIT)
835 nr_objs = SLAB_LIMIT;
836
837 mgmt_size = slab_mgmt_size(nr_objs, align);
838 }
839 *num = nr_objs;
840 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
841}
842
843#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
844
a737b3e2
AM
845static void __slab_error(const char *function, struct kmem_cache *cachep,
846 char *msg)
1da177e4
LT
847{
848 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 849 function, cachep->name, msg);
1da177e4
LT
850 dump_stack();
851}
852
8fce4d8e
CL
853#ifdef CONFIG_NUMA
854/*
855 * Special reaping functions for NUMA systems called from cache_reap().
856 * These take care of doing round robin flushing of alien caches (containing
857 * objects freed on different nodes from which they were allocated) and the
858 * flushing of remote pcps by calling drain_node_pages.
859 */
860static DEFINE_PER_CPU(unsigned long, reap_node);
861
862static void init_reap_node(int cpu)
863{
864 int node;
865
866 node = next_node(cpu_to_node(cpu), node_online_map);
867 if (node == MAX_NUMNODES)
442295c9 868 node = first_node(node_online_map);
8fce4d8e
CL
869
870 __get_cpu_var(reap_node) = node;
871}
872
873static void next_reap_node(void)
874{
875 int node = __get_cpu_var(reap_node);
876
877 /*
878 * Also drain per cpu pages on remote zones
879 */
880 if (node != numa_node_id())
881 drain_node_pages(node);
882
883 node = next_node(node, node_online_map);
884 if (unlikely(node >= MAX_NUMNODES))
885 node = first_node(node_online_map);
886 __get_cpu_var(reap_node) = node;
887}
888
889#else
890#define init_reap_node(cpu) do { } while (0)
891#define next_reap_node(void) do { } while (0)
892#endif
893
1da177e4
LT
894/*
895 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
896 * via the workqueue/eventd.
897 * Add the CPU number into the expiration time to minimize the possibility of
898 * the CPUs getting into lockstep and contending for the global cache chain
899 * lock.
900 */
901static void __devinit start_cpu_timer(int cpu)
902{
903 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
904
905 /*
906 * When this gets called from do_initcalls via cpucache_init(),
907 * init_workqueues() has already run, so keventd will be setup
908 * at that time.
909 */
910 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 911 init_reap_node(cpu);
1da177e4
LT
912 INIT_WORK(reap_work, cache_reap, NULL);
913 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
914 }
915}
916
e498be7d 917static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 918 int batchcount)
1da177e4 919{
b28a02de 920 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
921 struct array_cache *nc = NULL;
922
e498be7d 923 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
924 if (nc) {
925 nc->avail = 0;
926 nc->limit = entries;
927 nc->batchcount = batchcount;
928 nc->touched = 0;
e498be7d 929 spin_lock_init(&nc->lock);
1da177e4
LT
930 }
931 return nc;
932}
933
3ded175a
CL
934/*
935 * Transfer objects in one arraycache to another.
936 * Locking must be handled by the caller.
937 *
938 * Return the number of entries transferred.
939 */
940static int transfer_objects(struct array_cache *to,
941 struct array_cache *from, unsigned int max)
942{
943 /* Figure out how many entries to transfer */
944 int nr = min(min(from->avail, max), to->limit - to->avail);
945
946 if (!nr)
947 return 0;
948
949 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
950 sizeof(void *) *nr);
951
952 from->avail -= nr;
953 to->avail += nr;
954 to->touched = 1;
955 return nr;
956}
957
e498be7d 958#ifdef CONFIG_NUMA
343e0d7a 959static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 960static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 961
5295a74c 962static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
963{
964 struct array_cache **ac_ptr;
b28a02de 965 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
966 int i;
967
968 if (limit > 1)
969 limit = 12;
970 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
971 if (ac_ptr) {
972 for_each_node(i) {
973 if (i == node || !node_online(i)) {
974 ac_ptr[i] = NULL;
975 continue;
976 }
977 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
978 if (!ac_ptr[i]) {
b28a02de 979 for (i--; i <= 0; i--)
e498be7d
CL
980 kfree(ac_ptr[i]);
981 kfree(ac_ptr);
982 return NULL;
983 }
984 }
985 }
986 return ac_ptr;
987}
988
5295a74c 989static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
990{
991 int i;
992
993 if (!ac_ptr)
994 return;
e498be7d 995 for_each_node(i)
b28a02de 996 kfree(ac_ptr[i]);
e498be7d
CL
997 kfree(ac_ptr);
998}
999
343e0d7a 1000static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1001 struct array_cache *ac, int node)
e498be7d
CL
1002{
1003 struct kmem_list3 *rl3 = cachep->nodelists[node];
1004
1005 if (ac->avail) {
1006 spin_lock(&rl3->list_lock);
e00946fe
CL
1007 /*
1008 * Stuff objects into the remote nodes shared array first.
1009 * That way we could avoid the overhead of putting the objects
1010 * into the free lists and getting them back later.
1011 */
693f7d36 1012 if (rl3->shared)
1013 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1014
ff69416e 1015 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1016 ac->avail = 0;
1017 spin_unlock(&rl3->list_lock);
1018 }
1019}
1020
8fce4d8e
CL
1021/*
1022 * Called from cache_reap() to regularly drain alien caches round robin.
1023 */
1024static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1025{
1026 int node = __get_cpu_var(reap_node);
1027
1028 if (l3->alien) {
1029 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1030
1031 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1032 __drain_alien_cache(cachep, ac, node);
1033 spin_unlock_irq(&ac->lock);
1034 }
1035 }
1036}
1037
a737b3e2
AM
1038static void drain_alien_cache(struct kmem_cache *cachep,
1039 struct array_cache **alien)
e498be7d 1040{
b28a02de 1041 int i = 0;
e498be7d
CL
1042 struct array_cache *ac;
1043 unsigned long flags;
1044
1045 for_each_online_node(i) {
4484ebf1 1046 ac = alien[i];
e498be7d
CL
1047 if (ac) {
1048 spin_lock_irqsave(&ac->lock, flags);
1049 __drain_alien_cache(cachep, ac, i);
1050 spin_unlock_irqrestore(&ac->lock, flags);
1051 }
1052 }
1053}
729bd0b7 1054
873623df 1055static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1056{
1057 struct slab *slabp = virt_to_slab(objp);
1058 int nodeid = slabp->nodeid;
1059 struct kmem_list3 *l3;
1060 struct array_cache *alien = NULL;
1061
1062 /*
1063 * Make sure we are not freeing a object from another node to the array
1064 * cache on this cpu.
1065 */
1066 if (likely(slabp->nodeid == numa_node_id()))
1067 return 0;
1068
1069 l3 = cachep->nodelists[numa_node_id()];
1070 STATS_INC_NODEFREES(cachep);
1071 if (l3->alien && l3->alien[nodeid]) {
1072 alien = l3->alien[nodeid];
873623df 1073 spin_lock(&alien->lock);
729bd0b7
PE
1074 if (unlikely(alien->avail == alien->limit)) {
1075 STATS_INC_ACOVERFLOW(cachep);
1076 __drain_alien_cache(cachep, alien, nodeid);
1077 }
1078 alien->entry[alien->avail++] = objp;
1079 spin_unlock(&alien->lock);
1080 } else {
1081 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1082 free_block(cachep, &objp, 1, nodeid);
1083 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1084 }
1085 return 1;
1086}
1087
e498be7d 1088#else
7a21ef6f 1089
4484ebf1 1090#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1091#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1092
7a21ef6f
LT
1093static inline struct array_cache **alloc_alien_cache(int node, int limit)
1094{
1095 return (struct array_cache **) 0x01020304ul;
1096}
1097
4484ebf1
RT
1098static inline void free_alien_cache(struct array_cache **ac_ptr)
1099{
1100}
7a21ef6f 1101
873623df 1102static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1103{
1104 return 0;
1105}
1106
e498be7d
CL
1107#endif
1108
8c78f307 1109static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1110 unsigned long action, void *hcpu)
1da177e4
LT
1111{
1112 long cpu = (long)hcpu;
343e0d7a 1113 struct kmem_cache *cachep;
e498be7d
CL
1114 struct kmem_list3 *l3 = NULL;
1115 int node = cpu_to_node(cpu);
1116 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1117
1118 switch (action) {
1119 case CPU_UP_PREPARE:
fc0abb14 1120 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1121 /*
1122 * We need to do this right in the beginning since
e498be7d
CL
1123 * alloc_arraycache's are going to use this list.
1124 * kmalloc_node allows us to add the slab to the right
1125 * kmem_list3 and not this cpu's kmem_list3
1126 */
1127
1da177e4 1128 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1129 /*
1130 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1131 * begin anything. Make sure some other cpu on this
1132 * node has not already allocated this
1133 */
1134 if (!cachep->nodelists[node]) {
a737b3e2
AM
1135 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1136 if (!l3)
e498be7d
CL
1137 goto bad;
1138 kmem_list3_init(l3);
1139 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1140 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1141
4484ebf1
RT
1142 /*
1143 * The l3s don't come and go as CPUs come and
1144 * go. cache_chain_mutex is sufficient
1145 * protection here.
1146 */
e498be7d
CL
1147 cachep->nodelists[node] = l3;
1148 }
1da177e4 1149
e498be7d
CL
1150 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1151 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1152 (1 + nr_cpus_node(node)) *
1153 cachep->batchcount + cachep->num;
e498be7d
CL
1154 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1155 }
1156
a737b3e2
AM
1157 /*
1158 * Now we can go ahead with allocating the shared arrays and
1159 * array caches
1160 */
e498be7d 1161 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1162 struct array_cache *nc;
4484ebf1
RT
1163 struct array_cache *shared;
1164 struct array_cache **alien;
cd105df4 1165
e498be7d 1166 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1167 cachep->batchcount);
1da177e4
LT
1168 if (!nc)
1169 goto bad;
4484ebf1
RT
1170 shared = alloc_arraycache(node,
1171 cachep->shared * cachep->batchcount,
1172 0xbaadf00d);
1173 if (!shared)
1174 goto bad;
7a21ef6f 1175
4484ebf1
RT
1176 alien = alloc_alien_cache(node, cachep->limit);
1177 if (!alien)
1178 goto bad;
1da177e4 1179 cachep->array[cpu] = nc;
e498be7d
CL
1180 l3 = cachep->nodelists[node];
1181 BUG_ON(!l3);
e498be7d 1182
4484ebf1
RT
1183 spin_lock_irq(&l3->list_lock);
1184 if (!l3->shared) {
1185 /*
1186 * We are serialised from CPU_DEAD or
1187 * CPU_UP_CANCELLED by the cpucontrol lock
1188 */
1189 l3->shared = shared;
1190 shared = NULL;
e498be7d 1191 }
4484ebf1
RT
1192#ifdef CONFIG_NUMA
1193 if (!l3->alien) {
1194 l3->alien = alien;
1195 alien = NULL;
1196 }
1197#endif
1198 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1199 kfree(shared);
1200 free_alien_cache(alien);
1da177e4 1201 }
fc0abb14 1202 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1203 break;
1204 case CPU_ONLINE:
1205 start_cpu_timer(cpu);
1206 break;
1207#ifdef CONFIG_HOTPLUG_CPU
1208 case CPU_DEAD:
4484ebf1
RT
1209 /*
1210 * Even if all the cpus of a node are down, we don't free the
1211 * kmem_list3 of any cache. This to avoid a race between
1212 * cpu_down, and a kmalloc allocation from another cpu for
1213 * memory from the node of the cpu going down. The list3
1214 * structure is usually allocated from kmem_cache_create() and
1215 * gets destroyed at kmem_cache_destroy().
1216 */
1da177e4
LT
1217 /* fall thru */
1218 case CPU_UP_CANCELED:
fc0abb14 1219 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1220 list_for_each_entry(cachep, &cache_chain, next) {
1221 struct array_cache *nc;
4484ebf1
RT
1222 struct array_cache *shared;
1223 struct array_cache **alien;
e498be7d 1224 cpumask_t mask;
1da177e4 1225
e498be7d 1226 mask = node_to_cpumask(node);
1da177e4
LT
1227 /* cpu is dead; no one can alloc from it. */
1228 nc = cachep->array[cpu];
1229 cachep->array[cpu] = NULL;
e498be7d
CL
1230 l3 = cachep->nodelists[node];
1231
1232 if (!l3)
4484ebf1 1233 goto free_array_cache;
e498be7d 1234
ca3b9b91 1235 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1236
1237 /* Free limit for this kmem_list3 */
1238 l3->free_limit -= cachep->batchcount;
1239 if (nc)
ff69416e 1240 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1241
1242 if (!cpus_empty(mask)) {
ca3b9b91 1243 spin_unlock_irq(&l3->list_lock);
4484ebf1 1244 goto free_array_cache;
b28a02de 1245 }
e498be7d 1246
4484ebf1
RT
1247 shared = l3->shared;
1248 if (shared) {
e498be7d 1249 free_block(cachep, l3->shared->entry,
b28a02de 1250 l3->shared->avail, node);
e498be7d
CL
1251 l3->shared = NULL;
1252 }
e498be7d 1253
4484ebf1
RT
1254 alien = l3->alien;
1255 l3->alien = NULL;
1256
1257 spin_unlock_irq(&l3->list_lock);
1258
1259 kfree(shared);
1260 if (alien) {
1261 drain_alien_cache(cachep, alien);
1262 free_alien_cache(alien);
e498be7d 1263 }
4484ebf1 1264free_array_cache:
1da177e4
LT
1265 kfree(nc);
1266 }
4484ebf1
RT
1267 /*
1268 * In the previous loop, all the objects were freed to
1269 * the respective cache's slabs, now we can go ahead and
1270 * shrink each nodelist to its limit.
1271 */
1272 list_for_each_entry(cachep, &cache_chain, next) {
1273 l3 = cachep->nodelists[node];
1274 if (!l3)
1275 continue;
ed11d9eb 1276 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1277 }
fc0abb14 1278 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1279 break;
1280#endif
1281 }
1282 return NOTIFY_OK;
a737b3e2 1283bad:
fc0abb14 1284 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1285 return NOTIFY_BAD;
1286}
1287
74b85f37
CS
1288static struct notifier_block __cpuinitdata cpucache_notifier = {
1289 &cpuup_callback, NULL, 0
1290};
1da177e4 1291
e498be7d
CL
1292/*
1293 * swap the static kmem_list3 with kmalloced memory
1294 */
a737b3e2
AM
1295static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1296 int nodeid)
e498be7d
CL
1297{
1298 struct kmem_list3 *ptr;
1299
1300 BUG_ON(cachep->nodelists[nodeid] != list);
1301 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1302 BUG_ON(!ptr);
1303
1304 local_irq_disable();
1305 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1306 /*
1307 * Do not assume that spinlocks can be initialized via memcpy:
1308 */
1309 spin_lock_init(&ptr->list_lock);
1310
e498be7d
CL
1311 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1312 cachep->nodelists[nodeid] = ptr;
1313 local_irq_enable();
1314}
1315
a737b3e2
AM
1316/*
1317 * Initialisation. Called after the page allocator have been initialised and
1318 * before smp_init().
1da177e4
LT
1319 */
1320void __init kmem_cache_init(void)
1321{
1322 size_t left_over;
1323 struct cache_sizes *sizes;
1324 struct cache_names *names;
e498be7d 1325 int i;
07ed76b2 1326 int order;
e498be7d
CL
1327
1328 for (i = 0; i < NUM_INIT_LISTS; i++) {
1329 kmem_list3_init(&initkmem_list3[i]);
1330 if (i < MAX_NUMNODES)
1331 cache_cache.nodelists[i] = NULL;
1332 }
1da177e4
LT
1333
1334 /*
1335 * Fragmentation resistance on low memory - only use bigger
1336 * page orders on machines with more than 32MB of memory.
1337 */
1338 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1339 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1340
1da177e4
LT
1341 /* Bootstrap is tricky, because several objects are allocated
1342 * from caches that do not exist yet:
a737b3e2
AM
1343 * 1) initialize the cache_cache cache: it contains the struct
1344 * kmem_cache structures of all caches, except cache_cache itself:
1345 * cache_cache is statically allocated.
e498be7d
CL
1346 * Initially an __init data area is used for the head array and the
1347 * kmem_list3 structures, it's replaced with a kmalloc allocated
1348 * array at the end of the bootstrap.
1da177e4 1349 * 2) Create the first kmalloc cache.
343e0d7a 1350 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1351 * An __init data area is used for the head array.
1352 * 3) Create the remaining kmalloc caches, with minimally sized
1353 * head arrays.
1da177e4
LT
1354 * 4) Replace the __init data head arrays for cache_cache and the first
1355 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1356 * 5) Replace the __init data for kmem_list3 for cache_cache and
1357 * the other cache's with kmalloc allocated memory.
1358 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1359 */
1360
1361 /* 1) create the cache_cache */
1da177e4
LT
1362 INIT_LIST_HEAD(&cache_chain);
1363 list_add(&cache_cache.next, &cache_chain);
1364 cache_cache.colour_off = cache_line_size();
1365 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1366 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1367
a737b3e2
AM
1368 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1369 cache_line_size());
1da177e4 1370
07ed76b2
JS
1371 for (order = 0; order < MAX_ORDER; order++) {
1372 cache_estimate(order, cache_cache.buffer_size,
1373 cache_line_size(), 0, &left_over, &cache_cache.num);
1374 if (cache_cache.num)
1375 break;
1376 }
40094fa6 1377 BUG_ON(!cache_cache.num);
07ed76b2 1378 cache_cache.gfporder = order;
b28a02de 1379 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1380 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1381 sizeof(struct slab), cache_line_size());
1da177e4
LT
1382
1383 /* 2+3) create the kmalloc caches */
1384 sizes = malloc_sizes;
1385 names = cache_names;
1386
a737b3e2
AM
1387 /*
1388 * Initialize the caches that provide memory for the array cache and the
1389 * kmem_list3 structures first. Without this, further allocations will
1390 * bug.
e498be7d
CL
1391 */
1392
1393 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1394 sizes[INDEX_AC].cs_size,
1395 ARCH_KMALLOC_MINALIGN,
1396 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1397 NULL, NULL);
e498be7d 1398
a737b3e2 1399 if (INDEX_AC != INDEX_L3) {
e498be7d 1400 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1401 kmem_cache_create(names[INDEX_L3].name,
1402 sizes[INDEX_L3].cs_size,
1403 ARCH_KMALLOC_MINALIGN,
1404 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1405 NULL, NULL);
1406 }
e498be7d 1407
e0a42726
IM
1408 slab_early_init = 0;
1409
1da177e4 1410 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1411 /*
1412 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1413 * This should be particularly beneficial on SMP boxes, as it
1414 * eliminates "false sharing".
1415 * Note for systems short on memory removing the alignment will
e498be7d
CL
1416 * allow tighter packing of the smaller caches.
1417 */
a737b3e2 1418 if (!sizes->cs_cachep) {
e498be7d 1419 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1420 sizes->cs_size,
1421 ARCH_KMALLOC_MINALIGN,
1422 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1423 NULL, NULL);
1424 }
f1aaee53 1425 init_lock_keys(sizes);
1da177e4 1426
1da177e4 1427 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1428 sizes->cs_size,
1429 ARCH_KMALLOC_MINALIGN,
1430 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1431 SLAB_PANIC,
1432 NULL, NULL);
1da177e4
LT
1433 sizes++;
1434 names++;
1435 }
1436 /* 4) Replace the bootstrap head arrays */
1437 {
2b2d5493 1438 struct array_cache *ptr;
e498be7d 1439
1da177e4 1440 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1441
1da177e4 1442 local_irq_disable();
9a2dba4b
PE
1443 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1444 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1445 sizeof(struct arraycache_init));
2b2d5493
IM
1446 /*
1447 * Do not assume that spinlocks can be initialized via memcpy:
1448 */
1449 spin_lock_init(&ptr->lock);
1450
1da177e4
LT
1451 cache_cache.array[smp_processor_id()] = ptr;
1452 local_irq_enable();
e498be7d 1453
1da177e4 1454 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1455
1da177e4 1456 local_irq_disable();
9a2dba4b 1457 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1458 != &initarray_generic.cache);
9a2dba4b 1459 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1460 sizeof(struct arraycache_init));
2b2d5493
IM
1461 /*
1462 * Do not assume that spinlocks can be initialized via memcpy:
1463 */
1464 spin_lock_init(&ptr->lock);
1465
e498be7d 1466 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1467 ptr;
1da177e4
LT
1468 local_irq_enable();
1469 }
e498be7d
CL
1470 /* 5) Replace the bootstrap kmem_list3's */
1471 {
1472 int node;
1473 /* Replace the static kmem_list3 structures for the boot cpu */
1474 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1475 numa_node_id());
e498be7d
CL
1476
1477 for_each_online_node(node) {
1478 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1479 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1480
1481 if (INDEX_AC != INDEX_L3) {
1482 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1483 &initkmem_list3[SIZE_L3 + node],
1484 node);
e498be7d
CL
1485 }
1486 }
1487 }
1da177e4 1488
e498be7d 1489 /* 6) resize the head arrays to their final sizes */
1da177e4 1490 {
343e0d7a 1491 struct kmem_cache *cachep;
fc0abb14 1492 mutex_lock(&cache_chain_mutex);
1da177e4 1493 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1494 enable_cpucache(cachep);
fc0abb14 1495 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1496 }
1497
1498 /* Done! */
1499 g_cpucache_up = FULL;
1500
a737b3e2
AM
1501 /*
1502 * Register a cpu startup notifier callback that initializes
1503 * cpu_cache_get for all new cpus
1da177e4
LT
1504 */
1505 register_cpu_notifier(&cpucache_notifier);
1da177e4 1506
a737b3e2
AM
1507 /*
1508 * The reap timers are started later, with a module init call: That part
1509 * of the kernel is not yet operational.
1da177e4
LT
1510 */
1511}
1512
1513static int __init cpucache_init(void)
1514{
1515 int cpu;
1516
a737b3e2
AM
1517 /*
1518 * Register the timers that return unneeded pages to the page allocator
1da177e4 1519 */
e498be7d 1520 for_each_online_cpu(cpu)
a737b3e2 1521 start_cpu_timer(cpu);
1da177e4
LT
1522 return 0;
1523}
1da177e4
LT
1524__initcall(cpucache_init);
1525
1526/*
1527 * Interface to system's page allocator. No need to hold the cache-lock.
1528 *
1529 * If we requested dmaable memory, we will get it. Even if we
1530 * did not request dmaable memory, we might get it, but that
1531 * would be relatively rare and ignorable.
1532 */
343e0d7a 1533static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1534{
1535 struct page *page;
e1b6aa6f 1536 int nr_pages;
1da177e4
LT
1537 int i;
1538
d6fef9da 1539#ifndef CONFIG_MMU
e1b6aa6f
CH
1540 /*
1541 * Nommu uses slab's for process anonymous memory allocations, and thus
1542 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1543 */
e1b6aa6f 1544 flags |= __GFP_COMP;
d6fef9da 1545#endif
e1b6aa6f
CH
1546 flags |= cachep->gfpflags;
1547
1548 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1549 if (!page)
1550 return NULL;
1da177e4 1551
e1b6aa6f 1552 nr_pages = (1 << cachep->gfporder);
1da177e4 1553 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f 1554 atomic_add(nr_pages, &slab_reclaim_pages);
9a865ffa 1555 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
e1b6aa6f
CH
1556 for (i = 0; i < nr_pages; i++)
1557 __SetPageSlab(page + i);
1558 return page_address(page);
1da177e4
LT
1559}
1560
1561/*
1562 * Interface to system's page release.
1563 */
343e0d7a 1564static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1565{
b28a02de 1566 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1567 struct page *page = virt_to_page(addr);
1568 const unsigned long nr_freed = i;
1569
9a865ffa 1570 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1da177e4 1571 while (i--) {
f205b2fe
NP
1572 BUG_ON(!PageSlab(page));
1573 __ClearPageSlab(page);
1da177e4
LT
1574 page++;
1575 }
1da177e4
LT
1576 if (current->reclaim_state)
1577 current->reclaim_state->reclaimed_slab += nr_freed;
1578 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1579 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1580 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1581}
1582
1583static void kmem_rcu_free(struct rcu_head *head)
1584{
b28a02de 1585 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1586 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1587
1588 kmem_freepages(cachep, slab_rcu->addr);
1589 if (OFF_SLAB(cachep))
1590 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1591}
1592
1593#if DEBUG
1594
1595#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1596static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1597 unsigned long caller)
1da177e4 1598{
3dafccf2 1599 int size = obj_size(cachep);
1da177e4 1600
3dafccf2 1601 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1602
b28a02de 1603 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1604 return;
1605
b28a02de
PE
1606 *addr++ = 0x12345678;
1607 *addr++ = caller;
1608 *addr++ = smp_processor_id();
1609 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1610 {
1611 unsigned long *sptr = &caller;
1612 unsigned long svalue;
1613
1614 while (!kstack_end(sptr)) {
1615 svalue = *sptr++;
1616 if (kernel_text_address(svalue)) {
b28a02de 1617 *addr++ = svalue;
1da177e4
LT
1618 size -= sizeof(unsigned long);
1619 if (size <= sizeof(unsigned long))
1620 break;
1621 }
1622 }
1623
1624 }
b28a02de 1625 *addr++ = 0x87654321;
1da177e4
LT
1626}
1627#endif
1628
343e0d7a 1629static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1630{
3dafccf2
MS
1631 int size = obj_size(cachep);
1632 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1633
1634 memset(addr, val, size);
b28a02de 1635 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1636}
1637
1638static void dump_line(char *data, int offset, int limit)
1639{
1640 int i;
1641 printk(KERN_ERR "%03x:", offset);
a737b3e2 1642 for (i = 0; i < limit; i++)
b28a02de 1643 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1644 printk("\n");
1645}
1646#endif
1647
1648#if DEBUG
1649
343e0d7a 1650static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1651{
1652 int i, size;
1653 char *realobj;
1654
1655 if (cachep->flags & SLAB_RED_ZONE) {
1656 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1657 *dbg_redzone1(cachep, objp),
1658 *dbg_redzone2(cachep, objp));
1da177e4
LT
1659 }
1660
1661 if (cachep->flags & SLAB_STORE_USER) {
1662 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1663 *dbg_userword(cachep, objp));
1da177e4 1664 print_symbol("(%s)",
a737b3e2 1665 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1666 printk("\n");
1667 }
3dafccf2
MS
1668 realobj = (char *)objp + obj_offset(cachep);
1669 size = obj_size(cachep);
b28a02de 1670 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1671 int limit;
1672 limit = 16;
b28a02de
PE
1673 if (i + limit > size)
1674 limit = size - i;
1da177e4
LT
1675 dump_line(realobj, i, limit);
1676 }
1677}
1678
343e0d7a 1679static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1680{
1681 char *realobj;
1682 int size, i;
1683 int lines = 0;
1684
3dafccf2
MS
1685 realobj = (char *)objp + obj_offset(cachep);
1686 size = obj_size(cachep);
1da177e4 1687
b28a02de 1688 for (i = 0; i < size; i++) {
1da177e4 1689 char exp = POISON_FREE;
b28a02de 1690 if (i == size - 1)
1da177e4
LT
1691 exp = POISON_END;
1692 if (realobj[i] != exp) {
1693 int limit;
1694 /* Mismatch ! */
1695 /* Print header */
1696 if (lines == 0) {
b28a02de 1697 printk(KERN_ERR
a737b3e2
AM
1698 "Slab corruption: start=%p, len=%d\n",
1699 realobj, size);
1da177e4
LT
1700 print_objinfo(cachep, objp, 0);
1701 }
1702 /* Hexdump the affected line */
b28a02de 1703 i = (i / 16) * 16;
1da177e4 1704 limit = 16;
b28a02de
PE
1705 if (i + limit > size)
1706 limit = size - i;
1da177e4
LT
1707 dump_line(realobj, i, limit);
1708 i += 16;
1709 lines++;
1710 /* Limit to 5 lines */
1711 if (lines > 5)
1712 break;
1713 }
1714 }
1715 if (lines != 0) {
1716 /* Print some data about the neighboring objects, if they
1717 * exist:
1718 */
6ed5eb22 1719 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1720 unsigned int objnr;
1da177e4 1721
8fea4e96 1722 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1723 if (objnr) {
8fea4e96 1724 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1725 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1726 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1727 realobj, size);
1da177e4
LT
1728 print_objinfo(cachep, objp, 2);
1729 }
b28a02de 1730 if (objnr + 1 < cachep->num) {
8fea4e96 1731 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1732 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1733 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1734 realobj, size);
1da177e4
LT
1735 print_objinfo(cachep, objp, 2);
1736 }
1737 }
1738}
1739#endif
1740
12dd36fa
MD
1741#if DEBUG
1742/**
911851e6
RD
1743 * slab_destroy_objs - destroy a slab and its objects
1744 * @cachep: cache pointer being destroyed
1745 * @slabp: slab pointer being destroyed
1746 *
1747 * Call the registered destructor for each object in a slab that is being
1748 * destroyed.
1da177e4 1749 */
343e0d7a 1750static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1751{
1da177e4
LT
1752 int i;
1753 for (i = 0; i < cachep->num; i++) {
8fea4e96 1754 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1755
1756 if (cachep->flags & SLAB_POISON) {
1757#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1758 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1759 OFF_SLAB(cachep))
b28a02de 1760 kernel_map_pages(virt_to_page(objp),
a737b3e2 1761 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1762 else
1763 check_poison_obj(cachep, objp);
1764#else
1765 check_poison_obj(cachep, objp);
1766#endif
1767 }
1768 if (cachep->flags & SLAB_RED_ZONE) {
1769 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1770 slab_error(cachep, "start of a freed object "
b28a02de 1771 "was overwritten");
1da177e4
LT
1772 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1773 slab_error(cachep, "end of a freed object "
b28a02de 1774 "was overwritten");
1da177e4
LT
1775 }
1776 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1777 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1778 }
12dd36fa 1779}
1da177e4 1780#else
343e0d7a 1781static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1782{
1da177e4
LT
1783 if (cachep->dtor) {
1784 int i;
1785 for (i = 0; i < cachep->num; i++) {
8fea4e96 1786 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1787 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1788 }
1789 }
12dd36fa 1790}
1da177e4
LT
1791#endif
1792
911851e6
RD
1793/**
1794 * slab_destroy - destroy and release all objects in a slab
1795 * @cachep: cache pointer being destroyed
1796 * @slabp: slab pointer being destroyed
1797 *
12dd36fa 1798 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1799 * Before calling the slab must have been unlinked from the cache. The
1800 * cache-lock is not held/needed.
12dd36fa 1801 */
343e0d7a 1802static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1803{
1804 void *addr = slabp->s_mem - slabp->colouroff;
1805
1806 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1807 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1808 struct slab_rcu *slab_rcu;
1809
b28a02de 1810 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1811 slab_rcu->cachep = cachep;
1812 slab_rcu->addr = addr;
1813 call_rcu(&slab_rcu->head, kmem_rcu_free);
1814 } else {
1815 kmem_freepages(cachep, addr);
873623df
IM
1816 if (OFF_SLAB(cachep))
1817 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1818 }
1819}
1820
a737b3e2
AM
1821/*
1822 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1823 * size of kmem_list3.
1824 */
343e0d7a 1825static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1826{
1827 int node;
1828
1829 for_each_online_node(node) {
b28a02de 1830 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1831 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1832 REAPTIMEOUT_LIST3 +
1833 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1834 }
1835}
1836
4d268eba 1837/**
a70773dd
RD
1838 * calculate_slab_order - calculate size (page order) of slabs
1839 * @cachep: pointer to the cache that is being created
1840 * @size: size of objects to be created in this cache.
1841 * @align: required alignment for the objects.
1842 * @flags: slab allocation flags
1843 *
1844 * Also calculates the number of objects per slab.
4d268eba
PE
1845 *
1846 * This could be made much more intelligent. For now, try to avoid using
1847 * high order pages for slabs. When the gfp() functions are more friendly
1848 * towards high-order requests, this should be changed.
1849 */
a737b3e2 1850static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1851 size_t size, size_t align, unsigned long flags)
4d268eba 1852{
b1ab41c4 1853 unsigned long offslab_limit;
4d268eba 1854 size_t left_over = 0;
9888e6fa 1855 int gfporder;
4d268eba 1856
a737b3e2 1857 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1858 unsigned int num;
1859 size_t remainder;
1860
9888e6fa 1861 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1862 if (!num)
1863 continue;
9888e6fa 1864
b1ab41c4
IM
1865 if (flags & CFLGS_OFF_SLAB) {
1866 /*
1867 * Max number of objs-per-slab for caches which
1868 * use off-slab slabs. Needed to avoid a possible
1869 * looping condition in cache_grow().
1870 */
1871 offslab_limit = size - sizeof(struct slab);
1872 offslab_limit /= sizeof(kmem_bufctl_t);
1873
1874 if (num > offslab_limit)
1875 break;
1876 }
4d268eba 1877
9888e6fa 1878 /* Found something acceptable - save it away */
4d268eba 1879 cachep->num = num;
9888e6fa 1880 cachep->gfporder = gfporder;
4d268eba
PE
1881 left_over = remainder;
1882
f78bb8ad
LT
1883 /*
1884 * A VFS-reclaimable slab tends to have most allocations
1885 * as GFP_NOFS and we really don't want to have to be allocating
1886 * higher-order pages when we are unable to shrink dcache.
1887 */
1888 if (flags & SLAB_RECLAIM_ACCOUNT)
1889 break;
1890
4d268eba
PE
1891 /*
1892 * Large number of objects is good, but very large slabs are
1893 * currently bad for the gfp()s.
1894 */
9888e6fa 1895 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1896 break;
1897
9888e6fa
LT
1898 /*
1899 * Acceptable internal fragmentation?
1900 */
a737b3e2 1901 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1902 break;
1903 }
1904 return left_over;
1905}
1906
f30cf7d1
PE
1907static void setup_cpu_cache(struct kmem_cache *cachep)
1908{
1909 if (g_cpucache_up == FULL) {
1910 enable_cpucache(cachep);
1911 return;
1912 }
1913 if (g_cpucache_up == NONE) {
1914 /*
1915 * Note: the first kmem_cache_create must create the cache
1916 * that's used by kmalloc(24), otherwise the creation of
1917 * further caches will BUG().
1918 */
1919 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1920
1921 /*
1922 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1923 * the first cache, then we need to set up all its list3s,
1924 * otherwise the creation of further caches will BUG().
1925 */
1926 set_up_list3s(cachep, SIZE_AC);
1927 if (INDEX_AC == INDEX_L3)
1928 g_cpucache_up = PARTIAL_L3;
1929 else
1930 g_cpucache_up = PARTIAL_AC;
1931 } else {
1932 cachep->array[smp_processor_id()] =
1933 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1934
1935 if (g_cpucache_up == PARTIAL_AC) {
1936 set_up_list3s(cachep, SIZE_L3);
1937 g_cpucache_up = PARTIAL_L3;
1938 } else {
1939 int node;
1940 for_each_online_node(node) {
1941 cachep->nodelists[node] =
1942 kmalloc_node(sizeof(struct kmem_list3),
1943 GFP_KERNEL, node);
1944 BUG_ON(!cachep->nodelists[node]);
1945 kmem_list3_init(cachep->nodelists[node]);
1946 }
1947 }
1948 }
1949 cachep->nodelists[numa_node_id()]->next_reap =
1950 jiffies + REAPTIMEOUT_LIST3 +
1951 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1952
1953 cpu_cache_get(cachep)->avail = 0;
1954 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1955 cpu_cache_get(cachep)->batchcount = 1;
1956 cpu_cache_get(cachep)->touched = 0;
1957 cachep->batchcount = 1;
1958 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1959}
1960
1da177e4
LT
1961/**
1962 * kmem_cache_create - Create a cache.
1963 * @name: A string which is used in /proc/slabinfo to identify this cache.
1964 * @size: The size of objects to be created in this cache.
1965 * @align: The required alignment for the objects.
1966 * @flags: SLAB flags
1967 * @ctor: A constructor for the objects.
1968 * @dtor: A destructor for the objects.
1969 *
1970 * Returns a ptr to the cache on success, NULL on failure.
1971 * Cannot be called within a int, but can be interrupted.
1972 * The @ctor is run when new pages are allocated by the cache
1973 * and the @dtor is run before the pages are handed back.
1974 *
1975 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1976 * the module calling this has to destroy the cache before getting unloaded.
1977 *
1da177e4
LT
1978 * The flags are
1979 *
1980 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1981 * to catch references to uninitialised memory.
1982 *
1983 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1984 * for buffer overruns.
1985 *
1da177e4
LT
1986 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1987 * cacheline. This can be beneficial if you're counting cycles as closely
1988 * as davem.
1989 */
343e0d7a 1990struct kmem_cache *
1da177e4 1991kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1992 unsigned long flags,
1993 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1994 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1995{
1996 size_t left_over, slab_size, ralign;
7a7c381d 1997 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
1998
1999 /*
2000 * Sanity checks... these are all serious usage bugs.
2001 */
a737b3e2 2002 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2003 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2004 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2005 name);
b28a02de
PE
2006 BUG();
2007 }
1da177e4 2008
f0188f47
RT
2009 /*
2010 * Prevent CPUs from coming and going.
2011 * lock_cpu_hotplug() nests outside cache_chain_mutex
2012 */
2013 lock_cpu_hotplug();
2014
fc0abb14 2015 mutex_lock(&cache_chain_mutex);
4f12bb4f 2016
7a7c381d 2017 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2018 mm_segment_t old_fs = get_fs();
2019 char tmp;
2020 int res;
2021
2022 /*
2023 * This happens when the module gets unloaded and doesn't
2024 * destroy its slab cache and no-one else reuses the vmalloc
2025 * area of the module. Print a warning.
2026 */
2027 set_fs(KERNEL_DS);
2028 res = __get_user(tmp, pc->name);
2029 set_fs(old_fs);
2030 if (res) {
2031 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2032 pc->buffer_size);
4f12bb4f
AM
2033 continue;
2034 }
2035
b28a02de 2036 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2037 printk("kmem_cache_create: duplicate cache %s\n", name);
2038 dump_stack();
2039 goto oops;
2040 }
2041 }
2042
1da177e4
LT
2043#if DEBUG
2044 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2045 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2046 /* No constructor, but inital state check requested */
2047 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2048 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2049 flags &= ~SLAB_DEBUG_INITIAL;
2050 }
1da177e4
LT
2051#if FORCED_DEBUG
2052 /*
2053 * Enable redzoning and last user accounting, except for caches with
2054 * large objects, if the increased size would increase the object size
2055 * above the next power of two: caches with object sizes just above a
2056 * power of two have a significant amount of internal fragmentation.
2057 */
a737b3e2 2058 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2059 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2060 if (!(flags & SLAB_DESTROY_BY_RCU))
2061 flags |= SLAB_POISON;
2062#endif
2063 if (flags & SLAB_DESTROY_BY_RCU)
2064 BUG_ON(flags & SLAB_POISON);
2065#endif
2066 if (flags & SLAB_DESTROY_BY_RCU)
2067 BUG_ON(dtor);
2068
2069 /*
a737b3e2
AM
2070 * Always checks flags, a caller might be expecting debug support which
2071 * isn't available.
1da177e4 2072 */
40094fa6 2073 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2074
a737b3e2
AM
2075 /*
2076 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2077 * unaligned accesses for some archs when redzoning is used, and makes
2078 * sure any on-slab bufctl's are also correctly aligned.
2079 */
b28a02de
PE
2080 if (size & (BYTES_PER_WORD - 1)) {
2081 size += (BYTES_PER_WORD - 1);
2082 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2083 }
2084
a737b3e2
AM
2085 /* calculate the final buffer alignment: */
2086
1da177e4
LT
2087 /* 1) arch recommendation: can be overridden for debug */
2088 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2089 /*
2090 * Default alignment: as specified by the arch code. Except if
2091 * an object is really small, then squeeze multiple objects into
2092 * one cacheline.
1da177e4
LT
2093 */
2094 ralign = cache_line_size();
b28a02de 2095 while (size <= ralign / 2)
1da177e4
LT
2096 ralign /= 2;
2097 } else {
2098 ralign = BYTES_PER_WORD;
2099 }
2100 /* 2) arch mandated alignment: disables debug if necessary */
2101 if (ralign < ARCH_SLAB_MINALIGN) {
2102 ralign = ARCH_SLAB_MINALIGN;
2103 if (ralign > BYTES_PER_WORD)
b28a02de 2104 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2105 }
2106 /* 3) caller mandated alignment: disables debug if necessary */
2107 if (ralign < align) {
2108 ralign = align;
2109 if (ralign > BYTES_PER_WORD)
b28a02de 2110 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2111 }
a737b3e2
AM
2112 /*
2113 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2114 * the alignment to BYTES_PER_WORD.
2115 */
2116 align = ralign;
2117
2118 /* Get cache's description obj. */
c5e3b83e 2119 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2120 if (!cachep)
4f12bb4f 2121 goto oops;
1da177e4
LT
2122
2123#if DEBUG
3dafccf2 2124 cachep->obj_size = size;
1da177e4
LT
2125
2126 if (flags & SLAB_RED_ZONE) {
2127 /* redzoning only works with word aligned caches */
2128 align = BYTES_PER_WORD;
2129
2130 /* add space for red zone words */
3dafccf2 2131 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2132 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2133 }
2134 if (flags & SLAB_STORE_USER) {
2135 /* user store requires word alignment and
2136 * one word storage behind the end of the real
2137 * object.
2138 */
2139 align = BYTES_PER_WORD;
2140 size += BYTES_PER_WORD;
2141 }
2142#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2143 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2144 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2145 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2146 size = PAGE_SIZE;
2147 }
2148#endif
2149#endif
2150
e0a42726
IM
2151 /*
2152 * Determine if the slab management is 'on' or 'off' slab.
2153 * (bootstrapping cannot cope with offslab caches so don't do
2154 * it too early on.)
2155 */
2156 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2157 /*
2158 * Size is large, assume best to place the slab management obj
2159 * off-slab (should allow better packing of objs).
2160 */
2161 flags |= CFLGS_OFF_SLAB;
2162
2163 size = ALIGN(size, align);
2164
f78bb8ad 2165 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2166
2167 if (!cachep->num) {
2168 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2169 kmem_cache_free(&cache_cache, cachep);
2170 cachep = NULL;
4f12bb4f 2171 goto oops;
1da177e4 2172 }
b28a02de
PE
2173 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2174 + sizeof(struct slab), align);
1da177e4
LT
2175
2176 /*
2177 * If the slab has been placed off-slab, and we have enough space then
2178 * move it on-slab. This is at the expense of any extra colouring.
2179 */
2180 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2181 flags &= ~CFLGS_OFF_SLAB;
2182 left_over -= slab_size;
2183 }
2184
2185 if (flags & CFLGS_OFF_SLAB) {
2186 /* really off slab. No need for manual alignment */
b28a02de
PE
2187 slab_size =
2188 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2189 }
2190
2191 cachep->colour_off = cache_line_size();
2192 /* Offset must be a multiple of the alignment. */
2193 if (cachep->colour_off < align)
2194 cachep->colour_off = align;
b28a02de 2195 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2196 cachep->slab_size = slab_size;
2197 cachep->flags = flags;
2198 cachep->gfpflags = 0;
2199 if (flags & SLAB_CACHE_DMA)
2200 cachep->gfpflags |= GFP_DMA;
3dafccf2 2201 cachep->buffer_size = size;
1da177e4
LT
2202
2203 if (flags & CFLGS_OFF_SLAB)
b2d55073 2204 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2205 cachep->ctor = ctor;
2206 cachep->dtor = dtor;
2207 cachep->name = name;
2208
1da177e4 2209
f30cf7d1 2210 setup_cpu_cache(cachep);
1da177e4 2211
1da177e4
LT
2212 /* cache setup completed, link it into the list */
2213 list_add(&cachep->next, &cache_chain);
a737b3e2 2214oops:
1da177e4
LT
2215 if (!cachep && (flags & SLAB_PANIC))
2216 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2217 name);
fc0abb14 2218 mutex_unlock(&cache_chain_mutex);
f0188f47 2219 unlock_cpu_hotplug();
1da177e4
LT
2220 return cachep;
2221}
2222EXPORT_SYMBOL(kmem_cache_create);
2223
2224#if DEBUG
2225static void check_irq_off(void)
2226{
2227 BUG_ON(!irqs_disabled());
2228}
2229
2230static void check_irq_on(void)
2231{
2232 BUG_ON(irqs_disabled());
2233}
2234
343e0d7a 2235static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2236{
2237#ifdef CONFIG_SMP
2238 check_irq_off();
e498be7d 2239 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2240#endif
2241}
e498be7d 2242
343e0d7a 2243static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2244{
2245#ifdef CONFIG_SMP
2246 check_irq_off();
2247 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2248#endif
2249}
2250
1da177e4
LT
2251#else
2252#define check_irq_off() do { } while(0)
2253#define check_irq_on() do { } while(0)
2254#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2255#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2256#endif
2257
aab2207c
CL
2258static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2259 struct array_cache *ac,
2260 int force, int node);
2261
1da177e4
LT
2262static void do_drain(void *arg)
2263{
a737b3e2 2264 struct kmem_cache *cachep = arg;
1da177e4 2265 struct array_cache *ac;
ff69416e 2266 int node = numa_node_id();
1da177e4
LT
2267
2268 check_irq_off();
9a2dba4b 2269 ac = cpu_cache_get(cachep);
ff69416e
CL
2270 spin_lock(&cachep->nodelists[node]->list_lock);
2271 free_block(cachep, ac->entry, ac->avail, node);
2272 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2273 ac->avail = 0;
2274}
2275
343e0d7a 2276static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2277{
e498be7d
CL
2278 struct kmem_list3 *l3;
2279 int node;
2280
a07fa394 2281 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2282 check_irq_on();
b28a02de 2283 for_each_online_node(node) {
e498be7d 2284 l3 = cachep->nodelists[node];
a4523a8b
RD
2285 if (l3 && l3->alien)
2286 drain_alien_cache(cachep, l3->alien);
2287 }
2288
2289 for_each_online_node(node) {
2290 l3 = cachep->nodelists[node];
2291 if (l3)
aab2207c 2292 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2293 }
1da177e4
LT
2294}
2295
ed11d9eb
CL
2296/*
2297 * Remove slabs from the list of free slabs.
2298 * Specify the number of slabs to drain in tofree.
2299 *
2300 * Returns the actual number of slabs released.
2301 */
2302static int drain_freelist(struct kmem_cache *cache,
2303 struct kmem_list3 *l3, int tofree)
1da177e4 2304{
ed11d9eb
CL
2305 struct list_head *p;
2306 int nr_freed;
1da177e4 2307 struct slab *slabp;
1da177e4 2308
ed11d9eb
CL
2309 nr_freed = 0;
2310 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2311
ed11d9eb 2312 spin_lock_irq(&l3->list_lock);
e498be7d 2313 p = l3->slabs_free.prev;
ed11d9eb
CL
2314 if (p == &l3->slabs_free) {
2315 spin_unlock_irq(&l3->list_lock);
2316 goto out;
2317 }
1da177e4 2318
ed11d9eb 2319 slabp = list_entry(p, struct slab, list);
1da177e4 2320#if DEBUG
40094fa6 2321 BUG_ON(slabp->inuse);
1da177e4
LT
2322#endif
2323 list_del(&slabp->list);
ed11d9eb
CL
2324 /*
2325 * Safe to drop the lock. The slab is no longer linked
2326 * to the cache.
2327 */
2328 l3->free_objects -= cache->num;
e498be7d 2329 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2330 slab_destroy(cache, slabp);
2331 nr_freed++;
1da177e4 2332 }
ed11d9eb
CL
2333out:
2334 return nr_freed;
1da177e4
LT
2335}
2336
343e0d7a 2337static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2338{
2339 int ret = 0, i = 0;
2340 struct kmem_list3 *l3;
2341
2342 drain_cpu_caches(cachep);
2343
2344 check_irq_on();
2345 for_each_online_node(i) {
2346 l3 = cachep->nodelists[i];
ed11d9eb
CL
2347 if (!l3)
2348 continue;
2349
2350 drain_freelist(cachep, l3, l3->free_objects);
2351
2352 ret += !list_empty(&l3->slabs_full) ||
2353 !list_empty(&l3->slabs_partial);
e498be7d
CL
2354 }
2355 return (ret ? 1 : 0);
2356}
2357
1da177e4
LT
2358/**
2359 * kmem_cache_shrink - Shrink a cache.
2360 * @cachep: The cache to shrink.
2361 *
2362 * Releases as many slabs as possible for a cache.
2363 * To help debugging, a zero exit status indicates all slabs were released.
2364 */
343e0d7a 2365int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2366{
40094fa6 2367 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2368
2369 return __cache_shrink(cachep);
2370}
2371EXPORT_SYMBOL(kmem_cache_shrink);
2372
2373/**
2374 * kmem_cache_destroy - delete a cache
2375 * @cachep: the cache to destroy
2376 *
343e0d7a 2377 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2378 * Returns 0 on success.
2379 *
2380 * It is expected this function will be called by a module when it is
2381 * unloaded. This will remove the cache completely, and avoid a duplicate
2382 * cache being allocated each time a module is loaded and unloaded, if the
2383 * module doesn't have persistent in-kernel storage across loads and unloads.
2384 *
2385 * The cache must be empty before calling this function.
2386 *
2387 * The caller must guarantee that noone will allocate memory from the cache
2388 * during the kmem_cache_destroy().
2389 */
343e0d7a 2390int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2391{
2392 int i;
e498be7d 2393 struct kmem_list3 *l3;
1da177e4 2394
40094fa6 2395 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2396
2397 /* Don't let CPUs to come and go */
2398 lock_cpu_hotplug();
2399
2400 /* Find the cache in the chain of caches. */
fc0abb14 2401 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2402 /*
2403 * the chain is never empty, cache_cache is never destroyed
2404 */
2405 list_del(&cachep->next);
fc0abb14 2406 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2407
2408 if (__cache_shrink(cachep)) {
2409 slab_error(cachep, "Can't free all objects");
fc0abb14 2410 mutex_lock(&cache_chain_mutex);
b28a02de 2411 list_add(&cachep->next, &cache_chain);
fc0abb14 2412 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2413 unlock_cpu_hotplug();
2414 return 1;
2415 }
2416
2417 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2418 synchronize_rcu();
1da177e4 2419
e498be7d 2420 for_each_online_cpu(i)
b28a02de 2421 kfree(cachep->array[i]);
1da177e4
LT
2422
2423 /* NUMA: free the list3 structures */
e498be7d 2424 for_each_online_node(i) {
a737b3e2
AM
2425 l3 = cachep->nodelists[i];
2426 if (l3) {
e498be7d
CL
2427 kfree(l3->shared);
2428 free_alien_cache(l3->alien);
2429 kfree(l3);
2430 }
2431 }
1da177e4 2432 kmem_cache_free(&cache_cache, cachep);
1da177e4 2433 unlock_cpu_hotplug();
1da177e4
LT
2434 return 0;
2435}
2436EXPORT_SYMBOL(kmem_cache_destroy);
2437
2438/* Get the memory for a slab management obj. */
343e0d7a 2439static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2440 int colour_off, gfp_t local_flags,
2441 int nodeid)
1da177e4
LT
2442{
2443 struct slab *slabp;
b28a02de 2444
1da177e4
LT
2445 if (OFF_SLAB(cachep)) {
2446 /* Slab management obj is off-slab. */
5b74ada7
RT
2447 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2448 local_flags, nodeid);
1da177e4
LT
2449 if (!slabp)
2450 return NULL;
2451 } else {
b28a02de 2452 slabp = objp + colour_off;
1da177e4
LT
2453 colour_off += cachep->slab_size;
2454 }
2455 slabp->inuse = 0;
2456 slabp->colouroff = colour_off;
b28a02de 2457 slabp->s_mem = objp + colour_off;
5b74ada7 2458 slabp->nodeid = nodeid;
1da177e4
LT
2459 return slabp;
2460}
2461
2462static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2463{
b28a02de 2464 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2465}
2466
343e0d7a 2467static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2468 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2469{
2470 int i;
2471
2472 for (i = 0; i < cachep->num; i++) {
8fea4e96 2473 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2474#if DEBUG
2475 /* need to poison the objs? */
2476 if (cachep->flags & SLAB_POISON)
2477 poison_obj(cachep, objp, POISON_FREE);
2478 if (cachep->flags & SLAB_STORE_USER)
2479 *dbg_userword(cachep, objp) = NULL;
2480
2481 if (cachep->flags & SLAB_RED_ZONE) {
2482 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2483 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2484 }
2485 /*
a737b3e2
AM
2486 * Constructors are not allowed to allocate memory from the same
2487 * cache which they are a constructor for. Otherwise, deadlock.
2488 * They must also be threaded.
1da177e4
LT
2489 */
2490 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2491 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2492 ctor_flags);
1da177e4
LT
2493
2494 if (cachep->flags & SLAB_RED_ZONE) {
2495 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2496 slab_error(cachep, "constructor overwrote the"
b28a02de 2497 " end of an object");
1da177e4
LT
2498 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2499 slab_error(cachep, "constructor overwrote the"
b28a02de 2500 " start of an object");
1da177e4 2501 }
a737b3e2
AM
2502 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2503 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2504 kernel_map_pages(virt_to_page(objp),
3dafccf2 2505 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2506#else
2507 if (cachep->ctor)
2508 cachep->ctor(objp, cachep, ctor_flags);
2509#endif
b28a02de 2510 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2511 }
b28a02de 2512 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2513 slabp->free = 0;
2514}
2515
343e0d7a 2516static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2517{
a737b3e2
AM
2518 if (flags & SLAB_DMA)
2519 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2520 else
2521 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2522}
2523
a737b3e2
AM
2524static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2525 int nodeid)
78d382d7 2526{
8fea4e96 2527 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2528 kmem_bufctl_t next;
2529
2530 slabp->inuse++;
2531 next = slab_bufctl(slabp)[slabp->free];
2532#if DEBUG
2533 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2534 WARN_ON(slabp->nodeid != nodeid);
2535#endif
2536 slabp->free = next;
2537
2538 return objp;
2539}
2540
a737b3e2
AM
2541static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2542 void *objp, int nodeid)
78d382d7 2543{
8fea4e96 2544 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2545
2546#if DEBUG
2547 /* Verify that the slab belongs to the intended node */
2548 WARN_ON(slabp->nodeid != nodeid);
2549
871751e2 2550 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2551 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2552 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2553 BUG();
2554 }
2555#endif
2556 slab_bufctl(slabp)[objnr] = slabp->free;
2557 slabp->free = objnr;
2558 slabp->inuse--;
2559}
2560
4776874f
PE
2561/*
2562 * Map pages beginning at addr to the given cache and slab. This is required
2563 * for the slab allocator to be able to lookup the cache and slab of a
2564 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2565 */
2566static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2567 void *addr)
1da177e4 2568{
4776874f 2569 int nr_pages;
1da177e4
LT
2570 struct page *page;
2571
4776874f 2572 page = virt_to_page(addr);
84097518 2573
4776874f 2574 nr_pages = 1;
84097518 2575 if (likely(!PageCompound(page)))
4776874f
PE
2576 nr_pages <<= cache->gfporder;
2577
1da177e4 2578 do {
4776874f
PE
2579 page_set_cache(page, cache);
2580 page_set_slab(page, slab);
1da177e4 2581 page++;
4776874f 2582 } while (--nr_pages);
1da177e4
LT
2583}
2584
2585/*
2586 * Grow (by 1) the number of slabs within a cache. This is called by
2587 * kmem_cache_alloc() when there are no active objs left in a cache.
2588 */
343e0d7a 2589static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2590{
b28a02de
PE
2591 struct slab *slabp;
2592 void *objp;
2593 size_t offset;
2594 gfp_t local_flags;
2595 unsigned long ctor_flags;
e498be7d 2596 struct kmem_list3 *l3;
1da177e4 2597
a737b3e2
AM
2598 /*
2599 * Be lazy and only check for valid flags here, keeping it out of the
2600 * critical path in kmem_cache_alloc().
1da177e4 2601 */
40094fa6 2602 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2603 if (flags & SLAB_NO_GROW)
2604 return 0;
2605
2606 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2607 local_flags = (flags & SLAB_LEVEL_MASK);
2608 if (!(local_flags & __GFP_WAIT))
2609 /*
2610 * Not allowed to sleep. Need to tell a constructor about
2611 * this - it might need to know...
2612 */
2613 ctor_flags |= SLAB_CTOR_ATOMIC;
2614
2e1217cf 2615 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2616 check_irq_off();
2e1217cf
RT
2617 l3 = cachep->nodelists[nodeid];
2618 spin_lock(&l3->list_lock);
1da177e4
LT
2619
2620 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2621 offset = l3->colour_next;
2622 l3->colour_next++;
2623 if (l3->colour_next >= cachep->colour)
2624 l3->colour_next = 0;
2625 spin_unlock(&l3->list_lock);
1da177e4 2626
2e1217cf 2627 offset *= cachep->colour_off;
1da177e4
LT
2628
2629 if (local_flags & __GFP_WAIT)
2630 local_irq_enable();
2631
2632 /*
2633 * The test for missing atomic flag is performed here, rather than
2634 * the more obvious place, simply to reduce the critical path length
2635 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2636 * will eventually be caught here (where it matters).
2637 */
2638 kmem_flagcheck(cachep, flags);
2639
a737b3e2
AM
2640 /*
2641 * Get mem for the objs. Attempt to allocate a physical page from
2642 * 'nodeid'.
e498be7d 2643 */
a737b3e2
AM
2644 objp = kmem_getpages(cachep, flags, nodeid);
2645 if (!objp)
1da177e4
LT
2646 goto failed;
2647
2648 /* Get slab management. */
5b74ada7 2649 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2650 if (!slabp)
1da177e4
LT
2651 goto opps1;
2652
e498be7d 2653 slabp->nodeid = nodeid;
4776874f 2654 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2655
2656 cache_init_objs(cachep, slabp, ctor_flags);
2657
2658 if (local_flags & __GFP_WAIT)
2659 local_irq_disable();
2660 check_irq_off();
e498be7d 2661 spin_lock(&l3->list_lock);
1da177e4
LT
2662
2663 /* Make slab active. */
e498be7d 2664 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2665 STATS_INC_GROWN(cachep);
e498be7d
CL
2666 l3->free_objects += cachep->num;
2667 spin_unlock(&l3->list_lock);
1da177e4 2668 return 1;
a737b3e2 2669opps1:
1da177e4 2670 kmem_freepages(cachep, objp);
a737b3e2 2671failed:
1da177e4
LT
2672 if (local_flags & __GFP_WAIT)
2673 local_irq_disable();
2674 return 0;
2675}
2676
2677#if DEBUG
2678
2679/*
2680 * Perform extra freeing checks:
2681 * - detect bad pointers.
2682 * - POISON/RED_ZONE checking
2683 * - destructor calls, for caches with POISON+dtor
2684 */
2685static void kfree_debugcheck(const void *objp)
2686{
2687 struct page *page;
2688
2689 if (!virt_addr_valid(objp)) {
2690 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2691 (unsigned long)objp);
2692 BUG();
1da177e4
LT
2693 }
2694 page = virt_to_page(objp);
2695 if (!PageSlab(page)) {
b28a02de
PE
2696 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2697 (unsigned long)objp);
1da177e4
LT
2698 BUG();
2699 }
2700}
2701
58ce1fd5
PE
2702static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2703{
2704 unsigned long redzone1, redzone2;
2705
2706 redzone1 = *dbg_redzone1(cache, obj);
2707 redzone2 = *dbg_redzone2(cache, obj);
2708
2709 /*
2710 * Redzone is ok.
2711 */
2712 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2713 return;
2714
2715 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2716 slab_error(cache, "double free detected");
2717 else
2718 slab_error(cache, "memory outside object was overwritten");
2719
2720 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2721 obj, redzone1, redzone2);
2722}
2723
343e0d7a 2724static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2725 void *caller)
1da177e4
LT
2726{
2727 struct page *page;
2728 unsigned int objnr;
2729 struct slab *slabp;
2730
3dafccf2 2731 objp -= obj_offset(cachep);
1da177e4
LT
2732 kfree_debugcheck(objp);
2733 page = virt_to_page(objp);
2734
065d41cb 2735 slabp = page_get_slab(page);
1da177e4
LT
2736
2737 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2738 verify_redzone_free(cachep, objp);
1da177e4
LT
2739 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2740 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2741 }
2742 if (cachep->flags & SLAB_STORE_USER)
2743 *dbg_userword(cachep, objp) = caller;
2744
8fea4e96 2745 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2746
2747 BUG_ON(objnr >= cachep->num);
8fea4e96 2748 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2749
2750 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2751 /*
2752 * Need to call the slab's constructor so the caller can
2753 * perform a verify of its state (debugging). Called without
2754 * the cache-lock held.
1da177e4 2755 */
3dafccf2 2756 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2757 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2758 }
2759 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2760 /* we want to cache poison the object,
2761 * call the destruction callback
2762 */
3dafccf2 2763 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2764 }
871751e2
AV
2765#ifdef CONFIG_DEBUG_SLAB_LEAK
2766 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2767#endif
1da177e4
LT
2768 if (cachep->flags & SLAB_POISON) {
2769#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2770 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2771 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2772 kernel_map_pages(virt_to_page(objp),
3dafccf2 2773 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2774 } else {
2775 poison_obj(cachep, objp, POISON_FREE);
2776 }
2777#else
2778 poison_obj(cachep, objp, POISON_FREE);
2779#endif
2780 }
2781 return objp;
2782}
2783
343e0d7a 2784static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2785{
2786 kmem_bufctl_t i;
2787 int entries = 0;
b28a02de 2788
1da177e4
LT
2789 /* Check slab's freelist to see if this obj is there. */
2790 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2791 entries++;
2792 if (entries > cachep->num || i >= cachep->num)
2793 goto bad;
2794 }
2795 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2796bad:
2797 printk(KERN_ERR "slab: Internal list corruption detected in "
2798 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2799 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2800 for (i = 0;
264132bc 2801 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2802 i++) {
a737b3e2 2803 if (i % 16 == 0)
1da177e4 2804 printk("\n%03x:", i);
b28a02de 2805 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2806 }
2807 printk("\n");
2808 BUG();
2809 }
2810}
2811#else
2812#define kfree_debugcheck(x) do { } while(0)
2813#define cache_free_debugcheck(x,objp,z) (objp)
2814#define check_slabp(x,y) do { } while(0)
2815#endif
2816
343e0d7a 2817static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2818{
2819 int batchcount;
2820 struct kmem_list3 *l3;
2821 struct array_cache *ac;
2822
2823 check_irq_off();
9a2dba4b 2824 ac = cpu_cache_get(cachep);
a737b3e2 2825retry:
1da177e4
LT
2826 batchcount = ac->batchcount;
2827 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2828 /*
2829 * If there was little recent activity on this cache, then
2830 * perform only a partial refill. Otherwise we could generate
2831 * refill bouncing.
1da177e4
LT
2832 */
2833 batchcount = BATCHREFILL_LIMIT;
2834 }
e498be7d
CL
2835 l3 = cachep->nodelists[numa_node_id()];
2836
2837 BUG_ON(ac->avail > 0 || !l3);
2838 spin_lock(&l3->list_lock);
1da177e4 2839
3ded175a
CL
2840 /* See if we can refill from the shared array */
2841 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2842 goto alloc_done;
2843
1da177e4
LT
2844 while (batchcount > 0) {
2845 struct list_head *entry;
2846 struct slab *slabp;
2847 /* Get slab alloc is to come from. */
2848 entry = l3->slabs_partial.next;
2849 if (entry == &l3->slabs_partial) {
2850 l3->free_touched = 1;
2851 entry = l3->slabs_free.next;
2852 if (entry == &l3->slabs_free)
2853 goto must_grow;
2854 }
2855
2856 slabp = list_entry(entry, struct slab, list);
2857 check_slabp(cachep, slabp);
2858 check_spinlock_acquired(cachep);
2859 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2860 STATS_INC_ALLOCED(cachep);
2861 STATS_INC_ACTIVE(cachep);
2862 STATS_SET_HIGH(cachep);
2863
78d382d7
MD
2864 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2865 numa_node_id());
1da177e4
LT
2866 }
2867 check_slabp(cachep, slabp);
2868
2869 /* move slabp to correct slabp list: */
2870 list_del(&slabp->list);
2871 if (slabp->free == BUFCTL_END)
2872 list_add(&slabp->list, &l3->slabs_full);
2873 else
2874 list_add(&slabp->list, &l3->slabs_partial);
2875 }
2876
a737b3e2 2877must_grow:
1da177e4 2878 l3->free_objects -= ac->avail;
a737b3e2 2879alloc_done:
e498be7d 2880 spin_unlock(&l3->list_lock);
1da177e4
LT
2881
2882 if (unlikely(!ac->avail)) {
2883 int x;
e498be7d
CL
2884 x = cache_grow(cachep, flags, numa_node_id());
2885
a737b3e2 2886 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2887 ac = cpu_cache_get(cachep);
a737b3e2 2888 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2889 return NULL;
2890
a737b3e2 2891 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2892 goto retry;
2893 }
2894 ac->touched = 1;
e498be7d 2895 return ac->entry[--ac->avail];
1da177e4
LT
2896}
2897
a737b3e2
AM
2898static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2899 gfp_t flags)
1da177e4
LT
2900{
2901 might_sleep_if(flags & __GFP_WAIT);
2902#if DEBUG
2903 kmem_flagcheck(cachep, flags);
2904#endif
2905}
2906
2907#if DEBUG
a737b3e2
AM
2908static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2909 gfp_t flags, void *objp, void *caller)
1da177e4 2910{
b28a02de 2911 if (!objp)
1da177e4 2912 return objp;
b28a02de 2913 if (cachep->flags & SLAB_POISON) {
1da177e4 2914#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2915 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2916 kernel_map_pages(virt_to_page(objp),
3dafccf2 2917 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2918 else
2919 check_poison_obj(cachep, objp);
2920#else
2921 check_poison_obj(cachep, objp);
2922#endif
2923 poison_obj(cachep, objp, POISON_INUSE);
2924 }
2925 if (cachep->flags & SLAB_STORE_USER)
2926 *dbg_userword(cachep, objp) = caller;
2927
2928 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2929 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2930 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2931 slab_error(cachep, "double free, or memory outside"
2932 " object was overwritten");
b28a02de 2933 printk(KERN_ERR
a737b3e2
AM
2934 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2935 objp, *dbg_redzone1(cachep, objp),
2936 *dbg_redzone2(cachep, objp));
1da177e4
LT
2937 }
2938 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2939 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2940 }
871751e2
AV
2941#ifdef CONFIG_DEBUG_SLAB_LEAK
2942 {
2943 struct slab *slabp;
2944 unsigned objnr;
2945
2946 slabp = page_get_slab(virt_to_page(objp));
2947 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2948 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2949 }
2950#endif
3dafccf2 2951 objp += obj_offset(cachep);
1da177e4 2952 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2953 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2954
2955 if (!(flags & __GFP_WAIT))
2956 ctor_flags |= SLAB_CTOR_ATOMIC;
2957
2958 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2959 }
1da177e4
LT
2960 return objp;
2961}
2962#else
2963#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2964#endif
2965
343e0d7a 2966static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2967{
b28a02de 2968 void *objp;
1da177e4
LT
2969 struct array_cache *ac;
2970
dc85da15 2971#ifdef CONFIG_NUMA
b2455396 2972 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2973 objp = alternate_node_alloc(cachep, flags);
2974 if (objp != NULL)
2975 return objp;
dc85da15
CL
2976 }
2977#endif
2978
5c382300 2979 check_irq_off();
9a2dba4b 2980 ac = cpu_cache_get(cachep);
1da177e4
LT
2981 if (likely(ac->avail)) {
2982 STATS_INC_ALLOCHIT(cachep);
2983 ac->touched = 1;
e498be7d 2984 objp = ac->entry[--ac->avail];
1da177e4
LT
2985 } else {
2986 STATS_INC_ALLOCMISS(cachep);
2987 objp = cache_alloc_refill(cachep, flags);
2988 }
5c382300
AK
2989 return objp;
2990}
2991
a737b3e2
AM
2992static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2993 gfp_t flags, void *caller)
5c382300
AK
2994{
2995 unsigned long save_flags;
b28a02de 2996 void *objp;
5c382300
AK
2997
2998 cache_alloc_debugcheck_before(cachep, flags);
2999
3000 local_irq_save(save_flags);
3001 objp = ____cache_alloc(cachep, flags);
1da177e4 3002 local_irq_restore(save_flags);
34342e86 3003 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3004 caller);
34342e86 3005 prefetchw(objp);
1da177e4
LT
3006 return objp;
3007}
3008
e498be7d 3009#ifdef CONFIG_NUMA
c61afb18 3010/*
b2455396 3011 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3012 *
3013 * If we are in_interrupt, then process context, including cpusets and
3014 * mempolicy, may not apply and should not be used for allocation policy.
3015 */
3016static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3017{
3018 int nid_alloc, nid_here;
3019
3020 if (in_interrupt())
3021 return NULL;
3022 nid_alloc = nid_here = numa_node_id();
3023 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3024 nid_alloc = cpuset_mem_spread_node();
3025 else if (current->mempolicy)
3026 nid_alloc = slab_node(current->mempolicy);
3027 if (nid_alloc != nid_here)
3028 return __cache_alloc_node(cachep, flags, nid_alloc);
3029 return NULL;
3030}
3031
e498be7d
CL
3032/*
3033 * A interface to enable slab creation on nodeid
1da177e4 3034 */
a737b3e2
AM
3035static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3036 int nodeid)
e498be7d
CL
3037{
3038 struct list_head *entry;
b28a02de
PE
3039 struct slab *slabp;
3040 struct kmem_list3 *l3;
3041 void *obj;
b28a02de
PE
3042 int x;
3043
3044 l3 = cachep->nodelists[nodeid];
3045 BUG_ON(!l3);
3046
a737b3e2 3047retry:
ca3b9b91 3048 check_irq_off();
b28a02de
PE
3049 spin_lock(&l3->list_lock);
3050 entry = l3->slabs_partial.next;
3051 if (entry == &l3->slabs_partial) {
3052 l3->free_touched = 1;
3053 entry = l3->slabs_free.next;
3054 if (entry == &l3->slabs_free)
3055 goto must_grow;
3056 }
3057
3058 slabp = list_entry(entry, struct slab, list);
3059 check_spinlock_acquired_node(cachep, nodeid);
3060 check_slabp(cachep, slabp);
3061
3062 STATS_INC_NODEALLOCS(cachep);
3063 STATS_INC_ACTIVE(cachep);
3064 STATS_SET_HIGH(cachep);
3065
3066 BUG_ON(slabp->inuse == cachep->num);
3067
78d382d7 3068 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3069 check_slabp(cachep, slabp);
3070 l3->free_objects--;
3071 /* move slabp to correct slabp list: */
3072 list_del(&slabp->list);
3073
a737b3e2 3074 if (slabp->free == BUFCTL_END)
b28a02de 3075 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3076 else
b28a02de 3077 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3078
b28a02de
PE
3079 spin_unlock(&l3->list_lock);
3080 goto done;
e498be7d 3081
a737b3e2 3082must_grow:
b28a02de
PE
3083 spin_unlock(&l3->list_lock);
3084 x = cache_grow(cachep, flags, nodeid);
1da177e4 3085
b28a02de
PE
3086 if (!x)
3087 return NULL;
e498be7d 3088
b28a02de 3089 goto retry;
a737b3e2 3090done:
b28a02de 3091 return obj;
e498be7d
CL
3092}
3093#endif
3094
3095/*
3096 * Caller needs to acquire correct kmem_list's list_lock
3097 */
343e0d7a 3098static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3099 int node)
1da177e4
LT
3100{
3101 int i;
e498be7d 3102 struct kmem_list3 *l3;
1da177e4
LT
3103
3104 for (i = 0; i < nr_objects; i++) {
3105 void *objp = objpp[i];
3106 struct slab *slabp;
1da177e4 3107
6ed5eb22 3108 slabp = virt_to_slab(objp);
ff69416e 3109 l3 = cachep->nodelists[node];
1da177e4 3110 list_del(&slabp->list);
ff69416e 3111 check_spinlock_acquired_node(cachep, node);
1da177e4 3112 check_slabp(cachep, slabp);
78d382d7 3113 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3114 STATS_DEC_ACTIVE(cachep);
e498be7d 3115 l3->free_objects++;
1da177e4
LT
3116 check_slabp(cachep, slabp);
3117
3118 /* fixup slab chains */
3119 if (slabp->inuse == 0) {
e498be7d
CL
3120 if (l3->free_objects > l3->free_limit) {
3121 l3->free_objects -= cachep->num;
1da177e4
LT
3122 slab_destroy(cachep, slabp);
3123 } else {
e498be7d 3124 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3125 }
3126 } else {
3127 /* Unconditionally move a slab to the end of the
3128 * partial list on free - maximum time for the
3129 * other objects to be freed, too.
3130 */
e498be7d 3131 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3132 }
3133 }
3134}
3135
343e0d7a 3136static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3137{
3138 int batchcount;
e498be7d 3139 struct kmem_list3 *l3;
ff69416e 3140 int node = numa_node_id();
1da177e4
LT
3141
3142 batchcount = ac->batchcount;
3143#if DEBUG
3144 BUG_ON(!batchcount || batchcount > ac->avail);
3145#endif
3146 check_irq_off();
ff69416e 3147 l3 = cachep->nodelists[node];
873623df 3148 spin_lock(&l3->list_lock);
e498be7d
CL
3149 if (l3->shared) {
3150 struct array_cache *shared_array = l3->shared;
b28a02de 3151 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3152 if (max) {
3153 if (batchcount > max)
3154 batchcount = max;
e498be7d 3155 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3156 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3157 shared_array->avail += batchcount;
3158 goto free_done;
3159 }
3160 }
3161
ff69416e 3162 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3163free_done:
1da177e4
LT
3164#if STATS
3165 {
3166 int i = 0;
3167 struct list_head *p;
3168
e498be7d
CL
3169 p = l3->slabs_free.next;
3170 while (p != &(l3->slabs_free)) {
1da177e4
LT
3171 struct slab *slabp;
3172
3173 slabp = list_entry(p, struct slab, list);
3174 BUG_ON(slabp->inuse);
3175
3176 i++;
3177 p = p->next;
3178 }
3179 STATS_SET_FREEABLE(cachep, i);
3180 }
3181#endif
e498be7d 3182 spin_unlock(&l3->list_lock);
1da177e4 3183 ac->avail -= batchcount;
a737b3e2 3184 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3185}
3186
3187/*
a737b3e2
AM
3188 * Release an obj back to its cache. If the obj has a constructed state, it must
3189 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3190 */
873623df 3191static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3192{
9a2dba4b 3193 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3194
3195 check_irq_off();
3196 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3197
873623df 3198 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3199 return;
3200
1da177e4
LT
3201 if (likely(ac->avail < ac->limit)) {
3202 STATS_INC_FREEHIT(cachep);
e498be7d 3203 ac->entry[ac->avail++] = objp;
1da177e4
LT
3204 return;
3205 } else {
3206 STATS_INC_FREEMISS(cachep);
3207 cache_flusharray(cachep, ac);
e498be7d 3208 ac->entry[ac->avail++] = objp;
1da177e4
LT
3209 }
3210}
3211
3212/**
3213 * kmem_cache_alloc - Allocate an object
3214 * @cachep: The cache to allocate from.
3215 * @flags: See kmalloc().
3216 *
3217 * Allocate an object from this cache. The flags are only relevant
3218 * if the cache has no available objects.
3219 */
343e0d7a 3220void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3221{
7fd6b141 3222 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3223}
3224EXPORT_SYMBOL(kmem_cache_alloc);
3225
a8c0f9a4 3226/**
b8008b2b 3227 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3228 * @cache: The cache to allocate from.
3229 * @flags: See kmalloc().
3230 *
3231 * Allocate an object from this cache and set the allocated memory to zero.
3232 * The flags are only relevant if the cache has no available objects.
3233 */
3234void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3235{
3236 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3237 if (ret)
3238 memset(ret, 0, obj_size(cache));
3239 return ret;
3240}
3241EXPORT_SYMBOL(kmem_cache_zalloc);
3242
1da177e4
LT
3243/**
3244 * kmem_ptr_validate - check if an untrusted pointer might
3245 * be a slab entry.
3246 * @cachep: the cache we're checking against
3247 * @ptr: pointer to validate
3248 *
3249 * This verifies that the untrusted pointer looks sane:
3250 * it is _not_ a guarantee that the pointer is actually
3251 * part of the slab cache in question, but it at least
3252 * validates that the pointer can be dereferenced and
3253 * looks half-way sane.
3254 *
3255 * Currently only used for dentry validation.
3256 */
343e0d7a 3257int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3258{
b28a02de 3259 unsigned long addr = (unsigned long)ptr;
1da177e4 3260 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3261 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3262 unsigned long size = cachep->buffer_size;
1da177e4
LT
3263 struct page *page;
3264
3265 if (unlikely(addr < min_addr))
3266 goto out;
3267 if (unlikely(addr > (unsigned long)high_memory - size))
3268 goto out;
3269 if (unlikely(addr & align_mask))
3270 goto out;
3271 if (unlikely(!kern_addr_valid(addr)))
3272 goto out;
3273 if (unlikely(!kern_addr_valid(addr + size - 1)))
3274 goto out;
3275 page = virt_to_page(ptr);
3276 if (unlikely(!PageSlab(page)))
3277 goto out;
065d41cb 3278 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3279 goto out;
3280 return 1;
a737b3e2 3281out:
1da177e4
LT
3282 return 0;
3283}
3284
3285#ifdef CONFIG_NUMA
3286/**
3287 * kmem_cache_alloc_node - Allocate an object on the specified node
3288 * @cachep: The cache to allocate from.
3289 * @flags: See kmalloc().
3290 * @nodeid: node number of the target node.
3291 *
3292 * Identical to kmem_cache_alloc, except that this function is slow
3293 * and can sleep. And it will allocate memory on the given node, which
3294 * can improve the performance for cpu bound structures.
e498be7d
CL
3295 * New and improved: it will now make sure that the object gets
3296 * put on the correct node list so that there is no false sharing.
1da177e4 3297 */
343e0d7a 3298void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3299{
e498be7d
CL
3300 unsigned long save_flags;
3301 void *ptr;
1da177e4 3302
e498be7d
CL
3303 cache_alloc_debugcheck_before(cachep, flags);
3304 local_irq_save(save_flags);
18f820f6
CL
3305
3306 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3307 !cachep->nodelists[nodeid])
5c382300
AK
3308 ptr = ____cache_alloc(cachep, flags);
3309 else
3310 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3311 local_irq_restore(save_flags);
18f820f6
CL
3312
3313 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3314 __builtin_return_address(0));
1da177e4 3315
e498be7d 3316 return ptr;
1da177e4
LT
3317}
3318EXPORT_SYMBOL(kmem_cache_alloc_node);
3319
dd0fc66f 3320void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3321{
343e0d7a 3322 struct kmem_cache *cachep;
97e2bde4
MS
3323
3324 cachep = kmem_find_general_cachep(size, flags);
3325 if (unlikely(cachep == NULL))
3326 return NULL;
3327 return kmem_cache_alloc_node(cachep, flags, node);
3328}
3329EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3330#endif
3331
3332/**
800590f5 3333 * __do_kmalloc - allocate memory
1da177e4 3334 * @size: how many bytes of memory are required.
800590f5 3335 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3336 * @caller: function caller for debug tracking of the caller
1da177e4 3337 */
7fd6b141
PE
3338static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3339 void *caller)
1da177e4 3340{
343e0d7a 3341 struct kmem_cache *cachep;
1da177e4 3342
97e2bde4
MS
3343 /* If you want to save a few bytes .text space: replace
3344 * __ with kmem_.
3345 * Then kmalloc uses the uninlined functions instead of the inline
3346 * functions.
3347 */
3348 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3349 if (unlikely(cachep == NULL))
3350 return NULL;
7fd6b141
PE
3351 return __cache_alloc(cachep, flags, caller);
3352}
3353
7fd6b141
PE
3354
3355void *__kmalloc(size_t size, gfp_t flags)
3356{
871751e2 3357#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3358 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3359#else
3360 return __do_kmalloc(size, flags, __builtin_return_address(0));
3361#endif
1da177e4
LT
3362}
3363EXPORT_SYMBOL(__kmalloc);
3364
871751e2 3365#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3366void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3367{
3368 return __do_kmalloc(size, flags, caller);
3369}
3370EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3371#endif
3372
1da177e4
LT
3373#ifdef CONFIG_SMP
3374/**
3375 * __alloc_percpu - allocate one copy of the object for every present
3376 * cpu in the system, zeroing them.
3377 * Objects should be dereferenced using the per_cpu_ptr macro only.
3378 *
3379 * @size: how many bytes of memory are required.
1da177e4 3380 */
f9f75005 3381void *__alloc_percpu(size_t size)
1da177e4
LT
3382{
3383 int i;
b28a02de 3384 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3385
3386 if (!pdata)
3387 return NULL;
3388
e498be7d
CL
3389 /*
3390 * Cannot use for_each_online_cpu since a cpu may come online
3391 * and we have no way of figuring out how to fix the array
3392 * that we have allocated then....
3393 */
0a945022 3394 for_each_possible_cpu(i) {
e498be7d
CL
3395 int node = cpu_to_node(i);
3396
3397 if (node_online(node))
3398 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3399 else
3400 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3401
3402 if (!pdata->ptrs[i])
3403 goto unwind_oom;
3404 memset(pdata->ptrs[i], 0, size);
3405 }
3406
3407 /* Catch derefs w/o wrappers */
b28a02de 3408 return (void *)(~(unsigned long)pdata);
1da177e4 3409
a737b3e2 3410unwind_oom:
1da177e4
LT
3411 while (--i >= 0) {
3412 if (!cpu_possible(i))
3413 continue;
3414 kfree(pdata->ptrs[i]);
3415 }
3416 kfree(pdata);
3417 return NULL;
3418}
3419EXPORT_SYMBOL(__alloc_percpu);
3420#endif
3421
3422/**
3423 * kmem_cache_free - Deallocate an object
3424 * @cachep: The cache the allocation was from.
3425 * @objp: The previously allocated object.
3426 *
3427 * Free an object which was previously allocated from this
3428 * cache.
3429 */
343e0d7a 3430void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3431{
3432 unsigned long flags;
3433
ddc2e812
PE
3434 BUG_ON(virt_to_cache(objp) != cachep);
3435
1da177e4 3436 local_irq_save(flags);
873623df 3437 __cache_free(cachep, objp);
1da177e4
LT
3438 local_irq_restore(flags);
3439}
3440EXPORT_SYMBOL(kmem_cache_free);
3441
1da177e4
LT
3442/**
3443 * kfree - free previously allocated memory
3444 * @objp: pointer returned by kmalloc.
3445 *
80e93eff
PE
3446 * If @objp is NULL, no operation is performed.
3447 *
1da177e4
LT
3448 * Don't free memory not originally allocated by kmalloc()
3449 * or you will run into trouble.
3450 */
3451void kfree(const void *objp)
3452{
343e0d7a 3453 struct kmem_cache *c;
1da177e4
LT
3454 unsigned long flags;
3455
3456 if (unlikely(!objp))
3457 return;
3458 local_irq_save(flags);
3459 kfree_debugcheck(objp);
6ed5eb22 3460 c = virt_to_cache(objp);
f9b8404c 3461 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3462 __cache_free(c, (void *)objp);
1da177e4
LT
3463 local_irq_restore(flags);
3464}
3465EXPORT_SYMBOL(kfree);
3466
3467#ifdef CONFIG_SMP
3468/**
3469 * free_percpu - free previously allocated percpu memory
3470 * @objp: pointer returned by alloc_percpu.
3471 *
3472 * Don't free memory not originally allocated by alloc_percpu()
3473 * The complemented objp is to check for that.
3474 */
b28a02de 3475void free_percpu(const void *objp)
1da177e4
LT
3476{
3477 int i;
b28a02de 3478 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3479
e498be7d
CL
3480 /*
3481 * We allocate for all cpus so we cannot use for online cpu here.
3482 */
0a945022 3483 for_each_possible_cpu(i)
b28a02de 3484 kfree(p->ptrs[i]);
1da177e4
LT
3485 kfree(p);
3486}
3487EXPORT_SYMBOL(free_percpu);
3488#endif
3489
343e0d7a 3490unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3491{
3dafccf2 3492 return obj_size(cachep);
1da177e4
LT
3493}
3494EXPORT_SYMBOL(kmem_cache_size);
3495
343e0d7a 3496const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3497{
3498 return cachep->name;
3499}
3500EXPORT_SYMBOL_GPL(kmem_cache_name);
3501
e498be7d 3502/*
0718dc2a 3503 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3504 */
343e0d7a 3505static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3506{
3507 int node;
3508 struct kmem_list3 *l3;
cafeb02e
CL
3509 struct array_cache *new_shared;
3510 struct array_cache **new_alien;
e498be7d
CL
3511
3512 for_each_online_node(node) {
cafeb02e 3513
a737b3e2
AM
3514 new_alien = alloc_alien_cache(node, cachep->limit);
3515 if (!new_alien)
e498be7d 3516 goto fail;
cafeb02e 3517
0718dc2a
CL
3518 new_shared = alloc_arraycache(node,
3519 cachep->shared*cachep->batchcount,
a737b3e2 3520 0xbaadf00d);
0718dc2a
CL
3521 if (!new_shared) {
3522 free_alien_cache(new_alien);
e498be7d 3523 goto fail;
0718dc2a 3524 }
cafeb02e 3525
a737b3e2
AM
3526 l3 = cachep->nodelists[node];
3527 if (l3) {
cafeb02e
CL
3528 struct array_cache *shared = l3->shared;
3529
e498be7d
CL
3530 spin_lock_irq(&l3->list_lock);
3531
cafeb02e 3532 if (shared)
0718dc2a
CL
3533 free_block(cachep, shared->entry,
3534 shared->avail, node);
e498be7d 3535
cafeb02e
CL
3536 l3->shared = new_shared;
3537 if (!l3->alien) {
e498be7d
CL
3538 l3->alien = new_alien;
3539 new_alien = NULL;
3540 }
b28a02de 3541 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3542 cachep->batchcount + cachep->num;
e498be7d 3543 spin_unlock_irq(&l3->list_lock);
cafeb02e 3544 kfree(shared);
e498be7d
CL
3545 free_alien_cache(new_alien);
3546 continue;
3547 }
a737b3e2 3548 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3549 if (!l3) {
3550 free_alien_cache(new_alien);
3551 kfree(new_shared);
e498be7d 3552 goto fail;
0718dc2a 3553 }
e498be7d
CL
3554
3555 kmem_list3_init(l3);
3556 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3557 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3558 l3->shared = new_shared;
e498be7d 3559 l3->alien = new_alien;
b28a02de 3560 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3561 cachep->batchcount + cachep->num;
e498be7d
CL
3562 cachep->nodelists[node] = l3;
3563 }
cafeb02e 3564 return 0;
0718dc2a 3565
a737b3e2 3566fail:
0718dc2a
CL
3567 if (!cachep->next.next) {
3568 /* Cache is not active yet. Roll back what we did */
3569 node--;
3570 while (node >= 0) {
3571 if (cachep->nodelists[node]) {
3572 l3 = cachep->nodelists[node];
3573
3574 kfree(l3->shared);
3575 free_alien_cache(l3->alien);
3576 kfree(l3);
3577 cachep->nodelists[node] = NULL;
3578 }
3579 node--;
3580 }
3581 }
cafeb02e 3582 return -ENOMEM;
e498be7d
CL
3583}
3584
1da177e4 3585struct ccupdate_struct {
343e0d7a 3586 struct kmem_cache *cachep;
1da177e4
LT
3587 struct array_cache *new[NR_CPUS];
3588};
3589
3590static void do_ccupdate_local(void *info)
3591{
a737b3e2 3592 struct ccupdate_struct *new = info;
1da177e4
LT
3593 struct array_cache *old;
3594
3595 check_irq_off();
9a2dba4b 3596 old = cpu_cache_get(new->cachep);
e498be7d 3597
1da177e4
LT
3598 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3599 new->new[smp_processor_id()] = old;
3600}
3601
b5d8ca7c 3602/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3603static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3604 int batchcount, int shared)
1da177e4
LT
3605{
3606 struct ccupdate_struct new;
e498be7d 3607 int i, err;
1da177e4 3608
b28a02de 3609 memset(&new.new, 0, sizeof(new.new));
e498be7d 3610 for_each_online_cpu(i) {
a737b3e2
AM
3611 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3612 batchcount);
e498be7d 3613 if (!new.new[i]) {
b28a02de
PE
3614 for (i--; i >= 0; i--)
3615 kfree(new.new[i]);
e498be7d 3616 return -ENOMEM;
1da177e4
LT
3617 }
3618 }
3619 new.cachep = cachep;
3620
a07fa394 3621 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3622
1da177e4 3623 check_irq_on();
1da177e4
LT
3624 cachep->batchcount = batchcount;
3625 cachep->limit = limit;
e498be7d 3626 cachep->shared = shared;
1da177e4 3627
e498be7d 3628 for_each_online_cpu(i) {
1da177e4
LT
3629 struct array_cache *ccold = new.new[i];
3630 if (!ccold)
3631 continue;
e498be7d 3632 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3633 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3634 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3635 kfree(ccold);
3636 }
1da177e4 3637
e498be7d
CL
3638 err = alloc_kmemlist(cachep);
3639 if (err) {
3640 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3641 cachep->name, -err);
e498be7d 3642 BUG();
1da177e4 3643 }
1da177e4
LT
3644 return 0;
3645}
3646
b5d8ca7c 3647/* Called with cache_chain_mutex held always */
343e0d7a 3648static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3649{
3650 int err;
3651 int limit, shared;
3652
a737b3e2
AM
3653 /*
3654 * The head array serves three purposes:
1da177e4
LT
3655 * - create a LIFO ordering, i.e. return objects that are cache-warm
3656 * - reduce the number of spinlock operations.
a737b3e2 3657 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3658 * bufctl chains: array operations are cheaper.
3659 * The numbers are guessed, we should auto-tune as described by
3660 * Bonwick.
3661 */
3dafccf2 3662 if (cachep->buffer_size > 131072)
1da177e4 3663 limit = 1;
3dafccf2 3664 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3665 limit = 8;
3dafccf2 3666 else if (cachep->buffer_size > 1024)
1da177e4 3667 limit = 24;
3dafccf2 3668 else if (cachep->buffer_size > 256)
1da177e4
LT
3669 limit = 54;
3670 else
3671 limit = 120;
3672
a737b3e2
AM
3673 /*
3674 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3675 * allocation behaviour: Most allocs on one cpu, most free operations
3676 * on another cpu. For these cases, an efficient object passing between
3677 * cpus is necessary. This is provided by a shared array. The array
3678 * replaces Bonwick's magazine layer.
3679 * On uniprocessor, it's functionally equivalent (but less efficient)
3680 * to a larger limit. Thus disabled by default.
3681 */
3682 shared = 0;
3683#ifdef CONFIG_SMP
3dafccf2 3684 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3685 shared = 8;
3686#endif
3687
3688#if DEBUG
a737b3e2
AM
3689 /*
3690 * With debugging enabled, large batchcount lead to excessively long
3691 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3692 */
3693 if (limit > 32)
3694 limit = 32;
3695#endif
b28a02de 3696 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3697 if (err)
3698 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3699 cachep->name, -err);
1da177e4
LT
3700}
3701
1b55253a
CL
3702/*
3703 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3704 * necessary. Note that the l3 listlock also protects the array_cache
3705 * if drain_array() is used on the shared array.
1b55253a
CL
3706 */
3707void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3708 struct array_cache *ac, int force, int node)
1da177e4
LT
3709{
3710 int tofree;
3711
1b55253a
CL
3712 if (!ac || !ac->avail)
3713 return;
1da177e4
LT
3714 if (ac->touched && !force) {
3715 ac->touched = 0;
b18e7e65 3716 } else {
1b55253a 3717 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3718 if (ac->avail) {
3719 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3720 if (tofree > ac->avail)
3721 tofree = (ac->avail + 1) / 2;
3722 free_block(cachep, ac->entry, tofree, node);
3723 ac->avail -= tofree;
3724 memmove(ac->entry, &(ac->entry[tofree]),
3725 sizeof(void *) * ac->avail);
3726 }
1b55253a 3727 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3728 }
3729}
3730
3731/**
3732 * cache_reap - Reclaim memory from caches.
1e5d5331 3733 * @unused: unused parameter
1da177e4
LT
3734 *
3735 * Called from workqueue/eventd every few seconds.
3736 * Purpose:
3737 * - clear the per-cpu caches for this CPU.
3738 * - return freeable pages to the main free memory pool.
3739 *
a737b3e2
AM
3740 * If we cannot acquire the cache chain mutex then just give up - we'll try
3741 * again on the next iteration.
1da177e4
LT
3742 */
3743static void cache_reap(void *unused)
3744{
7a7c381d 3745 struct kmem_cache *searchp;
e498be7d 3746 struct kmem_list3 *l3;
aab2207c 3747 int node = numa_node_id();
1da177e4 3748
fc0abb14 3749 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3750 /* Give up. Setup the next iteration. */
b28a02de
PE
3751 schedule_delayed_work(&__get_cpu_var(reap_work),
3752 REAPTIMEOUT_CPUC);
1da177e4
LT
3753 return;
3754 }
3755
7a7c381d 3756 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3757 check_irq_on();
3758
35386e3b
CL
3759 /*
3760 * We only take the l3 lock if absolutely necessary and we
3761 * have established with reasonable certainty that
3762 * we can do some work if the lock was obtained.
3763 */
aab2207c 3764 l3 = searchp->nodelists[node];
35386e3b 3765
8fce4d8e 3766 reap_alien(searchp, l3);
1da177e4 3767
aab2207c 3768 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3769
35386e3b
CL
3770 /*
3771 * These are racy checks but it does not matter
3772 * if we skip one check or scan twice.
3773 */
e498be7d 3774 if (time_after(l3->next_reap, jiffies))
35386e3b 3775 goto next;
1da177e4 3776
e498be7d 3777 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3778
aab2207c 3779 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3780
ed11d9eb 3781 if (l3->free_touched)
e498be7d 3782 l3->free_touched = 0;
ed11d9eb
CL
3783 else {
3784 int freed;
1da177e4 3785
ed11d9eb
CL
3786 freed = drain_freelist(searchp, l3, (l3->free_limit +
3787 5 * searchp->num - 1) / (5 * searchp->num));
3788 STATS_ADD_REAPED(searchp, freed);
3789 }
35386e3b 3790next:
1da177e4
LT
3791 cond_resched();
3792 }
3793 check_irq_on();
fc0abb14 3794 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3795 next_reap_node();
2244b95a 3796 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3797 /* Set up the next iteration */
cd61ef62 3798 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3799}
3800
3801#ifdef CONFIG_PROC_FS
3802
85289f98 3803static void print_slabinfo_header(struct seq_file *m)
1da177e4 3804{
85289f98
PE
3805 /*
3806 * Output format version, so at least we can change it
3807 * without _too_ many complaints.
3808 */
1da177e4 3809#if STATS
85289f98 3810 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3811#else
85289f98 3812 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3813#endif
85289f98
PE
3814 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3815 "<objperslab> <pagesperslab>");
3816 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3817 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3818#if STATS
85289f98 3819 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3820 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3821 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3822#endif
85289f98
PE
3823 seq_putc(m, '\n');
3824}
3825
3826static void *s_start(struct seq_file *m, loff_t *pos)
3827{
3828 loff_t n = *pos;
3829 struct list_head *p;
3830
fc0abb14 3831 mutex_lock(&cache_chain_mutex);
85289f98
PE
3832 if (!n)
3833 print_slabinfo_header(m);
1da177e4
LT
3834 p = cache_chain.next;
3835 while (n--) {
3836 p = p->next;
3837 if (p == &cache_chain)
3838 return NULL;
3839 }
343e0d7a 3840 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3841}
3842
3843static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3844{
343e0d7a 3845 struct kmem_cache *cachep = p;
1da177e4 3846 ++*pos;
a737b3e2
AM
3847 return cachep->next.next == &cache_chain ?
3848 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3849}
3850
3851static void s_stop(struct seq_file *m, void *p)
3852{
fc0abb14 3853 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3854}
3855
3856static int s_show(struct seq_file *m, void *p)
3857{
343e0d7a 3858 struct kmem_cache *cachep = p;
b28a02de
PE
3859 struct slab *slabp;
3860 unsigned long active_objs;
3861 unsigned long num_objs;
3862 unsigned long active_slabs = 0;
3863 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3864 const char *name;
1da177e4 3865 char *error = NULL;
e498be7d
CL
3866 int node;
3867 struct kmem_list3 *l3;
1da177e4 3868
1da177e4
LT
3869 active_objs = 0;
3870 num_slabs = 0;
e498be7d
CL
3871 for_each_online_node(node) {
3872 l3 = cachep->nodelists[node];
3873 if (!l3)
3874 continue;
3875
ca3b9b91
RT
3876 check_irq_on();
3877 spin_lock_irq(&l3->list_lock);
e498be7d 3878
7a7c381d 3879 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3880 if (slabp->inuse != cachep->num && !error)
3881 error = "slabs_full accounting error";
3882 active_objs += cachep->num;
3883 active_slabs++;
3884 }
7a7c381d 3885 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3886 if (slabp->inuse == cachep->num && !error)
3887 error = "slabs_partial inuse accounting error";
3888 if (!slabp->inuse && !error)
3889 error = "slabs_partial/inuse accounting error";
3890 active_objs += slabp->inuse;
3891 active_slabs++;
3892 }
7a7c381d 3893 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3894 if (slabp->inuse && !error)
3895 error = "slabs_free/inuse accounting error";
3896 num_slabs++;
3897 }
3898 free_objects += l3->free_objects;
4484ebf1
RT
3899 if (l3->shared)
3900 shared_avail += l3->shared->avail;
e498be7d 3901
ca3b9b91 3902 spin_unlock_irq(&l3->list_lock);
1da177e4 3903 }
b28a02de
PE
3904 num_slabs += active_slabs;
3905 num_objs = num_slabs * cachep->num;
e498be7d 3906 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3907 error = "free_objects accounting error";
3908
b28a02de 3909 name = cachep->name;
1da177e4
LT
3910 if (error)
3911 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3912
3913 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3914 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3915 cachep->num, (1 << cachep->gfporder));
1da177e4 3916 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3917 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3918 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3919 active_slabs, num_slabs, shared_avail);
1da177e4 3920#if STATS
b28a02de 3921 { /* list3 stats */
1da177e4
LT
3922 unsigned long high = cachep->high_mark;
3923 unsigned long allocs = cachep->num_allocations;
3924 unsigned long grown = cachep->grown;
3925 unsigned long reaped = cachep->reaped;
3926 unsigned long errors = cachep->errors;
3927 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3928 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3929 unsigned long node_frees = cachep->node_frees;
fb7faf33 3930 unsigned long overflows = cachep->node_overflow;
1da177e4 3931
e498be7d 3932 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3933 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3934 reaped, errors, max_freeable, node_allocs,
fb7faf33 3935 node_frees, overflows);
1da177e4
LT
3936 }
3937 /* cpu stats */
3938 {
3939 unsigned long allochit = atomic_read(&cachep->allochit);
3940 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3941 unsigned long freehit = atomic_read(&cachep->freehit);
3942 unsigned long freemiss = atomic_read(&cachep->freemiss);
3943
3944 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3945 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3946 }
3947#endif
3948 seq_putc(m, '\n');
1da177e4
LT
3949 return 0;
3950}
3951
3952/*
3953 * slabinfo_op - iterator that generates /proc/slabinfo
3954 *
3955 * Output layout:
3956 * cache-name
3957 * num-active-objs
3958 * total-objs
3959 * object size
3960 * num-active-slabs
3961 * total-slabs
3962 * num-pages-per-slab
3963 * + further values on SMP and with statistics enabled
3964 */
3965
3966struct seq_operations slabinfo_op = {
b28a02de
PE
3967 .start = s_start,
3968 .next = s_next,
3969 .stop = s_stop,
3970 .show = s_show,
1da177e4
LT
3971};
3972
3973#define MAX_SLABINFO_WRITE 128
3974/**
3975 * slabinfo_write - Tuning for the slab allocator
3976 * @file: unused
3977 * @buffer: user buffer
3978 * @count: data length
3979 * @ppos: unused
3980 */
b28a02de
PE
3981ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3982 size_t count, loff_t *ppos)
1da177e4 3983{
b28a02de 3984 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3985 int limit, batchcount, shared, res;
7a7c381d 3986 struct kmem_cache *cachep;
b28a02de 3987
1da177e4
LT
3988 if (count > MAX_SLABINFO_WRITE)
3989 return -EINVAL;
3990 if (copy_from_user(&kbuf, buffer, count))
3991 return -EFAULT;
b28a02de 3992 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3993
3994 tmp = strchr(kbuf, ' ');
3995 if (!tmp)
3996 return -EINVAL;
3997 *tmp = '\0';
3998 tmp++;
3999 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4000 return -EINVAL;
4001
4002 /* Find the cache in the chain of caches. */
fc0abb14 4003 mutex_lock(&cache_chain_mutex);
1da177e4 4004 res = -EINVAL;
7a7c381d 4005 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4006 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4007 if (limit < 1 || batchcount < 1 ||
4008 batchcount > limit || shared < 0) {
e498be7d 4009 res = 0;
1da177e4 4010 } else {
e498be7d 4011 res = do_tune_cpucache(cachep, limit,
b28a02de 4012 batchcount, shared);
1da177e4
LT
4013 }
4014 break;
4015 }
4016 }
fc0abb14 4017 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4018 if (res >= 0)
4019 res = count;
4020 return res;
4021}
871751e2
AV
4022
4023#ifdef CONFIG_DEBUG_SLAB_LEAK
4024
4025static void *leaks_start(struct seq_file *m, loff_t *pos)
4026{
4027 loff_t n = *pos;
4028 struct list_head *p;
4029
4030 mutex_lock(&cache_chain_mutex);
4031 p = cache_chain.next;
4032 while (n--) {
4033 p = p->next;
4034 if (p == &cache_chain)
4035 return NULL;
4036 }
4037 return list_entry(p, struct kmem_cache, next);
4038}
4039
4040static inline int add_caller(unsigned long *n, unsigned long v)
4041{
4042 unsigned long *p;
4043 int l;
4044 if (!v)
4045 return 1;
4046 l = n[1];
4047 p = n + 2;
4048 while (l) {
4049 int i = l/2;
4050 unsigned long *q = p + 2 * i;
4051 if (*q == v) {
4052 q[1]++;
4053 return 1;
4054 }
4055 if (*q > v) {
4056 l = i;
4057 } else {
4058 p = q + 2;
4059 l -= i + 1;
4060 }
4061 }
4062 if (++n[1] == n[0])
4063 return 0;
4064 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4065 p[0] = v;
4066 p[1] = 1;
4067 return 1;
4068}
4069
4070static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4071{
4072 void *p;
4073 int i;
4074 if (n[0] == n[1])
4075 return;
4076 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4077 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4078 continue;
4079 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4080 return;
4081 }
4082}
4083
4084static void show_symbol(struct seq_file *m, unsigned long address)
4085{
4086#ifdef CONFIG_KALLSYMS
4087 char *modname;
4088 const char *name;
4089 unsigned long offset, size;
4090 char namebuf[KSYM_NAME_LEN+1];
4091
4092 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4093
4094 if (name) {
4095 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4096 if (modname)
4097 seq_printf(m, " [%s]", modname);
4098 return;
4099 }
4100#endif
4101 seq_printf(m, "%p", (void *)address);
4102}
4103
4104static int leaks_show(struct seq_file *m, void *p)
4105{
4106 struct kmem_cache *cachep = p;
871751e2
AV
4107 struct slab *slabp;
4108 struct kmem_list3 *l3;
4109 const char *name;
4110 unsigned long *n = m->private;
4111 int node;
4112 int i;
4113
4114 if (!(cachep->flags & SLAB_STORE_USER))
4115 return 0;
4116 if (!(cachep->flags & SLAB_RED_ZONE))
4117 return 0;
4118
4119 /* OK, we can do it */
4120
4121 n[1] = 0;
4122
4123 for_each_online_node(node) {
4124 l3 = cachep->nodelists[node];
4125 if (!l3)
4126 continue;
4127
4128 check_irq_on();
4129 spin_lock_irq(&l3->list_lock);
4130
7a7c381d 4131 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4132 handle_slab(n, cachep, slabp);
7a7c381d 4133 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4134 handle_slab(n, cachep, slabp);
871751e2
AV
4135 spin_unlock_irq(&l3->list_lock);
4136 }
4137 name = cachep->name;
4138 if (n[0] == n[1]) {
4139 /* Increase the buffer size */
4140 mutex_unlock(&cache_chain_mutex);
4141 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4142 if (!m->private) {
4143 /* Too bad, we are really out */
4144 m->private = n;
4145 mutex_lock(&cache_chain_mutex);
4146 return -ENOMEM;
4147 }
4148 *(unsigned long *)m->private = n[0] * 2;
4149 kfree(n);
4150 mutex_lock(&cache_chain_mutex);
4151 /* Now make sure this entry will be retried */
4152 m->count = m->size;
4153 return 0;
4154 }
4155 for (i = 0; i < n[1]; i++) {
4156 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4157 show_symbol(m, n[2*i+2]);
4158 seq_putc(m, '\n');
4159 }
4160 return 0;
4161}
4162
4163struct seq_operations slabstats_op = {
4164 .start = leaks_start,
4165 .next = s_next,
4166 .stop = s_stop,
4167 .show = leaks_show,
4168};
4169#endif
1da177e4
LT
4170#endif
4171
00e145b6
MS
4172/**
4173 * ksize - get the actual amount of memory allocated for a given object
4174 * @objp: Pointer to the object
4175 *
4176 * kmalloc may internally round up allocations and return more memory
4177 * than requested. ksize() can be used to determine the actual amount of
4178 * memory allocated. The caller may use this additional memory, even though
4179 * a smaller amount of memory was initially specified with the kmalloc call.
4180 * The caller must guarantee that objp points to a valid object previously
4181 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4182 * must not be freed during the duration of the call.
4183 */
1da177e4
LT
4184unsigned int ksize(const void *objp)
4185{
00e145b6
MS
4186 if (unlikely(objp == NULL))
4187 return 0;
1da177e4 4188
6ed5eb22 4189 return obj_size(virt_to_cache(objp));
1da177e4 4190}
This page took 0.422497 seconds and 5 git commands to generate.