Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
e7eebaf6 109#include <linux/rtmutex.h>
1da177e4
LT
110
111#include <asm/uaccess.h>
112#include <asm/cacheflush.h>
113#include <asm/tlbflush.h>
114#include <asm/page.h>
115
116/*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127#ifdef CONFIG_DEBUG_SLAB
128#define DEBUG 1
129#define STATS 1
130#define FORCED_DEBUG 1
131#else
132#define DEBUG 0
133#define STATS 0
134#define FORCED_DEBUG 0
135#endif
136
1da177e4
LT
137/* Shouldn't this be in a header file somewhere? */
138#define BYTES_PER_WORD sizeof(void *)
139
140#ifndef cache_line_size
141#define cache_line_size() L1_CACHE_BYTES
142#endif
143
144#ifndef ARCH_KMALLOC_MINALIGN
145/*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153#define ARCH_KMALLOC_MINALIGN 0
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
157/*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164#define ARCH_SLAB_MINALIGN 0
165#endif
166
167#ifndef ARCH_KMALLOC_FLAGS
168#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169#endif
170
171/* Legal flag mask for kmem_cache_create(). */
172#if DEBUG
173# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 175 SLAB_CACHE_DMA | \
1da177e4
LT
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 179#else
ac2b898c 180# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
184#endif
185
186/*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
fa5b08d5 205typedef unsigned int kmem_bufctl_t;
1da177e4
LT
206#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
208#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 210
1da177e4
LT
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
b28a02de
PE
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
1da177e4
LT
225};
226
227/*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243struct slab_rcu {
b28a02de 244 struct rcu_head head;
343e0d7a 245 struct kmem_cache *cachep;
b28a02de 246 void *addr;
1da177e4
LT
247};
248
249/*
250 * struct array_cache
251 *
1da177e4
LT
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
e498be7d 266 spinlock_t lock;
a737b3e2
AM
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
1da177e4
LT
273};
274
a737b3e2
AM
275/*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
1da177e4
LT
278 */
279#define BOOT_CPUCACHE_ENTRIES 1
280struct arraycache_init {
281 struct array_cache cache;
b28a02de 282 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
283};
284
285/*
e498be7d 286 * The slab lists for all objects.
1da177e4
LT
287 */
288struct kmem_list3 {
b28a02de
PE
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
b28a02de 293 unsigned int free_limit;
2e1217cf 294 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
35386e3b
CL
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
1da177e4
LT
300};
301
e498be7d
CL
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
310
ed11d9eb
CL
311static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
2ed3a4ef 315static int enable_cpucache(struct kmem_cache *cachep);
ed11d9eb
CL
316static void cache_reap(void *unused);
317
e498be7d 318/*
a737b3e2
AM
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 321 */
7243cc05 322static __always_inline int index_of(const size_t size)
e498be7d 323{
5ec8a847
SR
324 extern void __bad_size(void);
325
e498be7d
CL
326 if (__builtin_constant_p(size)) {
327 int i = 0;
328
329#define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334#include "linux/kmalloc_sizes.h"
335#undef CACHE
5ec8a847 336 __bad_size();
7243cc05 337 } else
5ec8a847 338 __bad_size();
e498be7d
CL
339 return 0;
340}
341
e0a42726
IM
342static int slab_early_init = 1;
343
e498be7d
CL
344#define INDEX_AC index_of(sizeof(struct arraycache_init))
345#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 346
5295a74c 347static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
348{
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
2e1217cf 354 parent->colour_next = 0;
e498be7d
CL
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
358}
359
a737b3e2
AM
360#define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
364 } while (0)
365
a737b3e2
AM
366#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
e498be7d
CL
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
1da177e4
LT
372
373/*
343e0d7a 374 * struct kmem_cache
1da177e4
LT
375 *
376 * manages a cache.
377 */
b28a02de 378
2109a2d1 379struct kmem_cache {
1da177e4 380/* 1) per-cpu data, touched during every alloc/free */
b28a02de 381 struct array_cache *array[NR_CPUS];
b5d8ca7c 382/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
b5d8ca7c 386
3dafccf2 387 unsigned int buffer_size;
b5d8ca7c 388/* 3) touched by every alloc & free from the backend */
b28a02de 389 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 390
a737b3e2
AM
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
1da177e4 393
b5d8ca7c 394/* 4) cache_grow/shrink */
1da177e4 395 /* order of pgs per slab (2^n) */
b28a02de 396 unsigned int gfporder;
1da177e4
LT
397
398 /* force GFP flags, e.g. GFP_DMA */
b28a02de 399 gfp_t gfpflags;
1da177e4 400
a737b3e2 401 size_t colour; /* cache colouring range */
b28a02de 402 unsigned int colour_off; /* colour offset */
343e0d7a 403 struct kmem_cache *slabp_cache;
b28a02de 404 unsigned int slab_size;
a737b3e2 405 unsigned int dflags; /* dynamic flags */
1da177e4
LT
406
407 /* constructor func */
343e0d7a 408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
409
410 /* de-constructor func */
343e0d7a 411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 412
b5d8ca7c 413/* 5) cache creation/removal */
b28a02de
PE
414 const char *name;
415 struct list_head next;
1da177e4 416
b5d8ca7c 417/* 6) statistics */
1da177e4 418#if STATS
b28a02de
PE
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
fb7faf33 428 unsigned long node_overflow;
b28a02de
PE
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
1da177e4
LT
433#endif
434#if DEBUG
3dafccf2
MS
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
1da177e4
LT
443#endif
444};
445
446#define CFLGS_OFF_SLAB (0x80000000UL)
447#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
448
449#define BATCHREFILL_LIMIT 16
a737b3e2
AM
450/*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
1da177e4 453 *
dc6f3f27 454 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
455 * which could lock up otherwise freeable slabs.
456 */
457#define REAPTIMEOUT_CPUC (2*HZ)
458#define REAPTIMEOUT_LIST3 (4*HZ)
459
460#if STATS
461#define STATS_INC_ACTIVE(x) ((x)->num_active++)
462#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 465#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
466#define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
1da177e4
LT
471#define STATS_INC_ERR(x) ((x)->errors++)
472#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 473#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 474#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
475#define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
1da177e4
LT
480#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484#else
485#define STATS_INC_ACTIVE(x) do { } while (0)
486#define STATS_DEC_ACTIVE(x) do { } while (0)
487#define STATS_INC_ALLOCED(x) do { } while (0)
488#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 489#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
490#define STATS_SET_HIGH(x) do { } while (0)
491#define STATS_INC_ERR(x) do { } while (0)
492#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 493#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 494#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 495#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
496#define STATS_INC_ALLOCHIT(x) do { } while (0)
497#define STATS_INC_ALLOCMISS(x) do { } while (0)
498#define STATS_INC_FREEHIT(x) do { } while (0)
499#define STATS_INC_FREEMISS(x) do { } while (0)
500#endif
501
502#if DEBUG
1da177e4 503
a737b3e2
AM
504/*
505 * memory layout of objects:
1da177e4 506 * 0 : objp
3dafccf2 507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
3dafccf2 510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 511 * redzone word.
3dafccf2
MS
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
1da177e4 516 */
343e0d7a 517static int obj_offset(struct kmem_cache *cachep)
1da177e4 518{
3dafccf2 519 return cachep->obj_offset;
1da177e4
LT
520}
521
343e0d7a 522static int obj_size(struct kmem_cache *cachep)
1da177e4 523{
3dafccf2 524 return cachep->obj_size;
1da177e4
LT
525}
526
343e0d7a 527static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
528{
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
531}
532
343e0d7a 533static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
534{
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 537 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 538 2 * BYTES_PER_WORD);
3dafccf2 539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
540}
541
343e0d7a 542static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
543{
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
546}
547
548#else
549
3dafccf2
MS
550#define obj_offset(x) 0
551#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
552#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555
556#endif
557
558/*
a737b3e2
AM
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
1da177e4
LT
561 */
562#if defined(CONFIG_LARGE_ALLOCS)
563#define MAX_OBJ_ORDER 13 /* up to 32Mb */
564#define MAX_GFP_ORDER 13 /* up to 32Mb */
565#elif defined(CONFIG_MMU)
566#define MAX_OBJ_ORDER 5 /* 32 pages */
567#define MAX_GFP_ORDER 5 /* 32 pages */
568#else
569#define MAX_OBJ_ORDER 8 /* up to 1Mb */
570#define MAX_GFP_ORDER 8 /* up to 1Mb */
571#endif
572
573/*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576#define BREAK_GFP_ORDER_HI 1
577#define BREAK_GFP_ORDER_LO 0
578static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
a737b3e2
AM
580/*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
1da177e4 584 */
065d41cb
PE
585static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586{
587 page->lru.next = (struct list_head *)cache;
588}
589
590static inline struct kmem_cache *page_get_cache(struct page *page)
591{
84097518
NP
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
ddc2e812 594 BUG_ON(!PageSlab(page));
065d41cb
PE
595 return (struct kmem_cache *)page->lru.next;
596}
597
598static inline void page_set_slab(struct page *page, struct slab *slab)
599{
600 page->lru.prev = (struct list_head *)slab;
601}
602
603static inline struct slab *page_get_slab(struct page *page)
604{
84097518
NP
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
ddc2e812 607 BUG_ON(!PageSlab(page));
065d41cb
PE
608 return (struct slab *)page->lru.prev;
609}
1da177e4 610
6ed5eb22
PE
611static inline struct kmem_cache *virt_to_cache(const void *obj)
612{
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615}
616
617static inline struct slab *virt_to_slab(const void *obj)
618{
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621}
622
8fea4e96
PE
623static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625{
626 return slab->s_mem + cache->buffer_size * idx;
627}
628
629static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631{
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633}
634
a737b3e2
AM
635/*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
1da177e4
LT
638struct cache_sizes malloc_sizes[] = {
639#define CACHE(x) { .cs_size = (x) },
640#include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642#undef CACHE
643};
644EXPORT_SYMBOL(malloc_sizes);
645
646/* Must match cache_sizes above. Out of line to keep cache footprint low. */
647struct cache_names {
648 char *name;
649 char *name_dma;
650};
651
652static struct cache_names __initdata cache_names[] = {
653#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654#include <linux/kmalloc_sizes.h>
b28a02de 655 {NULL,}
1da177e4
LT
656#undef CACHE
657};
658
659static struct arraycache_init initarray_cache __initdata =
b28a02de 660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 661static struct arraycache_init initarray_generic =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
663
664/* internal cache of cache description objs */
343e0d7a 665static struct kmem_cache cache_cache = {
b28a02de
PE
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
343e0d7a 669 .buffer_size = sizeof(struct kmem_cache),
b28a02de 670 .name = "kmem_cache",
1da177e4 671#if DEBUG
343e0d7a 672 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
673#endif
674};
675
056c6241
RT
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
f1aaee53
AV
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
f1aaee53 690 */
056c6241
RT
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
f1aaee53 695
f1aaee53
AV
696{
697 int q;
056c6241
RT
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
f1aaee53
AV
725 }
726}
f1aaee53 727#else
056c6241 728static inline void init_lock_keys(void)
f1aaee53
AV
729{
730}
731#endif
732
1da177e4 733/* Guard access to the cache-chain. */
fc0abb14 734static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
735static struct list_head cache_chain;
736
1da177e4
LT
737/*
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
740 */
741static enum {
742 NONE,
e498be7d
CL
743 PARTIAL_AC,
744 PARTIAL_L3,
1da177e4
LT
745 FULL
746} g_cpucache_up;
747
39d24e64
MK
748/*
749 * used by boot code to determine if it can use slab based allocator
750 */
751int slab_is_available(void)
752{
753 return g_cpucache_up == FULL;
754}
755
1da177e4
LT
756static DEFINE_PER_CPU(struct work_struct, reap_work);
757
343e0d7a 758static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
759{
760 return cachep->array[smp_processor_id()];
761}
762
a737b3e2
AM
763static inline struct kmem_cache *__find_general_cachep(size_t size,
764 gfp_t gfpflags)
1da177e4
LT
765{
766 struct cache_sizes *csizep = malloc_sizes;
767
768#if DEBUG
769 /* This happens if someone tries to call
b28a02de
PE
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
772 */
c7e43c78 773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
774#endif
775 while (size > csizep->cs_size)
776 csizep++;
777
778 /*
0abf40c1 779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
782 */
783 if (unlikely(gfpflags & GFP_DMA))
784 return csizep->cs_dmacachep;
785 return csizep->cs_cachep;
786}
787
b221385b 788static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
789{
790 return __find_general_cachep(size, gfpflags);
791}
97e2bde4 792
fbaccacf 793static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 794{
fbaccacf
SR
795 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
796}
1da177e4 797
a737b3e2
AM
798/*
799 * Calculate the number of objects and left-over bytes for a given buffer size.
800 */
fbaccacf
SR
801static void cache_estimate(unsigned long gfporder, size_t buffer_size,
802 size_t align, int flags, size_t *left_over,
803 unsigned int *num)
804{
805 int nr_objs;
806 size_t mgmt_size;
807 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 808
fbaccacf
SR
809 /*
810 * The slab management structure can be either off the slab or
811 * on it. For the latter case, the memory allocated for a
812 * slab is used for:
813 *
814 * - The struct slab
815 * - One kmem_bufctl_t for each object
816 * - Padding to respect alignment of @align
817 * - @buffer_size bytes for each object
818 *
819 * If the slab management structure is off the slab, then the
820 * alignment will already be calculated into the size. Because
821 * the slabs are all pages aligned, the objects will be at the
822 * correct alignment when allocated.
823 */
824 if (flags & CFLGS_OFF_SLAB) {
825 mgmt_size = 0;
826 nr_objs = slab_size / buffer_size;
827
828 if (nr_objs > SLAB_LIMIT)
829 nr_objs = SLAB_LIMIT;
830 } else {
831 /*
832 * Ignore padding for the initial guess. The padding
833 * is at most @align-1 bytes, and @buffer_size is at
834 * least @align. In the worst case, this result will
835 * be one greater than the number of objects that fit
836 * into the memory allocation when taking the padding
837 * into account.
838 */
839 nr_objs = (slab_size - sizeof(struct slab)) /
840 (buffer_size + sizeof(kmem_bufctl_t));
841
842 /*
843 * This calculated number will be either the right
844 * amount, or one greater than what we want.
845 */
846 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
847 > slab_size)
848 nr_objs--;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852
853 mgmt_size = slab_mgmt_size(nr_objs, align);
854 }
855 *num = nr_objs;
856 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
857}
858
859#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
860
a737b3e2
AM
861static void __slab_error(const char *function, struct kmem_cache *cachep,
862 char *msg)
1da177e4
LT
863{
864 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 865 function, cachep->name, msg);
1da177e4
LT
866 dump_stack();
867}
868
8fce4d8e
CL
869#ifdef CONFIG_NUMA
870/*
871 * Special reaping functions for NUMA systems called from cache_reap().
872 * These take care of doing round robin flushing of alien caches (containing
873 * objects freed on different nodes from which they were allocated) and the
874 * flushing of remote pcps by calling drain_node_pages.
875 */
876static DEFINE_PER_CPU(unsigned long, reap_node);
877
878static void init_reap_node(int cpu)
879{
880 int node;
881
882 node = next_node(cpu_to_node(cpu), node_online_map);
883 if (node == MAX_NUMNODES)
442295c9 884 node = first_node(node_online_map);
8fce4d8e
CL
885
886 __get_cpu_var(reap_node) = node;
887}
888
889static void next_reap_node(void)
890{
891 int node = __get_cpu_var(reap_node);
892
893 /*
894 * Also drain per cpu pages on remote zones
895 */
896 if (node != numa_node_id())
897 drain_node_pages(node);
898
899 node = next_node(node, node_online_map);
900 if (unlikely(node >= MAX_NUMNODES))
901 node = first_node(node_online_map);
902 __get_cpu_var(reap_node) = node;
903}
904
905#else
906#define init_reap_node(cpu) do { } while (0)
907#define next_reap_node(void) do { } while (0)
908#endif
909
1da177e4
LT
910/*
911 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
912 * via the workqueue/eventd.
913 * Add the CPU number into the expiration time to minimize the possibility of
914 * the CPUs getting into lockstep and contending for the global cache chain
915 * lock.
916 */
917static void __devinit start_cpu_timer(int cpu)
918{
919 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
920
921 /*
922 * When this gets called from do_initcalls via cpucache_init(),
923 * init_workqueues() has already run, so keventd will be setup
924 * at that time.
925 */
926 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 927 init_reap_node(cpu);
1da177e4
LT
928 INIT_WORK(reap_work, cache_reap, NULL);
929 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
930 }
931}
932
e498be7d 933static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 934 int batchcount)
1da177e4 935{
b28a02de 936 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
937 struct array_cache *nc = NULL;
938
e498be7d 939 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
940 if (nc) {
941 nc->avail = 0;
942 nc->limit = entries;
943 nc->batchcount = batchcount;
944 nc->touched = 0;
e498be7d 945 spin_lock_init(&nc->lock);
1da177e4
LT
946 }
947 return nc;
948}
949
3ded175a
CL
950/*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958{
959 /* Figure out how many entries to transfer */
960 int nr = min(min(from->avail, max), to->limit - to->avail);
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
970 to->touched = 1;
971 return nr;
972}
973
765c4507
CL
974#ifndef CONFIG_NUMA
975
976#define drain_alien_cache(cachep, alien) do { } while (0)
977#define reap_alien(cachep, l3) do { } while (0)
978
979static inline struct array_cache **alloc_alien_cache(int node, int limit)
980{
981 return (struct array_cache **)BAD_ALIEN_MAGIC;
982}
983
984static inline void free_alien_cache(struct array_cache **ac_ptr)
985{
986}
987
988static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989{
990 return 0;
991}
992
993static inline void *alternate_node_alloc(struct kmem_cache *cachep,
994 gfp_t flags)
995{
996 return NULL;
997}
998
999static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1000 gfp_t flags, int nodeid)
1001{
1002 return NULL;
1003}
1004
1005#else /* CONFIG_NUMA */
1006
343e0d7a 1007static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1008static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1009
5295a74c 1010static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1011{
1012 struct array_cache **ac_ptr;
b28a02de 1013 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
1014 int i;
1015
1016 if (limit > 1)
1017 limit = 12;
1018 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1019 if (ac_ptr) {
1020 for_each_node(i) {
1021 if (i == node || !node_online(i)) {
1022 ac_ptr[i] = NULL;
1023 continue;
1024 }
1025 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1026 if (!ac_ptr[i]) {
b28a02de 1027 for (i--; i <= 0; i--)
e498be7d
CL
1028 kfree(ac_ptr[i]);
1029 kfree(ac_ptr);
1030 return NULL;
1031 }
1032 }
1033 }
1034 return ac_ptr;
1035}
1036
5295a74c 1037static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1038{
1039 int i;
1040
1041 if (!ac_ptr)
1042 return;
e498be7d 1043 for_each_node(i)
b28a02de 1044 kfree(ac_ptr[i]);
e498be7d
CL
1045 kfree(ac_ptr);
1046}
1047
343e0d7a 1048static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1049 struct array_cache *ac, int node)
e498be7d
CL
1050{
1051 struct kmem_list3 *rl3 = cachep->nodelists[node];
1052
1053 if (ac->avail) {
1054 spin_lock(&rl3->list_lock);
e00946fe
CL
1055 /*
1056 * Stuff objects into the remote nodes shared array first.
1057 * That way we could avoid the overhead of putting the objects
1058 * into the free lists and getting them back later.
1059 */
693f7d36 1060 if (rl3->shared)
1061 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1062
ff69416e 1063 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1064 ac->avail = 0;
1065 spin_unlock(&rl3->list_lock);
1066 }
1067}
1068
8fce4d8e
CL
1069/*
1070 * Called from cache_reap() to regularly drain alien caches round robin.
1071 */
1072static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1073{
1074 int node = __get_cpu_var(reap_node);
1075
1076 if (l3->alien) {
1077 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1078
1079 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1080 __drain_alien_cache(cachep, ac, node);
1081 spin_unlock_irq(&ac->lock);
1082 }
1083 }
1084}
1085
a737b3e2
AM
1086static void drain_alien_cache(struct kmem_cache *cachep,
1087 struct array_cache **alien)
e498be7d 1088{
b28a02de 1089 int i = 0;
e498be7d
CL
1090 struct array_cache *ac;
1091 unsigned long flags;
1092
1093 for_each_online_node(i) {
4484ebf1 1094 ac = alien[i];
e498be7d
CL
1095 if (ac) {
1096 spin_lock_irqsave(&ac->lock, flags);
1097 __drain_alien_cache(cachep, ac, i);
1098 spin_unlock_irqrestore(&ac->lock, flags);
1099 }
1100 }
1101}
729bd0b7 1102
873623df 1103static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1104{
1105 struct slab *slabp = virt_to_slab(objp);
1106 int nodeid = slabp->nodeid;
1107 struct kmem_list3 *l3;
1108 struct array_cache *alien = NULL;
1ca4cb24
PE
1109 int node;
1110
1111 node = numa_node_id();
729bd0b7
PE
1112
1113 /*
1114 * Make sure we are not freeing a object from another node to the array
1115 * cache on this cpu.
1116 */
1ca4cb24 1117 if (likely(slabp->nodeid == node))
729bd0b7
PE
1118 return 0;
1119
1ca4cb24 1120 l3 = cachep->nodelists[node];
729bd0b7
PE
1121 STATS_INC_NODEFREES(cachep);
1122 if (l3->alien && l3->alien[nodeid]) {
1123 alien = l3->alien[nodeid];
873623df 1124 spin_lock(&alien->lock);
729bd0b7
PE
1125 if (unlikely(alien->avail == alien->limit)) {
1126 STATS_INC_ACOVERFLOW(cachep);
1127 __drain_alien_cache(cachep, alien, nodeid);
1128 }
1129 alien->entry[alien->avail++] = objp;
1130 spin_unlock(&alien->lock);
1131 } else {
1132 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1133 free_block(cachep, &objp, 1, nodeid);
1134 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1135 }
1136 return 1;
1137}
e498be7d
CL
1138#endif
1139
8c78f307 1140static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1141 unsigned long action, void *hcpu)
1da177e4
LT
1142{
1143 long cpu = (long)hcpu;
343e0d7a 1144 struct kmem_cache *cachep;
e498be7d
CL
1145 struct kmem_list3 *l3 = NULL;
1146 int node = cpu_to_node(cpu);
1147 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1148
1149 switch (action) {
1150 case CPU_UP_PREPARE:
fc0abb14 1151 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1152 /*
1153 * We need to do this right in the beginning since
e498be7d
CL
1154 * alloc_arraycache's are going to use this list.
1155 * kmalloc_node allows us to add the slab to the right
1156 * kmem_list3 and not this cpu's kmem_list3
1157 */
1158
1da177e4 1159 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1160 /*
1161 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1162 * begin anything. Make sure some other cpu on this
1163 * node has not already allocated this
1164 */
1165 if (!cachep->nodelists[node]) {
a737b3e2
AM
1166 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1167 if (!l3)
e498be7d
CL
1168 goto bad;
1169 kmem_list3_init(l3);
1170 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1171 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1172
4484ebf1
RT
1173 /*
1174 * The l3s don't come and go as CPUs come and
1175 * go. cache_chain_mutex is sufficient
1176 * protection here.
1177 */
e498be7d
CL
1178 cachep->nodelists[node] = l3;
1179 }
1da177e4 1180
e498be7d
CL
1181 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1182 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1183 (1 + nr_cpus_node(node)) *
1184 cachep->batchcount + cachep->num;
e498be7d
CL
1185 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1186 }
1187
a737b3e2
AM
1188 /*
1189 * Now we can go ahead with allocating the shared arrays and
1190 * array caches
1191 */
e498be7d 1192 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1193 struct array_cache *nc;
4484ebf1
RT
1194 struct array_cache *shared;
1195 struct array_cache **alien;
cd105df4 1196
e498be7d 1197 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1198 cachep->batchcount);
1da177e4
LT
1199 if (!nc)
1200 goto bad;
4484ebf1
RT
1201 shared = alloc_arraycache(node,
1202 cachep->shared * cachep->batchcount,
1203 0xbaadf00d);
1204 if (!shared)
1205 goto bad;
7a21ef6f 1206
4484ebf1
RT
1207 alien = alloc_alien_cache(node, cachep->limit);
1208 if (!alien)
1209 goto bad;
1da177e4 1210 cachep->array[cpu] = nc;
e498be7d
CL
1211 l3 = cachep->nodelists[node];
1212 BUG_ON(!l3);
e498be7d 1213
4484ebf1
RT
1214 spin_lock_irq(&l3->list_lock);
1215 if (!l3->shared) {
1216 /*
1217 * We are serialised from CPU_DEAD or
1218 * CPU_UP_CANCELLED by the cpucontrol lock
1219 */
1220 l3->shared = shared;
1221 shared = NULL;
e498be7d 1222 }
4484ebf1
RT
1223#ifdef CONFIG_NUMA
1224 if (!l3->alien) {
1225 l3->alien = alien;
1226 alien = NULL;
1227 }
1228#endif
1229 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1230 kfree(shared);
1231 free_alien_cache(alien);
1da177e4 1232 }
fc0abb14 1233 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1234 break;
1235 case CPU_ONLINE:
1236 start_cpu_timer(cpu);
1237 break;
1238#ifdef CONFIG_HOTPLUG_CPU
1239 case CPU_DEAD:
4484ebf1
RT
1240 /*
1241 * Even if all the cpus of a node are down, we don't free the
1242 * kmem_list3 of any cache. This to avoid a race between
1243 * cpu_down, and a kmalloc allocation from another cpu for
1244 * memory from the node of the cpu going down. The list3
1245 * structure is usually allocated from kmem_cache_create() and
1246 * gets destroyed at kmem_cache_destroy().
1247 */
1da177e4
LT
1248 /* fall thru */
1249 case CPU_UP_CANCELED:
fc0abb14 1250 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1251 list_for_each_entry(cachep, &cache_chain, next) {
1252 struct array_cache *nc;
4484ebf1
RT
1253 struct array_cache *shared;
1254 struct array_cache **alien;
e498be7d 1255 cpumask_t mask;
1da177e4 1256
e498be7d 1257 mask = node_to_cpumask(node);
1da177e4
LT
1258 /* cpu is dead; no one can alloc from it. */
1259 nc = cachep->array[cpu];
1260 cachep->array[cpu] = NULL;
e498be7d
CL
1261 l3 = cachep->nodelists[node];
1262
1263 if (!l3)
4484ebf1 1264 goto free_array_cache;
e498be7d 1265
ca3b9b91 1266 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1267
1268 /* Free limit for this kmem_list3 */
1269 l3->free_limit -= cachep->batchcount;
1270 if (nc)
ff69416e 1271 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1272
1273 if (!cpus_empty(mask)) {
ca3b9b91 1274 spin_unlock_irq(&l3->list_lock);
4484ebf1 1275 goto free_array_cache;
b28a02de 1276 }
e498be7d 1277
4484ebf1
RT
1278 shared = l3->shared;
1279 if (shared) {
e498be7d 1280 free_block(cachep, l3->shared->entry,
b28a02de 1281 l3->shared->avail, node);
e498be7d
CL
1282 l3->shared = NULL;
1283 }
e498be7d 1284
4484ebf1
RT
1285 alien = l3->alien;
1286 l3->alien = NULL;
1287
1288 spin_unlock_irq(&l3->list_lock);
1289
1290 kfree(shared);
1291 if (alien) {
1292 drain_alien_cache(cachep, alien);
1293 free_alien_cache(alien);
e498be7d 1294 }
4484ebf1 1295free_array_cache:
1da177e4
LT
1296 kfree(nc);
1297 }
4484ebf1
RT
1298 /*
1299 * In the previous loop, all the objects were freed to
1300 * the respective cache's slabs, now we can go ahead and
1301 * shrink each nodelist to its limit.
1302 */
1303 list_for_each_entry(cachep, &cache_chain, next) {
1304 l3 = cachep->nodelists[node];
1305 if (!l3)
1306 continue;
ed11d9eb 1307 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1308 }
fc0abb14 1309 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1310 break;
1311#endif
1312 }
1313 return NOTIFY_OK;
a737b3e2 1314bad:
fc0abb14 1315 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1316 return NOTIFY_BAD;
1317}
1318
74b85f37
CS
1319static struct notifier_block __cpuinitdata cpucache_notifier = {
1320 &cpuup_callback, NULL, 0
1321};
1da177e4 1322
e498be7d
CL
1323/*
1324 * swap the static kmem_list3 with kmalloced memory
1325 */
a737b3e2
AM
1326static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1327 int nodeid)
e498be7d
CL
1328{
1329 struct kmem_list3 *ptr;
1330
1331 BUG_ON(cachep->nodelists[nodeid] != list);
1332 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1333 BUG_ON(!ptr);
1334
1335 local_irq_disable();
1336 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1337 /*
1338 * Do not assume that spinlocks can be initialized via memcpy:
1339 */
1340 spin_lock_init(&ptr->list_lock);
1341
e498be7d
CL
1342 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1343 cachep->nodelists[nodeid] = ptr;
1344 local_irq_enable();
1345}
1346
a737b3e2
AM
1347/*
1348 * Initialisation. Called after the page allocator have been initialised and
1349 * before smp_init().
1da177e4
LT
1350 */
1351void __init kmem_cache_init(void)
1352{
1353 size_t left_over;
1354 struct cache_sizes *sizes;
1355 struct cache_names *names;
e498be7d 1356 int i;
07ed76b2 1357 int order;
1ca4cb24 1358 int node;
e498be7d
CL
1359
1360 for (i = 0; i < NUM_INIT_LISTS; i++) {
1361 kmem_list3_init(&initkmem_list3[i]);
1362 if (i < MAX_NUMNODES)
1363 cache_cache.nodelists[i] = NULL;
1364 }
1da177e4
LT
1365
1366 /*
1367 * Fragmentation resistance on low memory - only use bigger
1368 * page orders on machines with more than 32MB of memory.
1369 */
1370 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1371 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1372
1da177e4
LT
1373 /* Bootstrap is tricky, because several objects are allocated
1374 * from caches that do not exist yet:
a737b3e2
AM
1375 * 1) initialize the cache_cache cache: it contains the struct
1376 * kmem_cache structures of all caches, except cache_cache itself:
1377 * cache_cache is statically allocated.
e498be7d
CL
1378 * Initially an __init data area is used for the head array and the
1379 * kmem_list3 structures, it's replaced with a kmalloc allocated
1380 * array at the end of the bootstrap.
1da177e4 1381 * 2) Create the first kmalloc cache.
343e0d7a 1382 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1383 * An __init data area is used for the head array.
1384 * 3) Create the remaining kmalloc caches, with minimally sized
1385 * head arrays.
1da177e4
LT
1386 * 4) Replace the __init data head arrays for cache_cache and the first
1387 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1388 * 5) Replace the __init data for kmem_list3 for cache_cache and
1389 * the other cache's with kmalloc allocated memory.
1390 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1391 */
1392
1ca4cb24
PE
1393 node = numa_node_id();
1394
1da177e4 1395 /* 1) create the cache_cache */
1da177e4
LT
1396 INIT_LIST_HEAD(&cache_chain);
1397 list_add(&cache_cache.next, &cache_chain);
1398 cache_cache.colour_off = cache_line_size();
1399 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1400 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1401
a737b3e2
AM
1402 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1403 cache_line_size());
1da177e4 1404
07ed76b2
JS
1405 for (order = 0; order < MAX_ORDER; order++) {
1406 cache_estimate(order, cache_cache.buffer_size,
1407 cache_line_size(), 0, &left_over, &cache_cache.num);
1408 if (cache_cache.num)
1409 break;
1410 }
40094fa6 1411 BUG_ON(!cache_cache.num);
07ed76b2 1412 cache_cache.gfporder = order;
b28a02de 1413 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1414 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1415 sizeof(struct slab), cache_line_size());
1da177e4
LT
1416
1417 /* 2+3) create the kmalloc caches */
1418 sizes = malloc_sizes;
1419 names = cache_names;
1420
a737b3e2
AM
1421 /*
1422 * Initialize the caches that provide memory for the array cache and the
1423 * kmem_list3 structures first. Without this, further allocations will
1424 * bug.
e498be7d
CL
1425 */
1426
1427 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1428 sizes[INDEX_AC].cs_size,
1429 ARCH_KMALLOC_MINALIGN,
1430 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1431 NULL, NULL);
e498be7d 1432
a737b3e2 1433 if (INDEX_AC != INDEX_L3) {
e498be7d 1434 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1435 kmem_cache_create(names[INDEX_L3].name,
1436 sizes[INDEX_L3].cs_size,
1437 ARCH_KMALLOC_MINALIGN,
1438 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1439 NULL, NULL);
1440 }
e498be7d 1441
e0a42726
IM
1442 slab_early_init = 0;
1443
1da177e4 1444 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1445 /*
1446 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1447 * This should be particularly beneficial on SMP boxes, as it
1448 * eliminates "false sharing".
1449 * Note for systems short on memory removing the alignment will
e498be7d
CL
1450 * allow tighter packing of the smaller caches.
1451 */
a737b3e2 1452 if (!sizes->cs_cachep) {
e498be7d 1453 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1454 sizes->cs_size,
1455 ARCH_KMALLOC_MINALIGN,
1456 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1457 NULL, NULL);
1458 }
1da177e4 1459
1da177e4 1460 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1461 sizes->cs_size,
1462 ARCH_KMALLOC_MINALIGN,
1463 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1464 SLAB_PANIC,
1465 NULL, NULL);
1da177e4
LT
1466 sizes++;
1467 names++;
1468 }
1469 /* 4) Replace the bootstrap head arrays */
1470 {
2b2d5493 1471 struct array_cache *ptr;
e498be7d 1472
1da177e4 1473 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1474
1da177e4 1475 local_irq_disable();
9a2dba4b
PE
1476 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1477 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1478 sizeof(struct arraycache_init));
2b2d5493
IM
1479 /*
1480 * Do not assume that spinlocks can be initialized via memcpy:
1481 */
1482 spin_lock_init(&ptr->lock);
1483
1da177e4
LT
1484 cache_cache.array[smp_processor_id()] = ptr;
1485 local_irq_enable();
e498be7d 1486
1da177e4 1487 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1488
1da177e4 1489 local_irq_disable();
9a2dba4b 1490 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1491 != &initarray_generic.cache);
9a2dba4b 1492 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1493 sizeof(struct arraycache_init));
2b2d5493
IM
1494 /*
1495 * Do not assume that spinlocks can be initialized via memcpy:
1496 */
1497 spin_lock_init(&ptr->lock);
1498
e498be7d 1499 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1500 ptr;
1da177e4
LT
1501 local_irq_enable();
1502 }
e498be7d
CL
1503 /* 5) Replace the bootstrap kmem_list3's */
1504 {
1ca4cb24
PE
1505 int nid;
1506
e498be7d 1507 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1508 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1509
1ca4cb24 1510 for_each_online_node(nid) {
e498be7d 1511 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1512 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1513
1514 if (INDEX_AC != INDEX_L3) {
1515 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1516 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1517 }
1518 }
1519 }
1da177e4 1520
e498be7d 1521 /* 6) resize the head arrays to their final sizes */
1da177e4 1522 {
343e0d7a 1523 struct kmem_cache *cachep;
fc0abb14 1524 mutex_lock(&cache_chain_mutex);
1da177e4 1525 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1526 if (enable_cpucache(cachep))
1527 BUG();
fc0abb14 1528 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1529 }
1530
056c6241
RT
1531 /* Annotate slab for lockdep -- annotate the malloc caches */
1532 init_lock_keys();
1533
1534
1da177e4
LT
1535 /* Done! */
1536 g_cpucache_up = FULL;
1537
a737b3e2
AM
1538 /*
1539 * Register a cpu startup notifier callback that initializes
1540 * cpu_cache_get for all new cpus
1da177e4
LT
1541 */
1542 register_cpu_notifier(&cpucache_notifier);
1da177e4 1543
a737b3e2
AM
1544 /*
1545 * The reap timers are started later, with a module init call: That part
1546 * of the kernel is not yet operational.
1da177e4
LT
1547 */
1548}
1549
1550static int __init cpucache_init(void)
1551{
1552 int cpu;
1553
a737b3e2
AM
1554 /*
1555 * Register the timers that return unneeded pages to the page allocator
1da177e4 1556 */
e498be7d 1557 for_each_online_cpu(cpu)
a737b3e2 1558 start_cpu_timer(cpu);
1da177e4
LT
1559 return 0;
1560}
1da177e4
LT
1561__initcall(cpucache_init);
1562
1563/*
1564 * Interface to system's page allocator. No need to hold the cache-lock.
1565 *
1566 * If we requested dmaable memory, we will get it. Even if we
1567 * did not request dmaable memory, we might get it, but that
1568 * would be relatively rare and ignorable.
1569 */
343e0d7a 1570static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1571{
1572 struct page *page;
e1b6aa6f 1573 int nr_pages;
1da177e4
LT
1574 int i;
1575
d6fef9da 1576#ifndef CONFIG_MMU
e1b6aa6f
CH
1577 /*
1578 * Nommu uses slab's for process anonymous memory allocations, and thus
1579 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1580 */
e1b6aa6f 1581 flags |= __GFP_COMP;
d6fef9da 1582#endif
765c4507
CL
1583
1584 /*
1585 * Under NUMA we want memory on the indicated node. We will handle
1586 * the needed fallback ourselves since we want to serve from our
1587 * per node object lists first for other nodes.
1588 */
1589 flags |= cachep->gfpflags | GFP_THISNODE;
e1b6aa6f
CH
1590
1591 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1592 if (!page)
1593 return NULL;
1da177e4 1594
e1b6aa6f 1595 nr_pages = (1 << cachep->gfporder);
1da177e4 1596 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1597 add_zone_page_state(page_zone(page),
1598 NR_SLAB_RECLAIMABLE, nr_pages);
1599 else
1600 add_zone_page_state(page_zone(page),
1601 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1602 for (i = 0; i < nr_pages; i++)
1603 __SetPageSlab(page + i);
1604 return page_address(page);
1da177e4
LT
1605}
1606
1607/*
1608 * Interface to system's page release.
1609 */
343e0d7a 1610static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1611{
b28a02de 1612 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1613 struct page *page = virt_to_page(addr);
1614 const unsigned long nr_freed = i;
1615
972d1a7b
CL
1616 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1617 sub_zone_page_state(page_zone(page),
1618 NR_SLAB_RECLAIMABLE, nr_freed);
1619 else
1620 sub_zone_page_state(page_zone(page),
1621 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1622 while (i--) {
f205b2fe
NP
1623 BUG_ON(!PageSlab(page));
1624 __ClearPageSlab(page);
1da177e4
LT
1625 page++;
1626 }
1da177e4
LT
1627 if (current->reclaim_state)
1628 current->reclaim_state->reclaimed_slab += nr_freed;
1629 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1630}
1631
1632static void kmem_rcu_free(struct rcu_head *head)
1633{
b28a02de 1634 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1635 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1636
1637 kmem_freepages(cachep, slab_rcu->addr);
1638 if (OFF_SLAB(cachep))
1639 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1640}
1641
1642#if DEBUG
1643
1644#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1645static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1646 unsigned long caller)
1da177e4 1647{
3dafccf2 1648 int size = obj_size(cachep);
1da177e4 1649
3dafccf2 1650 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1651
b28a02de 1652 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1653 return;
1654
b28a02de
PE
1655 *addr++ = 0x12345678;
1656 *addr++ = caller;
1657 *addr++ = smp_processor_id();
1658 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1659 {
1660 unsigned long *sptr = &caller;
1661 unsigned long svalue;
1662
1663 while (!kstack_end(sptr)) {
1664 svalue = *sptr++;
1665 if (kernel_text_address(svalue)) {
b28a02de 1666 *addr++ = svalue;
1da177e4
LT
1667 size -= sizeof(unsigned long);
1668 if (size <= sizeof(unsigned long))
1669 break;
1670 }
1671 }
1672
1673 }
b28a02de 1674 *addr++ = 0x87654321;
1da177e4
LT
1675}
1676#endif
1677
343e0d7a 1678static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1679{
3dafccf2
MS
1680 int size = obj_size(cachep);
1681 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1682
1683 memset(addr, val, size);
b28a02de 1684 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1685}
1686
1687static void dump_line(char *data, int offset, int limit)
1688{
1689 int i;
aa83aa40
DJ
1690 unsigned char error = 0;
1691 int bad_count = 0;
1692
1da177e4 1693 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1694 for (i = 0; i < limit; i++) {
1695 if (data[offset + i] != POISON_FREE) {
1696 error = data[offset + i];
1697 bad_count++;
1698 }
b28a02de 1699 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1700 }
1da177e4 1701 printk("\n");
aa83aa40
DJ
1702
1703 if (bad_count == 1) {
1704 error ^= POISON_FREE;
1705 if (!(error & (error - 1))) {
1706 printk(KERN_ERR "Single bit error detected. Probably "
1707 "bad RAM.\n");
1708#ifdef CONFIG_X86
1709 printk(KERN_ERR "Run memtest86+ or a similar memory "
1710 "test tool.\n");
1711#else
1712 printk(KERN_ERR "Run a memory test tool.\n");
1713#endif
1714 }
1715 }
1da177e4
LT
1716}
1717#endif
1718
1719#if DEBUG
1720
343e0d7a 1721static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1722{
1723 int i, size;
1724 char *realobj;
1725
1726 if (cachep->flags & SLAB_RED_ZONE) {
1727 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1728 *dbg_redzone1(cachep, objp),
1729 *dbg_redzone2(cachep, objp));
1da177e4
LT
1730 }
1731
1732 if (cachep->flags & SLAB_STORE_USER) {
1733 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1734 *dbg_userword(cachep, objp));
1da177e4 1735 print_symbol("(%s)",
a737b3e2 1736 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1737 printk("\n");
1738 }
3dafccf2
MS
1739 realobj = (char *)objp + obj_offset(cachep);
1740 size = obj_size(cachep);
b28a02de 1741 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1742 int limit;
1743 limit = 16;
b28a02de
PE
1744 if (i + limit > size)
1745 limit = size - i;
1da177e4
LT
1746 dump_line(realobj, i, limit);
1747 }
1748}
1749
343e0d7a 1750static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1751{
1752 char *realobj;
1753 int size, i;
1754 int lines = 0;
1755
3dafccf2
MS
1756 realobj = (char *)objp + obj_offset(cachep);
1757 size = obj_size(cachep);
1da177e4 1758
b28a02de 1759 for (i = 0; i < size; i++) {
1da177e4 1760 char exp = POISON_FREE;
b28a02de 1761 if (i == size - 1)
1da177e4
LT
1762 exp = POISON_END;
1763 if (realobj[i] != exp) {
1764 int limit;
1765 /* Mismatch ! */
1766 /* Print header */
1767 if (lines == 0) {
b28a02de 1768 printk(KERN_ERR
a737b3e2
AM
1769 "Slab corruption: start=%p, len=%d\n",
1770 realobj, size);
1da177e4
LT
1771 print_objinfo(cachep, objp, 0);
1772 }
1773 /* Hexdump the affected line */
b28a02de 1774 i = (i / 16) * 16;
1da177e4 1775 limit = 16;
b28a02de
PE
1776 if (i + limit > size)
1777 limit = size - i;
1da177e4
LT
1778 dump_line(realobj, i, limit);
1779 i += 16;
1780 lines++;
1781 /* Limit to 5 lines */
1782 if (lines > 5)
1783 break;
1784 }
1785 }
1786 if (lines != 0) {
1787 /* Print some data about the neighboring objects, if they
1788 * exist:
1789 */
6ed5eb22 1790 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1791 unsigned int objnr;
1da177e4 1792
8fea4e96 1793 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1794 if (objnr) {
8fea4e96 1795 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1796 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1797 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1798 realobj, size);
1da177e4
LT
1799 print_objinfo(cachep, objp, 2);
1800 }
b28a02de 1801 if (objnr + 1 < cachep->num) {
8fea4e96 1802 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1803 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1804 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1805 realobj, size);
1da177e4
LT
1806 print_objinfo(cachep, objp, 2);
1807 }
1808 }
1809}
1810#endif
1811
12dd36fa
MD
1812#if DEBUG
1813/**
911851e6
RD
1814 * slab_destroy_objs - destroy a slab and its objects
1815 * @cachep: cache pointer being destroyed
1816 * @slabp: slab pointer being destroyed
1817 *
1818 * Call the registered destructor for each object in a slab that is being
1819 * destroyed.
1da177e4 1820 */
343e0d7a 1821static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1822{
1da177e4
LT
1823 int i;
1824 for (i = 0; i < cachep->num; i++) {
8fea4e96 1825 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1826
1827 if (cachep->flags & SLAB_POISON) {
1828#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1829 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1830 OFF_SLAB(cachep))
b28a02de 1831 kernel_map_pages(virt_to_page(objp),
a737b3e2 1832 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1833 else
1834 check_poison_obj(cachep, objp);
1835#else
1836 check_poison_obj(cachep, objp);
1837#endif
1838 }
1839 if (cachep->flags & SLAB_RED_ZONE) {
1840 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1841 slab_error(cachep, "start of a freed object "
b28a02de 1842 "was overwritten");
1da177e4
LT
1843 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1844 slab_error(cachep, "end of a freed object "
b28a02de 1845 "was overwritten");
1da177e4
LT
1846 }
1847 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1848 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1849 }
12dd36fa 1850}
1da177e4 1851#else
343e0d7a 1852static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1853{
1da177e4
LT
1854 if (cachep->dtor) {
1855 int i;
1856 for (i = 0; i < cachep->num; i++) {
8fea4e96 1857 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1858 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1859 }
1860 }
12dd36fa 1861}
1da177e4
LT
1862#endif
1863
911851e6
RD
1864/**
1865 * slab_destroy - destroy and release all objects in a slab
1866 * @cachep: cache pointer being destroyed
1867 * @slabp: slab pointer being destroyed
1868 *
12dd36fa 1869 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1870 * Before calling the slab must have been unlinked from the cache. The
1871 * cache-lock is not held/needed.
12dd36fa 1872 */
343e0d7a 1873static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1874{
1875 void *addr = slabp->s_mem - slabp->colouroff;
1876
1877 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1878 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1879 struct slab_rcu *slab_rcu;
1880
b28a02de 1881 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1882 slab_rcu->cachep = cachep;
1883 slab_rcu->addr = addr;
1884 call_rcu(&slab_rcu->head, kmem_rcu_free);
1885 } else {
1886 kmem_freepages(cachep, addr);
873623df
IM
1887 if (OFF_SLAB(cachep))
1888 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1889 }
1890}
1891
a737b3e2
AM
1892/*
1893 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1894 * size of kmem_list3.
1895 */
343e0d7a 1896static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1897{
1898 int node;
1899
1900 for_each_online_node(node) {
b28a02de 1901 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1902 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1903 REAPTIMEOUT_LIST3 +
1904 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1905 }
1906}
1907
117f6eb1
CL
1908static void __kmem_cache_destroy(struct kmem_cache *cachep)
1909{
1910 int i;
1911 struct kmem_list3 *l3;
1912
1913 for_each_online_cpu(i)
1914 kfree(cachep->array[i]);
1915
1916 /* NUMA: free the list3 structures */
1917 for_each_online_node(i) {
1918 l3 = cachep->nodelists[i];
1919 if (l3) {
1920 kfree(l3->shared);
1921 free_alien_cache(l3->alien);
1922 kfree(l3);
1923 }
1924 }
1925 kmem_cache_free(&cache_cache, cachep);
1926}
1927
1928
4d268eba 1929/**
a70773dd
RD
1930 * calculate_slab_order - calculate size (page order) of slabs
1931 * @cachep: pointer to the cache that is being created
1932 * @size: size of objects to be created in this cache.
1933 * @align: required alignment for the objects.
1934 * @flags: slab allocation flags
1935 *
1936 * Also calculates the number of objects per slab.
4d268eba
PE
1937 *
1938 * This could be made much more intelligent. For now, try to avoid using
1939 * high order pages for slabs. When the gfp() functions are more friendly
1940 * towards high-order requests, this should be changed.
1941 */
a737b3e2 1942static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1943 size_t size, size_t align, unsigned long flags)
4d268eba 1944{
b1ab41c4 1945 unsigned long offslab_limit;
4d268eba 1946 size_t left_over = 0;
9888e6fa 1947 int gfporder;
4d268eba 1948
a737b3e2 1949 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1950 unsigned int num;
1951 size_t remainder;
1952
9888e6fa 1953 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1954 if (!num)
1955 continue;
9888e6fa 1956
b1ab41c4
IM
1957 if (flags & CFLGS_OFF_SLAB) {
1958 /*
1959 * Max number of objs-per-slab for caches which
1960 * use off-slab slabs. Needed to avoid a possible
1961 * looping condition in cache_grow().
1962 */
1963 offslab_limit = size - sizeof(struct slab);
1964 offslab_limit /= sizeof(kmem_bufctl_t);
1965
1966 if (num > offslab_limit)
1967 break;
1968 }
4d268eba 1969
9888e6fa 1970 /* Found something acceptable - save it away */
4d268eba 1971 cachep->num = num;
9888e6fa 1972 cachep->gfporder = gfporder;
4d268eba
PE
1973 left_over = remainder;
1974
f78bb8ad
LT
1975 /*
1976 * A VFS-reclaimable slab tends to have most allocations
1977 * as GFP_NOFS and we really don't want to have to be allocating
1978 * higher-order pages when we are unable to shrink dcache.
1979 */
1980 if (flags & SLAB_RECLAIM_ACCOUNT)
1981 break;
1982
4d268eba
PE
1983 /*
1984 * Large number of objects is good, but very large slabs are
1985 * currently bad for the gfp()s.
1986 */
9888e6fa 1987 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1988 break;
1989
9888e6fa
LT
1990 /*
1991 * Acceptable internal fragmentation?
1992 */
a737b3e2 1993 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1994 break;
1995 }
1996 return left_over;
1997}
1998
2ed3a4ef 1999static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2000{
2ed3a4ef
CL
2001 if (g_cpucache_up == FULL)
2002 return enable_cpucache(cachep);
2003
f30cf7d1
PE
2004 if (g_cpucache_up == NONE) {
2005 /*
2006 * Note: the first kmem_cache_create must create the cache
2007 * that's used by kmalloc(24), otherwise the creation of
2008 * further caches will BUG().
2009 */
2010 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2011
2012 /*
2013 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2014 * the first cache, then we need to set up all its list3s,
2015 * otherwise the creation of further caches will BUG().
2016 */
2017 set_up_list3s(cachep, SIZE_AC);
2018 if (INDEX_AC == INDEX_L3)
2019 g_cpucache_up = PARTIAL_L3;
2020 else
2021 g_cpucache_up = PARTIAL_AC;
2022 } else {
2023 cachep->array[smp_processor_id()] =
2024 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2025
2026 if (g_cpucache_up == PARTIAL_AC) {
2027 set_up_list3s(cachep, SIZE_L3);
2028 g_cpucache_up = PARTIAL_L3;
2029 } else {
2030 int node;
2031 for_each_online_node(node) {
2032 cachep->nodelists[node] =
2033 kmalloc_node(sizeof(struct kmem_list3),
2034 GFP_KERNEL, node);
2035 BUG_ON(!cachep->nodelists[node]);
2036 kmem_list3_init(cachep->nodelists[node]);
2037 }
2038 }
2039 }
2040 cachep->nodelists[numa_node_id()]->next_reap =
2041 jiffies + REAPTIMEOUT_LIST3 +
2042 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2043
2044 cpu_cache_get(cachep)->avail = 0;
2045 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2046 cpu_cache_get(cachep)->batchcount = 1;
2047 cpu_cache_get(cachep)->touched = 0;
2048 cachep->batchcount = 1;
2049 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2050 return 0;
f30cf7d1
PE
2051}
2052
1da177e4
LT
2053/**
2054 * kmem_cache_create - Create a cache.
2055 * @name: A string which is used in /proc/slabinfo to identify this cache.
2056 * @size: The size of objects to be created in this cache.
2057 * @align: The required alignment for the objects.
2058 * @flags: SLAB flags
2059 * @ctor: A constructor for the objects.
2060 * @dtor: A destructor for the objects.
2061 *
2062 * Returns a ptr to the cache on success, NULL on failure.
2063 * Cannot be called within a int, but can be interrupted.
2064 * The @ctor is run when new pages are allocated by the cache
2065 * and the @dtor is run before the pages are handed back.
2066 *
2067 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2068 * the module calling this has to destroy the cache before getting unloaded.
2069 *
1da177e4
LT
2070 * The flags are
2071 *
2072 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2073 * to catch references to uninitialised memory.
2074 *
2075 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2076 * for buffer overruns.
2077 *
1da177e4
LT
2078 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2079 * cacheline. This can be beneficial if you're counting cycles as closely
2080 * as davem.
2081 */
343e0d7a 2082struct kmem_cache *
1da177e4 2083kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2084 unsigned long flags,
2085 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2086 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2087{
2088 size_t left_over, slab_size, ralign;
7a7c381d 2089 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2090
2091 /*
2092 * Sanity checks... these are all serious usage bugs.
2093 */
a737b3e2 2094 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2095 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2096 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2097 name);
b28a02de
PE
2098 BUG();
2099 }
1da177e4 2100
f0188f47
RT
2101 /*
2102 * Prevent CPUs from coming and going.
2103 * lock_cpu_hotplug() nests outside cache_chain_mutex
2104 */
2105 lock_cpu_hotplug();
2106
fc0abb14 2107 mutex_lock(&cache_chain_mutex);
4f12bb4f 2108
7a7c381d 2109 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2110 mm_segment_t old_fs = get_fs();
2111 char tmp;
2112 int res;
2113
2114 /*
2115 * This happens when the module gets unloaded and doesn't
2116 * destroy its slab cache and no-one else reuses the vmalloc
2117 * area of the module. Print a warning.
2118 */
2119 set_fs(KERNEL_DS);
2120 res = __get_user(tmp, pc->name);
2121 set_fs(old_fs);
2122 if (res) {
2123 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2124 pc->buffer_size);
4f12bb4f
AM
2125 continue;
2126 }
2127
b28a02de 2128 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2129 printk("kmem_cache_create: duplicate cache %s\n", name);
2130 dump_stack();
2131 goto oops;
2132 }
2133 }
2134
1da177e4
LT
2135#if DEBUG
2136 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2137 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2138 /* No constructor, but inital state check requested */
2139 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2140 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2141 flags &= ~SLAB_DEBUG_INITIAL;
2142 }
1da177e4
LT
2143#if FORCED_DEBUG
2144 /*
2145 * Enable redzoning and last user accounting, except for caches with
2146 * large objects, if the increased size would increase the object size
2147 * above the next power of two: caches with object sizes just above a
2148 * power of two have a significant amount of internal fragmentation.
2149 */
a737b3e2 2150 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2151 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2152 if (!(flags & SLAB_DESTROY_BY_RCU))
2153 flags |= SLAB_POISON;
2154#endif
2155 if (flags & SLAB_DESTROY_BY_RCU)
2156 BUG_ON(flags & SLAB_POISON);
2157#endif
2158 if (flags & SLAB_DESTROY_BY_RCU)
2159 BUG_ON(dtor);
2160
2161 /*
a737b3e2
AM
2162 * Always checks flags, a caller might be expecting debug support which
2163 * isn't available.
1da177e4 2164 */
40094fa6 2165 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2166
a737b3e2
AM
2167 /*
2168 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2169 * unaligned accesses for some archs when redzoning is used, and makes
2170 * sure any on-slab bufctl's are also correctly aligned.
2171 */
b28a02de
PE
2172 if (size & (BYTES_PER_WORD - 1)) {
2173 size += (BYTES_PER_WORD - 1);
2174 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2175 }
2176
a737b3e2
AM
2177 /* calculate the final buffer alignment: */
2178
1da177e4
LT
2179 /* 1) arch recommendation: can be overridden for debug */
2180 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2181 /*
2182 * Default alignment: as specified by the arch code. Except if
2183 * an object is really small, then squeeze multiple objects into
2184 * one cacheline.
1da177e4
LT
2185 */
2186 ralign = cache_line_size();
b28a02de 2187 while (size <= ralign / 2)
1da177e4
LT
2188 ralign /= 2;
2189 } else {
2190 ralign = BYTES_PER_WORD;
2191 }
ca5f9703
PE
2192
2193 /*
2194 * Redzoning and user store require word alignment. Note this will be
2195 * overridden by architecture or caller mandated alignment if either
2196 * is greater than BYTES_PER_WORD.
2197 */
2198 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2199 ralign = BYTES_PER_WORD;
2200
1da177e4
LT
2201 /* 2) arch mandated alignment: disables debug if necessary */
2202 if (ralign < ARCH_SLAB_MINALIGN) {
2203 ralign = ARCH_SLAB_MINALIGN;
2204 if (ralign > BYTES_PER_WORD)
b28a02de 2205 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2206 }
2207 /* 3) caller mandated alignment: disables debug if necessary */
2208 if (ralign < align) {
2209 ralign = align;
2210 if (ralign > BYTES_PER_WORD)
b28a02de 2211 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2212 }
a737b3e2 2213 /*
ca5f9703 2214 * 4) Store it.
1da177e4
LT
2215 */
2216 align = ralign;
2217
2218 /* Get cache's description obj. */
c5e3b83e 2219 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2220 if (!cachep)
4f12bb4f 2221 goto oops;
1da177e4
LT
2222
2223#if DEBUG
3dafccf2 2224 cachep->obj_size = size;
1da177e4 2225
ca5f9703
PE
2226 /*
2227 * Both debugging options require word-alignment which is calculated
2228 * into align above.
2229 */
1da177e4 2230 if (flags & SLAB_RED_ZONE) {
1da177e4 2231 /* add space for red zone words */
3dafccf2 2232 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2233 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2234 }
2235 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2236 /* user store requires one word storage behind the end of
2237 * the real object.
1da177e4 2238 */
1da177e4
LT
2239 size += BYTES_PER_WORD;
2240 }
2241#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2242 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2243 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2244 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2245 size = PAGE_SIZE;
2246 }
2247#endif
2248#endif
2249
e0a42726
IM
2250 /*
2251 * Determine if the slab management is 'on' or 'off' slab.
2252 * (bootstrapping cannot cope with offslab caches so don't do
2253 * it too early on.)
2254 */
2255 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2256 /*
2257 * Size is large, assume best to place the slab management obj
2258 * off-slab (should allow better packing of objs).
2259 */
2260 flags |= CFLGS_OFF_SLAB;
2261
2262 size = ALIGN(size, align);
2263
f78bb8ad 2264 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2265
2266 if (!cachep->num) {
2267 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2268 kmem_cache_free(&cache_cache, cachep);
2269 cachep = NULL;
4f12bb4f 2270 goto oops;
1da177e4 2271 }
b28a02de
PE
2272 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2273 + sizeof(struct slab), align);
1da177e4
LT
2274
2275 /*
2276 * If the slab has been placed off-slab, and we have enough space then
2277 * move it on-slab. This is at the expense of any extra colouring.
2278 */
2279 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2280 flags &= ~CFLGS_OFF_SLAB;
2281 left_over -= slab_size;
2282 }
2283
2284 if (flags & CFLGS_OFF_SLAB) {
2285 /* really off slab. No need for manual alignment */
b28a02de
PE
2286 slab_size =
2287 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2288 }
2289
2290 cachep->colour_off = cache_line_size();
2291 /* Offset must be a multiple of the alignment. */
2292 if (cachep->colour_off < align)
2293 cachep->colour_off = align;
b28a02de 2294 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2295 cachep->slab_size = slab_size;
2296 cachep->flags = flags;
2297 cachep->gfpflags = 0;
2298 if (flags & SLAB_CACHE_DMA)
2299 cachep->gfpflags |= GFP_DMA;
3dafccf2 2300 cachep->buffer_size = size;
1da177e4 2301
e5ac9c5a 2302 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2303 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2304 /*
2305 * This is a possibility for one of the malloc_sizes caches.
2306 * But since we go off slab only for object size greater than
2307 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2308 * this should not happen at all.
2309 * But leave a BUG_ON for some lucky dude.
2310 */
2311 BUG_ON(!cachep->slabp_cache);
2312 }
1da177e4
LT
2313 cachep->ctor = ctor;
2314 cachep->dtor = dtor;
2315 cachep->name = name;
2316
2ed3a4ef
CL
2317 if (setup_cpu_cache(cachep)) {
2318 __kmem_cache_destroy(cachep);
2319 cachep = NULL;
2320 goto oops;
2321 }
1da177e4 2322
1da177e4
LT
2323 /* cache setup completed, link it into the list */
2324 list_add(&cachep->next, &cache_chain);
a737b3e2 2325oops:
1da177e4
LT
2326 if (!cachep && (flags & SLAB_PANIC))
2327 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2328 name);
fc0abb14 2329 mutex_unlock(&cache_chain_mutex);
f0188f47 2330 unlock_cpu_hotplug();
1da177e4
LT
2331 return cachep;
2332}
2333EXPORT_SYMBOL(kmem_cache_create);
2334
2335#if DEBUG
2336static void check_irq_off(void)
2337{
2338 BUG_ON(!irqs_disabled());
2339}
2340
2341static void check_irq_on(void)
2342{
2343 BUG_ON(irqs_disabled());
2344}
2345
343e0d7a 2346static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2347{
2348#ifdef CONFIG_SMP
2349 check_irq_off();
e498be7d 2350 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2351#endif
2352}
e498be7d 2353
343e0d7a 2354static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2355{
2356#ifdef CONFIG_SMP
2357 check_irq_off();
2358 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2359#endif
2360}
2361
1da177e4
LT
2362#else
2363#define check_irq_off() do { } while(0)
2364#define check_irq_on() do { } while(0)
2365#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2366#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2367#endif
2368
aab2207c
CL
2369static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2370 struct array_cache *ac,
2371 int force, int node);
2372
1da177e4
LT
2373static void do_drain(void *arg)
2374{
a737b3e2 2375 struct kmem_cache *cachep = arg;
1da177e4 2376 struct array_cache *ac;
ff69416e 2377 int node = numa_node_id();
1da177e4
LT
2378
2379 check_irq_off();
9a2dba4b 2380 ac = cpu_cache_get(cachep);
ff69416e
CL
2381 spin_lock(&cachep->nodelists[node]->list_lock);
2382 free_block(cachep, ac->entry, ac->avail, node);
2383 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2384 ac->avail = 0;
2385}
2386
343e0d7a 2387static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2388{
e498be7d
CL
2389 struct kmem_list3 *l3;
2390 int node;
2391
a07fa394 2392 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2393 check_irq_on();
b28a02de 2394 for_each_online_node(node) {
e498be7d 2395 l3 = cachep->nodelists[node];
a4523a8b
RD
2396 if (l3 && l3->alien)
2397 drain_alien_cache(cachep, l3->alien);
2398 }
2399
2400 for_each_online_node(node) {
2401 l3 = cachep->nodelists[node];
2402 if (l3)
aab2207c 2403 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2404 }
1da177e4
LT
2405}
2406
ed11d9eb
CL
2407/*
2408 * Remove slabs from the list of free slabs.
2409 * Specify the number of slabs to drain in tofree.
2410 *
2411 * Returns the actual number of slabs released.
2412 */
2413static int drain_freelist(struct kmem_cache *cache,
2414 struct kmem_list3 *l3, int tofree)
1da177e4 2415{
ed11d9eb
CL
2416 struct list_head *p;
2417 int nr_freed;
1da177e4 2418 struct slab *slabp;
1da177e4 2419
ed11d9eb
CL
2420 nr_freed = 0;
2421 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2422
ed11d9eb 2423 spin_lock_irq(&l3->list_lock);
e498be7d 2424 p = l3->slabs_free.prev;
ed11d9eb
CL
2425 if (p == &l3->slabs_free) {
2426 spin_unlock_irq(&l3->list_lock);
2427 goto out;
2428 }
1da177e4 2429
ed11d9eb 2430 slabp = list_entry(p, struct slab, list);
1da177e4 2431#if DEBUG
40094fa6 2432 BUG_ON(slabp->inuse);
1da177e4
LT
2433#endif
2434 list_del(&slabp->list);
ed11d9eb
CL
2435 /*
2436 * Safe to drop the lock. The slab is no longer linked
2437 * to the cache.
2438 */
2439 l3->free_objects -= cache->num;
e498be7d 2440 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2441 slab_destroy(cache, slabp);
2442 nr_freed++;
1da177e4 2443 }
ed11d9eb
CL
2444out:
2445 return nr_freed;
1da177e4
LT
2446}
2447
343e0d7a 2448static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2449{
2450 int ret = 0, i = 0;
2451 struct kmem_list3 *l3;
2452
2453 drain_cpu_caches(cachep);
2454
2455 check_irq_on();
2456 for_each_online_node(i) {
2457 l3 = cachep->nodelists[i];
ed11d9eb
CL
2458 if (!l3)
2459 continue;
2460
2461 drain_freelist(cachep, l3, l3->free_objects);
2462
2463 ret += !list_empty(&l3->slabs_full) ||
2464 !list_empty(&l3->slabs_partial);
e498be7d
CL
2465 }
2466 return (ret ? 1 : 0);
2467}
2468
1da177e4
LT
2469/**
2470 * kmem_cache_shrink - Shrink a cache.
2471 * @cachep: The cache to shrink.
2472 *
2473 * Releases as many slabs as possible for a cache.
2474 * To help debugging, a zero exit status indicates all slabs were released.
2475 */
343e0d7a 2476int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2477{
40094fa6 2478 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2479
2480 return __cache_shrink(cachep);
2481}
2482EXPORT_SYMBOL(kmem_cache_shrink);
2483
2484/**
2485 * kmem_cache_destroy - delete a cache
2486 * @cachep: the cache to destroy
2487 *
343e0d7a 2488 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2489 *
2490 * It is expected this function will be called by a module when it is
2491 * unloaded. This will remove the cache completely, and avoid a duplicate
2492 * cache being allocated each time a module is loaded and unloaded, if the
2493 * module doesn't have persistent in-kernel storage across loads and unloads.
2494 *
2495 * The cache must be empty before calling this function.
2496 *
2497 * The caller must guarantee that noone will allocate memory from the cache
2498 * during the kmem_cache_destroy().
2499 */
133d205a 2500void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2501{
40094fa6 2502 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2503
2504 /* Don't let CPUs to come and go */
2505 lock_cpu_hotplug();
2506
2507 /* Find the cache in the chain of caches. */
fc0abb14 2508 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2509 /*
2510 * the chain is never empty, cache_cache is never destroyed
2511 */
2512 list_del(&cachep->next);
fc0abb14 2513 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2514
2515 if (__cache_shrink(cachep)) {
2516 slab_error(cachep, "Can't free all objects");
fc0abb14 2517 mutex_lock(&cache_chain_mutex);
b28a02de 2518 list_add(&cachep->next, &cache_chain);
fc0abb14 2519 mutex_unlock(&cache_chain_mutex);
1da177e4 2520 unlock_cpu_hotplug();
133d205a 2521 return;
1da177e4
LT
2522 }
2523
2524 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2525 synchronize_rcu();
1da177e4 2526
117f6eb1 2527 __kmem_cache_destroy(cachep);
1da177e4 2528 unlock_cpu_hotplug();
1da177e4
LT
2529}
2530EXPORT_SYMBOL(kmem_cache_destroy);
2531
e5ac9c5a
RT
2532/*
2533 * Get the memory for a slab management obj.
2534 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2535 * always come from malloc_sizes caches. The slab descriptor cannot
2536 * come from the same cache which is getting created because,
2537 * when we are searching for an appropriate cache for these
2538 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2539 * If we are creating a malloc_sizes cache here it would not be visible to
2540 * kmem_find_general_cachep till the initialization is complete.
2541 * Hence we cannot have slabp_cache same as the original cache.
2542 */
343e0d7a 2543static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2544 int colour_off, gfp_t local_flags,
2545 int nodeid)
1da177e4
LT
2546{
2547 struct slab *slabp;
b28a02de 2548
1da177e4
LT
2549 if (OFF_SLAB(cachep)) {
2550 /* Slab management obj is off-slab. */
5b74ada7
RT
2551 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2552 local_flags, nodeid);
1da177e4
LT
2553 if (!slabp)
2554 return NULL;
2555 } else {
b28a02de 2556 slabp = objp + colour_off;
1da177e4
LT
2557 colour_off += cachep->slab_size;
2558 }
2559 slabp->inuse = 0;
2560 slabp->colouroff = colour_off;
b28a02de 2561 slabp->s_mem = objp + colour_off;
5b74ada7 2562 slabp->nodeid = nodeid;
1da177e4
LT
2563 return slabp;
2564}
2565
2566static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2567{
b28a02de 2568 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2569}
2570
343e0d7a 2571static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2572 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2573{
2574 int i;
2575
2576 for (i = 0; i < cachep->num; i++) {
8fea4e96 2577 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2578#if DEBUG
2579 /* need to poison the objs? */
2580 if (cachep->flags & SLAB_POISON)
2581 poison_obj(cachep, objp, POISON_FREE);
2582 if (cachep->flags & SLAB_STORE_USER)
2583 *dbg_userword(cachep, objp) = NULL;
2584
2585 if (cachep->flags & SLAB_RED_ZONE) {
2586 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2587 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2588 }
2589 /*
a737b3e2
AM
2590 * Constructors are not allowed to allocate memory from the same
2591 * cache which they are a constructor for. Otherwise, deadlock.
2592 * They must also be threaded.
1da177e4
LT
2593 */
2594 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2595 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2596 ctor_flags);
1da177e4
LT
2597
2598 if (cachep->flags & SLAB_RED_ZONE) {
2599 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2600 slab_error(cachep, "constructor overwrote the"
b28a02de 2601 " end of an object");
1da177e4
LT
2602 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2603 slab_error(cachep, "constructor overwrote the"
b28a02de 2604 " start of an object");
1da177e4 2605 }
a737b3e2
AM
2606 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2607 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2608 kernel_map_pages(virt_to_page(objp),
3dafccf2 2609 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2610#else
2611 if (cachep->ctor)
2612 cachep->ctor(objp, cachep, ctor_flags);
2613#endif
b28a02de 2614 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2615 }
b28a02de 2616 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2617 slabp->free = 0;
2618}
2619
343e0d7a 2620static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2621{
a737b3e2
AM
2622 if (flags & SLAB_DMA)
2623 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2624 else
2625 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2626}
2627
a737b3e2
AM
2628static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2629 int nodeid)
78d382d7 2630{
8fea4e96 2631 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2632 kmem_bufctl_t next;
2633
2634 slabp->inuse++;
2635 next = slab_bufctl(slabp)[slabp->free];
2636#if DEBUG
2637 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2638 WARN_ON(slabp->nodeid != nodeid);
2639#endif
2640 slabp->free = next;
2641
2642 return objp;
2643}
2644
a737b3e2
AM
2645static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2646 void *objp, int nodeid)
78d382d7 2647{
8fea4e96 2648 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2649
2650#if DEBUG
2651 /* Verify that the slab belongs to the intended node */
2652 WARN_ON(slabp->nodeid != nodeid);
2653
871751e2 2654 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2655 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2656 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2657 BUG();
2658 }
2659#endif
2660 slab_bufctl(slabp)[objnr] = slabp->free;
2661 slabp->free = objnr;
2662 slabp->inuse--;
2663}
2664
4776874f
PE
2665/*
2666 * Map pages beginning at addr to the given cache and slab. This is required
2667 * for the slab allocator to be able to lookup the cache and slab of a
2668 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2669 */
2670static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2671 void *addr)
1da177e4 2672{
4776874f 2673 int nr_pages;
1da177e4
LT
2674 struct page *page;
2675
4776874f 2676 page = virt_to_page(addr);
84097518 2677
4776874f 2678 nr_pages = 1;
84097518 2679 if (likely(!PageCompound(page)))
4776874f
PE
2680 nr_pages <<= cache->gfporder;
2681
1da177e4 2682 do {
4776874f
PE
2683 page_set_cache(page, cache);
2684 page_set_slab(page, slab);
1da177e4 2685 page++;
4776874f 2686 } while (--nr_pages);
1da177e4
LT
2687}
2688
2689/*
2690 * Grow (by 1) the number of slabs within a cache. This is called by
2691 * kmem_cache_alloc() when there are no active objs left in a cache.
2692 */
343e0d7a 2693static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2694{
b28a02de
PE
2695 struct slab *slabp;
2696 void *objp;
2697 size_t offset;
2698 gfp_t local_flags;
2699 unsigned long ctor_flags;
e498be7d 2700 struct kmem_list3 *l3;
1da177e4 2701
a737b3e2
AM
2702 /*
2703 * Be lazy and only check for valid flags here, keeping it out of the
2704 * critical path in kmem_cache_alloc().
1da177e4 2705 */
40094fa6 2706 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2707 if (flags & SLAB_NO_GROW)
2708 return 0;
2709
2710 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2711 local_flags = (flags & SLAB_LEVEL_MASK);
2712 if (!(local_flags & __GFP_WAIT))
2713 /*
2714 * Not allowed to sleep. Need to tell a constructor about
2715 * this - it might need to know...
2716 */
2717 ctor_flags |= SLAB_CTOR_ATOMIC;
2718
2e1217cf 2719 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2720 check_irq_off();
2e1217cf
RT
2721 l3 = cachep->nodelists[nodeid];
2722 spin_lock(&l3->list_lock);
1da177e4
LT
2723
2724 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2725 offset = l3->colour_next;
2726 l3->colour_next++;
2727 if (l3->colour_next >= cachep->colour)
2728 l3->colour_next = 0;
2729 spin_unlock(&l3->list_lock);
1da177e4 2730
2e1217cf 2731 offset *= cachep->colour_off;
1da177e4
LT
2732
2733 if (local_flags & __GFP_WAIT)
2734 local_irq_enable();
2735
2736 /*
2737 * The test for missing atomic flag is performed here, rather than
2738 * the more obvious place, simply to reduce the critical path length
2739 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2740 * will eventually be caught here (where it matters).
2741 */
2742 kmem_flagcheck(cachep, flags);
2743
a737b3e2
AM
2744 /*
2745 * Get mem for the objs. Attempt to allocate a physical page from
2746 * 'nodeid'.
e498be7d 2747 */
a737b3e2
AM
2748 objp = kmem_getpages(cachep, flags, nodeid);
2749 if (!objp)
1da177e4
LT
2750 goto failed;
2751
2752 /* Get slab management. */
5b74ada7 2753 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2754 if (!slabp)
1da177e4
LT
2755 goto opps1;
2756
e498be7d 2757 slabp->nodeid = nodeid;
4776874f 2758 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2759
2760 cache_init_objs(cachep, slabp, ctor_flags);
2761
2762 if (local_flags & __GFP_WAIT)
2763 local_irq_disable();
2764 check_irq_off();
e498be7d 2765 spin_lock(&l3->list_lock);
1da177e4
LT
2766
2767 /* Make slab active. */
e498be7d 2768 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2769 STATS_INC_GROWN(cachep);
e498be7d
CL
2770 l3->free_objects += cachep->num;
2771 spin_unlock(&l3->list_lock);
1da177e4 2772 return 1;
a737b3e2 2773opps1:
1da177e4 2774 kmem_freepages(cachep, objp);
a737b3e2 2775failed:
1da177e4
LT
2776 if (local_flags & __GFP_WAIT)
2777 local_irq_disable();
2778 return 0;
2779}
2780
2781#if DEBUG
2782
2783/*
2784 * Perform extra freeing checks:
2785 * - detect bad pointers.
2786 * - POISON/RED_ZONE checking
2787 * - destructor calls, for caches with POISON+dtor
2788 */
2789static void kfree_debugcheck(const void *objp)
2790{
2791 struct page *page;
2792
2793 if (!virt_addr_valid(objp)) {
2794 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2795 (unsigned long)objp);
2796 BUG();
1da177e4
LT
2797 }
2798 page = virt_to_page(objp);
2799 if (!PageSlab(page)) {
b28a02de
PE
2800 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2801 (unsigned long)objp);
1da177e4
LT
2802 BUG();
2803 }
2804}
2805
58ce1fd5
PE
2806static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2807{
2808 unsigned long redzone1, redzone2;
2809
2810 redzone1 = *dbg_redzone1(cache, obj);
2811 redzone2 = *dbg_redzone2(cache, obj);
2812
2813 /*
2814 * Redzone is ok.
2815 */
2816 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2817 return;
2818
2819 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2820 slab_error(cache, "double free detected");
2821 else
2822 slab_error(cache, "memory outside object was overwritten");
2823
2824 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2825 obj, redzone1, redzone2);
2826}
2827
343e0d7a 2828static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2829 void *caller)
1da177e4
LT
2830{
2831 struct page *page;
2832 unsigned int objnr;
2833 struct slab *slabp;
2834
3dafccf2 2835 objp -= obj_offset(cachep);
1da177e4
LT
2836 kfree_debugcheck(objp);
2837 page = virt_to_page(objp);
2838
065d41cb 2839 slabp = page_get_slab(page);
1da177e4
LT
2840
2841 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2842 verify_redzone_free(cachep, objp);
1da177e4
LT
2843 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2844 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2845 }
2846 if (cachep->flags & SLAB_STORE_USER)
2847 *dbg_userword(cachep, objp) = caller;
2848
8fea4e96 2849 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2850
2851 BUG_ON(objnr >= cachep->num);
8fea4e96 2852 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2853
2854 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2855 /*
2856 * Need to call the slab's constructor so the caller can
2857 * perform a verify of its state (debugging). Called without
2858 * the cache-lock held.
1da177e4 2859 */
3dafccf2 2860 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2861 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2862 }
2863 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2864 /* we want to cache poison the object,
2865 * call the destruction callback
2866 */
3dafccf2 2867 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2868 }
871751e2
AV
2869#ifdef CONFIG_DEBUG_SLAB_LEAK
2870 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2871#endif
1da177e4
LT
2872 if (cachep->flags & SLAB_POISON) {
2873#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2874 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2875 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2876 kernel_map_pages(virt_to_page(objp),
3dafccf2 2877 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2878 } else {
2879 poison_obj(cachep, objp, POISON_FREE);
2880 }
2881#else
2882 poison_obj(cachep, objp, POISON_FREE);
2883#endif
2884 }
2885 return objp;
2886}
2887
343e0d7a 2888static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2889{
2890 kmem_bufctl_t i;
2891 int entries = 0;
b28a02de 2892
1da177e4
LT
2893 /* Check slab's freelist to see if this obj is there. */
2894 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2895 entries++;
2896 if (entries > cachep->num || i >= cachep->num)
2897 goto bad;
2898 }
2899 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2900bad:
2901 printk(KERN_ERR "slab: Internal list corruption detected in "
2902 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2903 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2904 for (i = 0;
264132bc 2905 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2906 i++) {
a737b3e2 2907 if (i % 16 == 0)
1da177e4 2908 printk("\n%03x:", i);
b28a02de 2909 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2910 }
2911 printk("\n");
2912 BUG();
2913 }
2914}
2915#else
2916#define kfree_debugcheck(x) do { } while(0)
2917#define cache_free_debugcheck(x,objp,z) (objp)
2918#define check_slabp(x,y) do { } while(0)
2919#endif
2920
343e0d7a 2921static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2922{
2923 int batchcount;
2924 struct kmem_list3 *l3;
2925 struct array_cache *ac;
1ca4cb24
PE
2926 int node;
2927
2928 node = numa_node_id();
1da177e4
LT
2929
2930 check_irq_off();
9a2dba4b 2931 ac = cpu_cache_get(cachep);
a737b3e2 2932retry:
1da177e4
LT
2933 batchcount = ac->batchcount;
2934 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2935 /*
2936 * If there was little recent activity on this cache, then
2937 * perform only a partial refill. Otherwise we could generate
2938 * refill bouncing.
1da177e4
LT
2939 */
2940 batchcount = BATCHREFILL_LIMIT;
2941 }
1ca4cb24 2942 l3 = cachep->nodelists[node];
e498be7d
CL
2943
2944 BUG_ON(ac->avail > 0 || !l3);
2945 spin_lock(&l3->list_lock);
1da177e4 2946
3ded175a
CL
2947 /* See if we can refill from the shared array */
2948 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2949 goto alloc_done;
2950
1da177e4
LT
2951 while (batchcount > 0) {
2952 struct list_head *entry;
2953 struct slab *slabp;
2954 /* Get slab alloc is to come from. */
2955 entry = l3->slabs_partial.next;
2956 if (entry == &l3->slabs_partial) {
2957 l3->free_touched = 1;
2958 entry = l3->slabs_free.next;
2959 if (entry == &l3->slabs_free)
2960 goto must_grow;
2961 }
2962
2963 slabp = list_entry(entry, struct slab, list);
2964 check_slabp(cachep, slabp);
2965 check_spinlock_acquired(cachep);
2966 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2967 STATS_INC_ALLOCED(cachep);
2968 STATS_INC_ACTIVE(cachep);
2969 STATS_SET_HIGH(cachep);
2970
78d382d7 2971 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2972 node);
1da177e4
LT
2973 }
2974 check_slabp(cachep, slabp);
2975
2976 /* move slabp to correct slabp list: */
2977 list_del(&slabp->list);
2978 if (slabp->free == BUFCTL_END)
2979 list_add(&slabp->list, &l3->slabs_full);
2980 else
2981 list_add(&slabp->list, &l3->slabs_partial);
2982 }
2983
a737b3e2 2984must_grow:
1da177e4 2985 l3->free_objects -= ac->avail;
a737b3e2 2986alloc_done:
e498be7d 2987 spin_unlock(&l3->list_lock);
1da177e4
LT
2988
2989 if (unlikely(!ac->avail)) {
2990 int x;
1ca4cb24 2991 x = cache_grow(cachep, flags, node);
e498be7d 2992
a737b3e2 2993 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2994 ac = cpu_cache_get(cachep);
a737b3e2 2995 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2996 return NULL;
2997
a737b3e2 2998 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2999 goto retry;
3000 }
3001 ac->touched = 1;
e498be7d 3002 return ac->entry[--ac->avail];
1da177e4
LT
3003}
3004
a737b3e2
AM
3005static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3006 gfp_t flags)
1da177e4
LT
3007{
3008 might_sleep_if(flags & __GFP_WAIT);
3009#if DEBUG
3010 kmem_flagcheck(cachep, flags);
3011#endif
3012}
3013
3014#if DEBUG
a737b3e2
AM
3015static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3016 gfp_t flags, void *objp, void *caller)
1da177e4 3017{
b28a02de 3018 if (!objp)
1da177e4 3019 return objp;
b28a02de 3020 if (cachep->flags & SLAB_POISON) {
1da177e4 3021#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3022 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3023 kernel_map_pages(virt_to_page(objp),
3dafccf2 3024 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3025 else
3026 check_poison_obj(cachep, objp);
3027#else
3028 check_poison_obj(cachep, objp);
3029#endif
3030 poison_obj(cachep, objp, POISON_INUSE);
3031 }
3032 if (cachep->flags & SLAB_STORE_USER)
3033 *dbg_userword(cachep, objp) = caller;
3034
3035 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3036 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3037 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3038 slab_error(cachep, "double free, or memory outside"
3039 " object was overwritten");
b28a02de 3040 printk(KERN_ERR
a737b3e2
AM
3041 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3042 objp, *dbg_redzone1(cachep, objp),
3043 *dbg_redzone2(cachep, objp));
1da177e4
LT
3044 }
3045 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3046 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3047 }
871751e2
AV
3048#ifdef CONFIG_DEBUG_SLAB_LEAK
3049 {
3050 struct slab *slabp;
3051 unsigned objnr;
3052
3053 slabp = page_get_slab(virt_to_page(objp));
3054 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3055 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3056 }
3057#endif
3dafccf2 3058 objp += obj_offset(cachep);
1da177e4 3059 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3060 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3061
3062 if (!(flags & __GFP_WAIT))
3063 ctor_flags |= SLAB_CTOR_ATOMIC;
3064
3065 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3066 }
1da177e4
LT
3067 return objp;
3068}
3069#else
3070#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3071#endif
3072
343e0d7a 3073static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3074{
b28a02de 3075 void *objp;
1da177e4
LT
3076 struct array_cache *ac;
3077
5c382300 3078 check_irq_off();
9a2dba4b 3079 ac = cpu_cache_get(cachep);
1da177e4
LT
3080 if (likely(ac->avail)) {
3081 STATS_INC_ALLOCHIT(cachep);
3082 ac->touched = 1;
e498be7d 3083 objp = ac->entry[--ac->avail];
1da177e4
LT
3084 } else {
3085 STATS_INC_ALLOCMISS(cachep);
3086 objp = cache_alloc_refill(cachep, flags);
3087 }
5c382300
AK
3088 return objp;
3089}
3090
a737b3e2
AM
3091static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3092 gfp_t flags, void *caller)
5c382300
AK
3093{
3094 unsigned long save_flags;
de3083ec 3095 void *objp = NULL;
5c382300
AK
3096
3097 cache_alloc_debugcheck_before(cachep, flags);
3098
3099 local_irq_save(save_flags);
de3083ec 3100
765c4507
CL
3101 if (unlikely(NUMA_BUILD &&
3102 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
de3083ec 3103 objp = alternate_node_alloc(cachep, flags);
de3083ec
CL
3104
3105 if (!objp)
3106 objp = ____cache_alloc(cachep, flags);
765c4507
CL
3107 /*
3108 * We may just have run out of memory on the local node.
3109 * __cache_alloc_node() knows how to locate memory on other nodes
3110 */
3111 if (NUMA_BUILD && !objp)
3112 objp = __cache_alloc_node(cachep, flags, numa_node_id());
1da177e4 3113 local_irq_restore(save_flags);
34342e86 3114 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3115 caller);
34342e86 3116 prefetchw(objp);
1da177e4
LT
3117 return objp;
3118}
3119
e498be7d 3120#ifdef CONFIG_NUMA
c61afb18 3121/*
b2455396 3122 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3123 *
3124 * If we are in_interrupt, then process context, including cpusets and
3125 * mempolicy, may not apply and should not be used for allocation policy.
3126 */
3127static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3128{
3129 int nid_alloc, nid_here;
3130
765c4507 3131 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3132 return NULL;
3133 nid_alloc = nid_here = numa_node_id();
3134 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3135 nid_alloc = cpuset_mem_spread_node();
3136 else if (current->mempolicy)
3137 nid_alloc = slab_node(current->mempolicy);
3138 if (nid_alloc != nid_here)
3139 return __cache_alloc_node(cachep, flags, nid_alloc);
3140 return NULL;
3141}
3142
765c4507
CL
3143/*
3144 * Fallback function if there was no memory available and no objects on a
3145 * certain node and we are allowed to fall back. We mimick the behavior of
3146 * the page allocator. We fall back according to a zonelist determined by
3147 * the policy layer while obeying cpuset constraints.
3148 */
3149void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3150{
3151 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3152 ->node_zonelists[gfp_zone(flags)];
3153 struct zone **z;
3154 void *obj = NULL;
3155
3156 for (z = zonelist->zones; *z && !obj; z++)
3157 if (zone_idx(*z) <= ZONE_NORMAL &&
3158 cpuset_zone_allowed(*z, flags))
3159 obj = __cache_alloc_node(cache,
3160 flags | __GFP_THISNODE,
3161 zone_to_nid(*z));
3162 return obj;
3163}
3164
e498be7d
CL
3165/*
3166 * A interface to enable slab creation on nodeid
1da177e4 3167 */
a737b3e2
AM
3168static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3169 int nodeid)
e498be7d
CL
3170{
3171 struct list_head *entry;
b28a02de
PE
3172 struct slab *slabp;
3173 struct kmem_list3 *l3;
3174 void *obj;
b28a02de
PE
3175 int x;
3176
3177 l3 = cachep->nodelists[nodeid];
3178 BUG_ON(!l3);
3179
a737b3e2 3180retry:
ca3b9b91 3181 check_irq_off();
b28a02de
PE
3182 spin_lock(&l3->list_lock);
3183 entry = l3->slabs_partial.next;
3184 if (entry == &l3->slabs_partial) {
3185 l3->free_touched = 1;
3186 entry = l3->slabs_free.next;
3187 if (entry == &l3->slabs_free)
3188 goto must_grow;
3189 }
3190
3191 slabp = list_entry(entry, struct slab, list);
3192 check_spinlock_acquired_node(cachep, nodeid);
3193 check_slabp(cachep, slabp);
3194
3195 STATS_INC_NODEALLOCS(cachep);
3196 STATS_INC_ACTIVE(cachep);
3197 STATS_SET_HIGH(cachep);
3198
3199 BUG_ON(slabp->inuse == cachep->num);
3200
78d382d7 3201 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3202 check_slabp(cachep, slabp);
3203 l3->free_objects--;
3204 /* move slabp to correct slabp list: */
3205 list_del(&slabp->list);
3206
a737b3e2 3207 if (slabp->free == BUFCTL_END)
b28a02de 3208 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3209 else
b28a02de 3210 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3211
b28a02de
PE
3212 spin_unlock(&l3->list_lock);
3213 goto done;
e498be7d 3214
a737b3e2 3215must_grow:
b28a02de
PE
3216 spin_unlock(&l3->list_lock);
3217 x = cache_grow(cachep, flags, nodeid);
765c4507
CL
3218 if (x)
3219 goto retry;
1da177e4 3220
765c4507
CL
3221 if (!(flags & __GFP_THISNODE))
3222 /* Unable to grow the cache. Fall back to other nodes. */
3223 return fallback_alloc(cachep, flags);
3224
3225 return NULL;
e498be7d 3226
a737b3e2 3227done:
b28a02de 3228 return obj;
e498be7d
CL
3229}
3230#endif
3231
3232/*
3233 * Caller needs to acquire correct kmem_list's list_lock
3234 */
343e0d7a 3235static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3236 int node)
1da177e4
LT
3237{
3238 int i;
e498be7d 3239 struct kmem_list3 *l3;
1da177e4
LT
3240
3241 for (i = 0; i < nr_objects; i++) {
3242 void *objp = objpp[i];
3243 struct slab *slabp;
1da177e4 3244
6ed5eb22 3245 slabp = virt_to_slab(objp);
ff69416e 3246 l3 = cachep->nodelists[node];
1da177e4 3247 list_del(&slabp->list);
ff69416e 3248 check_spinlock_acquired_node(cachep, node);
1da177e4 3249 check_slabp(cachep, slabp);
78d382d7 3250 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3251 STATS_DEC_ACTIVE(cachep);
e498be7d 3252 l3->free_objects++;
1da177e4
LT
3253 check_slabp(cachep, slabp);
3254
3255 /* fixup slab chains */
3256 if (slabp->inuse == 0) {
e498be7d
CL
3257 if (l3->free_objects > l3->free_limit) {
3258 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3259 /* No need to drop any previously held
3260 * lock here, even if we have a off-slab slab
3261 * descriptor it is guaranteed to come from
3262 * a different cache, refer to comments before
3263 * alloc_slabmgmt.
3264 */
1da177e4
LT
3265 slab_destroy(cachep, slabp);
3266 } else {
e498be7d 3267 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3268 }
3269 } else {
3270 /* Unconditionally move a slab to the end of the
3271 * partial list on free - maximum time for the
3272 * other objects to be freed, too.
3273 */
e498be7d 3274 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3275 }
3276 }
3277}
3278
343e0d7a 3279static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3280{
3281 int batchcount;
e498be7d 3282 struct kmem_list3 *l3;
ff69416e 3283 int node = numa_node_id();
1da177e4
LT
3284
3285 batchcount = ac->batchcount;
3286#if DEBUG
3287 BUG_ON(!batchcount || batchcount > ac->avail);
3288#endif
3289 check_irq_off();
ff69416e 3290 l3 = cachep->nodelists[node];
873623df 3291 spin_lock(&l3->list_lock);
e498be7d
CL
3292 if (l3->shared) {
3293 struct array_cache *shared_array = l3->shared;
b28a02de 3294 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3295 if (max) {
3296 if (batchcount > max)
3297 batchcount = max;
e498be7d 3298 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3299 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3300 shared_array->avail += batchcount;
3301 goto free_done;
3302 }
3303 }
3304
ff69416e 3305 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3306free_done:
1da177e4
LT
3307#if STATS
3308 {
3309 int i = 0;
3310 struct list_head *p;
3311
e498be7d
CL
3312 p = l3->slabs_free.next;
3313 while (p != &(l3->slabs_free)) {
1da177e4
LT
3314 struct slab *slabp;
3315
3316 slabp = list_entry(p, struct slab, list);
3317 BUG_ON(slabp->inuse);
3318
3319 i++;
3320 p = p->next;
3321 }
3322 STATS_SET_FREEABLE(cachep, i);
3323 }
3324#endif
e498be7d 3325 spin_unlock(&l3->list_lock);
1da177e4 3326 ac->avail -= batchcount;
a737b3e2 3327 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3328}
3329
3330/*
a737b3e2
AM
3331 * Release an obj back to its cache. If the obj has a constructed state, it must
3332 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3333 */
873623df 3334static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3335{
9a2dba4b 3336 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3337
3338 check_irq_off();
3339 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3340
873623df 3341 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3342 return;
3343
1da177e4
LT
3344 if (likely(ac->avail < ac->limit)) {
3345 STATS_INC_FREEHIT(cachep);
e498be7d 3346 ac->entry[ac->avail++] = objp;
1da177e4
LT
3347 return;
3348 } else {
3349 STATS_INC_FREEMISS(cachep);
3350 cache_flusharray(cachep, ac);
e498be7d 3351 ac->entry[ac->avail++] = objp;
1da177e4
LT
3352 }
3353}
3354
3355/**
3356 * kmem_cache_alloc - Allocate an object
3357 * @cachep: The cache to allocate from.
3358 * @flags: See kmalloc().
3359 *
3360 * Allocate an object from this cache. The flags are only relevant
3361 * if the cache has no available objects.
3362 */
343e0d7a 3363void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3364{
7fd6b141 3365 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3366}
3367EXPORT_SYMBOL(kmem_cache_alloc);
3368
a8c0f9a4 3369/**
b8008b2b 3370 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3371 * @cache: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 *
3374 * Allocate an object from this cache and set the allocated memory to zero.
3375 * The flags are only relevant if the cache has no available objects.
3376 */
3377void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3378{
3379 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3380 if (ret)
3381 memset(ret, 0, obj_size(cache));
3382 return ret;
3383}
3384EXPORT_SYMBOL(kmem_cache_zalloc);
3385
1da177e4
LT
3386/**
3387 * kmem_ptr_validate - check if an untrusted pointer might
3388 * be a slab entry.
3389 * @cachep: the cache we're checking against
3390 * @ptr: pointer to validate
3391 *
3392 * This verifies that the untrusted pointer looks sane:
3393 * it is _not_ a guarantee that the pointer is actually
3394 * part of the slab cache in question, but it at least
3395 * validates that the pointer can be dereferenced and
3396 * looks half-way sane.
3397 *
3398 * Currently only used for dentry validation.
3399 */
343e0d7a 3400int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3401{
b28a02de 3402 unsigned long addr = (unsigned long)ptr;
1da177e4 3403 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3404 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3405 unsigned long size = cachep->buffer_size;
1da177e4
LT
3406 struct page *page;
3407
3408 if (unlikely(addr < min_addr))
3409 goto out;
3410 if (unlikely(addr > (unsigned long)high_memory - size))
3411 goto out;
3412 if (unlikely(addr & align_mask))
3413 goto out;
3414 if (unlikely(!kern_addr_valid(addr)))
3415 goto out;
3416 if (unlikely(!kern_addr_valid(addr + size - 1)))
3417 goto out;
3418 page = virt_to_page(ptr);
3419 if (unlikely(!PageSlab(page)))
3420 goto out;
065d41cb 3421 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3422 goto out;
3423 return 1;
a737b3e2 3424out:
1da177e4
LT
3425 return 0;
3426}
3427
3428#ifdef CONFIG_NUMA
3429/**
3430 * kmem_cache_alloc_node - Allocate an object on the specified node
3431 * @cachep: The cache to allocate from.
3432 * @flags: See kmalloc().
3433 * @nodeid: node number of the target node.
3434 *
3435 * Identical to kmem_cache_alloc, except that this function is slow
3436 * and can sleep. And it will allocate memory on the given node, which
3437 * can improve the performance for cpu bound structures.
e498be7d
CL
3438 * New and improved: it will now make sure that the object gets
3439 * put on the correct node list so that there is no false sharing.
1da177e4 3440 */
343e0d7a 3441void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3442{
e498be7d
CL
3443 unsigned long save_flags;
3444 void *ptr;
1da177e4 3445
e498be7d
CL
3446 cache_alloc_debugcheck_before(cachep, flags);
3447 local_irq_save(save_flags);
18f820f6
CL
3448
3449 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3450 !cachep->nodelists[nodeid])
5c382300
AK
3451 ptr = ____cache_alloc(cachep, flags);
3452 else
3453 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3454 local_irq_restore(save_flags);
18f820f6
CL
3455
3456 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3457 __builtin_return_address(0));
1da177e4 3458
e498be7d 3459 return ptr;
1da177e4
LT
3460}
3461EXPORT_SYMBOL(kmem_cache_alloc_node);
3462
dbe5e69d 3463void *__kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3464{
343e0d7a 3465 struct kmem_cache *cachep;
97e2bde4
MS
3466
3467 cachep = kmem_find_general_cachep(size, flags);
3468 if (unlikely(cachep == NULL))
3469 return NULL;
3470 return kmem_cache_alloc_node(cachep, flags, node);
3471}
dbe5e69d 3472EXPORT_SYMBOL(__kmalloc_node);
1da177e4
LT
3473#endif
3474
3475/**
800590f5 3476 * __do_kmalloc - allocate memory
1da177e4 3477 * @size: how many bytes of memory are required.
800590f5 3478 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3479 * @caller: function caller for debug tracking of the caller
1da177e4 3480 */
7fd6b141
PE
3481static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3482 void *caller)
1da177e4 3483{
343e0d7a 3484 struct kmem_cache *cachep;
1da177e4 3485
97e2bde4
MS
3486 /* If you want to save a few bytes .text space: replace
3487 * __ with kmem_.
3488 * Then kmalloc uses the uninlined functions instead of the inline
3489 * functions.
3490 */
3491 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3492 if (unlikely(cachep == NULL))
3493 return NULL;
7fd6b141
PE
3494 return __cache_alloc(cachep, flags, caller);
3495}
3496
7fd6b141 3497
1d2c8eea 3498#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3499void *__kmalloc(size_t size, gfp_t flags)
3500{
871751e2 3501 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3502}
3503EXPORT_SYMBOL(__kmalloc);
3504
7fd6b141
PE
3505void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3506{
3507 return __do_kmalloc(size, flags, caller);
3508}
3509EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3510
3511#else
3512void *__kmalloc(size_t size, gfp_t flags)
3513{
3514 return __do_kmalloc(size, flags, NULL);
3515}
3516EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3517#endif
3518
1da177e4
LT
3519/**
3520 * kmem_cache_free - Deallocate an object
3521 * @cachep: The cache the allocation was from.
3522 * @objp: The previously allocated object.
3523 *
3524 * Free an object which was previously allocated from this
3525 * cache.
3526 */
343e0d7a 3527void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3528{
3529 unsigned long flags;
3530
ddc2e812
PE
3531 BUG_ON(virt_to_cache(objp) != cachep);
3532
1da177e4 3533 local_irq_save(flags);
873623df 3534 __cache_free(cachep, objp);
1da177e4
LT
3535 local_irq_restore(flags);
3536}
3537EXPORT_SYMBOL(kmem_cache_free);
3538
1da177e4
LT
3539/**
3540 * kfree - free previously allocated memory
3541 * @objp: pointer returned by kmalloc.
3542 *
80e93eff
PE
3543 * If @objp is NULL, no operation is performed.
3544 *
1da177e4
LT
3545 * Don't free memory not originally allocated by kmalloc()
3546 * or you will run into trouble.
3547 */
3548void kfree(const void *objp)
3549{
343e0d7a 3550 struct kmem_cache *c;
1da177e4
LT
3551 unsigned long flags;
3552
3553 if (unlikely(!objp))
3554 return;
3555 local_irq_save(flags);
3556 kfree_debugcheck(objp);
6ed5eb22 3557 c = virt_to_cache(objp);
f9b8404c 3558 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3559 __cache_free(c, (void *)objp);
1da177e4
LT
3560 local_irq_restore(flags);
3561}
3562EXPORT_SYMBOL(kfree);
3563
343e0d7a 3564unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3565{
3dafccf2 3566 return obj_size(cachep);
1da177e4
LT
3567}
3568EXPORT_SYMBOL(kmem_cache_size);
3569
343e0d7a 3570const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3571{
3572 return cachep->name;
3573}
3574EXPORT_SYMBOL_GPL(kmem_cache_name);
3575
e498be7d 3576/*
0718dc2a 3577 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3578 */
343e0d7a 3579static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3580{
3581 int node;
3582 struct kmem_list3 *l3;
cafeb02e
CL
3583 struct array_cache *new_shared;
3584 struct array_cache **new_alien;
e498be7d
CL
3585
3586 for_each_online_node(node) {
cafeb02e 3587
a737b3e2
AM
3588 new_alien = alloc_alien_cache(node, cachep->limit);
3589 if (!new_alien)
e498be7d 3590 goto fail;
cafeb02e 3591
0718dc2a
CL
3592 new_shared = alloc_arraycache(node,
3593 cachep->shared*cachep->batchcount,
a737b3e2 3594 0xbaadf00d);
0718dc2a
CL
3595 if (!new_shared) {
3596 free_alien_cache(new_alien);
e498be7d 3597 goto fail;
0718dc2a 3598 }
cafeb02e 3599
a737b3e2
AM
3600 l3 = cachep->nodelists[node];
3601 if (l3) {
cafeb02e
CL
3602 struct array_cache *shared = l3->shared;
3603
e498be7d
CL
3604 spin_lock_irq(&l3->list_lock);
3605
cafeb02e 3606 if (shared)
0718dc2a
CL
3607 free_block(cachep, shared->entry,
3608 shared->avail, node);
e498be7d 3609
cafeb02e
CL
3610 l3->shared = new_shared;
3611 if (!l3->alien) {
e498be7d
CL
3612 l3->alien = new_alien;
3613 new_alien = NULL;
3614 }
b28a02de 3615 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3616 cachep->batchcount + cachep->num;
e498be7d 3617 spin_unlock_irq(&l3->list_lock);
cafeb02e 3618 kfree(shared);
e498be7d
CL
3619 free_alien_cache(new_alien);
3620 continue;
3621 }
a737b3e2 3622 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3623 if (!l3) {
3624 free_alien_cache(new_alien);
3625 kfree(new_shared);
e498be7d 3626 goto fail;
0718dc2a 3627 }
e498be7d
CL
3628
3629 kmem_list3_init(l3);
3630 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3631 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3632 l3->shared = new_shared;
e498be7d 3633 l3->alien = new_alien;
b28a02de 3634 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3635 cachep->batchcount + cachep->num;
e498be7d
CL
3636 cachep->nodelists[node] = l3;
3637 }
cafeb02e 3638 return 0;
0718dc2a 3639
a737b3e2 3640fail:
0718dc2a
CL
3641 if (!cachep->next.next) {
3642 /* Cache is not active yet. Roll back what we did */
3643 node--;
3644 while (node >= 0) {
3645 if (cachep->nodelists[node]) {
3646 l3 = cachep->nodelists[node];
3647
3648 kfree(l3->shared);
3649 free_alien_cache(l3->alien);
3650 kfree(l3);
3651 cachep->nodelists[node] = NULL;
3652 }
3653 node--;
3654 }
3655 }
cafeb02e 3656 return -ENOMEM;
e498be7d
CL
3657}
3658
1da177e4 3659struct ccupdate_struct {
343e0d7a 3660 struct kmem_cache *cachep;
1da177e4
LT
3661 struct array_cache *new[NR_CPUS];
3662};
3663
3664static void do_ccupdate_local(void *info)
3665{
a737b3e2 3666 struct ccupdate_struct *new = info;
1da177e4
LT
3667 struct array_cache *old;
3668
3669 check_irq_off();
9a2dba4b 3670 old = cpu_cache_get(new->cachep);
e498be7d 3671
1da177e4
LT
3672 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3673 new->new[smp_processor_id()] = old;
3674}
3675
b5d8ca7c 3676/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3677static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3678 int batchcount, int shared)
1da177e4 3679{
d2e7b7d0 3680 struct ccupdate_struct *new;
2ed3a4ef 3681 int i;
1da177e4 3682
d2e7b7d0
SS
3683 new = kzalloc(sizeof(*new), GFP_KERNEL);
3684 if (!new)
3685 return -ENOMEM;
3686
e498be7d 3687 for_each_online_cpu(i) {
d2e7b7d0 3688 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3689 batchcount);
d2e7b7d0 3690 if (!new->new[i]) {
b28a02de 3691 for (i--; i >= 0; i--)
d2e7b7d0
SS
3692 kfree(new->new[i]);
3693 kfree(new);
e498be7d 3694 return -ENOMEM;
1da177e4
LT
3695 }
3696 }
d2e7b7d0 3697 new->cachep = cachep;
1da177e4 3698
d2e7b7d0 3699 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3700
1da177e4 3701 check_irq_on();
1da177e4
LT
3702 cachep->batchcount = batchcount;
3703 cachep->limit = limit;
e498be7d 3704 cachep->shared = shared;
1da177e4 3705
e498be7d 3706 for_each_online_cpu(i) {
d2e7b7d0 3707 struct array_cache *ccold = new->new[i];
1da177e4
LT
3708 if (!ccold)
3709 continue;
e498be7d 3710 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3711 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3712 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3713 kfree(ccold);
3714 }
d2e7b7d0 3715 kfree(new);
2ed3a4ef 3716 return alloc_kmemlist(cachep);
1da177e4
LT
3717}
3718
b5d8ca7c 3719/* Called with cache_chain_mutex held always */
2ed3a4ef 3720static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3721{
3722 int err;
3723 int limit, shared;
3724
a737b3e2
AM
3725 /*
3726 * The head array serves three purposes:
1da177e4
LT
3727 * - create a LIFO ordering, i.e. return objects that are cache-warm
3728 * - reduce the number of spinlock operations.
a737b3e2 3729 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3730 * bufctl chains: array operations are cheaper.
3731 * The numbers are guessed, we should auto-tune as described by
3732 * Bonwick.
3733 */
3dafccf2 3734 if (cachep->buffer_size > 131072)
1da177e4 3735 limit = 1;
3dafccf2 3736 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3737 limit = 8;
3dafccf2 3738 else if (cachep->buffer_size > 1024)
1da177e4 3739 limit = 24;
3dafccf2 3740 else if (cachep->buffer_size > 256)
1da177e4
LT
3741 limit = 54;
3742 else
3743 limit = 120;
3744
a737b3e2
AM
3745 /*
3746 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3747 * allocation behaviour: Most allocs on one cpu, most free operations
3748 * on another cpu. For these cases, an efficient object passing between
3749 * cpus is necessary. This is provided by a shared array. The array
3750 * replaces Bonwick's magazine layer.
3751 * On uniprocessor, it's functionally equivalent (but less efficient)
3752 * to a larger limit. Thus disabled by default.
3753 */
3754 shared = 0;
3755#ifdef CONFIG_SMP
3dafccf2 3756 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3757 shared = 8;
3758#endif
3759
3760#if DEBUG
a737b3e2
AM
3761 /*
3762 * With debugging enabled, large batchcount lead to excessively long
3763 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3764 */
3765 if (limit > 32)
3766 limit = 32;
3767#endif
b28a02de 3768 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3769 if (err)
3770 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3771 cachep->name, -err);
2ed3a4ef 3772 return err;
1da177e4
LT
3773}
3774
1b55253a
CL
3775/*
3776 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3777 * necessary. Note that the l3 listlock also protects the array_cache
3778 * if drain_array() is used on the shared array.
1b55253a
CL
3779 */
3780void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3781 struct array_cache *ac, int force, int node)
1da177e4
LT
3782{
3783 int tofree;
3784
1b55253a
CL
3785 if (!ac || !ac->avail)
3786 return;
1da177e4
LT
3787 if (ac->touched && !force) {
3788 ac->touched = 0;
b18e7e65 3789 } else {
1b55253a 3790 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3791 if (ac->avail) {
3792 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3793 if (tofree > ac->avail)
3794 tofree = (ac->avail + 1) / 2;
3795 free_block(cachep, ac->entry, tofree, node);
3796 ac->avail -= tofree;
3797 memmove(ac->entry, &(ac->entry[tofree]),
3798 sizeof(void *) * ac->avail);
3799 }
1b55253a 3800 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3801 }
3802}
3803
3804/**
3805 * cache_reap - Reclaim memory from caches.
1e5d5331 3806 * @unused: unused parameter
1da177e4
LT
3807 *
3808 * Called from workqueue/eventd every few seconds.
3809 * Purpose:
3810 * - clear the per-cpu caches for this CPU.
3811 * - return freeable pages to the main free memory pool.
3812 *
a737b3e2
AM
3813 * If we cannot acquire the cache chain mutex then just give up - we'll try
3814 * again on the next iteration.
1da177e4
LT
3815 */
3816static void cache_reap(void *unused)
3817{
7a7c381d 3818 struct kmem_cache *searchp;
e498be7d 3819 struct kmem_list3 *l3;
aab2207c 3820 int node = numa_node_id();
1da177e4 3821
fc0abb14 3822 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3823 /* Give up. Setup the next iteration. */
b28a02de
PE
3824 schedule_delayed_work(&__get_cpu_var(reap_work),
3825 REAPTIMEOUT_CPUC);
1da177e4
LT
3826 return;
3827 }
3828
7a7c381d 3829 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3830 check_irq_on();
3831
35386e3b
CL
3832 /*
3833 * We only take the l3 lock if absolutely necessary and we
3834 * have established with reasonable certainty that
3835 * we can do some work if the lock was obtained.
3836 */
aab2207c 3837 l3 = searchp->nodelists[node];
35386e3b 3838
8fce4d8e 3839 reap_alien(searchp, l3);
1da177e4 3840
aab2207c 3841 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3842
35386e3b
CL
3843 /*
3844 * These are racy checks but it does not matter
3845 * if we skip one check or scan twice.
3846 */
e498be7d 3847 if (time_after(l3->next_reap, jiffies))
35386e3b 3848 goto next;
1da177e4 3849
e498be7d 3850 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3851
aab2207c 3852 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3853
ed11d9eb 3854 if (l3->free_touched)
e498be7d 3855 l3->free_touched = 0;
ed11d9eb
CL
3856 else {
3857 int freed;
1da177e4 3858
ed11d9eb
CL
3859 freed = drain_freelist(searchp, l3, (l3->free_limit +
3860 5 * searchp->num - 1) / (5 * searchp->num));
3861 STATS_ADD_REAPED(searchp, freed);
3862 }
35386e3b 3863next:
1da177e4
LT
3864 cond_resched();
3865 }
3866 check_irq_on();
fc0abb14 3867 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3868 next_reap_node();
2244b95a 3869 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3870 /* Set up the next iteration */
cd61ef62 3871 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3872}
3873
3874#ifdef CONFIG_PROC_FS
3875
85289f98 3876static void print_slabinfo_header(struct seq_file *m)
1da177e4 3877{
85289f98
PE
3878 /*
3879 * Output format version, so at least we can change it
3880 * without _too_ many complaints.
3881 */
1da177e4 3882#if STATS
85289f98 3883 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3884#else
85289f98 3885 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3886#endif
85289f98
PE
3887 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3888 "<objperslab> <pagesperslab>");
3889 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3890 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3891#if STATS
85289f98 3892 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3893 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3894 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3895#endif
85289f98
PE
3896 seq_putc(m, '\n');
3897}
3898
3899static void *s_start(struct seq_file *m, loff_t *pos)
3900{
3901 loff_t n = *pos;
3902 struct list_head *p;
3903
fc0abb14 3904 mutex_lock(&cache_chain_mutex);
85289f98
PE
3905 if (!n)
3906 print_slabinfo_header(m);
1da177e4
LT
3907 p = cache_chain.next;
3908 while (n--) {
3909 p = p->next;
3910 if (p == &cache_chain)
3911 return NULL;
3912 }
343e0d7a 3913 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3914}
3915
3916static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3917{
343e0d7a 3918 struct kmem_cache *cachep = p;
1da177e4 3919 ++*pos;
a737b3e2
AM
3920 return cachep->next.next == &cache_chain ?
3921 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3922}
3923
3924static void s_stop(struct seq_file *m, void *p)
3925{
fc0abb14 3926 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3927}
3928
3929static int s_show(struct seq_file *m, void *p)
3930{
343e0d7a 3931 struct kmem_cache *cachep = p;
b28a02de
PE
3932 struct slab *slabp;
3933 unsigned long active_objs;
3934 unsigned long num_objs;
3935 unsigned long active_slabs = 0;
3936 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3937 const char *name;
1da177e4 3938 char *error = NULL;
e498be7d
CL
3939 int node;
3940 struct kmem_list3 *l3;
1da177e4 3941
1da177e4
LT
3942 active_objs = 0;
3943 num_slabs = 0;
e498be7d
CL
3944 for_each_online_node(node) {
3945 l3 = cachep->nodelists[node];
3946 if (!l3)
3947 continue;
3948
ca3b9b91
RT
3949 check_irq_on();
3950 spin_lock_irq(&l3->list_lock);
e498be7d 3951
7a7c381d 3952 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3953 if (slabp->inuse != cachep->num && !error)
3954 error = "slabs_full accounting error";
3955 active_objs += cachep->num;
3956 active_slabs++;
3957 }
7a7c381d 3958 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3959 if (slabp->inuse == cachep->num && !error)
3960 error = "slabs_partial inuse accounting error";
3961 if (!slabp->inuse && !error)
3962 error = "slabs_partial/inuse accounting error";
3963 active_objs += slabp->inuse;
3964 active_slabs++;
3965 }
7a7c381d 3966 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3967 if (slabp->inuse && !error)
3968 error = "slabs_free/inuse accounting error";
3969 num_slabs++;
3970 }
3971 free_objects += l3->free_objects;
4484ebf1
RT
3972 if (l3->shared)
3973 shared_avail += l3->shared->avail;
e498be7d 3974
ca3b9b91 3975 spin_unlock_irq(&l3->list_lock);
1da177e4 3976 }
b28a02de
PE
3977 num_slabs += active_slabs;
3978 num_objs = num_slabs * cachep->num;
e498be7d 3979 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3980 error = "free_objects accounting error";
3981
b28a02de 3982 name = cachep->name;
1da177e4
LT
3983 if (error)
3984 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3985
3986 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3987 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3988 cachep->num, (1 << cachep->gfporder));
1da177e4 3989 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3990 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3991 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3992 active_slabs, num_slabs, shared_avail);
1da177e4 3993#if STATS
b28a02de 3994 { /* list3 stats */
1da177e4
LT
3995 unsigned long high = cachep->high_mark;
3996 unsigned long allocs = cachep->num_allocations;
3997 unsigned long grown = cachep->grown;
3998 unsigned long reaped = cachep->reaped;
3999 unsigned long errors = cachep->errors;
4000 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4001 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4002 unsigned long node_frees = cachep->node_frees;
fb7faf33 4003 unsigned long overflows = cachep->node_overflow;
1da177e4 4004
e498be7d 4005 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4006 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4007 reaped, errors, max_freeable, node_allocs,
fb7faf33 4008 node_frees, overflows);
1da177e4
LT
4009 }
4010 /* cpu stats */
4011 {
4012 unsigned long allochit = atomic_read(&cachep->allochit);
4013 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4014 unsigned long freehit = atomic_read(&cachep->freehit);
4015 unsigned long freemiss = atomic_read(&cachep->freemiss);
4016
4017 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4018 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4019 }
4020#endif
4021 seq_putc(m, '\n');
1da177e4
LT
4022 return 0;
4023}
4024
4025/*
4026 * slabinfo_op - iterator that generates /proc/slabinfo
4027 *
4028 * Output layout:
4029 * cache-name
4030 * num-active-objs
4031 * total-objs
4032 * object size
4033 * num-active-slabs
4034 * total-slabs
4035 * num-pages-per-slab
4036 * + further values on SMP and with statistics enabled
4037 */
4038
4039struct seq_operations slabinfo_op = {
b28a02de
PE
4040 .start = s_start,
4041 .next = s_next,
4042 .stop = s_stop,
4043 .show = s_show,
1da177e4
LT
4044};
4045
4046#define MAX_SLABINFO_WRITE 128
4047/**
4048 * slabinfo_write - Tuning for the slab allocator
4049 * @file: unused
4050 * @buffer: user buffer
4051 * @count: data length
4052 * @ppos: unused
4053 */
b28a02de
PE
4054ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4055 size_t count, loff_t *ppos)
1da177e4 4056{
b28a02de 4057 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4058 int limit, batchcount, shared, res;
7a7c381d 4059 struct kmem_cache *cachep;
b28a02de 4060
1da177e4
LT
4061 if (count > MAX_SLABINFO_WRITE)
4062 return -EINVAL;
4063 if (copy_from_user(&kbuf, buffer, count))
4064 return -EFAULT;
b28a02de 4065 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4066
4067 tmp = strchr(kbuf, ' ');
4068 if (!tmp)
4069 return -EINVAL;
4070 *tmp = '\0';
4071 tmp++;
4072 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4073 return -EINVAL;
4074
4075 /* Find the cache in the chain of caches. */
fc0abb14 4076 mutex_lock(&cache_chain_mutex);
1da177e4 4077 res = -EINVAL;
7a7c381d 4078 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4079 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4080 if (limit < 1 || batchcount < 1 ||
4081 batchcount > limit || shared < 0) {
e498be7d 4082 res = 0;
1da177e4 4083 } else {
e498be7d 4084 res = do_tune_cpucache(cachep, limit,
b28a02de 4085 batchcount, shared);
1da177e4
LT
4086 }
4087 break;
4088 }
4089 }
fc0abb14 4090 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4091 if (res >= 0)
4092 res = count;
4093 return res;
4094}
871751e2
AV
4095
4096#ifdef CONFIG_DEBUG_SLAB_LEAK
4097
4098static void *leaks_start(struct seq_file *m, loff_t *pos)
4099{
4100 loff_t n = *pos;
4101 struct list_head *p;
4102
4103 mutex_lock(&cache_chain_mutex);
4104 p = cache_chain.next;
4105 while (n--) {
4106 p = p->next;
4107 if (p == &cache_chain)
4108 return NULL;
4109 }
4110 return list_entry(p, struct kmem_cache, next);
4111}
4112
4113static inline int add_caller(unsigned long *n, unsigned long v)
4114{
4115 unsigned long *p;
4116 int l;
4117 if (!v)
4118 return 1;
4119 l = n[1];
4120 p = n + 2;
4121 while (l) {
4122 int i = l/2;
4123 unsigned long *q = p + 2 * i;
4124 if (*q == v) {
4125 q[1]++;
4126 return 1;
4127 }
4128 if (*q > v) {
4129 l = i;
4130 } else {
4131 p = q + 2;
4132 l -= i + 1;
4133 }
4134 }
4135 if (++n[1] == n[0])
4136 return 0;
4137 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4138 p[0] = v;
4139 p[1] = 1;
4140 return 1;
4141}
4142
4143static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4144{
4145 void *p;
4146 int i;
4147 if (n[0] == n[1])
4148 return;
4149 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4150 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4151 continue;
4152 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4153 return;
4154 }
4155}
4156
4157static void show_symbol(struct seq_file *m, unsigned long address)
4158{
4159#ifdef CONFIG_KALLSYMS
4160 char *modname;
4161 const char *name;
4162 unsigned long offset, size;
4163 char namebuf[KSYM_NAME_LEN+1];
4164
4165 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4166
4167 if (name) {
4168 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4169 if (modname)
4170 seq_printf(m, " [%s]", modname);
4171 return;
4172 }
4173#endif
4174 seq_printf(m, "%p", (void *)address);
4175}
4176
4177static int leaks_show(struct seq_file *m, void *p)
4178{
4179 struct kmem_cache *cachep = p;
871751e2
AV
4180 struct slab *slabp;
4181 struct kmem_list3 *l3;
4182 const char *name;
4183 unsigned long *n = m->private;
4184 int node;
4185 int i;
4186
4187 if (!(cachep->flags & SLAB_STORE_USER))
4188 return 0;
4189 if (!(cachep->flags & SLAB_RED_ZONE))
4190 return 0;
4191
4192 /* OK, we can do it */
4193
4194 n[1] = 0;
4195
4196 for_each_online_node(node) {
4197 l3 = cachep->nodelists[node];
4198 if (!l3)
4199 continue;
4200
4201 check_irq_on();
4202 spin_lock_irq(&l3->list_lock);
4203
7a7c381d 4204 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4205 handle_slab(n, cachep, slabp);
7a7c381d 4206 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4207 handle_slab(n, cachep, slabp);
871751e2
AV
4208 spin_unlock_irq(&l3->list_lock);
4209 }
4210 name = cachep->name;
4211 if (n[0] == n[1]) {
4212 /* Increase the buffer size */
4213 mutex_unlock(&cache_chain_mutex);
4214 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4215 if (!m->private) {
4216 /* Too bad, we are really out */
4217 m->private = n;
4218 mutex_lock(&cache_chain_mutex);
4219 return -ENOMEM;
4220 }
4221 *(unsigned long *)m->private = n[0] * 2;
4222 kfree(n);
4223 mutex_lock(&cache_chain_mutex);
4224 /* Now make sure this entry will be retried */
4225 m->count = m->size;
4226 return 0;
4227 }
4228 for (i = 0; i < n[1]; i++) {
4229 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4230 show_symbol(m, n[2*i+2]);
4231 seq_putc(m, '\n');
4232 }
d2e7b7d0 4233
871751e2
AV
4234 return 0;
4235}
4236
4237struct seq_operations slabstats_op = {
4238 .start = leaks_start,
4239 .next = s_next,
4240 .stop = s_stop,
4241 .show = leaks_show,
4242};
4243#endif
1da177e4
LT
4244#endif
4245
00e145b6
MS
4246/**
4247 * ksize - get the actual amount of memory allocated for a given object
4248 * @objp: Pointer to the object
4249 *
4250 * kmalloc may internally round up allocations and return more memory
4251 * than requested. ksize() can be used to determine the actual amount of
4252 * memory allocated. The caller may use this additional memory, even though
4253 * a smaller amount of memory was initially specified with the kmalloc call.
4254 * The caller must guarantee that objp points to a valid object previously
4255 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4256 * must not be freed during the duration of the call.
4257 */
1da177e4
LT
4258unsigned int ksize(const void *objp)
4259{
00e145b6
MS
4260 if (unlikely(objp == NULL))
4261 return 0;
1da177e4 4262
6ed5eb22 4263 return obj_size(virt_to_cache(objp));
1da177e4 4264}
This page took 0.870909 seconds and 5 git commands to generate.