memory-hotplug: fix kswapd looping forever problem
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
1da177e4
LT
121#include <asm/cacheflush.h>
122#include <asm/tlbflush.h>
123#include <asm/page.h>
124
4dee6b64
SR
125#include <trace/events/kmem.h>
126
1da177e4 127/*
50953fe9 128 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * STATS - 1 to collect stats for /proc/slabinfo.
132 * 0 for faster, smaller code (especially in the critical paths).
133 *
134 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
135 */
136
137#ifdef CONFIG_DEBUG_SLAB
138#define DEBUG 1
139#define STATS 1
140#define FORCED_DEBUG 1
141#else
142#define DEBUG 0
143#define STATS 0
144#define FORCED_DEBUG 0
145#endif
146
1da177e4
LT
147/* Shouldn't this be in a header file somewhere? */
148#define BYTES_PER_WORD sizeof(void *)
87a927c7 149#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 150
1da177e4
LT
151#ifndef ARCH_KMALLOC_FLAGS
152#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
153#endif
154
155/* Legal flag mask for kmem_cache_create(). */
156#if DEBUG
50953fe9 157# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 158 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 159 SLAB_CACHE_DMA | \
5af60839 160 SLAB_STORE_USER | \
1da177e4 161 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 162 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 163 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 164#else
ac2b898c 165# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 166 SLAB_CACHE_DMA | \
1da177e4 167 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 168 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 169 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
170#endif
171
172/*
173 * kmem_bufctl_t:
174 *
175 * Bufctl's are used for linking objs within a slab
176 * linked offsets.
177 *
178 * This implementation relies on "struct page" for locating the cache &
179 * slab an object belongs to.
180 * This allows the bufctl structure to be small (one int), but limits
181 * the number of objects a slab (not a cache) can contain when off-slab
182 * bufctls are used. The limit is the size of the largest general cache
183 * that does not use off-slab slabs.
184 * For 32bit archs with 4 kB pages, is this 56.
185 * This is not serious, as it is only for large objects, when it is unwise
186 * to have too many per slab.
187 * Note: This limit can be raised by introducing a general cache whose size
188 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
189 */
190
fa5b08d5 191typedef unsigned int kmem_bufctl_t;
1da177e4
LT
192#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
193#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
194#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
195#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 196
1da177e4
LT
197/*
198 * struct slab_rcu
199 *
200 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
201 * arrange for kmem_freepages to be called via RCU. This is useful if
202 * we need to approach a kernel structure obliquely, from its address
203 * obtained without the usual locking. We can lock the structure to
204 * stabilize it and check it's still at the given address, only if we
205 * can be sure that the memory has not been meanwhile reused for some
206 * other kind of object (which our subsystem's lock might corrupt).
207 *
208 * rcu_read_lock before reading the address, then rcu_read_unlock after
209 * taking the spinlock within the structure expected at that address.
1da177e4
LT
210 */
211struct slab_rcu {
b28a02de 212 struct rcu_head head;
343e0d7a 213 struct kmem_cache *cachep;
b28a02de 214 void *addr;
1da177e4
LT
215};
216
5bfe53a7
LJ
217/*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224struct slab {
225 union {
226 struct {
227 struct list_head list;
228 unsigned long colouroff;
229 void *s_mem; /* including colour offset */
230 unsigned int inuse; /* num of objs active in slab */
231 kmem_bufctl_t free;
232 unsigned short nodeid;
233 };
234 struct slab_rcu __slab_cover_slab_rcu;
235 };
236};
237
1da177e4
LT
238/*
239 * struct array_cache
240 *
1da177e4
LT
241 * Purpose:
242 * - LIFO ordering, to hand out cache-warm objects from _alloc
243 * - reduce the number of linked list operations
244 * - reduce spinlock operations
245 *
246 * The limit is stored in the per-cpu structure to reduce the data cache
247 * footprint.
248 *
249 */
250struct array_cache {
251 unsigned int avail;
252 unsigned int limit;
253 unsigned int batchcount;
254 unsigned int touched;
e498be7d 255 spinlock_t lock;
bda5b655 256 void *entry[]; /*
a737b3e2
AM
257 * Must have this definition in here for the proper
258 * alignment of array_cache. Also simplifies accessing
259 * the entries.
a737b3e2 260 */
1da177e4
LT
261};
262
a737b3e2
AM
263/*
264 * bootstrap: The caches do not work without cpuarrays anymore, but the
265 * cpuarrays are allocated from the generic caches...
1da177e4
LT
266 */
267#define BOOT_CPUCACHE_ENTRIES 1
268struct arraycache_init {
269 struct array_cache cache;
b28a02de 270 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
271};
272
273/*
e498be7d 274 * The slab lists for all objects.
1da177e4
LT
275 */
276struct kmem_list3 {
b28a02de
PE
277 struct list_head slabs_partial; /* partial list first, better asm code */
278 struct list_head slabs_full;
279 struct list_head slabs_free;
280 unsigned long free_objects;
b28a02de 281 unsigned int free_limit;
2e1217cf 282 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
283 spinlock_t list_lock;
284 struct array_cache *shared; /* shared per node */
285 struct array_cache **alien; /* on other nodes */
35386e3b
CL
286 unsigned long next_reap; /* updated without locking */
287 int free_touched; /* updated without locking */
1da177e4
LT
288};
289
e498be7d
CL
290/*
291 * Need this for bootstrapping a per node allocator.
292 */
556a169d 293#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 294static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 295#define CACHE_CACHE 0
556a169d
PE
296#define SIZE_AC MAX_NUMNODES
297#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 298
ed11d9eb
CL
299static int drain_freelist(struct kmem_cache *cache,
300 struct kmem_list3 *l3, int tofree);
301static void free_block(struct kmem_cache *cachep, void **objpp, int len,
302 int node);
83b519e8 303static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 304static void cache_reap(struct work_struct *unused);
ed11d9eb 305
e498be7d 306/*
a737b3e2
AM
307 * This function must be completely optimized away if a constant is passed to
308 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 309 */
7243cc05 310static __always_inline int index_of(const size_t size)
e498be7d 311{
5ec8a847
SR
312 extern void __bad_size(void);
313
e498be7d
CL
314 if (__builtin_constant_p(size)) {
315 int i = 0;
316
317#define CACHE(x) \
318 if (size <=x) \
319 return i; \
320 else \
321 i++;
1c61fc40 322#include <linux/kmalloc_sizes.h>
e498be7d 323#undef CACHE
5ec8a847 324 __bad_size();
7243cc05 325 } else
5ec8a847 326 __bad_size();
e498be7d
CL
327 return 0;
328}
329
e0a42726
IM
330static int slab_early_init = 1;
331
e498be7d
CL
332#define INDEX_AC index_of(sizeof(struct arraycache_init))
333#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 334
5295a74c 335static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
336{
337 INIT_LIST_HEAD(&parent->slabs_full);
338 INIT_LIST_HEAD(&parent->slabs_partial);
339 INIT_LIST_HEAD(&parent->slabs_free);
340 parent->shared = NULL;
341 parent->alien = NULL;
2e1217cf 342 parent->colour_next = 0;
e498be7d
CL
343 spin_lock_init(&parent->list_lock);
344 parent->free_objects = 0;
345 parent->free_touched = 0;
346}
347
a737b3e2
AM
348#define MAKE_LIST(cachep, listp, slab, nodeid) \
349 do { \
350 INIT_LIST_HEAD(listp); \
351 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
352 } while (0)
353
a737b3e2
AM
354#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
355 do { \
e498be7d
CL
356 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
358 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
359 } while (0)
1da177e4 360
1da177e4
LT
361#define CFLGS_OFF_SLAB (0x80000000UL)
362#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
363
364#define BATCHREFILL_LIMIT 16
a737b3e2
AM
365/*
366 * Optimization question: fewer reaps means less probability for unnessary
367 * cpucache drain/refill cycles.
1da177e4 368 *
dc6f3f27 369 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
370 * which could lock up otherwise freeable slabs.
371 */
372#define REAPTIMEOUT_CPUC (2*HZ)
373#define REAPTIMEOUT_LIST3 (4*HZ)
374
375#if STATS
376#define STATS_INC_ACTIVE(x) ((x)->num_active++)
377#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
378#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
379#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 380#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
381#define STATS_SET_HIGH(x) \
382 do { \
383 if ((x)->num_active > (x)->high_mark) \
384 (x)->high_mark = (x)->num_active; \
385 } while (0)
1da177e4
LT
386#define STATS_INC_ERR(x) ((x)->errors++)
387#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 388#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 389#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
390#define STATS_SET_FREEABLE(x, i) \
391 do { \
392 if ((x)->max_freeable < i) \
393 (x)->max_freeable = i; \
394 } while (0)
1da177e4
LT
395#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
396#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
397#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
398#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
399#else
400#define STATS_INC_ACTIVE(x) do { } while (0)
401#define STATS_DEC_ACTIVE(x) do { } while (0)
402#define STATS_INC_ALLOCED(x) do { } while (0)
403#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 404#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
405#define STATS_SET_HIGH(x) do { } while (0)
406#define STATS_INC_ERR(x) do { } while (0)
407#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 408#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 409#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 410#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
411#define STATS_INC_ALLOCHIT(x) do { } while (0)
412#define STATS_INC_ALLOCMISS(x) do { } while (0)
413#define STATS_INC_FREEHIT(x) do { } while (0)
414#define STATS_INC_FREEMISS(x) do { } while (0)
415#endif
416
417#if DEBUG
1da177e4 418
a737b3e2
AM
419/*
420 * memory layout of objects:
1da177e4 421 * 0 : objp
3dafccf2 422 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
423 * the end of an object is aligned with the end of the real
424 * allocation. Catches writes behind the end of the allocation.
3dafccf2 425 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 426 * redzone word.
3dafccf2 427 * cachep->obj_offset: The real object.
3b0efdfa
CL
428 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
429 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 430 * [BYTES_PER_WORD long]
1da177e4 431 */
343e0d7a 432static int obj_offset(struct kmem_cache *cachep)
1da177e4 433{
3dafccf2 434 return cachep->obj_offset;
1da177e4
LT
435}
436
b46b8f19 437static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
438{
439 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
440 return (unsigned long long*) (objp + obj_offset(cachep) -
441 sizeof(unsigned long long));
1da177e4
LT
442}
443
b46b8f19 444static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
445{
446 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
447 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 448 return (unsigned long long *)(objp + cachep->size -
b46b8f19 449 sizeof(unsigned long long) -
87a927c7 450 REDZONE_ALIGN);
3b0efdfa 451 return (unsigned long long *) (objp + cachep->size -
b46b8f19 452 sizeof(unsigned long long));
1da177e4
LT
453}
454
343e0d7a 455static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
456{
457 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 458 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
459}
460
461#else
462
3dafccf2 463#define obj_offset(x) 0
b46b8f19
DW
464#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
466#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
467
468#endif
469
0f24f128 470#ifdef CONFIG_TRACING
36555751
EGM
471size_t slab_buffer_size(struct kmem_cache *cachep)
472{
3b0efdfa 473 return cachep->size;
36555751
EGM
474}
475EXPORT_SYMBOL(slab_buffer_size);
476#endif
477
1da177e4 478/*
3df1cccd
DR
479 * Do not go above this order unless 0 objects fit into the slab or
480 * overridden on the command line.
1da177e4 481 */
543585cc
DR
482#define SLAB_MAX_ORDER_HI 1
483#define SLAB_MAX_ORDER_LO 0
484static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 485static bool slab_max_order_set __initdata;
1da177e4 486
065d41cb
PE
487static inline struct kmem_cache *page_get_cache(struct page *page)
488{
d85f3385 489 page = compound_head(page);
ddc2e812 490 BUG_ON(!PageSlab(page));
e571b0ad 491 return page->slab_cache;
065d41cb
PE
492}
493
6ed5eb22
PE
494static inline struct kmem_cache *virt_to_cache(const void *obj)
495{
b49af68f 496 struct page *page = virt_to_head_page(obj);
35026088 497 return page->slab_cache;
6ed5eb22
PE
498}
499
500static inline struct slab *virt_to_slab(const void *obj)
501{
b49af68f 502 struct page *page = virt_to_head_page(obj);
35026088
CL
503
504 VM_BUG_ON(!PageSlab(page));
505 return page->slab_page;
6ed5eb22
PE
506}
507
8fea4e96
PE
508static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
509 unsigned int idx)
510{
3b0efdfa 511 return slab->s_mem + cache->size * idx;
8fea4e96
PE
512}
513
6a2d7a95 514/*
3b0efdfa
CL
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
6a2d7a95
ED
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 */
520static inline unsigned int obj_to_index(const struct kmem_cache *cache,
521 const struct slab *slab, void *obj)
8fea4e96 522{
6a2d7a95
ED
523 u32 offset = (obj - slab->s_mem);
524 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
525}
526
a737b3e2
AM
527/*
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 */
1da177e4
LT
530struct cache_sizes malloc_sizes[] = {
531#define CACHE(x) { .cs_size = (x) },
532#include <linux/kmalloc_sizes.h>
533 CACHE(ULONG_MAX)
534#undef CACHE
535};
536EXPORT_SYMBOL(malloc_sizes);
537
538/* Must match cache_sizes above. Out of line to keep cache footprint low. */
539struct cache_names {
540 char *name;
541 char *name_dma;
542};
543
544static struct cache_names __initdata cache_names[] = {
545#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546#include <linux/kmalloc_sizes.h>
b28a02de 547 {NULL,}
1da177e4
LT
548#undef CACHE
549};
550
551static struct arraycache_init initarray_cache __initdata =
b28a02de 552 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 553static struct arraycache_init initarray_generic =
b28a02de 554 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
555
556/* internal cache of cache description objs */
b56efcf0 557static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 558static struct kmem_cache cache_cache = {
b56efcf0 559 .nodelists = cache_cache_nodelists,
b28a02de
PE
560 .batchcount = 1,
561 .limit = BOOT_CPUCACHE_ENTRIES,
562 .shared = 1,
3b0efdfa 563 .size = sizeof(struct kmem_cache),
b28a02de 564 .name = "kmem_cache",
1da177e4
LT
565};
566
056c6241
RT
567#define BAD_ALIEN_MAGIC 0x01020304ul
568
f1aaee53
AV
569#ifdef CONFIG_LOCKDEP
570
571/*
572 * Slab sometimes uses the kmalloc slabs to store the slab headers
573 * for other slabs "off slab".
574 * The locking for this is tricky in that it nests within the locks
575 * of all other slabs in a few places; to deal with this special
576 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
577 *
578 * We set lock class for alien array caches which are up during init.
579 * The lock annotation will be lost if all cpus of a node goes down and
580 * then comes back up during hotplug
f1aaee53 581 */
056c6241
RT
582static struct lock_class_key on_slab_l3_key;
583static struct lock_class_key on_slab_alc_key;
584
83835b3d
PZ
585static struct lock_class_key debugobj_l3_key;
586static struct lock_class_key debugobj_alc_key;
587
588static void slab_set_lock_classes(struct kmem_cache *cachep,
589 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
590 int q)
591{
592 struct array_cache **alc;
593 struct kmem_list3 *l3;
594 int r;
595
596 l3 = cachep->nodelists[q];
597 if (!l3)
598 return;
599
600 lockdep_set_class(&l3->list_lock, l3_key);
601 alc = l3->alien;
602 /*
603 * FIXME: This check for BAD_ALIEN_MAGIC
604 * should go away when common slab code is taught to
605 * work even without alien caches.
606 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
607 * for alloc_alien_cache,
608 */
609 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
610 return;
611 for_each_node(r) {
612 if (alc[r])
613 lockdep_set_class(&alc[r]->lock, alc_key);
614 }
615}
616
617static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
618{
619 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
620}
621
622static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
623{
624 int node;
625
626 for_each_online_node(node)
627 slab_set_debugobj_lock_classes_node(cachep, node);
628}
629
ce79ddc8 630static void init_node_lock_keys(int q)
f1aaee53 631{
056c6241
RT
632 struct cache_sizes *s = malloc_sizes;
633
97d06609 634 if (slab_state < UP)
ce79ddc8
PE
635 return;
636
637 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 638 struct kmem_list3 *l3;
ce79ddc8
PE
639
640 l3 = s->cs_cachep->nodelists[q];
641 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 642 continue;
83835b3d
PZ
643
644 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
645 &on_slab_alc_key, q);
f1aaee53
AV
646 }
647}
ce79ddc8
PE
648
649static inline void init_lock_keys(void)
650{
651 int node;
652
653 for_each_node(node)
654 init_node_lock_keys(node);
655}
f1aaee53 656#else
ce79ddc8
PE
657static void init_node_lock_keys(int q)
658{
659}
660
056c6241 661static inline void init_lock_keys(void)
f1aaee53
AV
662{
663}
83835b3d
PZ
664
665static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
666{
667}
668
669static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
670{
671}
f1aaee53
AV
672#endif
673
1871e52c 674static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 675
343e0d7a 676static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
677{
678 return cachep->array[smp_processor_id()];
679}
680
a737b3e2
AM
681static inline struct kmem_cache *__find_general_cachep(size_t size,
682 gfp_t gfpflags)
1da177e4
LT
683{
684 struct cache_sizes *csizep = malloc_sizes;
685
686#if DEBUG
687 /* This happens if someone tries to call
b28a02de
PE
688 * kmem_cache_create(), or __kmalloc(), before
689 * the generic caches are initialized.
690 */
c7e43c78 691 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 692#endif
6cb8f913
CL
693 if (!size)
694 return ZERO_SIZE_PTR;
695
1da177e4
LT
696 while (size > csizep->cs_size)
697 csizep++;
698
699 /*
0abf40c1 700 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
701 * has cs_{dma,}cachep==NULL. Thus no special case
702 * for large kmalloc calls required.
703 */
4b51d669 704#ifdef CONFIG_ZONE_DMA
1da177e4
LT
705 if (unlikely(gfpflags & GFP_DMA))
706 return csizep->cs_dmacachep;
4b51d669 707#endif
1da177e4
LT
708 return csizep->cs_cachep;
709}
710
b221385b 711static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
712{
713 return __find_general_cachep(size, gfpflags);
714}
97e2bde4 715
fbaccacf 716static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 717{
fbaccacf
SR
718 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
719}
1da177e4 720
a737b3e2
AM
721/*
722 * Calculate the number of objects and left-over bytes for a given buffer size.
723 */
fbaccacf
SR
724static void cache_estimate(unsigned long gfporder, size_t buffer_size,
725 size_t align, int flags, size_t *left_over,
726 unsigned int *num)
727{
728 int nr_objs;
729 size_t mgmt_size;
730 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 731
fbaccacf
SR
732 /*
733 * The slab management structure can be either off the slab or
734 * on it. For the latter case, the memory allocated for a
735 * slab is used for:
736 *
737 * - The struct slab
738 * - One kmem_bufctl_t for each object
739 * - Padding to respect alignment of @align
740 * - @buffer_size bytes for each object
741 *
742 * If the slab management structure is off the slab, then the
743 * alignment will already be calculated into the size. Because
744 * the slabs are all pages aligned, the objects will be at the
745 * correct alignment when allocated.
746 */
747 if (flags & CFLGS_OFF_SLAB) {
748 mgmt_size = 0;
749 nr_objs = slab_size / buffer_size;
750
751 if (nr_objs > SLAB_LIMIT)
752 nr_objs = SLAB_LIMIT;
753 } else {
754 /*
755 * Ignore padding for the initial guess. The padding
756 * is at most @align-1 bytes, and @buffer_size is at
757 * least @align. In the worst case, this result will
758 * be one greater than the number of objects that fit
759 * into the memory allocation when taking the padding
760 * into account.
761 */
762 nr_objs = (slab_size - sizeof(struct slab)) /
763 (buffer_size + sizeof(kmem_bufctl_t));
764
765 /*
766 * This calculated number will be either the right
767 * amount, or one greater than what we want.
768 */
769 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
770 > slab_size)
771 nr_objs--;
772
773 if (nr_objs > SLAB_LIMIT)
774 nr_objs = SLAB_LIMIT;
775
776 mgmt_size = slab_mgmt_size(nr_objs, align);
777 }
778 *num = nr_objs;
779 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
780}
781
d40cee24 782#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 783
a737b3e2
AM
784static void __slab_error(const char *function, struct kmem_cache *cachep,
785 char *msg)
1da177e4
LT
786{
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 788 function, cachep->name, msg);
1da177e4
LT
789 dump_stack();
790}
791
3395ee05
PM
792/*
793 * By default on NUMA we use alien caches to stage the freeing of
794 * objects allocated from other nodes. This causes massive memory
795 * inefficiencies when using fake NUMA setup to split memory into a
796 * large number of small nodes, so it can be disabled on the command
797 * line
798 */
799
800static int use_alien_caches __read_mostly = 1;
801static int __init noaliencache_setup(char *s)
802{
803 use_alien_caches = 0;
804 return 1;
805}
806__setup("noaliencache", noaliencache_setup);
807
3df1cccd
DR
808static int __init slab_max_order_setup(char *str)
809{
810 get_option(&str, &slab_max_order);
811 slab_max_order = slab_max_order < 0 ? 0 :
812 min(slab_max_order, MAX_ORDER - 1);
813 slab_max_order_set = true;
814
815 return 1;
816}
817__setup("slab_max_order=", slab_max_order_setup);
818
8fce4d8e
CL
819#ifdef CONFIG_NUMA
820/*
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
825 */
1871e52c 826static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
827
828static void init_reap_node(int cpu)
829{
830 int node;
831
7d6e6d09 832 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 833 if (node == MAX_NUMNODES)
442295c9 834 node = first_node(node_online_map);
8fce4d8e 835
1871e52c 836 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
837}
838
839static void next_reap_node(void)
840{
909ea964 841 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 842
8fce4d8e
CL
843 node = next_node(node, node_online_map);
844 if (unlikely(node >= MAX_NUMNODES))
845 node = first_node(node_online_map);
909ea964 846 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
847}
848
849#else
850#define init_reap_node(cpu) do { } while (0)
851#define next_reap_node(void) do { } while (0)
852#endif
853
1da177e4
LT
854/*
855 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
856 * via the workqueue/eventd.
857 * Add the CPU number into the expiration time to minimize the possibility of
858 * the CPUs getting into lockstep and contending for the global cache chain
859 * lock.
860 */
897e679b 861static void __cpuinit start_cpu_timer(int cpu)
1da177e4 862{
1871e52c 863 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
864
865 /*
866 * When this gets called from do_initcalls via cpucache_init(),
867 * init_workqueues() has already run, so keventd will be setup
868 * at that time.
869 */
52bad64d 870 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 871 init_reap_node(cpu);
78b43536 872 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
873 schedule_delayed_work_on(cpu, reap_work,
874 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
875 }
876}
877
e498be7d 878static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 879 int batchcount, gfp_t gfp)
1da177e4 880{
b28a02de 881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
882 struct array_cache *nc = NULL;
883
83b519e8 884 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
885 /*
886 * The array_cache structures contain pointers to free object.
25985edc 887 * However, when such objects are allocated or transferred to another
d5cff635
CM
888 * cache the pointers are not cleared and they could be counted as
889 * valid references during a kmemleak scan. Therefore, kmemleak must
890 * not scan such objects.
891 */
892 kmemleak_no_scan(nc);
1da177e4
LT
893 if (nc) {
894 nc->avail = 0;
895 nc->limit = entries;
896 nc->batchcount = batchcount;
897 nc->touched = 0;
e498be7d 898 spin_lock_init(&nc->lock);
1da177e4
LT
899 }
900 return nc;
901}
902
3ded175a
CL
903/*
904 * Transfer objects in one arraycache to another.
905 * Locking must be handled by the caller.
906 *
907 * Return the number of entries transferred.
908 */
909static int transfer_objects(struct array_cache *to,
910 struct array_cache *from, unsigned int max)
911{
912 /* Figure out how many entries to transfer */
732eacc0 913 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
914
915 if (!nr)
916 return 0;
917
918 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
919 sizeof(void *) *nr);
920
921 from->avail -= nr;
922 to->avail += nr;
3ded175a
CL
923 return nr;
924}
925
765c4507
CL
926#ifndef CONFIG_NUMA
927
928#define drain_alien_cache(cachep, alien) do { } while (0)
929#define reap_alien(cachep, l3) do { } while (0)
930
83b519e8 931static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
932{
933 return (struct array_cache **)BAD_ALIEN_MAGIC;
934}
935
936static inline void free_alien_cache(struct array_cache **ac_ptr)
937{
938}
939
940static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
941{
942 return 0;
943}
944
945static inline void *alternate_node_alloc(struct kmem_cache *cachep,
946 gfp_t flags)
947{
948 return NULL;
949}
950
8b98c169 951static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
952 gfp_t flags, int nodeid)
953{
954 return NULL;
955}
956
957#else /* CONFIG_NUMA */
958
8b98c169 959static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 960static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 961
83b519e8 962static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
963{
964 struct array_cache **ac_ptr;
8ef82866 965 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
966 int i;
967
968 if (limit > 1)
969 limit = 12;
f3186a9c 970 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
971 if (ac_ptr) {
972 for_each_node(i) {
f3186a9c 973 if (i == node || !node_online(i))
e498be7d 974 continue;
83b519e8 975 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 976 if (!ac_ptr[i]) {
cc550def 977 for (i--; i >= 0; i--)
e498be7d
CL
978 kfree(ac_ptr[i]);
979 kfree(ac_ptr);
980 return NULL;
981 }
982 }
983 }
984 return ac_ptr;
985}
986
5295a74c 987static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
988{
989 int i;
990
991 if (!ac_ptr)
992 return;
e498be7d 993 for_each_node(i)
b28a02de 994 kfree(ac_ptr[i]);
e498be7d
CL
995 kfree(ac_ptr);
996}
997
343e0d7a 998static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 999 struct array_cache *ac, int node)
e498be7d
CL
1000{
1001 struct kmem_list3 *rl3 = cachep->nodelists[node];
1002
1003 if (ac->avail) {
1004 spin_lock(&rl3->list_lock);
e00946fe
CL
1005 /*
1006 * Stuff objects into the remote nodes shared array first.
1007 * That way we could avoid the overhead of putting the objects
1008 * into the free lists and getting them back later.
1009 */
693f7d36 1010 if (rl3->shared)
1011 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1012
ff69416e 1013 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1014 ac->avail = 0;
1015 spin_unlock(&rl3->list_lock);
1016 }
1017}
1018
8fce4d8e
CL
1019/*
1020 * Called from cache_reap() to regularly drain alien caches round robin.
1021 */
1022static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1023{
909ea964 1024 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1025
1026 if (l3->alien) {
1027 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1028
1029 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1030 __drain_alien_cache(cachep, ac, node);
1031 spin_unlock_irq(&ac->lock);
1032 }
1033 }
1034}
1035
a737b3e2
AM
1036static void drain_alien_cache(struct kmem_cache *cachep,
1037 struct array_cache **alien)
e498be7d 1038{
b28a02de 1039 int i = 0;
e498be7d
CL
1040 struct array_cache *ac;
1041 unsigned long flags;
1042
1043 for_each_online_node(i) {
4484ebf1 1044 ac = alien[i];
e498be7d
CL
1045 if (ac) {
1046 spin_lock_irqsave(&ac->lock, flags);
1047 __drain_alien_cache(cachep, ac, i);
1048 spin_unlock_irqrestore(&ac->lock, flags);
1049 }
1050 }
1051}
729bd0b7 1052
873623df 1053static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1054{
1055 struct slab *slabp = virt_to_slab(objp);
1056 int nodeid = slabp->nodeid;
1057 struct kmem_list3 *l3;
1058 struct array_cache *alien = NULL;
1ca4cb24
PE
1059 int node;
1060
7d6e6d09 1061 node = numa_mem_id();
729bd0b7
PE
1062
1063 /*
1064 * Make sure we are not freeing a object from another node to the array
1065 * cache on this cpu.
1066 */
62918a03 1067 if (likely(slabp->nodeid == node))
729bd0b7
PE
1068 return 0;
1069
1ca4cb24 1070 l3 = cachep->nodelists[node];
729bd0b7
PE
1071 STATS_INC_NODEFREES(cachep);
1072 if (l3->alien && l3->alien[nodeid]) {
1073 alien = l3->alien[nodeid];
873623df 1074 spin_lock(&alien->lock);
729bd0b7
PE
1075 if (unlikely(alien->avail == alien->limit)) {
1076 STATS_INC_ACOVERFLOW(cachep);
1077 __drain_alien_cache(cachep, alien, nodeid);
1078 }
1079 alien->entry[alien->avail++] = objp;
1080 spin_unlock(&alien->lock);
1081 } else {
1082 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1083 free_block(cachep, &objp, 1, nodeid);
1084 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1085 }
1086 return 1;
1087}
e498be7d
CL
1088#endif
1089
8f9f8d9e
DR
1090/*
1091 * Allocates and initializes nodelists for a node on each slab cache, used for
1092 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1093 * will be allocated off-node since memory is not yet online for the new node.
1094 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1095 * already in use.
1096 *
18004c5d 1097 * Must hold slab_mutex.
8f9f8d9e
DR
1098 */
1099static int init_cache_nodelists_node(int node)
1100{
1101 struct kmem_cache *cachep;
1102 struct kmem_list3 *l3;
1103 const int memsize = sizeof(struct kmem_list3);
1104
18004c5d 1105 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1106 /*
1107 * Set up the size64 kmemlist for cpu before we can
1108 * begin anything. Make sure some other cpu on this
1109 * node has not already allocated this
1110 */
1111 if (!cachep->nodelists[node]) {
1112 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1113 if (!l3)
1114 return -ENOMEM;
1115 kmem_list3_init(l3);
1116 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1117 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1118
1119 /*
1120 * The l3s don't come and go as CPUs come and
18004c5d 1121 * go. slab_mutex is sufficient
8f9f8d9e
DR
1122 * protection here.
1123 */
1124 cachep->nodelists[node] = l3;
1125 }
1126
1127 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1128 cachep->nodelists[node]->free_limit =
1129 (1 + nr_cpus_node(node)) *
1130 cachep->batchcount + cachep->num;
1131 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1132 }
1133 return 0;
1134}
1135
fbf1e473
AM
1136static void __cpuinit cpuup_canceled(long cpu)
1137{
1138 struct kmem_cache *cachep;
1139 struct kmem_list3 *l3 = NULL;
7d6e6d09 1140 int node = cpu_to_mem(cpu);
a70f7302 1141 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1142
18004c5d 1143 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1144 struct array_cache *nc;
1145 struct array_cache *shared;
1146 struct array_cache **alien;
fbf1e473 1147
fbf1e473
AM
1148 /* cpu is dead; no one can alloc from it. */
1149 nc = cachep->array[cpu];
1150 cachep->array[cpu] = NULL;
1151 l3 = cachep->nodelists[node];
1152
1153 if (!l3)
1154 goto free_array_cache;
1155
1156 spin_lock_irq(&l3->list_lock);
1157
1158 /* Free limit for this kmem_list3 */
1159 l3->free_limit -= cachep->batchcount;
1160 if (nc)
1161 free_block(cachep, nc->entry, nc->avail, node);
1162
58463c1f 1163 if (!cpumask_empty(mask)) {
fbf1e473
AM
1164 spin_unlock_irq(&l3->list_lock);
1165 goto free_array_cache;
1166 }
1167
1168 shared = l3->shared;
1169 if (shared) {
1170 free_block(cachep, shared->entry,
1171 shared->avail, node);
1172 l3->shared = NULL;
1173 }
1174
1175 alien = l3->alien;
1176 l3->alien = NULL;
1177
1178 spin_unlock_irq(&l3->list_lock);
1179
1180 kfree(shared);
1181 if (alien) {
1182 drain_alien_cache(cachep, alien);
1183 free_alien_cache(alien);
1184 }
1185free_array_cache:
1186 kfree(nc);
1187 }
1188 /*
1189 * In the previous loop, all the objects were freed to
1190 * the respective cache's slabs, now we can go ahead and
1191 * shrink each nodelist to its limit.
1192 */
18004c5d 1193 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1194 l3 = cachep->nodelists[node];
1195 if (!l3)
1196 continue;
1197 drain_freelist(cachep, l3, l3->free_objects);
1198 }
1199}
1200
1201static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1202{
343e0d7a 1203 struct kmem_cache *cachep;
e498be7d 1204 struct kmem_list3 *l3 = NULL;
7d6e6d09 1205 int node = cpu_to_mem(cpu);
8f9f8d9e 1206 int err;
1da177e4 1207
fbf1e473
AM
1208 /*
1209 * We need to do this right in the beginning since
1210 * alloc_arraycache's are going to use this list.
1211 * kmalloc_node allows us to add the slab to the right
1212 * kmem_list3 and not this cpu's kmem_list3
1213 */
8f9f8d9e
DR
1214 err = init_cache_nodelists_node(node);
1215 if (err < 0)
1216 goto bad;
fbf1e473
AM
1217
1218 /*
1219 * Now we can go ahead with allocating the shared arrays and
1220 * array caches
1221 */
18004c5d 1222 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1223 struct array_cache *nc;
1224 struct array_cache *shared = NULL;
1225 struct array_cache **alien = NULL;
1226
1227 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1228 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1229 if (!nc)
1230 goto bad;
1231 if (cachep->shared) {
1232 shared = alloc_arraycache(node,
1233 cachep->shared * cachep->batchcount,
83b519e8 1234 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1235 if (!shared) {
1236 kfree(nc);
1da177e4 1237 goto bad;
12d00f6a 1238 }
fbf1e473
AM
1239 }
1240 if (use_alien_caches) {
83b519e8 1241 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1242 if (!alien) {
1243 kfree(shared);
1244 kfree(nc);
fbf1e473 1245 goto bad;
12d00f6a 1246 }
fbf1e473
AM
1247 }
1248 cachep->array[cpu] = nc;
1249 l3 = cachep->nodelists[node];
1250 BUG_ON(!l3);
1251
1252 spin_lock_irq(&l3->list_lock);
1253 if (!l3->shared) {
1254 /*
1255 * We are serialised from CPU_DEAD or
1256 * CPU_UP_CANCELLED by the cpucontrol lock
1257 */
1258 l3->shared = shared;
1259 shared = NULL;
1260 }
4484ebf1 1261#ifdef CONFIG_NUMA
fbf1e473
AM
1262 if (!l3->alien) {
1263 l3->alien = alien;
1264 alien = NULL;
1da177e4 1265 }
fbf1e473
AM
1266#endif
1267 spin_unlock_irq(&l3->list_lock);
1268 kfree(shared);
1269 free_alien_cache(alien);
83835b3d
PZ
1270 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1271 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1272 }
ce79ddc8
PE
1273 init_node_lock_keys(node);
1274
fbf1e473
AM
1275 return 0;
1276bad:
12d00f6a 1277 cpuup_canceled(cpu);
fbf1e473
AM
1278 return -ENOMEM;
1279}
1280
1281static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1282 unsigned long action, void *hcpu)
1283{
1284 long cpu = (long)hcpu;
1285 int err = 0;
1286
1287 switch (action) {
fbf1e473
AM
1288 case CPU_UP_PREPARE:
1289 case CPU_UP_PREPARE_FROZEN:
18004c5d 1290 mutex_lock(&slab_mutex);
fbf1e473 1291 err = cpuup_prepare(cpu);
18004c5d 1292 mutex_unlock(&slab_mutex);
1da177e4
LT
1293 break;
1294 case CPU_ONLINE:
8bb78442 1295 case CPU_ONLINE_FROZEN:
1da177e4
LT
1296 start_cpu_timer(cpu);
1297 break;
1298#ifdef CONFIG_HOTPLUG_CPU
5830c590 1299 case CPU_DOWN_PREPARE:
8bb78442 1300 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1301 /*
18004c5d 1302 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1303 * held so that if cache_reap() is invoked it cannot do
1304 * anything expensive but will only modify reap_work
1305 * and reschedule the timer.
1306 */
afe2c511 1307 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1308 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1309 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1310 break;
1311 case CPU_DOWN_FAILED:
8bb78442 1312 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1313 start_cpu_timer(cpu);
1314 break;
1da177e4 1315 case CPU_DEAD:
8bb78442 1316 case CPU_DEAD_FROZEN:
4484ebf1
RT
1317 /*
1318 * Even if all the cpus of a node are down, we don't free the
1319 * kmem_list3 of any cache. This to avoid a race between
1320 * cpu_down, and a kmalloc allocation from another cpu for
1321 * memory from the node of the cpu going down. The list3
1322 * structure is usually allocated from kmem_cache_create() and
1323 * gets destroyed at kmem_cache_destroy().
1324 */
183ff22b 1325 /* fall through */
8f5be20b 1326#endif
1da177e4 1327 case CPU_UP_CANCELED:
8bb78442 1328 case CPU_UP_CANCELED_FROZEN:
18004c5d 1329 mutex_lock(&slab_mutex);
fbf1e473 1330 cpuup_canceled(cpu);
18004c5d 1331 mutex_unlock(&slab_mutex);
1da177e4 1332 break;
1da177e4 1333 }
eac40680 1334 return notifier_from_errno(err);
1da177e4
LT
1335}
1336
74b85f37
CS
1337static struct notifier_block __cpuinitdata cpucache_notifier = {
1338 &cpuup_callback, NULL, 0
1339};
1da177e4 1340
8f9f8d9e
DR
1341#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1342/*
1343 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1344 * Returns -EBUSY if all objects cannot be drained so that the node is not
1345 * removed.
1346 *
18004c5d 1347 * Must hold slab_mutex.
8f9f8d9e
DR
1348 */
1349static int __meminit drain_cache_nodelists_node(int node)
1350{
1351 struct kmem_cache *cachep;
1352 int ret = 0;
1353
18004c5d 1354 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1355 struct kmem_list3 *l3;
1356
1357 l3 = cachep->nodelists[node];
1358 if (!l3)
1359 continue;
1360
1361 drain_freelist(cachep, l3, l3->free_objects);
1362
1363 if (!list_empty(&l3->slabs_full) ||
1364 !list_empty(&l3->slabs_partial)) {
1365 ret = -EBUSY;
1366 break;
1367 }
1368 }
1369 return ret;
1370}
1371
1372static int __meminit slab_memory_callback(struct notifier_block *self,
1373 unsigned long action, void *arg)
1374{
1375 struct memory_notify *mnb = arg;
1376 int ret = 0;
1377 int nid;
1378
1379 nid = mnb->status_change_nid;
1380 if (nid < 0)
1381 goto out;
1382
1383 switch (action) {
1384 case MEM_GOING_ONLINE:
18004c5d 1385 mutex_lock(&slab_mutex);
8f9f8d9e 1386 ret = init_cache_nodelists_node(nid);
18004c5d 1387 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1388 break;
1389 case MEM_GOING_OFFLINE:
18004c5d 1390 mutex_lock(&slab_mutex);
8f9f8d9e 1391 ret = drain_cache_nodelists_node(nid);
18004c5d 1392 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1393 break;
1394 case MEM_ONLINE:
1395 case MEM_OFFLINE:
1396 case MEM_CANCEL_ONLINE:
1397 case MEM_CANCEL_OFFLINE:
1398 break;
1399 }
1400out:
5fda1bd5 1401 return notifier_from_errno(ret);
8f9f8d9e
DR
1402}
1403#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1404
e498be7d
CL
1405/*
1406 * swap the static kmem_list3 with kmalloced memory
1407 */
8f9f8d9e
DR
1408static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1409 int nodeid)
e498be7d
CL
1410{
1411 struct kmem_list3 *ptr;
1412
83b519e8 1413 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1414 BUG_ON(!ptr);
1415
e498be7d 1416 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1417 /*
1418 * Do not assume that spinlocks can be initialized via memcpy:
1419 */
1420 spin_lock_init(&ptr->list_lock);
1421
e498be7d
CL
1422 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1423 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1424}
1425
556a169d
PE
1426/*
1427 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1428 * size of kmem_list3.
1429 */
1430static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1431{
1432 int node;
1433
1434 for_each_online_node(node) {
1435 cachep->nodelists[node] = &initkmem_list3[index + node];
1436 cachep->nodelists[node]->next_reap = jiffies +
1437 REAPTIMEOUT_LIST3 +
1438 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1439 }
1440}
1441
a737b3e2
AM
1442/*
1443 * Initialisation. Called after the page allocator have been initialised and
1444 * before smp_init().
1da177e4
LT
1445 */
1446void __init kmem_cache_init(void)
1447{
1448 size_t left_over;
1449 struct cache_sizes *sizes;
1450 struct cache_names *names;
e498be7d 1451 int i;
07ed76b2 1452 int order;
1ca4cb24 1453 int node;
e498be7d 1454
b6e68bc1 1455 if (num_possible_nodes() == 1)
62918a03
SS
1456 use_alien_caches = 0;
1457
e498be7d
CL
1458 for (i = 0; i < NUM_INIT_LISTS; i++) {
1459 kmem_list3_init(&initkmem_list3[i]);
1460 if (i < MAX_NUMNODES)
1461 cache_cache.nodelists[i] = NULL;
1462 }
556a169d 1463 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1464
1465 /*
1466 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1467 * page orders on machines with more than 32MB of memory if
1468 * not overridden on the command line.
1da177e4 1469 */
3df1cccd 1470 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1471 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1472
1da177e4
LT
1473 /* Bootstrap is tricky, because several objects are allocated
1474 * from caches that do not exist yet:
a737b3e2
AM
1475 * 1) initialize the cache_cache cache: it contains the struct
1476 * kmem_cache structures of all caches, except cache_cache itself:
1477 * cache_cache is statically allocated.
e498be7d
CL
1478 * Initially an __init data area is used for the head array and the
1479 * kmem_list3 structures, it's replaced with a kmalloc allocated
1480 * array at the end of the bootstrap.
1da177e4 1481 * 2) Create the first kmalloc cache.
343e0d7a 1482 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1483 * An __init data area is used for the head array.
1484 * 3) Create the remaining kmalloc caches, with minimally sized
1485 * head arrays.
1da177e4
LT
1486 * 4) Replace the __init data head arrays for cache_cache and the first
1487 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1488 * 5) Replace the __init data for kmem_list3 for cache_cache and
1489 * the other cache's with kmalloc allocated memory.
1490 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1491 */
1492
7d6e6d09 1493 node = numa_mem_id();
1ca4cb24 1494
1da177e4 1495 /* 1) create the cache_cache */
18004c5d
CL
1496 INIT_LIST_HEAD(&slab_caches);
1497 list_add(&cache_cache.list, &slab_caches);
1da177e4
LT
1498 cache_cache.colour_off = cache_line_size();
1499 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1500 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1501
8da3430d 1502 /*
b56efcf0 1503 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1504 */
3b0efdfa 1505 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1506 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1507 cache_cache.object_size = cache_cache.size;
1508 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1509 cache_line_size());
6a2d7a95 1510 cache_cache.reciprocal_buffer_size =
3b0efdfa 1511 reciprocal_value(cache_cache.size);
1da177e4 1512
07ed76b2 1513 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1514 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1515 cache_line_size(), 0, &left_over, &cache_cache.num);
1516 if (cache_cache.num)
1517 break;
1518 }
40094fa6 1519 BUG_ON(!cache_cache.num);
07ed76b2 1520 cache_cache.gfporder = order;
b28a02de 1521 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1522 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1523 sizeof(struct slab), cache_line_size());
1da177e4
LT
1524
1525 /* 2+3) create the kmalloc caches */
1526 sizes = malloc_sizes;
1527 names = cache_names;
1528
a737b3e2
AM
1529 /*
1530 * Initialize the caches that provide memory for the array cache and the
1531 * kmem_list3 structures first. Without this, further allocations will
1532 * bug.
e498be7d
CL
1533 */
1534
039363f3 1535 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1536 sizes[INDEX_AC].cs_size,
1537 ARCH_KMALLOC_MINALIGN,
1538 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1539 NULL);
e498be7d 1540
a737b3e2 1541 if (INDEX_AC != INDEX_L3) {
e498be7d 1542 sizes[INDEX_L3].cs_cachep =
039363f3 1543 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1544 sizes[INDEX_L3].cs_size,
1545 ARCH_KMALLOC_MINALIGN,
1546 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1547 NULL);
a737b3e2 1548 }
e498be7d 1549
e0a42726
IM
1550 slab_early_init = 0;
1551
1da177e4 1552 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1553 /*
1554 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1555 * This should be particularly beneficial on SMP boxes, as it
1556 * eliminates "false sharing".
1557 * Note for systems short on memory removing the alignment will
e498be7d
CL
1558 * allow tighter packing of the smaller caches.
1559 */
a737b3e2 1560 if (!sizes->cs_cachep) {
039363f3 1561 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1562 sizes->cs_size,
1563 ARCH_KMALLOC_MINALIGN,
1564 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1565 NULL);
a737b3e2 1566 }
4b51d669 1567#ifdef CONFIG_ZONE_DMA
039363f3 1568 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1569 names->name_dma,
a737b3e2
AM
1570 sizes->cs_size,
1571 ARCH_KMALLOC_MINALIGN,
1572 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1573 SLAB_PANIC,
20c2df83 1574 NULL);
4b51d669 1575#endif
1da177e4
LT
1576 sizes++;
1577 names++;
1578 }
1579 /* 4) Replace the bootstrap head arrays */
1580 {
2b2d5493 1581 struct array_cache *ptr;
e498be7d 1582
83b519e8 1583 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1584
9a2dba4b
PE
1585 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1586 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1587 sizeof(struct arraycache_init));
2b2d5493
IM
1588 /*
1589 * Do not assume that spinlocks can be initialized via memcpy:
1590 */
1591 spin_lock_init(&ptr->lock);
1592
1da177e4 1593 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1594
83b519e8 1595 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1596
9a2dba4b 1597 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1598 != &initarray_generic.cache);
9a2dba4b 1599 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1600 sizeof(struct arraycache_init));
2b2d5493
IM
1601 /*
1602 * Do not assume that spinlocks can be initialized via memcpy:
1603 */
1604 spin_lock_init(&ptr->lock);
1605
e498be7d 1606 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1607 ptr;
1da177e4 1608 }
e498be7d
CL
1609 /* 5) Replace the bootstrap kmem_list3's */
1610 {
1ca4cb24
PE
1611 int nid;
1612
9c09a95c 1613 for_each_online_node(nid) {
ec1f5eee 1614 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1615
e498be7d 1616 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1617 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1618
1619 if (INDEX_AC != INDEX_L3) {
1620 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1621 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1622 }
1623 }
1624 }
1da177e4 1625
97d06609 1626 slab_state = UP;
8429db5c
PE
1627}
1628
1629void __init kmem_cache_init_late(void)
1630{
1631 struct kmem_cache *cachep;
1632
97d06609 1633 slab_state = UP;
52cef189 1634
30765b92
PZ
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1636 init_lock_keys();
1637
8429db5c 1638 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1639 mutex_lock(&slab_mutex);
1640 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1641 if (enable_cpucache(cachep, GFP_NOWAIT))
1642 BUG();
18004c5d 1643 mutex_unlock(&slab_mutex);
056c6241 1644
97d06609
CL
1645 /* Done! */
1646 slab_state = FULL;
1647
a737b3e2
AM
1648 /*
1649 * Register a cpu startup notifier callback that initializes
1650 * cpu_cache_get for all new cpus
1da177e4
LT
1651 */
1652 register_cpu_notifier(&cpucache_notifier);
1da177e4 1653
8f9f8d9e
DR
1654#ifdef CONFIG_NUMA
1655 /*
1656 * Register a memory hotplug callback that initializes and frees
1657 * nodelists.
1658 */
1659 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1660#endif
1661
a737b3e2
AM
1662 /*
1663 * The reap timers are started later, with a module init call: That part
1664 * of the kernel is not yet operational.
1da177e4
LT
1665 */
1666}
1667
1668static int __init cpucache_init(void)
1669{
1670 int cpu;
1671
a737b3e2
AM
1672 /*
1673 * Register the timers that return unneeded pages to the page allocator
1da177e4 1674 */
e498be7d 1675 for_each_online_cpu(cpu)
a737b3e2 1676 start_cpu_timer(cpu);
a164f896
GC
1677
1678 /* Done! */
97d06609 1679 slab_state = FULL;
1da177e4
LT
1680 return 0;
1681}
1da177e4
LT
1682__initcall(cpucache_init);
1683
8bdec192
RA
1684static noinline void
1685slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1686{
1687 struct kmem_list3 *l3;
1688 struct slab *slabp;
1689 unsigned long flags;
1690 int node;
1691
1692 printk(KERN_WARNING
1693 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1694 nodeid, gfpflags);
1695 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1696 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1697
1698 for_each_online_node(node) {
1699 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1700 unsigned long active_slabs = 0, num_slabs = 0;
1701
1702 l3 = cachep->nodelists[node];
1703 if (!l3)
1704 continue;
1705
1706 spin_lock_irqsave(&l3->list_lock, flags);
1707 list_for_each_entry(slabp, &l3->slabs_full, list) {
1708 active_objs += cachep->num;
1709 active_slabs++;
1710 }
1711 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1712 active_objs += slabp->inuse;
1713 active_slabs++;
1714 }
1715 list_for_each_entry(slabp, &l3->slabs_free, list)
1716 num_slabs++;
1717
1718 free_objects += l3->free_objects;
1719 spin_unlock_irqrestore(&l3->list_lock, flags);
1720
1721 num_slabs += active_slabs;
1722 num_objs = num_slabs * cachep->num;
1723 printk(KERN_WARNING
1724 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1725 node, active_slabs, num_slabs, active_objs, num_objs,
1726 free_objects);
1727 }
1728}
1729
1da177e4
LT
1730/*
1731 * Interface to system's page allocator. No need to hold the cache-lock.
1732 *
1733 * If we requested dmaable memory, we will get it. Even if we
1734 * did not request dmaable memory, we might get it, but that
1735 * would be relatively rare and ignorable.
1736 */
343e0d7a 1737static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1738{
1739 struct page *page;
e1b6aa6f 1740 int nr_pages;
1da177e4
LT
1741 int i;
1742
d6fef9da 1743#ifndef CONFIG_MMU
e1b6aa6f
CH
1744 /*
1745 * Nommu uses slab's for process anonymous memory allocations, and thus
1746 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1747 */
e1b6aa6f 1748 flags |= __GFP_COMP;
d6fef9da 1749#endif
765c4507 1750
a618e89f 1751 flags |= cachep->allocflags;
e12ba74d
MG
1752 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1753 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1754
517d0869 1755 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1756 if (!page) {
1757 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1758 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1759 return NULL;
8bdec192 1760 }
1da177e4 1761
e1b6aa6f 1762 nr_pages = (1 << cachep->gfporder);
1da177e4 1763 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1764 add_zone_page_state(page_zone(page),
1765 NR_SLAB_RECLAIMABLE, nr_pages);
1766 else
1767 add_zone_page_state(page_zone(page),
1768 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1769 for (i = 0; i < nr_pages; i++)
1770 __SetPageSlab(page + i);
c175eea4 1771
b1eeab67
VN
1772 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1773 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1774
1775 if (cachep->ctor)
1776 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1777 else
1778 kmemcheck_mark_unallocated_pages(page, nr_pages);
1779 }
c175eea4 1780
e1b6aa6f 1781 return page_address(page);
1da177e4
LT
1782}
1783
1784/*
1785 * Interface to system's page release.
1786 */
343e0d7a 1787static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1788{
b28a02de 1789 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1790 struct page *page = virt_to_page(addr);
1791 const unsigned long nr_freed = i;
1792
b1eeab67 1793 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1794
972d1a7b
CL
1795 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1796 sub_zone_page_state(page_zone(page),
1797 NR_SLAB_RECLAIMABLE, nr_freed);
1798 else
1799 sub_zone_page_state(page_zone(page),
1800 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1801 while (i--) {
f205b2fe
NP
1802 BUG_ON(!PageSlab(page));
1803 __ClearPageSlab(page);
1da177e4
LT
1804 page++;
1805 }
1da177e4
LT
1806 if (current->reclaim_state)
1807 current->reclaim_state->reclaimed_slab += nr_freed;
1808 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1809}
1810
1811static void kmem_rcu_free(struct rcu_head *head)
1812{
b28a02de 1813 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1814 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1815
1816 kmem_freepages(cachep, slab_rcu->addr);
1817 if (OFF_SLAB(cachep))
1818 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1819}
1820
1821#if DEBUG
1822
1823#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1824static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1825 unsigned long caller)
1da177e4 1826{
8c138bc0 1827 int size = cachep->object_size;
1da177e4 1828
3dafccf2 1829 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1830
b28a02de 1831 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1832 return;
1833
b28a02de
PE
1834 *addr++ = 0x12345678;
1835 *addr++ = caller;
1836 *addr++ = smp_processor_id();
1837 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1838 {
1839 unsigned long *sptr = &caller;
1840 unsigned long svalue;
1841
1842 while (!kstack_end(sptr)) {
1843 svalue = *sptr++;
1844 if (kernel_text_address(svalue)) {
b28a02de 1845 *addr++ = svalue;
1da177e4
LT
1846 size -= sizeof(unsigned long);
1847 if (size <= sizeof(unsigned long))
1848 break;
1849 }
1850 }
1851
1852 }
b28a02de 1853 *addr++ = 0x87654321;
1da177e4
LT
1854}
1855#endif
1856
343e0d7a 1857static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1858{
8c138bc0 1859 int size = cachep->object_size;
3dafccf2 1860 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1861
1862 memset(addr, val, size);
b28a02de 1863 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1864}
1865
1866static void dump_line(char *data, int offset, int limit)
1867{
1868 int i;
aa83aa40
DJ
1869 unsigned char error = 0;
1870 int bad_count = 0;
1871
fdde6abb 1872 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1873 for (i = 0; i < limit; i++) {
1874 if (data[offset + i] != POISON_FREE) {
1875 error = data[offset + i];
1876 bad_count++;
1877 }
aa83aa40 1878 }
fdde6abb
SAS
1879 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1880 &data[offset], limit, 1);
aa83aa40
DJ
1881
1882 if (bad_count == 1) {
1883 error ^= POISON_FREE;
1884 if (!(error & (error - 1))) {
1885 printk(KERN_ERR "Single bit error detected. Probably "
1886 "bad RAM.\n");
1887#ifdef CONFIG_X86
1888 printk(KERN_ERR "Run memtest86+ or a similar memory "
1889 "test tool.\n");
1890#else
1891 printk(KERN_ERR "Run a memory test tool.\n");
1892#endif
1893 }
1894 }
1da177e4
LT
1895}
1896#endif
1897
1898#if DEBUG
1899
343e0d7a 1900static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1901{
1902 int i, size;
1903 char *realobj;
1904
1905 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1906 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1907 *dbg_redzone1(cachep, objp),
1908 *dbg_redzone2(cachep, objp));
1da177e4
LT
1909 }
1910
1911 if (cachep->flags & SLAB_STORE_USER) {
1912 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1913 *dbg_userword(cachep, objp));
1da177e4 1914 print_symbol("(%s)",
a737b3e2 1915 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1916 printk("\n");
1917 }
3dafccf2 1918 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1919 size = cachep->object_size;
b28a02de 1920 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1921 int limit;
1922 limit = 16;
b28a02de
PE
1923 if (i + limit > size)
1924 limit = size - i;
1da177e4
LT
1925 dump_line(realobj, i, limit);
1926 }
1927}
1928
343e0d7a 1929static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1930{
1931 char *realobj;
1932 int size, i;
1933 int lines = 0;
1934
3dafccf2 1935 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1936 size = cachep->object_size;
1da177e4 1937
b28a02de 1938 for (i = 0; i < size; i++) {
1da177e4 1939 char exp = POISON_FREE;
b28a02de 1940 if (i == size - 1)
1da177e4
LT
1941 exp = POISON_END;
1942 if (realobj[i] != exp) {
1943 int limit;
1944 /* Mismatch ! */
1945 /* Print header */
1946 if (lines == 0) {
b28a02de 1947 printk(KERN_ERR
face37f5
DJ
1948 "Slab corruption (%s): %s start=%p, len=%d\n",
1949 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1950 print_objinfo(cachep, objp, 0);
1951 }
1952 /* Hexdump the affected line */
b28a02de 1953 i = (i / 16) * 16;
1da177e4 1954 limit = 16;
b28a02de
PE
1955 if (i + limit > size)
1956 limit = size - i;
1da177e4
LT
1957 dump_line(realobj, i, limit);
1958 i += 16;
1959 lines++;
1960 /* Limit to 5 lines */
1961 if (lines > 5)
1962 break;
1963 }
1964 }
1965 if (lines != 0) {
1966 /* Print some data about the neighboring objects, if they
1967 * exist:
1968 */
6ed5eb22 1969 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1970 unsigned int objnr;
1da177e4 1971
8fea4e96 1972 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1973 if (objnr) {
8fea4e96 1974 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1975 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1976 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1977 realobj, size);
1da177e4
LT
1978 print_objinfo(cachep, objp, 2);
1979 }
b28a02de 1980 if (objnr + 1 < cachep->num) {
8fea4e96 1981 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1982 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1983 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1984 realobj, size);
1da177e4
LT
1985 print_objinfo(cachep, objp, 2);
1986 }
1987 }
1988}
1989#endif
1990
12dd36fa 1991#if DEBUG
e79aec29 1992static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1993{
1da177e4
LT
1994 int i;
1995 for (i = 0; i < cachep->num; i++) {
8fea4e96 1996 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1997
1998 if (cachep->flags & SLAB_POISON) {
1999#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2000 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2001 OFF_SLAB(cachep))
b28a02de 2002 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2003 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2004 else
2005 check_poison_obj(cachep, objp);
2006#else
2007 check_poison_obj(cachep, objp);
2008#endif
2009 }
2010 if (cachep->flags & SLAB_RED_ZONE) {
2011 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2012 slab_error(cachep, "start of a freed object "
b28a02de 2013 "was overwritten");
1da177e4
LT
2014 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2015 slab_error(cachep, "end of a freed object "
b28a02de 2016 "was overwritten");
1da177e4 2017 }
1da177e4 2018 }
12dd36fa 2019}
1da177e4 2020#else
e79aec29 2021static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2022{
12dd36fa 2023}
1da177e4
LT
2024#endif
2025
911851e6
RD
2026/**
2027 * slab_destroy - destroy and release all objects in a slab
2028 * @cachep: cache pointer being destroyed
2029 * @slabp: slab pointer being destroyed
2030 *
12dd36fa 2031 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2032 * Before calling the slab must have been unlinked from the cache. The
2033 * cache-lock is not held/needed.
12dd36fa 2034 */
343e0d7a 2035static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2036{
2037 void *addr = slabp->s_mem - slabp->colouroff;
2038
e79aec29 2039 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2040 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2041 struct slab_rcu *slab_rcu;
2042
b28a02de 2043 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2044 slab_rcu->cachep = cachep;
2045 slab_rcu->addr = addr;
2046 call_rcu(&slab_rcu->head, kmem_rcu_free);
2047 } else {
2048 kmem_freepages(cachep, addr);
873623df
IM
2049 if (OFF_SLAB(cachep))
2050 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2051 }
2052}
2053
117f6eb1
CL
2054static void __kmem_cache_destroy(struct kmem_cache *cachep)
2055{
2056 int i;
2057 struct kmem_list3 *l3;
2058
2059 for_each_online_cpu(i)
2060 kfree(cachep->array[i]);
2061
2062 /* NUMA: free the list3 structures */
2063 for_each_online_node(i) {
2064 l3 = cachep->nodelists[i];
2065 if (l3) {
2066 kfree(l3->shared);
2067 free_alien_cache(l3->alien);
2068 kfree(l3);
2069 }
2070 }
2071 kmem_cache_free(&cache_cache, cachep);
2072}
2073
2074
4d268eba 2075/**
a70773dd
RD
2076 * calculate_slab_order - calculate size (page order) of slabs
2077 * @cachep: pointer to the cache that is being created
2078 * @size: size of objects to be created in this cache.
2079 * @align: required alignment for the objects.
2080 * @flags: slab allocation flags
2081 *
2082 * Also calculates the number of objects per slab.
4d268eba
PE
2083 *
2084 * This could be made much more intelligent. For now, try to avoid using
2085 * high order pages for slabs. When the gfp() functions are more friendly
2086 * towards high-order requests, this should be changed.
2087 */
a737b3e2 2088static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2089 size_t size, size_t align, unsigned long flags)
4d268eba 2090{
b1ab41c4 2091 unsigned long offslab_limit;
4d268eba 2092 size_t left_over = 0;
9888e6fa 2093 int gfporder;
4d268eba 2094
0aa817f0 2095 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2096 unsigned int num;
2097 size_t remainder;
2098
9888e6fa 2099 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2100 if (!num)
2101 continue;
9888e6fa 2102
b1ab41c4
IM
2103 if (flags & CFLGS_OFF_SLAB) {
2104 /*
2105 * Max number of objs-per-slab for caches which
2106 * use off-slab slabs. Needed to avoid a possible
2107 * looping condition in cache_grow().
2108 */
2109 offslab_limit = size - sizeof(struct slab);
2110 offslab_limit /= sizeof(kmem_bufctl_t);
2111
2112 if (num > offslab_limit)
2113 break;
2114 }
4d268eba 2115
9888e6fa 2116 /* Found something acceptable - save it away */
4d268eba 2117 cachep->num = num;
9888e6fa 2118 cachep->gfporder = gfporder;
4d268eba
PE
2119 left_over = remainder;
2120
f78bb8ad
LT
2121 /*
2122 * A VFS-reclaimable slab tends to have most allocations
2123 * as GFP_NOFS and we really don't want to have to be allocating
2124 * higher-order pages when we are unable to shrink dcache.
2125 */
2126 if (flags & SLAB_RECLAIM_ACCOUNT)
2127 break;
2128
4d268eba
PE
2129 /*
2130 * Large number of objects is good, but very large slabs are
2131 * currently bad for the gfp()s.
2132 */
543585cc 2133 if (gfporder >= slab_max_order)
4d268eba
PE
2134 break;
2135
9888e6fa
LT
2136 /*
2137 * Acceptable internal fragmentation?
2138 */
a737b3e2 2139 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2140 break;
2141 }
2142 return left_over;
2143}
2144
83b519e8 2145static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2146{
97d06609 2147 if (slab_state >= FULL)
83b519e8 2148 return enable_cpucache(cachep, gfp);
2ed3a4ef 2149
97d06609 2150 if (slab_state == DOWN) {
f30cf7d1
PE
2151 /*
2152 * Note: the first kmem_cache_create must create the cache
2153 * that's used by kmalloc(24), otherwise the creation of
2154 * further caches will BUG().
2155 */
2156 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2157
2158 /*
2159 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2160 * the first cache, then we need to set up all its list3s,
2161 * otherwise the creation of further caches will BUG().
2162 */
2163 set_up_list3s(cachep, SIZE_AC);
2164 if (INDEX_AC == INDEX_L3)
97d06609 2165 slab_state = PARTIAL_L3;
f30cf7d1 2166 else
97d06609 2167 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2168 } else {
2169 cachep->array[smp_processor_id()] =
83b519e8 2170 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2171
97d06609 2172 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2173 set_up_list3s(cachep, SIZE_L3);
97d06609 2174 slab_state = PARTIAL_L3;
f30cf7d1
PE
2175 } else {
2176 int node;
556a169d 2177 for_each_online_node(node) {
f30cf7d1
PE
2178 cachep->nodelists[node] =
2179 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2180 gfp, node);
f30cf7d1
PE
2181 BUG_ON(!cachep->nodelists[node]);
2182 kmem_list3_init(cachep->nodelists[node]);
2183 }
2184 }
2185 }
7d6e6d09 2186 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2187 jiffies + REAPTIMEOUT_LIST3 +
2188 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2189
2190 cpu_cache_get(cachep)->avail = 0;
2191 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2192 cpu_cache_get(cachep)->batchcount = 1;
2193 cpu_cache_get(cachep)->touched = 0;
2194 cachep->batchcount = 1;
2195 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2196 return 0;
f30cf7d1
PE
2197}
2198
1da177e4 2199/**
039363f3 2200 * __kmem_cache_create - Create a cache.
1da177e4
LT
2201 * @name: A string which is used in /proc/slabinfo to identify this cache.
2202 * @size: The size of objects to be created in this cache.
2203 * @align: The required alignment for the objects.
2204 * @flags: SLAB flags
2205 * @ctor: A constructor for the objects.
1da177e4
LT
2206 *
2207 * Returns a ptr to the cache on success, NULL on failure.
2208 * Cannot be called within a int, but can be interrupted.
20c2df83 2209 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2210 *
2211 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2212 * the module calling this has to destroy the cache before getting unloaded.
2213 *
1da177e4
LT
2214 * The flags are
2215 *
2216 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2217 * to catch references to uninitialised memory.
2218 *
2219 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2220 * for buffer overruns.
2221 *
1da177e4
LT
2222 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2223 * cacheline. This can be beneficial if you're counting cycles as closely
2224 * as davem.
2225 */
343e0d7a 2226struct kmem_cache *
039363f3 2227__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2228 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2229{
2230 size_t left_over, slab_size, ralign;
20cea968 2231 struct kmem_cache *cachep = NULL;
83b519e8 2232 gfp_t gfp;
1da177e4 2233
1da177e4 2234#if DEBUG
1da177e4
LT
2235#if FORCED_DEBUG
2236 /*
2237 * Enable redzoning and last user accounting, except for caches with
2238 * large objects, if the increased size would increase the object size
2239 * above the next power of two: caches with object sizes just above a
2240 * power of two have a significant amount of internal fragmentation.
2241 */
87a927c7
DW
2242 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2243 2 * sizeof(unsigned long long)))
b28a02de 2244 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2245 if (!(flags & SLAB_DESTROY_BY_RCU))
2246 flags |= SLAB_POISON;
2247#endif
2248 if (flags & SLAB_DESTROY_BY_RCU)
2249 BUG_ON(flags & SLAB_POISON);
2250#endif
1da177e4 2251 /*
a737b3e2
AM
2252 * Always checks flags, a caller might be expecting debug support which
2253 * isn't available.
1da177e4 2254 */
40094fa6 2255 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2256
a737b3e2
AM
2257 /*
2258 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2259 * unaligned accesses for some archs when redzoning is used, and makes
2260 * sure any on-slab bufctl's are also correctly aligned.
2261 */
b28a02de
PE
2262 if (size & (BYTES_PER_WORD - 1)) {
2263 size += (BYTES_PER_WORD - 1);
2264 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2265 }
2266
a737b3e2
AM
2267 /* calculate the final buffer alignment: */
2268
1da177e4
LT
2269 /* 1) arch recommendation: can be overridden for debug */
2270 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2271 /*
2272 * Default alignment: as specified by the arch code. Except if
2273 * an object is really small, then squeeze multiple objects into
2274 * one cacheline.
1da177e4
LT
2275 */
2276 ralign = cache_line_size();
b28a02de 2277 while (size <= ralign / 2)
1da177e4
LT
2278 ralign /= 2;
2279 } else {
2280 ralign = BYTES_PER_WORD;
2281 }
ca5f9703
PE
2282
2283 /*
87a927c7
DW
2284 * Redzoning and user store require word alignment or possibly larger.
2285 * Note this will be overridden by architecture or caller mandated
2286 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2287 */
87a927c7
DW
2288 if (flags & SLAB_STORE_USER)
2289 ralign = BYTES_PER_WORD;
2290
2291 if (flags & SLAB_RED_ZONE) {
2292 ralign = REDZONE_ALIGN;
2293 /* If redzoning, ensure that the second redzone is suitably
2294 * aligned, by adjusting the object size accordingly. */
2295 size += REDZONE_ALIGN - 1;
2296 size &= ~(REDZONE_ALIGN - 1);
2297 }
ca5f9703 2298
a44b56d3 2299 /* 2) arch mandated alignment */
1da177e4
LT
2300 if (ralign < ARCH_SLAB_MINALIGN) {
2301 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2302 }
a44b56d3 2303 /* 3) caller mandated alignment */
1da177e4
LT
2304 if (ralign < align) {
2305 ralign = align;
1da177e4 2306 }
3ff84a7f
PE
2307 /* disable debug if necessary */
2308 if (ralign > __alignof__(unsigned long long))
a44b56d3 2309 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2310 /*
ca5f9703 2311 * 4) Store it.
1da177e4
LT
2312 */
2313 align = ralign;
2314
83b519e8
PE
2315 if (slab_is_available())
2316 gfp = GFP_KERNEL;
2317 else
2318 gfp = GFP_NOWAIT;
2319
1da177e4 2320 /* Get cache's description obj. */
83b519e8 2321 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2322 if (!cachep)
039363f3 2323 return NULL;
1da177e4 2324
b56efcf0 2325 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2326 cachep->object_size = size;
2327 cachep->align = align;
1da177e4 2328#if DEBUG
1da177e4 2329
ca5f9703
PE
2330 /*
2331 * Both debugging options require word-alignment which is calculated
2332 * into align above.
2333 */
1da177e4 2334 if (flags & SLAB_RED_ZONE) {
1da177e4 2335 /* add space for red zone words */
3ff84a7f
PE
2336 cachep->obj_offset += sizeof(unsigned long long);
2337 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2338 }
2339 if (flags & SLAB_STORE_USER) {
ca5f9703 2340 /* user store requires one word storage behind the end of
87a927c7
DW
2341 * the real object. But if the second red zone needs to be
2342 * aligned to 64 bits, we must allow that much space.
1da177e4 2343 */
87a927c7
DW
2344 if (flags & SLAB_RED_ZONE)
2345 size += REDZONE_ALIGN;
2346 else
2347 size += BYTES_PER_WORD;
1da177e4
LT
2348 }
2349#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2350 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2351 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2352 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2353 size = PAGE_SIZE;
2354 }
2355#endif
2356#endif
2357
e0a42726
IM
2358 /*
2359 * Determine if the slab management is 'on' or 'off' slab.
2360 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2361 * it too early on. Always use on-slab management when
2362 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2363 */
e7cb55b9
CM
2364 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2365 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2366 /*
2367 * Size is large, assume best to place the slab management obj
2368 * off-slab (should allow better packing of objs).
2369 */
2370 flags |= CFLGS_OFF_SLAB;
2371
2372 size = ALIGN(size, align);
2373
f78bb8ad 2374 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2375
2376 if (!cachep->num) {
b4169525 2377 printk(KERN_ERR
2378 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4 2379 kmem_cache_free(&cache_cache, cachep);
039363f3 2380 return NULL;
1da177e4 2381 }
b28a02de
PE
2382 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2383 + sizeof(struct slab), align);
1da177e4
LT
2384
2385 /*
2386 * If the slab has been placed off-slab, and we have enough space then
2387 * move it on-slab. This is at the expense of any extra colouring.
2388 */
2389 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2390 flags &= ~CFLGS_OFF_SLAB;
2391 left_over -= slab_size;
2392 }
2393
2394 if (flags & CFLGS_OFF_SLAB) {
2395 /* really off slab. No need for manual alignment */
b28a02de
PE
2396 slab_size =
2397 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2398
2399#ifdef CONFIG_PAGE_POISONING
2400 /* If we're going to use the generic kernel_map_pages()
2401 * poisoning, then it's going to smash the contents of
2402 * the redzone and userword anyhow, so switch them off.
2403 */
2404 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2405 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2406#endif
1da177e4
LT
2407 }
2408
2409 cachep->colour_off = cache_line_size();
2410 /* Offset must be a multiple of the alignment. */
2411 if (cachep->colour_off < align)
2412 cachep->colour_off = align;
b28a02de 2413 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2414 cachep->slab_size = slab_size;
2415 cachep->flags = flags;
a618e89f 2416 cachep->allocflags = 0;
4b51d669 2417 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2418 cachep->allocflags |= GFP_DMA;
3b0efdfa 2419 cachep->size = size;
6a2d7a95 2420 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2421
e5ac9c5a 2422 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2423 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2424 /*
2425 * This is a possibility for one of the malloc_sizes caches.
2426 * But since we go off slab only for object size greater than
2427 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2428 * this should not happen at all.
2429 * But leave a BUG_ON for some lucky dude.
2430 */
6cb8f913 2431 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2432 }
1da177e4 2433 cachep->ctor = ctor;
1da177e4
LT
2434 cachep->name = name;
2435
83b519e8 2436 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2437 __kmem_cache_destroy(cachep);
039363f3 2438 return NULL;
2ed3a4ef 2439 }
1da177e4 2440
83835b3d
PZ
2441 if (flags & SLAB_DEBUG_OBJECTS) {
2442 /*
2443 * Would deadlock through slab_destroy()->call_rcu()->
2444 * debug_object_activate()->kmem_cache_alloc().
2445 */
2446 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2447
2448 slab_set_debugobj_lock_classes(cachep);
2449 }
2450
1da177e4 2451 /* cache setup completed, link it into the list */
18004c5d 2452 list_add(&cachep->list, &slab_caches);
1da177e4
LT
2453 return cachep;
2454}
1da177e4
LT
2455
2456#if DEBUG
2457static void check_irq_off(void)
2458{
2459 BUG_ON(!irqs_disabled());
2460}
2461
2462static void check_irq_on(void)
2463{
2464 BUG_ON(irqs_disabled());
2465}
2466
343e0d7a 2467static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2468{
2469#ifdef CONFIG_SMP
2470 check_irq_off();
7d6e6d09 2471 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2472#endif
2473}
e498be7d 2474
343e0d7a 2475static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2476{
2477#ifdef CONFIG_SMP
2478 check_irq_off();
2479 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2480#endif
2481}
2482
1da177e4
LT
2483#else
2484#define check_irq_off() do { } while(0)
2485#define check_irq_on() do { } while(0)
2486#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2487#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2488#endif
2489
aab2207c
CL
2490static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2491 struct array_cache *ac,
2492 int force, int node);
2493
1da177e4
LT
2494static void do_drain(void *arg)
2495{
a737b3e2 2496 struct kmem_cache *cachep = arg;
1da177e4 2497 struct array_cache *ac;
7d6e6d09 2498 int node = numa_mem_id();
1da177e4
LT
2499
2500 check_irq_off();
9a2dba4b 2501 ac = cpu_cache_get(cachep);
ff69416e
CL
2502 spin_lock(&cachep->nodelists[node]->list_lock);
2503 free_block(cachep, ac->entry, ac->avail, node);
2504 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2505 ac->avail = 0;
2506}
2507
343e0d7a 2508static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2509{
e498be7d
CL
2510 struct kmem_list3 *l3;
2511 int node;
2512
15c8b6c1 2513 on_each_cpu(do_drain, cachep, 1);
1da177e4 2514 check_irq_on();
b28a02de 2515 for_each_online_node(node) {
e498be7d 2516 l3 = cachep->nodelists[node];
a4523a8b
RD
2517 if (l3 && l3->alien)
2518 drain_alien_cache(cachep, l3->alien);
2519 }
2520
2521 for_each_online_node(node) {
2522 l3 = cachep->nodelists[node];
2523 if (l3)
aab2207c 2524 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2525 }
1da177e4
LT
2526}
2527
ed11d9eb
CL
2528/*
2529 * Remove slabs from the list of free slabs.
2530 * Specify the number of slabs to drain in tofree.
2531 *
2532 * Returns the actual number of slabs released.
2533 */
2534static int drain_freelist(struct kmem_cache *cache,
2535 struct kmem_list3 *l3, int tofree)
1da177e4 2536{
ed11d9eb
CL
2537 struct list_head *p;
2538 int nr_freed;
1da177e4 2539 struct slab *slabp;
1da177e4 2540
ed11d9eb
CL
2541 nr_freed = 0;
2542 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2543
ed11d9eb 2544 spin_lock_irq(&l3->list_lock);
e498be7d 2545 p = l3->slabs_free.prev;
ed11d9eb
CL
2546 if (p == &l3->slabs_free) {
2547 spin_unlock_irq(&l3->list_lock);
2548 goto out;
2549 }
1da177e4 2550
ed11d9eb 2551 slabp = list_entry(p, struct slab, list);
1da177e4 2552#if DEBUG
40094fa6 2553 BUG_ON(slabp->inuse);
1da177e4
LT
2554#endif
2555 list_del(&slabp->list);
ed11d9eb
CL
2556 /*
2557 * Safe to drop the lock. The slab is no longer linked
2558 * to the cache.
2559 */
2560 l3->free_objects -= cache->num;
e498be7d 2561 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2562 slab_destroy(cache, slabp);
2563 nr_freed++;
1da177e4 2564 }
ed11d9eb
CL
2565out:
2566 return nr_freed;
1da177e4
LT
2567}
2568
18004c5d 2569/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2570static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2571{
2572 int ret = 0, i = 0;
2573 struct kmem_list3 *l3;
2574
2575 drain_cpu_caches(cachep);
2576
2577 check_irq_on();
2578 for_each_online_node(i) {
2579 l3 = cachep->nodelists[i];
ed11d9eb
CL
2580 if (!l3)
2581 continue;
2582
2583 drain_freelist(cachep, l3, l3->free_objects);
2584
2585 ret += !list_empty(&l3->slabs_full) ||
2586 !list_empty(&l3->slabs_partial);
e498be7d
CL
2587 }
2588 return (ret ? 1 : 0);
2589}
2590
1da177e4
LT
2591/**
2592 * kmem_cache_shrink - Shrink a cache.
2593 * @cachep: The cache to shrink.
2594 *
2595 * Releases as many slabs as possible for a cache.
2596 * To help debugging, a zero exit status indicates all slabs were released.
2597 */
343e0d7a 2598int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2599{
8f5be20b 2600 int ret;
40094fa6 2601 BUG_ON(!cachep || in_interrupt());
1da177e4 2602
95402b38 2603 get_online_cpus();
18004c5d 2604 mutex_lock(&slab_mutex);
8f5be20b 2605 ret = __cache_shrink(cachep);
18004c5d 2606 mutex_unlock(&slab_mutex);
95402b38 2607 put_online_cpus();
8f5be20b 2608 return ret;
1da177e4
LT
2609}
2610EXPORT_SYMBOL(kmem_cache_shrink);
2611
2612/**
2613 * kmem_cache_destroy - delete a cache
2614 * @cachep: the cache to destroy
2615 *
72fd4a35 2616 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2617 *
2618 * It is expected this function will be called by a module when it is
2619 * unloaded. This will remove the cache completely, and avoid a duplicate
2620 * cache being allocated each time a module is loaded and unloaded, if the
2621 * module doesn't have persistent in-kernel storage across loads and unloads.
2622 *
2623 * The cache must be empty before calling this function.
2624 *
25985edc 2625 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2626 * during the kmem_cache_destroy().
2627 */
133d205a 2628void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2629{
40094fa6 2630 BUG_ON(!cachep || in_interrupt());
1da177e4 2631
1da177e4 2632 /* Find the cache in the chain of caches. */
95402b38 2633 get_online_cpus();
18004c5d 2634 mutex_lock(&slab_mutex);
1da177e4
LT
2635 /*
2636 * the chain is never empty, cache_cache is never destroyed
2637 */
3b0efdfa 2638 list_del(&cachep->list);
1da177e4
LT
2639 if (__cache_shrink(cachep)) {
2640 slab_error(cachep, "Can't free all objects");
18004c5d
CL
2641 list_add(&cachep->list, &slab_caches);
2642 mutex_unlock(&slab_mutex);
95402b38 2643 put_online_cpus();
133d205a 2644 return;
1da177e4
LT
2645 }
2646
2647 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2648 rcu_barrier();
1da177e4 2649
117f6eb1 2650 __kmem_cache_destroy(cachep);
18004c5d 2651 mutex_unlock(&slab_mutex);
95402b38 2652 put_online_cpus();
1da177e4
LT
2653}
2654EXPORT_SYMBOL(kmem_cache_destroy);
2655
e5ac9c5a
RT
2656/*
2657 * Get the memory for a slab management obj.
2658 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2659 * always come from malloc_sizes caches. The slab descriptor cannot
2660 * come from the same cache which is getting created because,
2661 * when we are searching for an appropriate cache for these
2662 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2663 * If we are creating a malloc_sizes cache here it would not be visible to
2664 * kmem_find_general_cachep till the initialization is complete.
2665 * Hence we cannot have slabp_cache same as the original cache.
2666 */
343e0d7a 2667static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2668 int colour_off, gfp_t local_flags,
2669 int nodeid)
1da177e4
LT
2670{
2671 struct slab *slabp;
b28a02de 2672
1da177e4
LT
2673 if (OFF_SLAB(cachep)) {
2674 /* Slab management obj is off-slab. */
5b74ada7 2675 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2676 local_flags, nodeid);
d5cff635
CM
2677 /*
2678 * If the first object in the slab is leaked (it's allocated
2679 * but no one has a reference to it), we want to make sure
2680 * kmemleak does not treat the ->s_mem pointer as a reference
2681 * to the object. Otherwise we will not report the leak.
2682 */
c017b4be
CM
2683 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2684 local_flags);
1da177e4
LT
2685 if (!slabp)
2686 return NULL;
2687 } else {
b28a02de 2688 slabp = objp + colour_off;
1da177e4
LT
2689 colour_off += cachep->slab_size;
2690 }
2691 slabp->inuse = 0;
2692 slabp->colouroff = colour_off;
b28a02de 2693 slabp->s_mem = objp + colour_off;
5b74ada7 2694 slabp->nodeid = nodeid;
e51bfd0a 2695 slabp->free = 0;
1da177e4
LT
2696 return slabp;
2697}
2698
2699static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2700{
b28a02de 2701 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2702}
2703
343e0d7a 2704static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2705 struct slab *slabp)
1da177e4
LT
2706{
2707 int i;
2708
2709 for (i = 0; i < cachep->num; i++) {
8fea4e96 2710 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2711#if DEBUG
2712 /* need to poison the objs? */
2713 if (cachep->flags & SLAB_POISON)
2714 poison_obj(cachep, objp, POISON_FREE);
2715 if (cachep->flags & SLAB_STORE_USER)
2716 *dbg_userword(cachep, objp) = NULL;
2717
2718 if (cachep->flags & SLAB_RED_ZONE) {
2719 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2720 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2721 }
2722 /*
a737b3e2
AM
2723 * Constructors are not allowed to allocate memory from the same
2724 * cache which they are a constructor for. Otherwise, deadlock.
2725 * They must also be threaded.
1da177e4
LT
2726 */
2727 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2728 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2729
2730 if (cachep->flags & SLAB_RED_ZONE) {
2731 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2732 slab_error(cachep, "constructor overwrote the"
b28a02de 2733 " end of an object");
1da177e4
LT
2734 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2735 slab_error(cachep, "constructor overwrote the"
b28a02de 2736 " start of an object");
1da177e4 2737 }
3b0efdfa 2738 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2739 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2740 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2741 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2742#else
2743 if (cachep->ctor)
51cc5068 2744 cachep->ctor(objp);
1da177e4 2745#endif
b28a02de 2746 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2747 }
b28a02de 2748 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2749}
2750
343e0d7a 2751static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2752{
4b51d669
CL
2753 if (CONFIG_ZONE_DMA_FLAG) {
2754 if (flags & GFP_DMA)
a618e89f 2755 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2756 else
a618e89f 2757 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2758 }
1da177e4
LT
2759}
2760
a737b3e2
AM
2761static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2762 int nodeid)
78d382d7 2763{
8fea4e96 2764 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2765 kmem_bufctl_t next;
2766
2767 slabp->inuse++;
2768 next = slab_bufctl(slabp)[slabp->free];
2769#if DEBUG
2770 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2771 WARN_ON(slabp->nodeid != nodeid);
2772#endif
2773 slabp->free = next;
2774
2775 return objp;
2776}
2777
a737b3e2
AM
2778static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2779 void *objp, int nodeid)
78d382d7 2780{
8fea4e96 2781 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2782
2783#if DEBUG
2784 /* Verify that the slab belongs to the intended node */
2785 WARN_ON(slabp->nodeid != nodeid);
2786
871751e2 2787 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2788 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2789 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2790 BUG();
2791 }
2792#endif
2793 slab_bufctl(slabp)[objnr] = slabp->free;
2794 slabp->free = objnr;
2795 slabp->inuse--;
2796}
2797
4776874f
PE
2798/*
2799 * Map pages beginning at addr to the given cache and slab. This is required
2800 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2801 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2802 */
2803static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2804 void *addr)
1da177e4 2805{
4776874f 2806 int nr_pages;
1da177e4
LT
2807 struct page *page;
2808
4776874f 2809 page = virt_to_page(addr);
84097518 2810
4776874f 2811 nr_pages = 1;
84097518 2812 if (likely(!PageCompound(page)))
4776874f
PE
2813 nr_pages <<= cache->gfporder;
2814
1da177e4 2815 do {
35026088
CL
2816 page->slab_cache = cache;
2817 page->slab_page = slab;
1da177e4 2818 page++;
4776874f 2819 } while (--nr_pages);
1da177e4
LT
2820}
2821
2822/*
2823 * Grow (by 1) the number of slabs within a cache. This is called by
2824 * kmem_cache_alloc() when there are no active objs left in a cache.
2825 */
3c517a61
CL
2826static int cache_grow(struct kmem_cache *cachep,
2827 gfp_t flags, int nodeid, void *objp)
1da177e4 2828{
b28a02de 2829 struct slab *slabp;
b28a02de
PE
2830 size_t offset;
2831 gfp_t local_flags;
e498be7d 2832 struct kmem_list3 *l3;
1da177e4 2833
a737b3e2
AM
2834 /*
2835 * Be lazy and only check for valid flags here, keeping it out of the
2836 * critical path in kmem_cache_alloc().
1da177e4 2837 */
6cb06229
CL
2838 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2839 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2840
2e1217cf 2841 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2842 check_irq_off();
2e1217cf
RT
2843 l3 = cachep->nodelists[nodeid];
2844 spin_lock(&l3->list_lock);
1da177e4
LT
2845
2846 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2847 offset = l3->colour_next;
2848 l3->colour_next++;
2849 if (l3->colour_next >= cachep->colour)
2850 l3->colour_next = 0;
2851 spin_unlock(&l3->list_lock);
1da177e4 2852
2e1217cf 2853 offset *= cachep->colour_off;
1da177e4
LT
2854
2855 if (local_flags & __GFP_WAIT)
2856 local_irq_enable();
2857
2858 /*
2859 * The test for missing atomic flag is performed here, rather than
2860 * the more obvious place, simply to reduce the critical path length
2861 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2862 * will eventually be caught here (where it matters).
2863 */
2864 kmem_flagcheck(cachep, flags);
2865
a737b3e2
AM
2866 /*
2867 * Get mem for the objs. Attempt to allocate a physical page from
2868 * 'nodeid'.
e498be7d 2869 */
3c517a61 2870 if (!objp)
b8c1c5da 2871 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2872 if (!objp)
1da177e4
LT
2873 goto failed;
2874
2875 /* Get slab management. */
3c517a61 2876 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2877 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2878 if (!slabp)
1da177e4
LT
2879 goto opps1;
2880
4776874f 2881 slab_map_pages(cachep, slabp, objp);
1da177e4 2882
a35afb83 2883 cache_init_objs(cachep, slabp);
1da177e4
LT
2884
2885 if (local_flags & __GFP_WAIT)
2886 local_irq_disable();
2887 check_irq_off();
e498be7d 2888 spin_lock(&l3->list_lock);
1da177e4
LT
2889
2890 /* Make slab active. */
e498be7d 2891 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2892 STATS_INC_GROWN(cachep);
e498be7d
CL
2893 l3->free_objects += cachep->num;
2894 spin_unlock(&l3->list_lock);
1da177e4 2895 return 1;
a737b3e2 2896opps1:
1da177e4 2897 kmem_freepages(cachep, objp);
a737b3e2 2898failed:
1da177e4
LT
2899 if (local_flags & __GFP_WAIT)
2900 local_irq_disable();
2901 return 0;
2902}
2903
2904#if DEBUG
2905
2906/*
2907 * Perform extra freeing checks:
2908 * - detect bad pointers.
2909 * - POISON/RED_ZONE checking
1da177e4
LT
2910 */
2911static void kfree_debugcheck(const void *objp)
2912{
1da177e4
LT
2913 if (!virt_addr_valid(objp)) {
2914 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2915 (unsigned long)objp);
2916 BUG();
1da177e4 2917 }
1da177e4
LT
2918}
2919
58ce1fd5
PE
2920static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2921{
b46b8f19 2922 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2923
2924 redzone1 = *dbg_redzone1(cache, obj);
2925 redzone2 = *dbg_redzone2(cache, obj);
2926
2927 /*
2928 * Redzone is ok.
2929 */
2930 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2931 return;
2932
2933 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2934 slab_error(cache, "double free detected");
2935 else
2936 slab_error(cache, "memory outside object was overwritten");
2937
b46b8f19 2938 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2939 obj, redzone1, redzone2);
2940}
2941
343e0d7a 2942static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2943 void *caller)
1da177e4
LT
2944{
2945 struct page *page;
2946 unsigned int objnr;
2947 struct slab *slabp;
2948
80cbd911
MW
2949 BUG_ON(virt_to_cache(objp) != cachep);
2950
3dafccf2 2951 objp -= obj_offset(cachep);
1da177e4 2952 kfree_debugcheck(objp);
b49af68f 2953 page = virt_to_head_page(objp);
1da177e4 2954
35026088 2955 slabp = page->slab_page;
1da177e4
LT
2956
2957 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2958 verify_redzone_free(cachep, objp);
1da177e4
LT
2959 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2960 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2961 }
2962 if (cachep->flags & SLAB_STORE_USER)
2963 *dbg_userword(cachep, objp) = caller;
2964
8fea4e96 2965 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2966
2967 BUG_ON(objnr >= cachep->num);
8fea4e96 2968 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2969
871751e2
AV
2970#ifdef CONFIG_DEBUG_SLAB_LEAK
2971 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2972#endif
1da177e4
LT
2973 if (cachep->flags & SLAB_POISON) {
2974#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2975 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2976 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2977 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2978 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2979 } else {
2980 poison_obj(cachep, objp, POISON_FREE);
2981 }
2982#else
2983 poison_obj(cachep, objp, POISON_FREE);
2984#endif
2985 }
2986 return objp;
2987}
2988
343e0d7a 2989static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2990{
2991 kmem_bufctl_t i;
2992 int entries = 0;
b28a02de 2993
1da177e4
LT
2994 /* Check slab's freelist to see if this obj is there. */
2995 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2996 entries++;
2997 if (entries > cachep->num || i >= cachep->num)
2998 goto bad;
2999 }
3000 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3001bad:
3002 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3003 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3004 cachep->name, cachep->num, slabp, slabp->inuse,
3005 print_tainted());
fdde6abb
SAS
3006 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3007 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3008 1);
1da177e4
LT
3009 BUG();
3010 }
3011}
3012#else
3013#define kfree_debugcheck(x) do { } while(0)
3014#define cache_free_debugcheck(x,objp,z) (objp)
3015#define check_slabp(x,y) do { } while(0)
3016#endif
3017
343e0d7a 3018static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3019{
3020 int batchcount;
3021 struct kmem_list3 *l3;
3022 struct array_cache *ac;
1ca4cb24
PE
3023 int node;
3024
6d2144d3 3025retry:
1da177e4 3026 check_irq_off();
7d6e6d09 3027 node = numa_mem_id();
9a2dba4b 3028 ac = cpu_cache_get(cachep);
1da177e4
LT
3029 batchcount = ac->batchcount;
3030 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3031 /*
3032 * If there was little recent activity on this cache, then
3033 * perform only a partial refill. Otherwise we could generate
3034 * refill bouncing.
1da177e4
LT
3035 */
3036 batchcount = BATCHREFILL_LIMIT;
3037 }
1ca4cb24 3038 l3 = cachep->nodelists[node];
e498be7d
CL
3039
3040 BUG_ON(ac->avail > 0 || !l3);
3041 spin_lock(&l3->list_lock);
1da177e4 3042
3ded175a 3043 /* See if we can refill from the shared array */
44b57f1c
NP
3044 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3045 l3->shared->touched = 1;
3ded175a 3046 goto alloc_done;
44b57f1c 3047 }
3ded175a 3048
1da177e4
LT
3049 while (batchcount > 0) {
3050 struct list_head *entry;
3051 struct slab *slabp;
3052 /* Get slab alloc is to come from. */
3053 entry = l3->slabs_partial.next;
3054 if (entry == &l3->slabs_partial) {
3055 l3->free_touched = 1;
3056 entry = l3->slabs_free.next;
3057 if (entry == &l3->slabs_free)
3058 goto must_grow;
3059 }
3060
3061 slabp = list_entry(entry, struct slab, list);
3062 check_slabp(cachep, slabp);
3063 check_spinlock_acquired(cachep);
714b8171
PE
3064
3065 /*
3066 * The slab was either on partial or free list so
3067 * there must be at least one object available for
3068 * allocation.
3069 */
249b9f33 3070 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3071
1da177e4 3072 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3073 STATS_INC_ALLOCED(cachep);
3074 STATS_INC_ACTIVE(cachep);
3075 STATS_SET_HIGH(cachep);
3076
78d382d7 3077 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3078 node);
1da177e4
LT
3079 }
3080 check_slabp(cachep, slabp);
3081
3082 /* move slabp to correct slabp list: */
3083 list_del(&slabp->list);
3084 if (slabp->free == BUFCTL_END)
3085 list_add(&slabp->list, &l3->slabs_full);
3086 else
3087 list_add(&slabp->list, &l3->slabs_partial);
3088 }
3089
a737b3e2 3090must_grow:
1da177e4 3091 l3->free_objects -= ac->avail;
a737b3e2 3092alloc_done:
e498be7d 3093 spin_unlock(&l3->list_lock);
1da177e4
LT
3094
3095 if (unlikely(!ac->avail)) {
3096 int x;
3c517a61 3097 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3098
a737b3e2 3099 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3100 ac = cpu_cache_get(cachep);
a737b3e2 3101 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3102 return NULL;
3103
a737b3e2 3104 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3105 goto retry;
3106 }
3107 ac->touched = 1;
e498be7d 3108 return ac->entry[--ac->avail];
1da177e4
LT
3109}
3110
a737b3e2
AM
3111static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3112 gfp_t flags)
1da177e4
LT
3113{
3114 might_sleep_if(flags & __GFP_WAIT);
3115#if DEBUG
3116 kmem_flagcheck(cachep, flags);
3117#endif
3118}
3119
3120#if DEBUG
a737b3e2
AM
3121static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3122 gfp_t flags, void *objp, void *caller)
1da177e4 3123{
b28a02de 3124 if (!objp)
1da177e4 3125 return objp;
b28a02de 3126 if (cachep->flags & SLAB_POISON) {
1da177e4 3127#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3128 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3129 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3130 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3131 else
3132 check_poison_obj(cachep, objp);
3133#else
3134 check_poison_obj(cachep, objp);
3135#endif
3136 poison_obj(cachep, objp, POISON_INUSE);
3137 }
3138 if (cachep->flags & SLAB_STORE_USER)
3139 *dbg_userword(cachep, objp) = caller;
3140
3141 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3142 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3143 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3144 slab_error(cachep, "double free, or memory outside"
3145 " object was overwritten");
b28a02de 3146 printk(KERN_ERR
b46b8f19 3147 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3148 objp, *dbg_redzone1(cachep, objp),
3149 *dbg_redzone2(cachep, objp));
1da177e4
LT
3150 }
3151 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3152 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3153 }
871751e2
AV
3154#ifdef CONFIG_DEBUG_SLAB_LEAK
3155 {
3156 struct slab *slabp;
3157 unsigned objnr;
3158
35026088 3159 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3160 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3161 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3162 }
3163#endif
3dafccf2 3164 objp += obj_offset(cachep);
4f104934 3165 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3166 cachep->ctor(objp);
7ea466f2
TH
3167 if (ARCH_SLAB_MINALIGN &&
3168 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3169 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3170 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3171 }
1da177e4
LT
3172 return objp;
3173}
3174#else
3175#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3176#endif
3177
773ff60e 3178static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3179{
3180 if (cachep == &cache_cache)
773ff60e 3181 return false;
8a8b6502 3182
8c138bc0 3183 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3184}
3185
343e0d7a 3186static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3187{
b28a02de 3188 void *objp;
1da177e4
LT
3189 struct array_cache *ac;
3190
5c382300 3191 check_irq_off();
8a8b6502 3192
9a2dba4b 3193 ac = cpu_cache_get(cachep);
1da177e4
LT
3194 if (likely(ac->avail)) {
3195 STATS_INC_ALLOCHIT(cachep);
3196 ac->touched = 1;
e498be7d 3197 objp = ac->entry[--ac->avail];
1da177e4
LT
3198 } else {
3199 STATS_INC_ALLOCMISS(cachep);
3200 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3201 /*
3202 * the 'ac' may be updated by cache_alloc_refill(),
3203 * and kmemleak_erase() requires its correct value.
3204 */
3205 ac = cpu_cache_get(cachep);
1da177e4 3206 }
d5cff635
CM
3207 /*
3208 * To avoid a false negative, if an object that is in one of the
3209 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3210 * treat the array pointers as a reference to the object.
3211 */
f3d8b53a
O
3212 if (objp)
3213 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3214 return objp;
3215}
3216
e498be7d 3217#ifdef CONFIG_NUMA
c61afb18 3218/*
b2455396 3219 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3220 *
3221 * If we are in_interrupt, then process context, including cpusets and
3222 * mempolicy, may not apply and should not be used for allocation policy.
3223 */
3224static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3225{
3226 int nid_alloc, nid_here;
3227
765c4507 3228 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3229 return NULL;
7d6e6d09 3230 nid_alloc = nid_here = numa_mem_id();
c61afb18 3231 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3232 nid_alloc = cpuset_slab_spread_node();
c61afb18 3233 else if (current->mempolicy)
e7b691b0 3234 nid_alloc = slab_node();
c61afb18 3235 if (nid_alloc != nid_here)
8b98c169 3236 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3237 return NULL;
3238}
3239
765c4507
CL
3240/*
3241 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3242 * certain node and fall back is permitted. First we scan all the
3243 * available nodelists for available objects. If that fails then we
3244 * perform an allocation without specifying a node. This allows the page
3245 * allocator to do its reclaim / fallback magic. We then insert the
3246 * slab into the proper nodelist and then allocate from it.
765c4507 3247 */
8c8cc2c1 3248static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3249{
8c8cc2c1
PE
3250 struct zonelist *zonelist;
3251 gfp_t local_flags;
dd1a239f 3252 struct zoneref *z;
54a6eb5c
MG
3253 struct zone *zone;
3254 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3255 void *obj = NULL;
3c517a61 3256 int nid;
cc9a6c87 3257 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3258
3259 if (flags & __GFP_THISNODE)
3260 return NULL;
3261
6cb06229 3262 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3263
cc9a6c87
MG
3264retry_cpuset:
3265 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3266 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3267
3c517a61
CL
3268retry:
3269 /*
3270 * Look through allowed nodes for objects available
3271 * from existing per node queues.
3272 */
54a6eb5c
MG
3273 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3274 nid = zone_to_nid(zone);
aedb0eb1 3275
54a6eb5c 3276 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3277 cache->nodelists[nid] &&
481c5346 3278 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3279 obj = ____cache_alloc_node(cache,
3280 flags | GFP_THISNODE, nid);
481c5346
CL
3281 if (obj)
3282 break;
3283 }
3c517a61
CL
3284 }
3285
cfce6604 3286 if (!obj) {
3c517a61
CL
3287 /*
3288 * This allocation will be performed within the constraints
3289 * of the current cpuset / memory policy requirements.
3290 * We may trigger various forms of reclaim on the allowed
3291 * set and go into memory reserves if necessary.
3292 */
dd47ea75
CL
3293 if (local_flags & __GFP_WAIT)
3294 local_irq_enable();
3295 kmem_flagcheck(cache, flags);
7d6e6d09 3296 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3297 if (local_flags & __GFP_WAIT)
3298 local_irq_disable();
3c517a61
CL
3299 if (obj) {
3300 /*
3301 * Insert into the appropriate per node queues
3302 */
3303 nid = page_to_nid(virt_to_page(obj));
3304 if (cache_grow(cache, flags, nid, obj)) {
3305 obj = ____cache_alloc_node(cache,
3306 flags | GFP_THISNODE, nid);
3307 if (!obj)
3308 /*
3309 * Another processor may allocate the
3310 * objects in the slab since we are
3311 * not holding any locks.
3312 */
3313 goto retry;
3314 } else {
b6a60451 3315 /* cache_grow already freed obj */
3c517a61
CL
3316 obj = NULL;
3317 }
3318 }
aedb0eb1 3319 }
cc9a6c87
MG
3320
3321 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3322 goto retry_cpuset;
765c4507
CL
3323 return obj;
3324}
3325
e498be7d
CL
3326/*
3327 * A interface to enable slab creation on nodeid
1da177e4 3328 */
8b98c169 3329static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3330 int nodeid)
e498be7d
CL
3331{
3332 struct list_head *entry;
b28a02de
PE
3333 struct slab *slabp;
3334 struct kmem_list3 *l3;
3335 void *obj;
b28a02de
PE
3336 int x;
3337
3338 l3 = cachep->nodelists[nodeid];
3339 BUG_ON(!l3);
3340
a737b3e2 3341retry:
ca3b9b91 3342 check_irq_off();
b28a02de
PE
3343 spin_lock(&l3->list_lock);
3344 entry = l3->slabs_partial.next;
3345 if (entry == &l3->slabs_partial) {
3346 l3->free_touched = 1;
3347 entry = l3->slabs_free.next;
3348 if (entry == &l3->slabs_free)
3349 goto must_grow;
3350 }
3351
3352 slabp = list_entry(entry, struct slab, list);
3353 check_spinlock_acquired_node(cachep, nodeid);
3354 check_slabp(cachep, slabp);
3355
3356 STATS_INC_NODEALLOCS(cachep);
3357 STATS_INC_ACTIVE(cachep);
3358 STATS_SET_HIGH(cachep);
3359
3360 BUG_ON(slabp->inuse == cachep->num);
3361
78d382d7 3362 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3363 check_slabp(cachep, slabp);
3364 l3->free_objects--;
3365 /* move slabp to correct slabp list: */
3366 list_del(&slabp->list);
3367
a737b3e2 3368 if (slabp->free == BUFCTL_END)
b28a02de 3369 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3370 else
b28a02de 3371 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3372
b28a02de
PE
3373 spin_unlock(&l3->list_lock);
3374 goto done;
e498be7d 3375
a737b3e2 3376must_grow:
b28a02de 3377 spin_unlock(&l3->list_lock);
3c517a61 3378 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3379 if (x)
3380 goto retry;
1da177e4 3381
8c8cc2c1 3382 return fallback_alloc(cachep, flags);
e498be7d 3383
a737b3e2 3384done:
b28a02de 3385 return obj;
e498be7d 3386}
8c8cc2c1
PE
3387
3388/**
3389 * kmem_cache_alloc_node - Allocate an object on the specified node
3390 * @cachep: The cache to allocate from.
3391 * @flags: See kmalloc().
3392 * @nodeid: node number of the target node.
3393 * @caller: return address of caller, used for debug information
3394 *
3395 * Identical to kmem_cache_alloc but it will allocate memory on the given
3396 * node, which can improve the performance for cpu bound structures.
3397 *
3398 * Fallback to other node is possible if __GFP_THISNODE is not set.
3399 */
3400static __always_inline void *
3401__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3402 void *caller)
3403{
3404 unsigned long save_flags;
3405 void *ptr;
7d6e6d09 3406 int slab_node = numa_mem_id();
8c8cc2c1 3407
dcce284a 3408 flags &= gfp_allowed_mask;
7e85ee0c 3409
cf40bd16
NP
3410 lockdep_trace_alloc(flags);
3411
773ff60e 3412 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3413 return NULL;
3414
8c8cc2c1
PE
3415 cache_alloc_debugcheck_before(cachep, flags);
3416 local_irq_save(save_flags);
3417
eacbbae3 3418 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3419 nodeid = slab_node;
8c8cc2c1
PE
3420
3421 if (unlikely(!cachep->nodelists[nodeid])) {
3422 /* Node not bootstrapped yet */
3423 ptr = fallback_alloc(cachep, flags);
3424 goto out;
3425 }
3426
7d6e6d09 3427 if (nodeid == slab_node) {
8c8cc2c1
PE
3428 /*
3429 * Use the locally cached objects if possible.
3430 * However ____cache_alloc does not allow fallback
3431 * to other nodes. It may fail while we still have
3432 * objects on other nodes available.
3433 */
3434 ptr = ____cache_alloc(cachep, flags);
3435 if (ptr)
3436 goto out;
3437 }
3438 /* ___cache_alloc_node can fall back to other nodes */
3439 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3440 out:
3441 local_irq_restore(save_flags);
3442 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3443 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3444 flags);
8c8cc2c1 3445
c175eea4 3446 if (likely(ptr))
8c138bc0 3447 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3448
d07dbea4 3449 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3450 memset(ptr, 0, cachep->object_size);
d07dbea4 3451
8c8cc2c1
PE
3452 return ptr;
3453}
3454
3455static __always_inline void *
3456__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3457{
3458 void *objp;
3459
3460 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3461 objp = alternate_node_alloc(cache, flags);
3462 if (objp)
3463 goto out;
3464 }
3465 objp = ____cache_alloc(cache, flags);
3466
3467 /*
3468 * We may just have run out of memory on the local node.
3469 * ____cache_alloc_node() knows how to locate memory on other nodes
3470 */
7d6e6d09
LS
3471 if (!objp)
3472 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3473
3474 out:
3475 return objp;
3476}
3477#else
3478
3479static __always_inline void *
3480__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3481{
3482 return ____cache_alloc(cachep, flags);
3483}
3484
3485#endif /* CONFIG_NUMA */
3486
3487static __always_inline void *
3488__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3489{
3490 unsigned long save_flags;
3491 void *objp;
3492
dcce284a 3493 flags &= gfp_allowed_mask;
7e85ee0c 3494
cf40bd16
NP
3495 lockdep_trace_alloc(flags);
3496
773ff60e 3497 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3498 return NULL;
3499
8c8cc2c1
PE
3500 cache_alloc_debugcheck_before(cachep, flags);
3501 local_irq_save(save_flags);
3502 objp = __do_cache_alloc(cachep, flags);
3503 local_irq_restore(save_flags);
3504 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3505 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3506 flags);
8c8cc2c1
PE
3507 prefetchw(objp);
3508
c175eea4 3509 if (likely(objp))
8c138bc0 3510 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3511
d07dbea4 3512 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3513 memset(objp, 0, cachep->object_size);
d07dbea4 3514
8c8cc2c1
PE
3515 return objp;
3516}
e498be7d
CL
3517
3518/*
3519 * Caller needs to acquire correct kmem_list's list_lock
3520 */
343e0d7a 3521static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3522 int node)
1da177e4
LT
3523{
3524 int i;
e498be7d 3525 struct kmem_list3 *l3;
1da177e4
LT
3526
3527 for (i = 0; i < nr_objects; i++) {
3528 void *objp = objpp[i];
3529 struct slab *slabp;
1da177e4 3530
6ed5eb22 3531 slabp = virt_to_slab(objp);
ff69416e 3532 l3 = cachep->nodelists[node];
1da177e4 3533 list_del(&slabp->list);
ff69416e 3534 check_spinlock_acquired_node(cachep, node);
1da177e4 3535 check_slabp(cachep, slabp);
78d382d7 3536 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3537 STATS_DEC_ACTIVE(cachep);
e498be7d 3538 l3->free_objects++;
1da177e4
LT
3539 check_slabp(cachep, slabp);
3540
3541 /* fixup slab chains */
3542 if (slabp->inuse == 0) {
e498be7d
CL
3543 if (l3->free_objects > l3->free_limit) {
3544 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3545 /* No need to drop any previously held
3546 * lock here, even if we have a off-slab slab
3547 * descriptor it is guaranteed to come from
3548 * a different cache, refer to comments before
3549 * alloc_slabmgmt.
3550 */
1da177e4
LT
3551 slab_destroy(cachep, slabp);
3552 } else {
e498be7d 3553 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3554 }
3555 } else {
3556 /* Unconditionally move a slab to the end of the
3557 * partial list on free - maximum time for the
3558 * other objects to be freed, too.
3559 */
e498be7d 3560 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3561 }
3562 }
3563}
3564
343e0d7a 3565static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3566{
3567 int batchcount;
e498be7d 3568 struct kmem_list3 *l3;
7d6e6d09 3569 int node = numa_mem_id();
1da177e4
LT
3570
3571 batchcount = ac->batchcount;
3572#if DEBUG
3573 BUG_ON(!batchcount || batchcount > ac->avail);
3574#endif
3575 check_irq_off();
ff69416e 3576 l3 = cachep->nodelists[node];
873623df 3577 spin_lock(&l3->list_lock);
e498be7d
CL
3578 if (l3->shared) {
3579 struct array_cache *shared_array = l3->shared;
b28a02de 3580 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3581 if (max) {
3582 if (batchcount > max)
3583 batchcount = max;
e498be7d 3584 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3585 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3586 shared_array->avail += batchcount;
3587 goto free_done;
3588 }
3589 }
3590
ff69416e 3591 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3592free_done:
1da177e4
LT
3593#if STATS
3594 {
3595 int i = 0;
3596 struct list_head *p;
3597
e498be7d
CL
3598 p = l3->slabs_free.next;
3599 while (p != &(l3->slabs_free)) {
1da177e4
LT
3600 struct slab *slabp;
3601
3602 slabp = list_entry(p, struct slab, list);
3603 BUG_ON(slabp->inuse);
3604
3605 i++;
3606 p = p->next;
3607 }
3608 STATS_SET_FREEABLE(cachep, i);
3609 }
3610#endif
e498be7d 3611 spin_unlock(&l3->list_lock);
1da177e4 3612 ac->avail -= batchcount;
a737b3e2 3613 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3614}
3615
3616/*
a737b3e2
AM
3617 * Release an obj back to its cache. If the obj has a constructed state, it must
3618 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3619 */
a947eb95
SS
3620static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3621 void *caller)
1da177e4 3622{
9a2dba4b 3623 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3624
3625 check_irq_off();
d5cff635 3626 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3627 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3628
8c138bc0 3629 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3630
1807a1aa
SS
3631 /*
3632 * Skip calling cache_free_alien() when the platform is not numa.
3633 * This will avoid cache misses that happen while accessing slabp (which
3634 * is per page memory reference) to get nodeid. Instead use a global
3635 * variable to skip the call, which is mostly likely to be present in
3636 * the cache.
3637 */
b6e68bc1 3638 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3639 return;
3640
1da177e4
LT
3641 if (likely(ac->avail < ac->limit)) {
3642 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3643 } else {
3644 STATS_INC_FREEMISS(cachep);
3645 cache_flusharray(cachep, ac);
1da177e4 3646 }
42c8c99c
ZJ
3647
3648 ac->entry[ac->avail++] = objp;
1da177e4
LT
3649}
3650
3651/**
3652 * kmem_cache_alloc - Allocate an object
3653 * @cachep: The cache to allocate from.
3654 * @flags: See kmalloc().
3655 *
3656 * Allocate an object from this cache. The flags are only relevant
3657 * if the cache has no available objects.
3658 */
343e0d7a 3659void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3660{
36555751
EGM
3661 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3662
ca2b84cb 3663 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3664 cachep->object_size, cachep->size, flags);
36555751
EGM
3665
3666 return ret;
1da177e4
LT
3667}
3668EXPORT_SYMBOL(kmem_cache_alloc);
3669
0f24f128 3670#ifdef CONFIG_TRACING
85beb586
SR
3671void *
3672kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3673{
85beb586
SR
3674 void *ret;
3675
3676 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3677
3678 trace_kmalloc(_RET_IP_, ret,
3679 size, slab_buffer_size(cachep), flags);
3680 return ret;
36555751 3681}
85beb586 3682EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3683#endif
3684
1da177e4 3685#ifdef CONFIG_NUMA
8b98c169
CH
3686void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3687{
36555751
EGM
3688 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3689 __builtin_return_address(0));
3690
ca2b84cb 3691 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3692 cachep->object_size, cachep->size,
ca2b84cb 3693 flags, nodeid);
36555751
EGM
3694
3695 return ret;
8b98c169 3696}
1da177e4
LT
3697EXPORT_SYMBOL(kmem_cache_alloc_node);
3698
0f24f128 3699#ifdef CONFIG_TRACING
85beb586
SR
3700void *kmem_cache_alloc_node_trace(size_t size,
3701 struct kmem_cache *cachep,
3702 gfp_t flags,
3703 int nodeid)
36555751 3704{
85beb586
SR
3705 void *ret;
3706
3707 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3708 __builtin_return_address(0));
85beb586
SR
3709 trace_kmalloc_node(_RET_IP_, ret,
3710 size, slab_buffer_size(cachep),
3711 flags, nodeid);
3712 return ret;
36555751 3713}
85beb586 3714EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3715#endif
3716
8b98c169
CH
3717static __always_inline void *
3718__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3719{
343e0d7a 3720 struct kmem_cache *cachep;
97e2bde4
MS
3721
3722 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3723 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3724 return cachep;
85beb586 3725 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3726}
8b98c169 3727
0bb38a5c 3728#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3729void *__kmalloc_node(size_t size, gfp_t flags, int node)
3730{
3731 return __do_kmalloc_node(size, flags, node,
3732 __builtin_return_address(0));
3733}
dbe5e69d 3734EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3735
3736void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3737 int node, unsigned long caller)
8b98c169 3738{
ce71e27c 3739 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3740}
3741EXPORT_SYMBOL(__kmalloc_node_track_caller);
3742#else
3743void *__kmalloc_node(size_t size, gfp_t flags, int node)
3744{
3745 return __do_kmalloc_node(size, flags, node, NULL);
3746}
3747EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3748#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3749#endif /* CONFIG_NUMA */
1da177e4
LT
3750
3751/**
800590f5 3752 * __do_kmalloc - allocate memory
1da177e4 3753 * @size: how many bytes of memory are required.
800590f5 3754 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3755 * @caller: function caller for debug tracking of the caller
1da177e4 3756 */
7fd6b141
PE
3757static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3758 void *caller)
1da177e4 3759{
343e0d7a 3760 struct kmem_cache *cachep;
36555751 3761 void *ret;
1da177e4 3762
97e2bde4
MS
3763 /* If you want to save a few bytes .text space: replace
3764 * __ with kmem_.
3765 * Then kmalloc uses the uninlined functions instead of the inline
3766 * functions.
3767 */
3768 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3769 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3770 return cachep;
36555751
EGM
3771 ret = __cache_alloc(cachep, flags, caller);
3772
ca2b84cb 3773 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3774 size, cachep->size, flags);
36555751
EGM
3775
3776 return ret;
7fd6b141
PE
3777}
3778
7fd6b141 3779
0bb38a5c 3780#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3781void *__kmalloc(size_t size, gfp_t flags)
3782{
871751e2 3783 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3784}
3785EXPORT_SYMBOL(__kmalloc);
3786
ce71e27c 3787void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3788{
ce71e27c 3789 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3790}
3791EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3792
3793#else
3794void *__kmalloc(size_t size, gfp_t flags)
3795{
3796 return __do_kmalloc(size, flags, NULL);
3797}
3798EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3799#endif
3800
1da177e4
LT
3801/**
3802 * kmem_cache_free - Deallocate an object
3803 * @cachep: The cache the allocation was from.
3804 * @objp: The previously allocated object.
3805 *
3806 * Free an object which was previously allocated from this
3807 * cache.
3808 */
343e0d7a 3809void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3810{
3811 unsigned long flags;
3812
3813 local_irq_save(flags);
d97d476b 3814 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3815 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3816 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3817 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3818 local_irq_restore(flags);
36555751 3819
ca2b84cb 3820 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3821}
3822EXPORT_SYMBOL(kmem_cache_free);
3823
1da177e4
LT
3824/**
3825 * kfree - free previously allocated memory
3826 * @objp: pointer returned by kmalloc.
3827 *
80e93eff
PE
3828 * If @objp is NULL, no operation is performed.
3829 *
1da177e4
LT
3830 * Don't free memory not originally allocated by kmalloc()
3831 * or you will run into trouble.
3832 */
3833void kfree(const void *objp)
3834{
343e0d7a 3835 struct kmem_cache *c;
1da177e4
LT
3836 unsigned long flags;
3837
2121db74
PE
3838 trace_kfree(_RET_IP_, objp);
3839
6cb8f913 3840 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3841 return;
3842 local_irq_save(flags);
3843 kfree_debugcheck(objp);
6ed5eb22 3844 c = virt_to_cache(objp);
8c138bc0
CL
3845 debug_check_no_locks_freed(objp, c->object_size);
3846
3847 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 3848 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3849 local_irq_restore(flags);
3850}
3851EXPORT_SYMBOL(kfree);
3852
343e0d7a 3853unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3854{
8c138bc0 3855 return cachep->object_size;
1da177e4
LT
3856}
3857EXPORT_SYMBOL(kmem_cache_size);
3858
e498be7d 3859/*
183ff22b 3860 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3861 */
83b519e8 3862static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3863{
3864 int node;
3865 struct kmem_list3 *l3;
cafeb02e 3866 struct array_cache *new_shared;
3395ee05 3867 struct array_cache **new_alien = NULL;
e498be7d 3868
9c09a95c 3869 for_each_online_node(node) {
cafeb02e 3870
3395ee05 3871 if (use_alien_caches) {
83b519e8 3872 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3873 if (!new_alien)
3874 goto fail;
3875 }
cafeb02e 3876
63109846
ED
3877 new_shared = NULL;
3878 if (cachep->shared) {
3879 new_shared = alloc_arraycache(node,
0718dc2a 3880 cachep->shared*cachep->batchcount,
83b519e8 3881 0xbaadf00d, gfp);
63109846
ED
3882 if (!new_shared) {
3883 free_alien_cache(new_alien);
3884 goto fail;
3885 }
0718dc2a 3886 }
cafeb02e 3887
a737b3e2
AM
3888 l3 = cachep->nodelists[node];
3889 if (l3) {
cafeb02e
CL
3890 struct array_cache *shared = l3->shared;
3891
e498be7d
CL
3892 spin_lock_irq(&l3->list_lock);
3893
cafeb02e 3894 if (shared)
0718dc2a
CL
3895 free_block(cachep, shared->entry,
3896 shared->avail, node);
e498be7d 3897
cafeb02e
CL
3898 l3->shared = new_shared;
3899 if (!l3->alien) {
e498be7d
CL
3900 l3->alien = new_alien;
3901 new_alien = NULL;
3902 }
b28a02de 3903 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3904 cachep->batchcount + cachep->num;
e498be7d 3905 spin_unlock_irq(&l3->list_lock);
cafeb02e 3906 kfree(shared);
e498be7d
CL
3907 free_alien_cache(new_alien);
3908 continue;
3909 }
83b519e8 3910 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3911 if (!l3) {
3912 free_alien_cache(new_alien);
3913 kfree(new_shared);
e498be7d 3914 goto fail;
0718dc2a 3915 }
e498be7d
CL
3916
3917 kmem_list3_init(l3);
3918 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3919 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3920 l3->shared = new_shared;
e498be7d 3921 l3->alien = new_alien;
b28a02de 3922 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3923 cachep->batchcount + cachep->num;
e498be7d
CL
3924 cachep->nodelists[node] = l3;
3925 }
cafeb02e 3926 return 0;
0718dc2a 3927
a737b3e2 3928fail:
3b0efdfa 3929 if (!cachep->list.next) {
0718dc2a
CL
3930 /* Cache is not active yet. Roll back what we did */
3931 node--;
3932 while (node >= 0) {
3933 if (cachep->nodelists[node]) {
3934 l3 = cachep->nodelists[node];
3935
3936 kfree(l3->shared);
3937 free_alien_cache(l3->alien);
3938 kfree(l3);
3939 cachep->nodelists[node] = NULL;
3940 }
3941 node--;
3942 }
3943 }
cafeb02e 3944 return -ENOMEM;
e498be7d
CL
3945}
3946
1da177e4 3947struct ccupdate_struct {
343e0d7a 3948 struct kmem_cache *cachep;
acfe7d74 3949 struct array_cache *new[0];
1da177e4
LT
3950};
3951
3952static void do_ccupdate_local(void *info)
3953{
a737b3e2 3954 struct ccupdate_struct *new = info;
1da177e4
LT
3955 struct array_cache *old;
3956
3957 check_irq_off();
9a2dba4b 3958 old = cpu_cache_get(new->cachep);
e498be7d 3959
1da177e4
LT
3960 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3961 new->new[smp_processor_id()] = old;
3962}
3963
18004c5d 3964/* Always called with the slab_mutex held */
a737b3e2 3965static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3966 int batchcount, int shared, gfp_t gfp)
1da177e4 3967{
d2e7b7d0 3968 struct ccupdate_struct *new;
2ed3a4ef 3969 int i;
1da177e4 3970
acfe7d74
ED
3971 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3972 gfp);
d2e7b7d0
SS
3973 if (!new)
3974 return -ENOMEM;
3975
e498be7d 3976 for_each_online_cpu(i) {
7d6e6d09 3977 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3978 batchcount, gfp);
d2e7b7d0 3979 if (!new->new[i]) {
b28a02de 3980 for (i--; i >= 0; i--)
d2e7b7d0
SS
3981 kfree(new->new[i]);
3982 kfree(new);
e498be7d 3983 return -ENOMEM;
1da177e4
LT
3984 }
3985 }
d2e7b7d0 3986 new->cachep = cachep;
1da177e4 3987
15c8b6c1 3988 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3989
1da177e4 3990 check_irq_on();
1da177e4
LT
3991 cachep->batchcount = batchcount;
3992 cachep->limit = limit;
e498be7d 3993 cachep->shared = shared;
1da177e4 3994
e498be7d 3995 for_each_online_cpu(i) {
d2e7b7d0 3996 struct array_cache *ccold = new->new[i];
1da177e4
LT
3997 if (!ccold)
3998 continue;
7d6e6d09
LS
3999 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4000 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4001 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4002 kfree(ccold);
4003 }
d2e7b7d0 4004 kfree(new);
83b519e8 4005 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4006}
4007
18004c5d 4008/* Called with slab_mutex held always */
83b519e8 4009static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4010{
4011 int err;
4012 int limit, shared;
4013
a737b3e2
AM
4014 /*
4015 * The head array serves three purposes:
1da177e4
LT
4016 * - create a LIFO ordering, i.e. return objects that are cache-warm
4017 * - reduce the number of spinlock operations.
a737b3e2 4018 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4019 * bufctl chains: array operations are cheaper.
4020 * The numbers are guessed, we should auto-tune as described by
4021 * Bonwick.
4022 */
3b0efdfa 4023 if (cachep->size > 131072)
1da177e4 4024 limit = 1;
3b0efdfa 4025 else if (cachep->size > PAGE_SIZE)
1da177e4 4026 limit = 8;
3b0efdfa 4027 else if (cachep->size > 1024)
1da177e4 4028 limit = 24;
3b0efdfa 4029 else if (cachep->size > 256)
1da177e4
LT
4030 limit = 54;
4031 else
4032 limit = 120;
4033
a737b3e2
AM
4034 /*
4035 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4036 * allocation behaviour: Most allocs on one cpu, most free operations
4037 * on another cpu. For these cases, an efficient object passing between
4038 * cpus is necessary. This is provided by a shared array. The array
4039 * replaces Bonwick's magazine layer.
4040 * On uniprocessor, it's functionally equivalent (but less efficient)
4041 * to a larger limit. Thus disabled by default.
4042 */
4043 shared = 0;
3b0efdfa 4044 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4045 shared = 8;
1da177e4
LT
4046
4047#if DEBUG
a737b3e2
AM
4048 /*
4049 * With debugging enabled, large batchcount lead to excessively long
4050 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4051 */
4052 if (limit > 32)
4053 limit = 32;
4054#endif
83b519e8 4055 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4056 if (err)
4057 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4058 cachep->name, -err);
2ed3a4ef 4059 return err;
1da177e4
LT
4060}
4061
1b55253a
CL
4062/*
4063 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4064 * necessary. Note that the l3 listlock also protects the array_cache
4065 * if drain_array() is used on the shared array.
1b55253a 4066 */
68a1b195 4067static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4068 struct array_cache *ac, int force, int node)
1da177e4
LT
4069{
4070 int tofree;
4071
1b55253a
CL
4072 if (!ac || !ac->avail)
4073 return;
1da177e4
LT
4074 if (ac->touched && !force) {
4075 ac->touched = 0;
b18e7e65 4076 } else {
1b55253a 4077 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4078 if (ac->avail) {
4079 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4080 if (tofree > ac->avail)
4081 tofree = (ac->avail + 1) / 2;
4082 free_block(cachep, ac->entry, tofree, node);
4083 ac->avail -= tofree;
4084 memmove(ac->entry, &(ac->entry[tofree]),
4085 sizeof(void *) * ac->avail);
4086 }
1b55253a 4087 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4088 }
4089}
4090
4091/**
4092 * cache_reap - Reclaim memory from caches.
05fb6bf0 4093 * @w: work descriptor
1da177e4
LT
4094 *
4095 * Called from workqueue/eventd every few seconds.
4096 * Purpose:
4097 * - clear the per-cpu caches for this CPU.
4098 * - return freeable pages to the main free memory pool.
4099 *
a737b3e2
AM
4100 * If we cannot acquire the cache chain mutex then just give up - we'll try
4101 * again on the next iteration.
1da177e4 4102 */
7c5cae36 4103static void cache_reap(struct work_struct *w)
1da177e4 4104{
7a7c381d 4105 struct kmem_cache *searchp;
e498be7d 4106 struct kmem_list3 *l3;
7d6e6d09 4107 int node = numa_mem_id();
bf6aede7 4108 struct delayed_work *work = to_delayed_work(w);
1da177e4 4109
18004c5d 4110 if (!mutex_trylock(&slab_mutex))
1da177e4 4111 /* Give up. Setup the next iteration. */
7c5cae36 4112 goto out;
1da177e4 4113
18004c5d 4114 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4115 check_irq_on();
4116
35386e3b
CL
4117 /*
4118 * We only take the l3 lock if absolutely necessary and we
4119 * have established with reasonable certainty that
4120 * we can do some work if the lock was obtained.
4121 */
aab2207c 4122 l3 = searchp->nodelists[node];
35386e3b 4123
8fce4d8e 4124 reap_alien(searchp, l3);
1da177e4 4125
aab2207c 4126 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4127
35386e3b
CL
4128 /*
4129 * These are racy checks but it does not matter
4130 * if we skip one check or scan twice.
4131 */
e498be7d 4132 if (time_after(l3->next_reap, jiffies))
35386e3b 4133 goto next;
1da177e4 4134
e498be7d 4135 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4136
aab2207c 4137 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4138
ed11d9eb 4139 if (l3->free_touched)
e498be7d 4140 l3->free_touched = 0;
ed11d9eb
CL
4141 else {
4142 int freed;
1da177e4 4143
ed11d9eb
CL
4144 freed = drain_freelist(searchp, l3, (l3->free_limit +
4145 5 * searchp->num - 1) / (5 * searchp->num));
4146 STATS_ADD_REAPED(searchp, freed);
4147 }
35386e3b 4148next:
1da177e4
LT
4149 cond_resched();
4150 }
4151 check_irq_on();
18004c5d 4152 mutex_unlock(&slab_mutex);
8fce4d8e 4153 next_reap_node();
7c5cae36 4154out:
a737b3e2 4155 /* Set up the next iteration */
7c5cae36 4156 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4157}
4158
158a9624 4159#ifdef CONFIG_SLABINFO
1da177e4 4160
85289f98 4161static void print_slabinfo_header(struct seq_file *m)
1da177e4 4162{
85289f98
PE
4163 /*
4164 * Output format version, so at least we can change it
4165 * without _too_ many complaints.
4166 */
1da177e4 4167#if STATS
85289f98 4168 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4169#else
85289f98 4170 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4171#endif
85289f98
PE
4172 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4173 "<objperslab> <pagesperslab>");
4174 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4175 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4176#if STATS
85289f98 4177 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4178 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4179 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4180#endif
85289f98
PE
4181 seq_putc(m, '\n');
4182}
4183
4184static void *s_start(struct seq_file *m, loff_t *pos)
4185{
4186 loff_t n = *pos;
85289f98 4187
18004c5d 4188 mutex_lock(&slab_mutex);
85289f98
PE
4189 if (!n)
4190 print_slabinfo_header(m);
b92151ba 4191
18004c5d 4192 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4193}
4194
4195static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4196{
18004c5d 4197 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4198}
4199
4200static void s_stop(struct seq_file *m, void *p)
4201{
18004c5d 4202 mutex_unlock(&slab_mutex);
1da177e4
LT
4203}
4204
4205static int s_show(struct seq_file *m, void *p)
4206{
3b0efdfa 4207 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4208 struct slab *slabp;
4209 unsigned long active_objs;
4210 unsigned long num_objs;
4211 unsigned long active_slabs = 0;
4212 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4213 const char *name;
1da177e4 4214 char *error = NULL;
e498be7d
CL
4215 int node;
4216 struct kmem_list3 *l3;
1da177e4 4217
1da177e4
LT
4218 active_objs = 0;
4219 num_slabs = 0;
e498be7d
CL
4220 for_each_online_node(node) {
4221 l3 = cachep->nodelists[node];
4222 if (!l3)
4223 continue;
4224
ca3b9b91
RT
4225 check_irq_on();
4226 spin_lock_irq(&l3->list_lock);
e498be7d 4227
7a7c381d 4228 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4229 if (slabp->inuse != cachep->num && !error)
4230 error = "slabs_full accounting error";
4231 active_objs += cachep->num;
4232 active_slabs++;
4233 }
7a7c381d 4234 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4235 if (slabp->inuse == cachep->num && !error)
4236 error = "slabs_partial inuse accounting error";
4237 if (!slabp->inuse && !error)
4238 error = "slabs_partial/inuse accounting error";
4239 active_objs += slabp->inuse;
4240 active_slabs++;
4241 }
7a7c381d 4242 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4243 if (slabp->inuse && !error)
4244 error = "slabs_free/inuse accounting error";
4245 num_slabs++;
4246 }
4247 free_objects += l3->free_objects;
4484ebf1
RT
4248 if (l3->shared)
4249 shared_avail += l3->shared->avail;
e498be7d 4250
ca3b9b91 4251 spin_unlock_irq(&l3->list_lock);
1da177e4 4252 }
b28a02de
PE
4253 num_slabs += active_slabs;
4254 num_objs = num_slabs * cachep->num;
e498be7d 4255 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4256 error = "free_objects accounting error";
4257
b28a02de 4258 name = cachep->name;
1da177e4
LT
4259 if (error)
4260 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4261
4262 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4263 name, active_objs, num_objs, cachep->size,
b28a02de 4264 cachep->num, (1 << cachep->gfporder));
1da177e4 4265 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4266 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4267 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4268 active_slabs, num_slabs, shared_avail);
1da177e4 4269#if STATS
b28a02de 4270 { /* list3 stats */
1da177e4
LT
4271 unsigned long high = cachep->high_mark;
4272 unsigned long allocs = cachep->num_allocations;
4273 unsigned long grown = cachep->grown;
4274 unsigned long reaped = cachep->reaped;
4275 unsigned long errors = cachep->errors;
4276 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4277 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4278 unsigned long node_frees = cachep->node_frees;
fb7faf33 4279 unsigned long overflows = cachep->node_overflow;
1da177e4 4280
e92dd4fd
JP
4281 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4282 "%4lu %4lu %4lu %4lu %4lu",
4283 allocs, high, grown,
4284 reaped, errors, max_freeable, node_allocs,
4285 node_frees, overflows);
1da177e4
LT
4286 }
4287 /* cpu stats */
4288 {
4289 unsigned long allochit = atomic_read(&cachep->allochit);
4290 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4291 unsigned long freehit = atomic_read(&cachep->freehit);
4292 unsigned long freemiss = atomic_read(&cachep->freemiss);
4293
4294 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4295 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4296 }
4297#endif
4298 seq_putc(m, '\n');
1da177e4
LT
4299 return 0;
4300}
4301
4302/*
4303 * slabinfo_op - iterator that generates /proc/slabinfo
4304 *
4305 * Output layout:
4306 * cache-name
4307 * num-active-objs
4308 * total-objs
4309 * object size
4310 * num-active-slabs
4311 * total-slabs
4312 * num-pages-per-slab
4313 * + further values on SMP and with statistics enabled
4314 */
4315
7b3c3a50 4316static const struct seq_operations slabinfo_op = {
b28a02de
PE
4317 .start = s_start,
4318 .next = s_next,
4319 .stop = s_stop,
4320 .show = s_show,
1da177e4
LT
4321};
4322
4323#define MAX_SLABINFO_WRITE 128
4324/**
4325 * slabinfo_write - Tuning for the slab allocator
4326 * @file: unused
4327 * @buffer: user buffer
4328 * @count: data length
4329 * @ppos: unused
4330 */
68a1b195 4331static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4332 size_t count, loff_t *ppos)
1da177e4 4333{
b28a02de 4334 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4335 int limit, batchcount, shared, res;
7a7c381d 4336 struct kmem_cache *cachep;
b28a02de 4337
1da177e4
LT
4338 if (count > MAX_SLABINFO_WRITE)
4339 return -EINVAL;
4340 if (copy_from_user(&kbuf, buffer, count))
4341 return -EFAULT;
b28a02de 4342 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4343
4344 tmp = strchr(kbuf, ' ');
4345 if (!tmp)
4346 return -EINVAL;
4347 *tmp = '\0';
4348 tmp++;
4349 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4350 return -EINVAL;
4351
4352 /* Find the cache in the chain of caches. */
18004c5d 4353 mutex_lock(&slab_mutex);
1da177e4 4354 res = -EINVAL;
18004c5d 4355 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4356 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4357 if (limit < 1 || batchcount < 1 ||
4358 batchcount > limit || shared < 0) {
e498be7d 4359 res = 0;
1da177e4 4360 } else {
e498be7d 4361 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4362 batchcount, shared,
4363 GFP_KERNEL);
1da177e4
LT
4364 }
4365 break;
4366 }
4367 }
18004c5d 4368 mutex_unlock(&slab_mutex);
1da177e4
LT
4369 if (res >= 0)
4370 res = count;
4371 return res;
4372}
871751e2 4373
7b3c3a50
AD
4374static int slabinfo_open(struct inode *inode, struct file *file)
4375{
4376 return seq_open(file, &slabinfo_op);
4377}
4378
4379static const struct file_operations proc_slabinfo_operations = {
4380 .open = slabinfo_open,
4381 .read = seq_read,
4382 .write = slabinfo_write,
4383 .llseek = seq_lseek,
4384 .release = seq_release,
4385};
4386
871751e2
AV
4387#ifdef CONFIG_DEBUG_SLAB_LEAK
4388
4389static void *leaks_start(struct seq_file *m, loff_t *pos)
4390{
18004c5d
CL
4391 mutex_lock(&slab_mutex);
4392 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4393}
4394
4395static inline int add_caller(unsigned long *n, unsigned long v)
4396{
4397 unsigned long *p;
4398 int l;
4399 if (!v)
4400 return 1;
4401 l = n[1];
4402 p = n + 2;
4403 while (l) {
4404 int i = l/2;
4405 unsigned long *q = p + 2 * i;
4406 if (*q == v) {
4407 q[1]++;
4408 return 1;
4409 }
4410 if (*q > v) {
4411 l = i;
4412 } else {
4413 p = q + 2;
4414 l -= i + 1;
4415 }
4416 }
4417 if (++n[1] == n[0])
4418 return 0;
4419 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4420 p[0] = v;
4421 p[1] = 1;
4422 return 1;
4423}
4424
4425static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4426{
4427 void *p;
4428 int i;
4429 if (n[0] == n[1])
4430 return;
3b0efdfa 4431 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4432 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4433 continue;
4434 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4435 return;
4436 }
4437}
4438
4439static void show_symbol(struct seq_file *m, unsigned long address)
4440{
4441#ifdef CONFIG_KALLSYMS
871751e2 4442 unsigned long offset, size;
9281acea 4443 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4444
a5c43dae 4445 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4446 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4447 if (modname[0])
871751e2
AV
4448 seq_printf(m, " [%s]", modname);
4449 return;
4450 }
4451#endif
4452 seq_printf(m, "%p", (void *)address);
4453}
4454
4455static int leaks_show(struct seq_file *m, void *p)
4456{
0672aa7c 4457 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4458 struct slab *slabp;
4459 struct kmem_list3 *l3;
4460 const char *name;
4461 unsigned long *n = m->private;
4462 int node;
4463 int i;
4464
4465 if (!(cachep->flags & SLAB_STORE_USER))
4466 return 0;
4467 if (!(cachep->flags & SLAB_RED_ZONE))
4468 return 0;
4469
4470 /* OK, we can do it */
4471
4472 n[1] = 0;
4473
4474 for_each_online_node(node) {
4475 l3 = cachep->nodelists[node];
4476 if (!l3)
4477 continue;
4478
4479 check_irq_on();
4480 spin_lock_irq(&l3->list_lock);
4481
7a7c381d 4482 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4483 handle_slab(n, cachep, slabp);
7a7c381d 4484 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4485 handle_slab(n, cachep, slabp);
871751e2
AV
4486 spin_unlock_irq(&l3->list_lock);
4487 }
4488 name = cachep->name;
4489 if (n[0] == n[1]) {
4490 /* Increase the buffer size */
18004c5d 4491 mutex_unlock(&slab_mutex);
871751e2
AV
4492 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4493 if (!m->private) {
4494 /* Too bad, we are really out */
4495 m->private = n;
18004c5d 4496 mutex_lock(&slab_mutex);
871751e2
AV
4497 return -ENOMEM;
4498 }
4499 *(unsigned long *)m->private = n[0] * 2;
4500 kfree(n);
18004c5d 4501 mutex_lock(&slab_mutex);
871751e2
AV
4502 /* Now make sure this entry will be retried */
4503 m->count = m->size;
4504 return 0;
4505 }
4506 for (i = 0; i < n[1]; i++) {
4507 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4508 show_symbol(m, n[2*i+2]);
4509 seq_putc(m, '\n');
4510 }
d2e7b7d0 4511
871751e2
AV
4512 return 0;
4513}
4514
a0ec95a8 4515static const struct seq_operations slabstats_op = {
871751e2
AV
4516 .start = leaks_start,
4517 .next = s_next,
4518 .stop = s_stop,
4519 .show = leaks_show,
4520};
a0ec95a8
AD
4521
4522static int slabstats_open(struct inode *inode, struct file *file)
4523{
4524 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4525 int ret = -ENOMEM;
4526 if (n) {
4527 ret = seq_open(file, &slabstats_op);
4528 if (!ret) {
4529 struct seq_file *m = file->private_data;
4530 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4531 m->private = n;
4532 n = NULL;
4533 }
4534 kfree(n);
4535 }
4536 return ret;
4537}
4538
4539static const struct file_operations proc_slabstats_operations = {
4540 .open = slabstats_open,
4541 .read = seq_read,
4542 .llseek = seq_lseek,
4543 .release = seq_release_private,
4544};
4545#endif
4546
4547static int __init slab_proc_init(void)
4548{
ab067e99 4549 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4550#ifdef CONFIG_DEBUG_SLAB_LEAK
4551 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4552#endif
a0ec95a8
AD
4553 return 0;
4554}
4555module_init(slab_proc_init);
1da177e4
LT
4556#endif
4557
00e145b6
MS
4558/**
4559 * ksize - get the actual amount of memory allocated for a given object
4560 * @objp: Pointer to the object
4561 *
4562 * kmalloc may internally round up allocations and return more memory
4563 * than requested. ksize() can be used to determine the actual amount of
4564 * memory allocated. The caller may use this additional memory, even though
4565 * a smaller amount of memory was initially specified with the kmalloc call.
4566 * The caller must guarantee that objp points to a valid object previously
4567 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4568 * must not be freed during the duration of the call.
4569 */
fd76bab2 4570size_t ksize(const void *objp)
1da177e4 4571{
ef8b4520
CL
4572 BUG_ON(!objp);
4573 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4574 return 0;
1da177e4 4575
8c138bc0 4576 return virt_to_cache(objp)->object_size;
1da177e4 4577}
b1aabecd 4578EXPORT_SYMBOL(ksize);
This page took 1.539089 seconds and 5 git commands to generate.