Merge branch 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
1da177e4
LT
120#include <asm/cacheflush.h>
121#include <asm/tlbflush.h>
122#include <asm/page.h>
123
124/*
50953fe9 125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
126 * 0 for faster, smaller code (especially in the critical paths).
127 *
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 */
133
134#ifdef CONFIG_DEBUG_SLAB
135#define DEBUG 1
136#define STATS 1
137#define FORCED_DEBUG 1
138#else
139#define DEBUG 0
140#define STATS 0
141#define FORCED_DEBUG 0
142#endif
143
1da177e4
LT
144/* Shouldn't this be in a header file somewhere? */
145#define BYTES_PER_WORD sizeof(void *)
87a927c7 146#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 147
1da177e4
LT
148#ifndef ARCH_KMALLOC_FLAGS
149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150#endif
151
152/* Legal flag mask for kmem_cache_create(). */
153#if DEBUG
50953fe9 154# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 156 SLAB_CACHE_DMA | \
5af60839 157 SLAB_STORE_USER | \
1da177e4 158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 161#else
ac2b898c 162# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 163 SLAB_CACHE_DMA | \
1da177e4 164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
167#endif
168
169/*
170 * kmem_bufctl_t:
171 *
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
174 *
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186 */
187
fa5b08d5 188typedef unsigned int kmem_bufctl_t;
1da177e4
LT
189#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
191#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 193
1da177e4
LT
194/*
195 * struct slab_rcu
196 *
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
204 *
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
1da177e4
LT
207 */
208struct slab_rcu {
b28a02de 209 struct rcu_head head;
343e0d7a 210 struct kmem_cache *cachep;
b28a02de 211 void *addr;
1da177e4
LT
212};
213
5bfe53a7
LJ
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222 union {
223 struct {
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
230 };
231 struct slab_rcu __slab_cover_slab_rcu;
232 };
233};
234
1da177e4
LT
235/*
236 * struct array_cache
237 *
1da177e4
LT
238 * Purpose:
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
242 *
243 * The limit is stored in the per-cpu structure to reduce the data cache
244 * footprint.
245 *
246 */
247struct array_cache {
248 unsigned int avail;
249 unsigned int limit;
250 unsigned int batchcount;
251 unsigned int touched;
e498be7d 252 spinlock_t lock;
bda5b655 253 void *entry[]; /*
a737b3e2
AM
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
256 * the entries.
a737b3e2 257 */
1da177e4
LT
258};
259
a737b3e2
AM
260/*
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
1da177e4
LT
263 */
264#define BOOT_CPUCACHE_ENTRIES 1
265struct arraycache_init {
266 struct array_cache cache;
b28a02de 267 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
268};
269
270/*
e498be7d 271 * The slab lists for all objects.
1da177e4
LT
272 */
273struct kmem_list3 {
b28a02de
PE
274 struct list_head slabs_partial; /* partial list first, better asm code */
275 struct list_head slabs_full;
276 struct list_head slabs_free;
277 unsigned long free_objects;
b28a02de 278 unsigned int free_limit;
2e1217cf 279 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
280 spinlock_t list_lock;
281 struct array_cache *shared; /* shared per node */
282 struct array_cache **alien; /* on other nodes */
35386e3b
CL
283 unsigned long next_reap; /* updated without locking */
284 int free_touched; /* updated without locking */
1da177e4
LT
285};
286
e498be7d
CL
287/*
288 * Need this for bootstrapping a per node allocator.
289 */
556a169d 290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 291static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 292#define CACHE_CACHE 0
556a169d
PE
293#define SIZE_AC MAX_NUMNODES
294#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 295
ed11d9eb
CL
296static int drain_freelist(struct kmem_cache *cache,
297 struct kmem_list3 *l3, int tofree);
298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299 int node);
83b519e8 300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 301static void cache_reap(struct work_struct *unused);
ed11d9eb 302
e498be7d 303/*
a737b3e2
AM
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 306 */
7243cc05 307static __always_inline int index_of(const size_t size)
e498be7d 308{
5ec8a847
SR
309 extern void __bad_size(void);
310
e498be7d
CL
311 if (__builtin_constant_p(size)) {
312 int i = 0;
313
314#define CACHE(x) \
315 if (size <=x) \
316 return i; \
317 else \
318 i++;
1c61fc40 319#include <linux/kmalloc_sizes.h>
e498be7d 320#undef CACHE
5ec8a847 321 __bad_size();
7243cc05 322 } else
5ec8a847 323 __bad_size();
e498be7d
CL
324 return 0;
325}
326
e0a42726
IM
327static int slab_early_init = 1;
328
e498be7d
CL
329#define INDEX_AC index_of(sizeof(struct arraycache_init))
330#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 331
5295a74c 332static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
333{
334 INIT_LIST_HEAD(&parent->slabs_full);
335 INIT_LIST_HEAD(&parent->slabs_partial);
336 INIT_LIST_HEAD(&parent->slabs_free);
337 parent->shared = NULL;
338 parent->alien = NULL;
2e1217cf 339 parent->colour_next = 0;
e498be7d
CL
340 spin_lock_init(&parent->list_lock);
341 parent->free_objects = 0;
342 parent->free_touched = 0;
343}
344
a737b3e2
AM
345#define MAKE_LIST(cachep, listp, slab, nodeid) \
346 do { \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
349 } while (0)
350
a737b3e2
AM
351#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
352 do { \
e498be7d
CL
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
356 } while (0)
1da177e4 357
1da177e4
LT
358#define CFLGS_OFF_SLAB (0x80000000UL)
359#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
360
361#define BATCHREFILL_LIMIT 16
a737b3e2
AM
362/*
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
1da177e4 365 *
dc6f3f27 366 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
367 * which could lock up otherwise freeable slabs.
368 */
369#define REAPTIMEOUT_CPUC (2*HZ)
370#define REAPTIMEOUT_LIST3 (4*HZ)
371
372#if STATS
373#define STATS_INC_ACTIVE(x) ((x)->num_active++)
374#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 377#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
378#define STATS_SET_HIGH(x) \
379 do { \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
382 } while (0)
1da177e4
LT
383#define STATS_INC_ERR(x) ((x)->errors++)
384#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 385#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 386#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
387#define STATS_SET_FREEABLE(x, i) \
388 do { \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
391 } while (0)
1da177e4
LT
392#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
396#else
397#define STATS_INC_ACTIVE(x) do { } while (0)
398#define STATS_DEC_ACTIVE(x) do { } while (0)
399#define STATS_INC_ALLOCED(x) do { } while (0)
400#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 401#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
402#define STATS_SET_HIGH(x) do { } while (0)
403#define STATS_INC_ERR(x) do { } while (0)
404#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 405#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 406#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 407#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
408#define STATS_INC_ALLOCHIT(x) do { } while (0)
409#define STATS_INC_ALLOCMISS(x) do { } while (0)
410#define STATS_INC_FREEHIT(x) do { } while (0)
411#define STATS_INC_FREEMISS(x) do { } while (0)
412#endif
413
414#if DEBUG
1da177e4 415
a737b3e2
AM
416/*
417 * memory layout of objects:
1da177e4 418 * 0 : objp
3dafccf2 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
3dafccf2 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 423 * redzone word.
3dafccf2
MS
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
1da177e4 428 */
343e0d7a 429static int obj_offset(struct kmem_cache *cachep)
1da177e4 430{
3dafccf2 431 return cachep->obj_offset;
1da177e4
LT
432}
433
343e0d7a 434static int obj_size(struct kmem_cache *cachep)
1da177e4 435{
3dafccf2 436 return cachep->obj_size;
1da177e4
LT
437}
438
b46b8f19 439static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
440{
441 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
442 return (unsigned long long*) (objp + obj_offset(cachep) -
443 sizeof(unsigned long long));
1da177e4
LT
444}
445
b46b8f19 446static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
447{
448 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
449 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
450 return (unsigned long long *)(objp + cachep->buffer_size -
451 sizeof(unsigned long long) -
87a927c7 452 REDZONE_ALIGN);
b46b8f19
DW
453 return (unsigned long long *) (objp + cachep->buffer_size -
454 sizeof(unsigned long long));
1da177e4
LT
455}
456
343e0d7a 457static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
458{
459 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 460 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
461}
462
463#else
464
3dafccf2
MS
465#define obj_offset(x) 0
466#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
467#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
469#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
470
471#endif
472
0f24f128 473#ifdef CONFIG_TRACING
36555751
EGM
474size_t slab_buffer_size(struct kmem_cache *cachep)
475{
476 return cachep->buffer_size;
477}
478EXPORT_SYMBOL(slab_buffer_size);
479#endif
480
1da177e4
LT
481/*
482 * Do not go above this order unless 0 objects fit into the slab.
483 */
484#define BREAK_GFP_ORDER_HI 1
485#define BREAK_GFP_ORDER_LO 0
486static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
487
a737b3e2
AM
488/*
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator. These are used to find the slab an obj belongs to. With kfree(),
491 * these are used to find the cache which an obj belongs to.
1da177e4 492 */
065d41cb
PE
493static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
494{
495 page->lru.next = (struct list_head *)cache;
496}
497
498static inline struct kmem_cache *page_get_cache(struct page *page)
499{
d85f3385 500 page = compound_head(page);
ddc2e812 501 BUG_ON(!PageSlab(page));
065d41cb
PE
502 return (struct kmem_cache *)page->lru.next;
503}
504
505static inline void page_set_slab(struct page *page, struct slab *slab)
506{
507 page->lru.prev = (struct list_head *)slab;
508}
509
510static inline struct slab *page_get_slab(struct page *page)
511{
ddc2e812 512 BUG_ON(!PageSlab(page));
065d41cb
PE
513 return (struct slab *)page->lru.prev;
514}
1da177e4 515
6ed5eb22
PE
516static inline struct kmem_cache *virt_to_cache(const void *obj)
517{
b49af68f 518 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
519 return page_get_cache(page);
520}
521
522static inline struct slab *virt_to_slab(const void *obj)
523{
b49af68f 524 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
525 return page_get_slab(page);
526}
527
8fea4e96
PE
528static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
529 unsigned int idx)
530{
531 return slab->s_mem + cache->buffer_size * idx;
532}
533
6a2d7a95
ED
534/*
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 * Using the fact that buffer_size is a constant for a particular cache,
537 * we can replace (offset / cache->buffer_size) by
538 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
539 */
540static inline unsigned int obj_to_index(const struct kmem_cache *cache,
541 const struct slab *slab, void *obj)
8fea4e96 542{
6a2d7a95
ED
543 u32 offset = (obj - slab->s_mem);
544 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
545}
546
a737b3e2
AM
547/*
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
549 */
1da177e4
LT
550struct cache_sizes malloc_sizes[] = {
551#define CACHE(x) { .cs_size = (x) },
552#include <linux/kmalloc_sizes.h>
553 CACHE(ULONG_MAX)
554#undef CACHE
555};
556EXPORT_SYMBOL(malloc_sizes);
557
558/* Must match cache_sizes above. Out of line to keep cache footprint low. */
559struct cache_names {
560 char *name;
561 char *name_dma;
562};
563
564static struct cache_names __initdata cache_names[] = {
565#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566#include <linux/kmalloc_sizes.h>
b28a02de 567 {NULL,}
1da177e4
LT
568#undef CACHE
569};
570
571static struct arraycache_init initarray_cache __initdata =
b28a02de 572 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 573static struct arraycache_init initarray_generic =
b28a02de 574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
575
576/* internal cache of cache description objs */
b56efcf0 577static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 578static struct kmem_cache cache_cache = {
b56efcf0 579 .nodelists = cache_cache_nodelists,
b28a02de
PE
580 .batchcount = 1,
581 .limit = BOOT_CPUCACHE_ENTRIES,
582 .shared = 1,
343e0d7a 583 .buffer_size = sizeof(struct kmem_cache),
b28a02de 584 .name = "kmem_cache",
1da177e4
LT
585};
586
056c6241
RT
587#define BAD_ALIEN_MAGIC 0x01020304ul
588
ce79ddc8
PE
589/*
590 * chicken and egg problem: delay the per-cpu array allocation
591 * until the general caches are up.
592 */
593static enum {
594 NONE,
595 PARTIAL_AC,
596 PARTIAL_L3,
597 EARLY,
52cef189 598 LATE,
ce79ddc8
PE
599 FULL
600} g_cpucache_up;
601
602/*
603 * used by boot code to determine if it can use slab based allocator
604 */
605int slab_is_available(void)
606{
607 return g_cpucache_up >= EARLY;
608}
609
f1aaee53
AV
610#ifdef CONFIG_LOCKDEP
611
612/*
613 * Slab sometimes uses the kmalloc slabs to store the slab headers
614 * for other slabs "off slab".
615 * The locking for this is tricky in that it nests within the locks
616 * of all other slabs in a few places; to deal with this special
617 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
618 *
619 * We set lock class for alien array caches which are up during init.
620 * The lock annotation will be lost if all cpus of a node goes down and
621 * then comes back up during hotplug
f1aaee53 622 */
056c6241
RT
623static struct lock_class_key on_slab_l3_key;
624static struct lock_class_key on_slab_alc_key;
625
83835b3d
PZ
626static struct lock_class_key debugobj_l3_key;
627static struct lock_class_key debugobj_alc_key;
628
629static void slab_set_lock_classes(struct kmem_cache *cachep,
630 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
631 int q)
632{
633 struct array_cache **alc;
634 struct kmem_list3 *l3;
635 int r;
636
637 l3 = cachep->nodelists[q];
638 if (!l3)
639 return;
640
641 lockdep_set_class(&l3->list_lock, l3_key);
642 alc = l3->alien;
643 /*
644 * FIXME: This check for BAD_ALIEN_MAGIC
645 * should go away when common slab code is taught to
646 * work even without alien caches.
647 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
648 * for alloc_alien_cache,
649 */
650 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
651 return;
652 for_each_node(r) {
653 if (alc[r])
654 lockdep_set_class(&alc[r]->lock, alc_key);
655 }
656}
657
658static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
659{
660 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
661}
662
663static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
664{
665 int node;
666
667 for_each_online_node(node)
668 slab_set_debugobj_lock_classes_node(cachep, node);
669}
670
ce79ddc8 671static void init_node_lock_keys(int q)
f1aaee53 672{
056c6241
RT
673 struct cache_sizes *s = malloc_sizes;
674
52cef189 675 if (g_cpucache_up < LATE)
ce79ddc8
PE
676 return;
677
678 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 679 struct kmem_list3 *l3;
ce79ddc8
PE
680
681 l3 = s->cs_cachep->nodelists[q];
682 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 683 continue;
83835b3d
PZ
684
685 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
686 &on_slab_alc_key, q);
f1aaee53
AV
687 }
688}
ce79ddc8
PE
689
690static inline void init_lock_keys(void)
691{
692 int node;
693
694 for_each_node(node)
695 init_node_lock_keys(node);
696}
f1aaee53 697#else
ce79ddc8
PE
698static void init_node_lock_keys(int q)
699{
700}
701
056c6241 702static inline void init_lock_keys(void)
f1aaee53
AV
703{
704}
83835b3d
PZ
705
706static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
707{
708}
709
710static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
711{
712}
f1aaee53
AV
713#endif
714
8f5be20b 715/*
95402b38 716 * Guard access to the cache-chain.
8f5be20b 717 */
fc0abb14 718static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
719static struct list_head cache_chain;
720
1871e52c 721static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 722
343e0d7a 723static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
724{
725 return cachep->array[smp_processor_id()];
726}
727
a737b3e2
AM
728static inline struct kmem_cache *__find_general_cachep(size_t size,
729 gfp_t gfpflags)
1da177e4
LT
730{
731 struct cache_sizes *csizep = malloc_sizes;
732
733#if DEBUG
734 /* This happens if someone tries to call
b28a02de
PE
735 * kmem_cache_create(), or __kmalloc(), before
736 * the generic caches are initialized.
737 */
c7e43c78 738 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 739#endif
6cb8f913
CL
740 if (!size)
741 return ZERO_SIZE_PTR;
742
1da177e4
LT
743 while (size > csizep->cs_size)
744 csizep++;
745
746 /*
0abf40c1 747 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
748 * has cs_{dma,}cachep==NULL. Thus no special case
749 * for large kmalloc calls required.
750 */
4b51d669 751#ifdef CONFIG_ZONE_DMA
1da177e4
LT
752 if (unlikely(gfpflags & GFP_DMA))
753 return csizep->cs_dmacachep;
4b51d669 754#endif
1da177e4
LT
755 return csizep->cs_cachep;
756}
757
b221385b 758static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
759{
760 return __find_general_cachep(size, gfpflags);
761}
97e2bde4 762
fbaccacf 763static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 764{
fbaccacf
SR
765 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
766}
1da177e4 767
a737b3e2
AM
768/*
769 * Calculate the number of objects and left-over bytes for a given buffer size.
770 */
fbaccacf
SR
771static void cache_estimate(unsigned long gfporder, size_t buffer_size,
772 size_t align, int flags, size_t *left_over,
773 unsigned int *num)
774{
775 int nr_objs;
776 size_t mgmt_size;
777 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 778
fbaccacf
SR
779 /*
780 * The slab management structure can be either off the slab or
781 * on it. For the latter case, the memory allocated for a
782 * slab is used for:
783 *
784 * - The struct slab
785 * - One kmem_bufctl_t for each object
786 * - Padding to respect alignment of @align
787 * - @buffer_size bytes for each object
788 *
789 * If the slab management structure is off the slab, then the
790 * alignment will already be calculated into the size. Because
791 * the slabs are all pages aligned, the objects will be at the
792 * correct alignment when allocated.
793 */
794 if (flags & CFLGS_OFF_SLAB) {
795 mgmt_size = 0;
796 nr_objs = slab_size / buffer_size;
797
798 if (nr_objs > SLAB_LIMIT)
799 nr_objs = SLAB_LIMIT;
800 } else {
801 /*
802 * Ignore padding for the initial guess. The padding
803 * is at most @align-1 bytes, and @buffer_size is at
804 * least @align. In the worst case, this result will
805 * be one greater than the number of objects that fit
806 * into the memory allocation when taking the padding
807 * into account.
808 */
809 nr_objs = (slab_size - sizeof(struct slab)) /
810 (buffer_size + sizeof(kmem_bufctl_t));
811
812 /*
813 * This calculated number will be either the right
814 * amount, or one greater than what we want.
815 */
816 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
817 > slab_size)
818 nr_objs--;
819
820 if (nr_objs > SLAB_LIMIT)
821 nr_objs = SLAB_LIMIT;
822
823 mgmt_size = slab_mgmt_size(nr_objs, align);
824 }
825 *num = nr_objs;
826 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
827}
828
d40cee24 829#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 830
a737b3e2
AM
831static void __slab_error(const char *function, struct kmem_cache *cachep,
832 char *msg)
1da177e4
LT
833{
834 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 835 function, cachep->name, msg);
1da177e4
LT
836 dump_stack();
837}
838
3395ee05
PM
839/*
840 * By default on NUMA we use alien caches to stage the freeing of
841 * objects allocated from other nodes. This causes massive memory
842 * inefficiencies when using fake NUMA setup to split memory into a
843 * large number of small nodes, so it can be disabled on the command
844 * line
845 */
846
847static int use_alien_caches __read_mostly = 1;
848static int __init noaliencache_setup(char *s)
849{
850 use_alien_caches = 0;
851 return 1;
852}
853__setup("noaliencache", noaliencache_setup);
854
8fce4d8e
CL
855#ifdef CONFIG_NUMA
856/*
857 * Special reaping functions for NUMA systems called from cache_reap().
858 * These take care of doing round robin flushing of alien caches (containing
859 * objects freed on different nodes from which they were allocated) and the
860 * flushing of remote pcps by calling drain_node_pages.
861 */
1871e52c 862static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
863
864static void init_reap_node(int cpu)
865{
866 int node;
867
7d6e6d09 868 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 869 if (node == MAX_NUMNODES)
442295c9 870 node = first_node(node_online_map);
8fce4d8e 871
1871e52c 872 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
873}
874
875static void next_reap_node(void)
876{
909ea964 877 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 878
8fce4d8e
CL
879 node = next_node(node, node_online_map);
880 if (unlikely(node >= MAX_NUMNODES))
881 node = first_node(node_online_map);
909ea964 882 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
883}
884
885#else
886#define init_reap_node(cpu) do { } while (0)
887#define next_reap_node(void) do { } while (0)
888#endif
889
1da177e4
LT
890/*
891 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
892 * via the workqueue/eventd.
893 * Add the CPU number into the expiration time to minimize the possibility of
894 * the CPUs getting into lockstep and contending for the global cache chain
895 * lock.
896 */
897e679b 897static void __cpuinit start_cpu_timer(int cpu)
1da177e4 898{
1871e52c 899 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
900
901 /*
902 * When this gets called from do_initcalls via cpucache_init(),
903 * init_workqueues() has already run, so keventd will be setup
904 * at that time.
905 */
52bad64d 906 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 907 init_reap_node(cpu);
78b43536 908 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
909 schedule_delayed_work_on(cpu, reap_work,
910 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
911 }
912}
913
e498be7d 914static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 915 int batchcount, gfp_t gfp)
1da177e4 916{
b28a02de 917 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
918 struct array_cache *nc = NULL;
919
83b519e8 920 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
921 /*
922 * The array_cache structures contain pointers to free object.
25985edc 923 * However, when such objects are allocated or transferred to another
d5cff635
CM
924 * cache the pointers are not cleared and they could be counted as
925 * valid references during a kmemleak scan. Therefore, kmemleak must
926 * not scan such objects.
927 */
928 kmemleak_no_scan(nc);
1da177e4
LT
929 if (nc) {
930 nc->avail = 0;
931 nc->limit = entries;
932 nc->batchcount = batchcount;
933 nc->touched = 0;
e498be7d 934 spin_lock_init(&nc->lock);
1da177e4
LT
935 }
936 return nc;
937}
938
3ded175a
CL
939/*
940 * Transfer objects in one arraycache to another.
941 * Locking must be handled by the caller.
942 *
943 * Return the number of entries transferred.
944 */
945static int transfer_objects(struct array_cache *to,
946 struct array_cache *from, unsigned int max)
947{
948 /* Figure out how many entries to transfer */
732eacc0 949 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
950
951 if (!nr)
952 return 0;
953
954 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
955 sizeof(void *) *nr);
956
957 from->avail -= nr;
958 to->avail += nr;
3ded175a
CL
959 return nr;
960}
961
765c4507
CL
962#ifndef CONFIG_NUMA
963
964#define drain_alien_cache(cachep, alien) do { } while (0)
965#define reap_alien(cachep, l3) do { } while (0)
966
83b519e8 967static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
968{
969 return (struct array_cache **)BAD_ALIEN_MAGIC;
970}
971
972static inline void free_alien_cache(struct array_cache **ac_ptr)
973{
974}
975
976static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
977{
978 return 0;
979}
980
981static inline void *alternate_node_alloc(struct kmem_cache *cachep,
982 gfp_t flags)
983{
984 return NULL;
985}
986
8b98c169 987static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
988 gfp_t flags, int nodeid)
989{
990 return NULL;
991}
992
993#else /* CONFIG_NUMA */
994
8b98c169 995static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 996static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 997
83b519e8 998static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
999{
1000 struct array_cache **ac_ptr;
8ef82866 1001 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1002 int i;
1003
1004 if (limit > 1)
1005 limit = 12;
f3186a9c 1006 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1007 if (ac_ptr) {
1008 for_each_node(i) {
f3186a9c 1009 if (i == node || !node_online(i))
e498be7d 1010 continue;
83b519e8 1011 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1012 if (!ac_ptr[i]) {
cc550def 1013 for (i--; i >= 0; i--)
e498be7d
CL
1014 kfree(ac_ptr[i]);
1015 kfree(ac_ptr);
1016 return NULL;
1017 }
1018 }
1019 }
1020 return ac_ptr;
1021}
1022
5295a74c 1023static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1024{
1025 int i;
1026
1027 if (!ac_ptr)
1028 return;
e498be7d 1029 for_each_node(i)
b28a02de 1030 kfree(ac_ptr[i]);
e498be7d
CL
1031 kfree(ac_ptr);
1032}
1033
343e0d7a 1034static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1035 struct array_cache *ac, int node)
e498be7d
CL
1036{
1037 struct kmem_list3 *rl3 = cachep->nodelists[node];
1038
1039 if (ac->avail) {
1040 spin_lock(&rl3->list_lock);
e00946fe
CL
1041 /*
1042 * Stuff objects into the remote nodes shared array first.
1043 * That way we could avoid the overhead of putting the objects
1044 * into the free lists and getting them back later.
1045 */
693f7d36 1046 if (rl3->shared)
1047 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1048
ff69416e 1049 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1050 ac->avail = 0;
1051 spin_unlock(&rl3->list_lock);
1052 }
1053}
1054
8fce4d8e
CL
1055/*
1056 * Called from cache_reap() to regularly drain alien caches round robin.
1057 */
1058static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1059{
909ea964 1060 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1061
1062 if (l3->alien) {
1063 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1064
1065 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1066 __drain_alien_cache(cachep, ac, node);
1067 spin_unlock_irq(&ac->lock);
1068 }
1069 }
1070}
1071
a737b3e2
AM
1072static void drain_alien_cache(struct kmem_cache *cachep,
1073 struct array_cache **alien)
e498be7d 1074{
b28a02de 1075 int i = 0;
e498be7d
CL
1076 struct array_cache *ac;
1077 unsigned long flags;
1078
1079 for_each_online_node(i) {
4484ebf1 1080 ac = alien[i];
e498be7d
CL
1081 if (ac) {
1082 spin_lock_irqsave(&ac->lock, flags);
1083 __drain_alien_cache(cachep, ac, i);
1084 spin_unlock_irqrestore(&ac->lock, flags);
1085 }
1086 }
1087}
729bd0b7 1088
873623df 1089static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1090{
1091 struct slab *slabp = virt_to_slab(objp);
1092 int nodeid = slabp->nodeid;
1093 struct kmem_list3 *l3;
1094 struct array_cache *alien = NULL;
1ca4cb24
PE
1095 int node;
1096
7d6e6d09 1097 node = numa_mem_id();
729bd0b7
PE
1098
1099 /*
1100 * Make sure we are not freeing a object from another node to the array
1101 * cache on this cpu.
1102 */
62918a03 1103 if (likely(slabp->nodeid == node))
729bd0b7
PE
1104 return 0;
1105
1ca4cb24 1106 l3 = cachep->nodelists[node];
729bd0b7
PE
1107 STATS_INC_NODEFREES(cachep);
1108 if (l3->alien && l3->alien[nodeid]) {
1109 alien = l3->alien[nodeid];
873623df 1110 spin_lock(&alien->lock);
729bd0b7
PE
1111 if (unlikely(alien->avail == alien->limit)) {
1112 STATS_INC_ACOVERFLOW(cachep);
1113 __drain_alien_cache(cachep, alien, nodeid);
1114 }
1115 alien->entry[alien->avail++] = objp;
1116 spin_unlock(&alien->lock);
1117 } else {
1118 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1119 free_block(cachep, &objp, 1, nodeid);
1120 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1121 }
1122 return 1;
1123}
e498be7d
CL
1124#endif
1125
8f9f8d9e
DR
1126/*
1127 * Allocates and initializes nodelists for a node on each slab cache, used for
1128 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1129 * will be allocated off-node since memory is not yet online for the new node.
1130 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1131 * already in use.
1132 *
1133 * Must hold cache_chain_mutex.
1134 */
1135static int init_cache_nodelists_node(int node)
1136{
1137 struct kmem_cache *cachep;
1138 struct kmem_list3 *l3;
1139 const int memsize = sizeof(struct kmem_list3);
1140
1141 list_for_each_entry(cachep, &cache_chain, next) {
1142 /*
1143 * Set up the size64 kmemlist for cpu before we can
1144 * begin anything. Make sure some other cpu on this
1145 * node has not already allocated this
1146 */
1147 if (!cachep->nodelists[node]) {
1148 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1149 if (!l3)
1150 return -ENOMEM;
1151 kmem_list3_init(l3);
1152 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1153 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1154
1155 /*
1156 * The l3s don't come and go as CPUs come and
1157 * go. cache_chain_mutex is sufficient
1158 * protection here.
1159 */
1160 cachep->nodelists[node] = l3;
1161 }
1162
1163 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1164 cachep->nodelists[node]->free_limit =
1165 (1 + nr_cpus_node(node)) *
1166 cachep->batchcount + cachep->num;
1167 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1168 }
1169 return 0;
1170}
1171
fbf1e473
AM
1172static void __cpuinit cpuup_canceled(long cpu)
1173{
1174 struct kmem_cache *cachep;
1175 struct kmem_list3 *l3 = NULL;
7d6e6d09 1176 int node = cpu_to_mem(cpu);
a70f7302 1177 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1178
1179 list_for_each_entry(cachep, &cache_chain, next) {
1180 struct array_cache *nc;
1181 struct array_cache *shared;
1182 struct array_cache **alien;
fbf1e473 1183
fbf1e473
AM
1184 /* cpu is dead; no one can alloc from it. */
1185 nc = cachep->array[cpu];
1186 cachep->array[cpu] = NULL;
1187 l3 = cachep->nodelists[node];
1188
1189 if (!l3)
1190 goto free_array_cache;
1191
1192 spin_lock_irq(&l3->list_lock);
1193
1194 /* Free limit for this kmem_list3 */
1195 l3->free_limit -= cachep->batchcount;
1196 if (nc)
1197 free_block(cachep, nc->entry, nc->avail, node);
1198
58463c1f 1199 if (!cpumask_empty(mask)) {
fbf1e473
AM
1200 spin_unlock_irq(&l3->list_lock);
1201 goto free_array_cache;
1202 }
1203
1204 shared = l3->shared;
1205 if (shared) {
1206 free_block(cachep, shared->entry,
1207 shared->avail, node);
1208 l3->shared = NULL;
1209 }
1210
1211 alien = l3->alien;
1212 l3->alien = NULL;
1213
1214 spin_unlock_irq(&l3->list_lock);
1215
1216 kfree(shared);
1217 if (alien) {
1218 drain_alien_cache(cachep, alien);
1219 free_alien_cache(alien);
1220 }
1221free_array_cache:
1222 kfree(nc);
1223 }
1224 /*
1225 * In the previous loop, all the objects were freed to
1226 * the respective cache's slabs, now we can go ahead and
1227 * shrink each nodelist to its limit.
1228 */
1229 list_for_each_entry(cachep, &cache_chain, next) {
1230 l3 = cachep->nodelists[node];
1231 if (!l3)
1232 continue;
1233 drain_freelist(cachep, l3, l3->free_objects);
1234 }
1235}
1236
1237static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1238{
343e0d7a 1239 struct kmem_cache *cachep;
e498be7d 1240 struct kmem_list3 *l3 = NULL;
7d6e6d09 1241 int node = cpu_to_mem(cpu);
8f9f8d9e 1242 int err;
1da177e4 1243
fbf1e473
AM
1244 /*
1245 * We need to do this right in the beginning since
1246 * alloc_arraycache's are going to use this list.
1247 * kmalloc_node allows us to add the slab to the right
1248 * kmem_list3 and not this cpu's kmem_list3
1249 */
8f9f8d9e
DR
1250 err = init_cache_nodelists_node(node);
1251 if (err < 0)
1252 goto bad;
fbf1e473
AM
1253
1254 /*
1255 * Now we can go ahead with allocating the shared arrays and
1256 * array caches
1257 */
1258 list_for_each_entry(cachep, &cache_chain, next) {
1259 struct array_cache *nc;
1260 struct array_cache *shared = NULL;
1261 struct array_cache **alien = NULL;
1262
1263 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1264 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1265 if (!nc)
1266 goto bad;
1267 if (cachep->shared) {
1268 shared = alloc_arraycache(node,
1269 cachep->shared * cachep->batchcount,
83b519e8 1270 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1271 if (!shared) {
1272 kfree(nc);
1da177e4 1273 goto bad;
12d00f6a 1274 }
fbf1e473
AM
1275 }
1276 if (use_alien_caches) {
83b519e8 1277 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1278 if (!alien) {
1279 kfree(shared);
1280 kfree(nc);
fbf1e473 1281 goto bad;
12d00f6a 1282 }
fbf1e473
AM
1283 }
1284 cachep->array[cpu] = nc;
1285 l3 = cachep->nodelists[node];
1286 BUG_ON(!l3);
1287
1288 spin_lock_irq(&l3->list_lock);
1289 if (!l3->shared) {
1290 /*
1291 * We are serialised from CPU_DEAD or
1292 * CPU_UP_CANCELLED by the cpucontrol lock
1293 */
1294 l3->shared = shared;
1295 shared = NULL;
1296 }
4484ebf1 1297#ifdef CONFIG_NUMA
fbf1e473
AM
1298 if (!l3->alien) {
1299 l3->alien = alien;
1300 alien = NULL;
1da177e4 1301 }
fbf1e473
AM
1302#endif
1303 spin_unlock_irq(&l3->list_lock);
1304 kfree(shared);
1305 free_alien_cache(alien);
83835b3d
PZ
1306 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1307 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1308 }
ce79ddc8
PE
1309 init_node_lock_keys(node);
1310
fbf1e473
AM
1311 return 0;
1312bad:
12d00f6a 1313 cpuup_canceled(cpu);
fbf1e473
AM
1314 return -ENOMEM;
1315}
1316
1317static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1318 unsigned long action, void *hcpu)
1319{
1320 long cpu = (long)hcpu;
1321 int err = 0;
1322
1323 switch (action) {
fbf1e473
AM
1324 case CPU_UP_PREPARE:
1325 case CPU_UP_PREPARE_FROZEN:
95402b38 1326 mutex_lock(&cache_chain_mutex);
fbf1e473 1327 err = cpuup_prepare(cpu);
95402b38 1328 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1329 break;
1330 case CPU_ONLINE:
8bb78442 1331 case CPU_ONLINE_FROZEN:
1da177e4
LT
1332 start_cpu_timer(cpu);
1333 break;
1334#ifdef CONFIG_HOTPLUG_CPU
5830c590 1335 case CPU_DOWN_PREPARE:
8bb78442 1336 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1337 /*
1338 * Shutdown cache reaper. Note that the cache_chain_mutex is
1339 * held so that if cache_reap() is invoked it cannot do
1340 * anything expensive but will only modify reap_work
1341 * and reschedule the timer.
1342 */
afe2c511 1343 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1344 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1345 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1346 break;
1347 case CPU_DOWN_FAILED:
8bb78442 1348 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1349 start_cpu_timer(cpu);
1350 break;
1da177e4 1351 case CPU_DEAD:
8bb78442 1352 case CPU_DEAD_FROZEN:
4484ebf1
RT
1353 /*
1354 * Even if all the cpus of a node are down, we don't free the
1355 * kmem_list3 of any cache. This to avoid a race between
1356 * cpu_down, and a kmalloc allocation from another cpu for
1357 * memory from the node of the cpu going down. The list3
1358 * structure is usually allocated from kmem_cache_create() and
1359 * gets destroyed at kmem_cache_destroy().
1360 */
183ff22b 1361 /* fall through */
8f5be20b 1362#endif
1da177e4 1363 case CPU_UP_CANCELED:
8bb78442 1364 case CPU_UP_CANCELED_FROZEN:
95402b38 1365 mutex_lock(&cache_chain_mutex);
fbf1e473 1366 cpuup_canceled(cpu);
fc0abb14 1367 mutex_unlock(&cache_chain_mutex);
1da177e4 1368 break;
1da177e4 1369 }
eac40680 1370 return notifier_from_errno(err);
1da177e4
LT
1371}
1372
74b85f37
CS
1373static struct notifier_block __cpuinitdata cpucache_notifier = {
1374 &cpuup_callback, NULL, 0
1375};
1da177e4 1376
8f9f8d9e
DR
1377#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1378/*
1379 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1380 * Returns -EBUSY if all objects cannot be drained so that the node is not
1381 * removed.
1382 *
1383 * Must hold cache_chain_mutex.
1384 */
1385static int __meminit drain_cache_nodelists_node(int node)
1386{
1387 struct kmem_cache *cachep;
1388 int ret = 0;
1389
1390 list_for_each_entry(cachep, &cache_chain, next) {
1391 struct kmem_list3 *l3;
1392
1393 l3 = cachep->nodelists[node];
1394 if (!l3)
1395 continue;
1396
1397 drain_freelist(cachep, l3, l3->free_objects);
1398
1399 if (!list_empty(&l3->slabs_full) ||
1400 !list_empty(&l3->slabs_partial)) {
1401 ret = -EBUSY;
1402 break;
1403 }
1404 }
1405 return ret;
1406}
1407
1408static int __meminit slab_memory_callback(struct notifier_block *self,
1409 unsigned long action, void *arg)
1410{
1411 struct memory_notify *mnb = arg;
1412 int ret = 0;
1413 int nid;
1414
1415 nid = mnb->status_change_nid;
1416 if (nid < 0)
1417 goto out;
1418
1419 switch (action) {
1420 case MEM_GOING_ONLINE:
1421 mutex_lock(&cache_chain_mutex);
1422 ret = init_cache_nodelists_node(nid);
1423 mutex_unlock(&cache_chain_mutex);
1424 break;
1425 case MEM_GOING_OFFLINE:
1426 mutex_lock(&cache_chain_mutex);
1427 ret = drain_cache_nodelists_node(nid);
1428 mutex_unlock(&cache_chain_mutex);
1429 break;
1430 case MEM_ONLINE:
1431 case MEM_OFFLINE:
1432 case MEM_CANCEL_ONLINE:
1433 case MEM_CANCEL_OFFLINE:
1434 break;
1435 }
1436out:
5fda1bd5 1437 return notifier_from_errno(ret);
8f9f8d9e
DR
1438}
1439#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1440
e498be7d
CL
1441/*
1442 * swap the static kmem_list3 with kmalloced memory
1443 */
8f9f8d9e
DR
1444static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1445 int nodeid)
e498be7d
CL
1446{
1447 struct kmem_list3 *ptr;
1448
83b519e8 1449 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1450 BUG_ON(!ptr);
1451
e498be7d 1452 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1453 /*
1454 * Do not assume that spinlocks can be initialized via memcpy:
1455 */
1456 spin_lock_init(&ptr->list_lock);
1457
e498be7d
CL
1458 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1459 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1460}
1461
556a169d
PE
1462/*
1463 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1464 * size of kmem_list3.
1465 */
1466static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1467{
1468 int node;
1469
1470 for_each_online_node(node) {
1471 cachep->nodelists[node] = &initkmem_list3[index + node];
1472 cachep->nodelists[node]->next_reap = jiffies +
1473 REAPTIMEOUT_LIST3 +
1474 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1475 }
1476}
1477
a737b3e2
AM
1478/*
1479 * Initialisation. Called after the page allocator have been initialised and
1480 * before smp_init().
1da177e4
LT
1481 */
1482void __init kmem_cache_init(void)
1483{
1484 size_t left_over;
1485 struct cache_sizes *sizes;
1486 struct cache_names *names;
e498be7d 1487 int i;
07ed76b2 1488 int order;
1ca4cb24 1489 int node;
e498be7d 1490
b6e68bc1 1491 if (num_possible_nodes() == 1)
62918a03
SS
1492 use_alien_caches = 0;
1493
e498be7d
CL
1494 for (i = 0; i < NUM_INIT_LISTS; i++) {
1495 kmem_list3_init(&initkmem_list3[i]);
1496 if (i < MAX_NUMNODES)
1497 cache_cache.nodelists[i] = NULL;
1498 }
556a169d 1499 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1500
1501 /*
1502 * Fragmentation resistance on low memory - only use bigger
1503 * page orders on machines with more than 32MB of memory.
1504 */
4481374c 1505 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1da177e4
LT
1506 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1507
1da177e4
LT
1508 /* Bootstrap is tricky, because several objects are allocated
1509 * from caches that do not exist yet:
a737b3e2
AM
1510 * 1) initialize the cache_cache cache: it contains the struct
1511 * kmem_cache structures of all caches, except cache_cache itself:
1512 * cache_cache is statically allocated.
e498be7d
CL
1513 * Initially an __init data area is used for the head array and the
1514 * kmem_list3 structures, it's replaced with a kmalloc allocated
1515 * array at the end of the bootstrap.
1da177e4 1516 * 2) Create the first kmalloc cache.
343e0d7a 1517 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1518 * An __init data area is used for the head array.
1519 * 3) Create the remaining kmalloc caches, with minimally sized
1520 * head arrays.
1da177e4
LT
1521 * 4) Replace the __init data head arrays for cache_cache and the first
1522 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1523 * 5) Replace the __init data for kmem_list3 for cache_cache and
1524 * the other cache's with kmalloc allocated memory.
1525 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1526 */
1527
7d6e6d09 1528 node = numa_mem_id();
1ca4cb24 1529
1da177e4 1530 /* 1) create the cache_cache */
1da177e4
LT
1531 INIT_LIST_HEAD(&cache_chain);
1532 list_add(&cache_cache.next, &cache_chain);
1533 cache_cache.colour_off = cache_line_size();
1534 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1535 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1536
8da3430d 1537 /*
b56efcf0 1538 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1539 */
b56efcf0
ED
1540 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1541 nr_node_ids * sizeof(struct kmem_list3 *);
8da3430d
ED
1542#if DEBUG
1543 cache_cache.obj_size = cache_cache.buffer_size;
1544#endif
a737b3e2
AM
1545 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1546 cache_line_size());
6a2d7a95
ED
1547 cache_cache.reciprocal_buffer_size =
1548 reciprocal_value(cache_cache.buffer_size);
1da177e4 1549
07ed76b2
JS
1550 for (order = 0; order < MAX_ORDER; order++) {
1551 cache_estimate(order, cache_cache.buffer_size,
1552 cache_line_size(), 0, &left_over, &cache_cache.num);
1553 if (cache_cache.num)
1554 break;
1555 }
40094fa6 1556 BUG_ON(!cache_cache.num);
07ed76b2 1557 cache_cache.gfporder = order;
b28a02de 1558 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1559 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1560 sizeof(struct slab), cache_line_size());
1da177e4
LT
1561
1562 /* 2+3) create the kmalloc caches */
1563 sizes = malloc_sizes;
1564 names = cache_names;
1565
a737b3e2
AM
1566 /*
1567 * Initialize the caches that provide memory for the array cache and the
1568 * kmem_list3 structures first. Without this, further allocations will
1569 * bug.
e498be7d
CL
1570 */
1571
1572 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1573 sizes[INDEX_AC].cs_size,
1574 ARCH_KMALLOC_MINALIGN,
1575 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1576 NULL);
e498be7d 1577
a737b3e2 1578 if (INDEX_AC != INDEX_L3) {
e498be7d 1579 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1580 kmem_cache_create(names[INDEX_L3].name,
1581 sizes[INDEX_L3].cs_size,
1582 ARCH_KMALLOC_MINALIGN,
1583 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1584 NULL);
a737b3e2 1585 }
e498be7d 1586
e0a42726
IM
1587 slab_early_init = 0;
1588
1da177e4 1589 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1590 /*
1591 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1592 * This should be particularly beneficial on SMP boxes, as it
1593 * eliminates "false sharing".
1594 * Note for systems short on memory removing the alignment will
e498be7d
CL
1595 * allow tighter packing of the smaller caches.
1596 */
a737b3e2 1597 if (!sizes->cs_cachep) {
e498be7d 1598 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1599 sizes->cs_size,
1600 ARCH_KMALLOC_MINALIGN,
1601 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1602 NULL);
a737b3e2 1603 }
4b51d669
CL
1604#ifdef CONFIG_ZONE_DMA
1605 sizes->cs_dmacachep = kmem_cache_create(
1606 names->name_dma,
a737b3e2
AM
1607 sizes->cs_size,
1608 ARCH_KMALLOC_MINALIGN,
1609 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1610 SLAB_PANIC,
20c2df83 1611 NULL);
4b51d669 1612#endif
1da177e4
LT
1613 sizes++;
1614 names++;
1615 }
1616 /* 4) Replace the bootstrap head arrays */
1617 {
2b2d5493 1618 struct array_cache *ptr;
e498be7d 1619
83b519e8 1620 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1621
9a2dba4b
PE
1622 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1623 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1624 sizeof(struct arraycache_init));
2b2d5493
IM
1625 /*
1626 * Do not assume that spinlocks can be initialized via memcpy:
1627 */
1628 spin_lock_init(&ptr->lock);
1629
1da177e4 1630 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1631
83b519e8 1632 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1633
9a2dba4b 1634 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1635 != &initarray_generic.cache);
9a2dba4b 1636 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1637 sizeof(struct arraycache_init));
2b2d5493
IM
1638 /*
1639 * Do not assume that spinlocks can be initialized via memcpy:
1640 */
1641 spin_lock_init(&ptr->lock);
1642
e498be7d 1643 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1644 ptr;
1da177e4 1645 }
e498be7d
CL
1646 /* 5) Replace the bootstrap kmem_list3's */
1647 {
1ca4cb24
PE
1648 int nid;
1649
9c09a95c 1650 for_each_online_node(nid) {
ec1f5eee 1651 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1652
e498be7d 1653 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1654 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1655
1656 if (INDEX_AC != INDEX_L3) {
1657 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1658 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1659 }
1660 }
1661 }
1da177e4 1662
8429db5c 1663 g_cpucache_up = EARLY;
8429db5c
PE
1664}
1665
1666void __init kmem_cache_init_late(void)
1667{
1668 struct kmem_cache *cachep;
1669
52cef189
PZ
1670 g_cpucache_up = LATE;
1671
30765b92
PZ
1672 /* Annotate slab for lockdep -- annotate the malloc caches */
1673 init_lock_keys();
1674
8429db5c
PE
1675 /* 6) resize the head arrays to their final sizes */
1676 mutex_lock(&cache_chain_mutex);
1677 list_for_each_entry(cachep, &cache_chain, next)
1678 if (enable_cpucache(cachep, GFP_NOWAIT))
1679 BUG();
1680 mutex_unlock(&cache_chain_mutex);
056c6241 1681
1da177e4
LT
1682 /* Done! */
1683 g_cpucache_up = FULL;
1684
a737b3e2
AM
1685 /*
1686 * Register a cpu startup notifier callback that initializes
1687 * cpu_cache_get for all new cpus
1da177e4
LT
1688 */
1689 register_cpu_notifier(&cpucache_notifier);
1da177e4 1690
8f9f8d9e
DR
1691#ifdef CONFIG_NUMA
1692 /*
1693 * Register a memory hotplug callback that initializes and frees
1694 * nodelists.
1695 */
1696 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1697#endif
1698
a737b3e2
AM
1699 /*
1700 * The reap timers are started later, with a module init call: That part
1701 * of the kernel is not yet operational.
1da177e4
LT
1702 */
1703}
1704
1705static int __init cpucache_init(void)
1706{
1707 int cpu;
1708
a737b3e2
AM
1709 /*
1710 * Register the timers that return unneeded pages to the page allocator
1da177e4 1711 */
e498be7d 1712 for_each_online_cpu(cpu)
a737b3e2 1713 start_cpu_timer(cpu);
1da177e4
LT
1714 return 0;
1715}
1da177e4
LT
1716__initcall(cpucache_init);
1717
1718/*
1719 * Interface to system's page allocator. No need to hold the cache-lock.
1720 *
1721 * If we requested dmaable memory, we will get it. Even if we
1722 * did not request dmaable memory, we might get it, but that
1723 * would be relatively rare and ignorable.
1724 */
343e0d7a 1725static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1726{
1727 struct page *page;
e1b6aa6f 1728 int nr_pages;
1da177e4
LT
1729 int i;
1730
d6fef9da 1731#ifndef CONFIG_MMU
e1b6aa6f
CH
1732 /*
1733 * Nommu uses slab's for process anonymous memory allocations, and thus
1734 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1735 */
e1b6aa6f 1736 flags |= __GFP_COMP;
d6fef9da 1737#endif
765c4507 1738
3c517a61 1739 flags |= cachep->gfpflags;
e12ba74d
MG
1740 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1741 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1742
517d0869 1743 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1744 if (!page)
1745 return NULL;
1da177e4 1746
e1b6aa6f 1747 nr_pages = (1 << cachep->gfporder);
1da177e4 1748 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1749 add_zone_page_state(page_zone(page),
1750 NR_SLAB_RECLAIMABLE, nr_pages);
1751 else
1752 add_zone_page_state(page_zone(page),
1753 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1754 for (i = 0; i < nr_pages; i++)
1755 __SetPageSlab(page + i);
c175eea4 1756
b1eeab67
VN
1757 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1758 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1759
1760 if (cachep->ctor)
1761 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1762 else
1763 kmemcheck_mark_unallocated_pages(page, nr_pages);
1764 }
c175eea4 1765
e1b6aa6f 1766 return page_address(page);
1da177e4
LT
1767}
1768
1769/*
1770 * Interface to system's page release.
1771 */
343e0d7a 1772static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1773{
b28a02de 1774 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1775 struct page *page = virt_to_page(addr);
1776 const unsigned long nr_freed = i;
1777
b1eeab67 1778 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1779
972d1a7b
CL
1780 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1781 sub_zone_page_state(page_zone(page),
1782 NR_SLAB_RECLAIMABLE, nr_freed);
1783 else
1784 sub_zone_page_state(page_zone(page),
1785 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1786 while (i--) {
f205b2fe
NP
1787 BUG_ON(!PageSlab(page));
1788 __ClearPageSlab(page);
1da177e4
LT
1789 page++;
1790 }
1da177e4
LT
1791 if (current->reclaim_state)
1792 current->reclaim_state->reclaimed_slab += nr_freed;
1793 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1794}
1795
1796static void kmem_rcu_free(struct rcu_head *head)
1797{
b28a02de 1798 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1799 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1800
1801 kmem_freepages(cachep, slab_rcu->addr);
1802 if (OFF_SLAB(cachep))
1803 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1804}
1805
1806#if DEBUG
1807
1808#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1809static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1810 unsigned long caller)
1da177e4 1811{
3dafccf2 1812 int size = obj_size(cachep);
1da177e4 1813
3dafccf2 1814 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1815
b28a02de 1816 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1817 return;
1818
b28a02de
PE
1819 *addr++ = 0x12345678;
1820 *addr++ = caller;
1821 *addr++ = smp_processor_id();
1822 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1823 {
1824 unsigned long *sptr = &caller;
1825 unsigned long svalue;
1826
1827 while (!kstack_end(sptr)) {
1828 svalue = *sptr++;
1829 if (kernel_text_address(svalue)) {
b28a02de 1830 *addr++ = svalue;
1da177e4
LT
1831 size -= sizeof(unsigned long);
1832 if (size <= sizeof(unsigned long))
1833 break;
1834 }
1835 }
1836
1837 }
b28a02de 1838 *addr++ = 0x87654321;
1da177e4
LT
1839}
1840#endif
1841
343e0d7a 1842static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1843{
3dafccf2
MS
1844 int size = obj_size(cachep);
1845 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1846
1847 memset(addr, val, size);
b28a02de 1848 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1849}
1850
1851static void dump_line(char *data, int offset, int limit)
1852{
1853 int i;
aa83aa40
DJ
1854 unsigned char error = 0;
1855 int bad_count = 0;
1856
fdde6abb 1857 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1858 for (i = 0; i < limit; i++) {
1859 if (data[offset + i] != POISON_FREE) {
1860 error = data[offset + i];
1861 bad_count++;
1862 }
aa83aa40 1863 }
fdde6abb
SAS
1864 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1865 &data[offset], limit, 1);
aa83aa40
DJ
1866
1867 if (bad_count == 1) {
1868 error ^= POISON_FREE;
1869 if (!(error & (error - 1))) {
1870 printk(KERN_ERR "Single bit error detected. Probably "
1871 "bad RAM.\n");
1872#ifdef CONFIG_X86
1873 printk(KERN_ERR "Run memtest86+ or a similar memory "
1874 "test tool.\n");
1875#else
1876 printk(KERN_ERR "Run a memory test tool.\n");
1877#endif
1878 }
1879 }
1da177e4
LT
1880}
1881#endif
1882
1883#if DEBUG
1884
343e0d7a 1885static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1886{
1887 int i, size;
1888 char *realobj;
1889
1890 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1891 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1892 *dbg_redzone1(cachep, objp),
1893 *dbg_redzone2(cachep, objp));
1da177e4
LT
1894 }
1895
1896 if (cachep->flags & SLAB_STORE_USER) {
1897 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1898 *dbg_userword(cachep, objp));
1da177e4 1899 print_symbol("(%s)",
a737b3e2 1900 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1901 printk("\n");
1902 }
3dafccf2
MS
1903 realobj = (char *)objp + obj_offset(cachep);
1904 size = obj_size(cachep);
b28a02de 1905 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1906 int limit;
1907 limit = 16;
b28a02de
PE
1908 if (i + limit > size)
1909 limit = size - i;
1da177e4
LT
1910 dump_line(realobj, i, limit);
1911 }
1912}
1913
343e0d7a 1914static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1915{
1916 char *realobj;
1917 int size, i;
1918 int lines = 0;
1919
3dafccf2
MS
1920 realobj = (char *)objp + obj_offset(cachep);
1921 size = obj_size(cachep);
1da177e4 1922
b28a02de 1923 for (i = 0; i < size; i++) {
1da177e4 1924 char exp = POISON_FREE;
b28a02de 1925 if (i == size - 1)
1da177e4
LT
1926 exp = POISON_END;
1927 if (realobj[i] != exp) {
1928 int limit;
1929 /* Mismatch ! */
1930 /* Print header */
1931 if (lines == 0) {
b28a02de 1932 printk(KERN_ERR
e94a40c5
DH
1933 "Slab corruption: %s start=%p, len=%d\n",
1934 cachep->name, realobj, size);
1da177e4
LT
1935 print_objinfo(cachep, objp, 0);
1936 }
1937 /* Hexdump the affected line */
b28a02de 1938 i = (i / 16) * 16;
1da177e4 1939 limit = 16;
b28a02de
PE
1940 if (i + limit > size)
1941 limit = size - i;
1da177e4
LT
1942 dump_line(realobj, i, limit);
1943 i += 16;
1944 lines++;
1945 /* Limit to 5 lines */
1946 if (lines > 5)
1947 break;
1948 }
1949 }
1950 if (lines != 0) {
1951 /* Print some data about the neighboring objects, if they
1952 * exist:
1953 */
6ed5eb22 1954 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1955 unsigned int objnr;
1da177e4 1956
8fea4e96 1957 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1958 if (objnr) {
8fea4e96 1959 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1960 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1961 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1962 realobj, size);
1da177e4
LT
1963 print_objinfo(cachep, objp, 2);
1964 }
b28a02de 1965 if (objnr + 1 < cachep->num) {
8fea4e96 1966 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1967 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1968 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1969 realobj, size);
1da177e4
LT
1970 print_objinfo(cachep, objp, 2);
1971 }
1972 }
1973}
1974#endif
1975
12dd36fa 1976#if DEBUG
e79aec29 1977static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1978{
1da177e4
LT
1979 int i;
1980 for (i = 0; i < cachep->num; i++) {
8fea4e96 1981 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1982
1983 if (cachep->flags & SLAB_POISON) {
1984#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1985 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1986 OFF_SLAB(cachep))
b28a02de 1987 kernel_map_pages(virt_to_page(objp),
a737b3e2 1988 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1989 else
1990 check_poison_obj(cachep, objp);
1991#else
1992 check_poison_obj(cachep, objp);
1993#endif
1994 }
1995 if (cachep->flags & SLAB_RED_ZONE) {
1996 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1997 slab_error(cachep, "start of a freed object "
b28a02de 1998 "was overwritten");
1da177e4
LT
1999 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2000 slab_error(cachep, "end of a freed object "
b28a02de 2001 "was overwritten");
1da177e4 2002 }
1da177e4 2003 }
12dd36fa 2004}
1da177e4 2005#else
e79aec29 2006static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2007{
12dd36fa 2008}
1da177e4
LT
2009#endif
2010
911851e6
RD
2011/**
2012 * slab_destroy - destroy and release all objects in a slab
2013 * @cachep: cache pointer being destroyed
2014 * @slabp: slab pointer being destroyed
2015 *
12dd36fa 2016 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2017 * Before calling the slab must have been unlinked from the cache. The
2018 * cache-lock is not held/needed.
12dd36fa 2019 */
343e0d7a 2020static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2021{
2022 void *addr = slabp->s_mem - slabp->colouroff;
2023
e79aec29 2024 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2025 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2026 struct slab_rcu *slab_rcu;
2027
b28a02de 2028 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2029 slab_rcu->cachep = cachep;
2030 slab_rcu->addr = addr;
2031 call_rcu(&slab_rcu->head, kmem_rcu_free);
2032 } else {
2033 kmem_freepages(cachep, addr);
873623df
IM
2034 if (OFF_SLAB(cachep))
2035 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2036 }
2037}
2038
117f6eb1
CL
2039static void __kmem_cache_destroy(struct kmem_cache *cachep)
2040{
2041 int i;
2042 struct kmem_list3 *l3;
2043
2044 for_each_online_cpu(i)
2045 kfree(cachep->array[i]);
2046
2047 /* NUMA: free the list3 structures */
2048 for_each_online_node(i) {
2049 l3 = cachep->nodelists[i];
2050 if (l3) {
2051 kfree(l3->shared);
2052 free_alien_cache(l3->alien);
2053 kfree(l3);
2054 }
2055 }
2056 kmem_cache_free(&cache_cache, cachep);
2057}
2058
2059
4d268eba 2060/**
a70773dd
RD
2061 * calculate_slab_order - calculate size (page order) of slabs
2062 * @cachep: pointer to the cache that is being created
2063 * @size: size of objects to be created in this cache.
2064 * @align: required alignment for the objects.
2065 * @flags: slab allocation flags
2066 *
2067 * Also calculates the number of objects per slab.
4d268eba
PE
2068 *
2069 * This could be made much more intelligent. For now, try to avoid using
2070 * high order pages for slabs. When the gfp() functions are more friendly
2071 * towards high-order requests, this should be changed.
2072 */
a737b3e2 2073static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2074 size_t size, size_t align, unsigned long flags)
4d268eba 2075{
b1ab41c4 2076 unsigned long offslab_limit;
4d268eba 2077 size_t left_over = 0;
9888e6fa 2078 int gfporder;
4d268eba 2079
0aa817f0 2080 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2081 unsigned int num;
2082 size_t remainder;
2083
9888e6fa 2084 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2085 if (!num)
2086 continue;
9888e6fa 2087
b1ab41c4
IM
2088 if (flags & CFLGS_OFF_SLAB) {
2089 /*
2090 * Max number of objs-per-slab for caches which
2091 * use off-slab slabs. Needed to avoid a possible
2092 * looping condition in cache_grow().
2093 */
2094 offslab_limit = size - sizeof(struct slab);
2095 offslab_limit /= sizeof(kmem_bufctl_t);
2096
2097 if (num > offslab_limit)
2098 break;
2099 }
4d268eba 2100
9888e6fa 2101 /* Found something acceptable - save it away */
4d268eba 2102 cachep->num = num;
9888e6fa 2103 cachep->gfporder = gfporder;
4d268eba
PE
2104 left_over = remainder;
2105
f78bb8ad
LT
2106 /*
2107 * A VFS-reclaimable slab tends to have most allocations
2108 * as GFP_NOFS and we really don't want to have to be allocating
2109 * higher-order pages when we are unable to shrink dcache.
2110 */
2111 if (flags & SLAB_RECLAIM_ACCOUNT)
2112 break;
2113
4d268eba
PE
2114 /*
2115 * Large number of objects is good, but very large slabs are
2116 * currently bad for the gfp()s.
2117 */
9888e6fa 2118 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2119 break;
2120
9888e6fa
LT
2121 /*
2122 * Acceptable internal fragmentation?
2123 */
a737b3e2 2124 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2125 break;
2126 }
2127 return left_over;
2128}
2129
83b519e8 2130static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2131{
2ed3a4ef 2132 if (g_cpucache_up == FULL)
83b519e8 2133 return enable_cpucache(cachep, gfp);
2ed3a4ef 2134
f30cf7d1
PE
2135 if (g_cpucache_up == NONE) {
2136 /*
2137 * Note: the first kmem_cache_create must create the cache
2138 * that's used by kmalloc(24), otherwise the creation of
2139 * further caches will BUG().
2140 */
2141 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2142
2143 /*
2144 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2145 * the first cache, then we need to set up all its list3s,
2146 * otherwise the creation of further caches will BUG().
2147 */
2148 set_up_list3s(cachep, SIZE_AC);
2149 if (INDEX_AC == INDEX_L3)
2150 g_cpucache_up = PARTIAL_L3;
2151 else
2152 g_cpucache_up = PARTIAL_AC;
2153 } else {
2154 cachep->array[smp_processor_id()] =
83b519e8 2155 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2156
2157 if (g_cpucache_up == PARTIAL_AC) {
2158 set_up_list3s(cachep, SIZE_L3);
2159 g_cpucache_up = PARTIAL_L3;
2160 } else {
2161 int node;
556a169d 2162 for_each_online_node(node) {
f30cf7d1
PE
2163 cachep->nodelists[node] =
2164 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2165 gfp, node);
f30cf7d1
PE
2166 BUG_ON(!cachep->nodelists[node]);
2167 kmem_list3_init(cachep->nodelists[node]);
2168 }
2169 }
2170 }
7d6e6d09 2171 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2172 jiffies + REAPTIMEOUT_LIST3 +
2173 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2174
2175 cpu_cache_get(cachep)->avail = 0;
2176 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2177 cpu_cache_get(cachep)->batchcount = 1;
2178 cpu_cache_get(cachep)->touched = 0;
2179 cachep->batchcount = 1;
2180 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2181 return 0;
f30cf7d1
PE
2182}
2183
1da177e4
LT
2184/**
2185 * kmem_cache_create - Create a cache.
2186 * @name: A string which is used in /proc/slabinfo to identify this cache.
2187 * @size: The size of objects to be created in this cache.
2188 * @align: The required alignment for the objects.
2189 * @flags: SLAB flags
2190 * @ctor: A constructor for the objects.
1da177e4
LT
2191 *
2192 * Returns a ptr to the cache on success, NULL on failure.
2193 * Cannot be called within a int, but can be interrupted.
20c2df83 2194 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2195 *
2196 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2197 * the module calling this has to destroy the cache before getting unloaded.
2198 *
1da177e4
LT
2199 * The flags are
2200 *
2201 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2202 * to catch references to uninitialised memory.
2203 *
2204 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2205 * for buffer overruns.
2206 *
1da177e4
LT
2207 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2208 * cacheline. This can be beneficial if you're counting cycles as closely
2209 * as davem.
2210 */
343e0d7a 2211struct kmem_cache *
1da177e4 2212kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2213 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2214{
2215 size_t left_over, slab_size, ralign;
7a7c381d 2216 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2217 gfp_t gfp;
1da177e4
LT
2218
2219 /*
2220 * Sanity checks... these are all serious usage bugs.
2221 */
a737b3e2 2222 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2223 size > KMALLOC_MAX_SIZE) {
d40cee24 2224 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2225 name);
b28a02de
PE
2226 BUG();
2227 }
1da177e4 2228
f0188f47 2229 /*
8f5be20b 2230 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2231 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2232 */
83b519e8
PE
2233 if (slab_is_available()) {
2234 get_online_cpus();
2235 mutex_lock(&cache_chain_mutex);
2236 }
4f12bb4f 2237
7a7c381d 2238 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2239 char tmp;
2240 int res;
2241
2242 /*
2243 * This happens when the module gets unloaded and doesn't
2244 * destroy its slab cache and no-one else reuses the vmalloc
2245 * area of the module. Print a warning.
2246 */
138ae663 2247 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2248 if (res) {
b4169525 2249 printk(KERN_ERR
2250 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2251 pc->buffer_size);
4f12bb4f
AM
2252 continue;
2253 }
2254
b28a02de 2255 if (!strcmp(pc->name, name)) {
b4169525 2256 printk(KERN_ERR
2257 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2258 dump_stack();
2259 goto oops;
2260 }
2261 }
2262
1da177e4
LT
2263#if DEBUG
2264 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2265#if FORCED_DEBUG
2266 /*
2267 * Enable redzoning and last user accounting, except for caches with
2268 * large objects, if the increased size would increase the object size
2269 * above the next power of two: caches with object sizes just above a
2270 * power of two have a significant amount of internal fragmentation.
2271 */
87a927c7
DW
2272 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2273 2 * sizeof(unsigned long long)))
b28a02de 2274 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2275 if (!(flags & SLAB_DESTROY_BY_RCU))
2276 flags |= SLAB_POISON;
2277#endif
2278 if (flags & SLAB_DESTROY_BY_RCU)
2279 BUG_ON(flags & SLAB_POISON);
2280#endif
1da177e4 2281 /*
a737b3e2
AM
2282 * Always checks flags, a caller might be expecting debug support which
2283 * isn't available.
1da177e4 2284 */
40094fa6 2285 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2286
a737b3e2
AM
2287 /*
2288 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2289 * unaligned accesses for some archs when redzoning is used, and makes
2290 * sure any on-slab bufctl's are also correctly aligned.
2291 */
b28a02de
PE
2292 if (size & (BYTES_PER_WORD - 1)) {
2293 size += (BYTES_PER_WORD - 1);
2294 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2295 }
2296
a737b3e2
AM
2297 /* calculate the final buffer alignment: */
2298
1da177e4
LT
2299 /* 1) arch recommendation: can be overridden for debug */
2300 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2301 /*
2302 * Default alignment: as specified by the arch code. Except if
2303 * an object is really small, then squeeze multiple objects into
2304 * one cacheline.
1da177e4
LT
2305 */
2306 ralign = cache_line_size();
b28a02de 2307 while (size <= ralign / 2)
1da177e4
LT
2308 ralign /= 2;
2309 } else {
2310 ralign = BYTES_PER_WORD;
2311 }
ca5f9703
PE
2312
2313 /*
87a927c7
DW
2314 * Redzoning and user store require word alignment or possibly larger.
2315 * Note this will be overridden by architecture or caller mandated
2316 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2317 */
87a927c7
DW
2318 if (flags & SLAB_STORE_USER)
2319 ralign = BYTES_PER_WORD;
2320
2321 if (flags & SLAB_RED_ZONE) {
2322 ralign = REDZONE_ALIGN;
2323 /* If redzoning, ensure that the second redzone is suitably
2324 * aligned, by adjusting the object size accordingly. */
2325 size += REDZONE_ALIGN - 1;
2326 size &= ~(REDZONE_ALIGN - 1);
2327 }
ca5f9703 2328
a44b56d3 2329 /* 2) arch mandated alignment */
1da177e4
LT
2330 if (ralign < ARCH_SLAB_MINALIGN) {
2331 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2332 }
a44b56d3 2333 /* 3) caller mandated alignment */
1da177e4
LT
2334 if (ralign < align) {
2335 ralign = align;
1da177e4 2336 }
3ff84a7f
PE
2337 /* disable debug if necessary */
2338 if (ralign > __alignof__(unsigned long long))
a44b56d3 2339 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2340 /*
ca5f9703 2341 * 4) Store it.
1da177e4
LT
2342 */
2343 align = ralign;
2344
83b519e8
PE
2345 if (slab_is_available())
2346 gfp = GFP_KERNEL;
2347 else
2348 gfp = GFP_NOWAIT;
2349
1da177e4 2350 /* Get cache's description obj. */
83b519e8 2351 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2352 if (!cachep)
4f12bb4f 2353 goto oops;
1da177e4 2354
b56efcf0 2355 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1da177e4 2356#if DEBUG
3dafccf2 2357 cachep->obj_size = size;
1da177e4 2358
ca5f9703
PE
2359 /*
2360 * Both debugging options require word-alignment which is calculated
2361 * into align above.
2362 */
1da177e4 2363 if (flags & SLAB_RED_ZONE) {
1da177e4 2364 /* add space for red zone words */
3ff84a7f
PE
2365 cachep->obj_offset += sizeof(unsigned long long);
2366 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2367 }
2368 if (flags & SLAB_STORE_USER) {
ca5f9703 2369 /* user store requires one word storage behind the end of
87a927c7
DW
2370 * the real object. But if the second red zone needs to be
2371 * aligned to 64 bits, we must allow that much space.
1da177e4 2372 */
87a927c7
DW
2373 if (flags & SLAB_RED_ZONE)
2374 size += REDZONE_ALIGN;
2375 else
2376 size += BYTES_PER_WORD;
1da177e4
LT
2377 }
2378#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2379 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1ab335d8
CO
2380 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2381 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2382 size = PAGE_SIZE;
2383 }
2384#endif
2385#endif
2386
e0a42726
IM
2387 /*
2388 * Determine if the slab management is 'on' or 'off' slab.
2389 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2390 * it too early on. Always use on-slab management when
2391 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2392 */
e7cb55b9
CM
2393 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2394 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2395 /*
2396 * Size is large, assume best to place the slab management obj
2397 * off-slab (should allow better packing of objs).
2398 */
2399 flags |= CFLGS_OFF_SLAB;
2400
2401 size = ALIGN(size, align);
2402
f78bb8ad 2403 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2404
2405 if (!cachep->num) {
b4169525 2406 printk(KERN_ERR
2407 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2408 kmem_cache_free(&cache_cache, cachep);
2409 cachep = NULL;
4f12bb4f 2410 goto oops;
1da177e4 2411 }
b28a02de
PE
2412 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2413 + sizeof(struct slab), align);
1da177e4
LT
2414
2415 /*
2416 * If the slab has been placed off-slab, and we have enough space then
2417 * move it on-slab. This is at the expense of any extra colouring.
2418 */
2419 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2420 flags &= ~CFLGS_OFF_SLAB;
2421 left_over -= slab_size;
2422 }
2423
2424 if (flags & CFLGS_OFF_SLAB) {
2425 /* really off slab. No need for manual alignment */
b28a02de
PE
2426 slab_size =
2427 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2428
2429#ifdef CONFIG_PAGE_POISONING
2430 /* If we're going to use the generic kernel_map_pages()
2431 * poisoning, then it's going to smash the contents of
2432 * the redzone and userword anyhow, so switch them off.
2433 */
2434 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2435 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2436#endif
1da177e4
LT
2437 }
2438
2439 cachep->colour_off = cache_line_size();
2440 /* Offset must be a multiple of the alignment. */
2441 if (cachep->colour_off < align)
2442 cachep->colour_off = align;
b28a02de 2443 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2444 cachep->slab_size = slab_size;
2445 cachep->flags = flags;
2446 cachep->gfpflags = 0;
4b51d669 2447 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2448 cachep->gfpflags |= GFP_DMA;
3dafccf2 2449 cachep->buffer_size = size;
6a2d7a95 2450 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2451
e5ac9c5a 2452 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2453 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2454 /*
2455 * This is a possibility for one of the malloc_sizes caches.
2456 * But since we go off slab only for object size greater than
2457 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2458 * this should not happen at all.
2459 * But leave a BUG_ON for some lucky dude.
2460 */
6cb8f913 2461 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2462 }
1da177e4 2463 cachep->ctor = ctor;
1da177e4
LT
2464 cachep->name = name;
2465
83b519e8 2466 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2467 __kmem_cache_destroy(cachep);
2468 cachep = NULL;
2469 goto oops;
2470 }
1da177e4 2471
83835b3d
PZ
2472 if (flags & SLAB_DEBUG_OBJECTS) {
2473 /*
2474 * Would deadlock through slab_destroy()->call_rcu()->
2475 * debug_object_activate()->kmem_cache_alloc().
2476 */
2477 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2478
2479 slab_set_debugobj_lock_classes(cachep);
2480 }
2481
1da177e4
LT
2482 /* cache setup completed, link it into the list */
2483 list_add(&cachep->next, &cache_chain);
a737b3e2 2484oops:
1da177e4
LT
2485 if (!cachep && (flags & SLAB_PANIC))
2486 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2487 name);
83b519e8
PE
2488 if (slab_is_available()) {
2489 mutex_unlock(&cache_chain_mutex);
2490 put_online_cpus();
2491 }
1da177e4
LT
2492 return cachep;
2493}
2494EXPORT_SYMBOL(kmem_cache_create);
2495
2496#if DEBUG
2497static void check_irq_off(void)
2498{
2499 BUG_ON(!irqs_disabled());
2500}
2501
2502static void check_irq_on(void)
2503{
2504 BUG_ON(irqs_disabled());
2505}
2506
343e0d7a 2507static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2508{
2509#ifdef CONFIG_SMP
2510 check_irq_off();
7d6e6d09 2511 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2512#endif
2513}
e498be7d 2514
343e0d7a 2515static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2516{
2517#ifdef CONFIG_SMP
2518 check_irq_off();
2519 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2520#endif
2521}
2522
1da177e4
LT
2523#else
2524#define check_irq_off() do { } while(0)
2525#define check_irq_on() do { } while(0)
2526#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2527#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2528#endif
2529
aab2207c
CL
2530static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2531 struct array_cache *ac,
2532 int force, int node);
2533
1da177e4
LT
2534static void do_drain(void *arg)
2535{
a737b3e2 2536 struct kmem_cache *cachep = arg;
1da177e4 2537 struct array_cache *ac;
7d6e6d09 2538 int node = numa_mem_id();
1da177e4
LT
2539
2540 check_irq_off();
9a2dba4b 2541 ac = cpu_cache_get(cachep);
ff69416e
CL
2542 spin_lock(&cachep->nodelists[node]->list_lock);
2543 free_block(cachep, ac->entry, ac->avail, node);
2544 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2545 ac->avail = 0;
2546}
2547
343e0d7a 2548static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2549{
e498be7d
CL
2550 struct kmem_list3 *l3;
2551 int node;
2552
15c8b6c1 2553 on_each_cpu(do_drain, cachep, 1);
1da177e4 2554 check_irq_on();
b28a02de 2555 for_each_online_node(node) {
e498be7d 2556 l3 = cachep->nodelists[node];
a4523a8b
RD
2557 if (l3 && l3->alien)
2558 drain_alien_cache(cachep, l3->alien);
2559 }
2560
2561 for_each_online_node(node) {
2562 l3 = cachep->nodelists[node];
2563 if (l3)
aab2207c 2564 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2565 }
1da177e4
LT
2566}
2567
ed11d9eb
CL
2568/*
2569 * Remove slabs from the list of free slabs.
2570 * Specify the number of slabs to drain in tofree.
2571 *
2572 * Returns the actual number of slabs released.
2573 */
2574static int drain_freelist(struct kmem_cache *cache,
2575 struct kmem_list3 *l3, int tofree)
1da177e4 2576{
ed11d9eb
CL
2577 struct list_head *p;
2578 int nr_freed;
1da177e4 2579 struct slab *slabp;
1da177e4 2580
ed11d9eb
CL
2581 nr_freed = 0;
2582 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2583
ed11d9eb 2584 spin_lock_irq(&l3->list_lock);
e498be7d 2585 p = l3->slabs_free.prev;
ed11d9eb
CL
2586 if (p == &l3->slabs_free) {
2587 spin_unlock_irq(&l3->list_lock);
2588 goto out;
2589 }
1da177e4 2590
ed11d9eb 2591 slabp = list_entry(p, struct slab, list);
1da177e4 2592#if DEBUG
40094fa6 2593 BUG_ON(slabp->inuse);
1da177e4
LT
2594#endif
2595 list_del(&slabp->list);
ed11d9eb
CL
2596 /*
2597 * Safe to drop the lock. The slab is no longer linked
2598 * to the cache.
2599 */
2600 l3->free_objects -= cache->num;
e498be7d 2601 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2602 slab_destroy(cache, slabp);
2603 nr_freed++;
1da177e4 2604 }
ed11d9eb
CL
2605out:
2606 return nr_freed;
1da177e4
LT
2607}
2608
8f5be20b 2609/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2610static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2611{
2612 int ret = 0, i = 0;
2613 struct kmem_list3 *l3;
2614
2615 drain_cpu_caches(cachep);
2616
2617 check_irq_on();
2618 for_each_online_node(i) {
2619 l3 = cachep->nodelists[i];
ed11d9eb
CL
2620 if (!l3)
2621 continue;
2622
2623 drain_freelist(cachep, l3, l3->free_objects);
2624
2625 ret += !list_empty(&l3->slabs_full) ||
2626 !list_empty(&l3->slabs_partial);
e498be7d
CL
2627 }
2628 return (ret ? 1 : 0);
2629}
2630
1da177e4
LT
2631/**
2632 * kmem_cache_shrink - Shrink a cache.
2633 * @cachep: The cache to shrink.
2634 *
2635 * Releases as many slabs as possible for a cache.
2636 * To help debugging, a zero exit status indicates all slabs were released.
2637 */
343e0d7a 2638int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2639{
8f5be20b 2640 int ret;
40094fa6 2641 BUG_ON(!cachep || in_interrupt());
1da177e4 2642
95402b38 2643 get_online_cpus();
8f5be20b
RT
2644 mutex_lock(&cache_chain_mutex);
2645 ret = __cache_shrink(cachep);
2646 mutex_unlock(&cache_chain_mutex);
95402b38 2647 put_online_cpus();
8f5be20b 2648 return ret;
1da177e4
LT
2649}
2650EXPORT_SYMBOL(kmem_cache_shrink);
2651
2652/**
2653 * kmem_cache_destroy - delete a cache
2654 * @cachep: the cache to destroy
2655 *
72fd4a35 2656 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2657 *
2658 * It is expected this function will be called by a module when it is
2659 * unloaded. This will remove the cache completely, and avoid a duplicate
2660 * cache being allocated each time a module is loaded and unloaded, if the
2661 * module doesn't have persistent in-kernel storage across loads and unloads.
2662 *
2663 * The cache must be empty before calling this function.
2664 *
25985edc 2665 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2666 * during the kmem_cache_destroy().
2667 */
133d205a 2668void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2669{
40094fa6 2670 BUG_ON(!cachep || in_interrupt());
1da177e4 2671
1da177e4 2672 /* Find the cache in the chain of caches. */
95402b38 2673 get_online_cpus();
fc0abb14 2674 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2675 /*
2676 * the chain is never empty, cache_cache is never destroyed
2677 */
2678 list_del(&cachep->next);
1da177e4
LT
2679 if (__cache_shrink(cachep)) {
2680 slab_error(cachep, "Can't free all objects");
b28a02de 2681 list_add(&cachep->next, &cache_chain);
fc0abb14 2682 mutex_unlock(&cache_chain_mutex);
95402b38 2683 put_online_cpus();
133d205a 2684 return;
1da177e4
LT
2685 }
2686
2687 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2688 rcu_barrier();
1da177e4 2689
117f6eb1 2690 __kmem_cache_destroy(cachep);
8f5be20b 2691 mutex_unlock(&cache_chain_mutex);
95402b38 2692 put_online_cpus();
1da177e4
LT
2693}
2694EXPORT_SYMBOL(kmem_cache_destroy);
2695
e5ac9c5a
RT
2696/*
2697 * Get the memory for a slab management obj.
2698 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2699 * always come from malloc_sizes caches. The slab descriptor cannot
2700 * come from the same cache which is getting created because,
2701 * when we are searching for an appropriate cache for these
2702 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2703 * If we are creating a malloc_sizes cache here it would not be visible to
2704 * kmem_find_general_cachep till the initialization is complete.
2705 * Hence we cannot have slabp_cache same as the original cache.
2706 */
343e0d7a 2707static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2708 int colour_off, gfp_t local_flags,
2709 int nodeid)
1da177e4
LT
2710{
2711 struct slab *slabp;
b28a02de 2712
1da177e4
LT
2713 if (OFF_SLAB(cachep)) {
2714 /* Slab management obj is off-slab. */
5b74ada7 2715 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2716 local_flags, nodeid);
d5cff635
CM
2717 /*
2718 * If the first object in the slab is leaked (it's allocated
2719 * but no one has a reference to it), we want to make sure
2720 * kmemleak does not treat the ->s_mem pointer as a reference
2721 * to the object. Otherwise we will not report the leak.
2722 */
c017b4be
CM
2723 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2724 local_flags);
1da177e4
LT
2725 if (!slabp)
2726 return NULL;
2727 } else {
b28a02de 2728 slabp = objp + colour_off;
1da177e4
LT
2729 colour_off += cachep->slab_size;
2730 }
2731 slabp->inuse = 0;
2732 slabp->colouroff = colour_off;
b28a02de 2733 slabp->s_mem = objp + colour_off;
5b74ada7 2734 slabp->nodeid = nodeid;
e51bfd0a 2735 slabp->free = 0;
1da177e4
LT
2736 return slabp;
2737}
2738
2739static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2740{
b28a02de 2741 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2742}
2743
343e0d7a 2744static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2745 struct slab *slabp)
1da177e4
LT
2746{
2747 int i;
2748
2749 for (i = 0; i < cachep->num; i++) {
8fea4e96 2750 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2751#if DEBUG
2752 /* need to poison the objs? */
2753 if (cachep->flags & SLAB_POISON)
2754 poison_obj(cachep, objp, POISON_FREE);
2755 if (cachep->flags & SLAB_STORE_USER)
2756 *dbg_userword(cachep, objp) = NULL;
2757
2758 if (cachep->flags & SLAB_RED_ZONE) {
2759 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2760 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2761 }
2762 /*
a737b3e2
AM
2763 * Constructors are not allowed to allocate memory from the same
2764 * cache which they are a constructor for. Otherwise, deadlock.
2765 * They must also be threaded.
1da177e4
LT
2766 */
2767 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2768 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2769
2770 if (cachep->flags & SLAB_RED_ZONE) {
2771 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2772 slab_error(cachep, "constructor overwrote the"
b28a02de 2773 " end of an object");
1da177e4
LT
2774 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2775 slab_error(cachep, "constructor overwrote the"
b28a02de 2776 " start of an object");
1da177e4 2777 }
a737b3e2
AM
2778 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2779 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2780 kernel_map_pages(virt_to_page(objp),
3dafccf2 2781 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2782#else
2783 if (cachep->ctor)
51cc5068 2784 cachep->ctor(objp);
1da177e4 2785#endif
b28a02de 2786 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2787 }
b28a02de 2788 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2789}
2790
343e0d7a 2791static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2792{
4b51d669
CL
2793 if (CONFIG_ZONE_DMA_FLAG) {
2794 if (flags & GFP_DMA)
2795 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2796 else
2797 BUG_ON(cachep->gfpflags & GFP_DMA);
2798 }
1da177e4
LT
2799}
2800
a737b3e2
AM
2801static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2802 int nodeid)
78d382d7 2803{
8fea4e96 2804 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2805 kmem_bufctl_t next;
2806
2807 slabp->inuse++;
2808 next = slab_bufctl(slabp)[slabp->free];
2809#if DEBUG
2810 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2811 WARN_ON(slabp->nodeid != nodeid);
2812#endif
2813 slabp->free = next;
2814
2815 return objp;
2816}
2817
a737b3e2
AM
2818static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2819 void *objp, int nodeid)
78d382d7 2820{
8fea4e96 2821 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2822
2823#if DEBUG
2824 /* Verify that the slab belongs to the intended node */
2825 WARN_ON(slabp->nodeid != nodeid);
2826
871751e2 2827 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2828 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2829 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2830 BUG();
2831 }
2832#endif
2833 slab_bufctl(slabp)[objnr] = slabp->free;
2834 slabp->free = objnr;
2835 slabp->inuse--;
2836}
2837
4776874f
PE
2838/*
2839 * Map pages beginning at addr to the given cache and slab. This is required
2840 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2841 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2842 */
2843static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2844 void *addr)
1da177e4 2845{
4776874f 2846 int nr_pages;
1da177e4
LT
2847 struct page *page;
2848
4776874f 2849 page = virt_to_page(addr);
84097518 2850
4776874f 2851 nr_pages = 1;
84097518 2852 if (likely(!PageCompound(page)))
4776874f
PE
2853 nr_pages <<= cache->gfporder;
2854
1da177e4 2855 do {
4776874f
PE
2856 page_set_cache(page, cache);
2857 page_set_slab(page, slab);
1da177e4 2858 page++;
4776874f 2859 } while (--nr_pages);
1da177e4
LT
2860}
2861
2862/*
2863 * Grow (by 1) the number of slabs within a cache. This is called by
2864 * kmem_cache_alloc() when there are no active objs left in a cache.
2865 */
3c517a61
CL
2866static int cache_grow(struct kmem_cache *cachep,
2867 gfp_t flags, int nodeid, void *objp)
1da177e4 2868{
b28a02de 2869 struct slab *slabp;
b28a02de
PE
2870 size_t offset;
2871 gfp_t local_flags;
e498be7d 2872 struct kmem_list3 *l3;
1da177e4 2873
a737b3e2
AM
2874 /*
2875 * Be lazy and only check for valid flags here, keeping it out of the
2876 * critical path in kmem_cache_alloc().
1da177e4 2877 */
6cb06229
CL
2878 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2879 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2880
2e1217cf 2881 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2882 check_irq_off();
2e1217cf
RT
2883 l3 = cachep->nodelists[nodeid];
2884 spin_lock(&l3->list_lock);
1da177e4
LT
2885
2886 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2887 offset = l3->colour_next;
2888 l3->colour_next++;
2889 if (l3->colour_next >= cachep->colour)
2890 l3->colour_next = 0;
2891 spin_unlock(&l3->list_lock);
1da177e4 2892
2e1217cf 2893 offset *= cachep->colour_off;
1da177e4
LT
2894
2895 if (local_flags & __GFP_WAIT)
2896 local_irq_enable();
2897
2898 /*
2899 * The test for missing atomic flag is performed here, rather than
2900 * the more obvious place, simply to reduce the critical path length
2901 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2902 * will eventually be caught here (where it matters).
2903 */
2904 kmem_flagcheck(cachep, flags);
2905
a737b3e2
AM
2906 /*
2907 * Get mem for the objs. Attempt to allocate a physical page from
2908 * 'nodeid'.
e498be7d 2909 */
3c517a61 2910 if (!objp)
b8c1c5da 2911 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2912 if (!objp)
1da177e4
LT
2913 goto failed;
2914
2915 /* Get slab management. */
3c517a61 2916 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2917 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2918 if (!slabp)
1da177e4
LT
2919 goto opps1;
2920
4776874f 2921 slab_map_pages(cachep, slabp, objp);
1da177e4 2922
a35afb83 2923 cache_init_objs(cachep, slabp);
1da177e4
LT
2924
2925 if (local_flags & __GFP_WAIT)
2926 local_irq_disable();
2927 check_irq_off();
e498be7d 2928 spin_lock(&l3->list_lock);
1da177e4
LT
2929
2930 /* Make slab active. */
e498be7d 2931 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2932 STATS_INC_GROWN(cachep);
e498be7d
CL
2933 l3->free_objects += cachep->num;
2934 spin_unlock(&l3->list_lock);
1da177e4 2935 return 1;
a737b3e2 2936opps1:
1da177e4 2937 kmem_freepages(cachep, objp);
a737b3e2 2938failed:
1da177e4
LT
2939 if (local_flags & __GFP_WAIT)
2940 local_irq_disable();
2941 return 0;
2942}
2943
2944#if DEBUG
2945
2946/*
2947 * Perform extra freeing checks:
2948 * - detect bad pointers.
2949 * - POISON/RED_ZONE checking
1da177e4
LT
2950 */
2951static void kfree_debugcheck(const void *objp)
2952{
1da177e4
LT
2953 if (!virt_addr_valid(objp)) {
2954 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2955 (unsigned long)objp);
2956 BUG();
1da177e4 2957 }
1da177e4
LT
2958}
2959
58ce1fd5
PE
2960static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2961{
b46b8f19 2962 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2963
2964 redzone1 = *dbg_redzone1(cache, obj);
2965 redzone2 = *dbg_redzone2(cache, obj);
2966
2967 /*
2968 * Redzone is ok.
2969 */
2970 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2971 return;
2972
2973 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2974 slab_error(cache, "double free detected");
2975 else
2976 slab_error(cache, "memory outside object was overwritten");
2977
b46b8f19 2978 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2979 obj, redzone1, redzone2);
2980}
2981
343e0d7a 2982static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2983 void *caller)
1da177e4
LT
2984{
2985 struct page *page;
2986 unsigned int objnr;
2987 struct slab *slabp;
2988
80cbd911
MW
2989 BUG_ON(virt_to_cache(objp) != cachep);
2990
3dafccf2 2991 objp -= obj_offset(cachep);
1da177e4 2992 kfree_debugcheck(objp);
b49af68f 2993 page = virt_to_head_page(objp);
1da177e4 2994
065d41cb 2995 slabp = page_get_slab(page);
1da177e4
LT
2996
2997 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2998 verify_redzone_free(cachep, objp);
1da177e4
LT
2999 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3000 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3001 }
3002 if (cachep->flags & SLAB_STORE_USER)
3003 *dbg_userword(cachep, objp) = caller;
3004
8fea4e96 3005 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3006
3007 BUG_ON(objnr >= cachep->num);
8fea4e96 3008 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3009
871751e2
AV
3010#ifdef CONFIG_DEBUG_SLAB_LEAK
3011 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3012#endif
1da177e4
LT
3013 if (cachep->flags & SLAB_POISON) {
3014#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 3015 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3016 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3017 kernel_map_pages(virt_to_page(objp),
3dafccf2 3018 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
3019 } else {
3020 poison_obj(cachep, objp, POISON_FREE);
3021 }
3022#else
3023 poison_obj(cachep, objp, POISON_FREE);
3024#endif
3025 }
3026 return objp;
3027}
3028
343e0d7a 3029static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3030{
3031 kmem_bufctl_t i;
3032 int entries = 0;
b28a02de 3033
1da177e4
LT
3034 /* Check slab's freelist to see if this obj is there. */
3035 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3036 entries++;
3037 if (entries > cachep->num || i >= cachep->num)
3038 goto bad;
3039 }
3040 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3041bad:
3042 printk(KERN_ERR "slab: Internal list corruption detected in "
3043 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3044 cachep->name, cachep->num, slabp, slabp->inuse);
fdde6abb
SAS
3045 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3046 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3047 1);
1da177e4
LT
3048 BUG();
3049 }
3050}
3051#else
3052#define kfree_debugcheck(x) do { } while(0)
3053#define cache_free_debugcheck(x,objp,z) (objp)
3054#define check_slabp(x,y) do { } while(0)
3055#endif
3056
343e0d7a 3057static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3058{
3059 int batchcount;
3060 struct kmem_list3 *l3;
3061 struct array_cache *ac;
1ca4cb24
PE
3062 int node;
3063
6d2144d3 3064retry:
1da177e4 3065 check_irq_off();
7d6e6d09 3066 node = numa_mem_id();
9a2dba4b 3067 ac = cpu_cache_get(cachep);
1da177e4
LT
3068 batchcount = ac->batchcount;
3069 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3070 /*
3071 * If there was little recent activity on this cache, then
3072 * perform only a partial refill. Otherwise we could generate
3073 * refill bouncing.
1da177e4
LT
3074 */
3075 batchcount = BATCHREFILL_LIMIT;
3076 }
1ca4cb24 3077 l3 = cachep->nodelists[node];
e498be7d
CL
3078
3079 BUG_ON(ac->avail > 0 || !l3);
3080 spin_lock(&l3->list_lock);
1da177e4 3081
3ded175a 3082 /* See if we can refill from the shared array */
44b57f1c
NP
3083 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3084 l3->shared->touched = 1;
3ded175a 3085 goto alloc_done;
44b57f1c 3086 }
3ded175a 3087
1da177e4
LT
3088 while (batchcount > 0) {
3089 struct list_head *entry;
3090 struct slab *slabp;
3091 /* Get slab alloc is to come from. */
3092 entry = l3->slabs_partial.next;
3093 if (entry == &l3->slabs_partial) {
3094 l3->free_touched = 1;
3095 entry = l3->slabs_free.next;
3096 if (entry == &l3->slabs_free)
3097 goto must_grow;
3098 }
3099
3100 slabp = list_entry(entry, struct slab, list);
3101 check_slabp(cachep, slabp);
3102 check_spinlock_acquired(cachep);
714b8171
PE
3103
3104 /*
3105 * The slab was either on partial or free list so
3106 * there must be at least one object available for
3107 * allocation.
3108 */
249b9f33 3109 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3110
1da177e4 3111 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3112 STATS_INC_ALLOCED(cachep);
3113 STATS_INC_ACTIVE(cachep);
3114 STATS_SET_HIGH(cachep);
3115
78d382d7 3116 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3117 node);
1da177e4
LT
3118 }
3119 check_slabp(cachep, slabp);
3120
3121 /* move slabp to correct slabp list: */
3122 list_del(&slabp->list);
3123 if (slabp->free == BUFCTL_END)
3124 list_add(&slabp->list, &l3->slabs_full);
3125 else
3126 list_add(&slabp->list, &l3->slabs_partial);
3127 }
3128
a737b3e2 3129must_grow:
1da177e4 3130 l3->free_objects -= ac->avail;
a737b3e2 3131alloc_done:
e498be7d 3132 spin_unlock(&l3->list_lock);
1da177e4
LT
3133
3134 if (unlikely(!ac->avail)) {
3135 int x;
3c517a61 3136 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3137
a737b3e2 3138 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3139 ac = cpu_cache_get(cachep);
a737b3e2 3140 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3141 return NULL;
3142
a737b3e2 3143 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3144 goto retry;
3145 }
3146 ac->touched = 1;
e498be7d 3147 return ac->entry[--ac->avail];
1da177e4
LT
3148}
3149
a737b3e2
AM
3150static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3151 gfp_t flags)
1da177e4
LT
3152{
3153 might_sleep_if(flags & __GFP_WAIT);
3154#if DEBUG
3155 kmem_flagcheck(cachep, flags);
3156#endif
3157}
3158
3159#if DEBUG
a737b3e2
AM
3160static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3161 gfp_t flags, void *objp, void *caller)
1da177e4 3162{
b28a02de 3163 if (!objp)
1da177e4 3164 return objp;
b28a02de 3165 if (cachep->flags & SLAB_POISON) {
1da177e4 3166#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3167 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3168 kernel_map_pages(virt_to_page(objp),
3dafccf2 3169 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3170 else
3171 check_poison_obj(cachep, objp);
3172#else
3173 check_poison_obj(cachep, objp);
3174#endif
3175 poison_obj(cachep, objp, POISON_INUSE);
3176 }
3177 if (cachep->flags & SLAB_STORE_USER)
3178 *dbg_userword(cachep, objp) = caller;
3179
3180 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3181 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3182 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3183 slab_error(cachep, "double free, or memory outside"
3184 " object was overwritten");
b28a02de 3185 printk(KERN_ERR
b46b8f19 3186 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3187 objp, *dbg_redzone1(cachep, objp),
3188 *dbg_redzone2(cachep, objp));
1da177e4
LT
3189 }
3190 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3191 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3192 }
871751e2
AV
3193#ifdef CONFIG_DEBUG_SLAB_LEAK
3194 {
3195 struct slab *slabp;
3196 unsigned objnr;
3197
b49af68f 3198 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3199 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3200 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3201 }
3202#endif
3dafccf2 3203 objp += obj_offset(cachep);
4f104934 3204 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3205 cachep->ctor(objp);
7ea466f2
TH
3206 if (ARCH_SLAB_MINALIGN &&
3207 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3208 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3209 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3210 }
1da177e4
LT
3211 return objp;
3212}
3213#else
3214#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3215#endif
3216
773ff60e 3217static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3218{
3219 if (cachep == &cache_cache)
773ff60e 3220 return false;
8a8b6502 3221
4c13dd3b 3222 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3223}
3224
343e0d7a 3225static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3226{
b28a02de 3227 void *objp;
1da177e4
LT
3228 struct array_cache *ac;
3229
5c382300 3230 check_irq_off();
8a8b6502 3231
9a2dba4b 3232 ac = cpu_cache_get(cachep);
1da177e4
LT
3233 if (likely(ac->avail)) {
3234 STATS_INC_ALLOCHIT(cachep);
3235 ac->touched = 1;
e498be7d 3236 objp = ac->entry[--ac->avail];
1da177e4
LT
3237 } else {
3238 STATS_INC_ALLOCMISS(cachep);
3239 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3240 /*
3241 * the 'ac' may be updated by cache_alloc_refill(),
3242 * and kmemleak_erase() requires its correct value.
3243 */
3244 ac = cpu_cache_get(cachep);
1da177e4 3245 }
d5cff635
CM
3246 /*
3247 * To avoid a false negative, if an object that is in one of the
3248 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3249 * treat the array pointers as a reference to the object.
3250 */
f3d8b53a
O
3251 if (objp)
3252 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3253 return objp;
3254}
3255
e498be7d 3256#ifdef CONFIG_NUMA
c61afb18 3257/*
b2455396 3258 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3259 *
3260 * If we are in_interrupt, then process context, including cpusets and
3261 * mempolicy, may not apply and should not be used for allocation policy.
3262 */
3263static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3264{
3265 int nid_alloc, nid_here;
3266
765c4507 3267 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3268 return NULL;
7d6e6d09 3269 nid_alloc = nid_here = numa_mem_id();
c0ff7453 3270 get_mems_allowed();
c61afb18 3271 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3272 nid_alloc = cpuset_slab_spread_node();
c61afb18
PJ
3273 else if (current->mempolicy)
3274 nid_alloc = slab_node(current->mempolicy);
c0ff7453 3275 put_mems_allowed();
c61afb18 3276 if (nid_alloc != nid_here)
8b98c169 3277 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3278 return NULL;
3279}
3280
765c4507
CL
3281/*
3282 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3283 * certain node and fall back is permitted. First we scan all the
3284 * available nodelists for available objects. If that fails then we
3285 * perform an allocation without specifying a node. This allows the page
3286 * allocator to do its reclaim / fallback magic. We then insert the
3287 * slab into the proper nodelist and then allocate from it.
765c4507 3288 */
8c8cc2c1 3289static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3290{
8c8cc2c1
PE
3291 struct zonelist *zonelist;
3292 gfp_t local_flags;
dd1a239f 3293 struct zoneref *z;
54a6eb5c
MG
3294 struct zone *zone;
3295 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3296 void *obj = NULL;
3c517a61 3297 int nid;
8c8cc2c1
PE
3298
3299 if (flags & __GFP_THISNODE)
3300 return NULL;
3301
c0ff7453 3302 get_mems_allowed();
0e88460d 3303 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3304 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3305
3c517a61
CL
3306retry:
3307 /*
3308 * Look through allowed nodes for objects available
3309 * from existing per node queues.
3310 */
54a6eb5c
MG
3311 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3312 nid = zone_to_nid(zone);
aedb0eb1 3313
54a6eb5c 3314 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3315 cache->nodelists[nid] &&
481c5346 3316 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3317 obj = ____cache_alloc_node(cache,
3318 flags | GFP_THISNODE, nid);
481c5346
CL
3319 if (obj)
3320 break;
3321 }
3c517a61
CL
3322 }
3323
cfce6604 3324 if (!obj) {
3c517a61
CL
3325 /*
3326 * This allocation will be performed within the constraints
3327 * of the current cpuset / memory policy requirements.
3328 * We may trigger various forms of reclaim on the allowed
3329 * set and go into memory reserves if necessary.
3330 */
dd47ea75
CL
3331 if (local_flags & __GFP_WAIT)
3332 local_irq_enable();
3333 kmem_flagcheck(cache, flags);
7d6e6d09 3334 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3335 if (local_flags & __GFP_WAIT)
3336 local_irq_disable();
3c517a61
CL
3337 if (obj) {
3338 /*
3339 * Insert into the appropriate per node queues
3340 */
3341 nid = page_to_nid(virt_to_page(obj));
3342 if (cache_grow(cache, flags, nid, obj)) {
3343 obj = ____cache_alloc_node(cache,
3344 flags | GFP_THISNODE, nid);
3345 if (!obj)
3346 /*
3347 * Another processor may allocate the
3348 * objects in the slab since we are
3349 * not holding any locks.
3350 */
3351 goto retry;
3352 } else {
b6a60451 3353 /* cache_grow already freed obj */
3c517a61
CL
3354 obj = NULL;
3355 }
3356 }
aedb0eb1 3357 }
c0ff7453 3358 put_mems_allowed();
765c4507
CL
3359 return obj;
3360}
3361
e498be7d
CL
3362/*
3363 * A interface to enable slab creation on nodeid
1da177e4 3364 */
8b98c169 3365static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3366 int nodeid)
e498be7d
CL
3367{
3368 struct list_head *entry;
b28a02de
PE
3369 struct slab *slabp;
3370 struct kmem_list3 *l3;
3371 void *obj;
b28a02de
PE
3372 int x;
3373
3374 l3 = cachep->nodelists[nodeid];
3375 BUG_ON(!l3);
3376
a737b3e2 3377retry:
ca3b9b91 3378 check_irq_off();
b28a02de
PE
3379 spin_lock(&l3->list_lock);
3380 entry = l3->slabs_partial.next;
3381 if (entry == &l3->slabs_partial) {
3382 l3->free_touched = 1;
3383 entry = l3->slabs_free.next;
3384 if (entry == &l3->slabs_free)
3385 goto must_grow;
3386 }
3387
3388 slabp = list_entry(entry, struct slab, list);
3389 check_spinlock_acquired_node(cachep, nodeid);
3390 check_slabp(cachep, slabp);
3391
3392 STATS_INC_NODEALLOCS(cachep);
3393 STATS_INC_ACTIVE(cachep);
3394 STATS_SET_HIGH(cachep);
3395
3396 BUG_ON(slabp->inuse == cachep->num);
3397
78d382d7 3398 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3399 check_slabp(cachep, slabp);
3400 l3->free_objects--;
3401 /* move slabp to correct slabp list: */
3402 list_del(&slabp->list);
3403
a737b3e2 3404 if (slabp->free == BUFCTL_END)
b28a02de 3405 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3406 else
b28a02de 3407 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3408
b28a02de
PE
3409 spin_unlock(&l3->list_lock);
3410 goto done;
e498be7d 3411
a737b3e2 3412must_grow:
b28a02de 3413 spin_unlock(&l3->list_lock);
3c517a61 3414 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3415 if (x)
3416 goto retry;
1da177e4 3417
8c8cc2c1 3418 return fallback_alloc(cachep, flags);
e498be7d 3419
a737b3e2 3420done:
b28a02de 3421 return obj;
e498be7d 3422}
8c8cc2c1
PE
3423
3424/**
3425 * kmem_cache_alloc_node - Allocate an object on the specified node
3426 * @cachep: The cache to allocate from.
3427 * @flags: See kmalloc().
3428 * @nodeid: node number of the target node.
3429 * @caller: return address of caller, used for debug information
3430 *
3431 * Identical to kmem_cache_alloc but it will allocate memory on the given
3432 * node, which can improve the performance for cpu bound structures.
3433 *
3434 * Fallback to other node is possible if __GFP_THISNODE is not set.
3435 */
3436static __always_inline void *
3437__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3438 void *caller)
3439{
3440 unsigned long save_flags;
3441 void *ptr;
7d6e6d09 3442 int slab_node = numa_mem_id();
8c8cc2c1 3443
dcce284a 3444 flags &= gfp_allowed_mask;
7e85ee0c 3445
cf40bd16
NP
3446 lockdep_trace_alloc(flags);
3447
773ff60e 3448 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3449 return NULL;
3450
8c8cc2c1
PE
3451 cache_alloc_debugcheck_before(cachep, flags);
3452 local_irq_save(save_flags);
3453
eacbbae3 3454 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3455 nodeid = slab_node;
8c8cc2c1
PE
3456
3457 if (unlikely(!cachep->nodelists[nodeid])) {
3458 /* Node not bootstrapped yet */
3459 ptr = fallback_alloc(cachep, flags);
3460 goto out;
3461 }
3462
7d6e6d09 3463 if (nodeid == slab_node) {
8c8cc2c1
PE
3464 /*
3465 * Use the locally cached objects if possible.
3466 * However ____cache_alloc does not allow fallback
3467 * to other nodes. It may fail while we still have
3468 * objects on other nodes available.
3469 */
3470 ptr = ____cache_alloc(cachep, flags);
3471 if (ptr)
3472 goto out;
3473 }
3474 /* ___cache_alloc_node can fall back to other nodes */
3475 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3476 out:
3477 local_irq_restore(save_flags);
3478 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3479 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3480 flags);
8c8cc2c1 3481
c175eea4
PE
3482 if (likely(ptr))
3483 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3484
d07dbea4
CL
3485 if (unlikely((flags & __GFP_ZERO) && ptr))
3486 memset(ptr, 0, obj_size(cachep));
3487
8c8cc2c1
PE
3488 return ptr;
3489}
3490
3491static __always_inline void *
3492__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3493{
3494 void *objp;
3495
3496 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3497 objp = alternate_node_alloc(cache, flags);
3498 if (objp)
3499 goto out;
3500 }
3501 objp = ____cache_alloc(cache, flags);
3502
3503 /*
3504 * We may just have run out of memory on the local node.
3505 * ____cache_alloc_node() knows how to locate memory on other nodes
3506 */
7d6e6d09
LS
3507 if (!objp)
3508 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3509
3510 out:
3511 return objp;
3512}
3513#else
3514
3515static __always_inline void *
3516__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3517{
3518 return ____cache_alloc(cachep, flags);
3519}
3520
3521#endif /* CONFIG_NUMA */
3522
3523static __always_inline void *
3524__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3525{
3526 unsigned long save_flags;
3527 void *objp;
3528
dcce284a 3529 flags &= gfp_allowed_mask;
7e85ee0c 3530
cf40bd16
NP
3531 lockdep_trace_alloc(flags);
3532
773ff60e 3533 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3534 return NULL;
3535
8c8cc2c1
PE
3536 cache_alloc_debugcheck_before(cachep, flags);
3537 local_irq_save(save_flags);
3538 objp = __do_cache_alloc(cachep, flags);
3539 local_irq_restore(save_flags);
3540 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3541 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3542 flags);
8c8cc2c1
PE
3543 prefetchw(objp);
3544
c175eea4
PE
3545 if (likely(objp))
3546 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3547
d07dbea4
CL
3548 if (unlikely((flags & __GFP_ZERO) && objp))
3549 memset(objp, 0, obj_size(cachep));
3550
8c8cc2c1
PE
3551 return objp;
3552}
e498be7d
CL
3553
3554/*
3555 * Caller needs to acquire correct kmem_list's list_lock
3556 */
343e0d7a 3557static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3558 int node)
1da177e4
LT
3559{
3560 int i;
e498be7d 3561 struct kmem_list3 *l3;
1da177e4
LT
3562
3563 for (i = 0; i < nr_objects; i++) {
3564 void *objp = objpp[i];
3565 struct slab *slabp;
1da177e4 3566
6ed5eb22 3567 slabp = virt_to_slab(objp);
ff69416e 3568 l3 = cachep->nodelists[node];
1da177e4 3569 list_del(&slabp->list);
ff69416e 3570 check_spinlock_acquired_node(cachep, node);
1da177e4 3571 check_slabp(cachep, slabp);
78d382d7 3572 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3573 STATS_DEC_ACTIVE(cachep);
e498be7d 3574 l3->free_objects++;
1da177e4
LT
3575 check_slabp(cachep, slabp);
3576
3577 /* fixup slab chains */
3578 if (slabp->inuse == 0) {
e498be7d
CL
3579 if (l3->free_objects > l3->free_limit) {
3580 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3581 /* No need to drop any previously held
3582 * lock here, even if we have a off-slab slab
3583 * descriptor it is guaranteed to come from
3584 * a different cache, refer to comments before
3585 * alloc_slabmgmt.
3586 */
1da177e4
LT
3587 slab_destroy(cachep, slabp);
3588 } else {
e498be7d 3589 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3590 }
3591 } else {
3592 /* Unconditionally move a slab to the end of the
3593 * partial list on free - maximum time for the
3594 * other objects to be freed, too.
3595 */
e498be7d 3596 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3597 }
3598 }
3599}
3600
343e0d7a 3601static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3602{
3603 int batchcount;
e498be7d 3604 struct kmem_list3 *l3;
7d6e6d09 3605 int node = numa_mem_id();
1da177e4
LT
3606
3607 batchcount = ac->batchcount;
3608#if DEBUG
3609 BUG_ON(!batchcount || batchcount > ac->avail);
3610#endif
3611 check_irq_off();
ff69416e 3612 l3 = cachep->nodelists[node];
873623df 3613 spin_lock(&l3->list_lock);
e498be7d
CL
3614 if (l3->shared) {
3615 struct array_cache *shared_array = l3->shared;
b28a02de 3616 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3617 if (max) {
3618 if (batchcount > max)
3619 batchcount = max;
e498be7d 3620 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3621 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3622 shared_array->avail += batchcount;
3623 goto free_done;
3624 }
3625 }
3626
ff69416e 3627 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3628free_done:
1da177e4
LT
3629#if STATS
3630 {
3631 int i = 0;
3632 struct list_head *p;
3633
e498be7d
CL
3634 p = l3->slabs_free.next;
3635 while (p != &(l3->slabs_free)) {
1da177e4
LT
3636 struct slab *slabp;
3637
3638 slabp = list_entry(p, struct slab, list);
3639 BUG_ON(slabp->inuse);
3640
3641 i++;
3642 p = p->next;
3643 }
3644 STATS_SET_FREEABLE(cachep, i);
3645 }
3646#endif
e498be7d 3647 spin_unlock(&l3->list_lock);
1da177e4 3648 ac->avail -= batchcount;
a737b3e2 3649 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3650}
3651
3652/*
a737b3e2
AM
3653 * Release an obj back to its cache. If the obj has a constructed state, it must
3654 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3655 */
a947eb95
SS
3656static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3657 void *caller)
1da177e4 3658{
9a2dba4b 3659 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3660
3661 check_irq_off();
d5cff635 3662 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3663 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3664
c175eea4
PE
3665 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3666
1807a1aa
SS
3667 /*
3668 * Skip calling cache_free_alien() when the platform is not numa.
3669 * This will avoid cache misses that happen while accessing slabp (which
3670 * is per page memory reference) to get nodeid. Instead use a global
3671 * variable to skip the call, which is mostly likely to be present in
3672 * the cache.
3673 */
b6e68bc1 3674 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3675 return;
3676
1da177e4
LT
3677 if (likely(ac->avail < ac->limit)) {
3678 STATS_INC_FREEHIT(cachep);
e498be7d 3679 ac->entry[ac->avail++] = objp;
1da177e4
LT
3680 return;
3681 } else {
3682 STATS_INC_FREEMISS(cachep);
3683 cache_flusharray(cachep, ac);
e498be7d 3684 ac->entry[ac->avail++] = objp;
1da177e4
LT
3685 }
3686}
3687
3688/**
3689 * kmem_cache_alloc - Allocate an object
3690 * @cachep: The cache to allocate from.
3691 * @flags: See kmalloc().
3692 *
3693 * Allocate an object from this cache. The flags are only relevant
3694 * if the cache has no available objects.
3695 */
343e0d7a 3696void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3697{
36555751
EGM
3698 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3699
ca2b84cb
EGM
3700 trace_kmem_cache_alloc(_RET_IP_, ret,
3701 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3702
3703 return ret;
1da177e4
LT
3704}
3705EXPORT_SYMBOL(kmem_cache_alloc);
3706
0f24f128 3707#ifdef CONFIG_TRACING
85beb586
SR
3708void *
3709kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3710{
85beb586
SR
3711 void *ret;
3712
3713 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3714
3715 trace_kmalloc(_RET_IP_, ret,
3716 size, slab_buffer_size(cachep), flags);
3717 return ret;
36555751 3718}
85beb586 3719EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3720#endif
3721
1da177e4 3722#ifdef CONFIG_NUMA
8b98c169
CH
3723void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3724{
36555751
EGM
3725 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3726 __builtin_return_address(0));
3727
ca2b84cb
EGM
3728 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3729 obj_size(cachep), cachep->buffer_size,
3730 flags, nodeid);
36555751
EGM
3731
3732 return ret;
8b98c169 3733}
1da177e4
LT
3734EXPORT_SYMBOL(kmem_cache_alloc_node);
3735
0f24f128 3736#ifdef CONFIG_TRACING
85beb586
SR
3737void *kmem_cache_alloc_node_trace(size_t size,
3738 struct kmem_cache *cachep,
3739 gfp_t flags,
3740 int nodeid)
36555751 3741{
85beb586
SR
3742 void *ret;
3743
3744 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3745 __builtin_return_address(0));
85beb586
SR
3746 trace_kmalloc_node(_RET_IP_, ret,
3747 size, slab_buffer_size(cachep),
3748 flags, nodeid);
3749 return ret;
36555751 3750}
85beb586 3751EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3752#endif
3753
8b98c169
CH
3754static __always_inline void *
3755__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3756{
343e0d7a 3757 struct kmem_cache *cachep;
97e2bde4
MS
3758
3759 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3760 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3761 return cachep;
85beb586 3762 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3763}
8b98c169 3764
0bb38a5c 3765#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3766void *__kmalloc_node(size_t size, gfp_t flags, int node)
3767{
3768 return __do_kmalloc_node(size, flags, node,
3769 __builtin_return_address(0));
3770}
dbe5e69d 3771EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3772
3773void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3774 int node, unsigned long caller)
8b98c169 3775{
ce71e27c 3776 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3777}
3778EXPORT_SYMBOL(__kmalloc_node_track_caller);
3779#else
3780void *__kmalloc_node(size_t size, gfp_t flags, int node)
3781{
3782 return __do_kmalloc_node(size, flags, node, NULL);
3783}
3784EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3785#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3786#endif /* CONFIG_NUMA */
1da177e4
LT
3787
3788/**
800590f5 3789 * __do_kmalloc - allocate memory
1da177e4 3790 * @size: how many bytes of memory are required.
800590f5 3791 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3792 * @caller: function caller for debug tracking of the caller
1da177e4 3793 */
7fd6b141
PE
3794static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3795 void *caller)
1da177e4 3796{
343e0d7a 3797 struct kmem_cache *cachep;
36555751 3798 void *ret;
1da177e4 3799
97e2bde4
MS
3800 /* If you want to save a few bytes .text space: replace
3801 * __ with kmem_.
3802 * Then kmalloc uses the uninlined functions instead of the inline
3803 * functions.
3804 */
3805 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3806 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3807 return cachep;
36555751
EGM
3808 ret = __cache_alloc(cachep, flags, caller);
3809
ca2b84cb
EGM
3810 trace_kmalloc((unsigned long) caller, ret,
3811 size, cachep->buffer_size, flags);
36555751
EGM
3812
3813 return ret;
7fd6b141
PE
3814}
3815
7fd6b141 3816
0bb38a5c 3817#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3818void *__kmalloc(size_t size, gfp_t flags)
3819{
871751e2 3820 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3821}
3822EXPORT_SYMBOL(__kmalloc);
3823
ce71e27c 3824void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3825{
ce71e27c 3826 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3827}
3828EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3829
3830#else
3831void *__kmalloc(size_t size, gfp_t flags)
3832{
3833 return __do_kmalloc(size, flags, NULL);
3834}
3835EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3836#endif
3837
1da177e4
LT
3838/**
3839 * kmem_cache_free - Deallocate an object
3840 * @cachep: The cache the allocation was from.
3841 * @objp: The previously allocated object.
3842 *
3843 * Free an object which was previously allocated from this
3844 * cache.
3845 */
343e0d7a 3846void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3847{
3848 unsigned long flags;
3849
3850 local_irq_save(flags);
898552c9 3851 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3852 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3853 debug_check_no_obj_freed(objp, obj_size(cachep));
a947eb95 3854 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3855 local_irq_restore(flags);
36555751 3856
ca2b84cb 3857 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3858}
3859EXPORT_SYMBOL(kmem_cache_free);
3860
1da177e4
LT
3861/**
3862 * kfree - free previously allocated memory
3863 * @objp: pointer returned by kmalloc.
3864 *
80e93eff
PE
3865 * If @objp is NULL, no operation is performed.
3866 *
1da177e4
LT
3867 * Don't free memory not originally allocated by kmalloc()
3868 * or you will run into trouble.
3869 */
3870void kfree(const void *objp)
3871{
343e0d7a 3872 struct kmem_cache *c;
1da177e4
LT
3873 unsigned long flags;
3874
2121db74
PE
3875 trace_kfree(_RET_IP_, objp);
3876
6cb8f913 3877 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3878 return;
3879 local_irq_save(flags);
3880 kfree_debugcheck(objp);
6ed5eb22 3881 c = virt_to_cache(objp);
f9b8404c 3882 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3883 debug_check_no_obj_freed(objp, obj_size(c));
a947eb95 3884 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3885 local_irq_restore(flags);
3886}
3887EXPORT_SYMBOL(kfree);
3888
343e0d7a 3889unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3890{
3dafccf2 3891 return obj_size(cachep);
1da177e4
LT
3892}
3893EXPORT_SYMBOL(kmem_cache_size);
3894
e498be7d 3895/*
183ff22b 3896 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3897 */
83b519e8 3898static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3899{
3900 int node;
3901 struct kmem_list3 *l3;
cafeb02e 3902 struct array_cache *new_shared;
3395ee05 3903 struct array_cache **new_alien = NULL;
e498be7d 3904
9c09a95c 3905 for_each_online_node(node) {
cafeb02e 3906
3395ee05 3907 if (use_alien_caches) {
83b519e8 3908 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3909 if (!new_alien)
3910 goto fail;
3911 }
cafeb02e 3912
63109846
ED
3913 new_shared = NULL;
3914 if (cachep->shared) {
3915 new_shared = alloc_arraycache(node,
0718dc2a 3916 cachep->shared*cachep->batchcount,
83b519e8 3917 0xbaadf00d, gfp);
63109846
ED
3918 if (!new_shared) {
3919 free_alien_cache(new_alien);
3920 goto fail;
3921 }
0718dc2a 3922 }
cafeb02e 3923
a737b3e2
AM
3924 l3 = cachep->nodelists[node];
3925 if (l3) {
cafeb02e
CL
3926 struct array_cache *shared = l3->shared;
3927
e498be7d
CL
3928 spin_lock_irq(&l3->list_lock);
3929
cafeb02e 3930 if (shared)
0718dc2a
CL
3931 free_block(cachep, shared->entry,
3932 shared->avail, node);
e498be7d 3933
cafeb02e
CL
3934 l3->shared = new_shared;
3935 if (!l3->alien) {
e498be7d
CL
3936 l3->alien = new_alien;
3937 new_alien = NULL;
3938 }
b28a02de 3939 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3940 cachep->batchcount + cachep->num;
e498be7d 3941 spin_unlock_irq(&l3->list_lock);
cafeb02e 3942 kfree(shared);
e498be7d
CL
3943 free_alien_cache(new_alien);
3944 continue;
3945 }
83b519e8 3946 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3947 if (!l3) {
3948 free_alien_cache(new_alien);
3949 kfree(new_shared);
e498be7d 3950 goto fail;
0718dc2a 3951 }
e498be7d
CL
3952
3953 kmem_list3_init(l3);
3954 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3955 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3956 l3->shared = new_shared;
e498be7d 3957 l3->alien = new_alien;
b28a02de 3958 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3959 cachep->batchcount + cachep->num;
e498be7d
CL
3960 cachep->nodelists[node] = l3;
3961 }
cafeb02e 3962 return 0;
0718dc2a 3963
a737b3e2 3964fail:
0718dc2a
CL
3965 if (!cachep->next.next) {
3966 /* Cache is not active yet. Roll back what we did */
3967 node--;
3968 while (node >= 0) {
3969 if (cachep->nodelists[node]) {
3970 l3 = cachep->nodelists[node];
3971
3972 kfree(l3->shared);
3973 free_alien_cache(l3->alien);
3974 kfree(l3);
3975 cachep->nodelists[node] = NULL;
3976 }
3977 node--;
3978 }
3979 }
cafeb02e 3980 return -ENOMEM;
e498be7d
CL
3981}
3982
1da177e4 3983struct ccupdate_struct {
343e0d7a 3984 struct kmem_cache *cachep;
acfe7d74 3985 struct array_cache *new[0];
1da177e4
LT
3986};
3987
3988static void do_ccupdate_local(void *info)
3989{
a737b3e2 3990 struct ccupdate_struct *new = info;
1da177e4
LT
3991 struct array_cache *old;
3992
3993 check_irq_off();
9a2dba4b 3994 old = cpu_cache_get(new->cachep);
e498be7d 3995
1da177e4
LT
3996 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3997 new->new[smp_processor_id()] = old;
3998}
3999
b5d8ca7c 4000/* Always called with the cache_chain_mutex held */
a737b3e2 4001static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4002 int batchcount, int shared, gfp_t gfp)
1da177e4 4003{
d2e7b7d0 4004 struct ccupdate_struct *new;
2ed3a4ef 4005 int i;
1da177e4 4006
acfe7d74
ED
4007 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4008 gfp);
d2e7b7d0
SS
4009 if (!new)
4010 return -ENOMEM;
4011
e498be7d 4012 for_each_online_cpu(i) {
7d6e6d09 4013 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4014 batchcount, gfp);
d2e7b7d0 4015 if (!new->new[i]) {
b28a02de 4016 for (i--; i >= 0; i--)
d2e7b7d0
SS
4017 kfree(new->new[i]);
4018 kfree(new);
e498be7d 4019 return -ENOMEM;
1da177e4
LT
4020 }
4021 }
d2e7b7d0 4022 new->cachep = cachep;
1da177e4 4023
15c8b6c1 4024 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4025
1da177e4 4026 check_irq_on();
1da177e4
LT
4027 cachep->batchcount = batchcount;
4028 cachep->limit = limit;
e498be7d 4029 cachep->shared = shared;
1da177e4 4030
e498be7d 4031 for_each_online_cpu(i) {
d2e7b7d0 4032 struct array_cache *ccold = new->new[i];
1da177e4
LT
4033 if (!ccold)
4034 continue;
7d6e6d09
LS
4035 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4036 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4037 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4038 kfree(ccold);
4039 }
d2e7b7d0 4040 kfree(new);
83b519e8 4041 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4042}
4043
b5d8ca7c 4044/* Called with cache_chain_mutex held always */
83b519e8 4045static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4046{
4047 int err;
4048 int limit, shared;
4049
a737b3e2
AM
4050 /*
4051 * The head array serves three purposes:
1da177e4
LT
4052 * - create a LIFO ordering, i.e. return objects that are cache-warm
4053 * - reduce the number of spinlock operations.
a737b3e2 4054 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4055 * bufctl chains: array operations are cheaper.
4056 * The numbers are guessed, we should auto-tune as described by
4057 * Bonwick.
4058 */
3dafccf2 4059 if (cachep->buffer_size > 131072)
1da177e4 4060 limit = 1;
3dafccf2 4061 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4062 limit = 8;
3dafccf2 4063 else if (cachep->buffer_size > 1024)
1da177e4 4064 limit = 24;
3dafccf2 4065 else if (cachep->buffer_size > 256)
1da177e4
LT
4066 limit = 54;
4067 else
4068 limit = 120;
4069
a737b3e2
AM
4070 /*
4071 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4072 * allocation behaviour: Most allocs on one cpu, most free operations
4073 * on another cpu. For these cases, an efficient object passing between
4074 * cpus is necessary. This is provided by a shared array. The array
4075 * replaces Bonwick's magazine layer.
4076 * On uniprocessor, it's functionally equivalent (but less efficient)
4077 * to a larger limit. Thus disabled by default.
4078 */
4079 shared = 0;
364fbb29 4080 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4081 shared = 8;
1da177e4
LT
4082
4083#if DEBUG
a737b3e2
AM
4084 /*
4085 * With debugging enabled, large batchcount lead to excessively long
4086 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4087 */
4088 if (limit > 32)
4089 limit = 32;
4090#endif
83b519e8 4091 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4092 if (err)
4093 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4094 cachep->name, -err);
2ed3a4ef 4095 return err;
1da177e4
LT
4096}
4097
1b55253a
CL
4098/*
4099 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4100 * necessary. Note that the l3 listlock also protects the array_cache
4101 * if drain_array() is used on the shared array.
1b55253a 4102 */
68a1b195 4103static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4104 struct array_cache *ac, int force, int node)
1da177e4
LT
4105{
4106 int tofree;
4107
1b55253a
CL
4108 if (!ac || !ac->avail)
4109 return;
1da177e4
LT
4110 if (ac->touched && !force) {
4111 ac->touched = 0;
b18e7e65 4112 } else {
1b55253a 4113 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4114 if (ac->avail) {
4115 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4116 if (tofree > ac->avail)
4117 tofree = (ac->avail + 1) / 2;
4118 free_block(cachep, ac->entry, tofree, node);
4119 ac->avail -= tofree;
4120 memmove(ac->entry, &(ac->entry[tofree]),
4121 sizeof(void *) * ac->avail);
4122 }
1b55253a 4123 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4124 }
4125}
4126
4127/**
4128 * cache_reap - Reclaim memory from caches.
05fb6bf0 4129 * @w: work descriptor
1da177e4
LT
4130 *
4131 * Called from workqueue/eventd every few seconds.
4132 * Purpose:
4133 * - clear the per-cpu caches for this CPU.
4134 * - return freeable pages to the main free memory pool.
4135 *
a737b3e2
AM
4136 * If we cannot acquire the cache chain mutex then just give up - we'll try
4137 * again on the next iteration.
1da177e4 4138 */
7c5cae36 4139static void cache_reap(struct work_struct *w)
1da177e4 4140{
7a7c381d 4141 struct kmem_cache *searchp;
e498be7d 4142 struct kmem_list3 *l3;
7d6e6d09 4143 int node = numa_mem_id();
bf6aede7 4144 struct delayed_work *work = to_delayed_work(w);
1da177e4 4145
7c5cae36 4146 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4147 /* Give up. Setup the next iteration. */
7c5cae36 4148 goto out;
1da177e4 4149
7a7c381d 4150 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4151 check_irq_on();
4152
35386e3b
CL
4153 /*
4154 * We only take the l3 lock if absolutely necessary and we
4155 * have established with reasonable certainty that
4156 * we can do some work if the lock was obtained.
4157 */
aab2207c 4158 l3 = searchp->nodelists[node];
35386e3b 4159
8fce4d8e 4160 reap_alien(searchp, l3);
1da177e4 4161
aab2207c 4162 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4163
35386e3b
CL
4164 /*
4165 * These are racy checks but it does not matter
4166 * if we skip one check or scan twice.
4167 */
e498be7d 4168 if (time_after(l3->next_reap, jiffies))
35386e3b 4169 goto next;
1da177e4 4170
e498be7d 4171 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4172
aab2207c 4173 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4174
ed11d9eb 4175 if (l3->free_touched)
e498be7d 4176 l3->free_touched = 0;
ed11d9eb
CL
4177 else {
4178 int freed;
1da177e4 4179
ed11d9eb
CL
4180 freed = drain_freelist(searchp, l3, (l3->free_limit +
4181 5 * searchp->num - 1) / (5 * searchp->num));
4182 STATS_ADD_REAPED(searchp, freed);
4183 }
35386e3b 4184next:
1da177e4
LT
4185 cond_resched();
4186 }
4187 check_irq_on();
fc0abb14 4188 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4189 next_reap_node();
7c5cae36 4190out:
a737b3e2 4191 /* Set up the next iteration */
7c5cae36 4192 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4193}
4194
158a9624 4195#ifdef CONFIG_SLABINFO
1da177e4 4196
85289f98 4197static void print_slabinfo_header(struct seq_file *m)
1da177e4 4198{
85289f98
PE
4199 /*
4200 * Output format version, so at least we can change it
4201 * without _too_ many complaints.
4202 */
1da177e4 4203#if STATS
85289f98 4204 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4205#else
85289f98 4206 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4207#endif
85289f98
PE
4208 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4209 "<objperslab> <pagesperslab>");
4210 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4211 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4212#if STATS
85289f98 4213 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4214 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4215 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4216#endif
85289f98
PE
4217 seq_putc(m, '\n');
4218}
4219
4220static void *s_start(struct seq_file *m, loff_t *pos)
4221{
4222 loff_t n = *pos;
85289f98 4223
fc0abb14 4224 mutex_lock(&cache_chain_mutex);
85289f98
PE
4225 if (!n)
4226 print_slabinfo_header(m);
b92151ba
PE
4227
4228 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4229}
4230
4231static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4232{
b92151ba 4233 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4234}
4235
4236static void s_stop(struct seq_file *m, void *p)
4237{
fc0abb14 4238 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4239}
4240
4241static int s_show(struct seq_file *m, void *p)
4242{
b92151ba 4243 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4244 struct slab *slabp;
4245 unsigned long active_objs;
4246 unsigned long num_objs;
4247 unsigned long active_slabs = 0;
4248 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4249 const char *name;
1da177e4 4250 char *error = NULL;
e498be7d
CL
4251 int node;
4252 struct kmem_list3 *l3;
1da177e4 4253
1da177e4
LT
4254 active_objs = 0;
4255 num_slabs = 0;
e498be7d
CL
4256 for_each_online_node(node) {
4257 l3 = cachep->nodelists[node];
4258 if (!l3)
4259 continue;
4260
ca3b9b91
RT
4261 check_irq_on();
4262 spin_lock_irq(&l3->list_lock);
e498be7d 4263
7a7c381d 4264 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4265 if (slabp->inuse != cachep->num && !error)
4266 error = "slabs_full accounting error";
4267 active_objs += cachep->num;
4268 active_slabs++;
4269 }
7a7c381d 4270 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4271 if (slabp->inuse == cachep->num && !error)
4272 error = "slabs_partial inuse accounting error";
4273 if (!slabp->inuse && !error)
4274 error = "slabs_partial/inuse accounting error";
4275 active_objs += slabp->inuse;
4276 active_slabs++;
4277 }
7a7c381d 4278 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4279 if (slabp->inuse && !error)
4280 error = "slabs_free/inuse accounting error";
4281 num_slabs++;
4282 }
4283 free_objects += l3->free_objects;
4484ebf1
RT
4284 if (l3->shared)
4285 shared_avail += l3->shared->avail;
e498be7d 4286
ca3b9b91 4287 spin_unlock_irq(&l3->list_lock);
1da177e4 4288 }
b28a02de
PE
4289 num_slabs += active_slabs;
4290 num_objs = num_slabs * cachep->num;
e498be7d 4291 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4292 error = "free_objects accounting error";
4293
b28a02de 4294 name = cachep->name;
1da177e4
LT
4295 if (error)
4296 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4297
4298 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4299 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4300 cachep->num, (1 << cachep->gfporder));
1da177e4 4301 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4302 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4303 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4304 active_slabs, num_slabs, shared_avail);
1da177e4 4305#if STATS
b28a02de 4306 { /* list3 stats */
1da177e4
LT
4307 unsigned long high = cachep->high_mark;
4308 unsigned long allocs = cachep->num_allocations;
4309 unsigned long grown = cachep->grown;
4310 unsigned long reaped = cachep->reaped;
4311 unsigned long errors = cachep->errors;
4312 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4313 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4314 unsigned long node_frees = cachep->node_frees;
fb7faf33 4315 unsigned long overflows = cachep->node_overflow;
1da177e4 4316
e92dd4fd
JP
4317 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4318 "%4lu %4lu %4lu %4lu %4lu",
4319 allocs, high, grown,
4320 reaped, errors, max_freeable, node_allocs,
4321 node_frees, overflows);
1da177e4
LT
4322 }
4323 /* cpu stats */
4324 {
4325 unsigned long allochit = atomic_read(&cachep->allochit);
4326 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4327 unsigned long freehit = atomic_read(&cachep->freehit);
4328 unsigned long freemiss = atomic_read(&cachep->freemiss);
4329
4330 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4331 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4332 }
4333#endif
4334 seq_putc(m, '\n');
1da177e4
LT
4335 return 0;
4336}
4337
4338/*
4339 * slabinfo_op - iterator that generates /proc/slabinfo
4340 *
4341 * Output layout:
4342 * cache-name
4343 * num-active-objs
4344 * total-objs
4345 * object size
4346 * num-active-slabs
4347 * total-slabs
4348 * num-pages-per-slab
4349 * + further values on SMP and with statistics enabled
4350 */
4351
7b3c3a50 4352static const struct seq_operations slabinfo_op = {
b28a02de
PE
4353 .start = s_start,
4354 .next = s_next,
4355 .stop = s_stop,
4356 .show = s_show,
1da177e4
LT
4357};
4358
4359#define MAX_SLABINFO_WRITE 128
4360/**
4361 * slabinfo_write - Tuning for the slab allocator
4362 * @file: unused
4363 * @buffer: user buffer
4364 * @count: data length
4365 * @ppos: unused
4366 */
68a1b195 4367static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4368 size_t count, loff_t *ppos)
1da177e4 4369{
b28a02de 4370 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4371 int limit, batchcount, shared, res;
7a7c381d 4372 struct kmem_cache *cachep;
b28a02de 4373
1da177e4
LT
4374 if (count > MAX_SLABINFO_WRITE)
4375 return -EINVAL;
4376 if (copy_from_user(&kbuf, buffer, count))
4377 return -EFAULT;
b28a02de 4378 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4379
4380 tmp = strchr(kbuf, ' ');
4381 if (!tmp)
4382 return -EINVAL;
4383 *tmp = '\0';
4384 tmp++;
4385 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4386 return -EINVAL;
4387
4388 /* Find the cache in the chain of caches. */
fc0abb14 4389 mutex_lock(&cache_chain_mutex);
1da177e4 4390 res = -EINVAL;
7a7c381d 4391 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4392 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4393 if (limit < 1 || batchcount < 1 ||
4394 batchcount > limit || shared < 0) {
e498be7d 4395 res = 0;
1da177e4 4396 } else {
e498be7d 4397 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4398 batchcount, shared,
4399 GFP_KERNEL);
1da177e4
LT
4400 }
4401 break;
4402 }
4403 }
fc0abb14 4404 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4405 if (res >= 0)
4406 res = count;
4407 return res;
4408}
871751e2 4409
7b3c3a50
AD
4410static int slabinfo_open(struct inode *inode, struct file *file)
4411{
4412 return seq_open(file, &slabinfo_op);
4413}
4414
4415static const struct file_operations proc_slabinfo_operations = {
4416 .open = slabinfo_open,
4417 .read = seq_read,
4418 .write = slabinfo_write,
4419 .llseek = seq_lseek,
4420 .release = seq_release,
4421};
4422
871751e2
AV
4423#ifdef CONFIG_DEBUG_SLAB_LEAK
4424
4425static void *leaks_start(struct seq_file *m, loff_t *pos)
4426{
871751e2 4427 mutex_lock(&cache_chain_mutex);
b92151ba 4428 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4429}
4430
4431static inline int add_caller(unsigned long *n, unsigned long v)
4432{
4433 unsigned long *p;
4434 int l;
4435 if (!v)
4436 return 1;
4437 l = n[1];
4438 p = n + 2;
4439 while (l) {
4440 int i = l/2;
4441 unsigned long *q = p + 2 * i;
4442 if (*q == v) {
4443 q[1]++;
4444 return 1;
4445 }
4446 if (*q > v) {
4447 l = i;
4448 } else {
4449 p = q + 2;
4450 l -= i + 1;
4451 }
4452 }
4453 if (++n[1] == n[0])
4454 return 0;
4455 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4456 p[0] = v;
4457 p[1] = 1;
4458 return 1;
4459}
4460
4461static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4462{
4463 void *p;
4464 int i;
4465 if (n[0] == n[1])
4466 return;
4467 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4468 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4469 continue;
4470 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4471 return;
4472 }
4473}
4474
4475static void show_symbol(struct seq_file *m, unsigned long address)
4476{
4477#ifdef CONFIG_KALLSYMS
871751e2 4478 unsigned long offset, size;
9281acea 4479 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4480
a5c43dae 4481 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4482 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4483 if (modname[0])
871751e2
AV
4484 seq_printf(m, " [%s]", modname);
4485 return;
4486 }
4487#endif
4488 seq_printf(m, "%p", (void *)address);
4489}
4490
4491static int leaks_show(struct seq_file *m, void *p)
4492{
b92151ba 4493 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4494 struct slab *slabp;
4495 struct kmem_list3 *l3;
4496 const char *name;
4497 unsigned long *n = m->private;
4498 int node;
4499 int i;
4500
4501 if (!(cachep->flags & SLAB_STORE_USER))
4502 return 0;
4503 if (!(cachep->flags & SLAB_RED_ZONE))
4504 return 0;
4505
4506 /* OK, we can do it */
4507
4508 n[1] = 0;
4509
4510 for_each_online_node(node) {
4511 l3 = cachep->nodelists[node];
4512 if (!l3)
4513 continue;
4514
4515 check_irq_on();
4516 spin_lock_irq(&l3->list_lock);
4517
7a7c381d 4518 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4519 handle_slab(n, cachep, slabp);
7a7c381d 4520 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4521 handle_slab(n, cachep, slabp);
871751e2
AV
4522 spin_unlock_irq(&l3->list_lock);
4523 }
4524 name = cachep->name;
4525 if (n[0] == n[1]) {
4526 /* Increase the buffer size */
4527 mutex_unlock(&cache_chain_mutex);
4528 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4529 if (!m->private) {
4530 /* Too bad, we are really out */
4531 m->private = n;
4532 mutex_lock(&cache_chain_mutex);
4533 return -ENOMEM;
4534 }
4535 *(unsigned long *)m->private = n[0] * 2;
4536 kfree(n);
4537 mutex_lock(&cache_chain_mutex);
4538 /* Now make sure this entry will be retried */
4539 m->count = m->size;
4540 return 0;
4541 }
4542 for (i = 0; i < n[1]; i++) {
4543 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4544 show_symbol(m, n[2*i+2]);
4545 seq_putc(m, '\n');
4546 }
d2e7b7d0 4547
871751e2
AV
4548 return 0;
4549}
4550
a0ec95a8 4551static const struct seq_operations slabstats_op = {
871751e2
AV
4552 .start = leaks_start,
4553 .next = s_next,
4554 .stop = s_stop,
4555 .show = leaks_show,
4556};
a0ec95a8
AD
4557
4558static int slabstats_open(struct inode *inode, struct file *file)
4559{
4560 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4561 int ret = -ENOMEM;
4562 if (n) {
4563 ret = seq_open(file, &slabstats_op);
4564 if (!ret) {
4565 struct seq_file *m = file->private_data;
4566 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4567 m->private = n;
4568 n = NULL;
4569 }
4570 kfree(n);
4571 }
4572 return ret;
4573}
4574
4575static const struct file_operations proc_slabstats_operations = {
4576 .open = slabstats_open,
4577 .read = seq_read,
4578 .llseek = seq_lseek,
4579 .release = seq_release_private,
4580};
4581#endif
4582
4583static int __init slab_proc_init(void)
4584{
ab067e99 4585 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4586#ifdef CONFIG_DEBUG_SLAB_LEAK
4587 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4588#endif
a0ec95a8
AD
4589 return 0;
4590}
4591module_init(slab_proc_init);
1da177e4
LT
4592#endif
4593
00e145b6
MS
4594/**
4595 * ksize - get the actual amount of memory allocated for a given object
4596 * @objp: Pointer to the object
4597 *
4598 * kmalloc may internally round up allocations and return more memory
4599 * than requested. ksize() can be used to determine the actual amount of
4600 * memory allocated. The caller may use this additional memory, even though
4601 * a smaller amount of memory was initially specified with the kmalloc call.
4602 * The caller must guarantee that objp points to a valid object previously
4603 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4604 * must not be freed during the duration of the call.
4605 */
fd76bab2 4606size_t ksize(const void *objp)
1da177e4 4607{
ef8b4520
CL
4608 BUG_ON(!objp);
4609 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4610 return 0;
1da177e4 4611
6ed5eb22 4612 return obj_size(virt_to_cache(objp));
1da177e4 4613}
b1aabecd 4614EXPORT_SYMBOL(ksize);
This page took 1.101222 seconds and 5 git commands to generate.