Merge git://oss.sgi.com:8090/xfs/xfs-2.6
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
2ed3a4ef 316static int enable_cpucache(struct kmem_cache *cachep);
ed11d9eb
CL
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
056c6241
RT
677#define BAD_ALIEN_MAGIC 0x01020304ul
678
f1aaee53
AV
679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
f1aaee53 691 */
056c6241
RT
692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
694
695static inline void init_lock_keys(void)
f1aaee53 696
f1aaee53
AV
697{
698 int q;
056c6241
RT
699 struct cache_sizes *s = malloc_sizes;
700
701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
f1aaee53
AV
726 }
727}
f1aaee53 728#else
056c6241 729static inline void init_lock_keys(void)
f1aaee53
AV
730{
731}
732#endif
733
1da177e4 734/* Guard access to the cache-chain. */
fc0abb14 735static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
736static struct list_head cache_chain;
737
1da177e4
LT
738/*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742static enum {
743 NONE,
e498be7d
CL
744 PARTIAL_AC,
745 PARTIAL_L3,
1da177e4
LT
746 FULL
747} g_cpucache_up;
748
39d24e64
MK
749/*
750 * used by boot code to determine if it can use slab based allocator
751 */
752int slab_is_available(void)
753{
754 return g_cpucache_up == FULL;
755}
756
1da177e4
LT
757static DEFINE_PER_CPU(struct work_struct, reap_work);
758
343e0d7a 759static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
760{
761 return cachep->array[smp_processor_id()];
762}
763
a737b3e2
AM
764static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
1da177e4
LT
766{
767 struct cache_sizes *csizep = malloc_sizes;
768
769#if DEBUG
770 /* This happens if someone tries to call
b28a02de
PE
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
c7e43c78 774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
775#endif
776 while (size > csizep->cs_size)
777 csizep++;
778
779 /*
0abf40c1 780 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
781 * has cs_{dma,}cachep==NULL. Thus no special case
782 * for large kmalloc calls required.
783 */
784 if (unlikely(gfpflags & GFP_DMA))
785 return csizep->cs_dmacachep;
786 return csizep->cs_cachep;
787}
788
b221385b 789static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
790{
791 return __find_general_cachep(size, gfpflags);
792}
97e2bde4 793
fbaccacf 794static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 795{
fbaccacf
SR
796 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
797}
1da177e4 798
a737b3e2
AM
799/*
800 * Calculate the number of objects and left-over bytes for a given buffer size.
801 */
fbaccacf
SR
802static void cache_estimate(unsigned long gfporder, size_t buffer_size,
803 size_t align, int flags, size_t *left_over,
804 unsigned int *num)
805{
806 int nr_objs;
807 size_t mgmt_size;
808 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 809
fbaccacf
SR
810 /*
811 * The slab management structure can be either off the slab or
812 * on it. For the latter case, the memory allocated for a
813 * slab is used for:
814 *
815 * - The struct slab
816 * - One kmem_bufctl_t for each object
817 * - Padding to respect alignment of @align
818 * - @buffer_size bytes for each object
819 *
820 * If the slab management structure is off the slab, then the
821 * alignment will already be calculated into the size. Because
822 * the slabs are all pages aligned, the objects will be at the
823 * correct alignment when allocated.
824 */
825 if (flags & CFLGS_OFF_SLAB) {
826 mgmt_size = 0;
827 nr_objs = slab_size / buffer_size;
828
829 if (nr_objs > SLAB_LIMIT)
830 nr_objs = SLAB_LIMIT;
831 } else {
832 /*
833 * Ignore padding for the initial guess. The padding
834 * is at most @align-1 bytes, and @buffer_size is at
835 * least @align. In the worst case, this result will
836 * be one greater than the number of objects that fit
837 * into the memory allocation when taking the padding
838 * into account.
839 */
840 nr_objs = (slab_size - sizeof(struct slab)) /
841 (buffer_size + sizeof(kmem_bufctl_t));
842
843 /*
844 * This calculated number will be either the right
845 * amount, or one greater than what we want.
846 */
847 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
848 > slab_size)
849 nr_objs--;
850
851 if (nr_objs > SLAB_LIMIT)
852 nr_objs = SLAB_LIMIT;
853
854 mgmt_size = slab_mgmt_size(nr_objs, align);
855 }
856 *num = nr_objs;
857 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
858}
859
860#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861
a737b3e2
AM
862static void __slab_error(const char *function, struct kmem_cache *cachep,
863 char *msg)
1da177e4
LT
864{
865 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 866 function, cachep->name, msg);
1da177e4
LT
867 dump_stack();
868}
869
8fce4d8e
CL
870#ifdef CONFIG_NUMA
871/*
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
876 */
877static DEFINE_PER_CPU(unsigned long, reap_node);
878
879static void init_reap_node(int cpu)
880{
881 int node;
882
883 node = next_node(cpu_to_node(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
442295c9 885 node = first_node(node_online_map);
8fce4d8e
CL
886
887 __get_cpu_var(reap_node) = node;
888}
889
890static void next_reap_node(void)
891{
892 int node = __get_cpu_var(reap_node);
893
894 /*
895 * Also drain per cpu pages on remote zones
896 */
897 if (node != numa_node_id())
898 drain_node_pages(node);
899
900 node = next_node(node, node_online_map);
901 if (unlikely(node >= MAX_NUMNODES))
902 node = first_node(node_online_map);
903 __get_cpu_var(reap_node) = node;
904}
905
906#else
907#define init_reap_node(cpu) do { } while (0)
908#define next_reap_node(void) do { } while (0)
909#endif
910
1da177e4
LT
911/*
912 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
913 * via the workqueue/eventd.
914 * Add the CPU number into the expiration time to minimize the possibility of
915 * the CPUs getting into lockstep and contending for the global cache chain
916 * lock.
917 */
918static void __devinit start_cpu_timer(int cpu)
919{
920 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
921
922 /*
923 * When this gets called from do_initcalls via cpucache_init(),
924 * init_workqueues() has already run, so keventd will be setup
925 * at that time.
926 */
927 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 928 init_reap_node(cpu);
1da177e4
LT
929 INIT_WORK(reap_work, cache_reap, NULL);
930 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
931 }
932}
933
e498be7d 934static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 935 int batchcount)
1da177e4 936{
b28a02de 937 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
938 struct array_cache *nc = NULL;
939
e498be7d 940 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
941 if (nc) {
942 nc->avail = 0;
943 nc->limit = entries;
944 nc->batchcount = batchcount;
945 nc->touched = 0;
e498be7d 946 spin_lock_init(&nc->lock);
1da177e4
LT
947 }
948 return nc;
949}
950
3ded175a
CL
951/*
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
954 *
955 * Return the number of entries transferred.
956 */
957static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
959{
960 /* Figure out how many entries to transfer */
961 int nr = min(min(from->avail, max), to->limit - to->avail);
962
963 if (!nr)
964 return 0;
965
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
967 sizeof(void *) *nr);
968
969 from->avail -= nr;
970 to->avail += nr;
971 to->touched = 1;
972 return nr;
973}
974
765c4507
CL
975#ifndef CONFIG_NUMA
976
977#define drain_alien_cache(cachep, alien) do { } while (0)
978#define reap_alien(cachep, l3) do { } while (0)
979
980static inline struct array_cache **alloc_alien_cache(int node, int limit)
981{
982 return (struct array_cache **)BAD_ALIEN_MAGIC;
983}
984
985static inline void free_alien_cache(struct array_cache **ac_ptr)
986{
987}
988
989static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
990{
991 return 0;
992}
993
994static inline void *alternate_node_alloc(struct kmem_cache *cachep,
995 gfp_t flags)
996{
997 return NULL;
998}
999
1000static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1001 gfp_t flags, int nodeid)
1002{
1003 return NULL;
1004}
1005
1006#else /* CONFIG_NUMA */
1007
343e0d7a 1008static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1009static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1010
5295a74c 1011static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1012{
1013 struct array_cache **ac_ptr;
b28a02de 1014 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
1015 int i;
1016
1017 if (limit > 1)
1018 limit = 12;
1019 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1020 if (ac_ptr) {
1021 for_each_node(i) {
1022 if (i == node || !node_online(i)) {
1023 ac_ptr[i] = NULL;
1024 continue;
1025 }
1026 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1027 if (!ac_ptr[i]) {
b28a02de 1028 for (i--; i <= 0; i--)
e498be7d
CL
1029 kfree(ac_ptr[i]);
1030 kfree(ac_ptr);
1031 return NULL;
1032 }
1033 }
1034 }
1035 return ac_ptr;
1036}
1037
5295a74c 1038static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1039{
1040 int i;
1041
1042 if (!ac_ptr)
1043 return;
e498be7d 1044 for_each_node(i)
b28a02de 1045 kfree(ac_ptr[i]);
e498be7d
CL
1046 kfree(ac_ptr);
1047}
1048
343e0d7a 1049static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1050 struct array_cache *ac, int node)
e498be7d
CL
1051{
1052 struct kmem_list3 *rl3 = cachep->nodelists[node];
1053
1054 if (ac->avail) {
1055 spin_lock(&rl3->list_lock);
e00946fe
CL
1056 /*
1057 * Stuff objects into the remote nodes shared array first.
1058 * That way we could avoid the overhead of putting the objects
1059 * into the free lists and getting them back later.
1060 */
693f7d36 1061 if (rl3->shared)
1062 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1063
ff69416e 1064 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1065 ac->avail = 0;
1066 spin_unlock(&rl3->list_lock);
1067 }
1068}
1069
8fce4d8e
CL
1070/*
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1072 */
1073static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1074{
1075 int node = __get_cpu_var(reap_node);
1076
1077 if (l3->alien) {
1078 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1079
1080 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1081 __drain_alien_cache(cachep, ac, node);
1082 spin_unlock_irq(&ac->lock);
1083 }
1084 }
1085}
1086
a737b3e2
AM
1087static void drain_alien_cache(struct kmem_cache *cachep,
1088 struct array_cache **alien)
e498be7d 1089{
b28a02de 1090 int i = 0;
e498be7d
CL
1091 struct array_cache *ac;
1092 unsigned long flags;
1093
1094 for_each_online_node(i) {
4484ebf1 1095 ac = alien[i];
e498be7d
CL
1096 if (ac) {
1097 spin_lock_irqsave(&ac->lock, flags);
1098 __drain_alien_cache(cachep, ac, i);
1099 spin_unlock_irqrestore(&ac->lock, flags);
1100 }
1101 }
1102}
729bd0b7 1103
873623df 1104static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1105{
1106 struct slab *slabp = virt_to_slab(objp);
1107 int nodeid = slabp->nodeid;
1108 struct kmem_list3 *l3;
1109 struct array_cache *alien = NULL;
1110
1111 /*
1112 * Make sure we are not freeing a object from another node to the array
1113 * cache on this cpu.
1114 */
1115 if (likely(slabp->nodeid == numa_node_id()))
1116 return 0;
1117
1118 l3 = cachep->nodelists[numa_node_id()];
1119 STATS_INC_NODEFREES(cachep);
1120 if (l3->alien && l3->alien[nodeid]) {
1121 alien = l3->alien[nodeid];
873623df 1122 spin_lock(&alien->lock);
729bd0b7
PE
1123 if (unlikely(alien->avail == alien->limit)) {
1124 STATS_INC_ACOVERFLOW(cachep);
1125 __drain_alien_cache(cachep, alien, nodeid);
1126 }
1127 alien->entry[alien->avail++] = objp;
1128 spin_unlock(&alien->lock);
1129 } else {
1130 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1131 free_block(cachep, &objp, 1, nodeid);
1132 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1133 }
1134 return 1;
1135}
e498be7d
CL
1136#endif
1137
8c78f307 1138static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1139 unsigned long action, void *hcpu)
1da177e4
LT
1140{
1141 long cpu = (long)hcpu;
343e0d7a 1142 struct kmem_cache *cachep;
e498be7d
CL
1143 struct kmem_list3 *l3 = NULL;
1144 int node = cpu_to_node(cpu);
1145 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1146
1147 switch (action) {
1148 case CPU_UP_PREPARE:
fc0abb14 1149 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1150 /*
1151 * We need to do this right in the beginning since
e498be7d
CL
1152 * alloc_arraycache's are going to use this list.
1153 * kmalloc_node allows us to add the slab to the right
1154 * kmem_list3 and not this cpu's kmem_list3
1155 */
1156
1da177e4 1157 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1158 /*
1159 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1160 * begin anything. Make sure some other cpu on this
1161 * node has not already allocated this
1162 */
1163 if (!cachep->nodelists[node]) {
a737b3e2
AM
1164 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1165 if (!l3)
e498be7d
CL
1166 goto bad;
1167 kmem_list3_init(l3);
1168 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1169 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1170
4484ebf1
RT
1171 /*
1172 * The l3s don't come and go as CPUs come and
1173 * go. cache_chain_mutex is sufficient
1174 * protection here.
1175 */
e498be7d
CL
1176 cachep->nodelists[node] = l3;
1177 }
1da177e4 1178
e498be7d
CL
1179 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1180 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1181 (1 + nr_cpus_node(node)) *
1182 cachep->batchcount + cachep->num;
e498be7d
CL
1183 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1184 }
1185
a737b3e2
AM
1186 /*
1187 * Now we can go ahead with allocating the shared arrays and
1188 * array caches
1189 */
e498be7d 1190 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1191 struct array_cache *nc;
4484ebf1
RT
1192 struct array_cache *shared;
1193 struct array_cache **alien;
cd105df4 1194
e498be7d 1195 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1196 cachep->batchcount);
1da177e4
LT
1197 if (!nc)
1198 goto bad;
4484ebf1
RT
1199 shared = alloc_arraycache(node,
1200 cachep->shared * cachep->batchcount,
1201 0xbaadf00d);
1202 if (!shared)
1203 goto bad;
7a21ef6f 1204
4484ebf1
RT
1205 alien = alloc_alien_cache(node, cachep->limit);
1206 if (!alien)
1207 goto bad;
1da177e4 1208 cachep->array[cpu] = nc;
e498be7d
CL
1209 l3 = cachep->nodelists[node];
1210 BUG_ON(!l3);
e498be7d 1211
4484ebf1
RT
1212 spin_lock_irq(&l3->list_lock);
1213 if (!l3->shared) {
1214 /*
1215 * We are serialised from CPU_DEAD or
1216 * CPU_UP_CANCELLED by the cpucontrol lock
1217 */
1218 l3->shared = shared;
1219 shared = NULL;
e498be7d 1220 }
4484ebf1
RT
1221#ifdef CONFIG_NUMA
1222 if (!l3->alien) {
1223 l3->alien = alien;
1224 alien = NULL;
1225 }
1226#endif
1227 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1228 kfree(shared);
1229 free_alien_cache(alien);
1da177e4 1230 }
fc0abb14 1231 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1232 break;
1233 case CPU_ONLINE:
1234 start_cpu_timer(cpu);
1235 break;
1236#ifdef CONFIG_HOTPLUG_CPU
1237 case CPU_DEAD:
4484ebf1
RT
1238 /*
1239 * Even if all the cpus of a node are down, we don't free the
1240 * kmem_list3 of any cache. This to avoid a race between
1241 * cpu_down, and a kmalloc allocation from another cpu for
1242 * memory from the node of the cpu going down. The list3
1243 * structure is usually allocated from kmem_cache_create() and
1244 * gets destroyed at kmem_cache_destroy().
1245 */
1da177e4
LT
1246 /* fall thru */
1247 case CPU_UP_CANCELED:
fc0abb14 1248 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1249 list_for_each_entry(cachep, &cache_chain, next) {
1250 struct array_cache *nc;
4484ebf1
RT
1251 struct array_cache *shared;
1252 struct array_cache **alien;
e498be7d 1253 cpumask_t mask;
1da177e4 1254
e498be7d 1255 mask = node_to_cpumask(node);
1da177e4
LT
1256 /* cpu is dead; no one can alloc from it. */
1257 nc = cachep->array[cpu];
1258 cachep->array[cpu] = NULL;
e498be7d
CL
1259 l3 = cachep->nodelists[node];
1260
1261 if (!l3)
4484ebf1 1262 goto free_array_cache;
e498be7d 1263
ca3b9b91 1264 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1265
1266 /* Free limit for this kmem_list3 */
1267 l3->free_limit -= cachep->batchcount;
1268 if (nc)
ff69416e 1269 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1270
1271 if (!cpus_empty(mask)) {
ca3b9b91 1272 spin_unlock_irq(&l3->list_lock);
4484ebf1 1273 goto free_array_cache;
b28a02de 1274 }
e498be7d 1275
4484ebf1
RT
1276 shared = l3->shared;
1277 if (shared) {
e498be7d 1278 free_block(cachep, l3->shared->entry,
b28a02de 1279 l3->shared->avail, node);
e498be7d
CL
1280 l3->shared = NULL;
1281 }
e498be7d 1282
4484ebf1
RT
1283 alien = l3->alien;
1284 l3->alien = NULL;
1285
1286 spin_unlock_irq(&l3->list_lock);
1287
1288 kfree(shared);
1289 if (alien) {
1290 drain_alien_cache(cachep, alien);
1291 free_alien_cache(alien);
e498be7d 1292 }
4484ebf1 1293free_array_cache:
1da177e4
LT
1294 kfree(nc);
1295 }
4484ebf1
RT
1296 /*
1297 * In the previous loop, all the objects were freed to
1298 * the respective cache's slabs, now we can go ahead and
1299 * shrink each nodelist to its limit.
1300 */
1301 list_for_each_entry(cachep, &cache_chain, next) {
1302 l3 = cachep->nodelists[node];
1303 if (!l3)
1304 continue;
ed11d9eb 1305 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1306 }
fc0abb14 1307 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1308 break;
1309#endif
1310 }
1311 return NOTIFY_OK;
a737b3e2 1312bad:
fc0abb14 1313 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1314 return NOTIFY_BAD;
1315}
1316
74b85f37
CS
1317static struct notifier_block __cpuinitdata cpucache_notifier = {
1318 &cpuup_callback, NULL, 0
1319};
1da177e4 1320
e498be7d
CL
1321/*
1322 * swap the static kmem_list3 with kmalloced memory
1323 */
a737b3e2
AM
1324static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1325 int nodeid)
e498be7d
CL
1326{
1327 struct kmem_list3 *ptr;
1328
1329 BUG_ON(cachep->nodelists[nodeid] != list);
1330 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1331 BUG_ON(!ptr);
1332
1333 local_irq_disable();
1334 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1335 /*
1336 * Do not assume that spinlocks can be initialized via memcpy:
1337 */
1338 spin_lock_init(&ptr->list_lock);
1339
e498be7d
CL
1340 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1341 cachep->nodelists[nodeid] = ptr;
1342 local_irq_enable();
1343}
1344
a737b3e2
AM
1345/*
1346 * Initialisation. Called after the page allocator have been initialised and
1347 * before smp_init().
1da177e4
LT
1348 */
1349void __init kmem_cache_init(void)
1350{
1351 size_t left_over;
1352 struct cache_sizes *sizes;
1353 struct cache_names *names;
e498be7d 1354 int i;
07ed76b2 1355 int order;
e498be7d
CL
1356
1357 for (i = 0; i < NUM_INIT_LISTS; i++) {
1358 kmem_list3_init(&initkmem_list3[i]);
1359 if (i < MAX_NUMNODES)
1360 cache_cache.nodelists[i] = NULL;
1361 }
1da177e4
LT
1362
1363 /*
1364 * Fragmentation resistance on low memory - only use bigger
1365 * page orders on machines with more than 32MB of memory.
1366 */
1367 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1368 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1369
1da177e4
LT
1370 /* Bootstrap is tricky, because several objects are allocated
1371 * from caches that do not exist yet:
a737b3e2
AM
1372 * 1) initialize the cache_cache cache: it contains the struct
1373 * kmem_cache structures of all caches, except cache_cache itself:
1374 * cache_cache is statically allocated.
e498be7d
CL
1375 * Initially an __init data area is used for the head array and the
1376 * kmem_list3 structures, it's replaced with a kmalloc allocated
1377 * array at the end of the bootstrap.
1da177e4 1378 * 2) Create the first kmalloc cache.
343e0d7a 1379 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1380 * An __init data area is used for the head array.
1381 * 3) Create the remaining kmalloc caches, with minimally sized
1382 * head arrays.
1da177e4
LT
1383 * 4) Replace the __init data head arrays for cache_cache and the first
1384 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1385 * 5) Replace the __init data for kmem_list3 for cache_cache and
1386 * the other cache's with kmalloc allocated memory.
1387 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1388 */
1389
1390 /* 1) create the cache_cache */
1da177e4
LT
1391 INIT_LIST_HEAD(&cache_chain);
1392 list_add(&cache_cache.next, &cache_chain);
1393 cache_cache.colour_off = cache_line_size();
1394 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1395 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1396
a737b3e2
AM
1397 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1398 cache_line_size());
1da177e4 1399
07ed76b2
JS
1400 for (order = 0; order < MAX_ORDER; order++) {
1401 cache_estimate(order, cache_cache.buffer_size,
1402 cache_line_size(), 0, &left_over, &cache_cache.num);
1403 if (cache_cache.num)
1404 break;
1405 }
40094fa6 1406 BUG_ON(!cache_cache.num);
07ed76b2 1407 cache_cache.gfporder = order;
b28a02de 1408 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1409 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1410 sizeof(struct slab), cache_line_size());
1da177e4
LT
1411
1412 /* 2+3) create the kmalloc caches */
1413 sizes = malloc_sizes;
1414 names = cache_names;
1415
a737b3e2
AM
1416 /*
1417 * Initialize the caches that provide memory for the array cache and the
1418 * kmem_list3 structures first. Without this, further allocations will
1419 * bug.
e498be7d
CL
1420 */
1421
1422 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1423 sizes[INDEX_AC].cs_size,
1424 ARCH_KMALLOC_MINALIGN,
1425 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1426 NULL, NULL);
e498be7d 1427
a737b3e2 1428 if (INDEX_AC != INDEX_L3) {
e498be7d 1429 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1430 kmem_cache_create(names[INDEX_L3].name,
1431 sizes[INDEX_L3].cs_size,
1432 ARCH_KMALLOC_MINALIGN,
1433 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1434 NULL, NULL);
1435 }
e498be7d 1436
e0a42726
IM
1437 slab_early_init = 0;
1438
1da177e4 1439 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1440 /*
1441 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1442 * This should be particularly beneficial on SMP boxes, as it
1443 * eliminates "false sharing".
1444 * Note for systems short on memory removing the alignment will
e498be7d
CL
1445 * allow tighter packing of the smaller caches.
1446 */
a737b3e2 1447 if (!sizes->cs_cachep) {
e498be7d 1448 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1449 sizes->cs_size,
1450 ARCH_KMALLOC_MINALIGN,
1451 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1452 NULL, NULL);
1453 }
1da177e4 1454
1da177e4 1455 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1456 sizes->cs_size,
1457 ARCH_KMALLOC_MINALIGN,
1458 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1459 SLAB_PANIC,
1460 NULL, NULL);
1da177e4
LT
1461 sizes++;
1462 names++;
1463 }
1464 /* 4) Replace the bootstrap head arrays */
1465 {
2b2d5493 1466 struct array_cache *ptr;
e498be7d 1467
1da177e4 1468 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1469
1da177e4 1470 local_irq_disable();
9a2dba4b
PE
1471 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1472 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1473 sizeof(struct arraycache_init));
2b2d5493
IM
1474 /*
1475 * Do not assume that spinlocks can be initialized via memcpy:
1476 */
1477 spin_lock_init(&ptr->lock);
1478
1da177e4
LT
1479 cache_cache.array[smp_processor_id()] = ptr;
1480 local_irq_enable();
e498be7d 1481
1da177e4 1482 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1483
1da177e4 1484 local_irq_disable();
9a2dba4b 1485 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1486 != &initarray_generic.cache);
9a2dba4b 1487 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1488 sizeof(struct arraycache_init));
2b2d5493
IM
1489 /*
1490 * Do not assume that spinlocks can be initialized via memcpy:
1491 */
1492 spin_lock_init(&ptr->lock);
1493
e498be7d 1494 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1495 ptr;
1da177e4
LT
1496 local_irq_enable();
1497 }
e498be7d
CL
1498 /* 5) Replace the bootstrap kmem_list3's */
1499 {
1500 int node;
1501 /* Replace the static kmem_list3 structures for the boot cpu */
1502 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1503 numa_node_id());
e498be7d
CL
1504
1505 for_each_online_node(node) {
1506 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1507 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1508
1509 if (INDEX_AC != INDEX_L3) {
1510 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1511 &initkmem_list3[SIZE_L3 + node],
1512 node);
e498be7d
CL
1513 }
1514 }
1515 }
1da177e4 1516
e498be7d 1517 /* 6) resize the head arrays to their final sizes */
1da177e4 1518 {
343e0d7a 1519 struct kmem_cache *cachep;
fc0abb14 1520 mutex_lock(&cache_chain_mutex);
1da177e4 1521 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1522 if (enable_cpucache(cachep))
1523 BUG();
fc0abb14 1524 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1525 }
1526
056c6241
RT
1527 /* Annotate slab for lockdep -- annotate the malloc caches */
1528 init_lock_keys();
1529
1530
1da177e4
LT
1531 /* Done! */
1532 g_cpucache_up = FULL;
1533
a737b3e2
AM
1534 /*
1535 * Register a cpu startup notifier callback that initializes
1536 * cpu_cache_get for all new cpus
1da177e4
LT
1537 */
1538 register_cpu_notifier(&cpucache_notifier);
1da177e4 1539
a737b3e2
AM
1540 /*
1541 * The reap timers are started later, with a module init call: That part
1542 * of the kernel is not yet operational.
1da177e4
LT
1543 */
1544}
1545
1546static int __init cpucache_init(void)
1547{
1548 int cpu;
1549
a737b3e2
AM
1550 /*
1551 * Register the timers that return unneeded pages to the page allocator
1da177e4 1552 */
e498be7d 1553 for_each_online_cpu(cpu)
a737b3e2 1554 start_cpu_timer(cpu);
1da177e4
LT
1555 return 0;
1556}
1da177e4
LT
1557__initcall(cpucache_init);
1558
1559/*
1560 * Interface to system's page allocator. No need to hold the cache-lock.
1561 *
1562 * If we requested dmaable memory, we will get it. Even if we
1563 * did not request dmaable memory, we might get it, but that
1564 * would be relatively rare and ignorable.
1565 */
343e0d7a 1566static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1567{
1568 struct page *page;
e1b6aa6f 1569 int nr_pages;
1da177e4
LT
1570 int i;
1571
d6fef9da 1572#ifndef CONFIG_MMU
e1b6aa6f
CH
1573 /*
1574 * Nommu uses slab's for process anonymous memory allocations, and thus
1575 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1576 */
e1b6aa6f 1577 flags |= __GFP_COMP;
d6fef9da 1578#endif
765c4507
CL
1579
1580 /*
1581 * Under NUMA we want memory on the indicated node. We will handle
1582 * the needed fallback ourselves since we want to serve from our
1583 * per node object lists first for other nodes.
1584 */
1585 flags |= cachep->gfpflags | GFP_THISNODE;
e1b6aa6f
CH
1586
1587 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1588 if (!page)
1589 return NULL;
1da177e4 1590
e1b6aa6f 1591 nr_pages = (1 << cachep->gfporder);
1da177e4 1592 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1593 add_zone_page_state(page_zone(page),
1594 NR_SLAB_RECLAIMABLE, nr_pages);
1595 else
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1598 for (i = 0; i < nr_pages; i++)
1599 __SetPageSlab(page + i);
1600 return page_address(page);
1da177e4
LT
1601}
1602
1603/*
1604 * Interface to system's page release.
1605 */
343e0d7a 1606static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1607{
b28a02de 1608 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1609 struct page *page = virt_to_page(addr);
1610 const unsigned long nr_freed = i;
1611
972d1a7b
CL
1612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 sub_zone_page_state(page_zone(page),
1614 NR_SLAB_RECLAIMABLE, nr_freed);
1615 else
1616 sub_zone_page_state(page_zone(page),
1617 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1618 while (i--) {
f205b2fe
NP
1619 BUG_ON(!PageSlab(page));
1620 __ClearPageSlab(page);
1da177e4
LT
1621 page++;
1622 }
1da177e4
LT
1623 if (current->reclaim_state)
1624 current->reclaim_state->reclaimed_slab += nr_freed;
1625 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1626}
1627
1628static void kmem_rcu_free(struct rcu_head *head)
1629{
b28a02de 1630 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1631 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1632
1633 kmem_freepages(cachep, slab_rcu->addr);
1634 if (OFF_SLAB(cachep))
1635 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1636}
1637
1638#if DEBUG
1639
1640#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1641static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1642 unsigned long caller)
1da177e4 1643{
3dafccf2 1644 int size = obj_size(cachep);
1da177e4 1645
3dafccf2 1646 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1647
b28a02de 1648 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1649 return;
1650
b28a02de
PE
1651 *addr++ = 0x12345678;
1652 *addr++ = caller;
1653 *addr++ = smp_processor_id();
1654 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1655 {
1656 unsigned long *sptr = &caller;
1657 unsigned long svalue;
1658
1659 while (!kstack_end(sptr)) {
1660 svalue = *sptr++;
1661 if (kernel_text_address(svalue)) {
b28a02de 1662 *addr++ = svalue;
1da177e4
LT
1663 size -= sizeof(unsigned long);
1664 if (size <= sizeof(unsigned long))
1665 break;
1666 }
1667 }
1668
1669 }
b28a02de 1670 *addr++ = 0x87654321;
1da177e4
LT
1671}
1672#endif
1673
343e0d7a 1674static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1675{
3dafccf2
MS
1676 int size = obj_size(cachep);
1677 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1678
1679 memset(addr, val, size);
b28a02de 1680 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1681}
1682
1683static void dump_line(char *data, int offset, int limit)
1684{
1685 int i;
aa83aa40
DJ
1686 unsigned char error = 0;
1687 int bad_count = 0;
1688
1da177e4 1689 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1690 for (i = 0; i < limit; i++) {
1691 if (data[offset + i] != POISON_FREE) {
1692 error = data[offset + i];
1693 bad_count++;
1694 }
b28a02de 1695 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1696 }
1da177e4 1697 printk("\n");
aa83aa40
DJ
1698
1699 if (bad_count == 1) {
1700 error ^= POISON_FREE;
1701 if (!(error & (error - 1))) {
1702 printk(KERN_ERR "Single bit error detected. Probably "
1703 "bad RAM.\n");
1704#ifdef CONFIG_X86
1705 printk(KERN_ERR "Run memtest86+ or a similar memory "
1706 "test tool.\n");
1707#else
1708 printk(KERN_ERR "Run a memory test tool.\n");
1709#endif
1710 }
1711 }
1da177e4
LT
1712}
1713#endif
1714
1715#if DEBUG
1716
343e0d7a 1717static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1718{
1719 int i, size;
1720 char *realobj;
1721
1722 if (cachep->flags & SLAB_RED_ZONE) {
1723 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1724 *dbg_redzone1(cachep, objp),
1725 *dbg_redzone2(cachep, objp));
1da177e4
LT
1726 }
1727
1728 if (cachep->flags & SLAB_STORE_USER) {
1729 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1730 *dbg_userword(cachep, objp));
1da177e4 1731 print_symbol("(%s)",
a737b3e2 1732 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1733 printk("\n");
1734 }
3dafccf2
MS
1735 realobj = (char *)objp + obj_offset(cachep);
1736 size = obj_size(cachep);
b28a02de 1737 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1738 int limit;
1739 limit = 16;
b28a02de
PE
1740 if (i + limit > size)
1741 limit = size - i;
1da177e4
LT
1742 dump_line(realobj, i, limit);
1743 }
1744}
1745
343e0d7a 1746static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1747{
1748 char *realobj;
1749 int size, i;
1750 int lines = 0;
1751
3dafccf2
MS
1752 realobj = (char *)objp + obj_offset(cachep);
1753 size = obj_size(cachep);
1da177e4 1754
b28a02de 1755 for (i = 0; i < size; i++) {
1da177e4 1756 char exp = POISON_FREE;
b28a02de 1757 if (i == size - 1)
1da177e4
LT
1758 exp = POISON_END;
1759 if (realobj[i] != exp) {
1760 int limit;
1761 /* Mismatch ! */
1762 /* Print header */
1763 if (lines == 0) {
b28a02de 1764 printk(KERN_ERR
a737b3e2
AM
1765 "Slab corruption: start=%p, len=%d\n",
1766 realobj, size);
1da177e4
LT
1767 print_objinfo(cachep, objp, 0);
1768 }
1769 /* Hexdump the affected line */
b28a02de 1770 i = (i / 16) * 16;
1da177e4 1771 limit = 16;
b28a02de
PE
1772 if (i + limit > size)
1773 limit = size - i;
1da177e4
LT
1774 dump_line(realobj, i, limit);
1775 i += 16;
1776 lines++;
1777 /* Limit to 5 lines */
1778 if (lines > 5)
1779 break;
1780 }
1781 }
1782 if (lines != 0) {
1783 /* Print some data about the neighboring objects, if they
1784 * exist:
1785 */
6ed5eb22 1786 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1787 unsigned int objnr;
1da177e4 1788
8fea4e96 1789 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1790 if (objnr) {
8fea4e96 1791 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1792 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1793 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1794 realobj, size);
1da177e4
LT
1795 print_objinfo(cachep, objp, 2);
1796 }
b28a02de 1797 if (objnr + 1 < cachep->num) {
8fea4e96 1798 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1799 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1800 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1801 realobj, size);
1da177e4
LT
1802 print_objinfo(cachep, objp, 2);
1803 }
1804 }
1805}
1806#endif
1807
12dd36fa
MD
1808#if DEBUG
1809/**
911851e6
RD
1810 * slab_destroy_objs - destroy a slab and its objects
1811 * @cachep: cache pointer being destroyed
1812 * @slabp: slab pointer being destroyed
1813 *
1814 * Call the registered destructor for each object in a slab that is being
1815 * destroyed.
1da177e4 1816 */
343e0d7a 1817static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1818{
1da177e4
LT
1819 int i;
1820 for (i = 0; i < cachep->num; i++) {
8fea4e96 1821 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1822
1823 if (cachep->flags & SLAB_POISON) {
1824#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1825 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1826 OFF_SLAB(cachep))
b28a02de 1827 kernel_map_pages(virt_to_page(objp),
a737b3e2 1828 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1829 else
1830 check_poison_obj(cachep, objp);
1831#else
1832 check_poison_obj(cachep, objp);
1833#endif
1834 }
1835 if (cachep->flags & SLAB_RED_ZONE) {
1836 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1837 slab_error(cachep, "start of a freed object "
b28a02de 1838 "was overwritten");
1da177e4
LT
1839 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1840 slab_error(cachep, "end of a freed object "
b28a02de 1841 "was overwritten");
1da177e4
LT
1842 }
1843 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1844 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1845 }
12dd36fa 1846}
1da177e4 1847#else
343e0d7a 1848static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1849{
1da177e4
LT
1850 if (cachep->dtor) {
1851 int i;
1852 for (i = 0; i < cachep->num; i++) {
8fea4e96 1853 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1854 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1855 }
1856 }
12dd36fa 1857}
1da177e4
LT
1858#endif
1859
911851e6
RD
1860/**
1861 * slab_destroy - destroy and release all objects in a slab
1862 * @cachep: cache pointer being destroyed
1863 * @slabp: slab pointer being destroyed
1864 *
12dd36fa 1865 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1866 * Before calling the slab must have been unlinked from the cache. The
1867 * cache-lock is not held/needed.
12dd36fa 1868 */
343e0d7a 1869static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1870{
1871 void *addr = slabp->s_mem - slabp->colouroff;
1872
1873 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1874 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1875 struct slab_rcu *slab_rcu;
1876
b28a02de 1877 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1878 slab_rcu->cachep = cachep;
1879 slab_rcu->addr = addr;
1880 call_rcu(&slab_rcu->head, kmem_rcu_free);
1881 } else {
1882 kmem_freepages(cachep, addr);
873623df
IM
1883 if (OFF_SLAB(cachep))
1884 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1885 }
1886}
1887
a737b3e2
AM
1888/*
1889 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1890 * size of kmem_list3.
1891 */
343e0d7a 1892static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1893{
1894 int node;
1895
1896 for_each_online_node(node) {
b28a02de 1897 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1898 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1899 REAPTIMEOUT_LIST3 +
1900 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1901 }
1902}
1903
117f6eb1
CL
1904static void __kmem_cache_destroy(struct kmem_cache *cachep)
1905{
1906 int i;
1907 struct kmem_list3 *l3;
1908
1909 for_each_online_cpu(i)
1910 kfree(cachep->array[i]);
1911
1912 /* NUMA: free the list3 structures */
1913 for_each_online_node(i) {
1914 l3 = cachep->nodelists[i];
1915 if (l3) {
1916 kfree(l3->shared);
1917 free_alien_cache(l3->alien);
1918 kfree(l3);
1919 }
1920 }
1921 kmem_cache_free(&cache_cache, cachep);
1922}
1923
1924
4d268eba 1925/**
a70773dd
RD
1926 * calculate_slab_order - calculate size (page order) of slabs
1927 * @cachep: pointer to the cache that is being created
1928 * @size: size of objects to be created in this cache.
1929 * @align: required alignment for the objects.
1930 * @flags: slab allocation flags
1931 *
1932 * Also calculates the number of objects per slab.
4d268eba
PE
1933 *
1934 * This could be made much more intelligent. For now, try to avoid using
1935 * high order pages for slabs. When the gfp() functions are more friendly
1936 * towards high-order requests, this should be changed.
1937 */
a737b3e2 1938static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1939 size_t size, size_t align, unsigned long flags)
4d268eba 1940{
b1ab41c4 1941 unsigned long offslab_limit;
4d268eba 1942 size_t left_over = 0;
9888e6fa 1943 int gfporder;
4d268eba 1944
a737b3e2 1945 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1946 unsigned int num;
1947 size_t remainder;
1948
9888e6fa 1949 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1950 if (!num)
1951 continue;
9888e6fa 1952
b1ab41c4
IM
1953 if (flags & CFLGS_OFF_SLAB) {
1954 /*
1955 * Max number of objs-per-slab for caches which
1956 * use off-slab slabs. Needed to avoid a possible
1957 * looping condition in cache_grow().
1958 */
1959 offslab_limit = size - sizeof(struct slab);
1960 offslab_limit /= sizeof(kmem_bufctl_t);
1961
1962 if (num > offslab_limit)
1963 break;
1964 }
4d268eba 1965
9888e6fa 1966 /* Found something acceptable - save it away */
4d268eba 1967 cachep->num = num;
9888e6fa 1968 cachep->gfporder = gfporder;
4d268eba
PE
1969 left_over = remainder;
1970
f78bb8ad
LT
1971 /*
1972 * A VFS-reclaimable slab tends to have most allocations
1973 * as GFP_NOFS and we really don't want to have to be allocating
1974 * higher-order pages when we are unable to shrink dcache.
1975 */
1976 if (flags & SLAB_RECLAIM_ACCOUNT)
1977 break;
1978
4d268eba
PE
1979 /*
1980 * Large number of objects is good, but very large slabs are
1981 * currently bad for the gfp()s.
1982 */
9888e6fa 1983 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1984 break;
1985
9888e6fa
LT
1986 /*
1987 * Acceptable internal fragmentation?
1988 */
a737b3e2 1989 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1990 break;
1991 }
1992 return left_over;
1993}
1994
2ed3a4ef 1995static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 1996{
2ed3a4ef
CL
1997 if (g_cpucache_up == FULL)
1998 return enable_cpucache(cachep);
1999
f30cf7d1
PE
2000 if (g_cpucache_up == NONE) {
2001 /*
2002 * Note: the first kmem_cache_create must create the cache
2003 * that's used by kmalloc(24), otherwise the creation of
2004 * further caches will BUG().
2005 */
2006 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2007
2008 /*
2009 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2010 * the first cache, then we need to set up all its list3s,
2011 * otherwise the creation of further caches will BUG().
2012 */
2013 set_up_list3s(cachep, SIZE_AC);
2014 if (INDEX_AC == INDEX_L3)
2015 g_cpucache_up = PARTIAL_L3;
2016 else
2017 g_cpucache_up = PARTIAL_AC;
2018 } else {
2019 cachep->array[smp_processor_id()] =
2020 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2021
2022 if (g_cpucache_up == PARTIAL_AC) {
2023 set_up_list3s(cachep, SIZE_L3);
2024 g_cpucache_up = PARTIAL_L3;
2025 } else {
2026 int node;
2027 for_each_online_node(node) {
2028 cachep->nodelists[node] =
2029 kmalloc_node(sizeof(struct kmem_list3),
2030 GFP_KERNEL, node);
2031 BUG_ON(!cachep->nodelists[node]);
2032 kmem_list3_init(cachep->nodelists[node]);
2033 }
2034 }
2035 }
2036 cachep->nodelists[numa_node_id()]->next_reap =
2037 jiffies + REAPTIMEOUT_LIST3 +
2038 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2039
2040 cpu_cache_get(cachep)->avail = 0;
2041 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2042 cpu_cache_get(cachep)->batchcount = 1;
2043 cpu_cache_get(cachep)->touched = 0;
2044 cachep->batchcount = 1;
2045 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2046 return 0;
f30cf7d1
PE
2047}
2048
1da177e4
LT
2049/**
2050 * kmem_cache_create - Create a cache.
2051 * @name: A string which is used in /proc/slabinfo to identify this cache.
2052 * @size: The size of objects to be created in this cache.
2053 * @align: The required alignment for the objects.
2054 * @flags: SLAB flags
2055 * @ctor: A constructor for the objects.
2056 * @dtor: A destructor for the objects.
2057 *
2058 * Returns a ptr to the cache on success, NULL on failure.
2059 * Cannot be called within a int, but can be interrupted.
2060 * The @ctor is run when new pages are allocated by the cache
2061 * and the @dtor is run before the pages are handed back.
2062 *
2063 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2064 * the module calling this has to destroy the cache before getting unloaded.
2065 *
1da177e4
LT
2066 * The flags are
2067 *
2068 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2069 * to catch references to uninitialised memory.
2070 *
2071 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2072 * for buffer overruns.
2073 *
1da177e4
LT
2074 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2075 * cacheline. This can be beneficial if you're counting cycles as closely
2076 * as davem.
2077 */
343e0d7a 2078struct kmem_cache *
1da177e4 2079kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2080 unsigned long flags,
2081 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2082 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2083{
2084 size_t left_over, slab_size, ralign;
7a7c381d 2085 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2086
2087 /*
2088 * Sanity checks... these are all serious usage bugs.
2089 */
a737b3e2 2090 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2091 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2092 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2093 name);
b28a02de
PE
2094 BUG();
2095 }
1da177e4 2096
f0188f47
RT
2097 /*
2098 * Prevent CPUs from coming and going.
2099 * lock_cpu_hotplug() nests outside cache_chain_mutex
2100 */
2101 lock_cpu_hotplug();
2102
fc0abb14 2103 mutex_lock(&cache_chain_mutex);
4f12bb4f 2104
7a7c381d 2105 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2106 mm_segment_t old_fs = get_fs();
2107 char tmp;
2108 int res;
2109
2110 /*
2111 * This happens when the module gets unloaded and doesn't
2112 * destroy its slab cache and no-one else reuses the vmalloc
2113 * area of the module. Print a warning.
2114 */
2115 set_fs(KERNEL_DS);
2116 res = __get_user(tmp, pc->name);
2117 set_fs(old_fs);
2118 if (res) {
2119 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2120 pc->buffer_size);
4f12bb4f
AM
2121 continue;
2122 }
2123
b28a02de 2124 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2125 printk("kmem_cache_create: duplicate cache %s\n", name);
2126 dump_stack();
2127 goto oops;
2128 }
2129 }
2130
1da177e4
LT
2131#if DEBUG
2132 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2133 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2134 /* No constructor, but inital state check requested */
2135 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2136 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2137 flags &= ~SLAB_DEBUG_INITIAL;
2138 }
1da177e4
LT
2139#if FORCED_DEBUG
2140 /*
2141 * Enable redzoning and last user accounting, except for caches with
2142 * large objects, if the increased size would increase the object size
2143 * above the next power of two: caches with object sizes just above a
2144 * power of two have a significant amount of internal fragmentation.
2145 */
a737b3e2 2146 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2147 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2148 if (!(flags & SLAB_DESTROY_BY_RCU))
2149 flags |= SLAB_POISON;
2150#endif
2151 if (flags & SLAB_DESTROY_BY_RCU)
2152 BUG_ON(flags & SLAB_POISON);
2153#endif
2154 if (flags & SLAB_DESTROY_BY_RCU)
2155 BUG_ON(dtor);
2156
2157 /*
a737b3e2
AM
2158 * Always checks flags, a caller might be expecting debug support which
2159 * isn't available.
1da177e4 2160 */
40094fa6 2161 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2162
a737b3e2
AM
2163 /*
2164 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2165 * unaligned accesses for some archs when redzoning is used, and makes
2166 * sure any on-slab bufctl's are also correctly aligned.
2167 */
b28a02de
PE
2168 if (size & (BYTES_PER_WORD - 1)) {
2169 size += (BYTES_PER_WORD - 1);
2170 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2171 }
2172
a737b3e2
AM
2173 /* calculate the final buffer alignment: */
2174
1da177e4
LT
2175 /* 1) arch recommendation: can be overridden for debug */
2176 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2177 /*
2178 * Default alignment: as specified by the arch code. Except if
2179 * an object is really small, then squeeze multiple objects into
2180 * one cacheline.
1da177e4
LT
2181 */
2182 ralign = cache_line_size();
b28a02de 2183 while (size <= ralign / 2)
1da177e4
LT
2184 ralign /= 2;
2185 } else {
2186 ralign = BYTES_PER_WORD;
2187 }
ca5f9703
PE
2188
2189 /*
2190 * Redzoning and user store require word alignment. Note this will be
2191 * overridden by architecture or caller mandated alignment if either
2192 * is greater than BYTES_PER_WORD.
2193 */
2194 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2195 ralign = BYTES_PER_WORD;
2196
1da177e4
LT
2197 /* 2) arch mandated alignment: disables debug if necessary */
2198 if (ralign < ARCH_SLAB_MINALIGN) {
2199 ralign = ARCH_SLAB_MINALIGN;
2200 if (ralign > BYTES_PER_WORD)
b28a02de 2201 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2202 }
2203 /* 3) caller mandated alignment: disables debug if necessary */
2204 if (ralign < align) {
2205 ralign = align;
2206 if (ralign > BYTES_PER_WORD)
b28a02de 2207 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2208 }
a737b3e2 2209 /*
ca5f9703 2210 * 4) Store it.
1da177e4
LT
2211 */
2212 align = ralign;
2213
2214 /* Get cache's description obj. */
c5e3b83e 2215 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2216 if (!cachep)
4f12bb4f 2217 goto oops;
1da177e4
LT
2218
2219#if DEBUG
3dafccf2 2220 cachep->obj_size = size;
1da177e4 2221
ca5f9703
PE
2222 /*
2223 * Both debugging options require word-alignment which is calculated
2224 * into align above.
2225 */
1da177e4 2226 if (flags & SLAB_RED_ZONE) {
1da177e4 2227 /* add space for red zone words */
3dafccf2 2228 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2229 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2230 }
2231 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2232 /* user store requires one word storage behind the end of
2233 * the real object.
1da177e4 2234 */
1da177e4
LT
2235 size += BYTES_PER_WORD;
2236 }
2237#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2238 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2239 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2240 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2241 size = PAGE_SIZE;
2242 }
2243#endif
2244#endif
2245
e0a42726
IM
2246 /*
2247 * Determine if the slab management is 'on' or 'off' slab.
2248 * (bootstrapping cannot cope with offslab caches so don't do
2249 * it too early on.)
2250 */
2251 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2252 /*
2253 * Size is large, assume best to place the slab management obj
2254 * off-slab (should allow better packing of objs).
2255 */
2256 flags |= CFLGS_OFF_SLAB;
2257
2258 size = ALIGN(size, align);
2259
f78bb8ad 2260 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2261
2262 if (!cachep->num) {
2263 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2264 kmem_cache_free(&cache_cache, cachep);
2265 cachep = NULL;
4f12bb4f 2266 goto oops;
1da177e4 2267 }
b28a02de
PE
2268 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2269 + sizeof(struct slab), align);
1da177e4
LT
2270
2271 /*
2272 * If the slab has been placed off-slab, and we have enough space then
2273 * move it on-slab. This is at the expense of any extra colouring.
2274 */
2275 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2276 flags &= ~CFLGS_OFF_SLAB;
2277 left_over -= slab_size;
2278 }
2279
2280 if (flags & CFLGS_OFF_SLAB) {
2281 /* really off slab. No need for manual alignment */
b28a02de
PE
2282 slab_size =
2283 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2284 }
2285
2286 cachep->colour_off = cache_line_size();
2287 /* Offset must be a multiple of the alignment. */
2288 if (cachep->colour_off < align)
2289 cachep->colour_off = align;
b28a02de 2290 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2291 cachep->slab_size = slab_size;
2292 cachep->flags = flags;
2293 cachep->gfpflags = 0;
2294 if (flags & SLAB_CACHE_DMA)
2295 cachep->gfpflags |= GFP_DMA;
3dafccf2 2296 cachep->buffer_size = size;
1da177e4 2297
e5ac9c5a 2298 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2299 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2300 /*
2301 * This is a possibility for one of the malloc_sizes caches.
2302 * But since we go off slab only for object size greater than
2303 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2304 * this should not happen at all.
2305 * But leave a BUG_ON for some lucky dude.
2306 */
2307 BUG_ON(!cachep->slabp_cache);
2308 }
1da177e4
LT
2309 cachep->ctor = ctor;
2310 cachep->dtor = dtor;
2311 cachep->name = name;
2312
2ed3a4ef
CL
2313 if (setup_cpu_cache(cachep)) {
2314 __kmem_cache_destroy(cachep);
2315 cachep = NULL;
2316 goto oops;
2317 }
1da177e4 2318
1da177e4
LT
2319 /* cache setup completed, link it into the list */
2320 list_add(&cachep->next, &cache_chain);
a737b3e2 2321oops:
1da177e4
LT
2322 if (!cachep && (flags & SLAB_PANIC))
2323 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2324 name);
fc0abb14 2325 mutex_unlock(&cache_chain_mutex);
f0188f47 2326 unlock_cpu_hotplug();
1da177e4
LT
2327 return cachep;
2328}
2329EXPORT_SYMBOL(kmem_cache_create);
2330
2331#if DEBUG
2332static void check_irq_off(void)
2333{
2334 BUG_ON(!irqs_disabled());
2335}
2336
2337static void check_irq_on(void)
2338{
2339 BUG_ON(irqs_disabled());
2340}
2341
343e0d7a 2342static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2343{
2344#ifdef CONFIG_SMP
2345 check_irq_off();
e498be7d 2346 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2347#endif
2348}
e498be7d 2349
343e0d7a 2350static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2351{
2352#ifdef CONFIG_SMP
2353 check_irq_off();
2354 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2355#endif
2356}
2357
1da177e4
LT
2358#else
2359#define check_irq_off() do { } while(0)
2360#define check_irq_on() do { } while(0)
2361#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2362#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2363#endif
2364
aab2207c
CL
2365static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2366 struct array_cache *ac,
2367 int force, int node);
2368
1da177e4
LT
2369static void do_drain(void *arg)
2370{
a737b3e2 2371 struct kmem_cache *cachep = arg;
1da177e4 2372 struct array_cache *ac;
ff69416e 2373 int node = numa_node_id();
1da177e4
LT
2374
2375 check_irq_off();
9a2dba4b 2376 ac = cpu_cache_get(cachep);
ff69416e
CL
2377 spin_lock(&cachep->nodelists[node]->list_lock);
2378 free_block(cachep, ac->entry, ac->avail, node);
2379 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2380 ac->avail = 0;
2381}
2382
343e0d7a 2383static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2384{
e498be7d
CL
2385 struct kmem_list3 *l3;
2386 int node;
2387
a07fa394 2388 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2389 check_irq_on();
b28a02de 2390 for_each_online_node(node) {
e498be7d 2391 l3 = cachep->nodelists[node];
a4523a8b
RD
2392 if (l3 && l3->alien)
2393 drain_alien_cache(cachep, l3->alien);
2394 }
2395
2396 for_each_online_node(node) {
2397 l3 = cachep->nodelists[node];
2398 if (l3)
aab2207c 2399 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2400 }
1da177e4
LT
2401}
2402
ed11d9eb
CL
2403/*
2404 * Remove slabs from the list of free slabs.
2405 * Specify the number of slabs to drain in tofree.
2406 *
2407 * Returns the actual number of slabs released.
2408 */
2409static int drain_freelist(struct kmem_cache *cache,
2410 struct kmem_list3 *l3, int tofree)
1da177e4 2411{
ed11d9eb
CL
2412 struct list_head *p;
2413 int nr_freed;
1da177e4 2414 struct slab *slabp;
1da177e4 2415
ed11d9eb
CL
2416 nr_freed = 0;
2417 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2418
ed11d9eb 2419 spin_lock_irq(&l3->list_lock);
e498be7d 2420 p = l3->slabs_free.prev;
ed11d9eb
CL
2421 if (p == &l3->slabs_free) {
2422 spin_unlock_irq(&l3->list_lock);
2423 goto out;
2424 }
1da177e4 2425
ed11d9eb 2426 slabp = list_entry(p, struct slab, list);
1da177e4 2427#if DEBUG
40094fa6 2428 BUG_ON(slabp->inuse);
1da177e4
LT
2429#endif
2430 list_del(&slabp->list);
ed11d9eb
CL
2431 /*
2432 * Safe to drop the lock. The slab is no longer linked
2433 * to the cache.
2434 */
2435 l3->free_objects -= cache->num;
e498be7d 2436 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2437 slab_destroy(cache, slabp);
2438 nr_freed++;
1da177e4 2439 }
ed11d9eb
CL
2440out:
2441 return nr_freed;
1da177e4
LT
2442}
2443
343e0d7a 2444static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2445{
2446 int ret = 0, i = 0;
2447 struct kmem_list3 *l3;
2448
2449 drain_cpu_caches(cachep);
2450
2451 check_irq_on();
2452 for_each_online_node(i) {
2453 l3 = cachep->nodelists[i];
ed11d9eb
CL
2454 if (!l3)
2455 continue;
2456
2457 drain_freelist(cachep, l3, l3->free_objects);
2458
2459 ret += !list_empty(&l3->slabs_full) ||
2460 !list_empty(&l3->slabs_partial);
e498be7d
CL
2461 }
2462 return (ret ? 1 : 0);
2463}
2464
1da177e4
LT
2465/**
2466 * kmem_cache_shrink - Shrink a cache.
2467 * @cachep: The cache to shrink.
2468 *
2469 * Releases as many slabs as possible for a cache.
2470 * To help debugging, a zero exit status indicates all slabs were released.
2471 */
343e0d7a 2472int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2473{
40094fa6 2474 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2475
2476 return __cache_shrink(cachep);
2477}
2478EXPORT_SYMBOL(kmem_cache_shrink);
2479
2480/**
2481 * kmem_cache_destroy - delete a cache
2482 * @cachep: the cache to destroy
2483 *
343e0d7a 2484 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2485 *
2486 * It is expected this function will be called by a module when it is
2487 * unloaded. This will remove the cache completely, and avoid a duplicate
2488 * cache being allocated each time a module is loaded and unloaded, if the
2489 * module doesn't have persistent in-kernel storage across loads and unloads.
2490 *
2491 * The cache must be empty before calling this function.
2492 *
2493 * The caller must guarantee that noone will allocate memory from the cache
2494 * during the kmem_cache_destroy().
2495 */
133d205a 2496void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2497{
40094fa6 2498 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2499
2500 /* Don't let CPUs to come and go */
2501 lock_cpu_hotplug();
2502
2503 /* Find the cache in the chain of caches. */
fc0abb14 2504 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2505 /*
2506 * the chain is never empty, cache_cache is never destroyed
2507 */
2508 list_del(&cachep->next);
fc0abb14 2509 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2510
2511 if (__cache_shrink(cachep)) {
2512 slab_error(cachep, "Can't free all objects");
fc0abb14 2513 mutex_lock(&cache_chain_mutex);
b28a02de 2514 list_add(&cachep->next, &cache_chain);
fc0abb14 2515 mutex_unlock(&cache_chain_mutex);
1da177e4 2516 unlock_cpu_hotplug();
133d205a 2517 return;
1da177e4
LT
2518 }
2519
2520 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2521 synchronize_rcu();
1da177e4 2522
117f6eb1 2523 __kmem_cache_destroy(cachep);
1da177e4 2524 unlock_cpu_hotplug();
1da177e4
LT
2525}
2526EXPORT_SYMBOL(kmem_cache_destroy);
2527
e5ac9c5a
RT
2528/*
2529 * Get the memory for a slab management obj.
2530 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2531 * always come from malloc_sizes caches. The slab descriptor cannot
2532 * come from the same cache which is getting created because,
2533 * when we are searching for an appropriate cache for these
2534 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2535 * If we are creating a malloc_sizes cache here it would not be visible to
2536 * kmem_find_general_cachep till the initialization is complete.
2537 * Hence we cannot have slabp_cache same as the original cache.
2538 */
343e0d7a 2539static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2540 int colour_off, gfp_t local_flags,
2541 int nodeid)
1da177e4
LT
2542{
2543 struct slab *slabp;
b28a02de 2544
1da177e4
LT
2545 if (OFF_SLAB(cachep)) {
2546 /* Slab management obj is off-slab. */
5b74ada7
RT
2547 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2548 local_flags, nodeid);
1da177e4
LT
2549 if (!slabp)
2550 return NULL;
2551 } else {
b28a02de 2552 slabp = objp + colour_off;
1da177e4
LT
2553 colour_off += cachep->slab_size;
2554 }
2555 slabp->inuse = 0;
2556 slabp->colouroff = colour_off;
b28a02de 2557 slabp->s_mem = objp + colour_off;
5b74ada7 2558 slabp->nodeid = nodeid;
1da177e4
LT
2559 return slabp;
2560}
2561
2562static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2563{
b28a02de 2564 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2565}
2566
343e0d7a 2567static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2568 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2569{
2570 int i;
2571
2572 for (i = 0; i < cachep->num; i++) {
8fea4e96 2573 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2574#if DEBUG
2575 /* need to poison the objs? */
2576 if (cachep->flags & SLAB_POISON)
2577 poison_obj(cachep, objp, POISON_FREE);
2578 if (cachep->flags & SLAB_STORE_USER)
2579 *dbg_userword(cachep, objp) = NULL;
2580
2581 if (cachep->flags & SLAB_RED_ZONE) {
2582 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2583 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2584 }
2585 /*
a737b3e2
AM
2586 * Constructors are not allowed to allocate memory from the same
2587 * cache which they are a constructor for. Otherwise, deadlock.
2588 * They must also be threaded.
1da177e4
LT
2589 */
2590 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2591 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2592 ctor_flags);
1da177e4
LT
2593
2594 if (cachep->flags & SLAB_RED_ZONE) {
2595 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2596 slab_error(cachep, "constructor overwrote the"
b28a02de 2597 " end of an object");
1da177e4
LT
2598 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2599 slab_error(cachep, "constructor overwrote the"
b28a02de 2600 " start of an object");
1da177e4 2601 }
a737b3e2
AM
2602 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2603 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2604 kernel_map_pages(virt_to_page(objp),
3dafccf2 2605 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2606#else
2607 if (cachep->ctor)
2608 cachep->ctor(objp, cachep, ctor_flags);
2609#endif
b28a02de 2610 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2611 }
b28a02de 2612 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2613 slabp->free = 0;
2614}
2615
343e0d7a 2616static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2617{
a737b3e2
AM
2618 if (flags & SLAB_DMA)
2619 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2620 else
2621 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2622}
2623
a737b3e2
AM
2624static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2625 int nodeid)
78d382d7 2626{
8fea4e96 2627 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2628 kmem_bufctl_t next;
2629
2630 slabp->inuse++;
2631 next = slab_bufctl(slabp)[slabp->free];
2632#if DEBUG
2633 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2634 WARN_ON(slabp->nodeid != nodeid);
2635#endif
2636 slabp->free = next;
2637
2638 return objp;
2639}
2640
a737b3e2
AM
2641static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2642 void *objp, int nodeid)
78d382d7 2643{
8fea4e96 2644 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2645
2646#if DEBUG
2647 /* Verify that the slab belongs to the intended node */
2648 WARN_ON(slabp->nodeid != nodeid);
2649
871751e2 2650 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2651 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2652 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2653 BUG();
2654 }
2655#endif
2656 slab_bufctl(slabp)[objnr] = slabp->free;
2657 slabp->free = objnr;
2658 slabp->inuse--;
2659}
2660
4776874f
PE
2661/*
2662 * Map pages beginning at addr to the given cache and slab. This is required
2663 * for the slab allocator to be able to lookup the cache and slab of a
2664 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2665 */
2666static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2667 void *addr)
1da177e4 2668{
4776874f 2669 int nr_pages;
1da177e4
LT
2670 struct page *page;
2671
4776874f 2672 page = virt_to_page(addr);
84097518 2673
4776874f 2674 nr_pages = 1;
84097518 2675 if (likely(!PageCompound(page)))
4776874f
PE
2676 nr_pages <<= cache->gfporder;
2677
1da177e4 2678 do {
4776874f
PE
2679 page_set_cache(page, cache);
2680 page_set_slab(page, slab);
1da177e4 2681 page++;
4776874f 2682 } while (--nr_pages);
1da177e4
LT
2683}
2684
2685/*
2686 * Grow (by 1) the number of slabs within a cache. This is called by
2687 * kmem_cache_alloc() when there are no active objs left in a cache.
2688 */
343e0d7a 2689static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2690{
b28a02de
PE
2691 struct slab *slabp;
2692 void *objp;
2693 size_t offset;
2694 gfp_t local_flags;
2695 unsigned long ctor_flags;
e498be7d 2696 struct kmem_list3 *l3;
1da177e4 2697
a737b3e2
AM
2698 /*
2699 * Be lazy and only check for valid flags here, keeping it out of the
2700 * critical path in kmem_cache_alloc().
1da177e4 2701 */
40094fa6 2702 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2703 if (flags & SLAB_NO_GROW)
2704 return 0;
2705
2706 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2707 local_flags = (flags & SLAB_LEVEL_MASK);
2708 if (!(local_flags & __GFP_WAIT))
2709 /*
2710 * Not allowed to sleep. Need to tell a constructor about
2711 * this - it might need to know...
2712 */
2713 ctor_flags |= SLAB_CTOR_ATOMIC;
2714
2e1217cf 2715 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2716 check_irq_off();
2e1217cf
RT
2717 l3 = cachep->nodelists[nodeid];
2718 spin_lock(&l3->list_lock);
1da177e4
LT
2719
2720 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2721 offset = l3->colour_next;
2722 l3->colour_next++;
2723 if (l3->colour_next >= cachep->colour)
2724 l3->colour_next = 0;
2725 spin_unlock(&l3->list_lock);
1da177e4 2726
2e1217cf 2727 offset *= cachep->colour_off;
1da177e4
LT
2728
2729 if (local_flags & __GFP_WAIT)
2730 local_irq_enable();
2731
2732 /*
2733 * The test for missing atomic flag is performed here, rather than
2734 * the more obvious place, simply to reduce the critical path length
2735 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2736 * will eventually be caught here (where it matters).
2737 */
2738 kmem_flagcheck(cachep, flags);
2739
a737b3e2
AM
2740 /*
2741 * Get mem for the objs. Attempt to allocate a physical page from
2742 * 'nodeid'.
e498be7d 2743 */
a737b3e2
AM
2744 objp = kmem_getpages(cachep, flags, nodeid);
2745 if (!objp)
1da177e4
LT
2746 goto failed;
2747
2748 /* Get slab management. */
5b74ada7 2749 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2750 if (!slabp)
1da177e4
LT
2751 goto opps1;
2752
e498be7d 2753 slabp->nodeid = nodeid;
4776874f 2754 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2755
2756 cache_init_objs(cachep, slabp, ctor_flags);
2757
2758 if (local_flags & __GFP_WAIT)
2759 local_irq_disable();
2760 check_irq_off();
e498be7d 2761 spin_lock(&l3->list_lock);
1da177e4
LT
2762
2763 /* Make slab active. */
e498be7d 2764 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2765 STATS_INC_GROWN(cachep);
e498be7d
CL
2766 l3->free_objects += cachep->num;
2767 spin_unlock(&l3->list_lock);
1da177e4 2768 return 1;
a737b3e2 2769opps1:
1da177e4 2770 kmem_freepages(cachep, objp);
a737b3e2 2771failed:
1da177e4
LT
2772 if (local_flags & __GFP_WAIT)
2773 local_irq_disable();
2774 return 0;
2775}
2776
2777#if DEBUG
2778
2779/*
2780 * Perform extra freeing checks:
2781 * - detect bad pointers.
2782 * - POISON/RED_ZONE checking
2783 * - destructor calls, for caches with POISON+dtor
2784 */
2785static void kfree_debugcheck(const void *objp)
2786{
2787 struct page *page;
2788
2789 if (!virt_addr_valid(objp)) {
2790 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2791 (unsigned long)objp);
2792 BUG();
1da177e4
LT
2793 }
2794 page = virt_to_page(objp);
2795 if (!PageSlab(page)) {
b28a02de
PE
2796 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2797 (unsigned long)objp);
1da177e4
LT
2798 BUG();
2799 }
2800}
2801
58ce1fd5
PE
2802static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2803{
2804 unsigned long redzone1, redzone2;
2805
2806 redzone1 = *dbg_redzone1(cache, obj);
2807 redzone2 = *dbg_redzone2(cache, obj);
2808
2809 /*
2810 * Redzone is ok.
2811 */
2812 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2813 return;
2814
2815 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2816 slab_error(cache, "double free detected");
2817 else
2818 slab_error(cache, "memory outside object was overwritten");
2819
2820 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2821 obj, redzone1, redzone2);
2822}
2823
343e0d7a 2824static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2825 void *caller)
1da177e4
LT
2826{
2827 struct page *page;
2828 unsigned int objnr;
2829 struct slab *slabp;
2830
3dafccf2 2831 objp -= obj_offset(cachep);
1da177e4
LT
2832 kfree_debugcheck(objp);
2833 page = virt_to_page(objp);
2834
065d41cb 2835 slabp = page_get_slab(page);
1da177e4
LT
2836
2837 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2838 verify_redzone_free(cachep, objp);
1da177e4
LT
2839 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2840 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2841 }
2842 if (cachep->flags & SLAB_STORE_USER)
2843 *dbg_userword(cachep, objp) = caller;
2844
8fea4e96 2845 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2846
2847 BUG_ON(objnr >= cachep->num);
8fea4e96 2848 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2849
2850 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2851 /*
2852 * Need to call the slab's constructor so the caller can
2853 * perform a verify of its state (debugging). Called without
2854 * the cache-lock held.
1da177e4 2855 */
3dafccf2 2856 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2857 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2858 }
2859 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2860 /* we want to cache poison the object,
2861 * call the destruction callback
2862 */
3dafccf2 2863 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2864 }
871751e2
AV
2865#ifdef CONFIG_DEBUG_SLAB_LEAK
2866 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2867#endif
1da177e4
LT
2868 if (cachep->flags & SLAB_POISON) {
2869#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2870 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2871 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2872 kernel_map_pages(virt_to_page(objp),
3dafccf2 2873 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2874 } else {
2875 poison_obj(cachep, objp, POISON_FREE);
2876 }
2877#else
2878 poison_obj(cachep, objp, POISON_FREE);
2879#endif
2880 }
2881 return objp;
2882}
2883
343e0d7a 2884static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2885{
2886 kmem_bufctl_t i;
2887 int entries = 0;
b28a02de 2888
1da177e4
LT
2889 /* Check slab's freelist to see if this obj is there. */
2890 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2891 entries++;
2892 if (entries > cachep->num || i >= cachep->num)
2893 goto bad;
2894 }
2895 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2896bad:
2897 printk(KERN_ERR "slab: Internal list corruption detected in "
2898 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2899 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2900 for (i = 0;
264132bc 2901 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2902 i++) {
a737b3e2 2903 if (i % 16 == 0)
1da177e4 2904 printk("\n%03x:", i);
b28a02de 2905 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2906 }
2907 printk("\n");
2908 BUG();
2909 }
2910}
2911#else
2912#define kfree_debugcheck(x) do { } while(0)
2913#define cache_free_debugcheck(x,objp,z) (objp)
2914#define check_slabp(x,y) do { } while(0)
2915#endif
2916
343e0d7a 2917static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2918{
2919 int batchcount;
2920 struct kmem_list3 *l3;
2921 struct array_cache *ac;
2922
2923 check_irq_off();
9a2dba4b 2924 ac = cpu_cache_get(cachep);
a737b3e2 2925retry:
1da177e4
LT
2926 batchcount = ac->batchcount;
2927 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2928 /*
2929 * If there was little recent activity on this cache, then
2930 * perform only a partial refill. Otherwise we could generate
2931 * refill bouncing.
1da177e4
LT
2932 */
2933 batchcount = BATCHREFILL_LIMIT;
2934 }
e498be7d
CL
2935 l3 = cachep->nodelists[numa_node_id()];
2936
2937 BUG_ON(ac->avail > 0 || !l3);
2938 spin_lock(&l3->list_lock);
1da177e4 2939
3ded175a
CL
2940 /* See if we can refill from the shared array */
2941 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2942 goto alloc_done;
2943
1da177e4
LT
2944 while (batchcount > 0) {
2945 struct list_head *entry;
2946 struct slab *slabp;
2947 /* Get slab alloc is to come from. */
2948 entry = l3->slabs_partial.next;
2949 if (entry == &l3->slabs_partial) {
2950 l3->free_touched = 1;
2951 entry = l3->slabs_free.next;
2952 if (entry == &l3->slabs_free)
2953 goto must_grow;
2954 }
2955
2956 slabp = list_entry(entry, struct slab, list);
2957 check_slabp(cachep, slabp);
2958 check_spinlock_acquired(cachep);
2959 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2960 STATS_INC_ALLOCED(cachep);
2961 STATS_INC_ACTIVE(cachep);
2962 STATS_SET_HIGH(cachep);
2963
78d382d7
MD
2964 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2965 numa_node_id());
1da177e4
LT
2966 }
2967 check_slabp(cachep, slabp);
2968
2969 /* move slabp to correct slabp list: */
2970 list_del(&slabp->list);
2971 if (slabp->free == BUFCTL_END)
2972 list_add(&slabp->list, &l3->slabs_full);
2973 else
2974 list_add(&slabp->list, &l3->slabs_partial);
2975 }
2976
a737b3e2 2977must_grow:
1da177e4 2978 l3->free_objects -= ac->avail;
a737b3e2 2979alloc_done:
e498be7d 2980 spin_unlock(&l3->list_lock);
1da177e4
LT
2981
2982 if (unlikely(!ac->avail)) {
2983 int x;
e498be7d
CL
2984 x = cache_grow(cachep, flags, numa_node_id());
2985
a737b3e2 2986 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2987 ac = cpu_cache_get(cachep);
a737b3e2 2988 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2989 return NULL;
2990
a737b3e2 2991 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2992 goto retry;
2993 }
2994 ac->touched = 1;
e498be7d 2995 return ac->entry[--ac->avail];
1da177e4
LT
2996}
2997
a737b3e2
AM
2998static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2999 gfp_t flags)
1da177e4
LT
3000{
3001 might_sleep_if(flags & __GFP_WAIT);
3002#if DEBUG
3003 kmem_flagcheck(cachep, flags);
3004#endif
3005}
3006
3007#if DEBUG
a737b3e2
AM
3008static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3009 gfp_t flags, void *objp, void *caller)
1da177e4 3010{
b28a02de 3011 if (!objp)
1da177e4 3012 return objp;
b28a02de 3013 if (cachep->flags & SLAB_POISON) {
1da177e4 3014#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3015 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3016 kernel_map_pages(virt_to_page(objp),
3dafccf2 3017 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3018 else
3019 check_poison_obj(cachep, objp);
3020#else
3021 check_poison_obj(cachep, objp);
3022#endif
3023 poison_obj(cachep, objp, POISON_INUSE);
3024 }
3025 if (cachep->flags & SLAB_STORE_USER)
3026 *dbg_userword(cachep, objp) = caller;
3027
3028 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3029 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3030 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3031 slab_error(cachep, "double free, or memory outside"
3032 " object was overwritten");
b28a02de 3033 printk(KERN_ERR
a737b3e2
AM
3034 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3035 objp, *dbg_redzone1(cachep, objp),
3036 *dbg_redzone2(cachep, objp));
1da177e4
LT
3037 }
3038 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3039 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3040 }
871751e2
AV
3041#ifdef CONFIG_DEBUG_SLAB_LEAK
3042 {
3043 struct slab *slabp;
3044 unsigned objnr;
3045
3046 slabp = page_get_slab(virt_to_page(objp));
3047 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3048 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3049 }
3050#endif
3dafccf2 3051 objp += obj_offset(cachep);
1da177e4 3052 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3053 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3054
3055 if (!(flags & __GFP_WAIT))
3056 ctor_flags |= SLAB_CTOR_ATOMIC;
3057
3058 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3059 }
1da177e4
LT
3060 return objp;
3061}
3062#else
3063#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3064#endif
3065
343e0d7a 3066static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3067{
b28a02de 3068 void *objp;
1da177e4
LT
3069 struct array_cache *ac;
3070
5c382300 3071 check_irq_off();
9a2dba4b 3072 ac = cpu_cache_get(cachep);
1da177e4
LT
3073 if (likely(ac->avail)) {
3074 STATS_INC_ALLOCHIT(cachep);
3075 ac->touched = 1;
e498be7d 3076 objp = ac->entry[--ac->avail];
1da177e4
LT
3077 } else {
3078 STATS_INC_ALLOCMISS(cachep);
3079 objp = cache_alloc_refill(cachep, flags);
3080 }
5c382300
AK
3081 return objp;
3082}
3083
a737b3e2
AM
3084static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3085 gfp_t flags, void *caller)
5c382300
AK
3086{
3087 unsigned long save_flags;
de3083ec 3088 void *objp = NULL;
5c382300
AK
3089
3090 cache_alloc_debugcheck_before(cachep, flags);
3091
3092 local_irq_save(save_flags);
de3083ec 3093
765c4507
CL
3094 if (unlikely(NUMA_BUILD &&
3095 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
de3083ec 3096 objp = alternate_node_alloc(cachep, flags);
de3083ec
CL
3097
3098 if (!objp)
3099 objp = ____cache_alloc(cachep, flags);
765c4507
CL
3100 /*
3101 * We may just have run out of memory on the local node.
3102 * __cache_alloc_node() knows how to locate memory on other nodes
3103 */
3104 if (NUMA_BUILD && !objp)
3105 objp = __cache_alloc_node(cachep, flags, numa_node_id());
1da177e4 3106 local_irq_restore(save_flags);
34342e86 3107 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3108 caller);
34342e86 3109 prefetchw(objp);
1da177e4
LT
3110 return objp;
3111}
3112
e498be7d 3113#ifdef CONFIG_NUMA
c61afb18 3114/*
b2455396 3115 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3116 *
3117 * If we are in_interrupt, then process context, including cpusets and
3118 * mempolicy, may not apply and should not be used for allocation policy.
3119 */
3120static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3121{
3122 int nid_alloc, nid_here;
3123
765c4507 3124 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3125 return NULL;
3126 nid_alloc = nid_here = numa_node_id();
3127 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3128 nid_alloc = cpuset_mem_spread_node();
3129 else if (current->mempolicy)
3130 nid_alloc = slab_node(current->mempolicy);
3131 if (nid_alloc != nid_here)
3132 return __cache_alloc_node(cachep, flags, nid_alloc);
3133 return NULL;
3134}
3135
765c4507
CL
3136/*
3137 * Fallback function if there was no memory available and no objects on a
3138 * certain node and we are allowed to fall back. We mimick the behavior of
3139 * the page allocator. We fall back according to a zonelist determined by
3140 * the policy layer while obeying cpuset constraints.
3141 */
3142void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3143{
3144 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3145 ->node_zonelists[gfp_zone(flags)];
3146 struct zone **z;
3147 void *obj = NULL;
3148
3149 for (z = zonelist->zones; *z && !obj; z++)
3150 if (zone_idx(*z) <= ZONE_NORMAL &&
3151 cpuset_zone_allowed(*z, flags))
3152 obj = __cache_alloc_node(cache,
3153 flags | __GFP_THISNODE,
3154 zone_to_nid(*z));
3155 return obj;
3156}
3157
e498be7d
CL
3158/*
3159 * A interface to enable slab creation on nodeid
1da177e4 3160 */
a737b3e2
AM
3161static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3162 int nodeid)
e498be7d
CL
3163{
3164 struct list_head *entry;
b28a02de
PE
3165 struct slab *slabp;
3166 struct kmem_list3 *l3;
3167 void *obj;
b28a02de
PE
3168 int x;
3169
3170 l3 = cachep->nodelists[nodeid];
3171 BUG_ON(!l3);
3172
a737b3e2 3173retry:
ca3b9b91 3174 check_irq_off();
b28a02de
PE
3175 spin_lock(&l3->list_lock);
3176 entry = l3->slabs_partial.next;
3177 if (entry == &l3->slabs_partial) {
3178 l3->free_touched = 1;
3179 entry = l3->slabs_free.next;
3180 if (entry == &l3->slabs_free)
3181 goto must_grow;
3182 }
3183
3184 slabp = list_entry(entry, struct slab, list);
3185 check_spinlock_acquired_node(cachep, nodeid);
3186 check_slabp(cachep, slabp);
3187
3188 STATS_INC_NODEALLOCS(cachep);
3189 STATS_INC_ACTIVE(cachep);
3190 STATS_SET_HIGH(cachep);
3191
3192 BUG_ON(slabp->inuse == cachep->num);
3193
78d382d7 3194 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3195 check_slabp(cachep, slabp);
3196 l3->free_objects--;
3197 /* move slabp to correct slabp list: */
3198 list_del(&slabp->list);
3199
a737b3e2 3200 if (slabp->free == BUFCTL_END)
b28a02de 3201 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3202 else
b28a02de 3203 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3204
b28a02de
PE
3205 spin_unlock(&l3->list_lock);
3206 goto done;
e498be7d 3207
a737b3e2 3208must_grow:
b28a02de
PE
3209 spin_unlock(&l3->list_lock);
3210 x = cache_grow(cachep, flags, nodeid);
765c4507
CL
3211 if (x)
3212 goto retry;
1da177e4 3213
765c4507
CL
3214 if (!(flags & __GFP_THISNODE))
3215 /* Unable to grow the cache. Fall back to other nodes. */
3216 return fallback_alloc(cachep, flags);
3217
3218 return NULL;
e498be7d 3219
a737b3e2 3220done:
b28a02de 3221 return obj;
e498be7d
CL
3222}
3223#endif
3224
3225/*
3226 * Caller needs to acquire correct kmem_list's list_lock
3227 */
343e0d7a 3228static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3229 int node)
1da177e4
LT
3230{
3231 int i;
e498be7d 3232 struct kmem_list3 *l3;
1da177e4
LT
3233
3234 for (i = 0; i < nr_objects; i++) {
3235 void *objp = objpp[i];
3236 struct slab *slabp;
1da177e4 3237
6ed5eb22 3238 slabp = virt_to_slab(objp);
ff69416e 3239 l3 = cachep->nodelists[node];
1da177e4 3240 list_del(&slabp->list);
ff69416e 3241 check_spinlock_acquired_node(cachep, node);
1da177e4 3242 check_slabp(cachep, slabp);
78d382d7 3243 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3244 STATS_DEC_ACTIVE(cachep);
e498be7d 3245 l3->free_objects++;
1da177e4
LT
3246 check_slabp(cachep, slabp);
3247
3248 /* fixup slab chains */
3249 if (slabp->inuse == 0) {
e498be7d
CL
3250 if (l3->free_objects > l3->free_limit) {
3251 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3252 /* No need to drop any previously held
3253 * lock here, even if we have a off-slab slab
3254 * descriptor it is guaranteed to come from
3255 * a different cache, refer to comments before
3256 * alloc_slabmgmt.
3257 */
1da177e4
LT
3258 slab_destroy(cachep, slabp);
3259 } else {
e498be7d 3260 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3261 }
3262 } else {
3263 /* Unconditionally move a slab to the end of the
3264 * partial list on free - maximum time for the
3265 * other objects to be freed, too.
3266 */
e498be7d 3267 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3268 }
3269 }
3270}
3271
343e0d7a 3272static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3273{
3274 int batchcount;
e498be7d 3275 struct kmem_list3 *l3;
ff69416e 3276 int node = numa_node_id();
1da177e4
LT
3277
3278 batchcount = ac->batchcount;
3279#if DEBUG
3280 BUG_ON(!batchcount || batchcount > ac->avail);
3281#endif
3282 check_irq_off();
ff69416e 3283 l3 = cachep->nodelists[node];
873623df 3284 spin_lock(&l3->list_lock);
e498be7d
CL
3285 if (l3->shared) {
3286 struct array_cache *shared_array = l3->shared;
b28a02de 3287 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3288 if (max) {
3289 if (batchcount > max)
3290 batchcount = max;
e498be7d 3291 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3292 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3293 shared_array->avail += batchcount;
3294 goto free_done;
3295 }
3296 }
3297
ff69416e 3298 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3299free_done:
1da177e4
LT
3300#if STATS
3301 {
3302 int i = 0;
3303 struct list_head *p;
3304
e498be7d
CL
3305 p = l3->slabs_free.next;
3306 while (p != &(l3->slabs_free)) {
1da177e4
LT
3307 struct slab *slabp;
3308
3309 slabp = list_entry(p, struct slab, list);
3310 BUG_ON(slabp->inuse);
3311
3312 i++;
3313 p = p->next;
3314 }
3315 STATS_SET_FREEABLE(cachep, i);
3316 }
3317#endif
e498be7d 3318 spin_unlock(&l3->list_lock);
1da177e4 3319 ac->avail -= batchcount;
a737b3e2 3320 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3321}
3322
3323/*
a737b3e2
AM
3324 * Release an obj back to its cache. If the obj has a constructed state, it must
3325 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3326 */
873623df 3327static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3328{
9a2dba4b 3329 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3330
3331 check_irq_off();
3332 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3333
873623df 3334 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3335 return;
3336
1da177e4
LT
3337 if (likely(ac->avail < ac->limit)) {
3338 STATS_INC_FREEHIT(cachep);
e498be7d 3339 ac->entry[ac->avail++] = objp;
1da177e4
LT
3340 return;
3341 } else {
3342 STATS_INC_FREEMISS(cachep);
3343 cache_flusharray(cachep, ac);
e498be7d 3344 ac->entry[ac->avail++] = objp;
1da177e4
LT
3345 }
3346}
3347
3348/**
3349 * kmem_cache_alloc - Allocate an object
3350 * @cachep: The cache to allocate from.
3351 * @flags: See kmalloc().
3352 *
3353 * Allocate an object from this cache. The flags are only relevant
3354 * if the cache has no available objects.
3355 */
343e0d7a 3356void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3357{
7fd6b141 3358 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3359}
3360EXPORT_SYMBOL(kmem_cache_alloc);
3361
a8c0f9a4 3362/**
b8008b2b 3363 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3364 * @cache: The cache to allocate from.
3365 * @flags: See kmalloc().
3366 *
3367 * Allocate an object from this cache and set the allocated memory to zero.
3368 * The flags are only relevant if the cache has no available objects.
3369 */
3370void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3371{
3372 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3373 if (ret)
3374 memset(ret, 0, obj_size(cache));
3375 return ret;
3376}
3377EXPORT_SYMBOL(kmem_cache_zalloc);
3378
1da177e4
LT
3379/**
3380 * kmem_ptr_validate - check if an untrusted pointer might
3381 * be a slab entry.
3382 * @cachep: the cache we're checking against
3383 * @ptr: pointer to validate
3384 *
3385 * This verifies that the untrusted pointer looks sane:
3386 * it is _not_ a guarantee that the pointer is actually
3387 * part of the slab cache in question, but it at least
3388 * validates that the pointer can be dereferenced and
3389 * looks half-way sane.
3390 *
3391 * Currently only used for dentry validation.
3392 */
343e0d7a 3393int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3394{
b28a02de 3395 unsigned long addr = (unsigned long)ptr;
1da177e4 3396 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3397 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3398 unsigned long size = cachep->buffer_size;
1da177e4
LT
3399 struct page *page;
3400
3401 if (unlikely(addr < min_addr))
3402 goto out;
3403 if (unlikely(addr > (unsigned long)high_memory - size))
3404 goto out;
3405 if (unlikely(addr & align_mask))
3406 goto out;
3407 if (unlikely(!kern_addr_valid(addr)))
3408 goto out;
3409 if (unlikely(!kern_addr_valid(addr + size - 1)))
3410 goto out;
3411 page = virt_to_page(ptr);
3412 if (unlikely(!PageSlab(page)))
3413 goto out;
065d41cb 3414 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3415 goto out;
3416 return 1;
a737b3e2 3417out:
1da177e4
LT
3418 return 0;
3419}
3420
3421#ifdef CONFIG_NUMA
3422/**
3423 * kmem_cache_alloc_node - Allocate an object on the specified node
3424 * @cachep: The cache to allocate from.
3425 * @flags: See kmalloc().
3426 * @nodeid: node number of the target node.
3427 *
3428 * Identical to kmem_cache_alloc, except that this function is slow
3429 * and can sleep. And it will allocate memory on the given node, which
3430 * can improve the performance for cpu bound structures.
e498be7d
CL
3431 * New and improved: it will now make sure that the object gets
3432 * put on the correct node list so that there is no false sharing.
1da177e4 3433 */
343e0d7a 3434void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3435{
e498be7d
CL
3436 unsigned long save_flags;
3437 void *ptr;
1da177e4 3438
e498be7d
CL
3439 cache_alloc_debugcheck_before(cachep, flags);
3440 local_irq_save(save_flags);
18f820f6
CL
3441
3442 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3443 !cachep->nodelists[nodeid])
5c382300
AK
3444 ptr = ____cache_alloc(cachep, flags);
3445 else
3446 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3447 local_irq_restore(save_flags);
18f820f6
CL
3448
3449 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3450 __builtin_return_address(0));
1da177e4 3451
e498be7d 3452 return ptr;
1da177e4
LT
3453}
3454EXPORT_SYMBOL(kmem_cache_alloc_node);
3455
dbe5e69d 3456void *__kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3457{
343e0d7a 3458 struct kmem_cache *cachep;
97e2bde4
MS
3459
3460 cachep = kmem_find_general_cachep(size, flags);
3461 if (unlikely(cachep == NULL))
3462 return NULL;
3463 return kmem_cache_alloc_node(cachep, flags, node);
3464}
dbe5e69d 3465EXPORT_SYMBOL(__kmalloc_node);
1da177e4
LT
3466#endif
3467
3468/**
800590f5 3469 * __do_kmalloc - allocate memory
1da177e4 3470 * @size: how many bytes of memory are required.
800590f5 3471 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3472 * @caller: function caller for debug tracking of the caller
1da177e4 3473 */
7fd6b141
PE
3474static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3475 void *caller)
1da177e4 3476{
343e0d7a 3477 struct kmem_cache *cachep;
1da177e4 3478
97e2bde4
MS
3479 /* If you want to save a few bytes .text space: replace
3480 * __ with kmem_.
3481 * Then kmalloc uses the uninlined functions instead of the inline
3482 * functions.
3483 */
3484 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3485 if (unlikely(cachep == NULL))
3486 return NULL;
7fd6b141
PE
3487 return __cache_alloc(cachep, flags, caller);
3488}
3489
7fd6b141
PE
3490
3491void *__kmalloc(size_t size, gfp_t flags)
3492{
871751e2 3493#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3494 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3495#else
3496 return __do_kmalloc(size, flags, __builtin_return_address(0));
3497#endif
1da177e4
LT
3498}
3499EXPORT_SYMBOL(__kmalloc);
3500
871751e2 3501#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3502void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3503{
3504 return __do_kmalloc(size, flags, caller);
3505}
3506EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3507#endif
3508
1da177e4
LT
3509/**
3510 * kmem_cache_free - Deallocate an object
3511 * @cachep: The cache the allocation was from.
3512 * @objp: The previously allocated object.
3513 *
3514 * Free an object which was previously allocated from this
3515 * cache.
3516 */
343e0d7a 3517void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3518{
3519 unsigned long flags;
3520
ddc2e812
PE
3521 BUG_ON(virt_to_cache(objp) != cachep);
3522
1da177e4 3523 local_irq_save(flags);
873623df 3524 __cache_free(cachep, objp);
1da177e4
LT
3525 local_irq_restore(flags);
3526}
3527EXPORT_SYMBOL(kmem_cache_free);
3528
1da177e4
LT
3529/**
3530 * kfree - free previously allocated memory
3531 * @objp: pointer returned by kmalloc.
3532 *
80e93eff
PE
3533 * If @objp is NULL, no operation is performed.
3534 *
1da177e4
LT
3535 * Don't free memory not originally allocated by kmalloc()
3536 * or you will run into trouble.
3537 */
3538void kfree(const void *objp)
3539{
343e0d7a 3540 struct kmem_cache *c;
1da177e4
LT
3541 unsigned long flags;
3542
3543 if (unlikely(!objp))
3544 return;
3545 local_irq_save(flags);
3546 kfree_debugcheck(objp);
6ed5eb22 3547 c = virt_to_cache(objp);
f9b8404c 3548 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3549 __cache_free(c, (void *)objp);
1da177e4
LT
3550 local_irq_restore(flags);
3551}
3552EXPORT_SYMBOL(kfree);
3553
343e0d7a 3554unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3555{
3dafccf2 3556 return obj_size(cachep);
1da177e4
LT
3557}
3558EXPORT_SYMBOL(kmem_cache_size);
3559
343e0d7a 3560const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3561{
3562 return cachep->name;
3563}
3564EXPORT_SYMBOL_GPL(kmem_cache_name);
3565
e498be7d 3566/*
0718dc2a 3567 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3568 */
343e0d7a 3569static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3570{
3571 int node;
3572 struct kmem_list3 *l3;
cafeb02e
CL
3573 struct array_cache *new_shared;
3574 struct array_cache **new_alien;
e498be7d
CL
3575
3576 for_each_online_node(node) {
cafeb02e 3577
a737b3e2
AM
3578 new_alien = alloc_alien_cache(node, cachep->limit);
3579 if (!new_alien)
e498be7d 3580 goto fail;
cafeb02e 3581
0718dc2a
CL
3582 new_shared = alloc_arraycache(node,
3583 cachep->shared*cachep->batchcount,
a737b3e2 3584 0xbaadf00d);
0718dc2a
CL
3585 if (!new_shared) {
3586 free_alien_cache(new_alien);
e498be7d 3587 goto fail;
0718dc2a 3588 }
cafeb02e 3589
a737b3e2
AM
3590 l3 = cachep->nodelists[node];
3591 if (l3) {
cafeb02e
CL
3592 struct array_cache *shared = l3->shared;
3593
e498be7d
CL
3594 spin_lock_irq(&l3->list_lock);
3595
cafeb02e 3596 if (shared)
0718dc2a
CL
3597 free_block(cachep, shared->entry,
3598 shared->avail, node);
e498be7d 3599
cafeb02e
CL
3600 l3->shared = new_shared;
3601 if (!l3->alien) {
e498be7d
CL
3602 l3->alien = new_alien;
3603 new_alien = NULL;
3604 }
b28a02de 3605 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3606 cachep->batchcount + cachep->num;
e498be7d 3607 spin_unlock_irq(&l3->list_lock);
cafeb02e 3608 kfree(shared);
e498be7d
CL
3609 free_alien_cache(new_alien);
3610 continue;
3611 }
a737b3e2 3612 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3613 if (!l3) {
3614 free_alien_cache(new_alien);
3615 kfree(new_shared);
e498be7d 3616 goto fail;
0718dc2a 3617 }
e498be7d
CL
3618
3619 kmem_list3_init(l3);
3620 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3621 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3622 l3->shared = new_shared;
e498be7d 3623 l3->alien = new_alien;
b28a02de 3624 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3625 cachep->batchcount + cachep->num;
e498be7d
CL
3626 cachep->nodelists[node] = l3;
3627 }
cafeb02e 3628 return 0;
0718dc2a 3629
a737b3e2 3630fail:
0718dc2a
CL
3631 if (!cachep->next.next) {
3632 /* Cache is not active yet. Roll back what we did */
3633 node--;
3634 while (node >= 0) {
3635 if (cachep->nodelists[node]) {
3636 l3 = cachep->nodelists[node];
3637
3638 kfree(l3->shared);
3639 free_alien_cache(l3->alien);
3640 kfree(l3);
3641 cachep->nodelists[node] = NULL;
3642 }
3643 node--;
3644 }
3645 }
cafeb02e 3646 return -ENOMEM;
e498be7d
CL
3647}
3648
1da177e4 3649struct ccupdate_struct {
343e0d7a 3650 struct kmem_cache *cachep;
1da177e4
LT
3651 struct array_cache *new[NR_CPUS];
3652};
3653
3654static void do_ccupdate_local(void *info)
3655{
a737b3e2 3656 struct ccupdate_struct *new = info;
1da177e4
LT
3657 struct array_cache *old;
3658
3659 check_irq_off();
9a2dba4b 3660 old = cpu_cache_get(new->cachep);
e498be7d 3661
1da177e4
LT
3662 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3663 new->new[smp_processor_id()] = old;
3664}
3665
b5d8ca7c 3666/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3667static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3668 int batchcount, int shared)
1da177e4 3669{
d2e7b7d0 3670 struct ccupdate_struct *new;
2ed3a4ef 3671 int i;
1da177e4 3672
d2e7b7d0
SS
3673 new = kzalloc(sizeof(*new), GFP_KERNEL);
3674 if (!new)
3675 return -ENOMEM;
3676
e498be7d 3677 for_each_online_cpu(i) {
d2e7b7d0 3678 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3679 batchcount);
d2e7b7d0 3680 if (!new->new[i]) {
b28a02de 3681 for (i--; i >= 0; i--)
d2e7b7d0
SS
3682 kfree(new->new[i]);
3683 kfree(new);
e498be7d 3684 return -ENOMEM;
1da177e4
LT
3685 }
3686 }
d2e7b7d0 3687 new->cachep = cachep;
1da177e4 3688
d2e7b7d0 3689 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3690
1da177e4 3691 check_irq_on();
1da177e4
LT
3692 cachep->batchcount = batchcount;
3693 cachep->limit = limit;
e498be7d 3694 cachep->shared = shared;
1da177e4 3695
e498be7d 3696 for_each_online_cpu(i) {
d2e7b7d0 3697 struct array_cache *ccold = new->new[i];
1da177e4
LT
3698 if (!ccold)
3699 continue;
e498be7d 3700 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3701 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3702 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3703 kfree(ccold);
3704 }
d2e7b7d0 3705 kfree(new);
2ed3a4ef 3706 return alloc_kmemlist(cachep);
1da177e4
LT
3707}
3708
b5d8ca7c 3709/* Called with cache_chain_mutex held always */
2ed3a4ef 3710static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3711{
3712 int err;
3713 int limit, shared;
3714
a737b3e2
AM
3715 /*
3716 * The head array serves three purposes:
1da177e4
LT
3717 * - create a LIFO ordering, i.e. return objects that are cache-warm
3718 * - reduce the number of spinlock operations.
a737b3e2 3719 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3720 * bufctl chains: array operations are cheaper.
3721 * The numbers are guessed, we should auto-tune as described by
3722 * Bonwick.
3723 */
3dafccf2 3724 if (cachep->buffer_size > 131072)
1da177e4 3725 limit = 1;
3dafccf2 3726 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3727 limit = 8;
3dafccf2 3728 else if (cachep->buffer_size > 1024)
1da177e4 3729 limit = 24;
3dafccf2 3730 else if (cachep->buffer_size > 256)
1da177e4
LT
3731 limit = 54;
3732 else
3733 limit = 120;
3734
a737b3e2
AM
3735 /*
3736 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3737 * allocation behaviour: Most allocs on one cpu, most free operations
3738 * on another cpu. For these cases, an efficient object passing between
3739 * cpus is necessary. This is provided by a shared array. The array
3740 * replaces Bonwick's magazine layer.
3741 * On uniprocessor, it's functionally equivalent (but less efficient)
3742 * to a larger limit. Thus disabled by default.
3743 */
3744 shared = 0;
3745#ifdef CONFIG_SMP
3dafccf2 3746 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3747 shared = 8;
3748#endif
3749
3750#if DEBUG
a737b3e2
AM
3751 /*
3752 * With debugging enabled, large batchcount lead to excessively long
3753 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3754 */
3755 if (limit > 32)
3756 limit = 32;
3757#endif
b28a02de 3758 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3759 if (err)
3760 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3761 cachep->name, -err);
2ed3a4ef 3762 return err;
1da177e4
LT
3763}
3764
1b55253a
CL
3765/*
3766 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3767 * necessary. Note that the l3 listlock also protects the array_cache
3768 * if drain_array() is used on the shared array.
1b55253a
CL
3769 */
3770void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3771 struct array_cache *ac, int force, int node)
1da177e4
LT
3772{
3773 int tofree;
3774
1b55253a
CL
3775 if (!ac || !ac->avail)
3776 return;
1da177e4
LT
3777 if (ac->touched && !force) {
3778 ac->touched = 0;
b18e7e65 3779 } else {
1b55253a 3780 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3781 if (ac->avail) {
3782 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3783 if (tofree > ac->avail)
3784 tofree = (ac->avail + 1) / 2;
3785 free_block(cachep, ac->entry, tofree, node);
3786 ac->avail -= tofree;
3787 memmove(ac->entry, &(ac->entry[tofree]),
3788 sizeof(void *) * ac->avail);
3789 }
1b55253a 3790 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3791 }
3792}
3793
3794/**
3795 * cache_reap - Reclaim memory from caches.
1e5d5331 3796 * @unused: unused parameter
1da177e4
LT
3797 *
3798 * Called from workqueue/eventd every few seconds.
3799 * Purpose:
3800 * - clear the per-cpu caches for this CPU.
3801 * - return freeable pages to the main free memory pool.
3802 *
a737b3e2
AM
3803 * If we cannot acquire the cache chain mutex then just give up - we'll try
3804 * again on the next iteration.
1da177e4
LT
3805 */
3806static void cache_reap(void *unused)
3807{
7a7c381d 3808 struct kmem_cache *searchp;
e498be7d 3809 struct kmem_list3 *l3;
aab2207c 3810 int node = numa_node_id();
1da177e4 3811
fc0abb14 3812 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3813 /* Give up. Setup the next iteration. */
b28a02de
PE
3814 schedule_delayed_work(&__get_cpu_var(reap_work),
3815 REAPTIMEOUT_CPUC);
1da177e4
LT
3816 return;
3817 }
3818
7a7c381d 3819 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3820 check_irq_on();
3821
35386e3b
CL
3822 /*
3823 * We only take the l3 lock if absolutely necessary and we
3824 * have established with reasonable certainty that
3825 * we can do some work if the lock was obtained.
3826 */
aab2207c 3827 l3 = searchp->nodelists[node];
35386e3b 3828
8fce4d8e 3829 reap_alien(searchp, l3);
1da177e4 3830
aab2207c 3831 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3832
35386e3b
CL
3833 /*
3834 * These are racy checks but it does not matter
3835 * if we skip one check or scan twice.
3836 */
e498be7d 3837 if (time_after(l3->next_reap, jiffies))
35386e3b 3838 goto next;
1da177e4 3839
e498be7d 3840 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3841
aab2207c 3842 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3843
ed11d9eb 3844 if (l3->free_touched)
e498be7d 3845 l3->free_touched = 0;
ed11d9eb
CL
3846 else {
3847 int freed;
1da177e4 3848
ed11d9eb
CL
3849 freed = drain_freelist(searchp, l3, (l3->free_limit +
3850 5 * searchp->num - 1) / (5 * searchp->num));
3851 STATS_ADD_REAPED(searchp, freed);
3852 }
35386e3b 3853next:
1da177e4
LT
3854 cond_resched();
3855 }
3856 check_irq_on();
fc0abb14 3857 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3858 next_reap_node();
2244b95a 3859 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3860 /* Set up the next iteration */
cd61ef62 3861 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3862}
3863
3864#ifdef CONFIG_PROC_FS
3865
85289f98 3866static void print_slabinfo_header(struct seq_file *m)
1da177e4 3867{
85289f98
PE
3868 /*
3869 * Output format version, so at least we can change it
3870 * without _too_ many complaints.
3871 */
1da177e4 3872#if STATS
85289f98 3873 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3874#else
85289f98 3875 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3876#endif
85289f98
PE
3877 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3878 "<objperslab> <pagesperslab>");
3879 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3880 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3881#if STATS
85289f98 3882 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3883 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3884 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3885#endif
85289f98
PE
3886 seq_putc(m, '\n');
3887}
3888
3889static void *s_start(struct seq_file *m, loff_t *pos)
3890{
3891 loff_t n = *pos;
3892 struct list_head *p;
3893
fc0abb14 3894 mutex_lock(&cache_chain_mutex);
85289f98
PE
3895 if (!n)
3896 print_slabinfo_header(m);
1da177e4
LT
3897 p = cache_chain.next;
3898 while (n--) {
3899 p = p->next;
3900 if (p == &cache_chain)
3901 return NULL;
3902 }
343e0d7a 3903 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3904}
3905
3906static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3907{
343e0d7a 3908 struct kmem_cache *cachep = p;
1da177e4 3909 ++*pos;
a737b3e2
AM
3910 return cachep->next.next == &cache_chain ?
3911 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3912}
3913
3914static void s_stop(struct seq_file *m, void *p)
3915{
fc0abb14 3916 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3917}
3918
3919static int s_show(struct seq_file *m, void *p)
3920{
343e0d7a 3921 struct kmem_cache *cachep = p;
b28a02de
PE
3922 struct slab *slabp;
3923 unsigned long active_objs;
3924 unsigned long num_objs;
3925 unsigned long active_slabs = 0;
3926 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3927 const char *name;
1da177e4 3928 char *error = NULL;
e498be7d
CL
3929 int node;
3930 struct kmem_list3 *l3;
1da177e4 3931
1da177e4
LT
3932 active_objs = 0;
3933 num_slabs = 0;
e498be7d
CL
3934 for_each_online_node(node) {
3935 l3 = cachep->nodelists[node];
3936 if (!l3)
3937 continue;
3938
ca3b9b91
RT
3939 check_irq_on();
3940 spin_lock_irq(&l3->list_lock);
e498be7d 3941
7a7c381d 3942 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3943 if (slabp->inuse != cachep->num && !error)
3944 error = "slabs_full accounting error";
3945 active_objs += cachep->num;
3946 active_slabs++;
3947 }
7a7c381d 3948 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3949 if (slabp->inuse == cachep->num && !error)
3950 error = "slabs_partial inuse accounting error";
3951 if (!slabp->inuse && !error)
3952 error = "slabs_partial/inuse accounting error";
3953 active_objs += slabp->inuse;
3954 active_slabs++;
3955 }
7a7c381d 3956 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3957 if (slabp->inuse && !error)
3958 error = "slabs_free/inuse accounting error";
3959 num_slabs++;
3960 }
3961 free_objects += l3->free_objects;
4484ebf1
RT
3962 if (l3->shared)
3963 shared_avail += l3->shared->avail;
e498be7d 3964
ca3b9b91 3965 spin_unlock_irq(&l3->list_lock);
1da177e4 3966 }
b28a02de
PE
3967 num_slabs += active_slabs;
3968 num_objs = num_slabs * cachep->num;
e498be7d 3969 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3970 error = "free_objects accounting error";
3971
b28a02de 3972 name = cachep->name;
1da177e4
LT
3973 if (error)
3974 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3975
3976 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3977 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3978 cachep->num, (1 << cachep->gfporder));
1da177e4 3979 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3980 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3981 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3982 active_slabs, num_slabs, shared_avail);
1da177e4 3983#if STATS
b28a02de 3984 { /* list3 stats */
1da177e4
LT
3985 unsigned long high = cachep->high_mark;
3986 unsigned long allocs = cachep->num_allocations;
3987 unsigned long grown = cachep->grown;
3988 unsigned long reaped = cachep->reaped;
3989 unsigned long errors = cachep->errors;
3990 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3991 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3992 unsigned long node_frees = cachep->node_frees;
fb7faf33 3993 unsigned long overflows = cachep->node_overflow;
1da177e4 3994
e498be7d 3995 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3996 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3997 reaped, errors, max_freeable, node_allocs,
fb7faf33 3998 node_frees, overflows);
1da177e4
LT
3999 }
4000 /* cpu stats */
4001 {
4002 unsigned long allochit = atomic_read(&cachep->allochit);
4003 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4004 unsigned long freehit = atomic_read(&cachep->freehit);
4005 unsigned long freemiss = atomic_read(&cachep->freemiss);
4006
4007 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4008 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4009 }
4010#endif
4011 seq_putc(m, '\n');
1da177e4
LT
4012 return 0;
4013}
4014
4015/*
4016 * slabinfo_op - iterator that generates /proc/slabinfo
4017 *
4018 * Output layout:
4019 * cache-name
4020 * num-active-objs
4021 * total-objs
4022 * object size
4023 * num-active-slabs
4024 * total-slabs
4025 * num-pages-per-slab
4026 * + further values on SMP and with statistics enabled
4027 */
4028
4029struct seq_operations slabinfo_op = {
b28a02de
PE
4030 .start = s_start,
4031 .next = s_next,
4032 .stop = s_stop,
4033 .show = s_show,
1da177e4
LT
4034};
4035
4036#define MAX_SLABINFO_WRITE 128
4037/**
4038 * slabinfo_write - Tuning for the slab allocator
4039 * @file: unused
4040 * @buffer: user buffer
4041 * @count: data length
4042 * @ppos: unused
4043 */
b28a02de
PE
4044ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4045 size_t count, loff_t *ppos)
1da177e4 4046{
b28a02de 4047 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4048 int limit, batchcount, shared, res;
7a7c381d 4049 struct kmem_cache *cachep;
b28a02de 4050
1da177e4
LT
4051 if (count > MAX_SLABINFO_WRITE)
4052 return -EINVAL;
4053 if (copy_from_user(&kbuf, buffer, count))
4054 return -EFAULT;
b28a02de 4055 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4056
4057 tmp = strchr(kbuf, ' ');
4058 if (!tmp)
4059 return -EINVAL;
4060 *tmp = '\0';
4061 tmp++;
4062 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4063 return -EINVAL;
4064
4065 /* Find the cache in the chain of caches. */
fc0abb14 4066 mutex_lock(&cache_chain_mutex);
1da177e4 4067 res = -EINVAL;
7a7c381d 4068 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4069 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4070 if (limit < 1 || batchcount < 1 ||
4071 batchcount > limit || shared < 0) {
e498be7d 4072 res = 0;
1da177e4 4073 } else {
e498be7d 4074 res = do_tune_cpucache(cachep, limit,
b28a02de 4075 batchcount, shared);
1da177e4
LT
4076 }
4077 break;
4078 }
4079 }
fc0abb14 4080 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4081 if (res >= 0)
4082 res = count;
4083 return res;
4084}
871751e2
AV
4085
4086#ifdef CONFIG_DEBUG_SLAB_LEAK
4087
4088static void *leaks_start(struct seq_file *m, loff_t *pos)
4089{
4090 loff_t n = *pos;
4091 struct list_head *p;
4092
4093 mutex_lock(&cache_chain_mutex);
4094 p = cache_chain.next;
4095 while (n--) {
4096 p = p->next;
4097 if (p == &cache_chain)
4098 return NULL;
4099 }
4100 return list_entry(p, struct kmem_cache, next);
4101}
4102
4103static inline int add_caller(unsigned long *n, unsigned long v)
4104{
4105 unsigned long *p;
4106 int l;
4107 if (!v)
4108 return 1;
4109 l = n[1];
4110 p = n + 2;
4111 while (l) {
4112 int i = l/2;
4113 unsigned long *q = p + 2 * i;
4114 if (*q == v) {
4115 q[1]++;
4116 return 1;
4117 }
4118 if (*q > v) {
4119 l = i;
4120 } else {
4121 p = q + 2;
4122 l -= i + 1;
4123 }
4124 }
4125 if (++n[1] == n[0])
4126 return 0;
4127 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4128 p[0] = v;
4129 p[1] = 1;
4130 return 1;
4131}
4132
4133static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4134{
4135 void *p;
4136 int i;
4137 if (n[0] == n[1])
4138 return;
4139 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4140 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4141 continue;
4142 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4143 return;
4144 }
4145}
4146
4147static void show_symbol(struct seq_file *m, unsigned long address)
4148{
4149#ifdef CONFIG_KALLSYMS
4150 char *modname;
4151 const char *name;
4152 unsigned long offset, size;
4153 char namebuf[KSYM_NAME_LEN+1];
4154
4155 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4156
4157 if (name) {
4158 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4159 if (modname)
4160 seq_printf(m, " [%s]", modname);
4161 return;
4162 }
4163#endif
4164 seq_printf(m, "%p", (void *)address);
4165}
4166
4167static int leaks_show(struct seq_file *m, void *p)
4168{
4169 struct kmem_cache *cachep = p;
871751e2
AV
4170 struct slab *slabp;
4171 struct kmem_list3 *l3;
4172 const char *name;
4173 unsigned long *n = m->private;
4174 int node;
4175 int i;
4176
4177 if (!(cachep->flags & SLAB_STORE_USER))
4178 return 0;
4179 if (!(cachep->flags & SLAB_RED_ZONE))
4180 return 0;
4181
4182 /* OK, we can do it */
4183
4184 n[1] = 0;
4185
4186 for_each_online_node(node) {
4187 l3 = cachep->nodelists[node];
4188 if (!l3)
4189 continue;
4190
4191 check_irq_on();
4192 spin_lock_irq(&l3->list_lock);
4193
7a7c381d 4194 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4195 handle_slab(n, cachep, slabp);
7a7c381d 4196 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4197 handle_slab(n, cachep, slabp);
871751e2
AV
4198 spin_unlock_irq(&l3->list_lock);
4199 }
4200 name = cachep->name;
4201 if (n[0] == n[1]) {
4202 /* Increase the buffer size */
4203 mutex_unlock(&cache_chain_mutex);
4204 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4205 if (!m->private) {
4206 /* Too bad, we are really out */
4207 m->private = n;
4208 mutex_lock(&cache_chain_mutex);
4209 return -ENOMEM;
4210 }
4211 *(unsigned long *)m->private = n[0] * 2;
4212 kfree(n);
4213 mutex_lock(&cache_chain_mutex);
4214 /* Now make sure this entry will be retried */
4215 m->count = m->size;
4216 return 0;
4217 }
4218 for (i = 0; i < n[1]; i++) {
4219 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4220 show_symbol(m, n[2*i+2]);
4221 seq_putc(m, '\n');
4222 }
d2e7b7d0 4223
871751e2
AV
4224 return 0;
4225}
4226
4227struct seq_operations slabstats_op = {
4228 .start = leaks_start,
4229 .next = s_next,
4230 .stop = s_stop,
4231 .show = leaks_show,
4232};
4233#endif
1da177e4
LT
4234#endif
4235
00e145b6
MS
4236/**
4237 * ksize - get the actual amount of memory allocated for a given object
4238 * @objp: Pointer to the object
4239 *
4240 * kmalloc may internally round up allocations and return more memory
4241 * than requested. ksize() can be used to determine the actual amount of
4242 * memory allocated. The caller may use this additional memory, even though
4243 * a smaller amount of memory was initially specified with the kmalloc call.
4244 * The caller must guarantee that objp points to a valid object previously
4245 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4246 * must not be freed during the duration of the call.
4247 */
1da177e4
LT
4248unsigned int ksize(const void *objp)
4249{
00e145b6
MS
4250 if (unlikely(objp == NULL))
4251 return 0;
1da177e4 4252
6ed5eb22 4253 return obj_size(virt_to_cache(objp));
1da177e4 4254}
This page took 0.449366 seconds and 5 git commands to generate.