[PATCH] on_each_cpu(): disable local interrupts
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
543537bd 104#include <linux/string.h>
e498be7d 105#include <linux/nodemask.h>
dc85da15 106#include <linux/mempolicy.h>
fc0abb14 107#include <linux/mutex.h>
1da177e4
LT
108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
1da177e4
LT
135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 173 SLAB_CACHE_DMA | \
1da177e4
LT
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
ac2b898c 178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
fa5b08d5 203typedef unsigned int kmem_bufctl_t;
1da177e4
LT
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned long next_reap;
296 int free_touched;
297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
313/*
a737b3e2
AM
314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 316 */
7243cc05 317static __always_inline int index_of(const size_t size)
e498be7d 318{
5ec8a847
SR
319 extern void __bad_size(void);
320
e498be7d
CL
321 if (__builtin_constant_p(size)) {
322 int i = 0;
323
324#define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329#include "linux/kmalloc_sizes.h"
330#undef CACHE
5ec8a847 331 __bad_size();
7243cc05 332 } else
5ec8a847 333 __bad_size();
e498be7d
CL
334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 339
5295a74c 340static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
2e1217cf 347 parent->colour_next = 0;
e498be7d
CL
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
a737b3e2
AM
353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
357 } while (0)
358
a737b3e2
AM
359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
e498be7d
CL
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
1da177e4
LT
365
366/*
343e0d7a 367 * struct kmem_cache
1da177e4
LT
368 *
369 * manages a cache.
370 */
b28a02de 371
2109a2d1 372struct kmem_cache {
1da177e4 373/* 1) per-cpu data, touched during every alloc/free */
b28a02de 374 struct array_cache *array[NR_CPUS];
b5d8ca7c 375/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
b5d8ca7c 379
3dafccf2 380 unsigned int buffer_size;
b5d8ca7c 381/* 3) touched by every alloc & free from the backend */
b28a02de 382 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 383
a737b3e2
AM
384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
1da177e4 386
b5d8ca7c 387/* 4) cache_grow/shrink */
1da177e4 388 /* order of pgs per slab (2^n) */
b28a02de 389 unsigned int gfporder;
1da177e4
LT
390
391 /* force GFP flags, e.g. GFP_DMA */
b28a02de 392 gfp_t gfpflags;
1da177e4 393
a737b3e2 394 size_t colour; /* cache colouring range */
b28a02de 395 unsigned int colour_off; /* colour offset */
343e0d7a 396 struct kmem_cache *slabp_cache;
b28a02de 397 unsigned int slab_size;
a737b3e2 398 unsigned int dflags; /* dynamic flags */
1da177e4
LT
399
400 /* constructor func */
343e0d7a 401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
402
403 /* de-constructor func */
343e0d7a 404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 405
b5d8ca7c 406/* 5) cache creation/removal */
b28a02de
PE
407 const char *name;
408 struct list_head next;
1da177e4 409
b5d8ca7c 410/* 6) statistics */
1da177e4 411#if STATS
b28a02de
PE
412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
421 atomic_t allochit;
422 atomic_t allocmiss;
423 atomic_t freehit;
424 atomic_t freemiss;
1da177e4
LT
425#endif
426#if DEBUG
3dafccf2
MS
427 /*
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
432 */
433 int obj_offset;
434 int obj_size;
1da177e4
LT
435#endif
436};
437
438#define CFLGS_OFF_SLAB (0x80000000UL)
439#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440
441#define BATCHREFILL_LIMIT 16
a737b3e2
AM
442/*
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
1da177e4 445 *
dc6f3f27 446 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
447 * which could lock up otherwise freeable slabs.
448 */
449#define REAPTIMEOUT_CPUC (2*HZ)
450#define REAPTIMEOUT_LIST3 (4*HZ)
451
452#if STATS
453#define STATS_INC_ACTIVE(x) ((x)->num_active++)
454#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456#define STATS_INC_GROWN(x) ((x)->grown++)
457#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
458#define STATS_SET_HIGH(x) \
459 do { \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
462 } while (0)
1da177e4
LT
463#define STATS_INC_ERR(x) ((x)->errors++)
464#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 465#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
a737b3e2
AM
466#define STATS_SET_FREEABLE(x, i) \
467 do { \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
470 } while (0)
1da177e4
LT
471#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
475#else
476#define STATS_INC_ACTIVE(x) do { } while (0)
477#define STATS_DEC_ACTIVE(x) do { } while (0)
478#define STATS_INC_ALLOCED(x) do { } while (0)
479#define STATS_INC_GROWN(x) do { } while (0)
480#define STATS_INC_REAPED(x) do { } while (0)
481#define STATS_SET_HIGH(x) do { } while (0)
482#define STATS_INC_ERR(x) do { } while (0)
483#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 484#define STATS_INC_NODEFREES(x) do { } while (0)
a737b3e2 485#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
486#define STATS_INC_ALLOCHIT(x) do { } while (0)
487#define STATS_INC_ALLOCMISS(x) do { } while (0)
488#define STATS_INC_FREEHIT(x) do { } while (0)
489#define STATS_INC_FREEMISS(x) do { } while (0)
490#endif
491
492#if DEBUG
a737b3e2
AM
493/*
494 * Magic nums for obj red zoning.
1da177e4
LT
495 * Placed in the first word before and the first word after an obj.
496 */
497#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500/* ...and for poisoning */
501#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502#define POISON_FREE 0x6b /* for use-after-free poisoning */
503#define POISON_END 0xa5 /* end-byte of poisoning */
504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593 return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598 page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
603 return (struct slab *)page->lru.prev;
604}
1da177e4 605
6ed5eb22
PE
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
608 struct page *page = virt_to_page(obj);
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_slab(page);
616}
617
8fea4e96
PE
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
624static inline unsigned int obj_to_index(struct kmem_cache *cache,
625 struct slab *slab, void *obj)
626{
627 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
628}
629
a737b3e2
AM
630/*
631 * These are the default caches for kmalloc. Custom caches can have other sizes.
632 */
1da177e4
LT
633struct cache_sizes malloc_sizes[] = {
634#define CACHE(x) { .cs_size = (x) },
635#include <linux/kmalloc_sizes.h>
636 CACHE(ULONG_MAX)
637#undef CACHE
638};
639EXPORT_SYMBOL(malloc_sizes);
640
641/* Must match cache_sizes above. Out of line to keep cache footprint low. */
642struct cache_names {
643 char *name;
644 char *name_dma;
645};
646
647static struct cache_names __initdata cache_names[] = {
648#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
649#include <linux/kmalloc_sizes.h>
b28a02de 650 {NULL,}
1da177e4
LT
651#undef CACHE
652};
653
654static struct arraycache_init initarray_cache __initdata =
b28a02de 655 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 656static struct arraycache_init initarray_generic =
b28a02de 657 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
658
659/* internal cache of cache description objs */
343e0d7a 660static struct kmem_cache cache_cache = {
b28a02de
PE
661 .batchcount = 1,
662 .limit = BOOT_CPUCACHE_ENTRIES,
663 .shared = 1,
343e0d7a 664 .buffer_size = sizeof(struct kmem_cache),
b28a02de 665 .name = "kmem_cache",
1da177e4 666#if DEBUG
343e0d7a 667 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
668#endif
669};
670
671/* Guard access to the cache-chain. */
fc0abb14 672static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
673static struct list_head cache_chain;
674
675/*
a737b3e2
AM
676 * vm_enough_memory() looks at this to determine how many slab-allocated pages
677 * are possibly freeable under pressure
1da177e4
LT
678 *
679 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
680 */
681atomic_t slab_reclaim_pages;
1da177e4
LT
682
683/*
684 * chicken and egg problem: delay the per-cpu array allocation
685 * until the general caches are up.
686 */
687static enum {
688 NONE,
e498be7d
CL
689 PARTIAL_AC,
690 PARTIAL_L3,
1da177e4
LT
691 FULL
692} g_cpucache_up;
693
694static DEFINE_PER_CPU(struct work_struct, reap_work);
695
a737b3e2
AM
696static void free_block(struct kmem_cache *cachep, void **objpp, int len,
697 int node);
343e0d7a 698static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 699static void cache_reap(void *unused);
343e0d7a 700static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 701
343e0d7a 702static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
703{
704 return cachep->array[smp_processor_id()];
705}
706
a737b3e2
AM
707static inline struct kmem_cache *__find_general_cachep(size_t size,
708 gfp_t gfpflags)
1da177e4
LT
709{
710 struct cache_sizes *csizep = malloc_sizes;
711
712#if DEBUG
713 /* This happens if someone tries to call
b28a02de
PE
714 * kmem_cache_create(), or __kmalloc(), before
715 * the generic caches are initialized.
716 */
c7e43c78 717 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
718#endif
719 while (size > csizep->cs_size)
720 csizep++;
721
722 /*
0abf40c1 723 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
724 * has cs_{dma,}cachep==NULL. Thus no special case
725 * for large kmalloc calls required.
726 */
727 if (unlikely(gfpflags & GFP_DMA))
728 return csizep->cs_dmacachep;
729 return csizep->cs_cachep;
730}
731
343e0d7a 732struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
733{
734 return __find_general_cachep(size, gfpflags);
735}
736EXPORT_SYMBOL(kmem_find_general_cachep);
737
fbaccacf 738static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 739{
fbaccacf
SR
740 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
741}
1da177e4 742
a737b3e2
AM
743/*
744 * Calculate the number of objects and left-over bytes for a given buffer size.
745 */
fbaccacf
SR
746static void cache_estimate(unsigned long gfporder, size_t buffer_size,
747 size_t align, int flags, size_t *left_over,
748 unsigned int *num)
749{
750 int nr_objs;
751 size_t mgmt_size;
752 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 753
fbaccacf
SR
754 /*
755 * The slab management structure can be either off the slab or
756 * on it. For the latter case, the memory allocated for a
757 * slab is used for:
758 *
759 * - The struct slab
760 * - One kmem_bufctl_t for each object
761 * - Padding to respect alignment of @align
762 * - @buffer_size bytes for each object
763 *
764 * If the slab management structure is off the slab, then the
765 * alignment will already be calculated into the size. Because
766 * the slabs are all pages aligned, the objects will be at the
767 * correct alignment when allocated.
768 */
769 if (flags & CFLGS_OFF_SLAB) {
770 mgmt_size = 0;
771 nr_objs = slab_size / buffer_size;
772
773 if (nr_objs > SLAB_LIMIT)
774 nr_objs = SLAB_LIMIT;
775 } else {
776 /*
777 * Ignore padding for the initial guess. The padding
778 * is at most @align-1 bytes, and @buffer_size is at
779 * least @align. In the worst case, this result will
780 * be one greater than the number of objects that fit
781 * into the memory allocation when taking the padding
782 * into account.
783 */
784 nr_objs = (slab_size - sizeof(struct slab)) /
785 (buffer_size + sizeof(kmem_bufctl_t));
786
787 /*
788 * This calculated number will be either the right
789 * amount, or one greater than what we want.
790 */
791 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
792 > slab_size)
793 nr_objs--;
794
795 if (nr_objs > SLAB_LIMIT)
796 nr_objs = SLAB_LIMIT;
797
798 mgmt_size = slab_mgmt_size(nr_objs, align);
799 }
800 *num = nr_objs;
801 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
802}
803
804#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
805
a737b3e2
AM
806static void __slab_error(const char *function, struct kmem_cache *cachep,
807 char *msg)
1da177e4
LT
808{
809 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 810 function, cachep->name, msg);
1da177e4
LT
811 dump_stack();
812}
813
8fce4d8e
CL
814#ifdef CONFIG_NUMA
815/*
816 * Special reaping functions for NUMA systems called from cache_reap().
817 * These take care of doing round robin flushing of alien caches (containing
818 * objects freed on different nodes from which they were allocated) and the
819 * flushing of remote pcps by calling drain_node_pages.
820 */
821static DEFINE_PER_CPU(unsigned long, reap_node);
822
823static void init_reap_node(int cpu)
824{
825 int node;
826
827 node = next_node(cpu_to_node(cpu), node_online_map);
828 if (node == MAX_NUMNODES)
829 node = 0;
830
831 __get_cpu_var(reap_node) = node;
832}
833
834static void next_reap_node(void)
835{
836 int node = __get_cpu_var(reap_node);
837
838 /*
839 * Also drain per cpu pages on remote zones
840 */
841 if (node != numa_node_id())
842 drain_node_pages(node);
843
844 node = next_node(node, node_online_map);
845 if (unlikely(node >= MAX_NUMNODES))
846 node = first_node(node_online_map);
847 __get_cpu_var(reap_node) = node;
848}
849
850#else
851#define init_reap_node(cpu) do { } while (0)
852#define next_reap_node(void) do { } while (0)
853#endif
854
1da177e4
LT
855/*
856 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
857 * via the workqueue/eventd.
858 * Add the CPU number into the expiration time to minimize the possibility of
859 * the CPUs getting into lockstep and contending for the global cache chain
860 * lock.
861 */
862static void __devinit start_cpu_timer(int cpu)
863{
864 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
865
866 /*
867 * When this gets called from do_initcalls via cpucache_init(),
868 * init_workqueues() has already run, so keventd will be setup
869 * at that time.
870 */
871 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 872 init_reap_node(cpu);
1da177e4
LT
873 INIT_WORK(reap_work, cache_reap, NULL);
874 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
875 }
876}
877
e498be7d 878static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 879 int batchcount)
1da177e4 880{
b28a02de 881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
882 struct array_cache *nc = NULL;
883
e498be7d 884 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
885 if (nc) {
886 nc->avail = 0;
887 nc->limit = entries;
888 nc->batchcount = batchcount;
889 nc->touched = 0;
e498be7d 890 spin_lock_init(&nc->lock);
1da177e4
LT
891 }
892 return nc;
893}
894
e498be7d 895#ifdef CONFIG_NUMA
343e0d7a 896static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
dc85da15 897
5295a74c 898static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
899{
900 struct array_cache **ac_ptr;
b28a02de 901 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
902 int i;
903
904 if (limit > 1)
905 limit = 12;
906 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
907 if (ac_ptr) {
908 for_each_node(i) {
909 if (i == node || !node_online(i)) {
910 ac_ptr[i] = NULL;
911 continue;
912 }
913 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
914 if (!ac_ptr[i]) {
b28a02de 915 for (i--; i <= 0; i--)
e498be7d
CL
916 kfree(ac_ptr[i]);
917 kfree(ac_ptr);
918 return NULL;
919 }
920 }
921 }
922 return ac_ptr;
923}
924
5295a74c 925static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
926{
927 int i;
928
929 if (!ac_ptr)
930 return;
e498be7d 931 for_each_node(i)
b28a02de 932 kfree(ac_ptr[i]);
e498be7d
CL
933 kfree(ac_ptr);
934}
935
343e0d7a 936static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 937 struct array_cache *ac, int node)
e498be7d
CL
938{
939 struct kmem_list3 *rl3 = cachep->nodelists[node];
940
941 if (ac->avail) {
942 spin_lock(&rl3->list_lock);
ff69416e 943 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
944 ac->avail = 0;
945 spin_unlock(&rl3->list_lock);
946 }
947}
948
8fce4d8e
CL
949/*
950 * Called from cache_reap() to regularly drain alien caches round robin.
951 */
952static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
953{
954 int node = __get_cpu_var(reap_node);
955
956 if (l3->alien) {
957 struct array_cache *ac = l3->alien[node];
958 if (ac && ac->avail) {
959 spin_lock_irq(&ac->lock);
960 __drain_alien_cache(cachep, ac, node);
961 spin_unlock_irq(&ac->lock);
962 }
963 }
964}
965
a737b3e2
AM
966static void drain_alien_cache(struct kmem_cache *cachep,
967 struct array_cache **alien)
e498be7d 968{
b28a02de 969 int i = 0;
e498be7d
CL
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
4484ebf1 974 ac = alien[i];
e498be7d
CL
975 if (ac) {
976 spin_lock_irqsave(&ac->lock, flags);
977 __drain_alien_cache(cachep, ac, i);
978 spin_unlock_irqrestore(&ac->lock, flags);
979 }
980 }
981}
982#else
7a21ef6f 983
4484ebf1 984#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 985#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 986
7a21ef6f
LT
987static inline struct array_cache **alloc_alien_cache(int node, int limit)
988{
989 return (struct array_cache **) 0x01020304ul;
990}
991
4484ebf1
RT
992static inline void free_alien_cache(struct array_cache **ac_ptr)
993{
994}
7a21ef6f 995
e498be7d
CL
996#endif
997
1da177e4 998static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 999 unsigned long action, void *hcpu)
1da177e4
LT
1000{
1001 long cpu = (long)hcpu;
343e0d7a 1002 struct kmem_cache *cachep;
e498be7d
CL
1003 struct kmem_list3 *l3 = NULL;
1004 int node = cpu_to_node(cpu);
1005 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1006
1007 switch (action) {
1008 case CPU_UP_PREPARE:
fc0abb14 1009 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1010 /*
1011 * We need to do this right in the beginning since
e498be7d
CL
1012 * alloc_arraycache's are going to use this list.
1013 * kmalloc_node allows us to add the slab to the right
1014 * kmem_list3 and not this cpu's kmem_list3
1015 */
1016
1da177e4 1017 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1018 /*
1019 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1020 * begin anything. Make sure some other cpu on this
1021 * node has not already allocated this
1022 */
1023 if (!cachep->nodelists[node]) {
a737b3e2
AM
1024 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1025 if (!l3)
e498be7d
CL
1026 goto bad;
1027 kmem_list3_init(l3);
1028 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1029 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1030
4484ebf1
RT
1031 /*
1032 * The l3s don't come and go as CPUs come and
1033 * go. cache_chain_mutex is sufficient
1034 * protection here.
1035 */
e498be7d
CL
1036 cachep->nodelists[node] = l3;
1037 }
1da177e4 1038
e498be7d
CL
1039 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1040 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1041 (1 + nr_cpus_node(node)) *
1042 cachep->batchcount + cachep->num;
e498be7d
CL
1043 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1044 }
1045
a737b3e2
AM
1046 /*
1047 * Now we can go ahead with allocating the shared arrays and
1048 * array caches
1049 */
e498be7d 1050 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1051 struct array_cache *nc;
4484ebf1
RT
1052 struct array_cache *shared;
1053 struct array_cache **alien;
cd105df4 1054
e498be7d 1055 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1056 cachep->batchcount);
1da177e4
LT
1057 if (!nc)
1058 goto bad;
4484ebf1
RT
1059 shared = alloc_arraycache(node,
1060 cachep->shared * cachep->batchcount,
1061 0xbaadf00d);
1062 if (!shared)
1063 goto bad;
7a21ef6f 1064
4484ebf1
RT
1065 alien = alloc_alien_cache(node, cachep->limit);
1066 if (!alien)
1067 goto bad;
1da177e4 1068 cachep->array[cpu] = nc;
e498be7d
CL
1069 l3 = cachep->nodelists[node];
1070 BUG_ON(!l3);
e498be7d 1071
4484ebf1
RT
1072 spin_lock_irq(&l3->list_lock);
1073 if (!l3->shared) {
1074 /*
1075 * We are serialised from CPU_DEAD or
1076 * CPU_UP_CANCELLED by the cpucontrol lock
1077 */
1078 l3->shared = shared;
1079 shared = NULL;
e498be7d 1080 }
4484ebf1
RT
1081#ifdef CONFIG_NUMA
1082 if (!l3->alien) {
1083 l3->alien = alien;
1084 alien = NULL;
1085 }
1086#endif
1087 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1088 kfree(shared);
1089 free_alien_cache(alien);
1da177e4 1090 }
fc0abb14 1091 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1092 break;
1093 case CPU_ONLINE:
1094 start_cpu_timer(cpu);
1095 break;
1096#ifdef CONFIG_HOTPLUG_CPU
1097 case CPU_DEAD:
4484ebf1
RT
1098 /*
1099 * Even if all the cpus of a node are down, we don't free the
1100 * kmem_list3 of any cache. This to avoid a race between
1101 * cpu_down, and a kmalloc allocation from another cpu for
1102 * memory from the node of the cpu going down. The list3
1103 * structure is usually allocated from kmem_cache_create() and
1104 * gets destroyed at kmem_cache_destroy().
1105 */
1da177e4
LT
1106 /* fall thru */
1107 case CPU_UP_CANCELED:
fc0abb14 1108 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1109 list_for_each_entry(cachep, &cache_chain, next) {
1110 struct array_cache *nc;
4484ebf1
RT
1111 struct array_cache *shared;
1112 struct array_cache **alien;
e498be7d 1113 cpumask_t mask;
1da177e4 1114
e498be7d 1115 mask = node_to_cpumask(node);
1da177e4
LT
1116 /* cpu is dead; no one can alloc from it. */
1117 nc = cachep->array[cpu];
1118 cachep->array[cpu] = NULL;
e498be7d
CL
1119 l3 = cachep->nodelists[node];
1120
1121 if (!l3)
4484ebf1 1122 goto free_array_cache;
e498be7d 1123
ca3b9b91 1124 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1125
1126 /* Free limit for this kmem_list3 */
1127 l3->free_limit -= cachep->batchcount;
1128 if (nc)
ff69416e 1129 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1130
1131 if (!cpus_empty(mask)) {
ca3b9b91 1132 spin_unlock_irq(&l3->list_lock);
4484ebf1 1133 goto free_array_cache;
b28a02de 1134 }
e498be7d 1135
4484ebf1
RT
1136 shared = l3->shared;
1137 if (shared) {
e498be7d 1138 free_block(cachep, l3->shared->entry,
b28a02de 1139 l3->shared->avail, node);
e498be7d
CL
1140 l3->shared = NULL;
1141 }
e498be7d 1142
4484ebf1
RT
1143 alien = l3->alien;
1144 l3->alien = NULL;
1145
1146 spin_unlock_irq(&l3->list_lock);
1147
1148 kfree(shared);
1149 if (alien) {
1150 drain_alien_cache(cachep, alien);
1151 free_alien_cache(alien);
e498be7d 1152 }
4484ebf1 1153free_array_cache:
1da177e4
LT
1154 kfree(nc);
1155 }
4484ebf1
RT
1156 /*
1157 * In the previous loop, all the objects were freed to
1158 * the respective cache's slabs, now we can go ahead and
1159 * shrink each nodelist to its limit.
1160 */
1161 list_for_each_entry(cachep, &cache_chain, next) {
1162 l3 = cachep->nodelists[node];
1163 if (!l3)
1164 continue;
1165 spin_lock_irq(&l3->list_lock);
1166 /* free slabs belonging to this node */
1167 __node_shrink(cachep, node);
1168 spin_unlock_irq(&l3->list_lock);
1169 }
fc0abb14 1170 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1171 break;
1172#endif
1173 }
1174 return NOTIFY_OK;
a737b3e2 1175bad:
fc0abb14 1176 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1177 return NOTIFY_BAD;
1178}
1179
1180static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1181
e498be7d
CL
1182/*
1183 * swap the static kmem_list3 with kmalloced memory
1184 */
a737b3e2
AM
1185static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1186 int nodeid)
e498be7d
CL
1187{
1188 struct kmem_list3 *ptr;
1189
1190 BUG_ON(cachep->nodelists[nodeid] != list);
1191 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1192 BUG_ON(!ptr);
1193
1194 local_irq_disable();
1195 memcpy(ptr, list, sizeof(struct kmem_list3));
1196 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1197 cachep->nodelists[nodeid] = ptr;
1198 local_irq_enable();
1199}
1200
a737b3e2
AM
1201/*
1202 * Initialisation. Called after the page allocator have been initialised and
1203 * before smp_init().
1da177e4
LT
1204 */
1205void __init kmem_cache_init(void)
1206{
1207 size_t left_over;
1208 struct cache_sizes *sizes;
1209 struct cache_names *names;
e498be7d 1210 int i;
07ed76b2 1211 int order;
e498be7d
CL
1212
1213 for (i = 0; i < NUM_INIT_LISTS; i++) {
1214 kmem_list3_init(&initkmem_list3[i]);
1215 if (i < MAX_NUMNODES)
1216 cache_cache.nodelists[i] = NULL;
1217 }
1da177e4
LT
1218
1219 /*
1220 * Fragmentation resistance on low memory - only use bigger
1221 * page orders on machines with more than 32MB of memory.
1222 */
1223 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1224 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1225
1da177e4
LT
1226 /* Bootstrap is tricky, because several objects are allocated
1227 * from caches that do not exist yet:
a737b3e2
AM
1228 * 1) initialize the cache_cache cache: it contains the struct
1229 * kmem_cache structures of all caches, except cache_cache itself:
1230 * cache_cache is statically allocated.
e498be7d
CL
1231 * Initially an __init data area is used for the head array and the
1232 * kmem_list3 structures, it's replaced with a kmalloc allocated
1233 * array at the end of the bootstrap.
1da177e4 1234 * 2) Create the first kmalloc cache.
343e0d7a 1235 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1236 * An __init data area is used for the head array.
1237 * 3) Create the remaining kmalloc caches, with minimally sized
1238 * head arrays.
1da177e4
LT
1239 * 4) Replace the __init data head arrays for cache_cache and the first
1240 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1241 * 5) Replace the __init data for kmem_list3 for cache_cache and
1242 * the other cache's with kmalloc allocated memory.
1243 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1244 */
1245
1246 /* 1) create the cache_cache */
1da177e4
LT
1247 INIT_LIST_HEAD(&cache_chain);
1248 list_add(&cache_cache.next, &cache_chain);
1249 cache_cache.colour_off = cache_line_size();
1250 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1251 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1252
a737b3e2
AM
1253 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1254 cache_line_size());
1da177e4 1255
07ed76b2
JS
1256 for (order = 0; order < MAX_ORDER; order++) {
1257 cache_estimate(order, cache_cache.buffer_size,
1258 cache_line_size(), 0, &left_over, &cache_cache.num);
1259 if (cache_cache.num)
1260 break;
1261 }
1da177e4
LT
1262 if (!cache_cache.num)
1263 BUG();
07ed76b2 1264 cache_cache.gfporder = order;
b28a02de 1265 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1266 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1267 sizeof(struct slab), cache_line_size());
1da177e4
LT
1268
1269 /* 2+3) create the kmalloc caches */
1270 sizes = malloc_sizes;
1271 names = cache_names;
1272
a737b3e2
AM
1273 /*
1274 * Initialize the caches that provide memory for the array cache and the
1275 * kmem_list3 structures first. Without this, further allocations will
1276 * bug.
e498be7d
CL
1277 */
1278
1279 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1280 sizes[INDEX_AC].cs_size,
1281 ARCH_KMALLOC_MINALIGN,
1282 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1283 NULL, NULL);
e498be7d 1284
a737b3e2 1285 if (INDEX_AC != INDEX_L3) {
e498be7d 1286 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1287 kmem_cache_create(names[INDEX_L3].name,
1288 sizes[INDEX_L3].cs_size,
1289 ARCH_KMALLOC_MINALIGN,
1290 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1291 NULL, NULL);
1292 }
e498be7d 1293
1da177e4 1294 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1295 /*
1296 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1297 * This should be particularly beneficial on SMP boxes, as it
1298 * eliminates "false sharing".
1299 * Note for systems short on memory removing the alignment will
e498be7d
CL
1300 * allow tighter packing of the smaller caches.
1301 */
a737b3e2 1302 if (!sizes->cs_cachep) {
e498be7d 1303 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1304 sizes->cs_size,
1305 ARCH_KMALLOC_MINALIGN,
1306 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1307 NULL, NULL);
1308 }
1da177e4
LT
1309
1310 /* Inc off-slab bufctl limit until the ceiling is hit. */
1311 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1312 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1313 offslab_limit /= sizeof(kmem_bufctl_t);
1314 }
1315
1316 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1317 sizes->cs_size,
1318 ARCH_KMALLOC_MINALIGN,
1319 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1320 SLAB_PANIC,
1321 NULL, NULL);
1da177e4
LT
1322 sizes++;
1323 names++;
1324 }
1325 /* 4) Replace the bootstrap head arrays */
1326 {
b28a02de 1327 void *ptr;
e498be7d 1328
1da177e4 1329 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1330
1da177e4 1331 local_irq_disable();
9a2dba4b
PE
1332 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1333 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1334 sizeof(struct arraycache_init));
1da177e4
LT
1335 cache_cache.array[smp_processor_id()] = ptr;
1336 local_irq_enable();
e498be7d 1337
1da177e4 1338 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1339
1da177e4 1340 local_irq_disable();
9a2dba4b 1341 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1342 != &initarray_generic.cache);
9a2dba4b 1343 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1344 sizeof(struct arraycache_init));
e498be7d 1345 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1346 ptr;
1da177e4
LT
1347 local_irq_enable();
1348 }
e498be7d
CL
1349 /* 5) Replace the bootstrap kmem_list3's */
1350 {
1351 int node;
1352 /* Replace the static kmem_list3 structures for the boot cpu */
1353 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1354 numa_node_id());
e498be7d
CL
1355
1356 for_each_online_node(node) {
1357 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1358 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1359
1360 if (INDEX_AC != INDEX_L3) {
1361 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1362 &initkmem_list3[SIZE_L3 + node],
1363 node);
e498be7d
CL
1364 }
1365 }
1366 }
1da177e4 1367
e498be7d 1368 /* 6) resize the head arrays to their final sizes */
1da177e4 1369 {
343e0d7a 1370 struct kmem_cache *cachep;
fc0abb14 1371 mutex_lock(&cache_chain_mutex);
1da177e4 1372 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1373 enable_cpucache(cachep);
fc0abb14 1374 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1375 }
1376
1377 /* Done! */
1378 g_cpucache_up = FULL;
1379
a737b3e2
AM
1380 /*
1381 * Register a cpu startup notifier callback that initializes
1382 * cpu_cache_get for all new cpus
1da177e4
LT
1383 */
1384 register_cpu_notifier(&cpucache_notifier);
1da177e4 1385
a737b3e2
AM
1386 /*
1387 * The reap timers are started later, with a module init call: That part
1388 * of the kernel is not yet operational.
1da177e4
LT
1389 */
1390}
1391
1392static int __init cpucache_init(void)
1393{
1394 int cpu;
1395
a737b3e2
AM
1396 /*
1397 * Register the timers that return unneeded pages to the page allocator
1da177e4 1398 */
e498be7d 1399 for_each_online_cpu(cpu)
a737b3e2 1400 start_cpu_timer(cpu);
1da177e4
LT
1401 return 0;
1402}
1da177e4
LT
1403__initcall(cpucache_init);
1404
1405/*
1406 * Interface to system's page allocator. No need to hold the cache-lock.
1407 *
1408 * If we requested dmaable memory, we will get it. Even if we
1409 * did not request dmaable memory, we might get it, but that
1410 * would be relatively rare and ignorable.
1411 */
343e0d7a 1412static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1413{
1414 struct page *page;
1415 void *addr;
1416 int i;
1417
1418 flags |= cachep->gfpflags;
50c85a19 1419 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1420 if (!page)
1421 return NULL;
1422 addr = page_address(page);
1423
1424 i = (1 << cachep->gfporder);
1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 atomic_add(i, &slab_reclaim_pages);
1427 add_page_state(nr_slab, i);
1428 while (i--) {
f205b2fe 1429 __SetPageSlab(page);
1da177e4
LT
1430 page++;
1431 }
1432 return addr;
1433}
1434
1435/*
1436 * Interface to system's page release.
1437 */
343e0d7a 1438static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1439{
b28a02de 1440 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1441 struct page *page = virt_to_page(addr);
1442 const unsigned long nr_freed = i;
1443
1444 while (i--) {
f205b2fe
NP
1445 BUG_ON(!PageSlab(page));
1446 __ClearPageSlab(page);
1da177e4
LT
1447 page++;
1448 }
1449 sub_page_state(nr_slab, nr_freed);
1450 if (current->reclaim_state)
1451 current->reclaim_state->reclaimed_slab += nr_freed;
1452 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1453 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1454 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1455}
1456
1457static void kmem_rcu_free(struct rcu_head *head)
1458{
b28a02de 1459 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1460 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1461
1462 kmem_freepages(cachep, slab_rcu->addr);
1463 if (OFF_SLAB(cachep))
1464 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1465}
1466
1467#if DEBUG
1468
1469#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1470static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1471 unsigned long caller)
1da177e4 1472{
3dafccf2 1473 int size = obj_size(cachep);
1da177e4 1474
3dafccf2 1475 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1476
b28a02de 1477 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1478 return;
1479
b28a02de
PE
1480 *addr++ = 0x12345678;
1481 *addr++ = caller;
1482 *addr++ = smp_processor_id();
1483 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1484 {
1485 unsigned long *sptr = &caller;
1486 unsigned long svalue;
1487
1488 while (!kstack_end(sptr)) {
1489 svalue = *sptr++;
1490 if (kernel_text_address(svalue)) {
b28a02de 1491 *addr++ = svalue;
1da177e4
LT
1492 size -= sizeof(unsigned long);
1493 if (size <= sizeof(unsigned long))
1494 break;
1495 }
1496 }
1497
1498 }
b28a02de 1499 *addr++ = 0x87654321;
1da177e4
LT
1500}
1501#endif
1502
343e0d7a 1503static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1504{
3dafccf2
MS
1505 int size = obj_size(cachep);
1506 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1507
1508 memset(addr, val, size);
b28a02de 1509 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1510}
1511
1512static void dump_line(char *data, int offset, int limit)
1513{
1514 int i;
1515 printk(KERN_ERR "%03x:", offset);
a737b3e2 1516 for (i = 0; i < limit; i++)
b28a02de 1517 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1518 printk("\n");
1519}
1520#endif
1521
1522#if DEBUG
1523
343e0d7a 1524static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1525{
1526 int i, size;
1527 char *realobj;
1528
1529 if (cachep->flags & SLAB_RED_ZONE) {
1530 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1531 *dbg_redzone1(cachep, objp),
1532 *dbg_redzone2(cachep, objp));
1da177e4
LT
1533 }
1534
1535 if (cachep->flags & SLAB_STORE_USER) {
1536 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1537 *dbg_userword(cachep, objp));
1da177e4 1538 print_symbol("(%s)",
a737b3e2 1539 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1540 printk("\n");
1541 }
3dafccf2
MS
1542 realobj = (char *)objp + obj_offset(cachep);
1543 size = obj_size(cachep);
b28a02de 1544 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1545 int limit;
1546 limit = 16;
b28a02de
PE
1547 if (i + limit > size)
1548 limit = size - i;
1da177e4
LT
1549 dump_line(realobj, i, limit);
1550 }
1551}
1552
343e0d7a 1553static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1554{
1555 char *realobj;
1556 int size, i;
1557 int lines = 0;
1558
3dafccf2
MS
1559 realobj = (char *)objp + obj_offset(cachep);
1560 size = obj_size(cachep);
1da177e4 1561
b28a02de 1562 for (i = 0; i < size; i++) {
1da177e4 1563 char exp = POISON_FREE;
b28a02de 1564 if (i == size - 1)
1da177e4
LT
1565 exp = POISON_END;
1566 if (realobj[i] != exp) {
1567 int limit;
1568 /* Mismatch ! */
1569 /* Print header */
1570 if (lines == 0) {
b28a02de 1571 printk(KERN_ERR
a737b3e2
AM
1572 "Slab corruption: start=%p, len=%d\n",
1573 realobj, size);
1da177e4
LT
1574 print_objinfo(cachep, objp, 0);
1575 }
1576 /* Hexdump the affected line */
b28a02de 1577 i = (i / 16) * 16;
1da177e4 1578 limit = 16;
b28a02de
PE
1579 if (i + limit > size)
1580 limit = size - i;
1da177e4
LT
1581 dump_line(realobj, i, limit);
1582 i += 16;
1583 lines++;
1584 /* Limit to 5 lines */
1585 if (lines > 5)
1586 break;
1587 }
1588 }
1589 if (lines != 0) {
1590 /* Print some data about the neighboring objects, if they
1591 * exist:
1592 */
6ed5eb22 1593 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1594 unsigned int objnr;
1da177e4 1595
8fea4e96 1596 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1597 if (objnr) {
8fea4e96 1598 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1599 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1600 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1601 realobj, size);
1da177e4
LT
1602 print_objinfo(cachep, objp, 2);
1603 }
b28a02de 1604 if (objnr + 1 < cachep->num) {
8fea4e96 1605 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1606 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1607 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1608 realobj, size);
1da177e4
LT
1609 print_objinfo(cachep, objp, 2);
1610 }
1611 }
1612}
1613#endif
1614
12dd36fa
MD
1615#if DEBUG
1616/**
911851e6
RD
1617 * slab_destroy_objs - destroy a slab and its objects
1618 * @cachep: cache pointer being destroyed
1619 * @slabp: slab pointer being destroyed
1620 *
1621 * Call the registered destructor for each object in a slab that is being
1622 * destroyed.
1da177e4 1623 */
343e0d7a 1624static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1625{
1da177e4
LT
1626 int i;
1627 for (i = 0; i < cachep->num; i++) {
8fea4e96 1628 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1629
1630 if (cachep->flags & SLAB_POISON) {
1631#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1632 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1633 OFF_SLAB(cachep))
b28a02de 1634 kernel_map_pages(virt_to_page(objp),
a737b3e2 1635 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1636 else
1637 check_poison_obj(cachep, objp);
1638#else
1639 check_poison_obj(cachep, objp);
1640#endif
1641 }
1642 if (cachep->flags & SLAB_RED_ZONE) {
1643 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1644 slab_error(cachep, "start of a freed object "
b28a02de 1645 "was overwritten");
1da177e4
LT
1646 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1647 slab_error(cachep, "end of a freed object "
b28a02de 1648 "was overwritten");
1da177e4
LT
1649 }
1650 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1651 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1652 }
12dd36fa 1653}
1da177e4 1654#else
343e0d7a 1655static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1656{
1da177e4
LT
1657 if (cachep->dtor) {
1658 int i;
1659 for (i = 0; i < cachep->num; i++) {
8fea4e96 1660 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1661 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1662 }
1663 }
12dd36fa 1664}
1da177e4
LT
1665#endif
1666
911851e6
RD
1667/**
1668 * slab_destroy - destroy and release all objects in a slab
1669 * @cachep: cache pointer being destroyed
1670 * @slabp: slab pointer being destroyed
1671 *
12dd36fa 1672 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1673 * Before calling the slab must have been unlinked from the cache. The
1674 * cache-lock is not held/needed.
12dd36fa 1675 */
343e0d7a 1676static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1677{
1678 void *addr = slabp->s_mem - slabp->colouroff;
1679
1680 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1681 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1682 struct slab_rcu *slab_rcu;
1683
b28a02de 1684 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1685 slab_rcu->cachep = cachep;
1686 slab_rcu->addr = addr;
1687 call_rcu(&slab_rcu->head, kmem_rcu_free);
1688 } else {
1689 kmem_freepages(cachep, addr);
1690 if (OFF_SLAB(cachep))
1691 kmem_cache_free(cachep->slabp_cache, slabp);
1692 }
1693}
1694
a737b3e2
AM
1695/*
1696 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1697 * size of kmem_list3.
1698 */
343e0d7a 1699static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1700{
1701 int node;
1702
1703 for_each_online_node(node) {
b28a02de 1704 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1705 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1706 REAPTIMEOUT_LIST3 +
1707 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1708 }
1709}
1710
4d268eba 1711/**
a70773dd
RD
1712 * calculate_slab_order - calculate size (page order) of slabs
1713 * @cachep: pointer to the cache that is being created
1714 * @size: size of objects to be created in this cache.
1715 * @align: required alignment for the objects.
1716 * @flags: slab allocation flags
1717 *
1718 * Also calculates the number of objects per slab.
4d268eba
PE
1719 *
1720 * This could be made much more intelligent. For now, try to avoid using
1721 * high order pages for slabs. When the gfp() functions are more friendly
1722 * towards high-order requests, this should be changed.
1723 */
a737b3e2 1724static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1725 size_t size, size_t align, unsigned long flags)
4d268eba
PE
1726{
1727 size_t left_over = 0;
9888e6fa 1728 int gfporder;
4d268eba 1729
a737b3e2 1730 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1731 unsigned int num;
1732 size_t remainder;
1733
9888e6fa 1734 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1735 if (!num)
1736 continue;
9888e6fa 1737
4d268eba 1738 /* More than offslab_limit objects will cause problems */
9888e6fa 1739 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
4d268eba
PE
1740 break;
1741
9888e6fa 1742 /* Found something acceptable - save it away */
4d268eba 1743 cachep->num = num;
9888e6fa 1744 cachep->gfporder = gfporder;
4d268eba
PE
1745 left_over = remainder;
1746
f78bb8ad
LT
1747 /*
1748 * A VFS-reclaimable slab tends to have most allocations
1749 * as GFP_NOFS and we really don't want to have to be allocating
1750 * higher-order pages when we are unable to shrink dcache.
1751 */
1752 if (flags & SLAB_RECLAIM_ACCOUNT)
1753 break;
1754
4d268eba
PE
1755 /*
1756 * Large number of objects is good, but very large slabs are
1757 * currently bad for the gfp()s.
1758 */
9888e6fa 1759 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1760 break;
1761
9888e6fa
LT
1762 /*
1763 * Acceptable internal fragmentation?
1764 */
a737b3e2 1765 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1766 break;
1767 }
1768 return left_over;
1769}
1770
f30cf7d1
PE
1771static void setup_cpu_cache(struct kmem_cache *cachep)
1772{
1773 if (g_cpucache_up == FULL) {
1774 enable_cpucache(cachep);
1775 return;
1776 }
1777 if (g_cpucache_up == NONE) {
1778 /*
1779 * Note: the first kmem_cache_create must create the cache
1780 * that's used by kmalloc(24), otherwise the creation of
1781 * further caches will BUG().
1782 */
1783 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1784
1785 /*
1786 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1787 * the first cache, then we need to set up all its list3s,
1788 * otherwise the creation of further caches will BUG().
1789 */
1790 set_up_list3s(cachep, SIZE_AC);
1791 if (INDEX_AC == INDEX_L3)
1792 g_cpucache_up = PARTIAL_L3;
1793 else
1794 g_cpucache_up = PARTIAL_AC;
1795 } else {
1796 cachep->array[smp_processor_id()] =
1797 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1798
1799 if (g_cpucache_up == PARTIAL_AC) {
1800 set_up_list3s(cachep, SIZE_L3);
1801 g_cpucache_up = PARTIAL_L3;
1802 } else {
1803 int node;
1804 for_each_online_node(node) {
1805 cachep->nodelists[node] =
1806 kmalloc_node(sizeof(struct kmem_list3),
1807 GFP_KERNEL, node);
1808 BUG_ON(!cachep->nodelists[node]);
1809 kmem_list3_init(cachep->nodelists[node]);
1810 }
1811 }
1812 }
1813 cachep->nodelists[numa_node_id()]->next_reap =
1814 jiffies + REAPTIMEOUT_LIST3 +
1815 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1816
1817 cpu_cache_get(cachep)->avail = 0;
1818 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1819 cpu_cache_get(cachep)->batchcount = 1;
1820 cpu_cache_get(cachep)->touched = 0;
1821 cachep->batchcount = 1;
1822 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1823}
1824
1da177e4
LT
1825/**
1826 * kmem_cache_create - Create a cache.
1827 * @name: A string which is used in /proc/slabinfo to identify this cache.
1828 * @size: The size of objects to be created in this cache.
1829 * @align: The required alignment for the objects.
1830 * @flags: SLAB flags
1831 * @ctor: A constructor for the objects.
1832 * @dtor: A destructor for the objects.
1833 *
1834 * Returns a ptr to the cache on success, NULL on failure.
1835 * Cannot be called within a int, but can be interrupted.
1836 * The @ctor is run when new pages are allocated by the cache
1837 * and the @dtor is run before the pages are handed back.
1838 *
1839 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1840 * the module calling this has to destroy the cache before getting unloaded.
1841 *
1da177e4
LT
1842 * The flags are
1843 *
1844 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1845 * to catch references to uninitialised memory.
1846 *
1847 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1848 * for buffer overruns.
1849 *
1da177e4
LT
1850 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1851 * cacheline. This can be beneficial if you're counting cycles as closely
1852 * as davem.
1853 */
343e0d7a 1854struct kmem_cache *
1da177e4 1855kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1856 unsigned long flags,
1857 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1858 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1859{
1860 size_t left_over, slab_size, ralign;
343e0d7a 1861 struct kmem_cache *cachep = NULL;
4f12bb4f 1862 struct list_head *p;
1da177e4
LT
1863
1864 /*
1865 * Sanity checks... these are all serious usage bugs.
1866 */
a737b3e2 1867 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1868 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1869 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1870 name);
b28a02de
PE
1871 BUG();
1872 }
1da177e4 1873
f0188f47
RT
1874 /*
1875 * Prevent CPUs from coming and going.
1876 * lock_cpu_hotplug() nests outside cache_chain_mutex
1877 */
1878 lock_cpu_hotplug();
1879
fc0abb14 1880 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1881
1882 list_for_each(p, &cache_chain) {
343e0d7a 1883 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
4f12bb4f
AM
1884 mm_segment_t old_fs = get_fs();
1885 char tmp;
1886 int res;
1887
1888 /*
1889 * This happens when the module gets unloaded and doesn't
1890 * destroy its slab cache and no-one else reuses the vmalloc
1891 * area of the module. Print a warning.
1892 */
1893 set_fs(KERNEL_DS);
1894 res = __get_user(tmp, pc->name);
1895 set_fs(old_fs);
1896 if (res) {
1897 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1898 pc->buffer_size);
4f12bb4f
AM
1899 continue;
1900 }
1901
b28a02de 1902 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1903 printk("kmem_cache_create: duplicate cache %s\n", name);
1904 dump_stack();
1905 goto oops;
1906 }
1907 }
1908
1da177e4
LT
1909#if DEBUG
1910 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1911 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1912 /* No constructor, but inital state check requested */
1913 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1914 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1915 flags &= ~SLAB_DEBUG_INITIAL;
1916 }
1da177e4
LT
1917#if FORCED_DEBUG
1918 /*
1919 * Enable redzoning and last user accounting, except for caches with
1920 * large objects, if the increased size would increase the object size
1921 * above the next power of two: caches with object sizes just above a
1922 * power of two have a significant amount of internal fragmentation.
1923 */
a737b3e2 1924 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 1925 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1926 if (!(flags & SLAB_DESTROY_BY_RCU))
1927 flags |= SLAB_POISON;
1928#endif
1929 if (flags & SLAB_DESTROY_BY_RCU)
1930 BUG_ON(flags & SLAB_POISON);
1931#endif
1932 if (flags & SLAB_DESTROY_BY_RCU)
1933 BUG_ON(dtor);
1934
1935 /*
a737b3e2
AM
1936 * Always checks flags, a caller might be expecting debug support which
1937 * isn't available.
1da177e4
LT
1938 */
1939 if (flags & ~CREATE_MASK)
1940 BUG();
1941
a737b3e2
AM
1942 /*
1943 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1944 * unaligned accesses for some archs when redzoning is used, and makes
1945 * sure any on-slab bufctl's are also correctly aligned.
1946 */
b28a02de
PE
1947 if (size & (BYTES_PER_WORD - 1)) {
1948 size += (BYTES_PER_WORD - 1);
1949 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1950 }
1951
a737b3e2
AM
1952 /* calculate the final buffer alignment: */
1953
1da177e4
LT
1954 /* 1) arch recommendation: can be overridden for debug */
1955 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
1956 /*
1957 * Default alignment: as specified by the arch code. Except if
1958 * an object is really small, then squeeze multiple objects into
1959 * one cacheline.
1da177e4
LT
1960 */
1961 ralign = cache_line_size();
b28a02de 1962 while (size <= ralign / 2)
1da177e4
LT
1963 ralign /= 2;
1964 } else {
1965 ralign = BYTES_PER_WORD;
1966 }
1967 /* 2) arch mandated alignment: disables debug if necessary */
1968 if (ralign < ARCH_SLAB_MINALIGN) {
1969 ralign = ARCH_SLAB_MINALIGN;
1970 if (ralign > BYTES_PER_WORD)
b28a02de 1971 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1972 }
1973 /* 3) caller mandated alignment: disables debug if necessary */
1974 if (ralign < align) {
1975 ralign = align;
1976 if (ralign > BYTES_PER_WORD)
b28a02de 1977 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 1978 }
a737b3e2
AM
1979 /*
1980 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
1981 * the alignment to BYTES_PER_WORD.
1982 */
1983 align = ralign;
1984
1985 /* Get cache's description obj. */
343e0d7a 1986 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1da177e4 1987 if (!cachep)
4f12bb4f 1988 goto oops;
343e0d7a 1989 memset(cachep, 0, sizeof(struct kmem_cache));
1da177e4
LT
1990
1991#if DEBUG
3dafccf2 1992 cachep->obj_size = size;
1da177e4
LT
1993
1994 if (flags & SLAB_RED_ZONE) {
1995 /* redzoning only works with word aligned caches */
1996 align = BYTES_PER_WORD;
1997
1998 /* add space for red zone words */
3dafccf2 1999 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2000 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2001 }
2002 if (flags & SLAB_STORE_USER) {
2003 /* user store requires word alignment and
2004 * one word storage behind the end of the real
2005 * object.
2006 */
2007 align = BYTES_PER_WORD;
2008 size += BYTES_PER_WORD;
2009 }
2010#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2011 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2012 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2013 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2014 size = PAGE_SIZE;
2015 }
2016#endif
2017#endif
2018
2019 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2020 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2021 /*
2022 * Size is large, assume best to place the slab management obj
2023 * off-slab (should allow better packing of objs).
2024 */
2025 flags |= CFLGS_OFF_SLAB;
2026
2027 size = ALIGN(size, align);
2028
f78bb8ad 2029 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2030
2031 if (!cachep->num) {
2032 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2033 kmem_cache_free(&cache_cache, cachep);
2034 cachep = NULL;
4f12bb4f 2035 goto oops;
1da177e4 2036 }
b28a02de
PE
2037 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2038 + sizeof(struct slab), align);
1da177e4
LT
2039
2040 /*
2041 * If the slab has been placed off-slab, and we have enough space then
2042 * move it on-slab. This is at the expense of any extra colouring.
2043 */
2044 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2045 flags &= ~CFLGS_OFF_SLAB;
2046 left_over -= slab_size;
2047 }
2048
2049 if (flags & CFLGS_OFF_SLAB) {
2050 /* really off slab. No need for manual alignment */
b28a02de
PE
2051 slab_size =
2052 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2053 }
2054
2055 cachep->colour_off = cache_line_size();
2056 /* Offset must be a multiple of the alignment. */
2057 if (cachep->colour_off < align)
2058 cachep->colour_off = align;
b28a02de 2059 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2060 cachep->slab_size = slab_size;
2061 cachep->flags = flags;
2062 cachep->gfpflags = 0;
2063 if (flags & SLAB_CACHE_DMA)
2064 cachep->gfpflags |= GFP_DMA;
3dafccf2 2065 cachep->buffer_size = size;
1da177e4
LT
2066
2067 if (flags & CFLGS_OFF_SLAB)
b2d55073 2068 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2069 cachep->ctor = ctor;
2070 cachep->dtor = dtor;
2071 cachep->name = name;
2072
1da177e4 2073
f30cf7d1 2074 setup_cpu_cache(cachep);
1da177e4 2075
1da177e4
LT
2076 /* cache setup completed, link it into the list */
2077 list_add(&cachep->next, &cache_chain);
a737b3e2 2078oops:
1da177e4
LT
2079 if (!cachep && (flags & SLAB_PANIC))
2080 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2081 name);
fc0abb14 2082 mutex_unlock(&cache_chain_mutex);
f0188f47 2083 unlock_cpu_hotplug();
1da177e4
LT
2084 return cachep;
2085}
2086EXPORT_SYMBOL(kmem_cache_create);
2087
2088#if DEBUG
2089static void check_irq_off(void)
2090{
2091 BUG_ON(!irqs_disabled());
2092}
2093
2094static void check_irq_on(void)
2095{
2096 BUG_ON(irqs_disabled());
2097}
2098
343e0d7a 2099static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2100{
2101#ifdef CONFIG_SMP
2102 check_irq_off();
e498be7d 2103 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2104#endif
2105}
e498be7d 2106
343e0d7a 2107static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2108{
2109#ifdef CONFIG_SMP
2110 check_irq_off();
2111 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2112#endif
2113}
2114
1da177e4
LT
2115#else
2116#define check_irq_off() do { } while(0)
2117#define check_irq_on() do { } while(0)
2118#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2119#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2120#endif
2121
2122/*
2123 * Waits for all CPUs to execute func().
2124 */
b28a02de 2125static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1da177e4
LT
2126{
2127 check_irq_on();
2128 preempt_disable();
1da177e4
LT
2129 local_irq_disable();
2130 func(arg);
2131 local_irq_enable();
2132
2133 if (smp_call_function(func, arg, 1, 1))
2134 BUG();
2135
2136 preempt_enable();
2137}
2138
a737b3e2
AM
2139static void drain_array_locked(struct kmem_cache *cachep,
2140 struct array_cache *ac, int force, int node);
1da177e4
LT
2141
2142static void do_drain(void *arg)
2143{
a737b3e2 2144 struct kmem_cache *cachep = arg;
1da177e4 2145 struct array_cache *ac;
ff69416e 2146 int node = numa_node_id();
1da177e4
LT
2147
2148 check_irq_off();
9a2dba4b 2149 ac = cpu_cache_get(cachep);
ff69416e
CL
2150 spin_lock(&cachep->nodelists[node]->list_lock);
2151 free_block(cachep, ac->entry, ac->avail, node);
2152 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2153 ac->avail = 0;
2154}
2155
343e0d7a 2156static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2157{
e498be7d
CL
2158 struct kmem_list3 *l3;
2159 int node;
2160
1da177e4
LT
2161 smp_call_function_all_cpus(do_drain, cachep);
2162 check_irq_on();
b28a02de 2163 for_each_online_node(node) {
e498be7d
CL
2164 l3 = cachep->nodelists[node];
2165 if (l3) {
ca3b9b91 2166 spin_lock_irq(&l3->list_lock);
e498be7d 2167 drain_array_locked(cachep, l3->shared, 1, node);
ca3b9b91 2168 spin_unlock_irq(&l3->list_lock);
e498be7d 2169 if (l3->alien)
4484ebf1 2170 drain_alien_cache(cachep, l3->alien);
e498be7d
CL
2171 }
2172 }
1da177e4
LT
2173}
2174
343e0d7a 2175static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2176{
2177 struct slab *slabp;
e498be7d 2178 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2179 int ret;
2180
e498be7d 2181 for (;;) {
1da177e4
LT
2182 struct list_head *p;
2183
e498be7d
CL
2184 p = l3->slabs_free.prev;
2185 if (p == &l3->slabs_free)
1da177e4
LT
2186 break;
2187
e498be7d 2188 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
2189#if DEBUG
2190 if (slabp->inuse)
2191 BUG();
2192#endif
2193 list_del(&slabp->list);
2194
e498be7d
CL
2195 l3->free_objects -= cachep->num;
2196 spin_unlock_irq(&l3->list_lock);
1da177e4 2197 slab_destroy(cachep, slabp);
e498be7d 2198 spin_lock_irq(&l3->list_lock);
1da177e4 2199 }
b28a02de 2200 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2201 return ret;
2202}
2203
343e0d7a 2204static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2205{
2206 int ret = 0, i = 0;
2207 struct kmem_list3 *l3;
2208
2209 drain_cpu_caches(cachep);
2210
2211 check_irq_on();
2212 for_each_online_node(i) {
2213 l3 = cachep->nodelists[i];
2214 if (l3) {
2215 spin_lock_irq(&l3->list_lock);
2216 ret += __node_shrink(cachep, i);
2217 spin_unlock_irq(&l3->list_lock);
2218 }
2219 }
2220 return (ret ? 1 : 0);
2221}
2222
1da177e4
LT
2223/**
2224 * kmem_cache_shrink - Shrink a cache.
2225 * @cachep: The cache to shrink.
2226 *
2227 * Releases as many slabs as possible for a cache.
2228 * To help debugging, a zero exit status indicates all slabs were released.
2229 */
343e0d7a 2230int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4
LT
2231{
2232 if (!cachep || in_interrupt())
2233 BUG();
2234
2235 return __cache_shrink(cachep);
2236}
2237EXPORT_SYMBOL(kmem_cache_shrink);
2238
2239/**
2240 * kmem_cache_destroy - delete a cache
2241 * @cachep: the cache to destroy
2242 *
343e0d7a 2243 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2244 * Returns 0 on success.
2245 *
2246 * It is expected this function will be called by a module when it is
2247 * unloaded. This will remove the cache completely, and avoid a duplicate
2248 * cache being allocated each time a module is loaded and unloaded, if the
2249 * module doesn't have persistent in-kernel storage across loads and unloads.
2250 *
2251 * The cache must be empty before calling this function.
2252 *
2253 * The caller must guarantee that noone will allocate memory from the cache
2254 * during the kmem_cache_destroy().
2255 */
343e0d7a 2256int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2257{
2258 int i;
e498be7d 2259 struct kmem_list3 *l3;
1da177e4
LT
2260
2261 if (!cachep || in_interrupt())
2262 BUG();
2263
2264 /* Don't let CPUs to come and go */
2265 lock_cpu_hotplug();
2266
2267 /* Find the cache in the chain of caches. */
fc0abb14 2268 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2269 /*
2270 * the chain is never empty, cache_cache is never destroyed
2271 */
2272 list_del(&cachep->next);
fc0abb14 2273 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2274
2275 if (__cache_shrink(cachep)) {
2276 slab_error(cachep, "Can't free all objects");
fc0abb14 2277 mutex_lock(&cache_chain_mutex);
b28a02de 2278 list_add(&cachep->next, &cache_chain);
fc0abb14 2279 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2280 unlock_cpu_hotplug();
2281 return 1;
2282 }
2283
2284 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2285 synchronize_rcu();
1da177e4 2286
e498be7d 2287 for_each_online_cpu(i)
b28a02de 2288 kfree(cachep->array[i]);
1da177e4
LT
2289
2290 /* NUMA: free the list3 structures */
e498be7d 2291 for_each_online_node(i) {
a737b3e2
AM
2292 l3 = cachep->nodelists[i];
2293 if (l3) {
e498be7d
CL
2294 kfree(l3->shared);
2295 free_alien_cache(l3->alien);
2296 kfree(l3);
2297 }
2298 }
1da177e4 2299 kmem_cache_free(&cache_cache, cachep);
1da177e4 2300 unlock_cpu_hotplug();
1da177e4
LT
2301 return 0;
2302}
2303EXPORT_SYMBOL(kmem_cache_destroy);
2304
2305/* Get the memory for a slab management obj. */
343e0d7a 2306static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
b28a02de 2307 int colour_off, gfp_t local_flags)
1da177e4
LT
2308{
2309 struct slab *slabp;
b28a02de 2310
1da177e4
LT
2311 if (OFF_SLAB(cachep)) {
2312 /* Slab management obj is off-slab. */
2313 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2314 if (!slabp)
2315 return NULL;
2316 } else {
b28a02de 2317 slabp = objp + colour_off;
1da177e4
LT
2318 colour_off += cachep->slab_size;
2319 }
2320 slabp->inuse = 0;
2321 slabp->colouroff = colour_off;
b28a02de 2322 slabp->s_mem = objp + colour_off;
1da177e4
LT
2323 return slabp;
2324}
2325
2326static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2327{
b28a02de 2328 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2329}
2330
343e0d7a 2331static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2332 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2333{
2334 int i;
2335
2336 for (i = 0; i < cachep->num; i++) {
8fea4e96 2337 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2338#if DEBUG
2339 /* need to poison the objs? */
2340 if (cachep->flags & SLAB_POISON)
2341 poison_obj(cachep, objp, POISON_FREE);
2342 if (cachep->flags & SLAB_STORE_USER)
2343 *dbg_userword(cachep, objp) = NULL;
2344
2345 if (cachep->flags & SLAB_RED_ZONE) {
2346 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2347 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2348 }
2349 /*
a737b3e2
AM
2350 * Constructors are not allowed to allocate memory from the same
2351 * cache which they are a constructor for. Otherwise, deadlock.
2352 * They must also be threaded.
1da177e4
LT
2353 */
2354 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2355 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2356 ctor_flags);
1da177e4
LT
2357
2358 if (cachep->flags & SLAB_RED_ZONE) {
2359 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2360 slab_error(cachep, "constructor overwrote the"
b28a02de 2361 " end of an object");
1da177e4
LT
2362 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2363 slab_error(cachep, "constructor overwrote the"
b28a02de 2364 " start of an object");
1da177e4 2365 }
a737b3e2
AM
2366 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2367 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2368 kernel_map_pages(virt_to_page(objp),
3dafccf2 2369 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2370#else
2371 if (cachep->ctor)
2372 cachep->ctor(objp, cachep, ctor_flags);
2373#endif
b28a02de 2374 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2375 }
b28a02de 2376 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2377 slabp->free = 0;
2378}
2379
343e0d7a 2380static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2381{
a737b3e2
AM
2382 if (flags & SLAB_DMA)
2383 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2384 else
2385 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2386}
2387
a737b3e2
AM
2388static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2389 int nodeid)
78d382d7 2390{
8fea4e96 2391 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2392 kmem_bufctl_t next;
2393
2394 slabp->inuse++;
2395 next = slab_bufctl(slabp)[slabp->free];
2396#if DEBUG
2397 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2398 WARN_ON(slabp->nodeid != nodeid);
2399#endif
2400 slabp->free = next;
2401
2402 return objp;
2403}
2404
a737b3e2
AM
2405static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2406 void *objp, int nodeid)
78d382d7 2407{
8fea4e96 2408 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2409
2410#if DEBUG
2411 /* Verify that the slab belongs to the intended node */
2412 WARN_ON(slabp->nodeid != nodeid);
2413
2414 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2415 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2416 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2417 BUG();
2418 }
2419#endif
2420 slab_bufctl(slabp)[objnr] = slabp->free;
2421 slabp->free = objnr;
2422 slabp->inuse--;
2423}
2424
a737b3e2
AM
2425static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2426 void *objp)
1da177e4
LT
2427{
2428 int i;
2429 struct page *page;
2430
2431 /* Nasty!!!!!! I hope this is OK. */
2432 i = 1 << cachep->gfporder;
2433 page = virt_to_page(objp);
2434 do {
065d41cb
PE
2435 page_set_cache(page, cachep);
2436 page_set_slab(page, slabp);
1da177e4
LT
2437 page++;
2438 } while (--i);
2439}
2440
2441/*
2442 * Grow (by 1) the number of slabs within a cache. This is called by
2443 * kmem_cache_alloc() when there are no active objs left in a cache.
2444 */
343e0d7a 2445static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2446{
b28a02de
PE
2447 struct slab *slabp;
2448 void *objp;
2449 size_t offset;
2450 gfp_t local_flags;
2451 unsigned long ctor_flags;
e498be7d 2452 struct kmem_list3 *l3;
1da177e4 2453
a737b3e2
AM
2454 /*
2455 * Be lazy and only check for valid flags here, keeping it out of the
2456 * critical path in kmem_cache_alloc().
1da177e4 2457 */
b28a02de 2458 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2459 BUG();
2460 if (flags & SLAB_NO_GROW)
2461 return 0;
2462
2463 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2464 local_flags = (flags & SLAB_LEVEL_MASK);
2465 if (!(local_flags & __GFP_WAIT))
2466 /*
2467 * Not allowed to sleep. Need to tell a constructor about
2468 * this - it might need to know...
2469 */
2470 ctor_flags |= SLAB_CTOR_ATOMIC;
2471
2e1217cf 2472 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2473 check_irq_off();
2e1217cf
RT
2474 l3 = cachep->nodelists[nodeid];
2475 spin_lock(&l3->list_lock);
1da177e4
LT
2476
2477 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2478 offset = l3->colour_next;
2479 l3->colour_next++;
2480 if (l3->colour_next >= cachep->colour)
2481 l3->colour_next = 0;
2482 spin_unlock(&l3->list_lock);
1da177e4 2483
2e1217cf 2484 offset *= cachep->colour_off;
1da177e4
LT
2485
2486 if (local_flags & __GFP_WAIT)
2487 local_irq_enable();
2488
2489 /*
2490 * The test for missing atomic flag is performed here, rather than
2491 * the more obvious place, simply to reduce the critical path length
2492 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2493 * will eventually be caught here (where it matters).
2494 */
2495 kmem_flagcheck(cachep, flags);
2496
a737b3e2
AM
2497 /*
2498 * Get mem for the objs. Attempt to allocate a physical page from
2499 * 'nodeid'.
e498be7d 2500 */
a737b3e2
AM
2501 objp = kmem_getpages(cachep, flags, nodeid);
2502 if (!objp)
1da177e4
LT
2503 goto failed;
2504
2505 /* Get slab management. */
a737b3e2
AM
2506 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2507 if (!slabp)
1da177e4
LT
2508 goto opps1;
2509
e498be7d 2510 slabp->nodeid = nodeid;
1da177e4
LT
2511 set_slab_attr(cachep, slabp, objp);
2512
2513 cache_init_objs(cachep, slabp, ctor_flags);
2514
2515 if (local_flags & __GFP_WAIT)
2516 local_irq_disable();
2517 check_irq_off();
e498be7d 2518 spin_lock(&l3->list_lock);
1da177e4
LT
2519
2520 /* Make slab active. */
e498be7d 2521 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2522 STATS_INC_GROWN(cachep);
e498be7d
CL
2523 l3->free_objects += cachep->num;
2524 spin_unlock(&l3->list_lock);
1da177e4 2525 return 1;
a737b3e2 2526opps1:
1da177e4 2527 kmem_freepages(cachep, objp);
a737b3e2 2528failed:
1da177e4
LT
2529 if (local_flags & __GFP_WAIT)
2530 local_irq_disable();
2531 return 0;
2532}
2533
2534#if DEBUG
2535
2536/*
2537 * Perform extra freeing checks:
2538 * - detect bad pointers.
2539 * - POISON/RED_ZONE checking
2540 * - destructor calls, for caches with POISON+dtor
2541 */
2542static void kfree_debugcheck(const void *objp)
2543{
2544 struct page *page;
2545
2546 if (!virt_addr_valid(objp)) {
2547 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2548 (unsigned long)objp);
2549 BUG();
1da177e4
LT
2550 }
2551 page = virt_to_page(objp);
2552 if (!PageSlab(page)) {
b28a02de
PE
2553 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2554 (unsigned long)objp);
1da177e4
LT
2555 BUG();
2556 }
2557}
2558
343e0d7a 2559static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2560 void *caller)
1da177e4
LT
2561{
2562 struct page *page;
2563 unsigned int objnr;
2564 struct slab *slabp;
2565
3dafccf2 2566 objp -= obj_offset(cachep);
1da177e4
LT
2567 kfree_debugcheck(objp);
2568 page = virt_to_page(objp);
2569
065d41cb 2570 if (page_get_cache(page) != cachep) {
a737b3e2
AM
2571 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2572 "cache %p, got %p\n",
b28a02de 2573 page_get_cache(page), cachep);
1da177e4 2574 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2575 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2576 page_get_cache(page)->name);
1da177e4
LT
2577 WARN_ON(1);
2578 }
065d41cb 2579 slabp = page_get_slab(page);
1da177e4
LT
2580
2581 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2582 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2583 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2584 slab_error(cachep, "double free, or memory outside"
2585 " object was overwritten");
2586 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2587 "redzone 2:0x%lx.\n",
b28a02de
PE
2588 objp, *dbg_redzone1(cachep, objp),
2589 *dbg_redzone2(cachep, objp));
1da177e4
LT
2590 }
2591 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2592 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2593 }
2594 if (cachep->flags & SLAB_STORE_USER)
2595 *dbg_userword(cachep, objp) = caller;
2596
8fea4e96 2597 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2598
2599 BUG_ON(objnr >= cachep->num);
8fea4e96 2600 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2601
2602 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2603 /*
2604 * Need to call the slab's constructor so the caller can
2605 * perform a verify of its state (debugging). Called without
2606 * the cache-lock held.
1da177e4 2607 */
3dafccf2 2608 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2609 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2610 }
2611 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2612 /* we want to cache poison the object,
2613 * call the destruction callback
2614 */
3dafccf2 2615 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
2616 }
2617 if (cachep->flags & SLAB_POISON) {
2618#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2619 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2620 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2621 kernel_map_pages(virt_to_page(objp),
3dafccf2 2622 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2623 } else {
2624 poison_obj(cachep, objp, POISON_FREE);
2625 }
2626#else
2627 poison_obj(cachep, objp, POISON_FREE);
2628#endif
2629 }
2630 return objp;
2631}
2632
343e0d7a 2633static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2634{
2635 kmem_bufctl_t i;
2636 int entries = 0;
b28a02de 2637
1da177e4
LT
2638 /* Check slab's freelist to see if this obj is there. */
2639 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2640 entries++;
2641 if (entries > cachep->num || i >= cachep->num)
2642 goto bad;
2643 }
2644 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2645bad:
2646 printk(KERN_ERR "slab: Internal list corruption detected in "
2647 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2648 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2649 for (i = 0;
264132bc 2650 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2651 i++) {
a737b3e2 2652 if (i % 16 == 0)
1da177e4 2653 printk("\n%03x:", i);
b28a02de 2654 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2655 }
2656 printk("\n");
2657 BUG();
2658 }
2659}
2660#else
2661#define kfree_debugcheck(x) do { } while(0)
2662#define cache_free_debugcheck(x,objp,z) (objp)
2663#define check_slabp(x,y) do { } while(0)
2664#endif
2665
343e0d7a 2666static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2667{
2668 int batchcount;
2669 struct kmem_list3 *l3;
2670 struct array_cache *ac;
2671
2672 check_irq_off();
9a2dba4b 2673 ac = cpu_cache_get(cachep);
a737b3e2 2674retry:
1da177e4
LT
2675 batchcount = ac->batchcount;
2676 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2677 /*
2678 * If there was little recent activity on this cache, then
2679 * perform only a partial refill. Otherwise we could generate
2680 * refill bouncing.
1da177e4
LT
2681 */
2682 batchcount = BATCHREFILL_LIMIT;
2683 }
e498be7d
CL
2684 l3 = cachep->nodelists[numa_node_id()];
2685
2686 BUG_ON(ac->avail > 0 || !l3);
2687 spin_lock(&l3->list_lock);
1da177e4 2688
1da177e4
LT
2689 if (l3->shared) {
2690 struct array_cache *shared_array = l3->shared;
2691 if (shared_array->avail) {
2692 if (batchcount > shared_array->avail)
2693 batchcount = shared_array->avail;
2694 shared_array->avail -= batchcount;
2695 ac->avail = batchcount;
e498be7d 2696 memcpy(ac->entry,
b28a02de
PE
2697 &(shared_array->entry[shared_array->avail]),
2698 sizeof(void *) * batchcount);
1da177e4
LT
2699 shared_array->touched = 1;
2700 goto alloc_done;
2701 }
2702 }
2703 while (batchcount > 0) {
2704 struct list_head *entry;
2705 struct slab *slabp;
2706 /* Get slab alloc is to come from. */
2707 entry = l3->slabs_partial.next;
2708 if (entry == &l3->slabs_partial) {
2709 l3->free_touched = 1;
2710 entry = l3->slabs_free.next;
2711 if (entry == &l3->slabs_free)
2712 goto must_grow;
2713 }
2714
2715 slabp = list_entry(entry, struct slab, list);
2716 check_slabp(cachep, slabp);
2717 check_spinlock_acquired(cachep);
2718 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2719 STATS_INC_ALLOCED(cachep);
2720 STATS_INC_ACTIVE(cachep);
2721 STATS_SET_HIGH(cachep);
2722
78d382d7
MD
2723 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2724 numa_node_id());
1da177e4
LT
2725 }
2726 check_slabp(cachep, slabp);
2727
2728 /* move slabp to correct slabp list: */
2729 list_del(&slabp->list);
2730 if (slabp->free == BUFCTL_END)
2731 list_add(&slabp->list, &l3->slabs_full);
2732 else
2733 list_add(&slabp->list, &l3->slabs_partial);
2734 }
2735
a737b3e2 2736must_grow:
1da177e4 2737 l3->free_objects -= ac->avail;
a737b3e2 2738alloc_done:
e498be7d 2739 spin_unlock(&l3->list_lock);
1da177e4
LT
2740
2741 if (unlikely(!ac->avail)) {
2742 int x;
e498be7d
CL
2743 x = cache_grow(cachep, flags, numa_node_id());
2744
a737b3e2 2745 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2746 ac = cpu_cache_get(cachep);
a737b3e2 2747 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2748 return NULL;
2749
a737b3e2 2750 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2751 goto retry;
2752 }
2753 ac->touched = 1;
e498be7d 2754 return ac->entry[--ac->avail];
1da177e4
LT
2755}
2756
a737b3e2
AM
2757static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2758 gfp_t flags)
1da177e4
LT
2759{
2760 might_sleep_if(flags & __GFP_WAIT);
2761#if DEBUG
2762 kmem_flagcheck(cachep, flags);
2763#endif
2764}
2765
2766#if DEBUG
a737b3e2
AM
2767static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2768 gfp_t flags, void *objp, void *caller)
1da177e4 2769{
b28a02de 2770 if (!objp)
1da177e4 2771 return objp;
b28a02de 2772 if (cachep->flags & SLAB_POISON) {
1da177e4 2773#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2774 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2775 kernel_map_pages(virt_to_page(objp),
3dafccf2 2776 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2777 else
2778 check_poison_obj(cachep, objp);
2779#else
2780 check_poison_obj(cachep, objp);
2781#endif
2782 poison_obj(cachep, objp, POISON_INUSE);
2783 }
2784 if (cachep->flags & SLAB_STORE_USER)
2785 *dbg_userword(cachep, objp) = caller;
2786
2787 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2788 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2789 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2790 slab_error(cachep, "double free, or memory outside"
2791 " object was overwritten");
b28a02de 2792 printk(KERN_ERR
a737b3e2
AM
2793 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2794 objp, *dbg_redzone1(cachep, objp),
2795 *dbg_redzone2(cachep, objp));
1da177e4
LT
2796 }
2797 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2798 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2799 }
3dafccf2 2800 objp += obj_offset(cachep);
1da177e4 2801 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2802 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2803
2804 if (!(flags & __GFP_WAIT))
2805 ctor_flags |= SLAB_CTOR_ATOMIC;
2806
2807 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2808 }
1da177e4
LT
2809 return objp;
2810}
2811#else
2812#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2813#endif
2814
343e0d7a 2815static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2816{
b28a02de 2817 void *objp;
1da177e4
LT
2818 struct array_cache *ac;
2819
dc85da15 2820#ifdef CONFIG_NUMA
86c562a9 2821 if (unlikely(current->mempolicy && !in_interrupt())) {
dc85da15
CL
2822 int nid = slab_node(current->mempolicy);
2823
2824 if (nid != numa_node_id())
2825 return __cache_alloc_node(cachep, flags, nid);
2826 }
2827#endif
2828
5c382300 2829 check_irq_off();
9a2dba4b 2830 ac = cpu_cache_get(cachep);
1da177e4
LT
2831 if (likely(ac->avail)) {
2832 STATS_INC_ALLOCHIT(cachep);
2833 ac->touched = 1;
e498be7d 2834 objp = ac->entry[--ac->avail];
1da177e4
LT
2835 } else {
2836 STATS_INC_ALLOCMISS(cachep);
2837 objp = cache_alloc_refill(cachep, flags);
2838 }
5c382300
AK
2839 return objp;
2840}
2841
a737b3e2
AM
2842static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2843 gfp_t flags, void *caller)
5c382300
AK
2844{
2845 unsigned long save_flags;
b28a02de 2846 void *objp;
5c382300
AK
2847
2848 cache_alloc_debugcheck_before(cachep, flags);
2849
2850 local_irq_save(save_flags);
2851 objp = ____cache_alloc(cachep, flags);
1da177e4 2852 local_irq_restore(save_flags);
34342e86 2853 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2854 caller);
34342e86 2855 prefetchw(objp);
1da177e4
LT
2856 return objp;
2857}
2858
e498be7d
CL
2859#ifdef CONFIG_NUMA
2860/*
2861 * A interface to enable slab creation on nodeid
1da177e4 2862 */
a737b3e2
AM
2863static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2864 int nodeid)
e498be7d
CL
2865{
2866 struct list_head *entry;
b28a02de
PE
2867 struct slab *slabp;
2868 struct kmem_list3 *l3;
2869 void *obj;
b28a02de
PE
2870 int x;
2871
2872 l3 = cachep->nodelists[nodeid];
2873 BUG_ON(!l3);
2874
a737b3e2 2875retry:
ca3b9b91 2876 check_irq_off();
b28a02de
PE
2877 spin_lock(&l3->list_lock);
2878 entry = l3->slabs_partial.next;
2879 if (entry == &l3->slabs_partial) {
2880 l3->free_touched = 1;
2881 entry = l3->slabs_free.next;
2882 if (entry == &l3->slabs_free)
2883 goto must_grow;
2884 }
2885
2886 slabp = list_entry(entry, struct slab, list);
2887 check_spinlock_acquired_node(cachep, nodeid);
2888 check_slabp(cachep, slabp);
2889
2890 STATS_INC_NODEALLOCS(cachep);
2891 STATS_INC_ACTIVE(cachep);
2892 STATS_SET_HIGH(cachep);
2893
2894 BUG_ON(slabp->inuse == cachep->num);
2895
78d382d7 2896 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
2897 check_slabp(cachep, slabp);
2898 l3->free_objects--;
2899 /* move slabp to correct slabp list: */
2900 list_del(&slabp->list);
2901
a737b3e2 2902 if (slabp->free == BUFCTL_END)
b28a02de 2903 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 2904 else
b28a02de 2905 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 2906
b28a02de
PE
2907 spin_unlock(&l3->list_lock);
2908 goto done;
e498be7d 2909
a737b3e2 2910must_grow:
b28a02de
PE
2911 spin_unlock(&l3->list_lock);
2912 x = cache_grow(cachep, flags, nodeid);
1da177e4 2913
b28a02de
PE
2914 if (!x)
2915 return NULL;
e498be7d 2916
b28a02de 2917 goto retry;
a737b3e2 2918done:
b28a02de 2919 return obj;
e498be7d
CL
2920}
2921#endif
2922
2923/*
2924 * Caller needs to acquire correct kmem_list's list_lock
2925 */
343e0d7a 2926static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 2927 int node)
1da177e4
LT
2928{
2929 int i;
e498be7d 2930 struct kmem_list3 *l3;
1da177e4
LT
2931
2932 for (i = 0; i < nr_objects; i++) {
2933 void *objp = objpp[i];
2934 struct slab *slabp;
1da177e4 2935
6ed5eb22 2936 slabp = virt_to_slab(objp);
ff69416e 2937 l3 = cachep->nodelists[node];
1da177e4 2938 list_del(&slabp->list);
ff69416e 2939 check_spinlock_acquired_node(cachep, node);
1da177e4 2940 check_slabp(cachep, slabp);
78d382d7 2941 slab_put_obj(cachep, slabp, objp, node);
1da177e4 2942 STATS_DEC_ACTIVE(cachep);
e498be7d 2943 l3->free_objects++;
1da177e4
LT
2944 check_slabp(cachep, slabp);
2945
2946 /* fixup slab chains */
2947 if (slabp->inuse == 0) {
e498be7d
CL
2948 if (l3->free_objects > l3->free_limit) {
2949 l3->free_objects -= cachep->num;
1da177e4
LT
2950 slab_destroy(cachep, slabp);
2951 } else {
e498be7d 2952 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2953 }
2954 } else {
2955 /* Unconditionally move a slab to the end of the
2956 * partial list on free - maximum time for the
2957 * other objects to be freed, too.
2958 */
e498be7d 2959 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2960 }
2961 }
2962}
2963
343e0d7a 2964static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
2965{
2966 int batchcount;
e498be7d 2967 struct kmem_list3 *l3;
ff69416e 2968 int node = numa_node_id();
1da177e4
LT
2969
2970 batchcount = ac->batchcount;
2971#if DEBUG
2972 BUG_ON(!batchcount || batchcount > ac->avail);
2973#endif
2974 check_irq_off();
ff69416e 2975 l3 = cachep->nodelists[node];
e498be7d
CL
2976 spin_lock(&l3->list_lock);
2977 if (l3->shared) {
2978 struct array_cache *shared_array = l3->shared;
b28a02de 2979 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2980 if (max) {
2981 if (batchcount > max)
2982 batchcount = max;
e498be7d 2983 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2984 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2985 shared_array->avail += batchcount;
2986 goto free_done;
2987 }
2988 }
2989
ff69416e 2990 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 2991free_done:
1da177e4
LT
2992#if STATS
2993 {
2994 int i = 0;
2995 struct list_head *p;
2996
e498be7d
CL
2997 p = l3->slabs_free.next;
2998 while (p != &(l3->slabs_free)) {
1da177e4
LT
2999 struct slab *slabp;
3000
3001 slabp = list_entry(p, struct slab, list);
3002 BUG_ON(slabp->inuse);
3003
3004 i++;
3005 p = p->next;
3006 }
3007 STATS_SET_FREEABLE(cachep, i);
3008 }
3009#endif
e498be7d 3010 spin_unlock(&l3->list_lock);
1da177e4 3011 ac->avail -= batchcount;
a737b3e2 3012 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3013}
3014
3015/*
a737b3e2
AM
3016 * Release an obj back to its cache. If the obj has a constructed state, it must
3017 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3018 */
343e0d7a 3019static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3020{
9a2dba4b 3021 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3022
3023 check_irq_off();
3024 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3025
e498be7d
CL
3026 /* Make sure we are not freeing a object from another
3027 * node to the array cache on this cpu.
3028 */
3029#ifdef CONFIG_NUMA
3030 {
3031 struct slab *slabp;
6ed5eb22 3032 slabp = virt_to_slab(objp);
e498be7d
CL
3033 if (unlikely(slabp->nodeid != numa_node_id())) {
3034 struct array_cache *alien = NULL;
3035 int nodeid = slabp->nodeid;
a737b3e2 3036 struct kmem_list3 *l3;
e498be7d 3037
a737b3e2 3038 l3 = cachep->nodelists[numa_node_id()];
e498be7d
CL
3039 STATS_INC_NODEFREES(cachep);
3040 if (l3->alien && l3->alien[nodeid]) {
3041 alien = l3->alien[nodeid];
3042 spin_lock(&alien->lock);
3043 if (unlikely(alien->avail == alien->limit))
3044 __drain_alien_cache(cachep,
b28a02de 3045 alien, nodeid);
e498be7d
CL
3046 alien->entry[alien->avail++] = objp;
3047 spin_unlock(&alien->lock);
3048 } else {
3049 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 3050 list_lock);
ff69416e 3051 free_block(cachep, &objp, 1, nodeid);
e498be7d 3052 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 3053 list_lock);
e498be7d
CL
3054 }
3055 return;
3056 }
3057 }
3058#endif
1da177e4
LT
3059 if (likely(ac->avail < ac->limit)) {
3060 STATS_INC_FREEHIT(cachep);
e498be7d 3061 ac->entry[ac->avail++] = objp;
1da177e4
LT
3062 return;
3063 } else {
3064 STATS_INC_FREEMISS(cachep);
3065 cache_flusharray(cachep, ac);
e498be7d 3066 ac->entry[ac->avail++] = objp;
1da177e4
LT
3067 }
3068}
3069
3070/**
3071 * kmem_cache_alloc - Allocate an object
3072 * @cachep: The cache to allocate from.
3073 * @flags: See kmalloc().
3074 *
3075 * Allocate an object from this cache. The flags are only relevant
3076 * if the cache has no available objects.
3077 */
343e0d7a 3078void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3079{
7fd6b141 3080 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3081}
3082EXPORT_SYMBOL(kmem_cache_alloc);
3083
3084/**
3085 * kmem_ptr_validate - check if an untrusted pointer might
3086 * be a slab entry.
3087 * @cachep: the cache we're checking against
3088 * @ptr: pointer to validate
3089 *
3090 * This verifies that the untrusted pointer looks sane:
3091 * it is _not_ a guarantee that the pointer is actually
3092 * part of the slab cache in question, but it at least
3093 * validates that the pointer can be dereferenced and
3094 * looks half-way sane.
3095 *
3096 * Currently only used for dentry validation.
3097 */
343e0d7a 3098int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3099{
b28a02de 3100 unsigned long addr = (unsigned long)ptr;
1da177e4 3101 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3102 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3103 unsigned long size = cachep->buffer_size;
1da177e4
LT
3104 struct page *page;
3105
3106 if (unlikely(addr < min_addr))
3107 goto out;
3108 if (unlikely(addr > (unsigned long)high_memory - size))
3109 goto out;
3110 if (unlikely(addr & align_mask))
3111 goto out;
3112 if (unlikely(!kern_addr_valid(addr)))
3113 goto out;
3114 if (unlikely(!kern_addr_valid(addr + size - 1)))
3115 goto out;
3116 page = virt_to_page(ptr);
3117 if (unlikely(!PageSlab(page)))
3118 goto out;
065d41cb 3119 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3120 goto out;
3121 return 1;
a737b3e2 3122out:
1da177e4
LT
3123 return 0;
3124}
3125
3126#ifdef CONFIG_NUMA
3127/**
3128 * kmem_cache_alloc_node - Allocate an object on the specified node
3129 * @cachep: The cache to allocate from.
3130 * @flags: See kmalloc().
3131 * @nodeid: node number of the target node.
3132 *
3133 * Identical to kmem_cache_alloc, except that this function is slow
3134 * and can sleep. And it will allocate memory on the given node, which
3135 * can improve the performance for cpu bound structures.
e498be7d
CL
3136 * New and improved: it will now make sure that the object gets
3137 * put on the correct node list so that there is no false sharing.
1da177e4 3138 */
343e0d7a 3139void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3140{
e498be7d
CL
3141 unsigned long save_flags;
3142 void *ptr;
1da177e4 3143
e498be7d
CL
3144 cache_alloc_debugcheck_before(cachep, flags);
3145 local_irq_save(save_flags);
18f820f6
CL
3146
3147 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3148 !cachep->nodelists[nodeid])
5c382300
AK
3149 ptr = ____cache_alloc(cachep, flags);
3150 else
3151 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3152 local_irq_restore(save_flags);
18f820f6
CL
3153
3154 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3155 __builtin_return_address(0));
1da177e4 3156
e498be7d 3157 return ptr;
1da177e4
LT
3158}
3159EXPORT_SYMBOL(kmem_cache_alloc_node);
3160
dd0fc66f 3161void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3162{
343e0d7a 3163 struct kmem_cache *cachep;
97e2bde4
MS
3164
3165 cachep = kmem_find_general_cachep(size, flags);
3166 if (unlikely(cachep == NULL))
3167 return NULL;
3168 return kmem_cache_alloc_node(cachep, flags, node);
3169}
3170EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3171#endif
3172
3173/**
3174 * kmalloc - allocate memory
3175 * @size: how many bytes of memory are required.
3176 * @flags: the type of memory to allocate.
911851e6 3177 * @caller: function caller for debug tracking of the caller
1da177e4
LT
3178 *
3179 * kmalloc is the normal method of allocating memory
3180 * in the kernel.
3181 *
3182 * The @flags argument may be one of:
3183 *
3184 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3185 *
3186 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3187 *
3188 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3189 *
3190 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3191 * must be suitable for DMA. This can mean different things on different
3192 * platforms. For example, on i386, it means that the memory must come
3193 * from the first 16MB.
3194 */
7fd6b141
PE
3195static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3196 void *caller)
1da177e4 3197{
343e0d7a 3198 struct kmem_cache *cachep;
1da177e4 3199
97e2bde4
MS
3200 /* If you want to save a few bytes .text space: replace
3201 * __ with kmem_.
3202 * Then kmalloc uses the uninlined functions instead of the inline
3203 * functions.
3204 */
3205 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3206 if (unlikely(cachep == NULL))
3207 return NULL;
7fd6b141
PE
3208 return __cache_alloc(cachep, flags, caller);
3209}
3210
3211#ifndef CONFIG_DEBUG_SLAB
3212
3213void *__kmalloc(size_t size, gfp_t flags)
3214{
3215 return __do_kmalloc(size, flags, NULL);
1da177e4
LT
3216}
3217EXPORT_SYMBOL(__kmalloc);
3218
7fd6b141
PE
3219#else
3220
3221void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3222{
3223 return __do_kmalloc(size, flags, caller);
3224}
3225EXPORT_SYMBOL(__kmalloc_track_caller);
3226
3227#endif
3228
1da177e4
LT
3229#ifdef CONFIG_SMP
3230/**
3231 * __alloc_percpu - allocate one copy of the object for every present
3232 * cpu in the system, zeroing them.
3233 * Objects should be dereferenced using the per_cpu_ptr macro only.
3234 *
3235 * @size: how many bytes of memory are required.
1da177e4 3236 */
f9f75005 3237void *__alloc_percpu(size_t size)
1da177e4
LT
3238{
3239 int i;
b28a02de 3240 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3241
3242 if (!pdata)
3243 return NULL;
3244
e498be7d
CL
3245 /*
3246 * Cannot use for_each_online_cpu since a cpu may come online
3247 * and we have no way of figuring out how to fix the array
3248 * that we have allocated then....
3249 */
3250 for_each_cpu(i) {
3251 int node = cpu_to_node(i);
3252
3253 if (node_online(node))
3254 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3255 else
3256 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3257
3258 if (!pdata->ptrs[i])
3259 goto unwind_oom;
3260 memset(pdata->ptrs[i], 0, size);
3261 }
3262
3263 /* Catch derefs w/o wrappers */
b28a02de 3264 return (void *)(~(unsigned long)pdata);
1da177e4 3265
a737b3e2 3266unwind_oom:
1da177e4
LT
3267 while (--i >= 0) {
3268 if (!cpu_possible(i))
3269 continue;
3270 kfree(pdata->ptrs[i]);
3271 }
3272 kfree(pdata);
3273 return NULL;
3274}
3275EXPORT_SYMBOL(__alloc_percpu);
3276#endif
3277
3278/**
3279 * kmem_cache_free - Deallocate an object
3280 * @cachep: The cache the allocation was from.
3281 * @objp: The previously allocated object.
3282 *
3283 * Free an object which was previously allocated from this
3284 * cache.
3285 */
343e0d7a 3286void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3287{
3288 unsigned long flags;
3289
3290 local_irq_save(flags);
3291 __cache_free(cachep, objp);
3292 local_irq_restore(flags);
3293}
3294EXPORT_SYMBOL(kmem_cache_free);
3295
1da177e4
LT
3296/**
3297 * kfree - free previously allocated memory
3298 * @objp: pointer returned by kmalloc.
3299 *
80e93eff
PE
3300 * If @objp is NULL, no operation is performed.
3301 *
1da177e4
LT
3302 * Don't free memory not originally allocated by kmalloc()
3303 * or you will run into trouble.
3304 */
3305void kfree(const void *objp)
3306{
343e0d7a 3307 struct kmem_cache *c;
1da177e4
LT
3308 unsigned long flags;
3309
3310 if (unlikely(!objp))
3311 return;
3312 local_irq_save(flags);
3313 kfree_debugcheck(objp);
6ed5eb22 3314 c = virt_to_cache(objp);
3dafccf2 3315 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3316 __cache_free(c, (void *)objp);
1da177e4
LT
3317 local_irq_restore(flags);
3318}
3319EXPORT_SYMBOL(kfree);
3320
3321#ifdef CONFIG_SMP
3322/**
3323 * free_percpu - free previously allocated percpu memory
3324 * @objp: pointer returned by alloc_percpu.
3325 *
3326 * Don't free memory not originally allocated by alloc_percpu()
3327 * The complemented objp is to check for that.
3328 */
b28a02de 3329void free_percpu(const void *objp)
1da177e4
LT
3330{
3331 int i;
b28a02de 3332 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3333
e498be7d
CL
3334 /*
3335 * We allocate for all cpus so we cannot use for online cpu here.
3336 */
3337 for_each_cpu(i)
b28a02de 3338 kfree(p->ptrs[i]);
1da177e4
LT
3339 kfree(p);
3340}
3341EXPORT_SYMBOL(free_percpu);
3342#endif
3343
343e0d7a 3344unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3345{
3dafccf2 3346 return obj_size(cachep);
1da177e4
LT
3347}
3348EXPORT_SYMBOL(kmem_cache_size);
3349
343e0d7a 3350const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3351{
3352 return cachep->name;
3353}
3354EXPORT_SYMBOL_GPL(kmem_cache_name);
3355
e498be7d
CL
3356/*
3357 * This initializes kmem_list3 for all nodes.
3358 */
343e0d7a 3359static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3360{
3361 int node;
3362 struct kmem_list3 *l3;
3363 int err = 0;
3364
3365 for_each_online_node(node) {
3366 struct array_cache *nc = NULL, *new;
3367 struct array_cache **new_alien = NULL;
3368#ifdef CONFIG_NUMA
a737b3e2
AM
3369 new_alien = alloc_alien_cache(node, cachep->limit);
3370 if (!new_alien)
e498be7d
CL
3371 goto fail;
3372#endif
a737b3e2
AM
3373 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3374 0xbaadf00d);
3375 if (!new)
e498be7d 3376 goto fail;
a737b3e2
AM
3377 l3 = cachep->nodelists[node];
3378 if (l3) {
e498be7d
CL
3379 spin_lock_irq(&l3->list_lock);
3380
a737b3e2
AM
3381 nc = cachep->nodelists[node]->shared;
3382 if (nc)
b28a02de 3383 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3384
3385 l3->shared = new;
3386 if (!cachep->nodelists[node]->alien) {
3387 l3->alien = new_alien;
3388 new_alien = NULL;
3389 }
b28a02de 3390 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3391 cachep->batchcount + cachep->num;
e498be7d
CL
3392 spin_unlock_irq(&l3->list_lock);
3393 kfree(nc);
3394 free_alien_cache(new_alien);
3395 continue;
3396 }
a737b3e2
AM
3397 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3398 if (!l3)
e498be7d
CL
3399 goto fail;
3400
3401 kmem_list3_init(l3);
3402 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3403 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3404 l3->shared = new;
3405 l3->alien = new_alien;
b28a02de 3406 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3407 cachep->batchcount + cachep->num;
e498be7d
CL
3408 cachep->nodelists[node] = l3;
3409 }
3410 return err;
a737b3e2 3411fail:
e498be7d
CL
3412 err = -ENOMEM;
3413 return err;
3414}
3415
1da177e4 3416struct ccupdate_struct {
343e0d7a 3417 struct kmem_cache *cachep;
1da177e4
LT
3418 struct array_cache *new[NR_CPUS];
3419};
3420
3421static void do_ccupdate_local(void *info)
3422{
a737b3e2 3423 struct ccupdate_struct *new = info;
1da177e4
LT
3424 struct array_cache *old;
3425
3426 check_irq_off();
9a2dba4b 3427 old = cpu_cache_get(new->cachep);
e498be7d 3428
1da177e4
LT
3429 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3430 new->new[smp_processor_id()] = old;
3431}
3432
b5d8ca7c 3433/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3434static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3435 int batchcount, int shared)
1da177e4
LT
3436{
3437 struct ccupdate_struct new;
e498be7d 3438 int i, err;
1da177e4 3439
b28a02de 3440 memset(&new.new, 0, sizeof(new.new));
e498be7d 3441 for_each_online_cpu(i) {
a737b3e2
AM
3442 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3443 batchcount);
e498be7d 3444 if (!new.new[i]) {
b28a02de
PE
3445 for (i--; i >= 0; i--)
3446 kfree(new.new[i]);
e498be7d 3447 return -ENOMEM;
1da177e4
LT
3448 }
3449 }
3450 new.cachep = cachep;
3451
3452 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
e498be7d 3453
1da177e4 3454 check_irq_on();
1da177e4
LT
3455 cachep->batchcount = batchcount;
3456 cachep->limit = limit;
e498be7d 3457 cachep->shared = shared;
1da177e4 3458
e498be7d 3459 for_each_online_cpu(i) {
1da177e4
LT
3460 struct array_cache *ccold = new.new[i];
3461 if (!ccold)
3462 continue;
e498be7d 3463 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3464 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3465 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3466 kfree(ccold);
3467 }
1da177e4 3468
e498be7d
CL
3469 err = alloc_kmemlist(cachep);
3470 if (err) {
3471 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3472 cachep->name, -err);
e498be7d 3473 BUG();
1da177e4 3474 }
1da177e4
LT
3475 return 0;
3476}
3477
b5d8ca7c 3478/* Called with cache_chain_mutex held always */
343e0d7a 3479static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3480{
3481 int err;
3482 int limit, shared;
3483
a737b3e2
AM
3484 /*
3485 * The head array serves three purposes:
1da177e4
LT
3486 * - create a LIFO ordering, i.e. return objects that are cache-warm
3487 * - reduce the number of spinlock operations.
a737b3e2 3488 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3489 * bufctl chains: array operations are cheaper.
3490 * The numbers are guessed, we should auto-tune as described by
3491 * Bonwick.
3492 */
3dafccf2 3493 if (cachep->buffer_size > 131072)
1da177e4 3494 limit = 1;
3dafccf2 3495 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3496 limit = 8;
3dafccf2 3497 else if (cachep->buffer_size > 1024)
1da177e4 3498 limit = 24;
3dafccf2 3499 else if (cachep->buffer_size > 256)
1da177e4
LT
3500 limit = 54;
3501 else
3502 limit = 120;
3503
a737b3e2
AM
3504 /*
3505 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3506 * allocation behaviour: Most allocs on one cpu, most free operations
3507 * on another cpu. For these cases, an efficient object passing between
3508 * cpus is necessary. This is provided by a shared array. The array
3509 * replaces Bonwick's magazine layer.
3510 * On uniprocessor, it's functionally equivalent (but less efficient)
3511 * to a larger limit. Thus disabled by default.
3512 */
3513 shared = 0;
3514#ifdef CONFIG_SMP
3dafccf2 3515 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3516 shared = 8;
3517#endif
3518
3519#if DEBUG
a737b3e2
AM
3520 /*
3521 * With debugging enabled, large batchcount lead to excessively long
3522 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3523 */
3524 if (limit > 32)
3525 limit = 32;
3526#endif
b28a02de 3527 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3528 if (err)
3529 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3530 cachep->name, -err);
1da177e4
LT
3531}
3532
a737b3e2
AM
3533static void drain_array_locked(struct kmem_cache *cachep,
3534 struct array_cache *ac, int force, int node)
1da177e4
LT
3535{
3536 int tofree;
3537
e498be7d 3538 check_spinlock_acquired_node(cachep, node);
1da177e4
LT
3539 if (ac->touched && !force) {
3540 ac->touched = 0;
3541 } else if (ac->avail) {
b28a02de 3542 tofree = force ? ac->avail : (ac->limit + 4) / 5;
a737b3e2 3543 if (tofree > ac->avail)
b28a02de 3544 tofree = (ac->avail + 1) / 2;
ff69416e 3545 free_block(cachep, ac->entry, tofree, node);
1da177e4 3546 ac->avail -= tofree;
e498be7d 3547 memmove(ac->entry, &(ac->entry[tofree]),
b28a02de 3548 sizeof(void *) * ac->avail);
1da177e4
LT
3549 }
3550}
3551
3552/**
3553 * cache_reap - Reclaim memory from caches.
1e5d5331 3554 * @unused: unused parameter
1da177e4
LT
3555 *
3556 * Called from workqueue/eventd every few seconds.
3557 * Purpose:
3558 * - clear the per-cpu caches for this CPU.
3559 * - return freeable pages to the main free memory pool.
3560 *
a737b3e2
AM
3561 * If we cannot acquire the cache chain mutex then just give up - we'll try
3562 * again on the next iteration.
1da177e4
LT
3563 */
3564static void cache_reap(void *unused)
3565{
3566 struct list_head *walk;
e498be7d 3567 struct kmem_list3 *l3;
1da177e4 3568
fc0abb14 3569 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3570 /* Give up. Setup the next iteration. */
b28a02de
PE
3571 schedule_delayed_work(&__get_cpu_var(reap_work),
3572 REAPTIMEOUT_CPUC);
1da177e4
LT
3573 return;
3574 }
3575
3576 list_for_each(walk, &cache_chain) {
343e0d7a 3577 struct kmem_cache *searchp;
b28a02de 3578 struct list_head *p;
1da177e4
LT
3579 int tofree;
3580 struct slab *slabp;
3581
343e0d7a 3582 searchp = list_entry(walk, struct kmem_cache, next);
1da177e4
LT
3583 check_irq_on();
3584
e498be7d 3585 l3 = searchp->nodelists[numa_node_id()];
8fce4d8e 3586 reap_alien(searchp, l3);
e498be7d 3587 spin_lock_irq(&l3->list_lock);
1da177e4 3588
9a2dba4b 3589 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
b28a02de 3590 numa_node_id());
1da177e4 3591
e498be7d 3592 if (time_after(l3->next_reap, jiffies))
1da177e4
LT
3593 goto next_unlock;
3594
e498be7d 3595 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3596
e498be7d
CL
3597 if (l3->shared)
3598 drain_array_locked(searchp, l3->shared, 0,
b28a02de 3599 numa_node_id());
1da177e4 3600
e498be7d
CL
3601 if (l3->free_touched) {
3602 l3->free_touched = 0;
1da177e4
LT
3603 goto next_unlock;
3604 }
3605
a737b3e2
AM
3606 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3607 (5 * searchp->num);
1da177e4 3608 do {
e498be7d
CL
3609 p = l3->slabs_free.next;
3610 if (p == &(l3->slabs_free))
1da177e4
LT
3611 break;
3612
3613 slabp = list_entry(p, struct slab, list);
3614 BUG_ON(slabp->inuse);
3615 list_del(&slabp->list);
3616 STATS_INC_REAPED(searchp);
3617
a737b3e2
AM
3618 /*
3619 * Safe to drop the lock. The slab is no longer linked
3620 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3621 * cache_chain_lock
3622 */
e498be7d
CL
3623 l3->free_objects -= searchp->num;
3624 spin_unlock_irq(&l3->list_lock);
1da177e4 3625 slab_destroy(searchp, slabp);
e498be7d 3626 spin_lock_irq(&l3->list_lock);
b28a02de 3627 } while (--tofree > 0);
a737b3e2 3628next_unlock:
e498be7d 3629 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3630 cond_resched();
3631 }
3632 check_irq_on();
fc0abb14 3633 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3634 next_reap_node();
a737b3e2 3635 /* Set up the next iteration */
cd61ef62 3636 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3637}
3638
3639#ifdef CONFIG_PROC_FS
3640
85289f98 3641static void print_slabinfo_header(struct seq_file *m)
1da177e4 3642{
85289f98
PE
3643 /*
3644 * Output format version, so at least we can change it
3645 * without _too_ many complaints.
3646 */
1da177e4 3647#if STATS
85289f98 3648 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3649#else
85289f98 3650 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3651#endif
85289f98
PE
3652 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3653 "<objperslab> <pagesperslab>");
3654 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3655 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3656#if STATS
85289f98
PE
3657 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3658 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3659 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3660#endif
85289f98
PE
3661 seq_putc(m, '\n');
3662}
3663
3664static void *s_start(struct seq_file *m, loff_t *pos)
3665{
3666 loff_t n = *pos;
3667 struct list_head *p;
3668
fc0abb14 3669 mutex_lock(&cache_chain_mutex);
85289f98
PE
3670 if (!n)
3671 print_slabinfo_header(m);
1da177e4
LT
3672 p = cache_chain.next;
3673 while (n--) {
3674 p = p->next;
3675 if (p == &cache_chain)
3676 return NULL;
3677 }
343e0d7a 3678 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3679}
3680
3681static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3682{
343e0d7a 3683 struct kmem_cache *cachep = p;
1da177e4 3684 ++*pos;
a737b3e2
AM
3685 return cachep->next.next == &cache_chain ?
3686 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3687}
3688
3689static void s_stop(struct seq_file *m, void *p)
3690{
fc0abb14 3691 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3692}
3693
3694static int s_show(struct seq_file *m, void *p)
3695{
343e0d7a 3696 struct kmem_cache *cachep = p;
1da177e4 3697 struct list_head *q;
b28a02de
PE
3698 struct slab *slabp;
3699 unsigned long active_objs;
3700 unsigned long num_objs;
3701 unsigned long active_slabs = 0;
3702 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3703 const char *name;
1da177e4 3704 char *error = NULL;
e498be7d
CL
3705 int node;
3706 struct kmem_list3 *l3;
1da177e4 3707
1da177e4
LT
3708 active_objs = 0;
3709 num_slabs = 0;
e498be7d
CL
3710 for_each_online_node(node) {
3711 l3 = cachep->nodelists[node];
3712 if (!l3)
3713 continue;
3714
ca3b9b91
RT
3715 check_irq_on();
3716 spin_lock_irq(&l3->list_lock);
e498be7d 3717
b28a02de 3718 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3719 slabp = list_entry(q, struct slab, list);
3720 if (slabp->inuse != cachep->num && !error)
3721 error = "slabs_full accounting error";
3722 active_objs += cachep->num;
3723 active_slabs++;
3724 }
b28a02de 3725 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3726 slabp = list_entry(q, struct slab, list);
3727 if (slabp->inuse == cachep->num && !error)
3728 error = "slabs_partial inuse accounting error";
3729 if (!slabp->inuse && !error)
3730 error = "slabs_partial/inuse accounting error";
3731 active_objs += slabp->inuse;
3732 active_slabs++;
3733 }
b28a02de 3734 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3735 slabp = list_entry(q, struct slab, list);
3736 if (slabp->inuse && !error)
3737 error = "slabs_free/inuse accounting error";
3738 num_slabs++;
3739 }
3740 free_objects += l3->free_objects;
4484ebf1
RT
3741 if (l3->shared)
3742 shared_avail += l3->shared->avail;
e498be7d 3743
ca3b9b91 3744 spin_unlock_irq(&l3->list_lock);
1da177e4 3745 }
b28a02de
PE
3746 num_slabs += active_slabs;
3747 num_objs = num_slabs * cachep->num;
e498be7d 3748 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3749 error = "free_objects accounting error";
3750
b28a02de 3751 name = cachep->name;
1da177e4
LT
3752 if (error)
3753 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3754
3755 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3756 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3757 cachep->num, (1 << cachep->gfporder));
1da177e4 3758 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3759 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3760 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3761 active_slabs, num_slabs, shared_avail);
1da177e4 3762#if STATS
b28a02de 3763 { /* list3 stats */
1da177e4
LT
3764 unsigned long high = cachep->high_mark;
3765 unsigned long allocs = cachep->num_allocations;
3766 unsigned long grown = cachep->grown;
3767 unsigned long reaped = cachep->reaped;
3768 unsigned long errors = cachep->errors;
3769 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3770 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3771 unsigned long node_frees = cachep->node_frees;
1da177e4 3772
e498be7d 3773 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
a737b3e2
AM
3774 %4lu %4lu %4lu %4lu", allocs, high, grown,
3775 reaped, errors, max_freeable, node_allocs,
3776 node_frees);
1da177e4
LT
3777 }
3778 /* cpu stats */
3779 {
3780 unsigned long allochit = atomic_read(&cachep->allochit);
3781 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3782 unsigned long freehit = atomic_read(&cachep->freehit);
3783 unsigned long freemiss = atomic_read(&cachep->freemiss);
3784
3785 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3786 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3787 }
3788#endif
3789 seq_putc(m, '\n');
1da177e4
LT
3790 return 0;
3791}
3792
3793/*
3794 * slabinfo_op - iterator that generates /proc/slabinfo
3795 *
3796 * Output layout:
3797 * cache-name
3798 * num-active-objs
3799 * total-objs
3800 * object size
3801 * num-active-slabs
3802 * total-slabs
3803 * num-pages-per-slab
3804 * + further values on SMP and with statistics enabled
3805 */
3806
3807struct seq_operations slabinfo_op = {
b28a02de
PE
3808 .start = s_start,
3809 .next = s_next,
3810 .stop = s_stop,
3811 .show = s_show,
1da177e4
LT
3812};
3813
3814#define MAX_SLABINFO_WRITE 128
3815/**
3816 * slabinfo_write - Tuning for the slab allocator
3817 * @file: unused
3818 * @buffer: user buffer
3819 * @count: data length
3820 * @ppos: unused
3821 */
b28a02de
PE
3822ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3823 size_t count, loff_t *ppos)
1da177e4 3824{
b28a02de 3825 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3826 int limit, batchcount, shared, res;
3827 struct list_head *p;
b28a02de 3828
1da177e4
LT
3829 if (count > MAX_SLABINFO_WRITE)
3830 return -EINVAL;
3831 if (copy_from_user(&kbuf, buffer, count))
3832 return -EFAULT;
b28a02de 3833 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3834
3835 tmp = strchr(kbuf, ' ');
3836 if (!tmp)
3837 return -EINVAL;
3838 *tmp = '\0';
3839 tmp++;
3840 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3841 return -EINVAL;
3842
3843 /* Find the cache in the chain of caches. */
fc0abb14 3844 mutex_lock(&cache_chain_mutex);
1da177e4 3845 res = -EINVAL;
b28a02de 3846 list_for_each(p, &cache_chain) {
a737b3e2 3847 struct kmem_cache *cachep;
1da177e4 3848
a737b3e2 3849 cachep = list_entry(p, struct kmem_cache, next);
1da177e4 3850 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3851 if (limit < 1 || batchcount < 1 ||
3852 batchcount > limit || shared < 0) {
e498be7d 3853 res = 0;
1da177e4 3854 } else {
e498be7d 3855 res = do_tune_cpucache(cachep, limit,
b28a02de 3856 batchcount, shared);
1da177e4
LT
3857 }
3858 break;
3859 }
3860 }
fc0abb14 3861 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3862 if (res >= 0)
3863 res = count;
3864 return res;
3865}
3866#endif
3867
00e145b6
MS
3868/**
3869 * ksize - get the actual amount of memory allocated for a given object
3870 * @objp: Pointer to the object
3871 *
3872 * kmalloc may internally round up allocations and return more memory
3873 * than requested. ksize() can be used to determine the actual amount of
3874 * memory allocated. The caller may use this additional memory, even though
3875 * a smaller amount of memory was initially specified with the kmalloc call.
3876 * The caller must guarantee that objp points to a valid object previously
3877 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3878 * must not be freed during the duration of the call.
3879 */
1da177e4
LT
3880unsigned int ksize(const void *objp)
3881{
00e145b6
MS
3882 if (unlikely(objp == NULL))
3883 return 0;
1da177e4 3884
6ed5eb22 3885 return obj_size(virt_to_cache(objp));
1da177e4 3886}
This page took 0.326954 seconds and 5 git commands to generate.