mm/sl[aou]b: Move list_add() to slab_common.c
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
0f24f128 501#ifdef CONFIG_TRACING
36555751
EGM
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
3b0efdfa 504 return cachep->size;
36555751
EGM
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
1da177e4 509/*
3df1cccd
DR
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
1da177e4 512 */
543585cc
DR
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 516static bool slab_max_order_set __initdata;
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
35026088 521 return page->slab_cache;
6ed5eb22
PE
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
35026088
CL
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
6ed5eb22
PE
530}
531
8fea4e96
PE
532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534{
3b0efdfa 535 return slab->s_mem + cache->size * idx;
8fea4e96
PE
536}
537
6a2d7a95 538/*
3b0efdfa
CL
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
6a2d7a95
ED
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
8fea4e96 546{
6a2d7a95
ED
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
549}
550
a737b3e2
AM
551/*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
1da177e4
LT
554struct cache_sizes malloc_sizes[] = {
555#define CACHE(x) { .cs_size = (x) },
556#include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558#undef CACHE
559};
560EXPORT_SYMBOL(malloc_sizes);
561
562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
563struct cache_names {
564 char *name;
565 char *name_dma;
566};
567
568static struct cache_names __initdata cache_names[] = {
569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570#include <linux/kmalloc_sizes.h>
b28a02de 571 {NULL,}
1da177e4
LT
572#undef CACHE
573};
574
575static struct arraycache_init initarray_cache __initdata =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 577static struct arraycache_init initarray_generic =
b28a02de 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
579
580/* internal cache of cache description objs */
b56efcf0 581static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 582static struct kmem_cache cache_cache = {
b56efcf0 583 .nodelists = cache_cache_nodelists,
b28a02de
PE
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
3b0efdfa 587 .size = sizeof(struct kmem_cache),
b28a02de 588 .name = "kmem_cache",
1da177e4
LT
589};
590
056c6241
RT
591#define BAD_ALIEN_MAGIC 0x01020304ul
592
f1aaee53
AV
593#ifdef CONFIG_LOCKDEP
594
595/*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
f1aaee53 605 */
056c6241
RT
606static struct lock_class_key on_slab_l3_key;
607static struct lock_class_key on_slab_alc_key;
608
83835b3d
PZ
609static struct lock_class_key debugobj_l3_key;
610static struct lock_class_key debugobj_alc_key;
611
612static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615{
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639}
640
641static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642{
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644}
645
646static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647{
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652}
653
ce79ddc8 654static void init_node_lock_keys(int q)
f1aaee53 655{
056c6241
RT
656 struct cache_sizes *s = malloc_sizes;
657
97d06609 658 if (slab_state < UP)
ce79ddc8
PE
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 662 struct kmem_list3 *l3;
ce79ddc8
PE
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 666 continue;
83835b3d
PZ
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
f1aaee53
AV
670 }
671}
ce79ddc8
PE
672
673static inline void init_lock_keys(void)
674{
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679}
f1aaee53 680#else
ce79ddc8
PE
681static void init_node_lock_keys(int q)
682{
683}
684
056c6241 685static inline void init_lock_keys(void)
f1aaee53
AV
686{
687}
83835b3d
PZ
688
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
d40cee24 806#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 807
a737b3e2
AM
808static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
1da177e4
LT
810{
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 812 function, cachep->name, msg);
1da177e4
LT
813 dump_stack();
814}
815
3395ee05
PM
816/*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824static int use_alien_caches __read_mostly = 1;
825static int __init noaliencache_setup(char *s)
826{
827 use_alien_caches = 0;
828 return 1;
829}
830__setup("noaliencache", noaliencache_setup);
831
3df1cccd
DR
832static int __init slab_max_order_setup(char *str)
833{
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840}
841__setup("slab_max_order=", slab_max_order_setup);
842
8fce4d8e
CL
843#ifdef CONFIG_NUMA
844/*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
1871e52c 850static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
851
852static void init_reap_node(int cpu)
853{
854 int node;
855
7d6e6d09 856 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 857 if (node == MAX_NUMNODES)
442295c9 858 node = first_node(node_online_map);
8fce4d8e 859
1871e52c 860 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
861}
862
863static void next_reap_node(void)
864{
909ea964 865 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 866
8fce4d8e
CL
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
909ea964 870 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
871}
872
873#else
874#define init_reap_node(cpu) do { } while (0)
875#define next_reap_node(void) do { } while (0)
876#endif
877
1da177e4
LT
878/*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
897e679b 885static void __cpuinit start_cpu_timer(int cpu)
1da177e4 886{
1871e52c 887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
52bad64d 894 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 895 init_reap_node(cpu);
78b43536 896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
899 }
900}
901
e498be7d 902static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 903 int batchcount, gfp_t gfp)
1da177e4 904{
b28a02de 905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
906 struct array_cache *nc = NULL;
907
83b519e8 908 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
909 /*
910 * The array_cache structures contain pointers to free object.
25985edc 911 * However, when such objects are allocated or transferred to another
d5cff635
CM
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
1da177e4
LT
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
e498be7d 922 spin_lock_init(&nc->lock);
1da177e4
LT
923 }
924 return nc;
925}
926
072bb0aa
MG
927static inline bool is_slab_pfmemalloc(struct slab *slabp)
928{
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932}
933
934/* Clears pfmemalloc_active if no slabs have pfmalloc set */
935static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937{
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961}
962
381760ea 963static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
964 gfp_t flags, bool force_refill)
965{
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008}
1009
381760ea
MG
1010static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012{
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021}
1022
1023static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1024 void *objp)
1025{
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
381760ea
MG
1033 return objp;
1034}
1035
1036static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038{
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
072bb0aa
MG
1042 ac->entry[ac->avail++] = objp;
1043}
1044
3ded175a
CL
1045/*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053{
1054 /* Figure out how many entries to transfer */
732eacc0 1055 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
3ded175a
CL
1065 return nr;
1066}
1067
765c4507
CL
1068#ifndef CONFIG_NUMA
1069
1070#define drain_alien_cache(cachep, alien) do { } while (0)
1071#define reap_alien(cachep, l3) do { } while (0)
1072
83b519e8 1073static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1074{
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076}
1077
1078static inline void free_alien_cache(struct array_cache **ac_ptr)
1079{
1080}
1081
1082static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083{
1084 return 0;
1085}
1086
1087static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089{
1090 return NULL;
1091}
1092
8b98c169 1093static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1094 gfp_t flags, int nodeid)
1095{
1096 return NULL;
1097}
1098
1099#else /* CONFIG_NUMA */
1100
8b98c169 1101static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1102static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1103
83b519e8 1104static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1105{
1106 struct array_cache **ac_ptr;
8ef82866 1107 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
f3186a9c 1112 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1113 if (ac_ptr) {
1114 for_each_node(i) {
f3186a9c 1115 if (i == node || !node_online(i))
e498be7d 1116 continue;
83b519e8 1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1118 if (!ac_ptr[i]) {
cc550def 1119 for (i--; i >= 0; i--)
e498be7d
CL
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127}
1128
5295a74c 1129static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1130{
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
e498be7d 1135 for_each_node(i)
b28a02de 1136 kfree(ac_ptr[i]);
e498be7d
CL
1137 kfree(ac_ptr);
1138}
1139
343e0d7a 1140static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1141 struct array_cache *ac, int node)
e498be7d
CL
1142{
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
e00946fe
CL
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
693f7d36 1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1154
ff69416e 1155 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159}
1160
8fce4d8e
CL
1161/*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165{
909ea964 1166 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176}
1177
a737b3e2
AM
1178static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
e498be7d 1180{
b28a02de 1181 int i = 0;
e498be7d
CL
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
4484ebf1 1186 ac = alien[i];
e498be7d
CL
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193}
729bd0b7 1194
873623df 1195static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1196{
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1ca4cb24
PE
1201 int node;
1202
7d6e6d09 1203 node = numa_mem_id();
729bd0b7
PE
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
62918a03 1209 if (likely(slabp->nodeid == node))
729bd0b7
PE
1210 return 0;
1211
1ca4cb24 1212 l3 = cachep->nodelists[node];
729bd0b7
PE
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
873623df 1216 spin_lock(&alien->lock);
729bd0b7
PE
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
072bb0aa 1221 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229}
e498be7d
CL
1230#endif
1231
8f9f8d9e
DR
1232/*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
18004c5d 1239 * Must hold slab_mutex.
8f9f8d9e
DR
1240 */
1241static int init_cache_nodelists_node(int node)
1242{
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
18004c5d 1247 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
18004c5d 1263 * go. slab_mutex is sufficient
8f9f8d9e
DR
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276}
1277
fbf1e473
AM
1278static void __cpuinit cpuup_canceled(long cpu)
1279{
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
7d6e6d09 1282 int node = cpu_to_mem(cpu);
a70f7302 1283 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1284
18004c5d 1285 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
fbf1e473 1289
fbf1e473
AM
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
58463c1f 1305 if (!cpumask_empty(mask)) {
fbf1e473
AM
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
18004c5d 1335 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341}
1342
1343static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1344{
343e0d7a 1345 struct kmem_cache *cachep;
e498be7d 1346 struct kmem_list3 *l3 = NULL;
7d6e6d09 1347 int node = cpu_to_mem(cpu);
8f9f8d9e 1348 int err;
1da177e4 1349
fbf1e473
AM
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
8f9f8d9e
DR
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
fbf1e473
AM
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
18004c5d 1364 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1370 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
83b519e8 1376 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1377 if (!shared) {
1378 kfree(nc);
1da177e4 1379 goto bad;
12d00f6a 1380 }
fbf1e473
AM
1381 }
1382 if (use_alien_caches) {
83b519e8 1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
fbf1e473 1387 goto bad;
12d00f6a 1388 }
fbf1e473
AM
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
4484ebf1 1403#ifdef CONFIG_NUMA
fbf1e473
AM
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1da177e4 1407 }
fbf1e473
AM
1408#endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
83835b3d
PZ
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1414 }
ce79ddc8
PE
1415 init_node_lock_keys(node);
1416
fbf1e473
AM
1417 return 0;
1418bad:
12d00f6a 1419 cpuup_canceled(cpu);
fbf1e473
AM
1420 return -ENOMEM;
1421}
1422
1423static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425{
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
fbf1e473
AM
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
18004c5d 1432 mutex_lock(&slab_mutex);
fbf1e473 1433 err = cpuup_prepare(cpu);
18004c5d 1434 mutex_unlock(&slab_mutex);
1da177e4
LT
1435 break;
1436 case CPU_ONLINE:
8bb78442 1437 case CPU_ONLINE_FROZEN:
1da177e4
LT
1438 start_cpu_timer(cpu);
1439 break;
1440#ifdef CONFIG_HOTPLUG_CPU
5830c590 1441 case CPU_DOWN_PREPARE:
8bb78442 1442 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1443 /*
18004c5d 1444 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
afe2c511 1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1450 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1452 break;
1453 case CPU_DOWN_FAILED:
8bb78442 1454 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1455 start_cpu_timer(cpu);
1456 break;
1da177e4 1457 case CPU_DEAD:
8bb78442 1458 case CPU_DEAD_FROZEN:
4484ebf1
RT
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
183ff22b 1467 /* fall through */
8f5be20b 1468#endif
1da177e4 1469 case CPU_UP_CANCELED:
8bb78442 1470 case CPU_UP_CANCELED_FROZEN:
18004c5d 1471 mutex_lock(&slab_mutex);
fbf1e473 1472 cpuup_canceled(cpu);
18004c5d 1473 mutex_unlock(&slab_mutex);
1da177e4 1474 break;
1da177e4 1475 }
eac40680 1476 return notifier_from_errno(err);
1da177e4
LT
1477}
1478
74b85f37
CS
1479static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481};
1da177e4 1482
8f9f8d9e
DR
1483#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484/*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
18004c5d 1489 * Must hold slab_mutex.
8f9f8d9e
DR
1490 */
1491static int __meminit drain_cache_nodelists_node(int node)
1492{
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
18004c5d 1496 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512}
1513
1514static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516{
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
18004c5d 1527 mutex_lock(&slab_mutex);
8f9f8d9e 1528 ret = init_cache_nodelists_node(nid);
18004c5d 1529 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1530 break;
1531 case MEM_GOING_OFFLINE:
18004c5d 1532 mutex_lock(&slab_mutex);
8f9f8d9e 1533 ret = drain_cache_nodelists_node(nid);
18004c5d 1534 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542out:
5fda1bd5 1543 return notifier_from_errno(ret);
8f9f8d9e
DR
1544}
1545#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
e498be7d
CL
1547/*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
8f9f8d9e
DR
1550static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
e498be7d
CL
1552{
1553 struct kmem_list3 *ptr;
1554
83b519e8 1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1556 BUG_ON(!ptr);
1557
e498be7d 1558 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
e498be7d
CL
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1566}
1567
556a169d
PE
1568/*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573{
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582}
1583
a737b3e2
AM
1584/*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1da177e4
LT
1587 */
1588void __init kmem_cache_init(void)
1589{
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
e498be7d 1593 int i;
07ed76b2 1594 int order;
1ca4cb24 1595 int node;
e498be7d 1596
b6e68bc1 1597 if (num_possible_nodes() == 1)
62918a03
SS
1598 use_alien_caches = 0;
1599
e498be7d
CL
1600 for (i = 0; i < NUM_INIT_LISTS; i++) {
1601 kmem_list3_init(&initkmem_list3[i]);
1602 if (i < MAX_NUMNODES)
1603 cache_cache.nodelists[i] = NULL;
1604 }
556a169d 1605 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1606
1607 /*
1608 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1609 * page orders on machines with more than 32MB of memory if
1610 * not overridden on the command line.
1da177e4 1611 */
3df1cccd 1612 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1613 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1614
1da177e4
LT
1615 /* Bootstrap is tricky, because several objects are allocated
1616 * from caches that do not exist yet:
a737b3e2
AM
1617 * 1) initialize the cache_cache cache: it contains the struct
1618 * kmem_cache structures of all caches, except cache_cache itself:
1619 * cache_cache is statically allocated.
e498be7d
CL
1620 * Initially an __init data area is used for the head array and the
1621 * kmem_list3 structures, it's replaced with a kmalloc allocated
1622 * array at the end of the bootstrap.
1da177e4 1623 * 2) Create the first kmalloc cache.
343e0d7a 1624 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1625 * An __init data area is used for the head array.
1626 * 3) Create the remaining kmalloc caches, with minimally sized
1627 * head arrays.
1da177e4
LT
1628 * 4) Replace the __init data head arrays for cache_cache and the first
1629 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1630 * 5) Replace the __init data for kmem_list3 for cache_cache and
1631 * the other cache's with kmalloc allocated memory.
1632 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1633 */
1634
7d6e6d09 1635 node = numa_mem_id();
1ca4cb24 1636
1da177e4 1637 /* 1) create the cache_cache */
18004c5d
CL
1638 INIT_LIST_HEAD(&slab_caches);
1639 list_add(&cache_cache.list, &slab_caches);
1da177e4
LT
1640 cache_cache.colour_off = cache_line_size();
1641 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1642 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1643
8da3430d 1644 /*
b56efcf0 1645 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1646 */
3b0efdfa 1647 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1648 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1649 cache_cache.object_size = cache_cache.size;
1650 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1651 cache_line_size());
6a2d7a95 1652 cache_cache.reciprocal_buffer_size =
3b0efdfa 1653 reciprocal_value(cache_cache.size);
1da177e4 1654
07ed76b2 1655 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1656 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1657 cache_line_size(), 0, &left_over, &cache_cache.num);
1658 if (cache_cache.num)
1659 break;
1660 }
40094fa6 1661 BUG_ON(!cache_cache.num);
07ed76b2 1662 cache_cache.gfporder = order;
b28a02de 1663 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1664 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1665 sizeof(struct slab), cache_line_size());
1da177e4
LT
1666
1667 /* 2+3) create the kmalloc caches */
1668 sizes = malloc_sizes;
1669 names = cache_names;
1670
a737b3e2
AM
1671 /*
1672 * Initialize the caches that provide memory for the array cache and the
1673 * kmem_list3 structures first. Without this, further allocations will
1674 * bug.
e498be7d
CL
1675 */
1676
039363f3 1677 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1678 sizes[INDEX_AC].cs_size,
1679 ARCH_KMALLOC_MINALIGN,
1680 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1681 NULL);
e498be7d 1682
7c9adf5a 1683 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
a737b3e2 1684 if (INDEX_AC != INDEX_L3) {
e498be7d 1685 sizes[INDEX_L3].cs_cachep =
039363f3 1686 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1687 sizes[INDEX_L3].cs_size,
1688 ARCH_KMALLOC_MINALIGN,
1689 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1690 NULL);
7c9adf5a 1691 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
a737b3e2 1692 }
e498be7d 1693
e0a42726
IM
1694 slab_early_init = 0;
1695
1da177e4 1696 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1697 /*
1698 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1699 * This should be particularly beneficial on SMP boxes, as it
1700 * eliminates "false sharing".
1701 * Note for systems short on memory removing the alignment will
e498be7d
CL
1702 * allow tighter packing of the smaller caches.
1703 */
a737b3e2 1704 if (!sizes->cs_cachep) {
039363f3 1705 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1706 sizes->cs_size,
1707 ARCH_KMALLOC_MINALIGN,
1708 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1709 NULL);
7c9adf5a 1710 list_add(&sizes->cs_cachep->list, &slab_caches);
a737b3e2 1711 }
4b51d669 1712#ifdef CONFIG_ZONE_DMA
039363f3 1713 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1714 names->name_dma,
a737b3e2
AM
1715 sizes->cs_size,
1716 ARCH_KMALLOC_MINALIGN,
1717 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1718 SLAB_PANIC,
20c2df83 1719 NULL);
7c9adf5a 1720 list_add(&sizes->cs_dmacachep->list, &slab_caches);
4b51d669 1721#endif
1da177e4
LT
1722 sizes++;
1723 names++;
1724 }
1725 /* 4) Replace the bootstrap head arrays */
1726 {
2b2d5493 1727 struct array_cache *ptr;
e498be7d 1728
83b519e8 1729 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1730
9a2dba4b
PE
1731 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1732 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1733 sizeof(struct arraycache_init));
2b2d5493
IM
1734 /*
1735 * Do not assume that spinlocks can be initialized via memcpy:
1736 */
1737 spin_lock_init(&ptr->lock);
1738
1da177e4 1739 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1740
83b519e8 1741 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1742
9a2dba4b 1743 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1744 != &initarray_generic.cache);
9a2dba4b 1745 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1746 sizeof(struct arraycache_init));
2b2d5493
IM
1747 /*
1748 * Do not assume that spinlocks can be initialized via memcpy:
1749 */
1750 spin_lock_init(&ptr->lock);
1751
e498be7d 1752 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1753 ptr;
1da177e4 1754 }
e498be7d
CL
1755 /* 5) Replace the bootstrap kmem_list3's */
1756 {
1ca4cb24
PE
1757 int nid;
1758
9c09a95c 1759 for_each_online_node(nid) {
ec1f5eee 1760 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1761
e498be7d 1762 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1763 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1764
1765 if (INDEX_AC != INDEX_L3) {
1766 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1767 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1768 }
1769 }
1770 }
1da177e4 1771
97d06609 1772 slab_state = UP;
8429db5c
PE
1773}
1774
1775void __init kmem_cache_init_late(void)
1776{
1777 struct kmem_cache *cachep;
1778
97d06609 1779 slab_state = UP;
52cef189 1780
30765b92
PZ
1781 /* Annotate slab for lockdep -- annotate the malloc caches */
1782 init_lock_keys();
1783
8429db5c 1784 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1785 mutex_lock(&slab_mutex);
1786 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1787 if (enable_cpucache(cachep, GFP_NOWAIT))
1788 BUG();
18004c5d 1789 mutex_unlock(&slab_mutex);
056c6241 1790
97d06609
CL
1791 /* Done! */
1792 slab_state = FULL;
1793
a737b3e2
AM
1794 /*
1795 * Register a cpu startup notifier callback that initializes
1796 * cpu_cache_get for all new cpus
1da177e4
LT
1797 */
1798 register_cpu_notifier(&cpucache_notifier);
1da177e4 1799
8f9f8d9e
DR
1800#ifdef CONFIG_NUMA
1801 /*
1802 * Register a memory hotplug callback that initializes and frees
1803 * nodelists.
1804 */
1805 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1806#endif
1807
a737b3e2
AM
1808 /*
1809 * The reap timers are started later, with a module init call: That part
1810 * of the kernel is not yet operational.
1da177e4
LT
1811 */
1812}
1813
1814static int __init cpucache_init(void)
1815{
1816 int cpu;
1817
a737b3e2
AM
1818 /*
1819 * Register the timers that return unneeded pages to the page allocator
1da177e4 1820 */
e498be7d 1821 for_each_online_cpu(cpu)
a737b3e2 1822 start_cpu_timer(cpu);
a164f896
GC
1823
1824 /* Done! */
97d06609 1825 slab_state = FULL;
1da177e4
LT
1826 return 0;
1827}
1da177e4
LT
1828__initcall(cpucache_init);
1829
8bdec192
RA
1830static noinline void
1831slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1832{
1833 struct kmem_list3 *l3;
1834 struct slab *slabp;
1835 unsigned long flags;
1836 int node;
1837
1838 printk(KERN_WARNING
1839 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1840 nodeid, gfpflags);
1841 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1842 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1843
1844 for_each_online_node(node) {
1845 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1846 unsigned long active_slabs = 0, num_slabs = 0;
1847
1848 l3 = cachep->nodelists[node];
1849 if (!l3)
1850 continue;
1851
1852 spin_lock_irqsave(&l3->list_lock, flags);
1853 list_for_each_entry(slabp, &l3->slabs_full, list) {
1854 active_objs += cachep->num;
1855 active_slabs++;
1856 }
1857 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1858 active_objs += slabp->inuse;
1859 active_slabs++;
1860 }
1861 list_for_each_entry(slabp, &l3->slabs_free, list)
1862 num_slabs++;
1863
1864 free_objects += l3->free_objects;
1865 spin_unlock_irqrestore(&l3->list_lock, flags);
1866
1867 num_slabs += active_slabs;
1868 num_objs = num_slabs * cachep->num;
1869 printk(KERN_WARNING
1870 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1871 node, active_slabs, num_slabs, active_objs, num_objs,
1872 free_objects);
1873 }
1874}
1875
1da177e4
LT
1876/*
1877 * Interface to system's page allocator. No need to hold the cache-lock.
1878 *
1879 * If we requested dmaable memory, we will get it. Even if we
1880 * did not request dmaable memory, we might get it, but that
1881 * would be relatively rare and ignorable.
1882 */
343e0d7a 1883static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1884{
1885 struct page *page;
e1b6aa6f 1886 int nr_pages;
1da177e4
LT
1887 int i;
1888
d6fef9da 1889#ifndef CONFIG_MMU
e1b6aa6f
CH
1890 /*
1891 * Nommu uses slab's for process anonymous memory allocations, and thus
1892 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1893 */
e1b6aa6f 1894 flags |= __GFP_COMP;
d6fef9da 1895#endif
765c4507 1896
a618e89f 1897 flags |= cachep->allocflags;
e12ba74d
MG
1898 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1899 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1900
517d0869 1901 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1902 if (!page) {
1903 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1904 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1905 return NULL;
8bdec192 1906 }
1da177e4 1907
b37f1dd0 1908 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1909 if (unlikely(page->pfmemalloc))
1910 pfmemalloc_active = true;
1911
e1b6aa6f 1912 nr_pages = (1 << cachep->gfporder);
1da177e4 1913 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1914 add_zone_page_state(page_zone(page),
1915 NR_SLAB_RECLAIMABLE, nr_pages);
1916 else
1917 add_zone_page_state(page_zone(page),
1918 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1919 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1920 __SetPageSlab(page + i);
c175eea4 1921
072bb0aa
MG
1922 if (page->pfmemalloc)
1923 SetPageSlabPfmemalloc(page + i);
1924 }
1925
b1eeab67
VN
1926 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1927 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1928
1929 if (cachep->ctor)
1930 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1931 else
1932 kmemcheck_mark_unallocated_pages(page, nr_pages);
1933 }
c175eea4 1934
e1b6aa6f 1935 return page_address(page);
1da177e4
LT
1936}
1937
1938/*
1939 * Interface to system's page release.
1940 */
343e0d7a 1941static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1942{
b28a02de 1943 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1944 struct page *page = virt_to_page(addr);
1945 const unsigned long nr_freed = i;
1946
b1eeab67 1947 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1948
972d1a7b
CL
1949 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1950 sub_zone_page_state(page_zone(page),
1951 NR_SLAB_RECLAIMABLE, nr_freed);
1952 else
1953 sub_zone_page_state(page_zone(page),
1954 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1955 while (i--) {
f205b2fe 1956 BUG_ON(!PageSlab(page));
072bb0aa 1957 __ClearPageSlabPfmemalloc(page);
f205b2fe 1958 __ClearPageSlab(page);
1da177e4
LT
1959 page++;
1960 }
1da177e4
LT
1961 if (current->reclaim_state)
1962 current->reclaim_state->reclaimed_slab += nr_freed;
1963 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1964}
1965
1966static void kmem_rcu_free(struct rcu_head *head)
1967{
b28a02de 1968 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1969 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1970
1971 kmem_freepages(cachep, slab_rcu->addr);
1972 if (OFF_SLAB(cachep))
1973 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1974}
1975
1976#if DEBUG
1977
1978#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1979static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1980 unsigned long caller)
1da177e4 1981{
8c138bc0 1982 int size = cachep->object_size;
1da177e4 1983
3dafccf2 1984 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1985
b28a02de 1986 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1987 return;
1988
b28a02de
PE
1989 *addr++ = 0x12345678;
1990 *addr++ = caller;
1991 *addr++ = smp_processor_id();
1992 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1993 {
1994 unsigned long *sptr = &caller;
1995 unsigned long svalue;
1996
1997 while (!kstack_end(sptr)) {
1998 svalue = *sptr++;
1999 if (kernel_text_address(svalue)) {
b28a02de 2000 *addr++ = svalue;
1da177e4
LT
2001 size -= sizeof(unsigned long);
2002 if (size <= sizeof(unsigned long))
2003 break;
2004 }
2005 }
2006
2007 }
b28a02de 2008 *addr++ = 0x87654321;
1da177e4
LT
2009}
2010#endif
2011
343e0d7a 2012static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2013{
8c138bc0 2014 int size = cachep->object_size;
3dafccf2 2015 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2016
2017 memset(addr, val, size);
b28a02de 2018 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2019}
2020
2021static void dump_line(char *data, int offset, int limit)
2022{
2023 int i;
aa83aa40
DJ
2024 unsigned char error = 0;
2025 int bad_count = 0;
2026
fdde6abb 2027 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2028 for (i = 0; i < limit; i++) {
2029 if (data[offset + i] != POISON_FREE) {
2030 error = data[offset + i];
2031 bad_count++;
2032 }
aa83aa40 2033 }
fdde6abb
SAS
2034 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2035 &data[offset], limit, 1);
aa83aa40
DJ
2036
2037 if (bad_count == 1) {
2038 error ^= POISON_FREE;
2039 if (!(error & (error - 1))) {
2040 printk(KERN_ERR "Single bit error detected. Probably "
2041 "bad RAM.\n");
2042#ifdef CONFIG_X86
2043 printk(KERN_ERR "Run memtest86+ or a similar memory "
2044 "test tool.\n");
2045#else
2046 printk(KERN_ERR "Run a memory test tool.\n");
2047#endif
2048 }
2049 }
1da177e4
LT
2050}
2051#endif
2052
2053#if DEBUG
2054
343e0d7a 2055static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2056{
2057 int i, size;
2058 char *realobj;
2059
2060 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2061 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2062 *dbg_redzone1(cachep, objp),
2063 *dbg_redzone2(cachep, objp));
1da177e4
LT
2064 }
2065
2066 if (cachep->flags & SLAB_STORE_USER) {
2067 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2068 *dbg_userword(cachep, objp));
1da177e4 2069 print_symbol("(%s)",
a737b3e2 2070 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2071 printk("\n");
2072 }
3dafccf2 2073 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2074 size = cachep->object_size;
b28a02de 2075 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2076 int limit;
2077 limit = 16;
b28a02de
PE
2078 if (i + limit > size)
2079 limit = size - i;
1da177e4
LT
2080 dump_line(realobj, i, limit);
2081 }
2082}
2083
343e0d7a 2084static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2085{
2086 char *realobj;
2087 int size, i;
2088 int lines = 0;
2089
3dafccf2 2090 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2091 size = cachep->object_size;
1da177e4 2092
b28a02de 2093 for (i = 0; i < size; i++) {
1da177e4 2094 char exp = POISON_FREE;
b28a02de 2095 if (i == size - 1)
1da177e4
LT
2096 exp = POISON_END;
2097 if (realobj[i] != exp) {
2098 int limit;
2099 /* Mismatch ! */
2100 /* Print header */
2101 if (lines == 0) {
b28a02de 2102 printk(KERN_ERR
face37f5
DJ
2103 "Slab corruption (%s): %s start=%p, len=%d\n",
2104 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2105 print_objinfo(cachep, objp, 0);
2106 }
2107 /* Hexdump the affected line */
b28a02de 2108 i = (i / 16) * 16;
1da177e4 2109 limit = 16;
b28a02de
PE
2110 if (i + limit > size)
2111 limit = size - i;
1da177e4
LT
2112 dump_line(realobj, i, limit);
2113 i += 16;
2114 lines++;
2115 /* Limit to 5 lines */
2116 if (lines > 5)
2117 break;
2118 }
2119 }
2120 if (lines != 0) {
2121 /* Print some data about the neighboring objects, if they
2122 * exist:
2123 */
6ed5eb22 2124 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2125 unsigned int objnr;
1da177e4 2126
8fea4e96 2127 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2128 if (objnr) {
8fea4e96 2129 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2130 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2131 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2132 realobj, size);
1da177e4
LT
2133 print_objinfo(cachep, objp, 2);
2134 }
b28a02de 2135 if (objnr + 1 < cachep->num) {
8fea4e96 2136 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2137 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2138 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2139 realobj, size);
1da177e4
LT
2140 print_objinfo(cachep, objp, 2);
2141 }
2142 }
2143}
2144#endif
2145
12dd36fa 2146#if DEBUG
e79aec29 2147static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2148{
1da177e4
LT
2149 int i;
2150 for (i = 0; i < cachep->num; i++) {
8fea4e96 2151 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2152
2153 if (cachep->flags & SLAB_POISON) {
2154#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2155 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2156 OFF_SLAB(cachep))
b28a02de 2157 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2158 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2159 else
2160 check_poison_obj(cachep, objp);
2161#else
2162 check_poison_obj(cachep, objp);
2163#endif
2164 }
2165 if (cachep->flags & SLAB_RED_ZONE) {
2166 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2167 slab_error(cachep, "start of a freed object "
b28a02de 2168 "was overwritten");
1da177e4
LT
2169 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2170 slab_error(cachep, "end of a freed object "
b28a02de 2171 "was overwritten");
1da177e4 2172 }
1da177e4 2173 }
12dd36fa 2174}
1da177e4 2175#else
e79aec29 2176static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2177{
12dd36fa 2178}
1da177e4
LT
2179#endif
2180
911851e6
RD
2181/**
2182 * slab_destroy - destroy and release all objects in a slab
2183 * @cachep: cache pointer being destroyed
2184 * @slabp: slab pointer being destroyed
2185 *
12dd36fa 2186 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2187 * Before calling the slab must have been unlinked from the cache. The
2188 * cache-lock is not held/needed.
12dd36fa 2189 */
343e0d7a 2190static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2191{
2192 void *addr = slabp->s_mem - slabp->colouroff;
2193
e79aec29 2194 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2195 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2196 struct slab_rcu *slab_rcu;
2197
b28a02de 2198 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2199 slab_rcu->cachep = cachep;
2200 slab_rcu->addr = addr;
2201 call_rcu(&slab_rcu->head, kmem_rcu_free);
2202 } else {
2203 kmem_freepages(cachep, addr);
873623df
IM
2204 if (OFF_SLAB(cachep))
2205 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2206 }
2207}
2208
117f6eb1
CL
2209static void __kmem_cache_destroy(struct kmem_cache *cachep)
2210{
2211 int i;
2212 struct kmem_list3 *l3;
2213
2214 for_each_online_cpu(i)
2215 kfree(cachep->array[i]);
2216
2217 /* NUMA: free the list3 structures */
2218 for_each_online_node(i) {
2219 l3 = cachep->nodelists[i];
2220 if (l3) {
2221 kfree(l3->shared);
2222 free_alien_cache(l3->alien);
2223 kfree(l3);
2224 }
2225 }
2226 kmem_cache_free(&cache_cache, cachep);
2227}
2228
2229
4d268eba 2230/**
a70773dd
RD
2231 * calculate_slab_order - calculate size (page order) of slabs
2232 * @cachep: pointer to the cache that is being created
2233 * @size: size of objects to be created in this cache.
2234 * @align: required alignment for the objects.
2235 * @flags: slab allocation flags
2236 *
2237 * Also calculates the number of objects per slab.
4d268eba
PE
2238 *
2239 * This could be made much more intelligent. For now, try to avoid using
2240 * high order pages for slabs. When the gfp() functions are more friendly
2241 * towards high-order requests, this should be changed.
2242 */
a737b3e2 2243static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2244 size_t size, size_t align, unsigned long flags)
4d268eba 2245{
b1ab41c4 2246 unsigned long offslab_limit;
4d268eba 2247 size_t left_over = 0;
9888e6fa 2248 int gfporder;
4d268eba 2249
0aa817f0 2250 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2251 unsigned int num;
2252 size_t remainder;
2253
9888e6fa 2254 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2255 if (!num)
2256 continue;
9888e6fa 2257
b1ab41c4
IM
2258 if (flags & CFLGS_OFF_SLAB) {
2259 /*
2260 * Max number of objs-per-slab for caches which
2261 * use off-slab slabs. Needed to avoid a possible
2262 * looping condition in cache_grow().
2263 */
2264 offslab_limit = size - sizeof(struct slab);
2265 offslab_limit /= sizeof(kmem_bufctl_t);
2266
2267 if (num > offslab_limit)
2268 break;
2269 }
4d268eba 2270
9888e6fa 2271 /* Found something acceptable - save it away */
4d268eba 2272 cachep->num = num;
9888e6fa 2273 cachep->gfporder = gfporder;
4d268eba
PE
2274 left_over = remainder;
2275
f78bb8ad
LT
2276 /*
2277 * A VFS-reclaimable slab tends to have most allocations
2278 * as GFP_NOFS and we really don't want to have to be allocating
2279 * higher-order pages when we are unable to shrink dcache.
2280 */
2281 if (flags & SLAB_RECLAIM_ACCOUNT)
2282 break;
2283
4d268eba
PE
2284 /*
2285 * Large number of objects is good, but very large slabs are
2286 * currently bad for the gfp()s.
2287 */
543585cc 2288 if (gfporder >= slab_max_order)
4d268eba
PE
2289 break;
2290
9888e6fa
LT
2291 /*
2292 * Acceptable internal fragmentation?
2293 */
a737b3e2 2294 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2295 break;
2296 }
2297 return left_over;
2298}
2299
83b519e8 2300static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2301{
97d06609 2302 if (slab_state >= FULL)
83b519e8 2303 return enable_cpucache(cachep, gfp);
2ed3a4ef 2304
97d06609 2305 if (slab_state == DOWN) {
f30cf7d1
PE
2306 /*
2307 * Note: the first kmem_cache_create must create the cache
2308 * that's used by kmalloc(24), otherwise the creation of
2309 * further caches will BUG().
2310 */
2311 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2312
2313 /*
2314 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2315 * the first cache, then we need to set up all its list3s,
2316 * otherwise the creation of further caches will BUG().
2317 */
2318 set_up_list3s(cachep, SIZE_AC);
2319 if (INDEX_AC == INDEX_L3)
97d06609 2320 slab_state = PARTIAL_L3;
f30cf7d1 2321 else
97d06609 2322 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2323 } else {
2324 cachep->array[smp_processor_id()] =
83b519e8 2325 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2326
97d06609 2327 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2328 set_up_list3s(cachep, SIZE_L3);
97d06609 2329 slab_state = PARTIAL_L3;
f30cf7d1
PE
2330 } else {
2331 int node;
556a169d 2332 for_each_online_node(node) {
f30cf7d1
PE
2333 cachep->nodelists[node] =
2334 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2335 gfp, node);
f30cf7d1
PE
2336 BUG_ON(!cachep->nodelists[node]);
2337 kmem_list3_init(cachep->nodelists[node]);
2338 }
2339 }
2340 }
7d6e6d09 2341 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2342 jiffies + REAPTIMEOUT_LIST3 +
2343 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2344
2345 cpu_cache_get(cachep)->avail = 0;
2346 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2347 cpu_cache_get(cachep)->batchcount = 1;
2348 cpu_cache_get(cachep)->touched = 0;
2349 cachep->batchcount = 1;
2350 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2351 return 0;
f30cf7d1
PE
2352}
2353
1da177e4 2354/**
039363f3 2355 * __kmem_cache_create - Create a cache.
1da177e4
LT
2356 * @name: A string which is used in /proc/slabinfo to identify this cache.
2357 * @size: The size of objects to be created in this cache.
2358 * @align: The required alignment for the objects.
2359 * @flags: SLAB flags
2360 * @ctor: A constructor for the objects.
1da177e4
LT
2361 *
2362 * Returns a ptr to the cache on success, NULL on failure.
2363 * Cannot be called within a int, but can be interrupted.
20c2df83 2364 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2365 *
2366 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2367 * the module calling this has to destroy the cache before getting unloaded.
2368 *
1da177e4
LT
2369 * The flags are
2370 *
2371 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2372 * to catch references to uninitialised memory.
2373 *
2374 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2375 * for buffer overruns.
2376 *
1da177e4
LT
2377 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2378 * cacheline. This can be beneficial if you're counting cycles as closely
2379 * as davem.
2380 */
343e0d7a 2381struct kmem_cache *
039363f3 2382__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2383 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2384{
2385 size_t left_over, slab_size, ralign;
20cea968 2386 struct kmem_cache *cachep = NULL;
83b519e8 2387 gfp_t gfp;
1da177e4 2388
1da177e4 2389#if DEBUG
1da177e4
LT
2390#if FORCED_DEBUG
2391 /*
2392 * Enable redzoning and last user accounting, except for caches with
2393 * large objects, if the increased size would increase the object size
2394 * above the next power of two: caches with object sizes just above a
2395 * power of two have a significant amount of internal fragmentation.
2396 */
87a927c7
DW
2397 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2398 2 * sizeof(unsigned long long)))
b28a02de 2399 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2400 if (!(flags & SLAB_DESTROY_BY_RCU))
2401 flags |= SLAB_POISON;
2402#endif
2403 if (flags & SLAB_DESTROY_BY_RCU)
2404 BUG_ON(flags & SLAB_POISON);
2405#endif
1da177e4 2406 /*
a737b3e2
AM
2407 * Always checks flags, a caller might be expecting debug support which
2408 * isn't available.
1da177e4 2409 */
40094fa6 2410 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2411
a737b3e2
AM
2412 /*
2413 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2414 * unaligned accesses for some archs when redzoning is used, and makes
2415 * sure any on-slab bufctl's are also correctly aligned.
2416 */
b28a02de
PE
2417 if (size & (BYTES_PER_WORD - 1)) {
2418 size += (BYTES_PER_WORD - 1);
2419 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2420 }
2421
a737b3e2
AM
2422 /* calculate the final buffer alignment: */
2423
1da177e4
LT
2424 /* 1) arch recommendation: can be overridden for debug */
2425 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2426 /*
2427 * Default alignment: as specified by the arch code. Except if
2428 * an object is really small, then squeeze multiple objects into
2429 * one cacheline.
1da177e4
LT
2430 */
2431 ralign = cache_line_size();
b28a02de 2432 while (size <= ralign / 2)
1da177e4
LT
2433 ralign /= 2;
2434 } else {
2435 ralign = BYTES_PER_WORD;
2436 }
ca5f9703
PE
2437
2438 /*
87a927c7
DW
2439 * Redzoning and user store require word alignment or possibly larger.
2440 * Note this will be overridden by architecture or caller mandated
2441 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2442 */
87a927c7
DW
2443 if (flags & SLAB_STORE_USER)
2444 ralign = BYTES_PER_WORD;
2445
2446 if (flags & SLAB_RED_ZONE) {
2447 ralign = REDZONE_ALIGN;
2448 /* If redzoning, ensure that the second redzone is suitably
2449 * aligned, by adjusting the object size accordingly. */
2450 size += REDZONE_ALIGN - 1;
2451 size &= ~(REDZONE_ALIGN - 1);
2452 }
ca5f9703 2453
a44b56d3 2454 /* 2) arch mandated alignment */
1da177e4
LT
2455 if (ralign < ARCH_SLAB_MINALIGN) {
2456 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2457 }
a44b56d3 2458 /* 3) caller mandated alignment */
1da177e4
LT
2459 if (ralign < align) {
2460 ralign = align;
1da177e4 2461 }
3ff84a7f
PE
2462 /* disable debug if necessary */
2463 if (ralign > __alignof__(unsigned long long))
a44b56d3 2464 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2465 /*
ca5f9703 2466 * 4) Store it.
1da177e4
LT
2467 */
2468 align = ralign;
2469
83b519e8
PE
2470 if (slab_is_available())
2471 gfp = GFP_KERNEL;
2472 else
2473 gfp = GFP_NOWAIT;
2474
1da177e4 2475 /* Get cache's description obj. */
83b519e8 2476 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2477 if (!cachep)
039363f3 2478 return NULL;
1da177e4 2479
b56efcf0 2480 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2481 cachep->object_size = size;
2482 cachep->align = align;
1da177e4 2483#if DEBUG
1da177e4 2484
ca5f9703
PE
2485 /*
2486 * Both debugging options require word-alignment which is calculated
2487 * into align above.
2488 */
1da177e4 2489 if (flags & SLAB_RED_ZONE) {
1da177e4 2490 /* add space for red zone words */
3ff84a7f
PE
2491 cachep->obj_offset += sizeof(unsigned long long);
2492 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2493 }
2494 if (flags & SLAB_STORE_USER) {
ca5f9703 2495 /* user store requires one word storage behind the end of
87a927c7
DW
2496 * the real object. But if the second red zone needs to be
2497 * aligned to 64 bits, we must allow that much space.
1da177e4 2498 */
87a927c7
DW
2499 if (flags & SLAB_RED_ZONE)
2500 size += REDZONE_ALIGN;
2501 else
2502 size += BYTES_PER_WORD;
1da177e4
LT
2503 }
2504#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2505 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2506 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2507 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2508 size = PAGE_SIZE;
2509 }
2510#endif
2511#endif
2512
e0a42726
IM
2513 /*
2514 * Determine if the slab management is 'on' or 'off' slab.
2515 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2516 * it too early on. Always use on-slab management when
2517 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2518 */
e7cb55b9
CM
2519 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2520 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2521 /*
2522 * Size is large, assume best to place the slab management obj
2523 * off-slab (should allow better packing of objs).
2524 */
2525 flags |= CFLGS_OFF_SLAB;
2526
2527 size = ALIGN(size, align);
2528
f78bb8ad 2529 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2530
2531 if (!cachep->num) {
b4169525 2532 printk(KERN_ERR
2533 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4 2534 kmem_cache_free(&cache_cache, cachep);
039363f3 2535 return NULL;
1da177e4 2536 }
b28a02de
PE
2537 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2538 + sizeof(struct slab), align);
1da177e4
LT
2539
2540 /*
2541 * If the slab has been placed off-slab, and we have enough space then
2542 * move it on-slab. This is at the expense of any extra colouring.
2543 */
2544 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2545 flags &= ~CFLGS_OFF_SLAB;
2546 left_over -= slab_size;
2547 }
2548
2549 if (flags & CFLGS_OFF_SLAB) {
2550 /* really off slab. No need for manual alignment */
b28a02de
PE
2551 slab_size =
2552 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2553
2554#ifdef CONFIG_PAGE_POISONING
2555 /* If we're going to use the generic kernel_map_pages()
2556 * poisoning, then it's going to smash the contents of
2557 * the redzone and userword anyhow, so switch them off.
2558 */
2559 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2560 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2561#endif
1da177e4
LT
2562 }
2563
2564 cachep->colour_off = cache_line_size();
2565 /* Offset must be a multiple of the alignment. */
2566 if (cachep->colour_off < align)
2567 cachep->colour_off = align;
b28a02de 2568 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2569 cachep->slab_size = slab_size;
2570 cachep->flags = flags;
a618e89f 2571 cachep->allocflags = 0;
4b51d669 2572 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2573 cachep->allocflags |= GFP_DMA;
3b0efdfa 2574 cachep->size = size;
6a2d7a95 2575 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2576
e5ac9c5a 2577 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2578 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2579 /*
2580 * This is a possibility for one of the malloc_sizes caches.
2581 * But since we go off slab only for object size greater than
2582 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2583 * this should not happen at all.
2584 * But leave a BUG_ON for some lucky dude.
2585 */
6cb8f913 2586 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2587 }
1da177e4 2588 cachep->ctor = ctor;
1da177e4 2589 cachep->name = name;
7c9adf5a 2590 cachep->refcount = 1;
1da177e4 2591
83b519e8 2592 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2593 __kmem_cache_destroy(cachep);
039363f3 2594 return NULL;
2ed3a4ef 2595 }
1da177e4 2596
83835b3d
PZ
2597 if (flags & SLAB_DEBUG_OBJECTS) {
2598 /*
2599 * Would deadlock through slab_destroy()->call_rcu()->
2600 * debug_object_activate()->kmem_cache_alloc().
2601 */
2602 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2603
2604 slab_set_debugobj_lock_classes(cachep);
2605 }
2606
1da177e4
LT
2607 return cachep;
2608}
1da177e4
LT
2609
2610#if DEBUG
2611static void check_irq_off(void)
2612{
2613 BUG_ON(!irqs_disabled());
2614}
2615
2616static void check_irq_on(void)
2617{
2618 BUG_ON(irqs_disabled());
2619}
2620
343e0d7a 2621static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2622{
2623#ifdef CONFIG_SMP
2624 check_irq_off();
7d6e6d09 2625 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2626#endif
2627}
e498be7d 2628
343e0d7a 2629static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2630{
2631#ifdef CONFIG_SMP
2632 check_irq_off();
2633 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2634#endif
2635}
2636
1da177e4
LT
2637#else
2638#define check_irq_off() do { } while(0)
2639#define check_irq_on() do { } while(0)
2640#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2641#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2642#endif
2643
aab2207c
CL
2644static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2645 struct array_cache *ac,
2646 int force, int node);
2647
1da177e4
LT
2648static void do_drain(void *arg)
2649{
a737b3e2 2650 struct kmem_cache *cachep = arg;
1da177e4 2651 struct array_cache *ac;
7d6e6d09 2652 int node = numa_mem_id();
1da177e4
LT
2653
2654 check_irq_off();
9a2dba4b 2655 ac = cpu_cache_get(cachep);
ff69416e
CL
2656 spin_lock(&cachep->nodelists[node]->list_lock);
2657 free_block(cachep, ac->entry, ac->avail, node);
2658 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2659 ac->avail = 0;
2660}
2661
343e0d7a 2662static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2663{
e498be7d
CL
2664 struct kmem_list3 *l3;
2665 int node;
2666
15c8b6c1 2667 on_each_cpu(do_drain, cachep, 1);
1da177e4 2668 check_irq_on();
b28a02de 2669 for_each_online_node(node) {
e498be7d 2670 l3 = cachep->nodelists[node];
a4523a8b
RD
2671 if (l3 && l3->alien)
2672 drain_alien_cache(cachep, l3->alien);
2673 }
2674
2675 for_each_online_node(node) {
2676 l3 = cachep->nodelists[node];
2677 if (l3)
aab2207c 2678 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2679 }
1da177e4
LT
2680}
2681
ed11d9eb
CL
2682/*
2683 * Remove slabs from the list of free slabs.
2684 * Specify the number of slabs to drain in tofree.
2685 *
2686 * Returns the actual number of slabs released.
2687 */
2688static int drain_freelist(struct kmem_cache *cache,
2689 struct kmem_list3 *l3, int tofree)
1da177e4 2690{
ed11d9eb
CL
2691 struct list_head *p;
2692 int nr_freed;
1da177e4 2693 struct slab *slabp;
1da177e4 2694
ed11d9eb
CL
2695 nr_freed = 0;
2696 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2697
ed11d9eb 2698 spin_lock_irq(&l3->list_lock);
e498be7d 2699 p = l3->slabs_free.prev;
ed11d9eb
CL
2700 if (p == &l3->slabs_free) {
2701 spin_unlock_irq(&l3->list_lock);
2702 goto out;
2703 }
1da177e4 2704
ed11d9eb 2705 slabp = list_entry(p, struct slab, list);
1da177e4 2706#if DEBUG
40094fa6 2707 BUG_ON(slabp->inuse);
1da177e4
LT
2708#endif
2709 list_del(&slabp->list);
ed11d9eb
CL
2710 /*
2711 * Safe to drop the lock. The slab is no longer linked
2712 * to the cache.
2713 */
2714 l3->free_objects -= cache->num;
e498be7d 2715 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2716 slab_destroy(cache, slabp);
2717 nr_freed++;
1da177e4 2718 }
ed11d9eb
CL
2719out:
2720 return nr_freed;
1da177e4
LT
2721}
2722
18004c5d 2723/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2724static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2725{
2726 int ret = 0, i = 0;
2727 struct kmem_list3 *l3;
2728
2729 drain_cpu_caches(cachep);
2730
2731 check_irq_on();
2732 for_each_online_node(i) {
2733 l3 = cachep->nodelists[i];
ed11d9eb
CL
2734 if (!l3)
2735 continue;
2736
2737 drain_freelist(cachep, l3, l3->free_objects);
2738
2739 ret += !list_empty(&l3->slabs_full) ||
2740 !list_empty(&l3->slabs_partial);
e498be7d
CL
2741 }
2742 return (ret ? 1 : 0);
2743}
2744
1da177e4
LT
2745/**
2746 * kmem_cache_shrink - Shrink a cache.
2747 * @cachep: The cache to shrink.
2748 *
2749 * Releases as many slabs as possible for a cache.
2750 * To help debugging, a zero exit status indicates all slabs were released.
2751 */
343e0d7a 2752int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2753{
8f5be20b 2754 int ret;
40094fa6 2755 BUG_ON(!cachep || in_interrupt());
1da177e4 2756
95402b38 2757 get_online_cpus();
18004c5d 2758 mutex_lock(&slab_mutex);
8f5be20b 2759 ret = __cache_shrink(cachep);
18004c5d 2760 mutex_unlock(&slab_mutex);
95402b38 2761 put_online_cpus();
8f5be20b 2762 return ret;
1da177e4
LT
2763}
2764EXPORT_SYMBOL(kmem_cache_shrink);
2765
2766/**
2767 * kmem_cache_destroy - delete a cache
2768 * @cachep: the cache to destroy
2769 *
72fd4a35 2770 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2771 *
2772 * It is expected this function will be called by a module when it is
2773 * unloaded. This will remove the cache completely, and avoid a duplicate
2774 * cache being allocated each time a module is loaded and unloaded, if the
2775 * module doesn't have persistent in-kernel storage across loads and unloads.
2776 *
2777 * The cache must be empty before calling this function.
2778 *
25985edc 2779 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2780 * during the kmem_cache_destroy().
2781 */
133d205a 2782void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2783{
40094fa6 2784 BUG_ON(!cachep || in_interrupt());
1da177e4 2785
1da177e4 2786 /* Find the cache in the chain of caches. */
95402b38 2787 get_online_cpus();
18004c5d 2788 mutex_lock(&slab_mutex);
1da177e4
LT
2789 /*
2790 * the chain is never empty, cache_cache is never destroyed
2791 */
3b0efdfa 2792 list_del(&cachep->list);
1da177e4
LT
2793 if (__cache_shrink(cachep)) {
2794 slab_error(cachep, "Can't free all objects");
18004c5d
CL
2795 list_add(&cachep->list, &slab_caches);
2796 mutex_unlock(&slab_mutex);
95402b38 2797 put_online_cpus();
133d205a 2798 return;
1da177e4
LT
2799 }
2800
2801 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2802 rcu_barrier();
1da177e4 2803
117f6eb1 2804 __kmem_cache_destroy(cachep);
18004c5d 2805 mutex_unlock(&slab_mutex);
95402b38 2806 put_online_cpus();
1da177e4
LT
2807}
2808EXPORT_SYMBOL(kmem_cache_destroy);
2809
e5ac9c5a
RT
2810/*
2811 * Get the memory for a slab management obj.
2812 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2813 * always come from malloc_sizes caches. The slab descriptor cannot
2814 * come from the same cache which is getting created because,
2815 * when we are searching for an appropriate cache for these
2816 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2817 * If we are creating a malloc_sizes cache here it would not be visible to
2818 * kmem_find_general_cachep till the initialization is complete.
2819 * Hence we cannot have slabp_cache same as the original cache.
2820 */
343e0d7a 2821static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2822 int colour_off, gfp_t local_flags,
2823 int nodeid)
1da177e4
LT
2824{
2825 struct slab *slabp;
b28a02de 2826
1da177e4
LT
2827 if (OFF_SLAB(cachep)) {
2828 /* Slab management obj is off-slab. */
5b74ada7 2829 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2830 local_flags, nodeid);
d5cff635
CM
2831 /*
2832 * If the first object in the slab is leaked (it's allocated
2833 * but no one has a reference to it), we want to make sure
2834 * kmemleak does not treat the ->s_mem pointer as a reference
2835 * to the object. Otherwise we will not report the leak.
2836 */
c017b4be
CM
2837 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2838 local_flags);
1da177e4
LT
2839 if (!slabp)
2840 return NULL;
2841 } else {
b28a02de 2842 slabp = objp + colour_off;
1da177e4
LT
2843 colour_off += cachep->slab_size;
2844 }
2845 slabp->inuse = 0;
2846 slabp->colouroff = colour_off;
b28a02de 2847 slabp->s_mem = objp + colour_off;
5b74ada7 2848 slabp->nodeid = nodeid;
e51bfd0a 2849 slabp->free = 0;
1da177e4
LT
2850 return slabp;
2851}
2852
2853static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2854{
b28a02de 2855 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2856}
2857
343e0d7a 2858static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2859 struct slab *slabp)
1da177e4
LT
2860{
2861 int i;
2862
2863 for (i = 0; i < cachep->num; i++) {
8fea4e96 2864 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2865#if DEBUG
2866 /* need to poison the objs? */
2867 if (cachep->flags & SLAB_POISON)
2868 poison_obj(cachep, objp, POISON_FREE);
2869 if (cachep->flags & SLAB_STORE_USER)
2870 *dbg_userword(cachep, objp) = NULL;
2871
2872 if (cachep->flags & SLAB_RED_ZONE) {
2873 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2874 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2875 }
2876 /*
a737b3e2
AM
2877 * Constructors are not allowed to allocate memory from the same
2878 * cache which they are a constructor for. Otherwise, deadlock.
2879 * They must also be threaded.
1da177e4
LT
2880 */
2881 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2882 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2883
2884 if (cachep->flags & SLAB_RED_ZONE) {
2885 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2886 slab_error(cachep, "constructor overwrote the"
b28a02de 2887 " end of an object");
1da177e4
LT
2888 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2889 slab_error(cachep, "constructor overwrote the"
b28a02de 2890 " start of an object");
1da177e4 2891 }
3b0efdfa 2892 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2893 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2894 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2895 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2896#else
2897 if (cachep->ctor)
51cc5068 2898 cachep->ctor(objp);
1da177e4 2899#endif
b28a02de 2900 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2901 }
b28a02de 2902 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2903}
2904
343e0d7a 2905static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2906{
4b51d669
CL
2907 if (CONFIG_ZONE_DMA_FLAG) {
2908 if (flags & GFP_DMA)
a618e89f 2909 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2910 else
a618e89f 2911 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2912 }
1da177e4
LT
2913}
2914
a737b3e2
AM
2915static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2916 int nodeid)
78d382d7 2917{
8fea4e96 2918 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2919 kmem_bufctl_t next;
2920
2921 slabp->inuse++;
2922 next = slab_bufctl(slabp)[slabp->free];
2923#if DEBUG
2924 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2925 WARN_ON(slabp->nodeid != nodeid);
2926#endif
2927 slabp->free = next;
2928
2929 return objp;
2930}
2931
a737b3e2
AM
2932static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2933 void *objp, int nodeid)
78d382d7 2934{
8fea4e96 2935 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2936
2937#if DEBUG
2938 /* Verify that the slab belongs to the intended node */
2939 WARN_ON(slabp->nodeid != nodeid);
2940
871751e2 2941 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2942 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2943 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2944 BUG();
2945 }
2946#endif
2947 slab_bufctl(slabp)[objnr] = slabp->free;
2948 slabp->free = objnr;
2949 slabp->inuse--;
2950}
2951
4776874f
PE
2952/*
2953 * Map pages beginning at addr to the given cache and slab. This is required
2954 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2955 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2956 */
2957static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2958 void *addr)
1da177e4 2959{
4776874f 2960 int nr_pages;
1da177e4
LT
2961 struct page *page;
2962
4776874f 2963 page = virt_to_page(addr);
84097518 2964
4776874f 2965 nr_pages = 1;
84097518 2966 if (likely(!PageCompound(page)))
4776874f
PE
2967 nr_pages <<= cache->gfporder;
2968
1da177e4 2969 do {
35026088
CL
2970 page->slab_cache = cache;
2971 page->slab_page = slab;
1da177e4 2972 page++;
4776874f 2973 } while (--nr_pages);
1da177e4
LT
2974}
2975
2976/*
2977 * Grow (by 1) the number of slabs within a cache. This is called by
2978 * kmem_cache_alloc() when there are no active objs left in a cache.
2979 */
3c517a61
CL
2980static int cache_grow(struct kmem_cache *cachep,
2981 gfp_t flags, int nodeid, void *objp)
1da177e4 2982{
b28a02de 2983 struct slab *slabp;
b28a02de
PE
2984 size_t offset;
2985 gfp_t local_flags;
e498be7d 2986 struct kmem_list3 *l3;
1da177e4 2987
a737b3e2
AM
2988 /*
2989 * Be lazy and only check for valid flags here, keeping it out of the
2990 * critical path in kmem_cache_alloc().
1da177e4 2991 */
6cb06229
CL
2992 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2993 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2994
2e1217cf 2995 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2996 check_irq_off();
2e1217cf
RT
2997 l3 = cachep->nodelists[nodeid];
2998 spin_lock(&l3->list_lock);
1da177e4
LT
2999
3000 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
3001 offset = l3->colour_next;
3002 l3->colour_next++;
3003 if (l3->colour_next >= cachep->colour)
3004 l3->colour_next = 0;
3005 spin_unlock(&l3->list_lock);
1da177e4 3006
2e1217cf 3007 offset *= cachep->colour_off;
1da177e4
LT
3008
3009 if (local_flags & __GFP_WAIT)
3010 local_irq_enable();
3011
3012 /*
3013 * The test for missing atomic flag is performed here, rather than
3014 * the more obvious place, simply to reduce the critical path length
3015 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
3016 * will eventually be caught here (where it matters).
3017 */
3018 kmem_flagcheck(cachep, flags);
3019
a737b3e2
AM
3020 /*
3021 * Get mem for the objs. Attempt to allocate a physical page from
3022 * 'nodeid'.
e498be7d 3023 */
3c517a61 3024 if (!objp)
b8c1c5da 3025 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 3026 if (!objp)
1da177e4
LT
3027 goto failed;
3028
3029 /* Get slab management. */
3c517a61 3030 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 3031 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 3032 if (!slabp)
1da177e4
LT
3033 goto opps1;
3034
4776874f 3035 slab_map_pages(cachep, slabp, objp);
1da177e4 3036
a35afb83 3037 cache_init_objs(cachep, slabp);
1da177e4
LT
3038
3039 if (local_flags & __GFP_WAIT)
3040 local_irq_disable();
3041 check_irq_off();
e498be7d 3042 spin_lock(&l3->list_lock);
1da177e4
LT
3043
3044 /* Make slab active. */
e498be7d 3045 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 3046 STATS_INC_GROWN(cachep);
e498be7d
CL
3047 l3->free_objects += cachep->num;
3048 spin_unlock(&l3->list_lock);
1da177e4 3049 return 1;
a737b3e2 3050opps1:
1da177e4 3051 kmem_freepages(cachep, objp);
a737b3e2 3052failed:
1da177e4
LT
3053 if (local_flags & __GFP_WAIT)
3054 local_irq_disable();
3055 return 0;
3056}
3057
3058#if DEBUG
3059
3060/*
3061 * Perform extra freeing checks:
3062 * - detect bad pointers.
3063 * - POISON/RED_ZONE checking
1da177e4
LT
3064 */
3065static void kfree_debugcheck(const void *objp)
3066{
1da177e4
LT
3067 if (!virt_addr_valid(objp)) {
3068 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3069 (unsigned long)objp);
3070 BUG();
1da177e4 3071 }
1da177e4
LT
3072}
3073
58ce1fd5
PE
3074static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3075{
b46b8f19 3076 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3077
3078 redzone1 = *dbg_redzone1(cache, obj);
3079 redzone2 = *dbg_redzone2(cache, obj);
3080
3081 /*
3082 * Redzone is ok.
3083 */
3084 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3085 return;
3086
3087 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3088 slab_error(cache, "double free detected");
3089 else
3090 slab_error(cache, "memory outside object was overwritten");
3091
b46b8f19 3092 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3093 obj, redzone1, redzone2);
3094}
3095
343e0d7a 3096static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3097 void *caller)
1da177e4
LT
3098{
3099 struct page *page;
3100 unsigned int objnr;
3101 struct slab *slabp;
3102
80cbd911
MW
3103 BUG_ON(virt_to_cache(objp) != cachep);
3104
3dafccf2 3105 objp -= obj_offset(cachep);
1da177e4 3106 kfree_debugcheck(objp);
b49af68f 3107 page = virt_to_head_page(objp);
1da177e4 3108
35026088 3109 slabp = page->slab_page;
1da177e4
LT
3110
3111 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3112 verify_redzone_free(cachep, objp);
1da177e4
LT
3113 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3114 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3115 }
3116 if (cachep->flags & SLAB_STORE_USER)
3117 *dbg_userword(cachep, objp) = caller;
3118
8fea4e96 3119 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3120
3121 BUG_ON(objnr >= cachep->num);
8fea4e96 3122 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3123
871751e2
AV
3124#ifdef CONFIG_DEBUG_SLAB_LEAK
3125 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3126#endif
1da177e4
LT
3127 if (cachep->flags & SLAB_POISON) {
3128#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3129 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3130 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3131 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3132 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3133 } else {
3134 poison_obj(cachep, objp, POISON_FREE);
3135 }
3136#else
3137 poison_obj(cachep, objp, POISON_FREE);
3138#endif
3139 }
3140 return objp;
3141}
3142
343e0d7a 3143static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3144{
3145 kmem_bufctl_t i;
3146 int entries = 0;
b28a02de 3147
1da177e4
LT
3148 /* Check slab's freelist to see if this obj is there. */
3149 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3150 entries++;
3151 if (entries > cachep->num || i >= cachep->num)
3152 goto bad;
3153 }
3154 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3155bad:
3156 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3157 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3158 cachep->name, cachep->num, slabp, slabp->inuse,
3159 print_tainted());
fdde6abb
SAS
3160 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3161 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3162 1);
1da177e4
LT
3163 BUG();
3164 }
3165}
3166#else
3167#define kfree_debugcheck(x) do { } while(0)
3168#define cache_free_debugcheck(x,objp,z) (objp)
3169#define check_slabp(x,y) do { } while(0)
3170#endif
3171
072bb0aa
MG
3172static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3173 bool force_refill)
1da177e4
LT
3174{
3175 int batchcount;
3176 struct kmem_list3 *l3;
3177 struct array_cache *ac;
1ca4cb24
PE
3178 int node;
3179
1da177e4 3180 check_irq_off();
7d6e6d09 3181 node = numa_mem_id();
072bb0aa
MG
3182 if (unlikely(force_refill))
3183 goto force_grow;
3184retry:
9a2dba4b 3185 ac = cpu_cache_get(cachep);
1da177e4
LT
3186 batchcount = ac->batchcount;
3187 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3188 /*
3189 * If there was little recent activity on this cache, then
3190 * perform only a partial refill. Otherwise we could generate
3191 * refill bouncing.
1da177e4
LT
3192 */
3193 batchcount = BATCHREFILL_LIMIT;
3194 }
1ca4cb24 3195 l3 = cachep->nodelists[node];
e498be7d
CL
3196
3197 BUG_ON(ac->avail > 0 || !l3);
3198 spin_lock(&l3->list_lock);
1da177e4 3199
3ded175a 3200 /* See if we can refill from the shared array */
44b57f1c
NP
3201 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3202 l3->shared->touched = 1;
3ded175a 3203 goto alloc_done;
44b57f1c 3204 }
3ded175a 3205
1da177e4
LT
3206 while (batchcount > 0) {
3207 struct list_head *entry;
3208 struct slab *slabp;
3209 /* Get slab alloc is to come from. */
3210 entry = l3->slabs_partial.next;
3211 if (entry == &l3->slabs_partial) {
3212 l3->free_touched = 1;
3213 entry = l3->slabs_free.next;
3214 if (entry == &l3->slabs_free)
3215 goto must_grow;
3216 }
3217
3218 slabp = list_entry(entry, struct slab, list);
3219 check_slabp(cachep, slabp);
3220 check_spinlock_acquired(cachep);
714b8171
PE
3221
3222 /*
3223 * The slab was either on partial or free list so
3224 * there must be at least one object available for
3225 * allocation.
3226 */
249b9f33 3227 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3228
1da177e4 3229 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3230 STATS_INC_ALLOCED(cachep);
3231 STATS_INC_ACTIVE(cachep);
3232 STATS_SET_HIGH(cachep);
3233
072bb0aa
MG
3234 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3235 node));
1da177e4
LT
3236 }
3237 check_slabp(cachep, slabp);
3238
3239 /* move slabp to correct slabp list: */
3240 list_del(&slabp->list);
3241 if (slabp->free == BUFCTL_END)
3242 list_add(&slabp->list, &l3->slabs_full);
3243 else
3244 list_add(&slabp->list, &l3->slabs_partial);
3245 }
3246
a737b3e2 3247must_grow:
1da177e4 3248 l3->free_objects -= ac->avail;
a737b3e2 3249alloc_done:
e498be7d 3250 spin_unlock(&l3->list_lock);
1da177e4
LT
3251
3252 if (unlikely(!ac->avail)) {
3253 int x;
072bb0aa 3254force_grow:
3c517a61 3255 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3256
a737b3e2 3257 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3258 ac = cpu_cache_get(cachep);
072bb0aa
MG
3259
3260 /* no objects in sight? abort */
3261 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3262 return NULL;
3263
a737b3e2 3264 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3265 goto retry;
3266 }
3267 ac->touched = 1;
072bb0aa
MG
3268
3269 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3270}
3271
a737b3e2
AM
3272static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3273 gfp_t flags)
1da177e4
LT
3274{
3275 might_sleep_if(flags & __GFP_WAIT);
3276#if DEBUG
3277 kmem_flagcheck(cachep, flags);
3278#endif
3279}
3280
3281#if DEBUG
a737b3e2
AM
3282static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3283 gfp_t flags, void *objp, void *caller)
1da177e4 3284{
b28a02de 3285 if (!objp)
1da177e4 3286 return objp;
b28a02de 3287 if (cachep->flags & SLAB_POISON) {
1da177e4 3288#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3289 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3290 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3291 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3292 else
3293 check_poison_obj(cachep, objp);
3294#else
3295 check_poison_obj(cachep, objp);
3296#endif
3297 poison_obj(cachep, objp, POISON_INUSE);
3298 }
3299 if (cachep->flags & SLAB_STORE_USER)
3300 *dbg_userword(cachep, objp) = caller;
3301
3302 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3303 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3304 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3305 slab_error(cachep, "double free, or memory outside"
3306 " object was overwritten");
b28a02de 3307 printk(KERN_ERR
b46b8f19 3308 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3309 objp, *dbg_redzone1(cachep, objp),
3310 *dbg_redzone2(cachep, objp));
1da177e4
LT
3311 }
3312 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3313 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3314 }
871751e2
AV
3315#ifdef CONFIG_DEBUG_SLAB_LEAK
3316 {
3317 struct slab *slabp;
3318 unsigned objnr;
3319
35026088 3320 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3321 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3322 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3323 }
3324#endif
3dafccf2 3325 objp += obj_offset(cachep);
4f104934 3326 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3327 cachep->ctor(objp);
7ea466f2
TH
3328 if (ARCH_SLAB_MINALIGN &&
3329 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3330 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3331 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3332 }
1da177e4
LT
3333 return objp;
3334}
3335#else
3336#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3337#endif
3338
773ff60e 3339static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3340{
3341 if (cachep == &cache_cache)
773ff60e 3342 return false;
8a8b6502 3343
8c138bc0 3344 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3345}
3346
343e0d7a 3347static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3348{
b28a02de 3349 void *objp;
1da177e4 3350 struct array_cache *ac;
072bb0aa 3351 bool force_refill = false;
1da177e4 3352
5c382300 3353 check_irq_off();
8a8b6502 3354
9a2dba4b 3355 ac = cpu_cache_get(cachep);
1da177e4 3356 if (likely(ac->avail)) {
1da177e4 3357 ac->touched = 1;
072bb0aa
MG
3358 objp = ac_get_obj(cachep, ac, flags, false);
3359
ddbf2e83 3360 /*
072bb0aa
MG
3361 * Allow for the possibility all avail objects are not allowed
3362 * by the current flags
ddbf2e83 3363 */
072bb0aa
MG
3364 if (objp) {
3365 STATS_INC_ALLOCHIT(cachep);
3366 goto out;
3367 }
3368 force_refill = true;
1da177e4 3369 }
072bb0aa
MG
3370
3371 STATS_INC_ALLOCMISS(cachep);
3372 objp = cache_alloc_refill(cachep, flags, force_refill);
3373 /*
3374 * the 'ac' may be updated by cache_alloc_refill(),
3375 * and kmemleak_erase() requires its correct value.
3376 */
3377 ac = cpu_cache_get(cachep);
3378
3379out:
d5cff635
CM
3380 /*
3381 * To avoid a false negative, if an object that is in one of the
3382 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3383 * treat the array pointers as a reference to the object.
3384 */
f3d8b53a
O
3385 if (objp)
3386 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3387 return objp;
3388}
3389
e498be7d 3390#ifdef CONFIG_NUMA
c61afb18 3391/*
b2455396 3392 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3393 *
3394 * If we are in_interrupt, then process context, including cpusets and
3395 * mempolicy, may not apply and should not be used for allocation policy.
3396 */
3397static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3398{
3399 int nid_alloc, nid_here;
3400
765c4507 3401 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3402 return NULL;
7d6e6d09 3403 nid_alloc = nid_here = numa_mem_id();
c61afb18 3404 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3405 nid_alloc = cpuset_slab_spread_node();
c61afb18 3406 else if (current->mempolicy)
e7b691b0 3407 nid_alloc = slab_node();
c61afb18 3408 if (nid_alloc != nid_here)
8b98c169 3409 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3410 return NULL;
3411}
3412
765c4507
CL
3413/*
3414 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3415 * certain node and fall back is permitted. First we scan all the
3416 * available nodelists for available objects. If that fails then we
3417 * perform an allocation without specifying a node. This allows the page
3418 * allocator to do its reclaim / fallback magic. We then insert the
3419 * slab into the proper nodelist and then allocate from it.
765c4507 3420 */
8c8cc2c1 3421static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3422{
8c8cc2c1
PE
3423 struct zonelist *zonelist;
3424 gfp_t local_flags;
dd1a239f 3425 struct zoneref *z;
54a6eb5c
MG
3426 struct zone *zone;
3427 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3428 void *obj = NULL;
3c517a61 3429 int nid;
cc9a6c87 3430 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3431
3432 if (flags & __GFP_THISNODE)
3433 return NULL;
3434
6cb06229 3435 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3436
cc9a6c87
MG
3437retry_cpuset:
3438 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3439 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3440
3c517a61
CL
3441retry:
3442 /*
3443 * Look through allowed nodes for objects available
3444 * from existing per node queues.
3445 */
54a6eb5c
MG
3446 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3447 nid = zone_to_nid(zone);
aedb0eb1 3448
54a6eb5c 3449 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3450 cache->nodelists[nid] &&
481c5346 3451 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3452 obj = ____cache_alloc_node(cache,
3453 flags | GFP_THISNODE, nid);
481c5346
CL
3454 if (obj)
3455 break;
3456 }
3c517a61
CL
3457 }
3458
cfce6604 3459 if (!obj) {
3c517a61
CL
3460 /*
3461 * This allocation will be performed within the constraints
3462 * of the current cpuset / memory policy requirements.
3463 * We may trigger various forms of reclaim on the allowed
3464 * set and go into memory reserves if necessary.
3465 */
dd47ea75
CL
3466 if (local_flags & __GFP_WAIT)
3467 local_irq_enable();
3468 kmem_flagcheck(cache, flags);
7d6e6d09 3469 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3470 if (local_flags & __GFP_WAIT)
3471 local_irq_disable();
3c517a61
CL
3472 if (obj) {
3473 /*
3474 * Insert into the appropriate per node queues
3475 */
3476 nid = page_to_nid(virt_to_page(obj));
3477 if (cache_grow(cache, flags, nid, obj)) {
3478 obj = ____cache_alloc_node(cache,
3479 flags | GFP_THISNODE, nid);
3480 if (!obj)
3481 /*
3482 * Another processor may allocate the
3483 * objects in the slab since we are
3484 * not holding any locks.
3485 */
3486 goto retry;
3487 } else {
b6a60451 3488 /* cache_grow already freed obj */
3c517a61
CL
3489 obj = NULL;
3490 }
3491 }
aedb0eb1 3492 }
cc9a6c87
MG
3493
3494 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3495 goto retry_cpuset;
765c4507
CL
3496 return obj;
3497}
3498
e498be7d
CL
3499/*
3500 * A interface to enable slab creation on nodeid
1da177e4 3501 */
8b98c169 3502static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3503 int nodeid)
e498be7d
CL
3504{
3505 struct list_head *entry;
b28a02de
PE
3506 struct slab *slabp;
3507 struct kmem_list3 *l3;
3508 void *obj;
b28a02de
PE
3509 int x;
3510
3511 l3 = cachep->nodelists[nodeid];
3512 BUG_ON(!l3);
3513
a737b3e2 3514retry:
ca3b9b91 3515 check_irq_off();
b28a02de
PE
3516 spin_lock(&l3->list_lock);
3517 entry = l3->slabs_partial.next;
3518 if (entry == &l3->slabs_partial) {
3519 l3->free_touched = 1;
3520 entry = l3->slabs_free.next;
3521 if (entry == &l3->slabs_free)
3522 goto must_grow;
3523 }
3524
3525 slabp = list_entry(entry, struct slab, list);
3526 check_spinlock_acquired_node(cachep, nodeid);
3527 check_slabp(cachep, slabp);
3528
3529 STATS_INC_NODEALLOCS(cachep);
3530 STATS_INC_ACTIVE(cachep);
3531 STATS_SET_HIGH(cachep);
3532
3533 BUG_ON(slabp->inuse == cachep->num);
3534
78d382d7 3535 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3536 check_slabp(cachep, slabp);
3537 l3->free_objects--;
3538 /* move slabp to correct slabp list: */
3539 list_del(&slabp->list);
3540
a737b3e2 3541 if (slabp->free == BUFCTL_END)
b28a02de 3542 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3543 else
b28a02de 3544 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3545
b28a02de
PE
3546 spin_unlock(&l3->list_lock);
3547 goto done;
e498be7d 3548
a737b3e2 3549must_grow:
b28a02de 3550 spin_unlock(&l3->list_lock);
3c517a61 3551 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3552 if (x)
3553 goto retry;
1da177e4 3554
8c8cc2c1 3555 return fallback_alloc(cachep, flags);
e498be7d 3556
a737b3e2 3557done:
b28a02de 3558 return obj;
e498be7d 3559}
8c8cc2c1
PE
3560
3561/**
3562 * kmem_cache_alloc_node - Allocate an object on the specified node
3563 * @cachep: The cache to allocate from.
3564 * @flags: See kmalloc().
3565 * @nodeid: node number of the target node.
3566 * @caller: return address of caller, used for debug information
3567 *
3568 * Identical to kmem_cache_alloc but it will allocate memory on the given
3569 * node, which can improve the performance for cpu bound structures.
3570 *
3571 * Fallback to other node is possible if __GFP_THISNODE is not set.
3572 */
3573static __always_inline void *
3574__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3575 void *caller)
3576{
3577 unsigned long save_flags;
3578 void *ptr;
7d6e6d09 3579 int slab_node = numa_mem_id();
8c8cc2c1 3580
dcce284a 3581 flags &= gfp_allowed_mask;
7e85ee0c 3582
cf40bd16
NP
3583 lockdep_trace_alloc(flags);
3584
773ff60e 3585 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3586 return NULL;
3587
8c8cc2c1
PE
3588 cache_alloc_debugcheck_before(cachep, flags);
3589 local_irq_save(save_flags);
3590
eacbbae3 3591 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3592 nodeid = slab_node;
8c8cc2c1
PE
3593
3594 if (unlikely(!cachep->nodelists[nodeid])) {
3595 /* Node not bootstrapped yet */
3596 ptr = fallback_alloc(cachep, flags);
3597 goto out;
3598 }
3599
7d6e6d09 3600 if (nodeid == slab_node) {
8c8cc2c1
PE
3601 /*
3602 * Use the locally cached objects if possible.
3603 * However ____cache_alloc does not allow fallback
3604 * to other nodes. It may fail while we still have
3605 * objects on other nodes available.
3606 */
3607 ptr = ____cache_alloc(cachep, flags);
3608 if (ptr)
3609 goto out;
3610 }
3611 /* ___cache_alloc_node can fall back to other nodes */
3612 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3613 out:
3614 local_irq_restore(save_flags);
3615 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3616 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3617 flags);
8c8cc2c1 3618
c175eea4 3619 if (likely(ptr))
8c138bc0 3620 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3621
d07dbea4 3622 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3623 memset(ptr, 0, cachep->object_size);
d07dbea4 3624
8c8cc2c1
PE
3625 return ptr;
3626}
3627
3628static __always_inline void *
3629__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3630{
3631 void *objp;
3632
3633 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3634 objp = alternate_node_alloc(cache, flags);
3635 if (objp)
3636 goto out;
3637 }
3638 objp = ____cache_alloc(cache, flags);
3639
3640 /*
3641 * We may just have run out of memory on the local node.
3642 * ____cache_alloc_node() knows how to locate memory on other nodes
3643 */
7d6e6d09
LS
3644 if (!objp)
3645 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3646
3647 out:
3648 return objp;
3649}
3650#else
3651
3652static __always_inline void *
3653__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3654{
3655 return ____cache_alloc(cachep, flags);
3656}
3657
3658#endif /* CONFIG_NUMA */
3659
3660static __always_inline void *
3661__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3662{
3663 unsigned long save_flags;
3664 void *objp;
3665
dcce284a 3666 flags &= gfp_allowed_mask;
7e85ee0c 3667
cf40bd16
NP
3668 lockdep_trace_alloc(flags);
3669
773ff60e 3670 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3671 return NULL;
3672
8c8cc2c1
PE
3673 cache_alloc_debugcheck_before(cachep, flags);
3674 local_irq_save(save_flags);
3675 objp = __do_cache_alloc(cachep, flags);
3676 local_irq_restore(save_flags);
3677 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3678 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3679 flags);
8c8cc2c1
PE
3680 prefetchw(objp);
3681
c175eea4 3682 if (likely(objp))
8c138bc0 3683 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3684
d07dbea4 3685 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3686 memset(objp, 0, cachep->object_size);
d07dbea4 3687
8c8cc2c1
PE
3688 return objp;
3689}
e498be7d
CL
3690
3691/*
3692 * Caller needs to acquire correct kmem_list's list_lock
3693 */
343e0d7a 3694static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3695 int node)
1da177e4
LT
3696{
3697 int i;
e498be7d 3698 struct kmem_list3 *l3;
1da177e4
LT
3699
3700 for (i = 0; i < nr_objects; i++) {
072bb0aa 3701 void *objp;
1da177e4 3702 struct slab *slabp;
1da177e4 3703
072bb0aa
MG
3704 clear_obj_pfmemalloc(&objpp[i]);
3705 objp = objpp[i];
3706
6ed5eb22 3707 slabp = virt_to_slab(objp);
ff69416e 3708 l3 = cachep->nodelists[node];
1da177e4 3709 list_del(&slabp->list);
ff69416e 3710 check_spinlock_acquired_node(cachep, node);
1da177e4 3711 check_slabp(cachep, slabp);
78d382d7 3712 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3713 STATS_DEC_ACTIVE(cachep);
e498be7d 3714 l3->free_objects++;
1da177e4
LT
3715 check_slabp(cachep, slabp);
3716
3717 /* fixup slab chains */
3718 if (slabp->inuse == 0) {
e498be7d
CL
3719 if (l3->free_objects > l3->free_limit) {
3720 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3721 /* No need to drop any previously held
3722 * lock here, even if we have a off-slab slab
3723 * descriptor it is guaranteed to come from
3724 * a different cache, refer to comments before
3725 * alloc_slabmgmt.
3726 */
1da177e4
LT
3727 slab_destroy(cachep, slabp);
3728 } else {
e498be7d 3729 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3730 }
3731 } else {
3732 /* Unconditionally move a slab to the end of the
3733 * partial list on free - maximum time for the
3734 * other objects to be freed, too.
3735 */
e498be7d 3736 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3737 }
3738 }
3739}
3740
343e0d7a 3741static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3742{
3743 int batchcount;
e498be7d 3744 struct kmem_list3 *l3;
7d6e6d09 3745 int node = numa_mem_id();
1da177e4
LT
3746
3747 batchcount = ac->batchcount;
3748#if DEBUG
3749 BUG_ON(!batchcount || batchcount > ac->avail);
3750#endif
3751 check_irq_off();
ff69416e 3752 l3 = cachep->nodelists[node];
873623df 3753 spin_lock(&l3->list_lock);
e498be7d
CL
3754 if (l3->shared) {
3755 struct array_cache *shared_array = l3->shared;
b28a02de 3756 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3757 if (max) {
3758 if (batchcount > max)
3759 batchcount = max;
e498be7d 3760 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3761 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3762 shared_array->avail += batchcount;
3763 goto free_done;
3764 }
3765 }
3766
ff69416e 3767 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3768free_done:
1da177e4
LT
3769#if STATS
3770 {
3771 int i = 0;
3772 struct list_head *p;
3773
e498be7d
CL
3774 p = l3->slabs_free.next;
3775 while (p != &(l3->slabs_free)) {
1da177e4
LT
3776 struct slab *slabp;
3777
3778 slabp = list_entry(p, struct slab, list);
3779 BUG_ON(slabp->inuse);
3780
3781 i++;
3782 p = p->next;
3783 }
3784 STATS_SET_FREEABLE(cachep, i);
3785 }
3786#endif
e498be7d 3787 spin_unlock(&l3->list_lock);
1da177e4 3788 ac->avail -= batchcount;
a737b3e2 3789 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3790}
3791
3792/*
a737b3e2
AM
3793 * Release an obj back to its cache. If the obj has a constructed state, it must
3794 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3795 */
a947eb95
SS
3796static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3797 void *caller)
1da177e4 3798{
9a2dba4b 3799 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3800
3801 check_irq_off();
d5cff635 3802 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3803 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3804
8c138bc0 3805 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3806
1807a1aa
SS
3807 /*
3808 * Skip calling cache_free_alien() when the platform is not numa.
3809 * This will avoid cache misses that happen while accessing slabp (which
3810 * is per page memory reference) to get nodeid. Instead use a global
3811 * variable to skip the call, which is mostly likely to be present in
3812 * the cache.
3813 */
b6e68bc1 3814 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3815 return;
3816
1da177e4
LT
3817 if (likely(ac->avail < ac->limit)) {
3818 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3819 } else {
3820 STATS_INC_FREEMISS(cachep);
3821 cache_flusharray(cachep, ac);
1da177e4 3822 }
42c8c99c 3823
072bb0aa 3824 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3825}
3826
3827/**
3828 * kmem_cache_alloc - Allocate an object
3829 * @cachep: The cache to allocate from.
3830 * @flags: See kmalloc().
3831 *
3832 * Allocate an object from this cache. The flags are only relevant
3833 * if the cache has no available objects.
3834 */
343e0d7a 3835void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3836{
36555751
EGM
3837 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3838
ca2b84cb 3839 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3840 cachep->object_size, cachep->size, flags);
36555751
EGM
3841
3842 return ret;
1da177e4
LT
3843}
3844EXPORT_SYMBOL(kmem_cache_alloc);
3845
0f24f128 3846#ifdef CONFIG_TRACING
85beb586
SR
3847void *
3848kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3849{
85beb586
SR
3850 void *ret;
3851
3852 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3853
3854 trace_kmalloc(_RET_IP_, ret,
3855 size, slab_buffer_size(cachep), flags);
3856 return ret;
36555751 3857}
85beb586 3858EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3859#endif
3860
1da177e4 3861#ifdef CONFIG_NUMA
8b98c169
CH
3862void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3863{
36555751
EGM
3864 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3865 __builtin_return_address(0));
3866
ca2b84cb 3867 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3868 cachep->object_size, cachep->size,
ca2b84cb 3869 flags, nodeid);
36555751
EGM
3870
3871 return ret;
8b98c169 3872}
1da177e4
LT
3873EXPORT_SYMBOL(kmem_cache_alloc_node);
3874
0f24f128 3875#ifdef CONFIG_TRACING
85beb586
SR
3876void *kmem_cache_alloc_node_trace(size_t size,
3877 struct kmem_cache *cachep,
3878 gfp_t flags,
3879 int nodeid)
36555751 3880{
85beb586
SR
3881 void *ret;
3882
3883 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3884 __builtin_return_address(0));
85beb586
SR
3885 trace_kmalloc_node(_RET_IP_, ret,
3886 size, slab_buffer_size(cachep),
3887 flags, nodeid);
3888 return ret;
36555751 3889}
85beb586 3890EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3891#endif
3892
8b98c169
CH
3893static __always_inline void *
3894__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3895{
343e0d7a 3896 struct kmem_cache *cachep;
97e2bde4
MS
3897
3898 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3899 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3900 return cachep;
85beb586 3901 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3902}
8b98c169 3903
0bb38a5c 3904#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3905void *__kmalloc_node(size_t size, gfp_t flags, int node)
3906{
3907 return __do_kmalloc_node(size, flags, node,
3908 __builtin_return_address(0));
3909}
dbe5e69d 3910EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3911
3912void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3913 int node, unsigned long caller)
8b98c169 3914{
ce71e27c 3915 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3916}
3917EXPORT_SYMBOL(__kmalloc_node_track_caller);
3918#else
3919void *__kmalloc_node(size_t size, gfp_t flags, int node)
3920{
3921 return __do_kmalloc_node(size, flags, node, NULL);
3922}
3923EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3924#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3925#endif /* CONFIG_NUMA */
1da177e4
LT
3926
3927/**
800590f5 3928 * __do_kmalloc - allocate memory
1da177e4 3929 * @size: how many bytes of memory are required.
800590f5 3930 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3931 * @caller: function caller for debug tracking of the caller
1da177e4 3932 */
7fd6b141
PE
3933static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3934 void *caller)
1da177e4 3935{
343e0d7a 3936 struct kmem_cache *cachep;
36555751 3937 void *ret;
1da177e4 3938
97e2bde4
MS
3939 /* If you want to save a few bytes .text space: replace
3940 * __ with kmem_.
3941 * Then kmalloc uses the uninlined functions instead of the inline
3942 * functions.
3943 */
3944 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3945 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3946 return cachep;
36555751
EGM
3947 ret = __cache_alloc(cachep, flags, caller);
3948
ca2b84cb 3949 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3950 size, cachep->size, flags);
36555751
EGM
3951
3952 return ret;
7fd6b141
PE
3953}
3954
7fd6b141 3955
0bb38a5c 3956#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3957void *__kmalloc(size_t size, gfp_t flags)
3958{
871751e2 3959 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3960}
3961EXPORT_SYMBOL(__kmalloc);
3962
ce71e27c 3963void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3964{
ce71e27c 3965 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3966}
3967EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3968
3969#else
3970void *__kmalloc(size_t size, gfp_t flags)
3971{
3972 return __do_kmalloc(size, flags, NULL);
3973}
3974EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3975#endif
3976
1da177e4
LT
3977/**
3978 * kmem_cache_free - Deallocate an object
3979 * @cachep: The cache the allocation was from.
3980 * @objp: The previously allocated object.
3981 *
3982 * Free an object which was previously allocated from this
3983 * cache.
3984 */
343e0d7a 3985void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3986{
3987 unsigned long flags;
3988
3989 local_irq_save(flags);
d97d476b 3990 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3991 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3992 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3993 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3994 local_irq_restore(flags);
36555751 3995
ca2b84cb 3996 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3997}
3998EXPORT_SYMBOL(kmem_cache_free);
3999
1da177e4
LT
4000/**
4001 * kfree - free previously allocated memory
4002 * @objp: pointer returned by kmalloc.
4003 *
80e93eff
PE
4004 * If @objp is NULL, no operation is performed.
4005 *
1da177e4
LT
4006 * Don't free memory not originally allocated by kmalloc()
4007 * or you will run into trouble.
4008 */
4009void kfree(const void *objp)
4010{
343e0d7a 4011 struct kmem_cache *c;
1da177e4
LT
4012 unsigned long flags;
4013
2121db74
PE
4014 trace_kfree(_RET_IP_, objp);
4015
6cb8f913 4016 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
4017 return;
4018 local_irq_save(flags);
4019 kfree_debugcheck(objp);
6ed5eb22 4020 c = virt_to_cache(objp);
8c138bc0
CL
4021 debug_check_no_locks_freed(objp, c->object_size);
4022
4023 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 4024 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
4025 local_irq_restore(flags);
4026}
4027EXPORT_SYMBOL(kfree);
4028
343e0d7a 4029unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 4030{
8c138bc0 4031 return cachep->object_size;
1da177e4
LT
4032}
4033EXPORT_SYMBOL(kmem_cache_size);
4034
e498be7d 4035/*
183ff22b 4036 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 4037 */
83b519e8 4038static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
4039{
4040 int node;
4041 struct kmem_list3 *l3;
cafeb02e 4042 struct array_cache *new_shared;
3395ee05 4043 struct array_cache **new_alien = NULL;
e498be7d 4044
9c09a95c 4045 for_each_online_node(node) {
cafeb02e 4046
3395ee05 4047 if (use_alien_caches) {
83b519e8 4048 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
4049 if (!new_alien)
4050 goto fail;
4051 }
cafeb02e 4052
63109846
ED
4053 new_shared = NULL;
4054 if (cachep->shared) {
4055 new_shared = alloc_arraycache(node,
0718dc2a 4056 cachep->shared*cachep->batchcount,
83b519e8 4057 0xbaadf00d, gfp);
63109846
ED
4058 if (!new_shared) {
4059 free_alien_cache(new_alien);
4060 goto fail;
4061 }
0718dc2a 4062 }
cafeb02e 4063
a737b3e2
AM
4064 l3 = cachep->nodelists[node];
4065 if (l3) {
cafeb02e
CL
4066 struct array_cache *shared = l3->shared;
4067
e498be7d
CL
4068 spin_lock_irq(&l3->list_lock);
4069
cafeb02e 4070 if (shared)
0718dc2a
CL
4071 free_block(cachep, shared->entry,
4072 shared->avail, node);
e498be7d 4073
cafeb02e
CL
4074 l3->shared = new_shared;
4075 if (!l3->alien) {
e498be7d
CL
4076 l3->alien = new_alien;
4077 new_alien = NULL;
4078 }
b28a02de 4079 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4080 cachep->batchcount + cachep->num;
e498be7d 4081 spin_unlock_irq(&l3->list_lock);
cafeb02e 4082 kfree(shared);
e498be7d
CL
4083 free_alien_cache(new_alien);
4084 continue;
4085 }
83b519e8 4086 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4087 if (!l3) {
4088 free_alien_cache(new_alien);
4089 kfree(new_shared);
e498be7d 4090 goto fail;
0718dc2a 4091 }
e498be7d
CL
4092
4093 kmem_list3_init(l3);
4094 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4095 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4096 l3->shared = new_shared;
e498be7d 4097 l3->alien = new_alien;
b28a02de 4098 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4099 cachep->batchcount + cachep->num;
e498be7d
CL
4100 cachep->nodelists[node] = l3;
4101 }
cafeb02e 4102 return 0;
0718dc2a 4103
a737b3e2 4104fail:
3b0efdfa 4105 if (!cachep->list.next) {
0718dc2a
CL
4106 /* Cache is not active yet. Roll back what we did */
4107 node--;
4108 while (node >= 0) {
4109 if (cachep->nodelists[node]) {
4110 l3 = cachep->nodelists[node];
4111
4112 kfree(l3->shared);
4113 free_alien_cache(l3->alien);
4114 kfree(l3);
4115 cachep->nodelists[node] = NULL;
4116 }
4117 node--;
4118 }
4119 }
cafeb02e 4120 return -ENOMEM;
e498be7d
CL
4121}
4122
1da177e4 4123struct ccupdate_struct {
343e0d7a 4124 struct kmem_cache *cachep;
acfe7d74 4125 struct array_cache *new[0];
1da177e4
LT
4126};
4127
4128static void do_ccupdate_local(void *info)
4129{
a737b3e2 4130 struct ccupdate_struct *new = info;
1da177e4
LT
4131 struct array_cache *old;
4132
4133 check_irq_off();
9a2dba4b 4134 old = cpu_cache_get(new->cachep);
e498be7d 4135
1da177e4
LT
4136 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4137 new->new[smp_processor_id()] = old;
4138}
4139
18004c5d 4140/* Always called with the slab_mutex held */
a737b3e2 4141static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4142 int batchcount, int shared, gfp_t gfp)
1da177e4 4143{
d2e7b7d0 4144 struct ccupdate_struct *new;
2ed3a4ef 4145 int i;
1da177e4 4146
acfe7d74
ED
4147 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4148 gfp);
d2e7b7d0
SS
4149 if (!new)
4150 return -ENOMEM;
4151
e498be7d 4152 for_each_online_cpu(i) {
7d6e6d09 4153 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4154 batchcount, gfp);
d2e7b7d0 4155 if (!new->new[i]) {
b28a02de 4156 for (i--; i >= 0; i--)
d2e7b7d0
SS
4157 kfree(new->new[i]);
4158 kfree(new);
e498be7d 4159 return -ENOMEM;
1da177e4
LT
4160 }
4161 }
d2e7b7d0 4162 new->cachep = cachep;
1da177e4 4163
15c8b6c1 4164 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4165
1da177e4 4166 check_irq_on();
1da177e4
LT
4167 cachep->batchcount = batchcount;
4168 cachep->limit = limit;
e498be7d 4169 cachep->shared = shared;
1da177e4 4170
e498be7d 4171 for_each_online_cpu(i) {
d2e7b7d0 4172 struct array_cache *ccold = new->new[i];
1da177e4
LT
4173 if (!ccold)
4174 continue;
7d6e6d09
LS
4175 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4176 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4177 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4178 kfree(ccold);
4179 }
d2e7b7d0 4180 kfree(new);
83b519e8 4181 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4182}
4183
18004c5d 4184/* Called with slab_mutex held always */
83b519e8 4185static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4186{
4187 int err;
4188 int limit, shared;
4189
a737b3e2
AM
4190 /*
4191 * The head array serves three purposes:
1da177e4
LT
4192 * - create a LIFO ordering, i.e. return objects that are cache-warm
4193 * - reduce the number of spinlock operations.
a737b3e2 4194 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4195 * bufctl chains: array operations are cheaper.
4196 * The numbers are guessed, we should auto-tune as described by
4197 * Bonwick.
4198 */
3b0efdfa 4199 if (cachep->size > 131072)
1da177e4 4200 limit = 1;
3b0efdfa 4201 else if (cachep->size > PAGE_SIZE)
1da177e4 4202 limit = 8;
3b0efdfa 4203 else if (cachep->size > 1024)
1da177e4 4204 limit = 24;
3b0efdfa 4205 else if (cachep->size > 256)
1da177e4
LT
4206 limit = 54;
4207 else
4208 limit = 120;
4209
a737b3e2
AM
4210 /*
4211 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4212 * allocation behaviour: Most allocs on one cpu, most free operations
4213 * on another cpu. For these cases, an efficient object passing between
4214 * cpus is necessary. This is provided by a shared array. The array
4215 * replaces Bonwick's magazine layer.
4216 * On uniprocessor, it's functionally equivalent (but less efficient)
4217 * to a larger limit. Thus disabled by default.
4218 */
4219 shared = 0;
3b0efdfa 4220 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4221 shared = 8;
1da177e4
LT
4222
4223#if DEBUG
a737b3e2
AM
4224 /*
4225 * With debugging enabled, large batchcount lead to excessively long
4226 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4227 */
4228 if (limit > 32)
4229 limit = 32;
4230#endif
83b519e8 4231 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4232 if (err)
4233 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4234 cachep->name, -err);
2ed3a4ef 4235 return err;
1da177e4
LT
4236}
4237
1b55253a
CL
4238/*
4239 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4240 * necessary. Note that the l3 listlock also protects the array_cache
4241 * if drain_array() is used on the shared array.
1b55253a 4242 */
68a1b195 4243static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4244 struct array_cache *ac, int force, int node)
1da177e4
LT
4245{
4246 int tofree;
4247
1b55253a
CL
4248 if (!ac || !ac->avail)
4249 return;
1da177e4
LT
4250 if (ac->touched && !force) {
4251 ac->touched = 0;
b18e7e65 4252 } else {
1b55253a 4253 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4254 if (ac->avail) {
4255 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4256 if (tofree > ac->avail)
4257 tofree = (ac->avail + 1) / 2;
4258 free_block(cachep, ac->entry, tofree, node);
4259 ac->avail -= tofree;
4260 memmove(ac->entry, &(ac->entry[tofree]),
4261 sizeof(void *) * ac->avail);
4262 }
1b55253a 4263 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4264 }
4265}
4266
4267/**
4268 * cache_reap - Reclaim memory from caches.
05fb6bf0 4269 * @w: work descriptor
1da177e4
LT
4270 *
4271 * Called from workqueue/eventd every few seconds.
4272 * Purpose:
4273 * - clear the per-cpu caches for this CPU.
4274 * - return freeable pages to the main free memory pool.
4275 *
a737b3e2
AM
4276 * If we cannot acquire the cache chain mutex then just give up - we'll try
4277 * again on the next iteration.
1da177e4 4278 */
7c5cae36 4279static void cache_reap(struct work_struct *w)
1da177e4 4280{
7a7c381d 4281 struct kmem_cache *searchp;
e498be7d 4282 struct kmem_list3 *l3;
7d6e6d09 4283 int node = numa_mem_id();
bf6aede7 4284 struct delayed_work *work = to_delayed_work(w);
1da177e4 4285
18004c5d 4286 if (!mutex_trylock(&slab_mutex))
1da177e4 4287 /* Give up. Setup the next iteration. */
7c5cae36 4288 goto out;
1da177e4 4289
18004c5d 4290 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4291 check_irq_on();
4292
35386e3b
CL
4293 /*
4294 * We only take the l3 lock if absolutely necessary and we
4295 * have established with reasonable certainty that
4296 * we can do some work if the lock was obtained.
4297 */
aab2207c 4298 l3 = searchp->nodelists[node];
35386e3b 4299
8fce4d8e 4300 reap_alien(searchp, l3);
1da177e4 4301
aab2207c 4302 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4303
35386e3b
CL
4304 /*
4305 * These are racy checks but it does not matter
4306 * if we skip one check or scan twice.
4307 */
e498be7d 4308 if (time_after(l3->next_reap, jiffies))
35386e3b 4309 goto next;
1da177e4 4310
e498be7d 4311 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4312
aab2207c 4313 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4314
ed11d9eb 4315 if (l3->free_touched)
e498be7d 4316 l3->free_touched = 0;
ed11d9eb
CL
4317 else {
4318 int freed;
1da177e4 4319
ed11d9eb
CL
4320 freed = drain_freelist(searchp, l3, (l3->free_limit +
4321 5 * searchp->num - 1) / (5 * searchp->num));
4322 STATS_ADD_REAPED(searchp, freed);
4323 }
35386e3b 4324next:
1da177e4
LT
4325 cond_resched();
4326 }
4327 check_irq_on();
18004c5d 4328 mutex_unlock(&slab_mutex);
8fce4d8e 4329 next_reap_node();
7c5cae36 4330out:
a737b3e2 4331 /* Set up the next iteration */
7c5cae36 4332 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4333}
4334
158a9624 4335#ifdef CONFIG_SLABINFO
1da177e4 4336
85289f98 4337static void print_slabinfo_header(struct seq_file *m)
1da177e4 4338{
85289f98
PE
4339 /*
4340 * Output format version, so at least we can change it
4341 * without _too_ many complaints.
4342 */
1da177e4 4343#if STATS
85289f98 4344 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4345#else
85289f98 4346 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4347#endif
85289f98
PE
4348 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4349 "<objperslab> <pagesperslab>");
4350 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4351 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4352#if STATS
85289f98 4353 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4354 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4355 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4356#endif
85289f98
PE
4357 seq_putc(m, '\n');
4358}
4359
4360static void *s_start(struct seq_file *m, loff_t *pos)
4361{
4362 loff_t n = *pos;
85289f98 4363
18004c5d 4364 mutex_lock(&slab_mutex);
85289f98
PE
4365 if (!n)
4366 print_slabinfo_header(m);
b92151ba 4367
18004c5d 4368 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4369}
4370
4371static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4372{
18004c5d 4373 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4374}
4375
4376static void s_stop(struct seq_file *m, void *p)
4377{
18004c5d 4378 mutex_unlock(&slab_mutex);
1da177e4
LT
4379}
4380
4381static int s_show(struct seq_file *m, void *p)
4382{
3b0efdfa 4383 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4384 struct slab *slabp;
4385 unsigned long active_objs;
4386 unsigned long num_objs;
4387 unsigned long active_slabs = 0;
4388 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4389 const char *name;
1da177e4 4390 char *error = NULL;
e498be7d
CL
4391 int node;
4392 struct kmem_list3 *l3;
1da177e4 4393
1da177e4
LT
4394 active_objs = 0;
4395 num_slabs = 0;
e498be7d
CL
4396 for_each_online_node(node) {
4397 l3 = cachep->nodelists[node];
4398 if (!l3)
4399 continue;
4400
ca3b9b91
RT
4401 check_irq_on();
4402 spin_lock_irq(&l3->list_lock);
e498be7d 4403
7a7c381d 4404 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4405 if (slabp->inuse != cachep->num && !error)
4406 error = "slabs_full accounting error";
4407 active_objs += cachep->num;
4408 active_slabs++;
4409 }
7a7c381d 4410 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4411 if (slabp->inuse == cachep->num && !error)
4412 error = "slabs_partial inuse accounting error";
4413 if (!slabp->inuse && !error)
4414 error = "slabs_partial/inuse accounting error";
4415 active_objs += slabp->inuse;
4416 active_slabs++;
4417 }
7a7c381d 4418 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4419 if (slabp->inuse && !error)
4420 error = "slabs_free/inuse accounting error";
4421 num_slabs++;
4422 }
4423 free_objects += l3->free_objects;
4484ebf1
RT
4424 if (l3->shared)
4425 shared_avail += l3->shared->avail;
e498be7d 4426
ca3b9b91 4427 spin_unlock_irq(&l3->list_lock);
1da177e4 4428 }
b28a02de
PE
4429 num_slabs += active_slabs;
4430 num_objs = num_slabs * cachep->num;
e498be7d 4431 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4432 error = "free_objects accounting error";
4433
b28a02de 4434 name = cachep->name;
1da177e4
LT
4435 if (error)
4436 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4437
4438 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4439 name, active_objs, num_objs, cachep->size,
b28a02de 4440 cachep->num, (1 << cachep->gfporder));
1da177e4 4441 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4442 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4443 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4444 active_slabs, num_slabs, shared_avail);
1da177e4 4445#if STATS
b28a02de 4446 { /* list3 stats */
1da177e4
LT
4447 unsigned long high = cachep->high_mark;
4448 unsigned long allocs = cachep->num_allocations;
4449 unsigned long grown = cachep->grown;
4450 unsigned long reaped = cachep->reaped;
4451 unsigned long errors = cachep->errors;
4452 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4453 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4454 unsigned long node_frees = cachep->node_frees;
fb7faf33 4455 unsigned long overflows = cachep->node_overflow;
1da177e4 4456
e92dd4fd
JP
4457 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4458 "%4lu %4lu %4lu %4lu %4lu",
4459 allocs, high, grown,
4460 reaped, errors, max_freeable, node_allocs,
4461 node_frees, overflows);
1da177e4
LT
4462 }
4463 /* cpu stats */
4464 {
4465 unsigned long allochit = atomic_read(&cachep->allochit);
4466 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4467 unsigned long freehit = atomic_read(&cachep->freehit);
4468 unsigned long freemiss = atomic_read(&cachep->freemiss);
4469
4470 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4471 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4472 }
4473#endif
4474 seq_putc(m, '\n');
1da177e4
LT
4475 return 0;
4476}
4477
4478/*
4479 * slabinfo_op - iterator that generates /proc/slabinfo
4480 *
4481 * Output layout:
4482 * cache-name
4483 * num-active-objs
4484 * total-objs
4485 * object size
4486 * num-active-slabs
4487 * total-slabs
4488 * num-pages-per-slab
4489 * + further values on SMP and with statistics enabled
4490 */
4491
7b3c3a50 4492static const struct seq_operations slabinfo_op = {
b28a02de
PE
4493 .start = s_start,
4494 .next = s_next,
4495 .stop = s_stop,
4496 .show = s_show,
1da177e4
LT
4497};
4498
4499#define MAX_SLABINFO_WRITE 128
4500/**
4501 * slabinfo_write - Tuning for the slab allocator
4502 * @file: unused
4503 * @buffer: user buffer
4504 * @count: data length
4505 * @ppos: unused
4506 */
68a1b195 4507static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4508 size_t count, loff_t *ppos)
1da177e4 4509{
b28a02de 4510 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4511 int limit, batchcount, shared, res;
7a7c381d 4512 struct kmem_cache *cachep;
b28a02de 4513
1da177e4
LT
4514 if (count > MAX_SLABINFO_WRITE)
4515 return -EINVAL;
4516 if (copy_from_user(&kbuf, buffer, count))
4517 return -EFAULT;
b28a02de 4518 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4519
4520 tmp = strchr(kbuf, ' ');
4521 if (!tmp)
4522 return -EINVAL;
4523 *tmp = '\0';
4524 tmp++;
4525 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4526 return -EINVAL;
4527
4528 /* Find the cache in the chain of caches. */
18004c5d 4529 mutex_lock(&slab_mutex);
1da177e4 4530 res = -EINVAL;
18004c5d 4531 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4532 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4533 if (limit < 1 || batchcount < 1 ||
4534 batchcount > limit || shared < 0) {
e498be7d 4535 res = 0;
1da177e4 4536 } else {
e498be7d 4537 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4538 batchcount, shared,
4539 GFP_KERNEL);
1da177e4
LT
4540 }
4541 break;
4542 }
4543 }
18004c5d 4544 mutex_unlock(&slab_mutex);
1da177e4
LT
4545 if (res >= 0)
4546 res = count;
4547 return res;
4548}
871751e2 4549
7b3c3a50
AD
4550static int slabinfo_open(struct inode *inode, struct file *file)
4551{
4552 return seq_open(file, &slabinfo_op);
4553}
4554
4555static const struct file_operations proc_slabinfo_operations = {
4556 .open = slabinfo_open,
4557 .read = seq_read,
4558 .write = slabinfo_write,
4559 .llseek = seq_lseek,
4560 .release = seq_release,
4561};
4562
871751e2
AV
4563#ifdef CONFIG_DEBUG_SLAB_LEAK
4564
4565static void *leaks_start(struct seq_file *m, loff_t *pos)
4566{
18004c5d
CL
4567 mutex_lock(&slab_mutex);
4568 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4569}
4570
4571static inline int add_caller(unsigned long *n, unsigned long v)
4572{
4573 unsigned long *p;
4574 int l;
4575 if (!v)
4576 return 1;
4577 l = n[1];
4578 p = n + 2;
4579 while (l) {
4580 int i = l/2;
4581 unsigned long *q = p + 2 * i;
4582 if (*q == v) {
4583 q[1]++;
4584 return 1;
4585 }
4586 if (*q > v) {
4587 l = i;
4588 } else {
4589 p = q + 2;
4590 l -= i + 1;
4591 }
4592 }
4593 if (++n[1] == n[0])
4594 return 0;
4595 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4596 p[0] = v;
4597 p[1] = 1;
4598 return 1;
4599}
4600
4601static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4602{
4603 void *p;
4604 int i;
4605 if (n[0] == n[1])
4606 return;
3b0efdfa 4607 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4608 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4609 continue;
4610 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4611 return;
4612 }
4613}
4614
4615static void show_symbol(struct seq_file *m, unsigned long address)
4616{
4617#ifdef CONFIG_KALLSYMS
871751e2 4618 unsigned long offset, size;
9281acea 4619 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4620
a5c43dae 4621 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4622 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4623 if (modname[0])
871751e2
AV
4624 seq_printf(m, " [%s]", modname);
4625 return;
4626 }
4627#endif
4628 seq_printf(m, "%p", (void *)address);
4629}
4630
4631static int leaks_show(struct seq_file *m, void *p)
4632{
0672aa7c 4633 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4634 struct slab *slabp;
4635 struct kmem_list3 *l3;
4636 const char *name;
4637 unsigned long *n = m->private;
4638 int node;
4639 int i;
4640
4641 if (!(cachep->flags & SLAB_STORE_USER))
4642 return 0;
4643 if (!(cachep->flags & SLAB_RED_ZONE))
4644 return 0;
4645
4646 /* OK, we can do it */
4647
4648 n[1] = 0;
4649
4650 for_each_online_node(node) {
4651 l3 = cachep->nodelists[node];
4652 if (!l3)
4653 continue;
4654
4655 check_irq_on();
4656 spin_lock_irq(&l3->list_lock);
4657
7a7c381d 4658 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4659 handle_slab(n, cachep, slabp);
7a7c381d 4660 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4661 handle_slab(n, cachep, slabp);
871751e2
AV
4662 spin_unlock_irq(&l3->list_lock);
4663 }
4664 name = cachep->name;
4665 if (n[0] == n[1]) {
4666 /* Increase the buffer size */
18004c5d 4667 mutex_unlock(&slab_mutex);
871751e2
AV
4668 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4669 if (!m->private) {
4670 /* Too bad, we are really out */
4671 m->private = n;
18004c5d 4672 mutex_lock(&slab_mutex);
871751e2
AV
4673 return -ENOMEM;
4674 }
4675 *(unsigned long *)m->private = n[0] * 2;
4676 kfree(n);
18004c5d 4677 mutex_lock(&slab_mutex);
871751e2
AV
4678 /* Now make sure this entry will be retried */
4679 m->count = m->size;
4680 return 0;
4681 }
4682 for (i = 0; i < n[1]; i++) {
4683 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4684 show_symbol(m, n[2*i+2]);
4685 seq_putc(m, '\n');
4686 }
d2e7b7d0 4687
871751e2
AV
4688 return 0;
4689}
4690
a0ec95a8 4691static const struct seq_operations slabstats_op = {
871751e2
AV
4692 .start = leaks_start,
4693 .next = s_next,
4694 .stop = s_stop,
4695 .show = leaks_show,
4696};
a0ec95a8
AD
4697
4698static int slabstats_open(struct inode *inode, struct file *file)
4699{
4700 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4701 int ret = -ENOMEM;
4702 if (n) {
4703 ret = seq_open(file, &slabstats_op);
4704 if (!ret) {
4705 struct seq_file *m = file->private_data;
4706 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4707 m->private = n;
4708 n = NULL;
4709 }
4710 kfree(n);
4711 }
4712 return ret;
4713}
4714
4715static const struct file_operations proc_slabstats_operations = {
4716 .open = slabstats_open,
4717 .read = seq_read,
4718 .llseek = seq_lseek,
4719 .release = seq_release_private,
4720};
4721#endif
4722
4723static int __init slab_proc_init(void)
4724{
ab067e99 4725 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4726#ifdef CONFIG_DEBUG_SLAB_LEAK
4727 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4728#endif
a0ec95a8
AD
4729 return 0;
4730}
4731module_init(slab_proc_init);
1da177e4
LT
4732#endif
4733
00e145b6
MS
4734/**
4735 * ksize - get the actual amount of memory allocated for a given object
4736 * @objp: Pointer to the object
4737 *
4738 * kmalloc may internally round up allocations and return more memory
4739 * than requested. ksize() can be used to determine the actual amount of
4740 * memory allocated. The caller may use this additional memory, even though
4741 * a smaller amount of memory was initially specified with the kmalloc call.
4742 * The caller must guarantee that objp points to a valid object previously
4743 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4744 * must not be freed during the duration of the call.
4745 */
fd76bab2 4746size_t ksize(const void *objp)
1da177e4 4747{
ef8b4520
CL
4748 BUG_ON(!objp);
4749 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4750 return 0;
1da177e4 4751
8c138bc0 4752 return virt_to_cache(objp)->object_size;
1da177e4 4753}
b1aabecd 4754EXPORT_SYMBOL(ksize);
This page took 1.722236 seconds and 5 git commands to generate.