slab: Simplify bootstrap
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/*
166 * kmem_bufctl_t:
167 *
168 * Bufctl's are used for linking objs within a slab
169 * linked offsets.
170 *
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
182 */
183
fa5b08d5 184typedef unsigned int kmem_bufctl_t;
1da177e4
LT
185#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
187#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 189
1da177e4
LT
190/*
191 * struct slab_rcu
192 *
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
200 *
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
1da177e4
LT
203 */
204struct slab_rcu {
b28a02de 205 struct rcu_head head;
343e0d7a 206 struct kmem_cache *cachep;
b28a02de 207 void *addr;
1da177e4
LT
208};
209
5bfe53a7
LJ
210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
218 union {
219 struct {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
226 };
227 struct slab_rcu __slab_cover_slab_rcu;
228 };
229};
230
1da177e4
LT
231/*
232 * struct array_cache
233 *
1da177e4
LT
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
238 *
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
241 *
242 */
243struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
e498be7d 248 spinlock_t lock;
bda5b655 249 void *entry[]; /*
a737b3e2
AM
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
072bb0aa
MG
253 *
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 257 */
1da177e4
LT
258};
259
072bb0aa
MG
260#define SLAB_OBJ_PFMEMALLOC 1
261static inline bool is_obj_pfmemalloc(void *objp)
262{
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
264}
265
266static inline void set_obj_pfmemalloc(void **objp)
267{
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
269 return;
270}
271
272static inline void clear_obj_pfmemalloc(void **objp)
273{
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
275}
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
556a169d 307#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 308static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 309#define CACHE_CACHE 0
556a169d
PE
310#define SIZE_AC MAX_NUMNODES
311#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
83b519e8 317static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
1c61fc40 336#include <linux/kmalloc_sizes.h>
e498be7d 337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4 374
1da177e4
LT
375#define CFLGS_OFF_SLAB (0x80000000UL)
376#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
377
378#define BATCHREFILL_LIMIT 16
a737b3e2
AM
379/*
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
1da177e4 382 *
dc6f3f27 383 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
384 * which could lock up otherwise freeable slabs.
385 */
386#define REAPTIMEOUT_CPUC (2*HZ)
387#define REAPTIMEOUT_LIST3 (4*HZ)
388
389#if STATS
390#define STATS_INC_ACTIVE(x) ((x)->num_active++)
391#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 394#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
395#define STATS_SET_HIGH(x) \
396 do { \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
399 } while (0)
1da177e4
LT
400#define STATS_INC_ERR(x) ((x)->errors++)
401#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 402#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 403#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
404#define STATS_SET_FREEABLE(x, i) \
405 do { \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
408 } while (0)
1da177e4
LT
409#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
413#else
414#define STATS_INC_ACTIVE(x) do { } while (0)
415#define STATS_DEC_ACTIVE(x) do { } while (0)
416#define STATS_INC_ALLOCED(x) do { } while (0)
417#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 418#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
419#define STATS_SET_HIGH(x) do { } while (0)
420#define STATS_INC_ERR(x) do { } while (0)
421#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 422#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 423#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 424#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
425#define STATS_INC_ALLOCHIT(x) do { } while (0)
426#define STATS_INC_ALLOCMISS(x) do { } while (0)
427#define STATS_INC_FREEHIT(x) do { } while (0)
428#define STATS_INC_FREEMISS(x) do { } while (0)
429#endif
430
431#if DEBUG
1da177e4 432
a737b3e2
AM
433/*
434 * memory layout of objects:
1da177e4 435 * 0 : objp
3dafccf2 436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
3dafccf2 439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 440 * redzone word.
3dafccf2 441 * cachep->obj_offset: The real object.
3b0efdfa
CL
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 444 * [BYTES_PER_WORD long]
1da177e4 445 */
343e0d7a 446static int obj_offset(struct kmem_cache *cachep)
1da177e4 447{
3dafccf2 448 return cachep->obj_offset;
1da177e4
LT
449}
450
b46b8f19 451static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
452{
453 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
454 return (unsigned long long*) (objp + obj_offset(cachep) -
455 sizeof(unsigned long long));
1da177e4
LT
456}
457
b46b8f19 458static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
459{
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
461 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 462 return (unsigned long long *)(objp + cachep->size -
b46b8f19 463 sizeof(unsigned long long) -
87a927c7 464 REDZONE_ALIGN);
3b0efdfa 465 return (unsigned long long *) (objp + cachep->size -
b46b8f19 466 sizeof(unsigned long long));
1da177e4
LT
467}
468
343e0d7a 469static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
470{
471 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 472 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
473}
474
475#else
476
3dafccf2 477#define obj_offset(x) 0
b46b8f19
DW
478#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
480#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
481
482#endif
483
1da177e4 484/*
3df1cccd
DR
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
1da177e4 487 */
543585cc
DR
488#define SLAB_MAX_ORDER_HI 1
489#define SLAB_MAX_ORDER_LO 0
490static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 491static bool slab_max_order_set __initdata;
1da177e4 492
6ed5eb22
PE
493static inline struct kmem_cache *virt_to_cache(const void *obj)
494{
b49af68f 495 struct page *page = virt_to_head_page(obj);
35026088 496 return page->slab_cache;
6ed5eb22
PE
497}
498
499static inline struct slab *virt_to_slab(const void *obj)
500{
b49af68f 501 struct page *page = virt_to_head_page(obj);
35026088
CL
502
503 VM_BUG_ON(!PageSlab(page));
504 return page->slab_page;
6ed5eb22
PE
505}
506
8fea4e96
PE
507static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
508 unsigned int idx)
509{
3b0efdfa 510 return slab->s_mem + cache->size * idx;
8fea4e96
PE
511}
512
6a2d7a95 513/*
3b0efdfa
CL
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
6a2d7a95
ED
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
518 */
519static inline unsigned int obj_to_index(const struct kmem_cache *cache,
520 const struct slab *slab, void *obj)
8fea4e96 521{
6a2d7a95
ED
522 u32 offset = (obj - slab->s_mem);
523 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
524}
525
a737b3e2
AM
526/*
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
528 */
1da177e4
LT
529struct cache_sizes malloc_sizes[] = {
530#define CACHE(x) { .cs_size = (x) },
531#include <linux/kmalloc_sizes.h>
532 CACHE(ULONG_MAX)
533#undef CACHE
534};
535EXPORT_SYMBOL(malloc_sizes);
536
537/* Must match cache_sizes above. Out of line to keep cache footprint low. */
538struct cache_names {
539 char *name;
540 char *name_dma;
541};
542
543static struct cache_names __initdata cache_names[] = {
544#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545#include <linux/kmalloc_sizes.h>
b28a02de 546 {NULL,}
1da177e4
LT
547#undef CACHE
548};
549
550static struct arraycache_init initarray_cache __initdata =
b28a02de 551 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 552static struct arraycache_init initarray_generic =
b28a02de 553 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
554
555/* internal cache of cache description objs */
9b030cb8 556static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
557 .batchcount = 1,
558 .limit = BOOT_CPUCACHE_ENTRIES,
559 .shared = 1,
3b0efdfa 560 .size = sizeof(struct kmem_cache),
b28a02de 561 .name = "kmem_cache",
1da177e4
LT
562};
563
056c6241
RT
564#define BAD_ALIEN_MAGIC 0x01020304ul
565
f1aaee53
AV
566#ifdef CONFIG_LOCKDEP
567
568/*
569 * Slab sometimes uses the kmalloc slabs to store the slab headers
570 * for other slabs "off slab".
571 * The locking for this is tricky in that it nests within the locks
572 * of all other slabs in a few places; to deal with this special
573 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
574 *
575 * We set lock class for alien array caches which are up during init.
576 * The lock annotation will be lost if all cpus of a node goes down and
577 * then comes back up during hotplug
f1aaee53 578 */
056c6241
RT
579static struct lock_class_key on_slab_l3_key;
580static struct lock_class_key on_slab_alc_key;
581
83835b3d
PZ
582static struct lock_class_key debugobj_l3_key;
583static struct lock_class_key debugobj_alc_key;
584
585static void slab_set_lock_classes(struct kmem_cache *cachep,
586 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
587 int q)
588{
589 struct array_cache **alc;
590 struct kmem_list3 *l3;
591 int r;
592
593 l3 = cachep->nodelists[q];
594 if (!l3)
595 return;
596
597 lockdep_set_class(&l3->list_lock, l3_key);
598 alc = l3->alien;
599 /*
600 * FIXME: This check for BAD_ALIEN_MAGIC
601 * should go away when common slab code is taught to
602 * work even without alien caches.
603 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
604 * for alloc_alien_cache,
605 */
606 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
607 return;
608 for_each_node(r) {
609 if (alc[r])
610 lockdep_set_class(&alc[r]->lock, alc_key);
611 }
612}
613
614static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
615{
616 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
617}
618
619static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
620{
621 int node;
622
623 for_each_online_node(node)
624 slab_set_debugobj_lock_classes_node(cachep, node);
625}
626
ce79ddc8 627static void init_node_lock_keys(int q)
f1aaee53 628{
056c6241
RT
629 struct cache_sizes *s = malloc_sizes;
630
97d06609 631 if (slab_state < UP)
ce79ddc8
PE
632 return;
633
634 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 635 struct kmem_list3 *l3;
ce79ddc8
PE
636
637 l3 = s->cs_cachep->nodelists[q];
638 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 639 continue;
83835b3d
PZ
640
641 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
642 &on_slab_alc_key, q);
f1aaee53
AV
643 }
644}
ce79ddc8
PE
645
646static inline void init_lock_keys(void)
647{
648 int node;
649
650 for_each_node(node)
651 init_node_lock_keys(node);
652}
f1aaee53 653#else
ce79ddc8
PE
654static void init_node_lock_keys(int q)
655{
656}
657
056c6241 658static inline void init_lock_keys(void)
f1aaee53
AV
659{
660}
83835b3d
PZ
661
662static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
663{
664}
665
666static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
667{
668}
f1aaee53
AV
669#endif
670
1871e52c 671static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 672
343e0d7a 673static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
674{
675 return cachep->array[smp_processor_id()];
676}
677
a737b3e2
AM
678static inline struct kmem_cache *__find_general_cachep(size_t size,
679 gfp_t gfpflags)
1da177e4
LT
680{
681 struct cache_sizes *csizep = malloc_sizes;
682
683#if DEBUG
684 /* This happens if someone tries to call
b28a02de
PE
685 * kmem_cache_create(), or __kmalloc(), before
686 * the generic caches are initialized.
687 */
c7e43c78 688 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 689#endif
6cb8f913
CL
690 if (!size)
691 return ZERO_SIZE_PTR;
692
1da177e4
LT
693 while (size > csizep->cs_size)
694 csizep++;
695
696 /*
0abf40c1 697 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
698 * has cs_{dma,}cachep==NULL. Thus no special case
699 * for large kmalloc calls required.
700 */
4b51d669 701#ifdef CONFIG_ZONE_DMA
1da177e4
LT
702 if (unlikely(gfpflags & GFP_DMA))
703 return csizep->cs_dmacachep;
4b51d669 704#endif
1da177e4
LT
705 return csizep->cs_cachep;
706}
707
b221385b 708static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
709{
710 return __find_general_cachep(size, gfpflags);
711}
97e2bde4 712
fbaccacf 713static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 714{
fbaccacf
SR
715 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
716}
1da177e4 717
a737b3e2
AM
718/*
719 * Calculate the number of objects and left-over bytes for a given buffer size.
720 */
fbaccacf
SR
721static void cache_estimate(unsigned long gfporder, size_t buffer_size,
722 size_t align, int flags, size_t *left_over,
723 unsigned int *num)
724{
725 int nr_objs;
726 size_t mgmt_size;
727 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 728
fbaccacf
SR
729 /*
730 * The slab management structure can be either off the slab or
731 * on it. For the latter case, the memory allocated for a
732 * slab is used for:
733 *
734 * - The struct slab
735 * - One kmem_bufctl_t for each object
736 * - Padding to respect alignment of @align
737 * - @buffer_size bytes for each object
738 *
739 * If the slab management structure is off the slab, then the
740 * alignment will already be calculated into the size. Because
741 * the slabs are all pages aligned, the objects will be at the
742 * correct alignment when allocated.
743 */
744 if (flags & CFLGS_OFF_SLAB) {
745 mgmt_size = 0;
746 nr_objs = slab_size / buffer_size;
747
748 if (nr_objs > SLAB_LIMIT)
749 nr_objs = SLAB_LIMIT;
750 } else {
751 /*
752 * Ignore padding for the initial guess. The padding
753 * is at most @align-1 bytes, and @buffer_size is at
754 * least @align. In the worst case, this result will
755 * be one greater than the number of objects that fit
756 * into the memory allocation when taking the padding
757 * into account.
758 */
759 nr_objs = (slab_size - sizeof(struct slab)) /
760 (buffer_size + sizeof(kmem_bufctl_t));
761
762 /*
763 * This calculated number will be either the right
764 * amount, or one greater than what we want.
765 */
766 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
767 > slab_size)
768 nr_objs--;
769
770 if (nr_objs > SLAB_LIMIT)
771 nr_objs = SLAB_LIMIT;
772
773 mgmt_size = slab_mgmt_size(nr_objs, align);
774 }
775 *num = nr_objs;
776 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
777}
778
f28510d3 779#if DEBUG
d40cee24 780#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 781
a737b3e2
AM
782static void __slab_error(const char *function, struct kmem_cache *cachep,
783 char *msg)
1da177e4
LT
784{
785 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 786 function, cachep->name, msg);
1da177e4 787 dump_stack();
645df230 788 add_taint(TAINT_BAD_PAGE);
1da177e4 789}
f28510d3 790#endif
1da177e4 791
3395ee05
PM
792/*
793 * By default on NUMA we use alien caches to stage the freeing of
794 * objects allocated from other nodes. This causes massive memory
795 * inefficiencies when using fake NUMA setup to split memory into a
796 * large number of small nodes, so it can be disabled on the command
797 * line
798 */
799
800static int use_alien_caches __read_mostly = 1;
801static int __init noaliencache_setup(char *s)
802{
803 use_alien_caches = 0;
804 return 1;
805}
806__setup("noaliencache", noaliencache_setup);
807
3df1cccd
DR
808static int __init slab_max_order_setup(char *str)
809{
810 get_option(&str, &slab_max_order);
811 slab_max_order = slab_max_order < 0 ? 0 :
812 min(slab_max_order, MAX_ORDER - 1);
813 slab_max_order_set = true;
814
815 return 1;
816}
817__setup("slab_max_order=", slab_max_order_setup);
818
8fce4d8e
CL
819#ifdef CONFIG_NUMA
820/*
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
825 */
1871e52c 826static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
827
828static void init_reap_node(int cpu)
829{
830 int node;
831
7d6e6d09 832 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 833 if (node == MAX_NUMNODES)
442295c9 834 node = first_node(node_online_map);
8fce4d8e 835
1871e52c 836 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
837}
838
839static void next_reap_node(void)
840{
909ea964 841 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 842
8fce4d8e
CL
843 node = next_node(node, node_online_map);
844 if (unlikely(node >= MAX_NUMNODES))
845 node = first_node(node_online_map);
909ea964 846 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
847}
848
849#else
850#define init_reap_node(cpu) do { } while (0)
851#define next_reap_node(void) do { } while (0)
852#endif
853
1da177e4
LT
854/*
855 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
856 * via the workqueue/eventd.
857 * Add the CPU number into the expiration time to minimize the possibility of
858 * the CPUs getting into lockstep and contending for the global cache chain
859 * lock.
860 */
897e679b 861static void __cpuinit start_cpu_timer(int cpu)
1da177e4 862{
1871e52c 863 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
864
865 /*
866 * When this gets called from do_initcalls via cpucache_init(),
867 * init_workqueues() has already run, so keventd will be setup
868 * at that time.
869 */
52bad64d 870 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 871 init_reap_node(cpu);
203b42f7 872 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
873 schedule_delayed_work_on(cpu, reap_work,
874 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
875 }
876}
877
e498be7d 878static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 879 int batchcount, gfp_t gfp)
1da177e4 880{
b28a02de 881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
882 struct array_cache *nc = NULL;
883
83b519e8 884 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
885 /*
886 * The array_cache structures contain pointers to free object.
25985edc 887 * However, when such objects are allocated or transferred to another
d5cff635
CM
888 * cache the pointers are not cleared and they could be counted as
889 * valid references during a kmemleak scan. Therefore, kmemleak must
890 * not scan such objects.
891 */
892 kmemleak_no_scan(nc);
1da177e4
LT
893 if (nc) {
894 nc->avail = 0;
895 nc->limit = entries;
896 nc->batchcount = batchcount;
897 nc->touched = 0;
e498be7d 898 spin_lock_init(&nc->lock);
1da177e4
LT
899 }
900 return nc;
901}
902
072bb0aa
MG
903static inline bool is_slab_pfmemalloc(struct slab *slabp)
904{
905 struct page *page = virt_to_page(slabp->s_mem);
906
907 return PageSlabPfmemalloc(page);
908}
909
910/* Clears pfmemalloc_active if no slabs have pfmalloc set */
911static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
912 struct array_cache *ac)
913{
914 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
915 struct slab *slabp;
916 unsigned long flags;
917
918 if (!pfmemalloc_active)
919 return;
920
921 spin_lock_irqsave(&l3->list_lock, flags);
922 list_for_each_entry(slabp, &l3->slabs_full, list)
923 if (is_slab_pfmemalloc(slabp))
924 goto out;
925
926 list_for_each_entry(slabp, &l3->slabs_partial, list)
927 if (is_slab_pfmemalloc(slabp))
928 goto out;
929
930 list_for_each_entry(slabp, &l3->slabs_free, list)
931 if (is_slab_pfmemalloc(slabp))
932 goto out;
933
934 pfmemalloc_active = false;
935out:
936 spin_unlock_irqrestore(&l3->list_lock, flags);
937}
938
381760ea 939static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
940 gfp_t flags, bool force_refill)
941{
942 int i;
943 void *objp = ac->entry[--ac->avail];
944
945 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
946 if (unlikely(is_obj_pfmemalloc(objp))) {
947 struct kmem_list3 *l3;
948
949 if (gfp_pfmemalloc_allowed(flags)) {
950 clear_obj_pfmemalloc(&objp);
951 return objp;
952 }
953
954 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 955 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
956 /* If a !PFMEMALLOC object is found, swap them */
957 if (!is_obj_pfmemalloc(ac->entry[i])) {
958 objp = ac->entry[i];
959 ac->entry[i] = ac->entry[ac->avail];
960 ac->entry[ac->avail] = objp;
961 return objp;
962 }
963 }
964
965 /*
966 * If there are empty slabs on the slabs_free list and we are
967 * being forced to refill the cache, mark this one !pfmemalloc.
968 */
969 l3 = cachep->nodelists[numa_mem_id()];
970 if (!list_empty(&l3->slabs_free) && force_refill) {
971 struct slab *slabp = virt_to_slab(objp);
30c29bea 972 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
973 clear_obj_pfmemalloc(&objp);
974 recheck_pfmemalloc_active(cachep, ac);
975 return objp;
976 }
977
978 /* No !PFMEMALLOC objects available */
979 ac->avail++;
980 objp = NULL;
981 }
982
983 return objp;
984}
985
381760ea
MG
986static inline void *ac_get_obj(struct kmem_cache *cachep,
987 struct array_cache *ac, gfp_t flags, bool force_refill)
988{
989 void *objp;
990
991 if (unlikely(sk_memalloc_socks()))
992 objp = __ac_get_obj(cachep, ac, flags, force_refill);
993 else
994 objp = ac->entry[--ac->avail];
995
996 return objp;
997}
998
999static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1000 void *objp)
1001{
1002 if (unlikely(pfmemalloc_active)) {
1003 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 1004 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
1005 if (PageSlabPfmemalloc(page))
1006 set_obj_pfmemalloc(&objp);
1007 }
1008
381760ea
MG
1009 return objp;
1010}
1011
1012static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1013 void *objp)
1014{
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_put_obj(cachep, ac, objp);
1017
072bb0aa
MG
1018 ac->entry[ac->avail++] = objp;
1019}
1020
3ded175a
CL
1021/*
1022 * Transfer objects in one arraycache to another.
1023 * Locking must be handled by the caller.
1024 *
1025 * Return the number of entries transferred.
1026 */
1027static int transfer_objects(struct array_cache *to,
1028 struct array_cache *from, unsigned int max)
1029{
1030 /* Figure out how many entries to transfer */
732eacc0 1031 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1032
1033 if (!nr)
1034 return 0;
1035
1036 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1037 sizeof(void *) *nr);
1038
1039 from->avail -= nr;
1040 to->avail += nr;
3ded175a
CL
1041 return nr;
1042}
1043
765c4507
CL
1044#ifndef CONFIG_NUMA
1045
1046#define drain_alien_cache(cachep, alien) do { } while (0)
1047#define reap_alien(cachep, l3) do { } while (0)
1048
83b519e8 1049static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1050{
1051 return (struct array_cache **)BAD_ALIEN_MAGIC;
1052}
1053
1054static inline void free_alien_cache(struct array_cache **ac_ptr)
1055{
1056}
1057
1058static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1059{
1060 return 0;
1061}
1062
1063static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1064 gfp_t flags)
1065{
1066 return NULL;
1067}
1068
8b98c169 1069static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1070 gfp_t flags, int nodeid)
1071{
1072 return NULL;
1073}
1074
1075#else /* CONFIG_NUMA */
1076
8b98c169 1077static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1078static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1079
83b519e8 1080static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1081{
1082 struct array_cache **ac_ptr;
8ef82866 1083 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1084 int i;
1085
1086 if (limit > 1)
1087 limit = 12;
f3186a9c 1088 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1089 if (ac_ptr) {
1090 for_each_node(i) {
f3186a9c 1091 if (i == node || !node_online(i))
e498be7d 1092 continue;
83b519e8 1093 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1094 if (!ac_ptr[i]) {
cc550def 1095 for (i--; i >= 0; i--)
e498be7d
CL
1096 kfree(ac_ptr[i]);
1097 kfree(ac_ptr);
1098 return NULL;
1099 }
1100 }
1101 }
1102 return ac_ptr;
1103}
1104
5295a74c 1105static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1106{
1107 int i;
1108
1109 if (!ac_ptr)
1110 return;
e498be7d 1111 for_each_node(i)
b28a02de 1112 kfree(ac_ptr[i]);
e498be7d
CL
1113 kfree(ac_ptr);
1114}
1115
343e0d7a 1116static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1117 struct array_cache *ac, int node)
e498be7d
CL
1118{
1119 struct kmem_list3 *rl3 = cachep->nodelists[node];
1120
1121 if (ac->avail) {
1122 spin_lock(&rl3->list_lock);
e00946fe
CL
1123 /*
1124 * Stuff objects into the remote nodes shared array first.
1125 * That way we could avoid the overhead of putting the objects
1126 * into the free lists and getting them back later.
1127 */
693f7d36 1128 if (rl3->shared)
1129 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1130
ff69416e 1131 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1132 ac->avail = 0;
1133 spin_unlock(&rl3->list_lock);
1134 }
1135}
1136
8fce4d8e
CL
1137/*
1138 * Called from cache_reap() to regularly drain alien caches round robin.
1139 */
1140static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1141{
909ea964 1142 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1143
1144 if (l3->alien) {
1145 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1146
1147 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1148 __drain_alien_cache(cachep, ac, node);
1149 spin_unlock_irq(&ac->lock);
1150 }
1151 }
1152}
1153
a737b3e2
AM
1154static void drain_alien_cache(struct kmem_cache *cachep,
1155 struct array_cache **alien)
e498be7d 1156{
b28a02de 1157 int i = 0;
e498be7d
CL
1158 struct array_cache *ac;
1159 unsigned long flags;
1160
1161 for_each_online_node(i) {
4484ebf1 1162 ac = alien[i];
e498be7d
CL
1163 if (ac) {
1164 spin_lock_irqsave(&ac->lock, flags);
1165 __drain_alien_cache(cachep, ac, i);
1166 spin_unlock_irqrestore(&ac->lock, flags);
1167 }
1168 }
1169}
729bd0b7 1170
873623df 1171static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1172{
1173 struct slab *slabp = virt_to_slab(objp);
1174 int nodeid = slabp->nodeid;
1175 struct kmem_list3 *l3;
1176 struct array_cache *alien = NULL;
1ca4cb24
PE
1177 int node;
1178
7d6e6d09 1179 node = numa_mem_id();
729bd0b7
PE
1180
1181 /*
1182 * Make sure we are not freeing a object from another node to the array
1183 * cache on this cpu.
1184 */
62918a03 1185 if (likely(slabp->nodeid == node))
729bd0b7
PE
1186 return 0;
1187
1ca4cb24 1188 l3 = cachep->nodelists[node];
729bd0b7
PE
1189 STATS_INC_NODEFREES(cachep);
1190 if (l3->alien && l3->alien[nodeid]) {
1191 alien = l3->alien[nodeid];
873623df 1192 spin_lock(&alien->lock);
729bd0b7
PE
1193 if (unlikely(alien->avail == alien->limit)) {
1194 STATS_INC_ACOVERFLOW(cachep);
1195 __drain_alien_cache(cachep, alien, nodeid);
1196 }
072bb0aa 1197 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1198 spin_unlock(&alien->lock);
1199 } else {
1200 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1201 free_block(cachep, &objp, 1, nodeid);
1202 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1203 }
1204 return 1;
1205}
e498be7d
CL
1206#endif
1207
8f9f8d9e
DR
1208/*
1209 * Allocates and initializes nodelists for a node on each slab cache, used for
1210 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1211 * will be allocated off-node since memory is not yet online for the new node.
1212 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1213 * already in use.
1214 *
18004c5d 1215 * Must hold slab_mutex.
8f9f8d9e
DR
1216 */
1217static int init_cache_nodelists_node(int node)
1218{
1219 struct kmem_cache *cachep;
1220 struct kmem_list3 *l3;
1221 const int memsize = sizeof(struct kmem_list3);
1222
18004c5d 1223 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1224 /*
1225 * Set up the size64 kmemlist for cpu before we can
1226 * begin anything. Make sure some other cpu on this
1227 * node has not already allocated this
1228 */
1229 if (!cachep->nodelists[node]) {
1230 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1231 if (!l3)
1232 return -ENOMEM;
1233 kmem_list3_init(l3);
1234 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1235 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1236
1237 /*
1238 * The l3s don't come and go as CPUs come and
18004c5d 1239 * go. slab_mutex is sufficient
8f9f8d9e
DR
1240 * protection here.
1241 */
1242 cachep->nodelists[node] = l3;
1243 }
1244
1245 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1246 cachep->nodelists[node]->free_limit =
1247 (1 + nr_cpus_node(node)) *
1248 cachep->batchcount + cachep->num;
1249 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1250 }
1251 return 0;
1252}
1253
fbf1e473
AM
1254static void __cpuinit cpuup_canceled(long cpu)
1255{
1256 struct kmem_cache *cachep;
1257 struct kmem_list3 *l3 = NULL;
7d6e6d09 1258 int node = cpu_to_mem(cpu);
a70f7302 1259 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1260
18004c5d 1261 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1262 struct array_cache *nc;
1263 struct array_cache *shared;
1264 struct array_cache **alien;
fbf1e473 1265
fbf1e473
AM
1266 /* cpu is dead; no one can alloc from it. */
1267 nc = cachep->array[cpu];
1268 cachep->array[cpu] = NULL;
1269 l3 = cachep->nodelists[node];
1270
1271 if (!l3)
1272 goto free_array_cache;
1273
1274 spin_lock_irq(&l3->list_lock);
1275
1276 /* Free limit for this kmem_list3 */
1277 l3->free_limit -= cachep->batchcount;
1278 if (nc)
1279 free_block(cachep, nc->entry, nc->avail, node);
1280
58463c1f 1281 if (!cpumask_empty(mask)) {
fbf1e473
AM
1282 spin_unlock_irq(&l3->list_lock);
1283 goto free_array_cache;
1284 }
1285
1286 shared = l3->shared;
1287 if (shared) {
1288 free_block(cachep, shared->entry,
1289 shared->avail, node);
1290 l3->shared = NULL;
1291 }
1292
1293 alien = l3->alien;
1294 l3->alien = NULL;
1295
1296 spin_unlock_irq(&l3->list_lock);
1297
1298 kfree(shared);
1299 if (alien) {
1300 drain_alien_cache(cachep, alien);
1301 free_alien_cache(alien);
1302 }
1303free_array_cache:
1304 kfree(nc);
1305 }
1306 /*
1307 * In the previous loop, all the objects were freed to
1308 * the respective cache's slabs, now we can go ahead and
1309 * shrink each nodelist to its limit.
1310 */
18004c5d 1311 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1312 l3 = cachep->nodelists[node];
1313 if (!l3)
1314 continue;
1315 drain_freelist(cachep, l3, l3->free_objects);
1316 }
1317}
1318
1319static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1320{
343e0d7a 1321 struct kmem_cache *cachep;
e498be7d 1322 struct kmem_list3 *l3 = NULL;
7d6e6d09 1323 int node = cpu_to_mem(cpu);
8f9f8d9e 1324 int err;
1da177e4 1325
fbf1e473
AM
1326 /*
1327 * We need to do this right in the beginning since
1328 * alloc_arraycache's are going to use this list.
1329 * kmalloc_node allows us to add the slab to the right
1330 * kmem_list3 and not this cpu's kmem_list3
1331 */
8f9f8d9e
DR
1332 err = init_cache_nodelists_node(node);
1333 if (err < 0)
1334 goto bad;
fbf1e473
AM
1335
1336 /*
1337 * Now we can go ahead with allocating the shared arrays and
1338 * array caches
1339 */
18004c5d 1340 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1341 struct array_cache *nc;
1342 struct array_cache *shared = NULL;
1343 struct array_cache **alien = NULL;
1344
1345 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1346 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1347 if (!nc)
1348 goto bad;
1349 if (cachep->shared) {
1350 shared = alloc_arraycache(node,
1351 cachep->shared * cachep->batchcount,
83b519e8 1352 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1353 if (!shared) {
1354 kfree(nc);
1da177e4 1355 goto bad;
12d00f6a 1356 }
fbf1e473
AM
1357 }
1358 if (use_alien_caches) {
83b519e8 1359 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1360 if (!alien) {
1361 kfree(shared);
1362 kfree(nc);
fbf1e473 1363 goto bad;
12d00f6a 1364 }
fbf1e473
AM
1365 }
1366 cachep->array[cpu] = nc;
1367 l3 = cachep->nodelists[node];
1368 BUG_ON(!l3);
1369
1370 spin_lock_irq(&l3->list_lock);
1371 if (!l3->shared) {
1372 /*
1373 * We are serialised from CPU_DEAD or
1374 * CPU_UP_CANCELLED by the cpucontrol lock
1375 */
1376 l3->shared = shared;
1377 shared = NULL;
1378 }
4484ebf1 1379#ifdef CONFIG_NUMA
fbf1e473
AM
1380 if (!l3->alien) {
1381 l3->alien = alien;
1382 alien = NULL;
1da177e4 1383 }
fbf1e473
AM
1384#endif
1385 spin_unlock_irq(&l3->list_lock);
1386 kfree(shared);
1387 free_alien_cache(alien);
83835b3d
PZ
1388 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1389 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1390 }
ce79ddc8
PE
1391 init_node_lock_keys(node);
1392
fbf1e473
AM
1393 return 0;
1394bad:
12d00f6a 1395 cpuup_canceled(cpu);
fbf1e473
AM
1396 return -ENOMEM;
1397}
1398
1399static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1400 unsigned long action, void *hcpu)
1401{
1402 long cpu = (long)hcpu;
1403 int err = 0;
1404
1405 switch (action) {
fbf1e473
AM
1406 case CPU_UP_PREPARE:
1407 case CPU_UP_PREPARE_FROZEN:
18004c5d 1408 mutex_lock(&slab_mutex);
fbf1e473 1409 err = cpuup_prepare(cpu);
18004c5d 1410 mutex_unlock(&slab_mutex);
1da177e4
LT
1411 break;
1412 case CPU_ONLINE:
8bb78442 1413 case CPU_ONLINE_FROZEN:
1da177e4
LT
1414 start_cpu_timer(cpu);
1415 break;
1416#ifdef CONFIG_HOTPLUG_CPU
5830c590 1417 case CPU_DOWN_PREPARE:
8bb78442 1418 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1419 /*
18004c5d 1420 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1421 * held so that if cache_reap() is invoked it cannot do
1422 * anything expensive but will only modify reap_work
1423 * and reschedule the timer.
1424 */
afe2c511 1425 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1426 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1427 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1428 break;
1429 case CPU_DOWN_FAILED:
8bb78442 1430 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1431 start_cpu_timer(cpu);
1432 break;
1da177e4 1433 case CPU_DEAD:
8bb78442 1434 case CPU_DEAD_FROZEN:
4484ebf1
RT
1435 /*
1436 * Even if all the cpus of a node are down, we don't free the
1437 * kmem_list3 of any cache. This to avoid a race between
1438 * cpu_down, and a kmalloc allocation from another cpu for
1439 * memory from the node of the cpu going down. The list3
1440 * structure is usually allocated from kmem_cache_create() and
1441 * gets destroyed at kmem_cache_destroy().
1442 */
183ff22b 1443 /* fall through */
8f5be20b 1444#endif
1da177e4 1445 case CPU_UP_CANCELED:
8bb78442 1446 case CPU_UP_CANCELED_FROZEN:
18004c5d 1447 mutex_lock(&slab_mutex);
fbf1e473 1448 cpuup_canceled(cpu);
18004c5d 1449 mutex_unlock(&slab_mutex);
1da177e4 1450 break;
1da177e4 1451 }
eac40680 1452 return notifier_from_errno(err);
1da177e4
LT
1453}
1454
74b85f37
CS
1455static struct notifier_block __cpuinitdata cpucache_notifier = {
1456 &cpuup_callback, NULL, 0
1457};
1da177e4 1458
8f9f8d9e
DR
1459#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1460/*
1461 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1462 * Returns -EBUSY if all objects cannot be drained so that the node is not
1463 * removed.
1464 *
18004c5d 1465 * Must hold slab_mutex.
8f9f8d9e
DR
1466 */
1467static int __meminit drain_cache_nodelists_node(int node)
1468{
1469 struct kmem_cache *cachep;
1470 int ret = 0;
1471
18004c5d 1472 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1473 struct kmem_list3 *l3;
1474
1475 l3 = cachep->nodelists[node];
1476 if (!l3)
1477 continue;
1478
1479 drain_freelist(cachep, l3, l3->free_objects);
1480
1481 if (!list_empty(&l3->slabs_full) ||
1482 !list_empty(&l3->slabs_partial)) {
1483 ret = -EBUSY;
1484 break;
1485 }
1486 }
1487 return ret;
1488}
1489
1490static int __meminit slab_memory_callback(struct notifier_block *self,
1491 unsigned long action, void *arg)
1492{
1493 struct memory_notify *mnb = arg;
1494 int ret = 0;
1495 int nid;
1496
1497 nid = mnb->status_change_nid;
1498 if (nid < 0)
1499 goto out;
1500
1501 switch (action) {
1502 case MEM_GOING_ONLINE:
18004c5d 1503 mutex_lock(&slab_mutex);
8f9f8d9e 1504 ret = init_cache_nodelists_node(nid);
18004c5d 1505 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1506 break;
1507 case MEM_GOING_OFFLINE:
18004c5d 1508 mutex_lock(&slab_mutex);
8f9f8d9e 1509 ret = drain_cache_nodelists_node(nid);
18004c5d 1510 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1511 break;
1512 case MEM_ONLINE:
1513 case MEM_OFFLINE:
1514 case MEM_CANCEL_ONLINE:
1515 case MEM_CANCEL_OFFLINE:
1516 break;
1517 }
1518out:
5fda1bd5 1519 return notifier_from_errno(ret);
8f9f8d9e
DR
1520}
1521#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1522
e498be7d
CL
1523/*
1524 * swap the static kmem_list3 with kmalloced memory
1525 */
8f9f8d9e
DR
1526static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1527 int nodeid)
e498be7d
CL
1528{
1529 struct kmem_list3 *ptr;
1530
83b519e8 1531 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1532 BUG_ON(!ptr);
1533
e498be7d 1534 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1535 /*
1536 * Do not assume that spinlocks can be initialized via memcpy:
1537 */
1538 spin_lock_init(&ptr->list_lock);
1539
e498be7d
CL
1540 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1541 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1542}
1543
556a169d
PE
1544/*
1545 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1546 * size of kmem_list3.
1547 */
1548static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1549{
1550 int node;
1551
1552 for_each_online_node(node) {
1553 cachep->nodelists[node] = &initkmem_list3[index + node];
1554 cachep->nodelists[node]->next_reap = jiffies +
1555 REAPTIMEOUT_LIST3 +
1556 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1557 }
1558}
1559
3c583465
CL
1560/*
1561 * The memory after the last cpu cache pointer is used for the
1562 * the nodelists pointer.
1563 */
1564static void setup_nodelists_pointer(struct kmem_cache *cachep)
1565{
1566 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1567}
1568
a737b3e2
AM
1569/*
1570 * Initialisation. Called after the page allocator have been initialised and
1571 * before smp_init().
1da177e4
LT
1572 */
1573void __init kmem_cache_init(void)
1574{
1575 size_t left_over;
1576 struct cache_sizes *sizes;
1577 struct cache_names *names;
e498be7d 1578 int i;
07ed76b2 1579 int order;
1ca4cb24 1580 int node;
e498be7d 1581
9b030cb8 1582 kmem_cache = &kmem_cache_boot;
3c583465 1583 setup_nodelists_pointer(kmem_cache);
9b030cb8 1584
b6e68bc1 1585 if (num_possible_nodes() == 1)
62918a03
SS
1586 use_alien_caches = 0;
1587
3c583465 1588 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1589 kmem_list3_init(&initkmem_list3[i]);
3c583465 1590
9b030cb8 1591 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1592
1593 /*
1594 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1595 * page orders on machines with more than 32MB of memory if
1596 * not overridden on the command line.
1da177e4 1597 */
3df1cccd 1598 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1599 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1600
1da177e4
LT
1601 /* Bootstrap is tricky, because several objects are allocated
1602 * from caches that do not exist yet:
9b030cb8
CL
1603 * 1) initialize the kmem_cache cache: it contains the struct
1604 * kmem_cache structures of all caches, except kmem_cache itself:
1605 * kmem_cache is statically allocated.
e498be7d
CL
1606 * Initially an __init data area is used for the head array and the
1607 * kmem_list3 structures, it's replaced with a kmalloc allocated
1608 * array at the end of the bootstrap.
1da177e4 1609 * 2) Create the first kmalloc cache.
343e0d7a 1610 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1611 * An __init data area is used for the head array.
1612 * 3) Create the remaining kmalloc caches, with minimally sized
1613 * head arrays.
9b030cb8 1614 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1615 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1616 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1617 * the other cache's with kmalloc allocated memory.
1618 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1619 */
1620
7d6e6d09 1621 node = numa_mem_id();
1ca4cb24 1622
9b030cb8 1623 /* 1) create the kmem_cache */
18004c5d 1624 INIT_LIST_HEAD(&slab_caches);
9b030cb8
CL
1625 list_add(&kmem_cache->list, &slab_caches);
1626 kmem_cache->colour_off = cache_line_size();
1627 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1da177e4 1628
8da3430d 1629 /*
b56efcf0 1630 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1631 */
9b030cb8 1632 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1633 nr_node_ids * sizeof(struct kmem_list3 *);
9b030cb8
CL
1634 kmem_cache->object_size = kmem_cache->size;
1635 kmem_cache->size = ALIGN(kmem_cache->object_size,
a737b3e2 1636 cache_line_size());
9b030cb8
CL
1637 kmem_cache->reciprocal_buffer_size =
1638 reciprocal_value(kmem_cache->size);
1da177e4 1639
07ed76b2 1640 for (order = 0; order < MAX_ORDER; order++) {
9b030cb8
CL
1641 cache_estimate(order, kmem_cache->size,
1642 cache_line_size(), 0, &left_over, &kmem_cache->num);
1643 if (kmem_cache->num)
07ed76b2
JS
1644 break;
1645 }
9b030cb8
CL
1646 BUG_ON(!kmem_cache->num);
1647 kmem_cache->gfporder = order;
1648 kmem_cache->colour = left_over / kmem_cache->colour_off;
1649 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
b28a02de 1650 sizeof(struct slab), cache_line_size());
1da177e4
LT
1651
1652 /* 2+3) create the kmalloc caches */
1653 sizes = malloc_sizes;
1654 names = cache_names;
1655
a737b3e2
AM
1656 /*
1657 * Initialize the caches that provide memory for the array cache and the
1658 * kmem_list3 structures first. Without this, further allocations will
1659 * bug.
e498be7d
CL
1660 */
1661
278b1bb1 1662 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1663 sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
1664 sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
1665 sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
1666 sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1667 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1668 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
e498be7d 1669
a737b3e2 1670 if (INDEX_AC != INDEX_L3) {
278b1bb1 1671 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1672 sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
1673 sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
1674 sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
1675 sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1676 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1677 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
a737b3e2 1678 }
e498be7d 1679
e0a42726
IM
1680 slab_early_init = 0;
1681
1da177e4 1682 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1683 /*
1684 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1685 * This should be particularly beneficial on SMP boxes, as it
1686 * eliminates "false sharing".
1687 * Note for systems short on memory removing the alignment will
e498be7d
CL
1688 * allow tighter packing of the smaller caches.
1689 */
a737b3e2 1690 if (!sizes->cs_cachep) {
278b1bb1 1691 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1692 sizes->cs_cachep->name = names->name;
1693 sizes->cs_cachep->size = sizes->cs_size;
1694 sizes->cs_cachep->object_size = sizes->cs_size;
1695 sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1696 __kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1697 list_add(&sizes->cs_cachep->list, &slab_caches);
a737b3e2 1698 }
4b51d669 1699#ifdef CONFIG_ZONE_DMA
278b1bb1 1700 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1701 sizes->cs_dmacachep->name = names->name_dma;
1702 sizes->cs_dmacachep->size = sizes->cs_size;
1703 sizes->cs_dmacachep->object_size = sizes->cs_size;
1704 sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
278b1bb1 1705 __kmem_cache_create(sizes->cs_dmacachep,
8a13a4cc 1706 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
7c9adf5a 1707 list_add(&sizes->cs_dmacachep->list, &slab_caches);
4b51d669 1708#endif
1da177e4
LT
1709 sizes++;
1710 names++;
1711 }
1712 /* 4) Replace the bootstrap head arrays */
1713 {
2b2d5493 1714 struct array_cache *ptr;
e498be7d 1715
83b519e8 1716 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1717
9b030cb8
CL
1718 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1719 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1720 sizeof(struct arraycache_init));
2b2d5493
IM
1721 /*
1722 * Do not assume that spinlocks can be initialized via memcpy:
1723 */
1724 spin_lock_init(&ptr->lock);
1725
9b030cb8 1726 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1727
83b519e8 1728 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1729
9a2dba4b 1730 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1731 != &initarray_generic.cache);
9a2dba4b 1732 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1733 sizeof(struct arraycache_init));
2b2d5493
IM
1734 /*
1735 * Do not assume that spinlocks can be initialized via memcpy:
1736 */
1737 spin_lock_init(&ptr->lock);
1738
e498be7d 1739 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1740 ptr;
1da177e4 1741 }
e498be7d
CL
1742 /* 5) Replace the bootstrap kmem_list3's */
1743 {
1ca4cb24
PE
1744 int nid;
1745
9c09a95c 1746 for_each_online_node(nid) {
9b030cb8 1747 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1748
e498be7d 1749 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1750 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1751
1752 if (INDEX_AC != INDEX_L3) {
1753 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1754 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1755 }
1756 }
1757 }
1da177e4 1758
97d06609 1759 slab_state = UP;
8429db5c
PE
1760}
1761
1762void __init kmem_cache_init_late(void)
1763{
1764 struct kmem_cache *cachep;
1765
97d06609 1766 slab_state = UP;
52cef189 1767
8429db5c 1768 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1769 mutex_lock(&slab_mutex);
1770 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1771 if (enable_cpucache(cachep, GFP_NOWAIT))
1772 BUG();
18004c5d 1773 mutex_unlock(&slab_mutex);
056c6241 1774
947ca185
MW
1775 /* Annotate slab for lockdep -- annotate the malloc caches */
1776 init_lock_keys();
1777
97d06609
CL
1778 /* Done! */
1779 slab_state = FULL;
1780
a737b3e2
AM
1781 /*
1782 * Register a cpu startup notifier callback that initializes
1783 * cpu_cache_get for all new cpus
1da177e4
LT
1784 */
1785 register_cpu_notifier(&cpucache_notifier);
1da177e4 1786
8f9f8d9e
DR
1787#ifdef CONFIG_NUMA
1788 /*
1789 * Register a memory hotplug callback that initializes and frees
1790 * nodelists.
1791 */
1792 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1793#endif
1794
a737b3e2
AM
1795 /*
1796 * The reap timers are started later, with a module init call: That part
1797 * of the kernel is not yet operational.
1da177e4
LT
1798 */
1799}
1800
1801static int __init cpucache_init(void)
1802{
1803 int cpu;
1804
a737b3e2
AM
1805 /*
1806 * Register the timers that return unneeded pages to the page allocator
1da177e4 1807 */
e498be7d 1808 for_each_online_cpu(cpu)
a737b3e2 1809 start_cpu_timer(cpu);
a164f896
GC
1810
1811 /* Done! */
97d06609 1812 slab_state = FULL;
1da177e4
LT
1813 return 0;
1814}
1da177e4
LT
1815__initcall(cpucache_init);
1816
8bdec192
RA
1817static noinline void
1818slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1819{
1820 struct kmem_list3 *l3;
1821 struct slab *slabp;
1822 unsigned long flags;
1823 int node;
1824
1825 printk(KERN_WARNING
1826 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1827 nodeid, gfpflags);
1828 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1829 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1830
1831 for_each_online_node(node) {
1832 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1833 unsigned long active_slabs = 0, num_slabs = 0;
1834
1835 l3 = cachep->nodelists[node];
1836 if (!l3)
1837 continue;
1838
1839 spin_lock_irqsave(&l3->list_lock, flags);
1840 list_for_each_entry(slabp, &l3->slabs_full, list) {
1841 active_objs += cachep->num;
1842 active_slabs++;
1843 }
1844 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1845 active_objs += slabp->inuse;
1846 active_slabs++;
1847 }
1848 list_for_each_entry(slabp, &l3->slabs_free, list)
1849 num_slabs++;
1850
1851 free_objects += l3->free_objects;
1852 spin_unlock_irqrestore(&l3->list_lock, flags);
1853
1854 num_slabs += active_slabs;
1855 num_objs = num_slabs * cachep->num;
1856 printk(KERN_WARNING
1857 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1858 node, active_slabs, num_slabs, active_objs, num_objs,
1859 free_objects);
1860 }
1861}
1862
1da177e4
LT
1863/*
1864 * Interface to system's page allocator. No need to hold the cache-lock.
1865 *
1866 * If we requested dmaable memory, we will get it. Even if we
1867 * did not request dmaable memory, we might get it, but that
1868 * would be relatively rare and ignorable.
1869 */
343e0d7a 1870static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1871{
1872 struct page *page;
e1b6aa6f 1873 int nr_pages;
1da177e4
LT
1874 int i;
1875
d6fef9da 1876#ifndef CONFIG_MMU
e1b6aa6f
CH
1877 /*
1878 * Nommu uses slab's for process anonymous memory allocations, and thus
1879 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1880 */
e1b6aa6f 1881 flags |= __GFP_COMP;
d6fef9da 1882#endif
765c4507 1883
a618e89f 1884 flags |= cachep->allocflags;
e12ba74d
MG
1885 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1886 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1887
517d0869 1888 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1889 if (!page) {
1890 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1891 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1892 return NULL;
8bdec192 1893 }
1da177e4 1894
b37f1dd0 1895 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1896 if (unlikely(page->pfmemalloc))
1897 pfmemalloc_active = true;
1898
e1b6aa6f 1899 nr_pages = (1 << cachep->gfporder);
1da177e4 1900 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1901 add_zone_page_state(page_zone(page),
1902 NR_SLAB_RECLAIMABLE, nr_pages);
1903 else
1904 add_zone_page_state(page_zone(page),
1905 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1906 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1907 __SetPageSlab(page + i);
c175eea4 1908
072bb0aa
MG
1909 if (page->pfmemalloc)
1910 SetPageSlabPfmemalloc(page + i);
1911 }
1912
b1eeab67
VN
1913 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1914 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1915
1916 if (cachep->ctor)
1917 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1918 else
1919 kmemcheck_mark_unallocated_pages(page, nr_pages);
1920 }
c175eea4 1921
e1b6aa6f 1922 return page_address(page);
1da177e4
LT
1923}
1924
1925/*
1926 * Interface to system's page release.
1927 */
343e0d7a 1928static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1929{
b28a02de 1930 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1931 struct page *page = virt_to_page(addr);
1932 const unsigned long nr_freed = i;
1933
b1eeab67 1934 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1935
972d1a7b
CL
1936 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1937 sub_zone_page_state(page_zone(page),
1938 NR_SLAB_RECLAIMABLE, nr_freed);
1939 else
1940 sub_zone_page_state(page_zone(page),
1941 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1942 while (i--) {
f205b2fe 1943 BUG_ON(!PageSlab(page));
072bb0aa 1944 __ClearPageSlabPfmemalloc(page);
f205b2fe 1945 __ClearPageSlab(page);
1da177e4
LT
1946 page++;
1947 }
1da177e4
LT
1948 if (current->reclaim_state)
1949 current->reclaim_state->reclaimed_slab += nr_freed;
1950 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1951}
1952
1953static void kmem_rcu_free(struct rcu_head *head)
1954{
b28a02de 1955 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1956 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1957
1958 kmem_freepages(cachep, slab_rcu->addr);
1959 if (OFF_SLAB(cachep))
1960 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1961}
1962
1963#if DEBUG
1964
1965#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1966static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1967 unsigned long caller)
1da177e4 1968{
8c138bc0 1969 int size = cachep->object_size;
1da177e4 1970
3dafccf2 1971 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1972
b28a02de 1973 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1974 return;
1975
b28a02de
PE
1976 *addr++ = 0x12345678;
1977 *addr++ = caller;
1978 *addr++ = smp_processor_id();
1979 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1980 {
1981 unsigned long *sptr = &caller;
1982 unsigned long svalue;
1983
1984 while (!kstack_end(sptr)) {
1985 svalue = *sptr++;
1986 if (kernel_text_address(svalue)) {
b28a02de 1987 *addr++ = svalue;
1da177e4
LT
1988 size -= sizeof(unsigned long);
1989 if (size <= sizeof(unsigned long))
1990 break;
1991 }
1992 }
1993
1994 }
b28a02de 1995 *addr++ = 0x87654321;
1da177e4
LT
1996}
1997#endif
1998
343e0d7a 1999static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2000{
8c138bc0 2001 int size = cachep->object_size;
3dafccf2 2002 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2003
2004 memset(addr, val, size);
b28a02de 2005 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2006}
2007
2008static void dump_line(char *data, int offset, int limit)
2009{
2010 int i;
aa83aa40
DJ
2011 unsigned char error = 0;
2012 int bad_count = 0;
2013
fdde6abb 2014 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2015 for (i = 0; i < limit; i++) {
2016 if (data[offset + i] != POISON_FREE) {
2017 error = data[offset + i];
2018 bad_count++;
2019 }
aa83aa40 2020 }
fdde6abb
SAS
2021 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2022 &data[offset], limit, 1);
aa83aa40
DJ
2023
2024 if (bad_count == 1) {
2025 error ^= POISON_FREE;
2026 if (!(error & (error - 1))) {
2027 printk(KERN_ERR "Single bit error detected. Probably "
2028 "bad RAM.\n");
2029#ifdef CONFIG_X86
2030 printk(KERN_ERR "Run memtest86+ or a similar memory "
2031 "test tool.\n");
2032#else
2033 printk(KERN_ERR "Run a memory test tool.\n");
2034#endif
2035 }
2036 }
1da177e4
LT
2037}
2038#endif
2039
2040#if DEBUG
2041
343e0d7a 2042static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2043{
2044 int i, size;
2045 char *realobj;
2046
2047 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2048 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2049 *dbg_redzone1(cachep, objp),
2050 *dbg_redzone2(cachep, objp));
1da177e4
LT
2051 }
2052
2053 if (cachep->flags & SLAB_STORE_USER) {
2054 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2055 *dbg_userword(cachep, objp));
1da177e4 2056 print_symbol("(%s)",
a737b3e2 2057 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2058 printk("\n");
2059 }
3dafccf2 2060 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2061 size = cachep->object_size;
b28a02de 2062 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2063 int limit;
2064 limit = 16;
b28a02de
PE
2065 if (i + limit > size)
2066 limit = size - i;
1da177e4
LT
2067 dump_line(realobj, i, limit);
2068 }
2069}
2070
343e0d7a 2071static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2072{
2073 char *realobj;
2074 int size, i;
2075 int lines = 0;
2076
3dafccf2 2077 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2078 size = cachep->object_size;
1da177e4 2079
b28a02de 2080 for (i = 0; i < size; i++) {
1da177e4 2081 char exp = POISON_FREE;
b28a02de 2082 if (i == size - 1)
1da177e4
LT
2083 exp = POISON_END;
2084 if (realobj[i] != exp) {
2085 int limit;
2086 /* Mismatch ! */
2087 /* Print header */
2088 if (lines == 0) {
b28a02de 2089 printk(KERN_ERR
face37f5
DJ
2090 "Slab corruption (%s): %s start=%p, len=%d\n",
2091 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2092 print_objinfo(cachep, objp, 0);
2093 }
2094 /* Hexdump the affected line */
b28a02de 2095 i = (i / 16) * 16;
1da177e4 2096 limit = 16;
b28a02de
PE
2097 if (i + limit > size)
2098 limit = size - i;
1da177e4
LT
2099 dump_line(realobj, i, limit);
2100 i += 16;
2101 lines++;
2102 /* Limit to 5 lines */
2103 if (lines > 5)
2104 break;
2105 }
2106 }
2107 if (lines != 0) {
2108 /* Print some data about the neighboring objects, if they
2109 * exist:
2110 */
6ed5eb22 2111 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2112 unsigned int objnr;
1da177e4 2113
8fea4e96 2114 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2115 if (objnr) {
8fea4e96 2116 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2117 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2118 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2119 realobj, size);
1da177e4
LT
2120 print_objinfo(cachep, objp, 2);
2121 }
b28a02de 2122 if (objnr + 1 < cachep->num) {
8fea4e96 2123 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2124 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2125 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2126 realobj, size);
1da177e4
LT
2127 print_objinfo(cachep, objp, 2);
2128 }
2129 }
2130}
2131#endif
2132
12dd36fa 2133#if DEBUG
e79aec29 2134static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2135{
1da177e4
LT
2136 int i;
2137 for (i = 0; i < cachep->num; i++) {
8fea4e96 2138 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2139
2140 if (cachep->flags & SLAB_POISON) {
2141#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2142 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2143 OFF_SLAB(cachep))
b28a02de 2144 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2145 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2146 else
2147 check_poison_obj(cachep, objp);
2148#else
2149 check_poison_obj(cachep, objp);
2150#endif
2151 }
2152 if (cachep->flags & SLAB_RED_ZONE) {
2153 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2154 slab_error(cachep, "start of a freed object "
b28a02de 2155 "was overwritten");
1da177e4
LT
2156 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2157 slab_error(cachep, "end of a freed object "
b28a02de 2158 "was overwritten");
1da177e4 2159 }
1da177e4 2160 }
12dd36fa 2161}
1da177e4 2162#else
e79aec29 2163static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2164{
12dd36fa 2165}
1da177e4
LT
2166#endif
2167
911851e6
RD
2168/**
2169 * slab_destroy - destroy and release all objects in a slab
2170 * @cachep: cache pointer being destroyed
2171 * @slabp: slab pointer being destroyed
2172 *
12dd36fa 2173 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2174 * Before calling the slab must have been unlinked from the cache. The
2175 * cache-lock is not held/needed.
12dd36fa 2176 */
343e0d7a 2177static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2178{
2179 void *addr = slabp->s_mem - slabp->colouroff;
2180
e79aec29 2181 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2182 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2183 struct slab_rcu *slab_rcu;
2184
b28a02de 2185 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2186 slab_rcu->cachep = cachep;
2187 slab_rcu->addr = addr;
2188 call_rcu(&slab_rcu->head, kmem_rcu_free);
2189 } else {
2190 kmem_freepages(cachep, addr);
873623df
IM
2191 if (OFF_SLAB(cachep))
2192 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2193 }
2194}
2195
4d268eba 2196/**
a70773dd
RD
2197 * calculate_slab_order - calculate size (page order) of slabs
2198 * @cachep: pointer to the cache that is being created
2199 * @size: size of objects to be created in this cache.
2200 * @align: required alignment for the objects.
2201 * @flags: slab allocation flags
2202 *
2203 * Also calculates the number of objects per slab.
4d268eba
PE
2204 *
2205 * This could be made much more intelligent. For now, try to avoid using
2206 * high order pages for slabs. When the gfp() functions are more friendly
2207 * towards high-order requests, this should be changed.
2208 */
a737b3e2 2209static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2210 size_t size, size_t align, unsigned long flags)
4d268eba 2211{
b1ab41c4 2212 unsigned long offslab_limit;
4d268eba 2213 size_t left_over = 0;
9888e6fa 2214 int gfporder;
4d268eba 2215
0aa817f0 2216 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2217 unsigned int num;
2218 size_t remainder;
2219
9888e6fa 2220 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2221 if (!num)
2222 continue;
9888e6fa 2223
b1ab41c4
IM
2224 if (flags & CFLGS_OFF_SLAB) {
2225 /*
2226 * Max number of objs-per-slab for caches which
2227 * use off-slab slabs. Needed to avoid a possible
2228 * looping condition in cache_grow().
2229 */
2230 offslab_limit = size - sizeof(struct slab);
2231 offslab_limit /= sizeof(kmem_bufctl_t);
2232
2233 if (num > offslab_limit)
2234 break;
2235 }
4d268eba 2236
9888e6fa 2237 /* Found something acceptable - save it away */
4d268eba 2238 cachep->num = num;
9888e6fa 2239 cachep->gfporder = gfporder;
4d268eba
PE
2240 left_over = remainder;
2241
f78bb8ad
LT
2242 /*
2243 * A VFS-reclaimable slab tends to have most allocations
2244 * as GFP_NOFS and we really don't want to have to be allocating
2245 * higher-order pages when we are unable to shrink dcache.
2246 */
2247 if (flags & SLAB_RECLAIM_ACCOUNT)
2248 break;
2249
4d268eba
PE
2250 /*
2251 * Large number of objects is good, but very large slabs are
2252 * currently bad for the gfp()s.
2253 */
543585cc 2254 if (gfporder >= slab_max_order)
4d268eba
PE
2255 break;
2256
9888e6fa
LT
2257 /*
2258 * Acceptable internal fragmentation?
2259 */
a737b3e2 2260 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2261 break;
2262 }
2263 return left_over;
2264}
2265
83b519e8 2266static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2267{
97d06609 2268 if (slab_state >= FULL)
83b519e8 2269 return enable_cpucache(cachep, gfp);
2ed3a4ef 2270
97d06609 2271 if (slab_state == DOWN) {
f30cf7d1
PE
2272 /*
2273 * Note: the first kmem_cache_create must create the cache
2274 * that's used by kmalloc(24), otherwise the creation of
2275 * further caches will BUG().
2276 */
2277 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2278
2279 /*
2280 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2281 * the first cache, then we need to set up all its list3s,
2282 * otherwise the creation of further caches will BUG().
2283 */
2284 set_up_list3s(cachep, SIZE_AC);
2285 if (INDEX_AC == INDEX_L3)
97d06609 2286 slab_state = PARTIAL_L3;
f30cf7d1 2287 else
97d06609 2288 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2289 } else {
2290 cachep->array[smp_processor_id()] =
83b519e8 2291 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2292
97d06609 2293 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2294 set_up_list3s(cachep, SIZE_L3);
97d06609 2295 slab_state = PARTIAL_L3;
f30cf7d1
PE
2296 } else {
2297 int node;
556a169d 2298 for_each_online_node(node) {
f30cf7d1
PE
2299 cachep->nodelists[node] =
2300 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2301 gfp, node);
f30cf7d1
PE
2302 BUG_ON(!cachep->nodelists[node]);
2303 kmem_list3_init(cachep->nodelists[node]);
2304 }
2305 }
2306 }
7d6e6d09 2307 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2308 jiffies + REAPTIMEOUT_LIST3 +
2309 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2310
2311 cpu_cache_get(cachep)->avail = 0;
2312 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2313 cpu_cache_get(cachep)->batchcount = 1;
2314 cpu_cache_get(cachep)->touched = 0;
2315 cachep->batchcount = 1;
2316 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2317 return 0;
f30cf7d1
PE
2318}
2319
1da177e4 2320/**
039363f3 2321 * __kmem_cache_create - Create a cache.
a755b76a 2322 * @cachep: cache management descriptor
1da177e4 2323 * @flags: SLAB flags
1da177e4
LT
2324 *
2325 * Returns a ptr to the cache on success, NULL on failure.
2326 * Cannot be called within a int, but can be interrupted.
20c2df83 2327 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2328 *
1da177e4
LT
2329 * The flags are
2330 *
2331 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2332 * to catch references to uninitialised memory.
2333 *
2334 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2335 * for buffer overruns.
2336 *
1da177e4
LT
2337 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2338 * cacheline. This can be beneficial if you're counting cycles as closely
2339 * as davem.
2340 */
278b1bb1 2341int
8a13a4cc 2342__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2343{
2344 size_t left_over, slab_size, ralign;
83b519e8 2345 gfp_t gfp;
278b1bb1 2346 int err;
8a13a4cc 2347 size_t size = cachep->size;
1da177e4 2348
1da177e4 2349#if DEBUG
1da177e4
LT
2350#if FORCED_DEBUG
2351 /*
2352 * Enable redzoning and last user accounting, except for caches with
2353 * large objects, if the increased size would increase the object size
2354 * above the next power of two: caches with object sizes just above a
2355 * power of two have a significant amount of internal fragmentation.
2356 */
87a927c7
DW
2357 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2358 2 * sizeof(unsigned long long)))
b28a02de 2359 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2360 if (!(flags & SLAB_DESTROY_BY_RCU))
2361 flags |= SLAB_POISON;
2362#endif
2363 if (flags & SLAB_DESTROY_BY_RCU)
2364 BUG_ON(flags & SLAB_POISON);
2365#endif
1da177e4 2366
a737b3e2
AM
2367 /*
2368 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2369 * unaligned accesses for some archs when redzoning is used, and makes
2370 * sure any on-slab bufctl's are also correctly aligned.
2371 */
b28a02de
PE
2372 if (size & (BYTES_PER_WORD - 1)) {
2373 size += (BYTES_PER_WORD - 1);
2374 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2375 }
2376
a737b3e2
AM
2377 /* calculate the final buffer alignment: */
2378
1da177e4
LT
2379 /* 1) arch recommendation: can be overridden for debug */
2380 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2381 /*
2382 * Default alignment: as specified by the arch code. Except if
2383 * an object is really small, then squeeze multiple objects into
2384 * one cacheline.
1da177e4
LT
2385 */
2386 ralign = cache_line_size();
b28a02de 2387 while (size <= ralign / 2)
1da177e4
LT
2388 ralign /= 2;
2389 } else {
2390 ralign = BYTES_PER_WORD;
2391 }
ca5f9703
PE
2392
2393 /*
87a927c7
DW
2394 * Redzoning and user store require word alignment or possibly larger.
2395 * Note this will be overridden by architecture or caller mandated
2396 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2397 */
87a927c7
DW
2398 if (flags & SLAB_STORE_USER)
2399 ralign = BYTES_PER_WORD;
2400
2401 if (flags & SLAB_RED_ZONE) {
2402 ralign = REDZONE_ALIGN;
2403 /* If redzoning, ensure that the second redzone is suitably
2404 * aligned, by adjusting the object size accordingly. */
2405 size += REDZONE_ALIGN - 1;
2406 size &= ~(REDZONE_ALIGN - 1);
2407 }
ca5f9703 2408
a44b56d3 2409 /* 2) arch mandated alignment */
1da177e4
LT
2410 if (ralign < ARCH_SLAB_MINALIGN) {
2411 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2412 }
a44b56d3 2413 /* 3) caller mandated alignment */
8a13a4cc
CL
2414 if (ralign < cachep->align) {
2415 ralign = cachep->align;
1da177e4 2416 }
3ff84a7f
PE
2417 /* disable debug if necessary */
2418 if (ralign > __alignof__(unsigned long long))
a44b56d3 2419 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2420 /*
ca5f9703 2421 * 4) Store it.
1da177e4 2422 */
8a13a4cc 2423 cachep->align = ralign;
1da177e4 2424
83b519e8
PE
2425 if (slab_is_available())
2426 gfp = GFP_KERNEL;
2427 else
2428 gfp = GFP_NOWAIT;
2429
3c583465 2430 setup_nodelists_pointer(cachep);
1da177e4 2431#if DEBUG
1da177e4 2432
ca5f9703
PE
2433 /*
2434 * Both debugging options require word-alignment which is calculated
2435 * into align above.
2436 */
1da177e4 2437 if (flags & SLAB_RED_ZONE) {
1da177e4 2438 /* add space for red zone words */
3ff84a7f
PE
2439 cachep->obj_offset += sizeof(unsigned long long);
2440 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2441 }
2442 if (flags & SLAB_STORE_USER) {
ca5f9703 2443 /* user store requires one word storage behind the end of
87a927c7
DW
2444 * the real object. But if the second red zone needs to be
2445 * aligned to 64 bits, we must allow that much space.
1da177e4 2446 */
87a927c7
DW
2447 if (flags & SLAB_RED_ZONE)
2448 size += REDZONE_ALIGN;
2449 else
2450 size += BYTES_PER_WORD;
1da177e4
LT
2451 }
2452#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2453 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
608da7e3
TH
2454 && cachep->object_size > cache_line_size()
2455 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2456 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2457 size = PAGE_SIZE;
2458 }
2459#endif
2460#endif
2461
e0a42726
IM
2462 /*
2463 * Determine if the slab management is 'on' or 'off' slab.
2464 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2465 * it too early on. Always use on-slab management when
2466 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2467 */
e7cb55b9
CM
2468 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2469 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2470 /*
2471 * Size is large, assume best to place the slab management obj
2472 * off-slab (should allow better packing of objs).
2473 */
2474 flags |= CFLGS_OFF_SLAB;
2475
8a13a4cc 2476 size = ALIGN(size, cachep->align);
1da177e4 2477
8a13a4cc 2478 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2479
8a13a4cc 2480 if (!cachep->num)
278b1bb1 2481 return -E2BIG;
1da177e4 2482
b28a02de 2483 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2484 + sizeof(struct slab), cachep->align);
1da177e4
LT
2485
2486 /*
2487 * If the slab has been placed off-slab, and we have enough space then
2488 * move it on-slab. This is at the expense of any extra colouring.
2489 */
2490 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2491 flags &= ~CFLGS_OFF_SLAB;
2492 left_over -= slab_size;
2493 }
2494
2495 if (flags & CFLGS_OFF_SLAB) {
2496 /* really off slab. No need for manual alignment */
b28a02de
PE
2497 slab_size =
2498 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2499
2500#ifdef CONFIG_PAGE_POISONING
2501 /* If we're going to use the generic kernel_map_pages()
2502 * poisoning, then it's going to smash the contents of
2503 * the redzone and userword anyhow, so switch them off.
2504 */
2505 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2506 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2507#endif
1da177e4
LT
2508 }
2509
2510 cachep->colour_off = cache_line_size();
2511 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2512 if (cachep->colour_off < cachep->align)
2513 cachep->colour_off = cachep->align;
b28a02de 2514 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2515 cachep->slab_size = slab_size;
2516 cachep->flags = flags;
a618e89f 2517 cachep->allocflags = 0;
4b51d669 2518 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2519 cachep->allocflags |= GFP_DMA;
3b0efdfa 2520 cachep->size = size;
6a2d7a95 2521 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2522
e5ac9c5a 2523 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2524 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2525 /*
2526 * This is a possibility for one of the malloc_sizes caches.
2527 * But since we go off slab only for object size greater than
2528 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2529 * this should not happen at all.
2530 * But leave a BUG_ON for some lucky dude.
2531 */
6cb8f913 2532 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2533 }
1da177e4 2534
278b1bb1
CL
2535 err = setup_cpu_cache(cachep, gfp);
2536 if (err) {
12c3667f 2537 __kmem_cache_shutdown(cachep);
278b1bb1 2538 return err;
2ed3a4ef 2539 }
1da177e4 2540
83835b3d
PZ
2541 if (flags & SLAB_DEBUG_OBJECTS) {
2542 /*
2543 * Would deadlock through slab_destroy()->call_rcu()->
2544 * debug_object_activate()->kmem_cache_alloc().
2545 */
2546 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2547
2548 slab_set_debugobj_lock_classes(cachep);
2549 }
2550
278b1bb1 2551 return 0;
1da177e4 2552}
1da177e4
LT
2553
2554#if DEBUG
2555static void check_irq_off(void)
2556{
2557 BUG_ON(!irqs_disabled());
2558}
2559
2560static void check_irq_on(void)
2561{
2562 BUG_ON(irqs_disabled());
2563}
2564
343e0d7a 2565static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2566{
2567#ifdef CONFIG_SMP
2568 check_irq_off();
7d6e6d09 2569 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2570#endif
2571}
e498be7d 2572
343e0d7a 2573static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2574{
2575#ifdef CONFIG_SMP
2576 check_irq_off();
2577 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2578#endif
2579}
2580
1da177e4
LT
2581#else
2582#define check_irq_off() do { } while(0)
2583#define check_irq_on() do { } while(0)
2584#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2585#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2586#endif
2587
aab2207c
CL
2588static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2589 struct array_cache *ac,
2590 int force, int node);
2591
1da177e4
LT
2592static void do_drain(void *arg)
2593{
a737b3e2 2594 struct kmem_cache *cachep = arg;
1da177e4 2595 struct array_cache *ac;
7d6e6d09 2596 int node = numa_mem_id();
1da177e4
LT
2597
2598 check_irq_off();
9a2dba4b 2599 ac = cpu_cache_get(cachep);
ff69416e
CL
2600 spin_lock(&cachep->nodelists[node]->list_lock);
2601 free_block(cachep, ac->entry, ac->avail, node);
2602 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2603 ac->avail = 0;
2604}
2605
343e0d7a 2606static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2607{
e498be7d
CL
2608 struct kmem_list3 *l3;
2609 int node;
2610
15c8b6c1 2611 on_each_cpu(do_drain, cachep, 1);
1da177e4 2612 check_irq_on();
b28a02de 2613 for_each_online_node(node) {
e498be7d 2614 l3 = cachep->nodelists[node];
a4523a8b
RD
2615 if (l3 && l3->alien)
2616 drain_alien_cache(cachep, l3->alien);
2617 }
2618
2619 for_each_online_node(node) {
2620 l3 = cachep->nodelists[node];
2621 if (l3)
aab2207c 2622 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2623 }
1da177e4
LT
2624}
2625
ed11d9eb
CL
2626/*
2627 * Remove slabs from the list of free slabs.
2628 * Specify the number of slabs to drain in tofree.
2629 *
2630 * Returns the actual number of slabs released.
2631 */
2632static int drain_freelist(struct kmem_cache *cache,
2633 struct kmem_list3 *l3, int tofree)
1da177e4 2634{
ed11d9eb
CL
2635 struct list_head *p;
2636 int nr_freed;
1da177e4 2637 struct slab *slabp;
1da177e4 2638
ed11d9eb
CL
2639 nr_freed = 0;
2640 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2641
ed11d9eb 2642 spin_lock_irq(&l3->list_lock);
e498be7d 2643 p = l3->slabs_free.prev;
ed11d9eb
CL
2644 if (p == &l3->slabs_free) {
2645 spin_unlock_irq(&l3->list_lock);
2646 goto out;
2647 }
1da177e4 2648
ed11d9eb 2649 slabp = list_entry(p, struct slab, list);
1da177e4 2650#if DEBUG
40094fa6 2651 BUG_ON(slabp->inuse);
1da177e4
LT
2652#endif
2653 list_del(&slabp->list);
ed11d9eb
CL
2654 /*
2655 * Safe to drop the lock. The slab is no longer linked
2656 * to the cache.
2657 */
2658 l3->free_objects -= cache->num;
e498be7d 2659 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2660 slab_destroy(cache, slabp);
2661 nr_freed++;
1da177e4 2662 }
ed11d9eb
CL
2663out:
2664 return nr_freed;
1da177e4
LT
2665}
2666
18004c5d 2667/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2668static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2669{
2670 int ret = 0, i = 0;
2671 struct kmem_list3 *l3;
2672
2673 drain_cpu_caches(cachep);
2674
2675 check_irq_on();
2676 for_each_online_node(i) {
2677 l3 = cachep->nodelists[i];
ed11d9eb
CL
2678 if (!l3)
2679 continue;
2680
2681 drain_freelist(cachep, l3, l3->free_objects);
2682
2683 ret += !list_empty(&l3->slabs_full) ||
2684 !list_empty(&l3->slabs_partial);
e498be7d
CL
2685 }
2686 return (ret ? 1 : 0);
2687}
2688
1da177e4
LT
2689/**
2690 * kmem_cache_shrink - Shrink a cache.
2691 * @cachep: The cache to shrink.
2692 *
2693 * Releases as many slabs as possible for a cache.
2694 * To help debugging, a zero exit status indicates all slabs were released.
2695 */
343e0d7a 2696int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2697{
8f5be20b 2698 int ret;
40094fa6 2699 BUG_ON(!cachep || in_interrupt());
1da177e4 2700
95402b38 2701 get_online_cpus();
18004c5d 2702 mutex_lock(&slab_mutex);
8f5be20b 2703 ret = __cache_shrink(cachep);
18004c5d 2704 mutex_unlock(&slab_mutex);
95402b38 2705 put_online_cpus();
8f5be20b 2706 return ret;
1da177e4
LT
2707}
2708EXPORT_SYMBOL(kmem_cache_shrink);
2709
945cf2b6 2710int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2711{
12c3667f
CL
2712 int i;
2713 struct kmem_list3 *l3;
2714 int rc = __cache_shrink(cachep);
1da177e4 2715
12c3667f
CL
2716 if (rc)
2717 return rc;
1da177e4 2718
12c3667f
CL
2719 for_each_online_cpu(i)
2720 kfree(cachep->array[i]);
1da177e4 2721
12c3667f
CL
2722 /* NUMA: free the list3 structures */
2723 for_each_online_node(i) {
2724 l3 = cachep->nodelists[i];
2725 if (l3) {
2726 kfree(l3->shared);
2727 free_alien_cache(l3->alien);
2728 kfree(l3);
2729 }
2730 }
2731 return 0;
1da177e4 2732}
1da177e4 2733
e5ac9c5a
RT
2734/*
2735 * Get the memory for a slab management obj.
2736 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2737 * always come from malloc_sizes caches. The slab descriptor cannot
2738 * come from the same cache which is getting created because,
2739 * when we are searching for an appropriate cache for these
2740 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2741 * If we are creating a malloc_sizes cache here it would not be visible to
2742 * kmem_find_general_cachep till the initialization is complete.
2743 * Hence we cannot have slabp_cache same as the original cache.
2744 */
343e0d7a 2745static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2746 int colour_off, gfp_t local_flags,
2747 int nodeid)
1da177e4
LT
2748{
2749 struct slab *slabp;
b28a02de 2750
1da177e4
LT
2751 if (OFF_SLAB(cachep)) {
2752 /* Slab management obj is off-slab. */
5b74ada7 2753 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2754 local_flags, nodeid);
d5cff635
CM
2755 /*
2756 * If the first object in the slab is leaked (it's allocated
2757 * but no one has a reference to it), we want to make sure
2758 * kmemleak does not treat the ->s_mem pointer as a reference
2759 * to the object. Otherwise we will not report the leak.
2760 */
c017b4be
CM
2761 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2762 local_flags);
1da177e4
LT
2763 if (!slabp)
2764 return NULL;
2765 } else {
b28a02de 2766 slabp = objp + colour_off;
1da177e4
LT
2767 colour_off += cachep->slab_size;
2768 }
2769 slabp->inuse = 0;
2770 slabp->colouroff = colour_off;
b28a02de 2771 slabp->s_mem = objp + colour_off;
5b74ada7 2772 slabp->nodeid = nodeid;
e51bfd0a 2773 slabp->free = 0;
1da177e4
LT
2774 return slabp;
2775}
2776
2777static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2778{
b28a02de 2779 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2780}
2781
343e0d7a 2782static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2783 struct slab *slabp)
1da177e4
LT
2784{
2785 int i;
2786
2787 for (i = 0; i < cachep->num; i++) {
8fea4e96 2788 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2789#if DEBUG
2790 /* need to poison the objs? */
2791 if (cachep->flags & SLAB_POISON)
2792 poison_obj(cachep, objp, POISON_FREE);
2793 if (cachep->flags & SLAB_STORE_USER)
2794 *dbg_userword(cachep, objp) = NULL;
2795
2796 if (cachep->flags & SLAB_RED_ZONE) {
2797 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2798 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2799 }
2800 /*
a737b3e2
AM
2801 * Constructors are not allowed to allocate memory from the same
2802 * cache which they are a constructor for. Otherwise, deadlock.
2803 * They must also be threaded.
1da177e4
LT
2804 */
2805 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2806 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2807
2808 if (cachep->flags & SLAB_RED_ZONE) {
2809 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2810 slab_error(cachep, "constructor overwrote the"
b28a02de 2811 " end of an object");
1da177e4
LT
2812 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2813 slab_error(cachep, "constructor overwrote the"
b28a02de 2814 " start of an object");
1da177e4 2815 }
3b0efdfa 2816 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2817 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2818 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2819 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2820#else
2821 if (cachep->ctor)
51cc5068 2822 cachep->ctor(objp);
1da177e4 2823#endif
b28a02de 2824 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2825 }
b28a02de 2826 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2827}
2828
343e0d7a 2829static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2830{
4b51d669
CL
2831 if (CONFIG_ZONE_DMA_FLAG) {
2832 if (flags & GFP_DMA)
a618e89f 2833 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2834 else
a618e89f 2835 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2836 }
1da177e4
LT
2837}
2838
a737b3e2
AM
2839static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2840 int nodeid)
78d382d7 2841{
8fea4e96 2842 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2843 kmem_bufctl_t next;
2844
2845 slabp->inuse++;
2846 next = slab_bufctl(slabp)[slabp->free];
2847#if DEBUG
2848 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2849 WARN_ON(slabp->nodeid != nodeid);
2850#endif
2851 slabp->free = next;
2852
2853 return objp;
2854}
2855
a737b3e2
AM
2856static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2857 void *objp, int nodeid)
78d382d7 2858{
8fea4e96 2859 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2860
2861#if DEBUG
2862 /* Verify that the slab belongs to the intended node */
2863 WARN_ON(slabp->nodeid != nodeid);
2864
871751e2 2865 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2866 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2867 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2868 BUG();
2869 }
2870#endif
2871 slab_bufctl(slabp)[objnr] = slabp->free;
2872 slabp->free = objnr;
2873 slabp->inuse--;
2874}
2875
4776874f
PE
2876/*
2877 * Map pages beginning at addr to the given cache and slab. This is required
2878 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2879 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2880 */
2881static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2882 void *addr)
1da177e4 2883{
4776874f 2884 int nr_pages;
1da177e4
LT
2885 struct page *page;
2886
4776874f 2887 page = virt_to_page(addr);
84097518 2888
4776874f 2889 nr_pages = 1;
84097518 2890 if (likely(!PageCompound(page)))
4776874f
PE
2891 nr_pages <<= cache->gfporder;
2892
1da177e4 2893 do {
35026088
CL
2894 page->slab_cache = cache;
2895 page->slab_page = slab;
1da177e4 2896 page++;
4776874f 2897 } while (--nr_pages);
1da177e4
LT
2898}
2899
2900/*
2901 * Grow (by 1) the number of slabs within a cache. This is called by
2902 * kmem_cache_alloc() when there are no active objs left in a cache.
2903 */
3c517a61
CL
2904static int cache_grow(struct kmem_cache *cachep,
2905 gfp_t flags, int nodeid, void *objp)
1da177e4 2906{
b28a02de 2907 struct slab *slabp;
b28a02de
PE
2908 size_t offset;
2909 gfp_t local_flags;
e498be7d 2910 struct kmem_list3 *l3;
1da177e4 2911
a737b3e2
AM
2912 /*
2913 * Be lazy and only check for valid flags here, keeping it out of the
2914 * critical path in kmem_cache_alloc().
1da177e4 2915 */
6cb06229
CL
2916 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2917 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2918
2e1217cf 2919 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2920 check_irq_off();
2e1217cf
RT
2921 l3 = cachep->nodelists[nodeid];
2922 spin_lock(&l3->list_lock);
1da177e4
LT
2923
2924 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2925 offset = l3->colour_next;
2926 l3->colour_next++;
2927 if (l3->colour_next >= cachep->colour)
2928 l3->colour_next = 0;
2929 spin_unlock(&l3->list_lock);
1da177e4 2930
2e1217cf 2931 offset *= cachep->colour_off;
1da177e4
LT
2932
2933 if (local_flags & __GFP_WAIT)
2934 local_irq_enable();
2935
2936 /*
2937 * The test for missing atomic flag is performed here, rather than
2938 * the more obvious place, simply to reduce the critical path length
2939 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2940 * will eventually be caught here (where it matters).
2941 */
2942 kmem_flagcheck(cachep, flags);
2943
a737b3e2
AM
2944 /*
2945 * Get mem for the objs. Attempt to allocate a physical page from
2946 * 'nodeid'.
e498be7d 2947 */
3c517a61 2948 if (!objp)
b8c1c5da 2949 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2950 if (!objp)
1da177e4
LT
2951 goto failed;
2952
2953 /* Get slab management. */
3c517a61 2954 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2955 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2956 if (!slabp)
1da177e4
LT
2957 goto opps1;
2958
4776874f 2959 slab_map_pages(cachep, slabp, objp);
1da177e4 2960
a35afb83 2961 cache_init_objs(cachep, slabp);
1da177e4
LT
2962
2963 if (local_flags & __GFP_WAIT)
2964 local_irq_disable();
2965 check_irq_off();
e498be7d 2966 spin_lock(&l3->list_lock);
1da177e4
LT
2967
2968 /* Make slab active. */
e498be7d 2969 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2970 STATS_INC_GROWN(cachep);
e498be7d
CL
2971 l3->free_objects += cachep->num;
2972 spin_unlock(&l3->list_lock);
1da177e4 2973 return 1;
a737b3e2 2974opps1:
1da177e4 2975 kmem_freepages(cachep, objp);
a737b3e2 2976failed:
1da177e4
LT
2977 if (local_flags & __GFP_WAIT)
2978 local_irq_disable();
2979 return 0;
2980}
2981
2982#if DEBUG
2983
2984/*
2985 * Perform extra freeing checks:
2986 * - detect bad pointers.
2987 * - POISON/RED_ZONE checking
1da177e4
LT
2988 */
2989static void kfree_debugcheck(const void *objp)
2990{
1da177e4
LT
2991 if (!virt_addr_valid(objp)) {
2992 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2993 (unsigned long)objp);
2994 BUG();
1da177e4 2995 }
1da177e4
LT
2996}
2997
58ce1fd5
PE
2998static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2999{
b46b8f19 3000 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3001
3002 redzone1 = *dbg_redzone1(cache, obj);
3003 redzone2 = *dbg_redzone2(cache, obj);
3004
3005 /*
3006 * Redzone is ok.
3007 */
3008 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3009 return;
3010
3011 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3012 slab_error(cache, "double free detected");
3013 else
3014 slab_error(cache, "memory outside object was overwritten");
3015
b46b8f19 3016 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3017 obj, redzone1, redzone2);
3018}
3019
343e0d7a 3020static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3021 unsigned long caller)
1da177e4
LT
3022{
3023 struct page *page;
3024 unsigned int objnr;
3025 struct slab *slabp;
3026
80cbd911
MW
3027 BUG_ON(virt_to_cache(objp) != cachep);
3028
3dafccf2 3029 objp -= obj_offset(cachep);
1da177e4 3030 kfree_debugcheck(objp);
b49af68f 3031 page = virt_to_head_page(objp);
1da177e4 3032
35026088 3033 slabp = page->slab_page;
1da177e4
LT
3034
3035 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3036 verify_redzone_free(cachep, objp);
1da177e4
LT
3037 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3038 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3039 }
3040 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3041 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3042
8fea4e96 3043 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3044
3045 BUG_ON(objnr >= cachep->num);
8fea4e96 3046 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3047
871751e2
AV
3048#ifdef CONFIG_DEBUG_SLAB_LEAK
3049 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3050#endif
1da177e4
LT
3051 if (cachep->flags & SLAB_POISON) {
3052#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3053 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3054 store_stackinfo(cachep, objp, caller);
b28a02de 3055 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3056 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3057 } else {
3058 poison_obj(cachep, objp, POISON_FREE);
3059 }
3060#else
3061 poison_obj(cachep, objp, POISON_FREE);
3062#endif
3063 }
3064 return objp;
3065}
3066
343e0d7a 3067static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3068{
3069 kmem_bufctl_t i;
3070 int entries = 0;
b28a02de 3071
1da177e4
LT
3072 /* Check slab's freelist to see if this obj is there. */
3073 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3074 entries++;
3075 if (entries > cachep->num || i >= cachep->num)
3076 goto bad;
3077 }
3078 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3079bad:
3080 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3081 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3082 cachep->name, cachep->num, slabp, slabp->inuse,
3083 print_tainted());
fdde6abb
SAS
3084 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3085 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3086 1);
1da177e4
LT
3087 BUG();
3088 }
3089}
3090#else
3091#define kfree_debugcheck(x) do { } while(0)
3092#define cache_free_debugcheck(x,objp,z) (objp)
3093#define check_slabp(x,y) do { } while(0)
3094#endif
3095
072bb0aa
MG
3096static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3097 bool force_refill)
1da177e4
LT
3098{
3099 int batchcount;
3100 struct kmem_list3 *l3;
3101 struct array_cache *ac;
1ca4cb24
PE
3102 int node;
3103
1da177e4 3104 check_irq_off();
7d6e6d09 3105 node = numa_mem_id();
072bb0aa
MG
3106 if (unlikely(force_refill))
3107 goto force_grow;
3108retry:
9a2dba4b 3109 ac = cpu_cache_get(cachep);
1da177e4
LT
3110 batchcount = ac->batchcount;
3111 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3112 /*
3113 * If there was little recent activity on this cache, then
3114 * perform only a partial refill. Otherwise we could generate
3115 * refill bouncing.
1da177e4
LT
3116 */
3117 batchcount = BATCHREFILL_LIMIT;
3118 }
1ca4cb24 3119 l3 = cachep->nodelists[node];
e498be7d
CL
3120
3121 BUG_ON(ac->avail > 0 || !l3);
3122 spin_lock(&l3->list_lock);
1da177e4 3123
3ded175a 3124 /* See if we can refill from the shared array */
44b57f1c
NP
3125 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3126 l3->shared->touched = 1;
3ded175a 3127 goto alloc_done;
44b57f1c 3128 }
3ded175a 3129
1da177e4
LT
3130 while (batchcount > 0) {
3131 struct list_head *entry;
3132 struct slab *slabp;
3133 /* Get slab alloc is to come from. */
3134 entry = l3->slabs_partial.next;
3135 if (entry == &l3->slabs_partial) {
3136 l3->free_touched = 1;
3137 entry = l3->slabs_free.next;
3138 if (entry == &l3->slabs_free)
3139 goto must_grow;
3140 }
3141
3142 slabp = list_entry(entry, struct slab, list);
3143 check_slabp(cachep, slabp);
3144 check_spinlock_acquired(cachep);
714b8171
PE
3145
3146 /*
3147 * The slab was either on partial or free list so
3148 * there must be at least one object available for
3149 * allocation.
3150 */
249b9f33 3151 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3152
1da177e4 3153 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3154 STATS_INC_ALLOCED(cachep);
3155 STATS_INC_ACTIVE(cachep);
3156 STATS_SET_HIGH(cachep);
3157
072bb0aa
MG
3158 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3159 node));
1da177e4
LT
3160 }
3161 check_slabp(cachep, slabp);
3162
3163 /* move slabp to correct slabp list: */
3164 list_del(&slabp->list);
3165 if (slabp->free == BUFCTL_END)
3166 list_add(&slabp->list, &l3->slabs_full);
3167 else
3168 list_add(&slabp->list, &l3->slabs_partial);
3169 }
3170
a737b3e2 3171must_grow:
1da177e4 3172 l3->free_objects -= ac->avail;
a737b3e2 3173alloc_done:
e498be7d 3174 spin_unlock(&l3->list_lock);
1da177e4
LT
3175
3176 if (unlikely(!ac->avail)) {
3177 int x;
072bb0aa 3178force_grow:
3c517a61 3179 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3180
a737b3e2 3181 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3182 ac = cpu_cache_get(cachep);
51cd8e6f 3183 node = numa_mem_id();
072bb0aa
MG
3184
3185 /* no objects in sight? abort */
3186 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3187 return NULL;
3188
a737b3e2 3189 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3190 goto retry;
3191 }
3192 ac->touched = 1;
072bb0aa
MG
3193
3194 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3195}
3196
a737b3e2
AM
3197static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3198 gfp_t flags)
1da177e4
LT
3199{
3200 might_sleep_if(flags & __GFP_WAIT);
3201#if DEBUG
3202 kmem_flagcheck(cachep, flags);
3203#endif
3204}
3205
3206#if DEBUG
a737b3e2 3207static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3208 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3209{
b28a02de 3210 if (!objp)
1da177e4 3211 return objp;
b28a02de 3212 if (cachep->flags & SLAB_POISON) {
1da177e4 3213#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3214 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3215 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3216 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3217 else
3218 check_poison_obj(cachep, objp);
3219#else
3220 check_poison_obj(cachep, objp);
3221#endif
3222 poison_obj(cachep, objp, POISON_INUSE);
3223 }
3224 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3225 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3226
3227 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3228 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3229 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3230 slab_error(cachep, "double free, or memory outside"
3231 " object was overwritten");
b28a02de 3232 printk(KERN_ERR
b46b8f19 3233 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3234 objp, *dbg_redzone1(cachep, objp),
3235 *dbg_redzone2(cachep, objp));
1da177e4
LT
3236 }
3237 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3238 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3239 }
871751e2
AV
3240#ifdef CONFIG_DEBUG_SLAB_LEAK
3241 {
3242 struct slab *slabp;
3243 unsigned objnr;
3244
35026088 3245 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3246 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3247 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3248 }
3249#endif
3dafccf2 3250 objp += obj_offset(cachep);
4f104934 3251 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3252 cachep->ctor(objp);
7ea466f2
TH
3253 if (ARCH_SLAB_MINALIGN &&
3254 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3255 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3256 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3257 }
1da177e4
LT
3258 return objp;
3259}
3260#else
3261#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3262#endif
3263
773ff60e 3264static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3265{
9b030cb8 3266 if (cachep == kmem_cache)
773ff60e 3267 return false;
8a8b6502 3268
8c138bc0 3269 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3270}
3271
343e0d7a 3272static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3273{
b28a02de 3274 void *objp;
1da177e4 3275 struct array_cache *ac;
072bb0aa 3276 bool force_refill = false;
1da177e4 3277
5c382300 3278 check_irq_off();
8a8b6502 3279
9a2dba4b 3280 ac = cpu_cache_get(cachep);
1da177e4 3281 if (likely(ac->avail)) {
1da177e4 3282 ac->touched = 1;
072bb0aa
MG
3283 objp = ac_get_obj(cachep, ac, flags, false);
3284
ddbf2e83 3285 /*
072bb0aa
MG
3286 * Allow for the possibility all avail objects are not allowed
3287 * by the current flags
ddbf2e83 3288 */
072bb0aa
MG
3289 if (objp) {
3290 STATS_INC_ALLOCHIT(cachep);
3291 goto out;
3292 }
3293 force_refill = true;
1da177e4 3294 }
072bb0aa
MG
3295
3296 STATS_INC_ALLOCMISS(cachep);
3297 objp = cache_alloc_refill(cachep, flags, force_refill);
3298 /*
3299 * the 'ac' may be updated by cache_alloc_refill(),
3300 * and kmemleak_erase() requires its correct value.
3301 */
3302 ac = cpu_cache_get(cachep);
3303
3304out:
d5cff635
CM
3305 /*
3306 * To avoid a false negative, if an object that is in one of the
3307 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3308 * treat the array pointers as a reference to the object.
3309 */
f3d8b53a
O
3310 if (objp)
3311 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3312 return objp;
3313}
3314
e498be7d 3315#ifdef CONFIG_NUMA
c61afb18 3316/*
b2455396 3317 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3318 *
3319 * If we are in_interrupt, then process context, including cpusets and
3320 * mempolicy, may not apply and should not be used for allocation policy.
3321 */
3322static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3323{
3324 int nid_alloc, nid_here;
3325
765c4507 3326 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3327 return NULL;
7d6e6d09 3328 nid_alloc = nid_here = numa_mem_id();
c61afb18 3329 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3330 nid_alloc = cpuset_slab_spread_node();
c61afb18 3331 else if (current->mempolicy)
e7b691b0 3332 nid_alloc = slab_node();
c61afb18 3333 if (nid_alloc != nid_here)
8b98c169 3334 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3335 return NULL;
3336}
3337
765c4507
CL
3338/*
3339 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3340 * certain node and fall back is permitted. First we scan all the
3341 * available nodelists for available objects. If that fails then we
3342 * perform an allocation without specifying a node. This allows the page
3343 * allocator to do its reclaim / fallback magic. We then insert the
3344 * slab into the proper nodelist and then allocate from it.
765c4507 3345 */
8c8cc2c1 3346static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3347{
8c8cc2c1
PE
3348 struct zonelist *zonelist;
3349 gfp_t local_flags;
dd1a239f 3350 struct zoneref *z;
54a6eb5c
MG
3351 struct zone *zone;
3352 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3353 void *obj = NULL;
3c517a61 3354 int nid;
cc9a6c87 3355 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3356
3357 if (flags & __GFP_THISNODE)
3358 return NULL;
3359
6cb06229 3360 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3361
cc9a6c87
MG
3362retry_cpuset:
3363 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3364 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3365
3c517a61
CL
3366retry:
3367 /*
3368 * Look through allowed nodes for objects available
3369 * from existing per node queues.
3370 */
54a6eb5c
MG
3371 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3372 nid = zone_to_nid(zone);
aedb0eb1 3373
54a6eb5c 3374 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3375 cache->nodelists[nid] &&
481c5346 3376 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3377 obj = ____cache_alloc_node(cache,
3378 flags | GFP_THISNODE, nid);
481c5346
CL
3379 if (obj)
3380 break;
3381 }
3c517a61
CL
3382 }
3383
cfce6604 3384 if (!obj) {
3c517a61
CL
3385 /*
3386 * This allocation will be performed within the constraints
3387 * of the current cpuset / memory policy requirements.
3388 * We may trigger various forms of reclaim on the allowed
3389 * set and go into memory reserves if necessary.
3390 */
dd47ea75
CL
3391 if (local_flags & __GFP_WAIT)
3392 local_irq_enable();
3393 kmem_flagcheck(cache, flags);
7d6e6d09 3394 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3395 if (local_flags & __GFP_WAIT)
3396 local_irq_disable();
3c517a61
CL
3397 if (obj) {
3398 /*
3399 * Insert into the appropriate per node queues
3400 */
3401 nid = page_to_nid(virt_to_page(obj));
3402 if (cache_grow(cache, flags, nid, obj)) {
3403 obj = ____cache_alloc_node(cache,
3404 flags | GFP_THISNODE, nid);
3405 if (!obj)
3406 /*
3407 * Another processor may allocate the
3408 * objects in the slab since we are
3409 * not holding any locks.
3410 */
3411 goto retry;
3412 } else {
b6a60451 3413 /* cache_grow already freed obj */
3c517a61
CL
3414 obj = NULL;
3415 }
3416 }
aedb0eb1 3417 }
cc9a6c87
MG
3418
3419 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3420 goto retry_cpuset;
765c4507
CL
3421 return obj;
3422}
3423
e498be7d
CL
3424/*
3425 * A interface to enable slab creation on nodeid
1da177e4 3426 */
8b98c169 3427static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3428 int nodeid)
e498be7d
CL
3429{
3430 struct list_head *entry;
b28a02de
PE
3431 struct slab *slabp;
3432 struct kmem_list3 *l3;
3433 void *obj;
b28a02de
PE
3434 int x;
3435
3436 l3 = cachep->nodelists[nodeid];
3437 BUG_ON(!l3);
3438
a737b3e2 3439retry:
ca3b9b91 3440 check_irq_off();
b28a02de
PE
3441 spin_lock(&l3->list_lock);
3442 entry = l3->slabs_partial.next;
3443 if (entry == &l3->slabs_partial) {
3444 l3->free_touched = 1;
3445 entry = l3->slabs_free.next;
3446 if (entry == &l3->slabs_free)
3447 goto must_grow;
3448 }
3449
3450 slabp = list_entry(entry, struct slab, list);
3451 check_spinlock_acquired_node(cachep, nodeid);
3452 check_slabp(cachep, slabp);
3453
3454 STATS_INC_NODEALLOCS(cachep);
3455 STATS_INC_ACTIVE(cachep);
3456 STATS_SET_HIGH(cachep);
3457
3458 BUG_ON(slabp->inuse == cachep->num);
3459
78d382d7 3460 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3461 check_slabp(cachep, slabp);
3462 l3->free_objects--;
3463 /* move slabp to correct slabp list: */
3464 list_del(&slabp->list);
3465
a737b3e2 3466 if (slabp->free == BUFCTL_END)
b28a02de 3467 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3468 else
b28a02de 3469 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3470
b28a02de
PE
3471 spin_unlock(&l3->list_lock);
3472 goto done;
e498be7d 3473
a737b3e2 3474must_grow:
b28a02de 3475 spin_unlock(&l3->list_lock);
3c517a61 3476 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3477 if (x)
3478 goto retry;
1da177e4 3479
8c8cc2c1 3480 return fallback_alloc(cachep, flags);
e498be7d 3481
a737b3e2 3482done:
b28a02de 3483 return obj;
e498be7d 3484}
8c8cc2c1
PE
3485
3486/**
3487 * kmem_cache_alloc_node - Allocate an object on the specified node
3488 * @cachep: The cache to allocate from.
3489 * @flags: See kmalloc().
3490 * @nodeid: node number of the target node.
3491 * @caller: return address of caller, used for debug information
3492 *
3493 * Identical to kmem_cache_alloc but it will allocate memory on the given
3494 * node, which can improve the performance for cpu bound structures.
3495 *
3496 * Fallback to other node is possible if __GFP_THISNODE is not set.
3497 */
3498static __always_inline void *
48356303 3499slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3500 unsigned long caller)
8c8cc2c1
PE
3501{
3502 unsigned long save_flags;
3503 void *ptr;
7d6e6d09 3504 int slab_node = numa_mem_id();
8c8cc2c1 3505
dcce284a 3506 flags &= gfp_allowed_mask;
7e85ee0c 3507
cf40bd16
NP
3508 lockdep_trace_alloc(flags);
3509
773ff60e 3510 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3511 return NULL;
3512
8c8cc2c1
PE
3513 cache_alloc_debugcheck_before(cachep, flags);
3514 local_irq_save(save_flags);
3515
eacbbae3 3516 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3517 nodeid = slab_node;
8c8cc2c1
PE
3518
3519 if (unlikely(!cachep->nodelists[nodeid])) {
3520 /* Node not bootstrapped yet */
3521 ptr = fallback_alloc(cachep, flags);
3522 goto out;
3523 }
3524
7d6e6d09 3525 if (nodeid == slab_node) {
8c8cc2c1
PE
3526 /*
3527 * Use the locally cached objects if possible.
3528 * However ____cache_alloc does not allow fallback
3529 * to other nodes. It may fail while we still have
3530 * objects on other nodes available.
3531 */
3532 ptr = ____cache_alloc(cachep, flags);
3533 if (ptr)
3534 goto out;
3535 }
3536 /* ___cache_alloc_node can fall back to other nodes */
3537 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3538 out:
3539 local_irq_restore(save_flags);
3540 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3541 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3542 flags);
8c8cc2c1 3543
c175eea4 3544 if (likely(ptr))
8c138bc0 3545 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3546
d07dbea4 3547 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3548 memset(ptr, 0, cachep->object_size);
d07dbea4 3549
8c8cc2c1
PE
3550 return ptr;
3551}
3552
3553static __always_inline void *
3554__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3555{
3556 void *objp;
3557
3558 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3559 objp = alternate_node_alloc(cache, flags);
3560 if (objp)
3561 goto out;
3562 }
3563 objp = ____cache_alloc(cache, flags);
3564
3565 /*
3566 * We may just have run out of memory on the local node.
3567 * ____cache_alloc_node() knows how to locate memory on other nodes
3568 */
7d6e6d09
LS
3569 if (!objp)
3570 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3571
3572 out:
3573 return objp;
3574}
3575#else
3576
3577static __always_inline void *
3578__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3579{
3580 return ____cache_alloc(cachep, flags);
3581}
3582
3583#endif /* CONFIG_NUMA */
3584
3585static __always_inline void *
48356303 3586slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3587{
3588 unsigned long save_flags;
3589 void *objp;
3590
dcce284a 3591 flags &= gfp_allowed_mask;
7e85ee0c 3592
cf40bd16
NP
3593 lockdep_trace_alloc(flags);
3594
773ff60e 3595 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3596 return NULL;
3597
8c8cc2c1
PE
3598 cache_alloc_debugcheck_before(cachep, flags);
3599 local_irq_save(save_flags);
3600 objp = __do_cache_alloc(cachep, flags);
3601 local_irq_restore(save_flags);
3602 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3603 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3604 flags);
8c8cc2c1
PE
3605 prefetchw(objp);
3606
c175eea4 3607 if (likely(objp))
8c138bc0 3608 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3609
d07dbea4 3610 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3611 memset(objp, 0, cachep->object_size);
d07dbea4 3612
8c8cc2c1
PE
3613 return objp;
3614}
e498be7d
CL
3615
3616/*
3617 * Caller needs to acquire correct kmem_list's list_lock
3618 */
343e0d7a 3619static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3620 int node)
1da177e4
LT
3621{
3622 int i;
e498be7d 3623 struct kmem_list3 *l3;
1da177e4
LT
3624
3625 for (i = 0; i < nr_objects; i++) {
072bb0aa 3626 void *objp;
1da177e4 3627 struct slab *slabp;
1da177e4 3628
072bb0aa
MG
3629 clear_obj_pfmemalloc(&objpp[i]);
3630 objp = objpp[i];
3631
6ed5eb22 3632 slabp = virt_to_slab(objp);
ff69416e 3633 l3 = cachep->nodelists[node];
1da177e4 3634 list_del(&slabp->list);
ff69416e 3635 check_spinlock_acquired_node(cachep, node);
1da177e4 3636 check_slabp(cachep, slabp);
78d382d7 3637 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3638 STATS_DEC_ACTIVE(cachep);
e498be7d 3639 l3->free_objects++;
1da177e4
LT
3640 check_slabp(cachep, slabp);
3641
3642 /* fixup slab chains */
3643 if (slabp->inuse == 0) {
e498be7d
CL
3644 if (l3->free_objects > l3->free_limit) {
3645 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3646 /* No need to drop any previously held
3647 * lock here, even if we have a off-slab slab
3648 * descriptor it is guaranteed to come from
3649 * a different cache, refer to comments before
3650 * alloc_slabmgmt.
3651 */
1da177e4
LT
3652 slab_destroy(cachep, slabp);
3653 } else {
e498be7d 3654 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3655 }
3656 } else {
3657 /* Unconditionally move a slab to the end of the
3658 * partial list on free - maximum time for the
3659 * other objects to be freed, too.
3660 */
e498be7d 3661 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3662 }
3663 }
3664}
3665
343e0d7a 3666static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3667{
3668 int batchcount;
e498be7d 3669 struct kmem_list3 *l3;
7d6e6d09 3670 int node = numa_mem_id();
1da177e4
LT
3671
3672 batchcount = ac->batchcount;
3673#if DEBUG
3674 BUG_ON(!batchcount || batchcount > ac->avail);
3675#endif
3676 check_irq_off();
ff69416e 3677 l3 = cachep->nodelists[node];
873623df 3678 spin_lock(&l3->list_lock);
e498be7d
CL
3679 if (l3->shared) {
3680 struct array_cache *shared_array = l3->shared;
b28a02de 3681 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3682 if (max) {
3683 if (batchcount > max)
3684 batchcount = max;
e498be7d 3685 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3686 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3687 shared_array->avail += batchcount;
3688 goto free_done;
3689 }
3690 }
3691
ff69416e 3692 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3693free_done:
1da177e4
LT
3694#if STATS
3695 {
3696 int i = 0;
3697 struct list_head *p;
3698
e498be7d
CL
3699 p = l3->slabs_free.next;
3700 while (p != &(l3->slabs_free)) {
1da177e4
LT
3701 struct slab *slabp;
3702
3703 slabp = list_entry(p, struct slab, list);
3704 BUG_ON(slabp->inuse);
3705
3706 i++;
3707 p = p->next;
3708 }
3709 STATS_SET_FREEABLE(cachep, i);
3710 }
3711#endif
e498be7d 3712 spin_unlock(&l3->list_lock);
1da177e4 3713 ac->avail -= batchcount;
a737b3e2 3714 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3715}
3716
3717/*
a737b3e2
AM
3718 * Release an obj back to its cache. If the obj has a constructed state, it must
3719 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3720 */
a947eb95 3721static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3722 unsigned long caller)
1da177e4 3723{
9a2dba4b 3724 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3725
3726 check_irq_off();
d5cff635 3727 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3728 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3729
8c138bc0 3730 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3731
1807a1aa
SS
3732 /*
3733 * Skip calling cache_free_alien() when the platform is not numa.
3734 * This will avoid cache misses that happen while accessing slabp (which
3735 * is per page memory reference) to get nodeid. Instead use a global
3736 * variable to skip the call, which is mostly likely to be present in
3737 * the cache.
3738 */
b6e68bc1 3739 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3740 return;
3741
1da177e4
LT
3742 if (likely(ac->avail < ac->limit)) {
3743 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3744 } else {
3745 STATS_INC_FREEMISS(cachep);
3746 cache_flusharray(cachep, ac);
1da177e4 3747 }
42c8c99c 3748
072bb0aa 3749 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3750}
3751
3752/**
3753 * kmem_cache_alloc - Allocate an object
3754 * @cachep: The cache to allocate from.
3755 * @flags: See kmalloc().
3756 *
3757 * Allocate an object from this cache. The flags are only relevant
3758 * if the cache has no available objects.
3759 */
343e0d7a 3760void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3761{
48356303 3762 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3763
ca2b84cb 3764 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3765 cachep->object_size, cachep->size, flags);
36555751
EGM
3766
3767 return ret;
1da177e4
LT
3768}
3769EXPORT_SYMBOL(kmem_cache_alloc);
3770
0f24f128 3771#ifdef CONFIG_TRACING
85beb586 3772void *
4052147c 3773kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3774{
85beb586
SR
3775 void *ret;
3776
48356303 3777 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3778
3779 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3780 size, cachep->size, flags);
85beb586 3781 return ret;
36555751 3782}
85beb586 3783EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3784#endif
3785
1da177e4 3786#ifdef CONFIG_NUMA
8b98c169
CH
3787void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3788{
48356303 3789 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3790
ca2b84cb 3791 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3792 cachep->object_size, cachep->size,
ca2b84cb 3793 flags, nodeid);
36555751
EGM
3794
3795 return ret;
8b98c169 3796}
1da177e4
LT
3797EXPORT_SYMBOL(kmem_cache_alloc_node);
3798
0f24f128 3799#ifdef CONFIG_TRACING
4052147c 3800void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3801 gfp_t flags,
4052147c
EG
3802 int nodeid,
3803 size_t size)
36555751 3804{
85beb586
SR
3805 void *ret;
3806
592f4145 3807 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3808
85beb586 3809 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3810 size, cachep->size,
85beb586
SR
3811 flags, nodeid);
3812 return ret;
36555751 3813}
85beb586 3814EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3815#endif
3816
8b98c169 3817static __always_inline void *
7c0cb9c6 3818__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3819{
343e0d7a 3820 struct kmem_cache *cachep;
97e2bde4
MS
3821
3822 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3823 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3824 return cachep;
4052147c 3825 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3826}
8b98c169 3827
0bb38a5c 3828#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3829void *__kmalloc_node(size_t size, gfp_t flags, int node)
3830{
7c0cb9c6 3831 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3832}
dbe5e69d 3833EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3834
3835void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3836 int node, unsigned long caller)
8b98c169 3837{
7c0cb9c6 3838 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3839}
3840EXPORT_SYMBOL(__kmalloc_node_track_caller);
3841#else
3842void *__kmalloc_node(size_t size, gfp_t flags, int node)
3843{
7c0cb9c6 3844 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3845}
3846EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3847#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3848#endif /* CONFIG_NUMA */
1da177e4
LT
3849
3850/**
800590f5 3851 * __do_kmalloc - allocate memory
1da177e4 3852 * @size: how many bytes of memory are required.
800590f5 3853 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3854 * @caller: function caller for debug tracking of the caller
1da177e4 3855 */
7fd6b141 3856static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3857 unsigned long caller)
1da177e4 3858{
343e0d7a 3859 struct kmem_cache *cachep;
36555751 3860 void *ret;
1da177e4 3861
97e2bde4
MS
3862 /* If you want to save a few bytes .text space: replace
3863 * __ with kmem_.
3864 * Then kmalloc uses the uninlined functions instead of the inline
3865 * functions.
3866 */
3867 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3868 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3869 return cachep;
48356303 3870 ret = slab_alloc(cachep, flags, caller);
36555751 3871
7c0cb9c6 3872 trace_kmalloc(caller, ret,
3b0efdfa 3873 size, cachep->size, flags);
36555751
EGM
3874
3875 return ret;
7fd6b141
PE
3876}
3877
7fd6b141 3878
0bb38a5c 3879#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3880void *__kmalloc(size_t size, gfp_t flags)
3881{
7c0cb9c6 3882 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3883}
3884EXPORT_SYMBOL(__kmalloc);
3885
ce71e27c 3886void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3887{
7c0cb9c6 3888 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3889}
3890EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3891
3892#else
3893void *__kmalloc(size_t size, gfp_t flags)
3894{
7c0cb9c6 3895 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3896}
3897EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3898#endif
3899
1da177e4
LT
3900/**
3901 * kmem_cache_free - Deallocate an object
3902 * @cachep: The cache the allocation was from.
3903 * @objp: The previously allocated object.
3904 *
3905 * Free an object which was previously allocated from this
3906 * cache.
3907 */
343e0d7a 3908void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3909{
3910 unsigned long flags;
3911
3912 local_irq_save(flags);
d97d476b 3913 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3914 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3915 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3916 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3917 local_irq_restore(flags);
36555751 3918
ca2b84cb 3919 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3920}
3921EXPORT_SYMBOL(kmem_cache_free);
3922
1da177e4
LT
3923/**
3924 * kfree - free previously allocated memory
3925 * @objp: pointer returned by kmalloc.
3926 *
80e93eff
PE
3927 * If @objp is NULL, no operation is performed.
3928 *
1da177e4
LT
3929 * Don't free memory not originally allocated by kmalloc()
3930 * or you will run into trouble.
3931 */
3932void kfree(const void *objp)
3933{
343e0d7a 3934 struct kmem_cache *c;
1da177e4
LT
3935 unsigned long flags;
3936
2121db74
PE
3937 trace_kfree(_RET_IP_, objp);
3938
6cb8f913 3939 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3940 return;
3941 local_irq_save(flags);
3942 kfree_debugcheck(objp);
6ed5eb22 3943 c = virt_to_cache(objp);
8c138bc0
CL
3944 debug_check_no_locks_freed(objp, c->object_size);
3945
3946 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3947 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3948 local_irq_restore(flags);
3949}
3950EXPORT_SYMBOL(kfree);
3951
e498be7d 3952/*
183ff22b 3953 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3954 */
83b519e8 3955static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3956{
3957 int node;
3958 struct kmem_list3 *l3;
cafeb02e 3959 struct array_cache *new_shared;
3395ee05 3960 struct array_cache **new_alien = NULL;
e498be7d 3961
9c09a95c 3962 for_each_online_node(node) {
cafeb02e 3963
3395ee05 3964 if (use_alien_caches) {
83b519e8 3965 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3966 if (!new_alien)
3967 goto fail;
3968 }
cafeb02e 3969
63109846
ED
3970 new_shared = NULL;
3971 if (cachep->shared) {
3972 new_shared = alloc_arraycache(node,
0718dc2a 3973 cachep->shared*cachep->batchcount,
83b519e8 3974 0xbaadf00d, gfp);
63109846
ED
3975 if (!new_shared) {
3976 free_alien_cache(new_alien);
3977 goto fail;
3978 }
0718dc2a 3979 }
cafeb02e 3980
a737b3e2
AM
3981 l3 = cachep->nodelists[node];
3982 if (l3) {
cafeb02e
CL
3983 struct array_cache *shared = l3->shared;
3984
e498be7d
CL
3985 spin_lock_irq(&l3->list_lock);
3986
cafeb02e 3987 if (shared)
0718dc2a
CL
3988 free_block(cachep, shared->entry,
3989 shared->avail, node);
e498be7d 3990
cafeb02e
CL
3991 l3->shared = new_shared;
3992 if (!l3->alien) {
e498be7d
CL
3993 l3->alien = new_alien;
3994 new_alien = NULL;
3995 }
b28a02de 3996 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3997 cachep->batchcount + cachep->num;
e498be7d 3998 spin_unlock_irq(&l3->list_lock);
cafeb02e 3999 kfree(shared);
e498be7d
CL
4000 free_alien_cache(new_alien);
4001 continue;
4002 }
83b519e8 4003 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4004 if (!l3) {
4005 free_alien_cache(new_alien);
4006 kfree(new_shared);
e498be7d 4007 goto fail;
0718dc2a 4008 }
e498be7d
CL
4009
4010 kmem_list3_init(l3);
4011 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4012 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4013 l3->shared = new_shared;
e498be7d 4014 l3->alien = new_alien;
b28a02de 4015 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4016 cachep->batchcount + cachep->num;
e498be7d
CL
4017 cachep->nodelists[node] = l3;
4018 }
cafeb02e 4019 return 0;
0718dc2a 4020
a737b3e2 4021fail:
3b0efdfa 4022 if (!cachep->list.next) {
0718dc2a
CL
4023 /* Cache is not active yet. Roll back what we did */
4024 node--;
4025 while (node >= 0) {
4026 if (cachep->nodelists[node]) {
4027 l3 = cachep->nodelists[node];
4028
4029 kfree(l3->shared);
4030 free_alien_cache(l3->alien);
4031 kfree(l3);
4032 cachep->nodelists[node] = NULL;
4033 }
4034 node--;
4035 }
4036 }
cafeb02e 4037 return -ENOMEM;
e498be7d
CL
4038}
4039
1da177e4 4040struct ccupdate_struct {
343e0d7a 4041 struct kmem_cache *cachep;
acfe7d74 4042 struct array_cache *new[0];
1da177e4
LT
4043};
4044
4045static void do_ccupdate_local(void *info)
4046{
a737b3e2 4047 struct ccupdate_struct *new = info;
1da177e4
LT
4048 struct array_cache *old;
4049
4050 check_irq_off();
9a2dba4b 4051 old = cpu_cache_get(new->cachep);
e498be7d 4052
1da177e4
LT
4053 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4054 new->new[smp_processor_id()] = old;
4055}
4056
18004c5d 4057/* Always called with the slab_mutex held */
a737b3e2 4058static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4059 int batchcount, int shared, gfp_t gfp)
1da177e4 4060{
d2e7b7d0 4061 struct ccupdate_struct *new;
2ed3a4ef 4062 int i;
1da177e4 4063
acfe7d74
ED
4064 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4065 gfp);
d2e7b7d0
SS
4066 if (!new)
4067 return -ENOMEM;
4068
e498be7d 4069 for_each_online_cpu(i) {
7d6e6d09 4070 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4071 batchcount, gfp);
d2e7b7d0 4072 if (!new->new[i]) {
b28a02de 4073 for (i--; i >= 0; i--)
d2e7b7d0
SS
4074 kfree(new->new[i]);
4075 kfree(new);
e498be7d 4076 return -ENOMEM;
1da177e4
LT
4077 }
4078 }
d2e7b7d0 4079 new->cachep = cachep;
1da177e4 4080
15c8b6c1 4081 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4082
1da177e4 4083 check_irq_on();
1da177e4
LT
4084 cachep->batchcount = batchcount;
4085 cachep->limit = limit;
e498be7d 4086 cachep->shared = shared;
1da177e4 4087
e498be7d 4088 for_each_online_cpu(i) {
d2e7b7d0 4089 struct array_cache *ccold = new->new[i];
1da177e4
LT
4090 if (!ccold)
4091 continue;
7d6e6d09
LS
4092 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4093 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4094 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4095 kfree(ccold);
4096 }
d2e7b7d0 4097 kfree(new);
83b519e8 4098 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4099}
4100
18004c5d 4101/* Called with slab_mutex held always */
83b519e8 4102static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4103{
4104 int err;
4105 int limit, shared;
4106
a737b3e2
AM
4107 /*
4108 * The head array serves three purposes:
1da177e4
LT
4109 * - create a LIFO ordering, i.e. return objects that are cache-warm
4110 * - reduce the number of spinlock operations.
a737b3e2 4111 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4112 * bufctl chains: array operations are cheaper.
4113 * The numbers are guessed, we should auto-tune as described by
4114 * Bonwick.
4115 */
3b0efdfa 4116 if (cachep->size > 131072)
1da177e4 4117 limit = 1;
3b0efdfa 4118 else if (cachep->size > PAGE_SIZE)
1da177e4 4119 limit = 8;
3b0efdfa 4120 else if (cachep->size > 1024)
1da177e4 4121 limit = 24;
3b0efdfa 4122 else if (cachep->size > 256)
1da177e4
LT
4123 limit = 54;
4124 else
4125 limit = 120;
4126
a737b3e2
AM
4127 /*
4128 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4129 * allocation behaviour: Most allocs on one cpu, most free operations
4130 * on another cpu. For these cases, an efficient object passing between
4131 * cpus is necessary. This is provided by a shared array. The array
4132 * replaces Bonwick's magazine layer.
4133 * On uniprocessor, it's functionally equivalent (but less efficient)
4134 * to a larger limit. Thus disabled by default.
4135 */
4136 shared = 0;
3b0efdfa 4137 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4138 shared = 8;
1da177e4
LT
4139
4140#if DEBUG
a737b3e2
AM
4141 /*
4142 * With debugging enabled, large batchcount lead to excessively long
4143 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4144 */
4145 if (limit > 32)
4146 limit = 32;
4147#endif
83b519e8 4148 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4149 if (err)
4150 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4151 cachep->name, -err);
2ed3a4ef 4152 return err;
1da177e4
LT
4153}
4154
1b55253a
CL
4155/*
4156 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4157 * necessary. Note that the l3 listlock also protects the array_cache
4158 * if drain_array() is used on the shared array.
1b55253a 4159 */
68a1b195 4160static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4161 struct array_cache *ac, int force, int node)
1da177e4
LT
4162{
4163 int tofree;
4164
1b55253a
CL
4165 if (!ac || !ac->avail)
4166 return;
1da177e4
LT
4167 if (ac->touched && !force) {
4168 ac->touched = 0;
b18e7e65 4169 } else {
1b55253a 4170 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4171 if (ac->avail) {
4172 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4173 if (tofree > ac->avail)
4174 tofree = (ac->avail + 1) / 2;
4175 free_block(cachep, ac->entry, tofree, node);
4176 ac->avail -= tofree;
4177 memmove(ac->entry, &(ac->entry[tofree]),
4178 sizeof(void *) * ac->avail);
4179 }
1b55253a 4180 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4181 }
4182}
4183
4184/**
4185 * cache_reap - Reclaim memory from caches.
05fb6bf0 4186 * @w: work descriptor
1da177e4
LT
4187 *
4188 * Called from workqueue/eventd every few seconds.
4189 * Purpose:
4190 * - clear the per-cpu caches for this CPU.
4191 * - return freeable pages to the main free memory pool.
4192 *
a737b3e2
AM
4193 * If we cannot acquire the cache chain mutex then just give up - we'll try
4194 * again on the next iteration.
1da177e4 4195 */
7c5cae36 4196static void cache_reap(struct work_struct *w)
1da177e4 4197{
7a7c381d 4198 struct kmem_cache *searchp;
e498be7d 4199 struct kmem_list3 *l3;
7d6e6d09 4200 int node = numa_mem_id();
bf6aede7 4201 struct delayed_work *work = to_delayed_work(w);
1da177e4 4202
18004c5d 4203 if (!mutex_trylock(&slab_mutex))
1da177e4 4204 /* Give up. Setup the next iteration. */
7c5cae36 4205 goto out;
1da177e4 4206
18004c5d 4207 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4208 check_irq_on();
4209
35386e3b
CL
4210 /*
4211 * We only take the l3 lock if absolutely necessary and we
4212 * have established with reasonable certainty that
4213 * we can do some work if the lock was obtained.
4214 */
aab2207c 4215 l3 = searchp->nodelists[node];
35386e3b 4216
8fce4d8e 4217 reap_alien(searchp, l3);
1da177e4 4218
aab2207c 4219 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4220
35386e3b
CL
4221 /*
4222 * These are racy checks but it does not matter
4223 * if we skip one check or scan twice.
4224 */
e498be7d 4225 if (time_after(l3->next_reap, jiffies))
35386e3b 4226 goto next;
1da177e4 4227
e498be7d 4228 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4229
aab2207c 4230 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4231
ed11d9eb 4232 if (l3->free_touched)
e498be7d 4233 l3->free_touched = 0;
ed11d9eb
CL
4234 else {
4235 int freed;
1da177e4 4236
ed11d9eb
CL
4237 freed = drain_freelist(searchp, l3, (l3->free_limit +
4238 5 * searchp->num - 1) / (5 * searchp->num));
4239 STATS_ADD_REAPED(searchp, freed);
4240 }
35386e3b 4241next:
1da177e4
LT
4242 cond_resched();
4243 }
4244 check_irq_on();
18004c5d 4245 mutex_unlock(&slab_mutex);
8fce4d8e 4246 next_reap_node();
7c5cae36 4247out:
a737b3e2 4248 /* Set up the next iteration */
7c5cae36 4249 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4250}
4251
158a9624 4252#ifdef CONFIG_SLABINFO
0d7561c6 4253void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4254{
b28a02de
PE
4255 struct slab *slabp;
4256 unsigned long active_objs;
4257 unsigned long num_objs;
4258 unsigned long active_slabs = 0;
4259 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4260 const char *name;
1da177e4 4261 char *error = NULL;
e498be7d
CL
4262 int node;
4263 struct kmem_list3 *l3;
1da177e4 4264
1da177e4
LT
4265 active_objs = 0;
4266 num_slabs = 0;
e498be7d
CL
4267 for_each_online_node(node) {
4268 l3 = cachep->nodelists[node];
4269 if (!l3)
4270 continue;
4271
ca3b9b91
RT
4272 check_irq_on();
4273 spin_lock_irq(&l3->list_lock);
e498be7d 4274
7a7c381d 4275 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4276 if (slabp->inuse != cachep->num && !error)
4277 error = "slabs_full accounting error";
4278 active_objs += cachep->num;
4279 active_slabs++;
4280 }
7a7c381d 4281 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4282 if (slabp->inuse == cachep->num && !error)
4283 error = "slabs_partial inuse accounting error";
4284 if (!slabp->inuse && !error)
4285 error = "slabs_partial/inuse accounting error";
4286 active_objs += slabp->inuse;
4287 active_slabs++;
4288 }
7a7c381d 4289 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4290 if (slabp->inuse && !error)
4291 error = "slabs_free/inuse accounting error";
4292 num_slabs++;
4293 }
4294 free_objects += l3->free_objects;
4484ebf1
RT
4295 if (l3->shared)
4296 shared_avail += l3->shared->avail;
e498be7d 4297
ca3b9b91 4298 spin_unlock_irq(&l3->list_lock);
1da177e4 4299 }
b28a02de
PE
4300 num_slabs += active_slabs;
4301 num_objs = num_slabs * cachep->num;
e498be7d 4302 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4303 error = "free_objects accounting error";
4304
b28a02de 4305 name = cachep->name;
1da177e4
LT
4306 if (error)
4307 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4308
0d7561c6
GC
4309 sinfo->active_objs = active_objs;
4310 sinfo->num_objs = num_objs;
4311 sinfo->active_slabs = active_slabs;
4312 sinfo->num_slabs = num_slabs;
4313 sinfo->shared_avail = shared_avail;
4314 sinfo->limit = cachep->limit;
4315 sinfo->batchcount = cachep->batchcount;
4316 sinfo->shared = cachep->shared;
4317 sinfo->objects_per_slab = cachep->num;
4318 sinfo->cache_order = cachep->gfporder;
4319}
4320
4321void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4322{
1da177e4 4323#if STATS
b28a02de 4324 { /* list3 stats */
1da177e4
LT
4325 unsigned long high = cachep->high_mark;
4326 unsigned long allocs = cachep->num_allocations;
4327 unsigned long grown = cachep->grown;
4328 unsigned long reaped = cachep->reaped;
4329 unsigned long errors = cachep->errors;
4330 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4331 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4332 unsigned long node_frees = cachep->node_frees;
fb7faf33 4333 unsigned long overflows = cachep->node_overflow;
1da177e4 4334
e92dd4fd
JP
4335 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4336 "%4lu %4lu %4lu %4lu %4lu",
4337 allocs, high, grown,
4338 reaped, errors, max_freeable, node_allocs,
4339 node_frees, overflows);
1da177e4
LT
4340 }
4341 /* cpu stats */
4342 {
4343 unsigned long allochit = atomic_read(&cachep->allochit);
4344 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4345 unsigned long freehit = atomic_read(&cachep->freehit);
4346 unsigned long freemiss = atomic_read(&cachep->freemiss);
4347
4348 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4349 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4350 }
4351#endif
1da177e4
LT
4352}
4353
1da177e4
LT
4354#define MAX_SLABINFO_WRITE 128
4355/**
4356 * slabinfo_write - Tuning for the slab allocator
4357 * @file: unused
4358 * @buffer: user buffer
4359 * @count: data length
4360 * @ppos: unused
4361 */
b7454ad3 4362ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4363 size_t count, loff_t *ppos)
1da177e4 4364{
b28a02de 4365 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4366 int limit, batchcount, shared, res;
7a7c381d 4367 struct kmem_cache *cachep;
b28a02de 4368
1da177e4
LT
4369 if (count > MAX_SLABINFO_WRITE)
4370 return -EINVAL;
4371 if (copy_from_user(&kbuf, buffer, count))
4372 return -EFAULT;
b28a02de 4373 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4374
4375 tmp = strchr(kbuf, ' ');
4376 if (!tmp)
4377 return -EINVAL;
4378 *tmp = '\0';
4379 tmp++;
4380 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4381 return -EINVAL;
4382
4383 /* Find the cache in the chain of caches. */
18004c5d 4384 mutex_lock(&slab_mutex);
1da177e4 4385 res = -EINVAL;
18004c5d 4386 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4387 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4388 if (limit < 1 || batchcount < 1 ||
4389 batchcount > limit || shared < 0) {
e498be7d 4390 res = 0;
1da177e4 4391 } else {
e498be7d 4392 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4393 batchcount, shared,
4394 GFP_KERNEL);
1da177e4
LT
4395 }
4396 break;
4397 }
4398 }
18004c5d 4399 mutex_unlock(&slab_mutex);
1da177e4
LT
4400 if (res >= 0)
4401 res = count;
4402 return res;
4403}
871751e2
AV
4404
4405#ifdef CONFIG_DEBUG_SLAB_LEAK
4406
4407static void *leaks_start(struct seq_file *m, loff_t *pos)
4408{
18004c5d
CL
4409 mutex_lock(&slab_mutex);
4410 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4411}
4412
4413static inline int add_caller(unsigned long *n, unsigned long v)
4414{
4415 unsigned long *p;
4416 int l;
4417 if (!v)
4418 return 1;
4419 l = n[1];
4420 p = n + 2;
4421 while (l) {
4422 int i = l/2;
4423 unsigned long *q = p + 2 * i;
4424 if (*q == v) {
4425 q[1]++;
4426 return 1;
4427 }
4428 if (*q > v) {
4429 l = i;
4430 } else {
4431 p = q + 2;
4432 l -= i + 1;
4433 }
4434 }
4435 if (++n[1] == n[0])
4436 return 0;
4437 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4438 p[0] = v;
4439 p[1] = 1;
4440 return 1;
4441}
4442
4443static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4444{
4445 void *p;
4446 int i;
4447 if (n[0] == n[1])
4448 return;
3b0efdfa 4449 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4450 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4451 continue;
4452 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4453 return;
4454 }
4455}
4456
4457static void show_symbol(struct seq_file *m, unsigned long address)
4458{
4459#ifdef CONFIG_KALLSYMS
871751e2 4460 unsigned long offset, size;
9281acea 4461 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4462
a5c43dae 4463 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4464 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4465 if (modname[0])
871751e2
AV
4466 seq_printf(m, " [%s]", modname);
4467 return;
4468 }
4469#endif
4470 seq_printf(m, "%p", (void *)address);
4471}
4472
4473static int leaks_show(struct seq_file *m, void *p)
4474{
0672aa7c 4475 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4476 struct slab *slabp;
4477 struct kmem_list3 *l3;
4478 const char *name;
4479 unsigned long *n = m->private;
4480 int node;
4481 int i;
4482
4483 if (!(cachep->flags & SLAB_STORE_USER))
4484 return 0;
4485 if (!(cachep->flags & SLAB_RED_ZONE))
4486 return 0;
4487
4488 /* OK, we can do it */
4489
4490 n[1] = 0;
4491
4492 for_each_online_node(node) {
4493 l3 = cachep->nodelists[node];
4494 if (!l3)
4495 continue;
4496
4497 check_irq_on();
4498 spin_lock_irq(&l3->list_lock);
4499
7a7c381d 4500 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4501 handle_slab(n, cachep, slabp);
7a7c381d 4502 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4503 handle_slab(n, cachep, slabp);
871751e2
AV
4504 spin_unlock_irq(&l3->list_lock);
4505 }
4506 name = cachep->name;
4507 if (n[0] == n[1]) {
4508 /* Increase the buffer size */
18004c5d 4509 mutex_unlock(&slab_mutex);
871751e2
AV
4510 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4511 if (!m->private) {
4512 /* Too bad, we are really out */
4513 m->private = n;
18004c5d 4514 mutex_lock(&slab_mutex);
871751e2
AV
4515 return -ENOMEM;
4516 }
4517 *(unsigned long *)m->private = n[0] * 2;
4518 kfree(n);
18004c5d 4519 mutex_lock(&slab_mutex);
871751e2
AV
4520 /* Now make sure this entry will be retried */
4521 m->count = m->size;
4522 return 0;
4523 }
4524 for (i = 0; i < n[1]; i++) {
4525 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4526 show_symbol(m, n[2*i+2]);
4527 seq_putc(m, '\n');
4528 }
d2e7b7d0 4529
871751e2
AV
4530 return 0;
4531}
4532
b7454ad3
GC
4533static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4534{
4535 return seq_list_next(p, &slab_caches, pos);
4536}
4537
4538static void s_stop(struct seq_file *m, void *p)
4539{
4540 mutex_unlock(&slab_mutex);
4541}
4542
a0ec95a8 4543static const struct seq_operations slabstats_op = {
871751e2
AV
4544 .start = leaks_start,
4545 .next = s_next,
4546 .stop = s_stop,
4547 .show = leaks_show,
4548};
a0ec95a8
AD
4549
4550static int slabstats_open(struct inode *inode, struct file *file)
4551{
4552 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4553 int ret = -ENOMEM;
4554 if (n) {
4555 ret = seq_open(file, &slabstats_op);
4556 if (!ret) {
4557 struct seq_file *m = file->private_data;
4558 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4559 m->private = n;
4560 n = NULL;
4561 }
4562 kfree(n);
4563 }
4564 return ret;
4565}
4566
4567static const struct file_operations proc_slabstats_operations = {
4568 .open = slabstats_open,
4569 .read = seq_read,
4570 .llseek = seq_lseek,
4571 .release = seq_release_private,
4572};
4573#endif
4574
4575static int __init slab_proc_init(void)
4576{
4577#ifdef CONFIG_DEBUG_SLAB_LEAK
4578 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4579#endif
a0ec95a8
AD
4580 return 0;
4581}
4582module_init(slab_proc_init);
1da177e4
LT
4583#endif
4584
00e145b6
MS
4585/**
4586 * ksize - get the actual amount of memory allocated for a given object
4587 * @objp: Pointer to the object
4588 *
4589 * kmalloc may internally round up allocations and return more memory
4590 * than requested. ksize() can be used to determine the actual amount of
4591 * memory allocated. The caller may use this additional memory, even though
4592 * a smaller amount of memory was initially specified with the kmalloc call.
4593 * The caller must guarantee that objp points to a valid object previously
4594 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4595 * must not be freed during the duration of the call.
4596 */
fd76bab2 4597size_t ksize(const void *objp)
1da177e4 4598{
ef8b4520
CL
4599 BUG_ON(!objp);
4600 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4601 return 0;
1da177e4 4602
8c138bc0 4603 return virt_to_cache(objp)->object_size;
1da177e4 4604}
b1aabecd 4605EXPORT_SYMBOL(ksize);
This page took 1.234317 seconds and 5 git commands to generate.