mm, slob: Use NUMA_NO_NODE instead of -1
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
0f24f128 501#ifdef CONFIG_TRACING
36555751
EGM
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
3b0efdfa 504 return cachep->size;
36555751
EGM
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
1da177e4 509/*
3df1cccd
DR
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
1da177e4 512 */
543585cc
DR
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 516static bool slab_max_order_set __initdata;
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
35026088 521 return page->slab_cache;
6ed5eb22
PE
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
35026088
CL
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
6ed5eb22
PE
530}
531
8fea4e96
PE
532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534{
3b0efdfa 535 return slab->s_mem + cache->size * idx;
8fea4e96
PE
536}
537
6a2d7a95 538/*
3b0efdfa
CL
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
6a2d7a95
ED
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
8fea4e96 546{
6a2d7a95
ED
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
549}
550
a737b3e2
AM
551/*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
1da177e4
LT
554struct cache_sizes malloc_sizes[] = {
555#define CACHE(x) { .cs_size = (x) },
556#include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558#undef CACHE
559};
560EXPORT_SYMBOL(malloc_sizes);
561
562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
563struct cache_names {
564 char *name;
565 char *name_dma;
566};
567
568static struct cache_names __initdata cache_names[] = {
569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570#include <linux/kmalloc_sizes.h>
b28a02de 571 {NULL,}
1da177e4
LT
572#undef CACHE
573};
574
575static struct arraycache_init initarray_cache __initdata =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 577static struct arraycache_init initarray_generic =
b28a02de 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
579
580/* internal cache of cache description objs */
b56efcf0 581static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 582static struct kmem_cache cache_cache = {
b56efcf0 583 .nodelists = cache_cache_nodelists,
b28a02de
PE
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
3b0efdfa 587 .size = sizeof(struct kmem_cache),
b28a02de 588 .name = "kmem_cache",
1da177e4
LT
589};
590
056c6241
RT
591#define BAD_ALIEN_MAGIC 0x01020304ul
592
f1aaee53
AV
593#ifdef CONFIG_LOCKDEP
594
595/*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
f1aaee53 605 */
056c6241
RT
606static struct lock_class_key on_slab_l3_key;
607static struct lock_class_key on_slab_alc_key;
608
83835b3d
PZ
609static struct lock_class_key debugobj_l3_key;
610static struct lock_class_key debugobj_alc_key;
611
612static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615{
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639}
640
641static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642{
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644}
645
646static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647{
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652}
653
ce79ddc8 654static void init_node_lock_keys(int q)
f1aaee53 655{
056c6241
RT
656 struct cache_sizes *s = malloc_sizes;
657
97d06609 658 if (slab_state < UP)
ce79ddc8
PE
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 662 struct kmem_list3 *l3;
ce79ddc8
PE
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 666 continue;
83835b3d
PZ
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
f1aaee53
AV
670 }
671}
ce79ddc8
PE
672
673static inline void init_lock_keys(void)
674{
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679}
f1aaee53 680#else
ce79ddc8
PE
681static void init_node_lock_keys(int q)
682{
683}
684
056c6241 685static inline void init_lock_keys(void)
f1aaee53
AV
686{
687}
83835b3d
PZ
688
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
d40cee24 806#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 807
a737b3e2
AM
808static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
1da177e4
LT
810{
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 812 function, cachep->name, msg);
1da177e4 813 dump_stack();
645df230 814 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
815}
816
3395ee05
PM
817/*
818 * By default on NUMA we use alien caches to stage the freeing of
819 * objects allocated from other nodes. This causes massive memory
820 * inefficiencies when using fake NUMA setup to split memory into a
821 * large number of small nodes, so it can be disabled on the command
822 * line
823 */
824
825static int use_alien_caches __read_mostly = 1;
826static int __init noaliencache_setup(char *s)
827{
828 use_alien_caches = 0;
829 return 1;
830}
831__setup("noaliencache", noaliencache_setup);
832
3df1cccd
DR
833static int __init slab_max_order_setup(char *str)
834{
835 get_option(&str, &slab_max_order);
836 slab_max_order = slab_max_order < 0 ? 0 :
837 min(slab_max_order, MAX_ORDER - 1);
838 slab_max_order_set = true;
839
840 return 1;
841}
842__setup("slab_max_order=", slab_max_order_setup);
843
8fce4d8e
CL
844#ifdef CONFIG_NUMA
845/*
846 * Special reaping functions for NUMA systems called from cache_reap().
847 * These take care of doing round robin flushing of alien caches (containing
848 * objects freed on different nodes from which they were allocated) and the
849 * flushing of remote pcps by calling drain_node_pages.
850 */
1871e52c 851static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
852
853static void init_reap_node(int cpu)
854{
855 int node;
856
7d6e6d09 857 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 858 if (node == MAX_NUMNODES)
442295c9 859 node = first_node(node_online_map);
8fce4d8e 860
1871e52c 861 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
862}
863
864static void next_reap_node(void)
865{
909ea964 866 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 867
8fce4d8e
CL
868 node = next_node(node, node_online_map);
869 if (unlikely(node >= MAX_NUMNODES))
870 node = first_node(node_online_map);
909ea964 871 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
872}
873
874#else
875#define init_reap_node(cpu) do { } while (0)
876#define next_reap_node(void) do { } while (0)
877#endif
878
1da177e4
LT
879/*
880 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
881 * via the workqueue/eventd.
882 * Add the CPU number into the expiration time to minimize the possibility of
883 * the CPUs getting into lockstep and contending for the global cache chain
884 * lock.
885 */
897e679b 886static void __cpuinit start_cpu_timer(int cpu)
1da177e4 887{
1871e52c 888 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
889
890 /*
891 * When this gets called from do_initcalls via cpucache_init(),
892 * init_workqueues() has already run, so keventd will be setup
893 * at that time.
894 */
52bad64d 895 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 896 init_reap_node(cpu);
78b43536 897 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
898 schedule_delayed_work_on(cpu, reap_work,
899 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
900 }
901}
902
e498be7d 903static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 904 int batchcount, gfp_t gfp)
1da177e4 905{
b28a02de 906 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
907 struct array_cache *nc = NULL;
908
83b519e8 909 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
910 /*
911 * The array_cache structures contain pointers to free object.
25985edc 912 * However, when such objects are allocated or transferred to another
d5cff635
CM
913 * cache the pointers are not cleared and they could be counted as
914 * valid references during a kmemleak scan. Therefore, kmemleak must
915 * not scan such objects.
916 */
917 kmemleak_no_scan(nc);
1da177e4
LT
918 if (nc) {
919 nc->avail = 0;
920 nc->limit = entries;
921 nc->batchcount = batchcount;
922 nc->touched = 0;
e498be7d 923 spin_lock_init(&nc->lock);
1da177e4
LT
924 }
925 return nc;
926}
927
072bb0aa
MG
928static inline bool is_slab_pfmemalloc(struct slab *slabp)
929{
930 struct page *page = virt_to_page(slabp->s_mem);
931
932 return PageSlabPfmemalloc(page);
933}
934
935/* Clears pfmemalloc_active if no slabs have pfmalloc set */
936static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
937 struct array_cache *ac)
938{
939 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
940 struct slab *slabp;
941 unsigned long flags;
942
943 if (!pfmemalloc_active)
944 return;
945
946 spin_lock_irqsave(&l3->list_lock, flags);
947 list_for_each_entry(slabp, &l3->slabs_full, list)
948 if (is_slab_pfmemalloc(slabp))
949 goto out;
950
951 list_for_each_entry(slabp, &l3->slabs_partial, list)
952 if (is_slab_pfmemalloc(slabp))
953 goto out;
954
955 list_for_each_entry(slabp, &l3->slabs_free, list)
956 if (is_slab_pfmemalloc(slabp))
957 goto out;
958
959 pfmemalloc_active = false;
960out:
961 spin_unlock_irqrestore(&l3->list_lock, flags);
962}
963
381760ea 964static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
965 gfp_t flags, bool force_refill)
966{
967 int i;
968 void *objp = ac->entry[--ac->avail];
969
970 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
971 if (unlikely(is_obj_pfmemalloc(objp))) {
972 struct kmem_list3 *l3;
973
974 if (gfp_pfmemalloc_allowed(flags)) {
975 clear_obj_pfmemalloc(&objp);
976 return objp;
977 }
978
979 /* The caller cannot use PFMEMALLOC objects, find another one */
980 for (i = 1; i < ac->avail; i++) {
981 /* If a !PFMEMALLOC object is found, swap them */
982 if (!is_obj_pfmemalloc(ac->entry[i])) {
983 objp = ac->entry[i];
984 ac->entry[i] = ac->entry[ac->avail];
985 ac->entry[ac->avail] = objp;
986 return objp;
987 }
988 }
989
990 /*
991 * If there are empty slabs on the slabs_free list and we are
992 * being forced to refill the cache, mark this one !pfmemalloc.
993 */
994 l3 = cachep->nodelists[numa_mem_id()];
995 if (!list_empty(&l3->slabs_free) && force_refill) {
996 struct slab *slabp = virt_to_slab(objp);
997 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
998 clear_obj_pfmemalloc(&objp);
999 recheck_pfmemalloc_active(cachep, ac);
1000 return objp;
1001 }
1002
1003 /* No !PFMEMALLOC objects available */
1004 ac->avail++;
1005 objp = NULL;
1006 }
1007
1008 return objp;
1009}
1010
381760ea
MG
1011static inline void *ac_get_obj(struct kmem_cache *cachep,
1012 struct array_cache *ac, gfp_t flags, bool force_refill)
1013{
1014 void *objp;
1015
1016 if (unlikely(sk_memalloc_socks()))
1017 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1018 else
1019 objp = ac->entry[--ac->avail];
1020
1021 return objp;
1022}
1023
1024static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1025 void *objp)
1026{
1027 if (unlikely(pfmemalloc_active)) {
1028 /* Some pfmemalloc slabs exist, check if this is one */
1029 struct page *page = virt_to_page(objp);
1030 if (PageSlabPfmemalloc(page))
1031 set_obj_pfmemalloc(&objp);
1032 }
1033
381760ea
MG
1034 return objp;
1035}
1036
1037static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1038 void *objp)
1039{
1040 if (unlikely(sk_memalloc_socks()))
1041 objp = __ac_put_obj(cachep, ac, objp);
1042
072bb0aa
MG
1043 ac->entry[ac->avail++] = objp;
1044}
1045
3ded175a
CL
1046/*
1047 * Transfer objects in one arraycache to another.
1048 * Locking must be handled by the caller.
1049 *
1050 * Return the number of entries transferred.
1051 */
1052static int transfer_objects(struct array_cache *to,
1053 struct array_cache *from, unsigned int max)
1054{
1055 /* Figure out how many entries to transfer */
732eacc0 1056 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1057
1058 if (!nr)
1059 return 0;
1060
1061 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1062 sizeof(void *) *nr);
1063
1064 from->avail -= nr;
1065 to->avail += nr;
3ded175a
CL
1066 return nr;
1067}
1068
765c4507
CL
1069#ifndef CONFIG_NUMA
1070
1071#define drain_alien_cache(cachep, alien) do { } while (0)
1072#define reap_alien(cachep, l3) do { } while (0)
1073
83b519e8 1074static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1075{
1076 return (struct array_cache **)BAD_ALIEN_MAGIC;
1077}
1078
1079static inline void free_alien_cache(struct array_cache **ac_ptr)
1080{
1081}
1082
1083static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1084{
1085 return 0;
1086}
1087
1088static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1089 gfp_t flags)
1090{
1091 return NULL;
1092}
1093
8b98c169 1094static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1095 gfp_t flags, int nodeid)
1096{
1097 return NULL;
1098}
1099
1100#else /* CONFIG_NUMA */
1101
8b98c169 1102static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1103static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1104
83b519e8 1105static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1106{
1107 struct array_cache **ac_ptr;
8ef82866 1108 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1109 int i;
1110
1111 if (limit > 1)
1112 limit = 12;
f3186a9c 1113 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1114 if (ac_ptr) {
1115 for_each_node(i) {
f3186a9c 1116 if (i == node || !node_online(i))
e498be7d 1117 continue;
83b519e8 1118 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1119 if (!ac_ptr[i]) {
cc550def 1120 for (i--; i >= 0; i--)
e498be7d
CL
1121 kfree(ac_ptr[i]);
1122 kfree(ac_ptr);
1123 return NULL;
1124 }
1125 }
1126 }
1127 return ac_ptr;
1128}
1129
5295a74c 1130static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1131{
1132 int i;
1133
1134 if (!ac_ptr)
1135 return;
e498be7d 1136 for_each_node(i)
b28a02de 1137 kfree(ac_ptr[i]);
e498be7d
CL
1138 kfree(ac_ptr);
1139}
1140
343e0d7a 1141static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1142 struct array_cache *ac, int node)
e498be7d
CL
1143{
1144 struct kmem_list3 *rl3 = cachep->nodelists[node];
1145
1146 if (ac->avail) {
1147 spin_lock(&rl3->list_lock);
e00946fe
CL
1148 /*
1149 * Stuff objects into the remote nodes shared array first.
1150 * That way we could avoid the overhead of putting the objects
1151 * into the free lists and getting them back later.
1152 */
693f7d36 1153 if (rl3->shared)
1154 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1155
ff69416e 1156 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1157 ac->avail = 0;
1158 spin_unlock(&rl3->list_lock);
1159 }
1160}
1161
8fce4d8e
CL
1162/*
1163 * Called from cache_reap() to regularly drain alien caches round robin.
1164 */
1165static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1166{
909ea964 1167 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1168
1169 if (l3->alien) {
1170 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1171
1172 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1173 __drain_alien_cache(cachep, ac, node);
1174 spin_unlock_irq(&ac->lock);
1175 }
1176 }
1177}
1178
a737b3e2
AM
1179static void drain_alien_cache(struct kmem_cache *cachep,
1180 struct array_cache **alien)
e498be7d 1181{
b28a02de 1182 int i = 0;
e498be7d
CL
1183 struct array_cache *ac;
1184 unsigned long flags;
1185
1186 for_each_online_node(i) {
4484ebf1 1187 ac = alien[i];
e498be7d
CL
1188 if (ac) {
1189 spin_lock_irqsave(&ac->lock, flags);
1190 __drain_alien_cache(cachep, ac, i);
1191 spin_unlock_irqrestore(&ac->lock, flags);
1192 }
1193 }
1194}
729bd0b7 1195
873623df 1196static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1197{
1198 struct slab *slabp = virt_to_slab(objp);
1199 int nodeid = slabp->nodeid;
1200 struct kmem_list3 *l3;
1201 struct array_cache *alien = NULL;
1ca4cb24
PE
1202 int node;
1203
7d6e6d09 1204 node = numa_mem_id();
729bd0b7
PE
1205
1206 /*
1207 * Make sure we are not freeing a object from another node to the array
1208 * cache on this cpu.
1209 */
62918a03 1210 if (likely(slabp->nodeid == node))
729bd0b7
PE
1211 return 0;
1212
1ca4cb24 1213 l3 = cachep->nodelists[node];
729bd0b7
PE
1214 STATS_INC_NODEFREES(cachep);
1215 if (l3->alien && l3->alien[nodeid]) {
1216 alien = l3->alien[nodeid];
873623df 1217 spin_lock(&alien->lock);
729bd0b7
PE
1218 if (unlikely(alien->avail == alien->limit)) {
1219 STATS_INC_ACOVERFLOW(cachep);
1220 __drain_alien_cache(cachep, alien, nodeid);
1221 }
072bb0aa 1222 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1223 spin_unlock(&alien->lock);
1224 } else {
1225 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1226 free_block(cachep, &objp, 1, nodeid);
1227 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1228 }
1229 return 1;
1230}
e498be7d
CL
1231#endif
1232
8f9f8d9e
DR
1233/*
1234 * Allocates and initializes nodelists for a node on each slab cache, used for
1235 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1236 * will be allocated off-node since memory is not yet online for the new node.
1237 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1238 * already in use.
1239 *
18004c5d 1240 * Must hold slab_mutex.
8f9f8d9e
DR
1241 */
1242static int init_cache_nodelists_node(int node)
1243{
1244 struct kmem_cache *cachep;
1245 struct kmem_list3 *l3;
1246 const int memsize = sizeof(struct kmem_list3);
1247
18004c5d 1248 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1249 /*
1250 * Set up the size64 kmemlist for cpu before we can
1251 * begin anything. Make sure some other cpu on this
1252 * node has not already allocated this
1253 */
1254 if (!cachep->nodelists[node]) {
1255 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1256 if (!l3)
1257 return -ENOMEM;
1258 kmem_list3_init(l3);
1259 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1260 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1261
1262 /*
1263 * The l3s don't come and go as CPUs come and
18004c5d 1264 * go. slab_mutex is sufficient
8f9f8d9e
DR
1265 * protection here.
1266 */
1267 cachep->nodelists[node] = l3;
1268 }
1269
1270 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1271 cachep->nodelists[node]->free_limit =
1272 (1 + nr_cpus_node(node)) *
1273 cachep->batchcount + cachep->num;
1274 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1275 }
1276 return 0;
1277}
1278
fbf1e473
AM
1279static void __cpuinit cpuup_canceled(long cpu)
1280{
1281 struct kmem_cache *cachep;
1282 struct kmem_list3 *l3 = NULL;
7d6e6d09 1283 int node = cpu_to_mem(cpu);
a70f7302 1284 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1285
18004c5d 1286 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1287 struct array_cache *nc;
1288 struct array_cache *shared;
1289 struct array_cache **alien;
fbf1e473 1290
fbf1e473
AM
1291 /* cpu is dead; no one can alloc from it. */
1292 nc = cachep->array[cpu];
1293 cachep->array[cpu] = NULL;
1294 l3 = cachep->nodelists[node];
1295
1296 if (!l3)
1297 goto free_array_cache;
1298
1299 spin_lock_irq(&l3->list_lock);
1300
1301 /* Free limit for this kmem_list3 */
1302 l3->free_limit -= cachep->batchcount;
1303 if (nc)
1304 free_block(cachep, nc->entry, nc->avail, node);
1305
58463c1f 1306 if (!cpumask_empty(mask)) {
fbf1e473
AM
1307 spin_unlock_irq(&l3->list_lock);
1308 goto free_array_cache;
1309 }
1310
1311 shared = l3->shared;
1312 if (shared) {
1313 free_block(cachep, shared->entry,
1314 shared->avail, node);
1315 l3->shared = NULL;
1316 }
1317
1318 alien = l3->alien;
1319 l3->alien = NULL;
1320
1321 spin_unlock_irq(&l3->list_lock);
1322
1323 kfree(shared);
1324 if (alien) {
1325 drain_alien_cache(cachep, alien);
1326 free_alien_cache(alien);
1327 }
1328free_array_cache:
1329 kfree(nc);
1330 }
1331 /*
1332 * In the previous loop, all the objects were freed to
1333 * the respective cache's slabs, now we can go ahead and
1334 * shrink each nodelist to its limit.
1335 */
18004c5d 1336 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1337 l3 = cachep->nodelists[node];
1338 if (!l3)
1339 continue;
1340 drain_freelist(cachep, l3, l3->free_objects);
1341 }
1342}
1343
1344static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1345{
343e0d7a 1346 struct kmem_cache *cachep;
e498be7d 1347 struct kmem_list3 *l3 = NULL;
7d6e6d09 1348 int node = cpu_to_mem(cpu);
8f9f8d9e 1349 int err;
1da177e4 1350
fbf1e473
AM
1351 /*
1352 * We need to do this right in the beginning since
1353 * alloc_arraycache's are going to use this list.
1354 * kmalloc_node allows us to add the slab to the right
1355 * kmem_list3 and not this cpu's kmem_list3
1356 */
8f9f8d9e
DR
1357 err = init_cache_nodelists_node(node);
1358 if (err < 0)
1359 goto bad;
fbf1e473
AM
1360
1361 /*
1362 * Now we can go ahead with allocating the shared arrays and
1363 * array caches
1364 */
18004c5d 1365 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1366 struct array_cache *nc;
1367 struct array_cache *shared = NULL;
1368 struct array_cache **alien = NULL;
1369
1370 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1371 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1372 if (!nc)
1373 goto bad;
1374 if (cachep->shared) {
1375 shared = alloc_arraycache(node,
1376 cachep->shared * cachep->batchcount,
83b519e8 1377 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1378 if (!shared) {
1379 kfree(nc);
1da177e4 1380 goto bad;
12d00f6a 1381 }
fbf1e473
AM
1382 }
1383 if (use_alien_caches) {
83b519e8 1384 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1385 if (!alien) {
1386 kfree(shared);
1387 kfree(nc);
fbf1e473 1388 goto bad;
12d00f6a 1389 }
fbf1e473
AM
1390 }
1391 cachep->array[cpu] = nc;
1392 l3 = cachep->nodelists[node];
1393 BUG_ON(!l3);
1394
1395 spin_lock_irq(&l3->list_lock);
1396 if (!l3->shared) {
1397 /*
1398 * We are serialised from CPU_DEAD or
1399 * CPU_UP_CANCELLED by the cpucontrol lock
1400 */
1401 l3->shared = shared;
1402 shared = NULL;
1403 }
4484ebf1 1404#ifdef CONFIG_NUMA
fbf1e473
AM
1405 if (!l3->alien) {
1406 l3->alien = alien;
1407 alien = NULL;
1da177e4 1408 }
fbf1e473
AM
1409#endif
1410 spin_unlock_irq(&l3->list_lock);
1411 kfree(shared);
1412 free_alien_cache(alien);
83835b3d
PZ
1413 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1414 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1415 }
ce79ddc8
PE
1416 init_node_lock_keys(node);
1417
fbf1e473
AM
1418 return 0;
1419bad:
12d00f6a 1420 cpuup_canceled(cpu);
fbf1e473
AM
1421 return -ENOMEM;
1422}
1423
1424static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1425 unsigned long action, void *hcpu)
1426{
1427 long cpu = (long)hcpu;
1428 int err = 0;
1429
1430 switch (action) {
fbf1e473
AM
1431 case CPU_UP_PREPARE:
1432 case CPU_UP_PREPARE_FROZEN:
18004c5d 1433 mutex_lock(&slab_mutex);
fbf1e473 1434 err = cpuup_prepare(cpu);
18004c5d 1435 mutex_unlock(&slab_mutex);
1da177e4
LT
1436 break;
1437 case CPU_ONLINE:
8bb78442 1438 case CPU_ONLINE_FROZEN:
1da177e4
LT
1439 start_cpu_timer(cpu);
1440 break;
1441#ifdef CONFIG_HOTPLUG_CPU
5830c590 1442 case CPU_DOWN_PREPARE:
8bb78442 1443 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1444 /*
18004c5d 1445 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1446 * held so that if cache_reap() is invoked it cannot do
1447 * anything expensive but will only modify reap_work
1448 * and reschedule the timer.
1449 */
afe2c511 1450 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1451 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1452 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1453 break;
1454 case CPU_DOWN_FAILED:
8bb78442 1455 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1456 start_cpu_timer(cpu);
1457 break;
1da177e4 1458 case CPU_DEAD:
8bb78442 1459 case CPU_DEAD_FROZEN:
4484ebf1
RT
1460 /*
1461 * Even if all the cpus of a node are down, we don't free the
1462 * kmem_list3 of any cache. This to avoid a race between
1463 * cpu_down, and a kmalloc allocation from another cpu for
1464 * memory from the node of the cpu going down. The list3
1465 * structure is usually allocated from kmem_cache_create() and
1466 * gets destroyed at kmem_cache_destroy().
1467 */
183ff22b 1468 /* fall through */
8f5be20b 1469#endif
1da177e4 1470 case CPU_UP_CANCELED:
8bb78442 1471 case CPU_UP_CANCELED_FROZEN:
18004c5d 1472 mutex_lock(&slab_mutex);
fbf1e473 1473 cpuup_canceled(cpu);
18004c5d 1474 mutex_unlock(&slab_mutex);
1da177e4 1475 break;
1da177e4 1476 }
eac40680 1477 return notifier_from_errno(err);
1da177e4
LT
1478}
1479
74b85f37
CS
1480static struct notifier_block __cpuinitdata cpucache_notifier = {
1481 &cpuup_callback, NULL, 0
1482};
1da177e4 1483
8f9f8d9e
DR
1484#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1485/*
1486 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1487 * Returns -EBUSY if all objects cannot be drained so that the node is not
1488 * removed.
1489 *
18004c5d 1490 * Must hold slab_mutex.
8f9f8d9e
DR
1491 */
1492static int __meminit drain_cache_nodelists_node(int node)
1493{
1494 struct kmem_cache *cachep;
1495 int ret = 0;
1496
18004c5d 1497 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1498 struct kmem_list3 *l3;
1499
1500 l3 = cachep->nodelists[node];
1501 if (!l3)
1502 continue;
1503
1504 drain_freelist(cachep, l3, l3->free_objects);
1505
1506 if (!list_empty(&l3->slabs_full) ||
1507 !list_empty(&l3->slabs_partial)) {
1508 ret = -EBUSY;
1509 break;
1510 }
1511 }
1512 return ret;
1513}
1514
1515static int __meminit slab_memory_callback(struct notifier_block *self,
1516 unsigned long action, void *arg)
1517{
1518 struct memory_notify *mnb = arg;
1519 int ret = 0;
1520 int nid;
1521
1522 nid = mnb->status_change_nid;
1523 if (nid < 0)
1524 goto out;
1525
1526 switch (action) {
1527 case MEM_GOING_ONLINE:
18004c5d 1528 mutex_lock(&slab_mutex);
8f9f8d9e 1529 ret = init_cache_nodelists_node(nid);
18004c5d 1530 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1531 break;
1532 case MEM_GOING_OFFLINE:
18004c5d 1533 mutex_lock(&slab_mutex);
8f9f8d9e 1534 ret = drain_cache_nodelists_node(nid);
18004c5d 1535 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1536 break;
1537 case MEM_ONLINE:
1538 case MEM_OFFLINE:
1539 case MEM_CANCEL_ONLINE:
1540 case MEM_CANCEL_OFFLINE:
1541 break;
1542 }
1543out:
5fda1bd5 1544 return notifier_from_errno(ret);
8f9f8d9e
DR
1545}
1546#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1547
e498be7d
CL
1548/*
1549 * swap the static kmem_list3 with kmalloced memory
1550 */
8f9f8d9e
DR
1551static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1552 int nodeid)
e498be7d
CL
1553{
1554 struct kmem_list3 *ptr;
1555
83b519e8 1556 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1557 BUG_ON(!ptr);
1558
e498be7d 1559 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1560 /*
1561 * Do not assume that spinlocks can be initialized via memcpy:
1562 */
1563 spin_lock_init(&ptr->list_lock);
1564
e498be7d
CL
1565 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1566 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1567}
1568
556a169d
PE
1569/*
1570 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1571 * size of kmem_list3.
1572 */
1573static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1574{
1575 int node;
1576
1577 for_each_online_node(node) {
1578 cachep->nodelists[node] = &initkmem_list3[index + node];
1579 cachep->nodelists[node]->next_reap = jiffies +
1580 REAPTIMEOUT_LIST3 +
1581 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1582 }
1583}
1584
a737b3e2
AM
1585/*
1586 * Initialisation. Called after the page allocator have been initialised and
1587 * before smp_init().
1da177e4
LT
1588 */
1589void __init kmem_cache_init(void)
1590{
1591 size_t left_over;
1592 struct cache_sizes *sizes;
1593 struct cache_names *names;
e498be7d 1594 int i;
07ed76b2 1595 int order;
1ca4cb24 1596 int node;
e498be7d 1597
b6e68bc1 1598 if (num_possible_nodes() == 1)
62918a03
SS
1599 use_alien_caches = 0;
1600
e498be7d
CL
1601 for (i = 0; i < NUM_INIT_LISTS; i++) {
1602 kmem_list3_init(&initkmem_list3[i]);
1603 if (i < MAX_NUMNODES)
1604 cache_cache.nodelists[i] = NULL;
1605 }
556a169d 1606 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1607
1608 /*
1609 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1610 * page orders on machines with more than 32MB of memory if
1611 * not overridden on the command line.
1da177e4 1612 */
3df1cccd 1613 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1614 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1615
1da177e4
LT
1616 /* Bootstrap is tricky, because several objects are allocated
1617 * from caches that do not exist yet:
a737b3e2
AM
1618 * 1) initialize the cache_cache cache: it contains the struct
1619 * kmem_cache structures of all caches, except cache_cache itself:
1620 * cache_cache is statically allocated.
e498be7d
CL
1621 * Initially an __init data area is used for the head array and the
1622 * kmem_list3 structures, it's replaced with a kmalloc allocated
1623 * array at the end of the bootstrap.
1da177e4 1624 * 2) Create the first kmalloc cache.
343e0d7a 1625 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1626 * An __init data area is used for the head array.
1627 * 3) Create the remaining kmalloc caches, with minimally sized
1628 * head arrays.
1da177e4
LT
1629 * 4) Replace the __init data head arrays for cache_cache and the first
1630 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1631 * 5) Replace the __init data for kmem_list3 for cache_cache and
1632 * the other cache's with kmalloc allocated memory.
1633 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1634 */
1635
7d6e6d09 1636 node = numa_mem_id();
1ca4cb24 1637
1da177e4 1638 /* 1) create the cache_cache */
18004c5d
CL
1639 INIT_LIST_HEAD(&slab_caches);
1640 list_add(&cache_cache.list, &slab_caches);
1da177e4
LT
1641 cache_cache.colour_off = cache_line_size();
1642 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1643 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1644
8da3430d 1645 /*
b56efcf0 1646 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1647 */
3b0efdfa 1648 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1649 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1650 cache_cache.object_size = cache_cache.size;
1651 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1652 cache_line_size());
6a2d7a95 1653 cache_cache.reciprocal_buffer_size =
3b0efdfa 1654 reciprocal_value(cache_cache.size);
1da177e4 1655
07ed76b2 1656 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1657 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1658 cache_line_size(), 0, &left_over, &cache_cache.num);
1659 if (cache_cache.num)
1660 break;
1661 }
40094fa6 1662 BUG_ON(!cache_cache.num);
07ed76b2 1663 cache_cache.gfporder = order;
b28a02de 1664 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1665 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1666 sizeof(struct slab), cache_line_size());
1da177e4
LT
1667
1668 /* 2+3) create the kmalloc caches */
1669 sizes = malloc_sizes;
1670 names = cache_names;
1671
a737b3e2
AM
1672 /*
1673 * Initialize the caches that provide memory for the array cache and the
1674 * kmem_list3 structures first. Without this, further allocations will
1675 * bug.
e498be7d
CL
1676 */
1677
039363f3 1678 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1679 sizes[INDEX_AC].cs_size,
1680 ARCH_KMALLOC_MINALIGN,
1681 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1682 NULL);
e498be7d 1683
a737b3e2 1684 if (INDEX_AC != INDEX_L3) {
e498be7d 1685 sizes[INDEX_L3].cs_cachep =
039363f3 1686 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1687 sizes[INDEX_L3].cs_size,
1688 ARCH_KMALLOC_MINALIGN,
1689 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1690 NULL);
a737b3e2 1691 }
e498be7d 1692
e0a42726
IM
1693 slab_early_init = 0;
1694
1da177e4 1695 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1696 /*
1697 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1698 * This should be particularly beneficial on SMP boxes, as it
1699 * eliminates "false sharing".
1700 * Note for systems short on memory removing the alignment will
e498be7d
CL
1701 * allow tighter packing of the smaller caches.
1702 */
a737b3e2 1703 if (!sizes->cs_cachep) {
039363f3 1704 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1705 sizes->cs_size,
1706 ARCH_KMALLOC_MINALIGN,
1707 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1708 NULL);
a737b3e2 1709 }
4b51d669 1710#ifdef CONFIG_ZONE_DMA
039363f3 1711 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1712 names->name_dma,
a737b3e2
AM
1713 sizes->cs_size,
1714 ARCH_KMALLOC_MINALIGN,
1715 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1716 SLAB_PANIC,
20c2df83 1717 NULL);
4b51d669 1718#endif
1da177e4
LT
1719 sizes++;
1720 names++;
1721 }
1722 /* 4) Replace the bootstrap head arrays */
1723 {
2b2d5493 1724 struct array_cache *ptr;
e498be7d 1725
83b519e8 1726 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1727
9a2dba4b
PE
1728 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1729 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1730 sizeof(struct arraycache_init));
2b2d5493
IM
1731 /*
1732 * Do not assume that spinlocks can be initialized via memcpy:
1733 */
1734 spin_lock_init(&ptr->lock);
1735
1da177e4 1736 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1737
83b519e8 1738 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1739
9a2dba4b 1740 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1741 != &initarray_generic.cache);
9a2dba4b 1742 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1743 sizeof(struct arraycache_init));
2b2d5493
IM
1744 /*
1745 * Do not assume that spinlocks can be initialized via memcpy:
1746 */
1747 spin_lock_init(&ptr->lock);
1748
e498be7d 1749 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1750 ptr;
1da177e4 1751 }
e498be7d
CL
1752 /* 5) Replace the bootstrap kmem_list3's */
1753 {
1ca4cb24
PE
1754 int nid;
1755
9c09a95c 1756 for_each_online_node(nid) {
ec1f5eee 1757 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1758
e498be7d 1759 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1760 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1761
1762 if (INDEX_AC != INDEX_L3) {
1763 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1764 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1765 }
1766 }
1767 }
1da177e4 1768
97d06609 1769 slab_state = UP;
8429db5c
PE
1770}
1771
1772void __init kmem_cache_init_late(void)
1773{
1774 struct kmem_cache *cachep;
1775
97d06609 1776 slab_state = UP;
52cef189 1777
8429db5c 1778 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1779 mutex_lock(&slab_mutex);
1780 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1781 if (enable_cpucache(cachep, GFP_NOWAIT))
1782 BUG();
18004c5d 1783 mutex_unlock(&slab_mutex);
056c6241 1784
947ca185
MW
1785 /* Annotate slab for lockdep -- annotate the malloc caches */
1786 init_lock_keys();
1787
97d06609
CL
1788 /* Done! */
1789 slab_state = FULL;
1790
a737b3e2
AM
1791 /*
1792 * Register a cpu startup notifier callback that initializes
1793 * cpu_cache_get for all new cpus
1da177e4
LT
1794 */
1795 register_cpu_notifier(&cpucache_notifier);
1da177e4 1796
8f9f8d9e
DR
1797#ifdef CONFIG_NUMA
1798 /*
1799 * Register a memory hotplug callback that initializes and frees
1800 * nodelists.
1801 */
1802 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1803#endif
1804
a737b3e2
AM
1805 /*
1806 * The reap timers are started later, with a module init call: That part
1807 * of the kernel is not yet operational.
1da177e4
LT
1808 */
1809}
1810
1811static int __init cpucache_init(void)
1812{
1813 int cpu;
1814
a737b3e2
AM
1815 /*
1816 * Register the timers that return unneeded pages to the page allocator
1da177e4 1817 */
e498be7d 1818 for_each_online_cpu(cpu)
a737b3e2 1819 start_cpu_timer(cpu);
a164f896
GC
1820
1821 /* Done! */
97d06609 1822 slab_state = FULL;
1da177e4
LT
1823 return 0;
1824}
1da177e4
LT
1825__initcall(cpucache_init);
1826
8bdec192
RA
1827static noinline void
1828slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1829{
1830 struct kmem_list3 *l3;
1831 struct slab *slabp;
1832 unsigned long flags;
1833 int node;
1834
1835 printk(KERN_WARNING
1836 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1837 nodeid, gfpflags);
1838 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1839 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1840
1841 for_each_online_node(node) {
1842 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1843 unsigned long active_slabs = 0, num_slabs = 0;
1844
1845 l3 = cachep->nodelists[node];
1846 if (!l3)
1847 continue;
1848
1849 spin_lock_irqsave(&l3->list_lock, flags);
1850 list_for_each_entry(slabp, &l3->slabs_full, list) {
1851 active_objs += cachep->num;
1852 active_slabs++;
1853 }
1854 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1855 active_objs += slabp->inuse;
1856 active_slabs++;
1857 }
1858 list_for_each_entry(slabp, &l3->slabs_free, list)
1859 num_slabs++;
1860
1861 free_objects += l3->free_objects;
1862 spin_unlock_irqrestore(&l3->list_lock, flags);
1863
1864 num_slabs += active_slabs;
1865 num_objs = num_slabs * cachep->num;
1866 printk(KERN_WARNING
1867 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1868 node, active_slabs, num_slabs, active_objs, num_objs,
1869 free_objects);
1870 }
1871}
1872
1da177e4
LT
1873/*
1874 * Interface to system's page allocator. No need to hold the cache-lock.
1875 *
1876 * If we requested dmaable memory, we will get it. Even if we
1877 * did not request dmaable memory, we might get it, but that
1878 * would be relatively rare and ignorable.
1879 */
343e0d7a 1880static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1881{
1882 struct page *page;
e1b6aa6f 1883 int nr_pages;
1da177e4
LT
1884 int i;
1885
d6fef9da 1886#ifndef CONFIG_MMU
e1b6aa6f
CH
1887 /*
1888 * Nommu uses slab's for process anonymous memory allocations, and thus
1889 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1890 */
e1b6aa6f 1891 flags |= __GFP_COMP;
d6fef9da 1892#endif
765c4507 1893
a618e89f 1894 flags |= cachep->allocflags;
e12ba74d
MG
1895 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1896 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1897
517d0869 1898 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1899 if (!page) {
1900 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1901 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1902 return NULL;
8bdec192 1903 }
1da177e4 1904
b37f1dd0 1905 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1906 if (unlikely(page->pfmemalloc))
1907 pfmemalloc_active = true;
1908
e1b6aa6f 1909 nr_pages = (1 << cachep->gfporder);
1da177e4 1910 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1911 add_zone_page_state(page_zone(page),
1912 NR_SLAB_RECLAIMABLE, nr_pages);
1913 else
1914 add_zone_page_state(page_zone(page),
1915 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1916 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1917 __SetPageSlab(page + i);
c175eea4 1918
072bb0aa
MG
1919 if (page->pfmemalloc)
1920 SetPageSlabPfmemalloc(page + i);
1921 }
1922
b1eeab67
VN
1923 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1924 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1925
1926 if (cachep->ctor)
1927 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1928 else
1929 kmemcheck_mark_unallocated_pages(page, nr_pages);
1930 }
c175eea4 1931
e1b6aa6f 1932 return page_address(page);
1da177e4
LT
1933}
1934
1935/*
1936 * Interface to system's page release.
1937 */
343e0d7a 1938static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1939{
b28a02de 1940 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1941 struct page *page = virt_to_page(addr);
1942 const unsigned long nr_freed = i;
1943
b1eeab67 1944 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1945
972d1a7b
CL
1946 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1947 sub_zone_page_state(page_zone(page),
1948 NR_SLAB_RECLAIMABLE, nr_freed);
1949 else
1950 sub_zone_page_state(page_zone(page),
1951 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1952 while (i--) {
f205b2fe 1953 BUG_ON(!PageSlab(page));
072bb0aa 1954 __ClearPageSlabPfmemalloc(page);
f205b2fe 1955 __ClearPageSlab(page);
1da177e4
LT
1956 page++;
1957 }
1da177e4
LT
1958 if (current->reclaim_state)
1959 current->reclaim_state->reclaimed_slab += nr_freed;
1960 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1961}
1962
1963static void kmem_rcu_free(struct rcu_head *head)
1964{
b28a02de 1965 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1966 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1967
1968 kmem_freepages(cachep, slab_rcu->addr);
1969 if (OFF_SLAB(cachep))
1970 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1971}
1972
1973#if DEBUG
1974
1975#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1976static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1977 unsigned long caller)
1da177e4 1978{
8c138bc0 1979 int size = cachep->object_size;
1da177e4 1980
3dafccf2 1981 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1982
b28a02de 1983 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1984 return;
1985
b28a02de
PE
1986 *addr++ = 0x12345678;
1987 *addr++ = caller;
1988 *addr++ = smp_processor_id();
1989 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1990 {
1991 unsigned long *sptr = &caller;
1992 unsigned long svalue;
1993
1994 while (!kstack_end(sptr)) {
1995 svalue = *sptr++;
1996 if (kernel_text_address(svalue)) {
b28a02de 1997 *addr++ = svalue;
1da177e4
LT
1998 size -= sizeof(unsigned long);
1999 if (size <= sizeof(unsigned long))
2000 break;
2001 }
2002 }
2003
2004 }
b28a02de 2005 *addr++ = 0x87654321;
1da177e4
LT
2006}
2007#endif
2008
343e0d7a 2009static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2010{
8c138bc0 2011 int size = cachep->object_size;
3dafccf2 2012 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2013
2014 memset(addr, val, size);
b28a02de 2015 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2016}
2017
2018static void dump_line(char *data, int offset, int limit)
2019{
2020 int i;
aa83aa40
DJ
2021 unsigned char error = 0;
2022 int bad_count = 0;
2023
fdde6abb 2024 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2025 for (i = 0; i < limit; i++) {
2026 if (data[offset + i] != POISON_FREE) {
2027 error = data[offset + i];
2028 bad_count++;
2029 }
aa83aa40 2030 }
fdde6abb
SAS
2031 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2032 &data[offset], limit, 1);
aa83aa40
DJ
2033
2034 if (bad_count == 1) {
2035 error ^= POISON_FREE;
2036 if (!(error & (error - 1))) {
2037 printk(KERN_ERR "Single bit error detected. Probably "
2038 "bad RAM.\n");
2039#ifdef CONFIG_X86
2040 printk(KERN_ERR "Run memtest86+ or a similar memory "
2041 "test tool.\n");
2042#else
2043 printk(KERN_ERR "Run a memory test tool.\n");
2044#endif
2045 }
2046 }
1da177e4
LT
2047}
2048#endif
2049
2050#if DEBUG
2051
343e0d7a 2052static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2053{
2054 int i, size;
2055 char *realobj;
2056
2057 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2058 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2059 *dbg_redzone1(cachep, objp),
2060 *dbg_redzone2(cachep, objp));
1da177e4
LT
2061 }
2062
2063 if (cachep->flags & SLAB_STORE_USER) {
2064 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2065 *dbg_userword(cachep, objp));
1da177e4 2066 print_symbol("(%s)",
a737b3e2 2067 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2068 printk("\n");
2069 }
3dafccf2 2070 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2071 size = cachep->object_size;
b28a02de 2072 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2073 int limit;
2074 limit = 16;
b28a02de
PE
2075 if (i + limit > size)
2076 limit = size - i;
1da177e4
LT
2077 dump_line(realobj, i, limit);
2078 }
2079}
2080
343e0d7a 2081static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2082{
2083 char *realobj;
2084 int size, i;
2085 int lines = 0;
2086
3dafccf2 2087 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2088 size = cachep->object_size;
1da177e4 2089
b28a02de 2090 for (i = 0; i < size; i++) {
1da177e4 2091 char exp = POISON_FREE;
b28a02de 2092 if (i == size - 1)
1da177e4
LT
2093 exp = POISON_END;
2094 if (realobj[i] != exp) {
2095 int limit;
2096 /* Mismatch ! */
2097 /* Print header */
2098 if (lines == 0) {
b28a02de 2099 printk(KERN_ERR
face37f5
DJ
2100 "Slab corruption (%s): %s start=%p, len=%d\n",
2101 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2102 print_objinfo(cachep, objp, 0);
2103 }
2104 /* Hexdump the affected line */
b28a02de 2105 i = (i / 16) * 16;
1da177e4 2106 limit = 16;
b28a02de
PE
2107 if (i + limit > size)
2108 limit = size - i;
1da177e4
LT
2109 dump_line(realobj, i, limit);
2110 i += 16;
2111 lines++;
2112 /* Limit to 5 lines */
2113 if (lines > 5)
2114 break;
2115 }
2116 }
2117 if (lines != 0) {
2118 /* Print some data about the neighboring objects, if they
2119 * exist:
2120 */
6ed5eb22 2121 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2122 unsigned int objnr;
1da177e4 2123
8fea4e96 2124 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2125 if (objnr) {
8fea4e96 2126 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2127 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2128 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2129 realobj, size);
1da177e4
LT
2130 print_objinfo(cachep, objp, 2);
2131 }
b28a02de 2132 if (objnr + 1 < cachep->num) {
8fea4e96 2133 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2134 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2135 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2136 realobj, size);
1da177e4
LT
2137 print_objinfo(cachep, objp, 2);
2138 }
2139 }
2140}
2141#endif
2142
12dd36fa 2143#if DEBUG
e79aec29 2144static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2145{
1da177e4
LT
2146 int i;
2147 for (i = 0; i < cachep->num; i++) {
8fea4e96 2148 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2149
2150 if (cachep->flags & SLAB_POISON) {
2151#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2152 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2153 OFF_SLAB(cachep))
b28a02de 2154 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2155 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2156 else
2157 check_poison_obj(cachep, objp);
2158#else
2159 check_poison_obj(cachep, objp);
2160#endif
2161 }
2162 if (cachep->flags & SLAB_RED_ZONE) {
2163 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2164 slab_error(cachep, "start of a freed object "
b28a02de 2165 "was overwritten");
1da177e4
LT
2166 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2167 slab_error(cachep, "end of a freed object "
b28a02de 2168 "was overwritten");
1da177e4 2169 }
1da177e4 2170 }
12dd36fa 2171}
1da177e4 2172#else
e79aec29 2173static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2174{
12dd36fa 2175}
1da177e4
LT
2176#endif
2177
911851e6
RD
2178/**
2179 * slab_destroy - destroy and release all objects in a slab
2180 * @cachep: cache pointer being destroyed
2181 * @slabp: slab pointer being destroyed
2182 *
12dd36fa 2183 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2184 * Before calling the slab must have been unlinked from the cache. The
2185 * cache-lock is not held/needed.
12dd36fa 2186 */
343e0d7a 2187static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2188{
2189 void *addr = slabp->s_mem - slabp->colouroff;
2190
e79aec29 2191 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2192 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2193 struct slab_rcu *slab_rcu;
2194
b28a02de 2195 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2196 slab_rcu->cachep = cachep;
2197 slab_rcu->addr = addr;
2198 call_rcu(&slab_rcu->head, kmem_rcu_free);
2199 } else {
2200 kmem_freepages(cachep, addr);
873623df
IM
2201 if (OFF_SLAB(cachep))
2202 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2203 }
2204}
2205
117f6eb1
CL
2206static void __kmem_cache_destroy(struct kmem_cache *cachep)
2207{
2208 int i;
2209 struct kmem_list3 *l3;
2210
2211 for_each_online_cpu(i)
2212 kfree(cachep->array[i]);
2213
2214 /* NUMA: free the list3 structures */
2215 for_each_online_node(i) {
2216 l3 = cachep->nodelists[i];
2217 if (l3) {
2218 kfree(l3->shared);
2219 free_alien_cache(l3->alien);
2220 kfree(l3);
2221 }
2222 }
2223 kmem_cache_free(&cache_cache, cachep);
2224}
2225
2226
4d268eba 2227/**
a70773dd
RD
2228 * calculate_slab_order - calculate size (page order) of slabs
2229 * @cachep: pointer to the cache that is being created
2230 * @size: size of objects to be created in this cache.
2231 * @align: required alignment for the objects.
2232 * @flags: slab allocation flags
2233 *
2234 * Also calculates the number of objects per slab.
4d268eba
PE
2235 *
2236 * This could be made much more intelligent. For now, try to avoid using
2237 * high order pages for slabs. When the gfp() functions are more friendly
2238 * towards high-order requests, this should be changed.
2239 */
a737b3e2 2240static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2241 size_t size, size_t align, unsigned long flags)
4d268eba 2242{
b1ab41c4 2243 unsigned long offslab_limit;
4d268eba 2244 size_t left_over = 0;
9888e6fa 2245 int gfporder;
4d268eba 2246
0aa817f0 2247 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2248 unsigned int num;
2249 size_t remainder;
2250
9888e6fa 2251 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2252 if (!num)
2253 continue;
9888e6fa 2254
b1ab41c4
IM
2255 if (flags & CFLGS_OFF_SLAB) {
2256 /*
2257 * Max number of objs-per-slab for caches which
2258 * use off-slab slabs. Needed to avoid a possible
2259 * looping condition in cache_grow().
2260 */
2261 offslab_limit = size - sizeof(struct slab);
2262 offslab_limit /= sizeof(kmem_bufctl_t);
2263
2264 if (num > offslab_limit)
2265 break;
2266 }
4d268eba 2267
9888e6fa 2268 /* Found something acceptable - save it away */
4d268eba 2269 cachep->num = num;
9888e6fa 2270 cachep->gfporder = gfporder;
4d268eba
PE
2271 left_over = remainder;
2272
f78bb8ad
LT
2273 /*
2274 * A VFS-reclaimable slab tends to have most allocations
2275 * as GFP_NOFS and we really don't want to have to be allocating
2276 * higher-order pages when we are unable to shrink dcache.
2277 */
2278 if (flags & SLAB_RECLAIM_ACCOUNT)
2279 break;
2280
4d268eba
PE
2281 /*
2282 * Large number of objects is good, but very large slabs are
2283 * currently bad for the gfp()s.
2284 */
543585cc 2285 if (gfporder >= slab_max_order)
4d268eba
PE
2286 break;
2287
9888e6fa
LT
2288 /*
2289 * Acceptable internal fragmentation?
2290 */
a737b3e2 2291 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2292 break;
2293 }
2294 return left_over;
2295}
2296
83b519e8 2297static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2298{
97d06609 2299 if (slab_state >= FULL)
83b519e8 2300 return enable_cpucache(cachep, gfp);
2ed3a4ef 2301
97d06609 2302 if (slab_state == DOWN) {
f30cf7d1
PE
2303 /*
2304 * Note: the first kmem_cache_create must create the cache
2305 * that's used by kmalloc(24), otherwise the creation of
2306 * further caches will BUG().
2307 */
2308 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2309
2310 /*
2311 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2312 * the first cache, then we need to set up all its list3s,
2313 * otherwise the creation of further caches will BUG().
2314 */
2315 set_up_list3s(cachep, SIZE_AC);
2316 if (INDEX_AC == INDEX_L3)
97d06609 2317 slab_state = PARTIAL_L3;
f30cf7d1 2318 else
97d06609 2319 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2320 } else {
2321 cachep->array[smp_processor_id()] =
83b519e8 2322 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2323
97d06609 2324 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2325 set_up_list3s(cachep, SIZE_L3);
97d06609 2326 slab_state = PARTIAL_L3;
f30cf7d1
PE
2327 } else {
2328 int node;
556a169d 2329 for_each_online_node(node) {
f30cf7d1
PE
2330 cachep->nodelists[node] =
2331 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2332 gfp, node);
f30cf7d1
PE
2333 BUG_ON(!cachep->nodelists[node]);
2334 kmem_list3_init(cachep->nodelists[node]);
2335 }
2336 }
2337 }
7d6e6d09 2338 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2339 jiffies + REAPTIMEOUT_LIST3 +
2340 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2341
2342 cpu_cache_get(cachep)->avail = 0;
2343 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2344 cpu_cache_get(cachep)->batchcount = 1;
2345 cpu_cache_get(cachep)->touched = 0;
2346 cachep->batchcount = 1;
2347 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2348 return 0;
f30cf7d1
PE
2349}
2350
1da177e4 2351/**
039363f3 2352 * __kmem_cache_create - Create a cache.
1da177e4
LT
2353 * @name: A string which is used in /proc/slabinfo to identify this cache.
2354 * @size: The size of objects to be created in this cache.
2355 * @align: The required alignment for the objects.
2356 * @flags: SLAB flags
2357 * @ctor: A constructor for the objects.
1da177e4
LT
2358 *
2359 * Returns a ptr to the cache on success, NULL on failure.
2360 * Cannot be called within a int, but can be interrupted.
20c2df83 2361 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2362 *
2363 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2364 * the module calling this has to destroy the cache before getting unloaded.
2365 *
1da177e4
LT
2366 * The flags are
2367 *
2368 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2369 * to catch references to uninitialised memory.
2370 *
2371 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2372 * for buffer overruns.
2373 *
1da177e4
LT
2374 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2375 * cacheline. This can be beneficial if you're counting cycles as closely
2376 * as davem.
2377 */
343e0d7a 2378struct kmem_cache *
039363f3 2379__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2380 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2381{
2382 size_t left_over, slab_size, ralign;
20cea968 2383 struct kmem_cache *cachep = NULL;
83b519e8 2384 gfp_t gfp;
1da177e4 2385
1da177e4 2386#if DEBUG
1da177e4
LT
2387#if FORCED_DEBUG
2388 /*
2389 * Enable redzoning and last user accounting, except for caches with
2390 * large objects, if the increased size would increase the object size
2391 * above the next power of two: caches with object sizes just above a
2392 * power of two have a significant amount of internal fragmentation.
2393 */
87a927c7
DW
2394 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2395 2 * sizeof(unsigned long long)))
b28a02de 2396 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2397 if (!(flags & SLAB_DESTROY_BY_RCU))
2398 flags |= SLAB_POISON;
2399#endif
2400 if (flags & SLAB_DESTROY_BY_RCU)
2401 BUG_ON(flags & SLAB_POISON);
2402#endif
1da177e4 2403 /*
a737b3e2
AM
2404 * Always checks flags, a caller might be expecting debug support which
2405 * isn't available.
1da177e4 2406 */
40094fa6 2407 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2408
a737b3e2
AM
2409 /*
2410 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2411 * unaligned accesses for some archs when redzoning is used, and makes
2412 * sure any on-slab bufctl's are also correctly aligned.
2413 */
b28a02de
PE
2414 if (size & (BYTES_PER_WORD - 1)) {
2415 size += (BYTES_PER_WORD - 1);
2416 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2417 }
2418
a737b3e2
AM
2419 /* calculate the final buffer alignment: */
2420
1da177e4
LT
2421 /* 1) arch recommendation: can be overridden for debug */
2422 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2423 /*
2424 * Default alignment: as specified by the arch code. Except if
2425 * an object is really small, then squeeze multiple objects into
2426 * one cacheline.
1da177e4
LT
2427 */
2428 ralign = cache_line_size();
b28a02de 2429 while (size <= ralign / 2)
1da177e4
LT
2430 ralign /= 2;
2431 } else {
2432 ralign = BYTES_PER_WORD;
2433 }
ca5f9703
PE
2434
2435 /*
87a927c7
DW
2436 * Redzoning and user store require word alignment or possibly larger.
2437 * Note this will be overridden by architecture or caller mandated
2438 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2439 */
87a927c7
DW
2440 if (flags & SLAB_STORE_USER)
2441 ralign = BYTES_PER_WORD;
2442
2443 if (flags & SLAB_RED_ZONE) {
2444 ralign = REDZONE_ALIGN;
2445 /* If redzoning, ensure that the second redzone is suitably
2446 * aligned, by adjusting the object size accordingly. */
2447 size += REDZONE_ALIGN - 1;
2448 size &= ~(REDZONE_ALIGN - 1);
2449 }
ca5f9703 2450
a44b56d3 2451 /* 2) arch mandated alignment */
1da177e4
LT
2452 if (ralign < ARCH_SLAB_MINALIGN) {
2453 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2454 }
a44b56d3 2455 /* 3) caller mandated alignment */
1da177e4
LT
2456 if (ralign < align) {
2457 ralign = align;
1da177e4 2458 }
3ff84a7f
PE
2459 /* disable debug if necessary */
2460 if (ralign > __alignof__(unsigned long long))
a44b56d3 2461 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2462 /*
ca5f9703 2463 * 4) Store it.
1da177e4
LT
2464 */
2465 align = ralign;
2466
83b519e8
PE
2467 if (slab_is_available())
2468 gfp = GFP_KERNEL;
2469 else
2470 gfp = GFP_NOWAIT;
2471
1da177e4 2472 /* Get cache's description obj. */
83b519e8 2473 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2474 if (!cachep)
039363f3 2475 return NULL;
1da177e4 2476
b56efcf0 2477 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2478 cachep->object_size = size;
2479 cachep->align = align;
1da177e4 2480#if DEBUG
1da177e4 2481
ca5f9703
PE
2482 /*
2483 * Both debugging options require word-alignment which is calculated
2484 * into align above.
2485 */
1da177e4 2486 if (flags & SLAB_RED_ZONE) {
1da177e4 2487 /* add space for red zone words */
3ff84a7f
PE
2488 cachep->obj_offset += sizeof(unsigned long long);
2489 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2490 }
2491 if (flags & SLAB_STORE_USER) {
ca5f9703 2492 /* user store requires one word storage behind the end of
87a927c7
DW
2493 * the real object. But if the second red zone needs to be
2494 * aligned to 64 bits, we must allow that much space.
1da177e4 2495 */
87a927c7
DW
2496 if (flags & SLAB_RED_ZONE)
2497 size += REDZONE_ALIGN;
2498 else
2499 size += BYTES_PER_WORD;
1da177e4
LT
2500 }
2501#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2502 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2503 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2504 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2505 size = PAGE_SIZE;
2506 }
2507#endif
2508#endif
2509
e0a42726
IM
2510 /*
2511 * Determine if the slab management is 'on' or 'off' slab.
2512 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2513 * it too early on. Always use on-slab management when
2514 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2515 */
e7cb55b9
CM
2516 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2517 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2518 /*
2519 * Size is large, assume best to place the slab management obj
2520 * off-slab (should allow better packing of objs).
2521 */
2522 flags |= CFLGS_OFF_SLAB;
2523
2524 size = ALIGN(size, align);
2525
f78bb8ad 2526 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2527
2528 if (!cachep->num) {
b4169525 2529 printk(KERN_ERR
2530 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4 2531 kmem_cache_free(&cache_cache, cachep);
039363f3 2532 return NULL;
1da177e4 2533 }
b28a02de
PE
2534 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2535 + sizeof(struct slab), align);
1da177e4
LT
2536
2537 /*
2538 * If the slab has been placed off-slab, and we have enough space then
2539 * move it on-slab. This is at the expense of any extra colouring.
2540 */
2541 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2542 flags &= ~CFLGS_OFF_SLAB;
2543 left_over -= slab_size;
2544 }
2545
2546 if (flags & CFLGS_OFF_SLAB) {
2547 /* really off slab. No need for manual alignment */
b28a02de
PE
2548 slab_size =
2549 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2550
2551#ifdef CONFIG_PAGE_POISONING
2552 /* If we're going to use the generic kernel_map_pages()
2553 * poisoning, then it's going to smash the contents of
2554 * the redzone and userword anyhow, so switch them off.
2555 */
2556 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2557 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2558#endif
1da177e4
LT
2559 }
2560
2561 cachep->colour_off = cache_line_size();
2562 /* Offset must be a multiple of the alignment. */
2563 if (cachep->colour_off < align)
2564 cachep->colour_off = align;
b28a02de 2565 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2566 cachep->slab_size = slab_size;
2567 cachep->flags = flags;
a618e89f 2568 cachep->allocflags = 0;
4b51d669 2569 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2570 cachep->allocflags |= GFP_DMA;
3b0efdfa 2571 cachep->size = size;
6a2d7a95 2572 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2573
e5ac9c5a 2574 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2575 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2576 /*
2577 * This is a possibility for one of the malloc_sizes caches.
2578 * But since we go off slab only for object size greater than
2579 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2580 * this should not happen at all.
2581 * But leave a BUG_ON for some lucky dude.
2582 */
6cb8f913 2583 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2584 }
1da177e4 2585 cachep->ctor = ctor;
1da177e4
LT
2586 cachep->name = name;
2587
83b519e8 2588 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2589 __kmem_cache_destroy(cachep);
039363f3 2590 return NULL;
2ed3a4ef 2591 }
1da177e4 2592
83835b3d
PZ
2593 if (flags & SLAB_DEBUG_OBJECTS) {
2594 /*
2595 * Would deadlock through slab_destroy()->call_rcu()->
2596 * debug_object_activate()->kmem_cache_alloc().
2597 */
2598 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2599
2600 slab_set_debugobj_lock_classes(cachep);
2601 }
2602
1da177e4 2603 /* cache setup completed, link it into the list */
18004c5d 2604 list_add(&cachep->list, &slab_caches);
1da177e4
LT
2605 return cachep;
2606}
1da177e4
LT
2607
2608#if DEBUG
2609static void check_irq_off(void)
2610{
2611 BUG_ON(!irqs_disabled());
2612}
2613
2614static void check_irq_on(void)
2615{
2616 BUG_ON(irqs_disabled());
2617}
2618
343e0d7a 2619static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2620{
2621#ifdef CONFIG_SMP
2622 check_irq_off();
7d6e6d09 2623 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2624#endif
2625}
e498be7d 2626
343e0d7a 2627static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2628{
2629#ifdef CONFIG_SMP
2630 check_irq_off();
2631 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2632#endif
2633}
2634
1da177e4
LT
2635#else
2636#define check_irq_off() do { } while(0)
2637#define check_irq_on() do { } while(0)
2638#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2639#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2640#endif
2641
aab2207c
CL
2642static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2643 struct array_cache *ac,
2644 int force, int node);
2645
1da177e4
LT
2646static void do_drain(void *arg)
2647{
a737b3e2 2648 struct kmem_cache *cachep = arg;
1da177e4 2649 struct array_cache *ac;
7d6e6d09 2650 int node = numa_mem_id();
1da177e4
LT
2651
2652 check_irq_off();
9a2dba4b 2653 ac = cpu_cache_get(cachep);
ff69416e
CL
2654 spin_lock(&cachep->nodelists[node]->list_lock);
2655 free_block(cachep, ac->entry, ac->avail, node);
2656 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2657 ac->avail = 0;
2658}
2659
343e0d7a 2660static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2661{
e498be7d
CL
2662 struct kmem_list3 *l3;
2663 int node;
2664
15c8b6c1 2665 on_each_cpu(do_drain, cachep, 1);
1da177e4 2666 check_irq_on();
b28a02de 2667 for_each_online_node(node) {
e498be7d 2668 l3 = cachep->nodelists[node];
a4523a8b
RD
2669 if (l3 && l3->alien)
2670 drain_alien_cache(cachep, l3->alien);
2671 }
2672
2673 for_each_online_node(node) {
2674 l3 = cachep->nodelists[node];
2675 if (l3)
aab2207c 2676 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2677 }
1da177e4
LT
2678}
2679
ed11d9eb
CL
2680/*
2681 * Remove slabs from the list of free slabs.
2682 * Specify the number of slabs to drain in tofree.
2683 *
2684 * Returns the actual number of slabs released.
2685 */
2686static int drain_freelist(struct kmem_cache *cache,
2687 struct kmem_list3 *l3, int tofree)
1da177e4 2688{
ed11d9eb
CL
2689 struct list_head *p;
2690 int nr_freed;
1da177e4 2691 struct slab *slabp;
1da177e4 2692
ed11d9eb
CL
2693 nr_freed = 0;
2694 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2695
ed11d9eb 2696 spin_lock_irq(&l3->list_lock);
e498be7d 2697 p = l3->slabs_free.prev;
ed11d9eb
CL
2698 if (p == &l3->slabs_free) {
2699 spin_unlock_irq(&l3->list_lock);
2700 goto out;
2701 }
1da177e4 2702
ed11d9eb 2703 slabp = list_entry(p, struct slab, list);
1da177e4 2704#if DEBUG
40094fa6 2705 BUG_ON(slabp->inuse);
1da177e4
LT
2706#endif
2707 list_del(&slabp->list);
ed11d9eb
CL
2708 /*
2709 * Safe to drop the lock. The slab is no longer linked
2710 * to the cache.
2711 */
2712 l3->free_objects -= cache->num;
e498be7d 2713 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2714 slab_destroy(cache, slabp);
2715 nr_freed++;
1da177e4 2716 }
ed11d9eb
CL
2717out:
2718 return nr_freed;
1da177e4
LT
2719}
2720
18004c5d 2721/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2722static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2723{
2724 int ret = 0, i = 0;
2725 struct kmem_list3 *l3;
2726
2727 drain_cpu_caches(cachep);
2728
2729 check_irq_on();
2730 for_each_online_node(i) {
2731 l3 = cachep->nodelists[i];
ed11d9eb
CL
2732 if (!l3)
2733 continue;
2734
2735 drain_freelist(cachep, l3, l3->free_objects);
2736
2737 ret += !list_empty(&l3->slabs_full) ||
2738 !list_empty(&l3->slabs_partial);
e498be7d
CL
2739 }
2740 return (ret ? 1 : 0);
2741}
2742
1da177e4
LT
2743/**
2744 * kmem_cache_shrink - Shrink a cache.
2745 * @cachep: The cache to shrink.
2746 *
2747 * Releases as many slabs as possible for a cache.
2748 * To help debugging, a zero exit status indicates all slabs were released.
2749 */
343e0d7a 2750int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2751{
8f5be20b 2752 int ret;
40094fa6 2753 BUG_ON(!cachep || in_interrupt());
1da177e4 2754
95402b38 2755 get_online_cpus();
18004c5d 2756 mutex_lock(&slab_mutex);
8f5be20b 2757 ret = __cache_shrink(cachep);
18004c5d 2758 mutex_unlock(&slab_mutex);
95402b38 2759 put_online_cpus();
8f5be20b 2760 return ret;
1da177e4
LT
2761}
2762EXPORT_SYMBOL(kmem_cache_shrink);
2763
2764/**
2765 * kmem_cache_destroy - delete a cache
2766 * @cachep: the cache to destroy
2767 *
72fd4a35 2768 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2769 *
2770 * It is expected this function will be called by a module when it is
2771 * unloaded. This will remove the cache completely, and avoid a duplicate
2772 * cache being allocated each time a module is loaded and unloaded, if the
2773 * module doesn't have persistent in-kernel storage across loads and unloads.
2774 *
2775 * The cache must be empty before calling this function.
2776 *
25985edc 2777 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2778 * during the kmem_cache_destroy().
2779 */
133d205a 2780void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2781{
40094fa6 2782 BUG_ON(!cachep || in_interrupt());
1da177e4 2783
1da177e4 2784 /* Find the cache in the chain of caches. */
95402b38 2785 get_online_cpus();
18004c5d 2786 mutex_lock(&slab_mutex);
1da177e4
LT
2787 /*
2788 * the chain is never empty, cache_cache is never destroyed
2789 */
3b0efdfa 2790 list_del(&cachep->list);
1da177e4
LT
2791 if (__cache_shrink(cachep)) {
2792 slab_error(cachep, "Can't free all objects");
18004c5d
CL
2793 list_add(&cachep->list, &slab_caches);
2794 mutex_unlock(&slab_mutex);
95402b38 2795 put_online_cpus();
133d205a 2796 return;
1da177e4
LT
2797 }
2798
2799 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2800 rcu_barrier();
1da177e4 2801
117f6eb1 2802 __kmem_cache_destroy(cachep);
18004c5d 2803 mutex_unlock(&slab_mutex);
95402b38 2804 put_online_cpus();
1da177e4
LT
2805}
2806EXPORT_SYMBOL(kmem_cache_destroy);
2807
e5ac9c5a
RT
2808/*
2809 * Get the memory for a slab management obj.
2810 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2811 * always come from malloc_sizes caches. The slab descriptor cannot
2812 * come from the same cache which is getting created because,
2813 * when we are searching for an appropriate cache for these
2814 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2815 * If we are creating a malloc_sizes cache here it would not be visible to
2816 * kmem_find_general_cachep till the initialization is complete.
2817 * Hence we cannot have slabp_cache same as the original cache.
2818 */
343e0d7a 2819static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2820 int colour_off, gfp_t local_flags,
2821 int nodeid)
1da177e4
LT
2822{
2823 struct slab *slabp;
b28a02de 2824
1da177e4
LT
2825 if (OFF_SLAB(cachep)) {
2826 /* Slab management obj is off-slab. */
5b74ada7 2827 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2828 local_flags, nodeid);
d5cff635
CM
2829 /*
2830 * If the first object in the slab is leaked (it's allocated
2831 * but no one has a reference to it), we want to make sure
2832 * kmemleak does not treat the ->s_mem pointer as a reference
2833 * to the object. Otherwise we will not report the leak.
2834 */
c017b4be
CM
2835 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2836 local_flags);
1da177e4
LT
2837 if (!slabp)
2838 return NULL;
2839 } else {
b28a02de 2840 slabp = objp + colour_off;
1da177e4
LT
2841 colour_off += cachep->slab_size;
2842 }
2843 slabp->inuse = 0;
2844 slabp->colouroff = colour_off;
b28a02de 2845 slabp->s_mem = objp + colour_off;
5b74ada7 2846 slabp->nodeid = nodeid;
e51bfd0a 2847 slabp->free = 0;
1da177e4
LT
2848 return slabp;
2849}
2850
2851static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2852{
b28a02de 2853 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2854}
2855
343e0d7a 2856static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2857 struct slab *slabp)
1da177e4
LT
2858{
2859 int i;
2860
2861 for (i = 0; i < cachep->num; i++) {
8fea4e96 2862 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2863#if DEBUG
2864 /* need to poison the objs? */
2865 if (cachep->flags & SLAB_POISON)
2866 poison_obj(cachep, objp, POISON_FREE);
2867 if (cachep->flags & SLAB_STORE_USER)
2868 *dbg_userword(cachep, objp) = NULL;
2869
2870 if (cachep->flags & SLAB_RED_ZONE) {
2871 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2872 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2873 }
2874 /*
a737b3e2
AM
2875 * Constructors are not allowed to allocate memory from the same
2876 * cache which they are a constructor for. Otherwise, deadlock.
2877 * They must also be threaded.
1da177e4
LT
2878 */
2879 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2880 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2881
2882 if (cachep->flags & SLAB_RED_ZONE) {
2883 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2884 slab_error(cachep, "constructor overwrote the"
b28a02de 2885 " end of an object");
1da177e4
LT
2886 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2887 slab_error(cachep, "constructor overwrote the"
b28a02de 2888 " start of an object");
1da177e4 2889 }
3b0efdfa 2890 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2891 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2892 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2893 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2894#else
2895 if (cachep->ctor)
51cc5068 2896 cachep->ctor(objp);
1da177e4 2897#endif
b28a02de 2898 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2899 }
b28a02de 2900 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2901}
2902
343e0d7a 2903static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2904{
4b51d669
CL
2905 if (CONFIG_ZONE_DMA_FLAG) {
2906 if (flags & GFP_DMA)
a618e89f 2907 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2908 else
a618e89f 2909 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2910 }
1da177e4
LT
2911}
2912
a737b3e2
AM
2913static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2914 int nodeid)
78d382d7 2915{
8fea4e96 2916 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2917 kmem_bufctl_t next;
2918
2919 slabp->inuse++;
2920 next = slab_bufctl(slabp)[slabp->free];
2921#if DEBUG
2922 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2923 WARN_ON(slabp->nodeid != nodeid);
2924#endif
2925 slabp->free = next;
2926
2927 return objp;
2928}
2929
a737b3e2
AM
2930static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2931 void *objp, int nodeid)
78d382d7 2932{
8fea4e96 2933 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2934
2935#if DEBUG
2936 /* Verify that the slab belongs to the intended node */
2937 WARN_ON(slabp->nodeid != nodeid);
2938
871751e2 2939 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2940 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2941 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2942 BUG();
2943 }
2944#endif
2945 slab_bufctl(slabp)[objnr] = slabp->free;
2946 slabp->free = objnr;
2947 slabp->inuse--;
2948}
2949
4776874f
PE
2950/*
2951 * Map pages beginning at addr to the given cache and slab. This is required
2952 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2953 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2954 */
2955static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2956 void *addr)
1da177e4 2957{
4776874f 2958 int nr_pages;
1da177e4
LT
2959 struct page *page;
2960
4776874f 2961 page = virt_to_page(addr);
84097518 2962
4776874f 2963 nr_pages = 1;
84097518 2964 if (likely(!PageCompound(page)))
4776874f
PE
2965 nr_pages <<= cache->gfporder;
2966
1da177e4 2967 do {
35026088
CL
2968 page->slab_cache = cache;
2969 page->slab_page = slab;
1da177e4 2970 page++;
4776874f 2971 } while (--nr_pages);
1da177e4
LT
2972}
2973
2974/*
2975 * Grow (by 1) the number of slabs within a cache. This is called by
2976 * kmem_cache_alloc() when there are no active objs left in a cache.
2977 */
3c517a61
CL
2978static int cache_grow(struct kmem_cache *cachep,
2979 gfp_t flags, int nodeid, void *objp)
1da177e4 2980{
b28a02de 2981 struct slab *slabp;
b28a02de
PE
2982 size_t offset;
2983 gfp_t local_flags;
e498be7d 2984 struct kmem_list3 *l3;
1da177e4 2985
a737b3e2
AM
2986 /*
2987 * Be lazy and only check for valid flags here, keeping it out of the
2988 * critical path in kmem_cache_alloc().
1da177e4 2989 */
6cb06229
CL
2990 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2991 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2992
2e1217cf 2993 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2994 check_irq_off();
2e1217cf
RT
2995 l3 = cachep->nodelists[nodeid];
2996 spin_lock(&l3->list_lock);
1da177e4
LT
2997
2998 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2999 offset = l3->colour_next;
3000 l3->colour_next++;
3001 if (l3->colour_next >= cachep->colour)
3002 l3->colour_next = 0;
3003 spin_unlock(&l3->list_lock);
1da177e4 3004
2e1217cf 3005 offset *= cachep->colour_off;
1da177e4
LT
3006
3007 if (local_flags & __GFP_WAIT)
3008 local_irq_enable();
3009
3010 /*
3011 * The test for missing atomic flag is performed here, rather than
3012 * the more obvious place, simply to reduce the critical path length
3013 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
3014 * will eventually be caught here (where it matters).
3015 */
3016 kmem_flagcheck(cachep, flags);
3017
a737b3e2
AM
3018 /*
3019 * Get mem for the objs. Attempt to allocate a physical page from
3020 * 'nodeid'.
e498be7d 3021 */
3c517a61 3022 if (!objp)
b8c1c5da 3023 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 3024 if (!objp)
1da177e4
LT
3025 goto failed;
3026
3027 /* Get slab management. */
3c517a61 3028 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 3029 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 3030 if (!slabp)
1da177e4
LT
3031 goto opps1;
3032
4776874f 3033 slab_map_pages(cachep, slabp, objp);
1da177e4 3034
a35afb83 3035 cache_init_objs(cachep, slabp);
1da177e4
LT
3036
3037 if (local_flags & __GFP_WAIT)
3038 local_irq_disable();
3039 check_irq_off();
e498be7d 3040 spin_lock(&l3->list_lock);
1da177e4
LT
3041
3042 /* Make slab active. */
e498be7d 3043 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 3044 STATS_INC_GROWN(cachep);
e498be7d
CL
3045 l3->free_objects += cachep->num;
3046 spin_unlock(&l3->list_lock);
1da177e4 3047 return 1;
a737b3e2 3048opps1:
1da177e4 3049 kmem_freepages(cachep, objp);
a737b3e2 3050failed:
1da177e4
LT
3051 if (local_flags & __GFP_WAIT)
3052 local_irq_disable();
3053 return 0;
3054}
3055
3056#if DEBUG
3057
3058/*
3059 * Perform extra freeing checks:
3060 * - detect bad pointers.
3061 * - POISON/RED_ZONE checking
1da177e4
LT
3062 */
3063static void kfree_debugcheck(const void *objp)
3064{
1da177e4
LT
3065 if (!virt_addr_valid(objp)) {
3066 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3067 (unsigned long)objp);
3068 BUG();
1da177e4 3069 }
1da177e4
LT
3070}
3071
58ce1fd5
PE
3072static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3073{
b46b8f19 3074 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3075
3076 redzone1 = *dbg_redzone1(cache, obj);
3077 redzone2 = *dbg_redzone2(cache, obj);
3078
3079 /*
3080 * Redzone is ok.
3081 */
3082 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3083 return;
3084
3085 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3086 slab_error(cache, "double free detected");
3087 else
3088 slab_error(cache, "memory outside object was overwritten");
3089
b46b8f19 3090 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3091 obj, redzone1, redzone2);
3092}
3093
343e0d7a 3094static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3095 void *caller)
1da177e4
LT
3096{
3097 struct page *page;
3098 unsigned int objnr;
3099 struct slab *slabp;
3100
80cbd911
MW
3101 BUG_ON(virt_to_cache(objp) != cachep);
3102
3dafccf2 3103 objp -= obj_offset(cachep);
1da177e4 3104 kfree_debugcheck(objp);
b49af68f 3105 page = virt_to_head_page(objp);
1da177e4 3106
35026088 3107 slabp = page->slab_page;
1da177e4
LT
3108
3109 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3110 verify_redzone_free(cachep, objp);
1da177e4
LT
3111 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3112 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3113 }
3114 if (cachep->flags & SLAB_STORE_USER)
3115 *dbg_userword(cachep, objp) = caller;
3116
8fea4e96 3117 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3118
3119 BUG_ON(objnr >= cachep->num);
8fea4e96 3120 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3121
871751e2
AV
3122#ifdef CONFIG_DEBUG_SLAB_LEAK
3123 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3124#endif
1da177e4
LT
3125 if (cachep->flags & SLAB_POISON) {
3126#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3127 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3128 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3129 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3130 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3131 } else {
3132 poison_obj(cachep, objp, POISON_FREE);
3133 }
3134#else
3135 poison_obj(cachep, objp, POISON_FREE);
3136#endif
3137 }
3138 return objp;
3139}
3140
343e0d7a 3141static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3142{
3143 kmem_bufctl_t i;
3144 int entries = 0;
b28a02de 3145
1da177e4
LT
3146 /* Check slab's freelist to see if this obj is there. */
3147 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3148 entries++;
3149 if (entries > cachep->num || i >= cachep->num)
3150 goto bad;
3151 }
3152 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3153bad:
3154 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3155 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3156 cachep->name, cachep->num, slabp, slabp->inuse,
3157 print_tainted());
fdde6abb
SAS
3158 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3159 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3160 1);
1da177e4
LT
3161 BUG();
3162 }
3163}
3164#else
3165#define kfree_debugcheck(x) do { } while(0)
3166#define cache_free_debugcheck(x,objp,z) (objp)
3167#define check_slabp(x,y) do { } while(0)
3168#endif
3169
072bb0aa
MG
3170static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3171 bool force_refill)
1da177e4
LT
3172{
3173 int batchcount;
3174 struct kmem_list3 *l3;
3175 struct array_cache *ac;
1ca4cb24
PE
3176 int node;
3177
1da177e4 3178 check_irq_off();
7d6e6d09 3179 node = numa_mem_id();
072bb0aa
MG
3180 if (unlikely(force_refill))
3181 goto force_grow;
3182retry:
9a2dba4b 3183 ac = cpu_cache_get(cachep);
1da177e4
LT
3184 batchcount = ac->batchcount;
3185 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3186 /*
3187 * If there was little recent activity on this cache, then
3188 * perform only a partial refill. Otherwise we could generate
3189 * refill bouncing.
1da177e4
LT
3190 */
3191 batchcount = BATCHREFILL_LIMIT;
3192 }
1ca4cb24 3193 l3 = cachep->nodelists[node];
e498be7d
CL
3194
3195 BUG_ON(ac->avail > 0 || !l3);
3196 spin_lock(&l3->list_lock);
1da177e4 3197
3ded175a 3198 /* See if we can refill from the shared array */
44b57f1c
NP
3199 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3200 l3->shared->touched = 1;
3ded175a 3201 goto alloc_done;
44b57f1c 3202 }
3ded175a 3203
1da177e4
LT
3204 while (batchcount > 0) {
3205 struct list_head *entry;
3206 struct slab *slabp;
3207 /* Get slab alloc is to come from. */
3208 entry = l3->slabs_partial.next;
3209 if (entry == &l3->slabs_partial) {
3210 l3->free_touched = 1;
3211 entry = l3->slabs_free.next;
3212 if (entry == &l3->slabs_free)
3213 goto must_grow;
3214 }
3215
3216 slabp = list_entry(entry, struct slab, list);
3217 check_slabp(cachep, slabp);
3218 check_spinlock_acquired(cachep);
714b8171
PE
3219
3220 /*
3221 * The slab was either on partial or free list so
3222 * there must be at least one object available for
3223 * allocation.
3224 */
249b9f33 3225 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3226
1da177e4 3227 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3228 STATS_INC_ALLOCED(cachep);
3229 STATS_INC_ACTIVE(cachep);
3230 STATS_SET_HIGH(cachep);
3231
072bb0aa
MG
3232 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3233 node));
1da177e4
LT
3234 }
3235 check_slabp(cachep, slabp);
3236
3237 /* move slabp to correct slabp list: */
3238 list_del(&slabp->list);
3239 if (slabp->free == BUFCTL_END)
3240 list_add(&slabp->list, &l3->slabs_full);
3241 else
3242 list_add(&slabp->list, &l3->slabs_partial);
3243 }
3244
a737b3e2 3245must_grow:
1da177e4 3246 l3->free_objects -= ac->avail;
a737b3e2 3247alloc_done:
e498be7d 3248 spin_unlock(&l3->list_lock);
1da177e4
LT
3249
3250 if (unlikely(!ac->avail)) {
3251 int x;
072bb0aa 3252force_grow:
3c517a61 3253 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3254
a737b3e2 3255 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3256 ac = cpu_cache_get(cachep);
072bb0aa
MG
3257
3258 /* no objects in sight? abort */
3259 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3260 return NULL;
3261
a737b3e2 3262 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3263 goto retry;
3264 }
3265 ac->touched = 1;
072bb0aa
MG
3266
3267 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3268}
3269
a737b3e2
AM
3270static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3271 gfp_t flags)
1da177e4
LT
3272{
3273 might_sleep_if(flags & __GFP_WAIT);
3274#if DEBUG
3275 kmem_flagcheck(cachep, flags);
3276#endif
3277}
3278
3279#if DEBUG
a737b3e2
AM
3280static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3281 gfp_t flags, void *objp, void *caller)
1da177e4 3282{
b28a02de 3283 if (!objp)
1da177e4 3284 return objp;
b28a02de 3285 if (cachep->flags & SLAB_POISON) {
1da177e4 3286#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3287 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3288 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3289 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3290 else
3291 check_poison_obj(cachep, objp);
3292#else
3293 check_poison_obj(cachep, objp);
3294#endif
3295 poison_obj(cachep, objp, POISON_INUSE);
3296 }
3297 if (cachep->flags & SLAB_STORE_USER)
3298 *dbg_userword(cachep, objp) = caller;
3299
3300 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3301 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3302 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3303 slab_error(cachep, "double free, or memory outside"
3304 " object was overwritten");
b28a02de 3305 printk(KERN_ERR
b46b8f19 3306 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3307 objp, *dbg_redzone1(cachep, objp),
3308 *dbg_redzone2(cachep, objp));
1da177e4
LT
3309 }
3310 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3311 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3312 }
871751e2
AV
3313#ifdef CONFIG_DEBUG_SLAB_LEAK
3314 {
3315 struct slab *slabp;
3316 unsigned objnr;
3317
35026088 3318 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3319 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3320 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3321 }
3322#endif
3dafccf2 3323 objp += obj_offset(cachep);
4f104934 3324 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3325 cachep->ctor(objp);
7ea466f2
TH
3326 if (ARCH_SLAB_MINALIGN &&
3327 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3328 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3329 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3330 }
1da177e4
LT
3331 return objp;
3332}
3333#else
3334#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3335#endif
3336
773ff60e 3337static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3338{
3339 if (cachep == &cache_cache)
773ff60e 3340 return false;
8a8b6502 3341
8c138bc0 3342 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3343}
3344
343e0d7a 3345static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3346{
b28a02de 3347 void *objp;
1da177e4 3348 struct array_cache *ac;
072bb0aa 3349 bool force_refill = false;
1da177e4 3350
5c382300 3351 check_irq_off();
8a8b6502 3352
9a2dba4b 3353 ac = cpu_cache_get(cachep);
1da177e4 3354 if (likely(ac->avail)) {
1da177e4 3355 ac->touched = 1;
072bb0aa
MG
3356 objp = ac_get_obj(cachep, ac, flags, false);
3357
ddbf2e83 3358 /*
072bb0aa
MG
3359 * Allow for the possibility all avail objects are not allowed
3360 * by the current flags
ddbf2e83 3361 */
072bb0aa
MG
3362 if (objp) {
3363 STATS_INC_ALLOCHIT(cachep);
3364 goto out;
3365 }
3366 force_refill = true;
1da177e4 3367 }
072bb0aa
MG
3368
3369 STATS_INC_ALLOCMISS(cachep);
3370 objp = cache_alloc_refill(cachep, flags, force_refill);
3371 /*
3372 * the 'ac' may be updated by cache_alloc_refill(),
3373 * and kmemleak_erase() requires its correct value.
3374 */
3375 ac = cpu_cache_get(cachep);
3376
3377out:
d5cff635
CM
3378 /*
3379 * To avoid a false negative, if an object that is in one of the
3380 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3381 * treat the array pointers as a reference to the object.
3382 */
f3d8b53a
O
3383 if (objp)
3384 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3385 return objp;
3386}
3387
e498be7d 3388#ifdef CONFIG_NUMA
c61afb18 3389/*
b2455396 3390 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3391 *
3392 * If we are in_interrupt, then process context, including cpusets and
3393 * mempolicy, may not apply and should not be used for allocation policy.
3394 */
3395static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3396{
3397 int nid_alloc, nid_here;
3398
765c4507 3399 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3400 return NULL;
7d6e6d09 3401 nid_alloc = nid_here = numa_mem_id();
c61afb18 3402 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3403 nid_alloc = cpuset_slab_spread_node();
c61afb18 3404 else if (current->mempolicy)
e7b691b0 3405 nid_alloc = slab_node();
c61afb18 3406 if (nid_alloc != nid_here)
8b98c169 3407 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3408 return NULL;
3409}
3410
765c4507
CL
3411/*
3412 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3413 * certain node and fall back is permitted. First we scan all the
3414 * available nodelists for available objects. If that fails then we
3415 * perform an allocation without specifying a node. This allows the page
3416 * allocator to do its reclaim / fallback magic. We then insert the
3417 * slab into the proper nodelist and then allocate from it.
765c4507 3418 */
8c8cc2c1 3419static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3420{
8c8cc2c1
PE
3421 struct zonelist *zonelist;
3422 gfp_t local_flags;
dd1a239f 3423 struct zoneref *z;
54a6eb5c
MG
3424 struct zone *zone;
3425 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3426 void *obj = NULL;
3c517a61 3427 int nid;
cc9a6c87 3428 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3429
3430 if (flags & __GFP_THISNODE)
3431 return NULL;
3432
6cb06229 3433 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3434
cc9a6c87
MG
3435retry_cpuset:
3436 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3437 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3438
3c517a61
CL
3439retry:
3440 /*
3441 * Look through allowed nodes for objects available
3442 * from existing per node queues.
3443 */
54a6eb5c
MG
3444 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3445 nid = zone_to_nid(zone);
aedb0eb1 3446
54a6eb5c 3447 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3448 cache->nodelists[nid] &&
481c5346 3449 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3450 obj = ____cache_alloc_node(cache,
3451 flags | GFP_THISNODE, nid);
481c5346
CL
3452 if (obj)
3453 break;
3454 }
3c517a61
CL
3455 }
3456
cfce6604 3457 if (!obj) {
3c517a61
CL
3458 /*
3459 * This allocation will be performed within the constraints
3460 * of the current cpuset / memory policy requirements.
3461 * We may trigger various forms of reclaim on the allowed
3462 * set and go into memory reserves if necessary.
3463 */
dd47ea75
CL
3464 if (local_flags & __GFP_WAIT)
3465 local_irq_enable();
3466 kmem_flagcheck(cache, flags);
7d6e6d09 3467 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3468 if (local_flags & __GFP_WAIT)
3469 local_irq_disable();
3c517a61
CL
3470 if (obj) {
3471 /*
3472 * Insert into the appropriate per node queues
3473 */
3474 nid = page_to_nid(virt_to_page(obj));
3475 if (cache_grow(cache, flags, nid, obj)) {
3476 obj = ____cache_alloc_node(cache,
3477 flags | GFP_THISNODE, nid);
3478 if (!obj)
3479 /*
3480 * Another processor may allocate the
3481 * objects in the slab since we are
3482 * not holding any locks.
3483 */
3484 goto retry;
3485 } else {
b6a60451 3486 /* cache_grow already freed obj */
3c517a61
CL
3487 obj = NULL;
3488 }
3489 }
aedb0eb1 3490 }
cc9a6c87
MG
3491
3492 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3493 goto retry_cpuset;
765c4507
CL
3494 return obj;
3495}
3496
e498be7d
CL
3497/*
3498 * A interface to enable slab creation on nodeid
1da177e4 3499 */
8b98c169 3500static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3501 int nodeid)
e498be7d
CL
3502{
3503 struct list_head *entry;
b28a02de
PE
3504 struct slab *slabp;
3505 struct kmem_list3 *l3;
3506 void *obj;
b28a02de
PE
3507 int x;
3508
3509 l3 = cachep->nodelists[nodeid];
3510 BUG_ON(!l3);
3511
a737b3e2 3512retry:
ca3b9b91 3513 check_irq_off();
b28a02de
PE
3514 spin_lock(&l3->list_lock);
3515 entry = l3->slabs_partial.next;
3516 if (entry == &l3->slabs_partial) {
3517 l3->free_touched = 1;
3518 entry = l3->slabs_free.next;
3519 if (entry == &l3->slabs_free)
3520 goto must_grow;
3521 }
3522
3523 slabp = list_entry(entry, struct slab, list);
3524 check_spinlock_acquired_node(cachep, nodeid);
3525 check_slabp(cachep, slabp);
3526
3527 STATS_INC_NODEALLOCS(cachep);
3528 STATS_INC_ACTIVE(cachep);
3529 STATS_SET_HIGH(cachep);
3530
3531 BUG_ON(slabp->inuse == cachep->num);
3532
78d382d7 3533 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3534 check_slabp(cachep, slabp);
3535 l3->free_objects--;
3536 /* move slabp to correct slabp list: */
3537 list_del(&slabp->list);
3538
a737b3e2 3539 if (slabp->free == BUFCTL_END)
b28a02de 3540 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3541 else
b28a02de 3542 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3543
b28a02de
PE
3544 spin_unlock(&l3->list_lock);
3545 goto done;
e498be7d 3546
a737b3e2 3547must_grow:
b28a02de 3548 spin_unlock(&l3->list_lock);
3c517a61 3549 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3550 if (x)
3551 goto retry;
1da177e4 3552
8c8cc2c1 3553 return fallback_alloc(cachep, flags);
e498be7d 3554
a737b3e2 3555done:
b28a02de 3556 return obj;
e498be7d 3557}
8c8cc2c1
PE
3558
3559/**
3560 * kmem_cache_alloc_node - Allocate an object on the specified node
3561 * @cachep: The cache to allocate from.
3562 * @flags: See kmalloc().
3563 * @nodeid: node number of the target node.
3564 * @caller: return address of caller, used for debug information
3565 *
3566 * Identical to kmem_cache_alloc but it will allocate memory on the given
3567 * node, which can improve the performance for cpu bound structures.
3568 *
3569 * Fallback to other node is possible if __GFP_THISNODE is not set.
3570 */
3571static __always_inline void *
3572__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3573 void *caller)
3574{
3575 unsigned long save_flags;
3576 void *ptr;
7d6e6d09 3577 int slab_node = numa_mem_id();
8c8cc2c1 3578
dcce284a 3579 flags &= gfp_allowed_mask;
7e85ee0c 3580
cf40bd16
NP
3581 lockdep_trace_alloc(flags);
3582
773ff60e 3583 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3584 return NULL;
3585
8c8cc2c1
PE
3586 cache_alloc_debugcheck_before(cachep, flags);
3587 local_irq_save(save_flags);
3588
eacbbae3 3589 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3590 nodeid = slab_node;
8c8cc2c1
PE
3591
3592 if (unlikely(!cachep->nodelists[nodeid])) {
3593 /* Node not bootstrapped yet */
3594 ptr = fallback_alloc(cachep, flags);
3595 goto out;
3596 }
3597
7d6e6d09 3598 if (nodeid == slab_node) {
8c8cc2c1
PE
3599 /*
3600 * Use the locally cached objects if possible.
3601 * However ____cache_alloc does not allow fallback
3602 * to other nodes. It may fail while we still have
3603 * objects on other nodes available.
3604 */
3605 ptr = ____cache_alloc(cachep, flags);
3606 if (ptr)
3607 goto out;
3608 }
3609 /* ___cache_alloc_node can fall back to other nodes */
3610 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3611 out:
3612 local_irq_restore(save_flags);
3613 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3614 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3615 flags);
8c8cc2c1 3616
c175eea4 3617 if (likely(ptr))
8c138bc0 3618 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3619
d07dbea4 3620 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3621 memset(ptr, 0, cachep->object_size);
d07dbea4 3622
8c8cc2c1
PE
3623 return ptr;
3624}
3625
3626static __always_inline void *
3627__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3628{
3629 void *objp;
3630
3631 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3632 objp = alternate_node_alloc(cache, flags);
3633 if (objp)
3634 goto out;
3635 }
3636 objp = ____cache_alloc(cache, flags);
3637
3638 /*
3639 * We may just have run out of memory on the local node.
3640 * ____cache_alloc_node() knows how to locate memory on other nodes
3641 */
7d6e6d09
LS
3642 if (!objp)
3643 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3644
3645 out:
3646 return objp;
3647}
3648#else
3649
3650static __always_inline void *
3651__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3652{
3653 return ____cache_alloc(cachep, flags);
3654}
3655
3656#endif /* CONFIG_NUMA */
3657
3658static __always_inline void *
3659__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3660{
3661 unsigned long save_flags;
3662 void *objp;
3663
dcce284a 3664 flags &= gfp_allowed_mask;
7e85ee0c 3665
cf40bd16
NP
3666 lockdep_trace_alloc(flags);
3667
773ff60e 3668 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3669 return NULL;
3670
8c8cc2c1
PE
3671 cache_alloc_debugcheck_before(cachep, flags);
3672 local_irq_save(save_flags);
3673 objp = __do_cache_alloc(cachep, flags);
3674 local_irq_restore(save_flags);
3675 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3676 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3677 flags);
8c8cc2c1
PE
3678 prefetchw(objp);
3679
c175eea4 3680 if (likely(objp))
8c138bc0 3681 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3682
d07dbea4 3683 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3684 memset(objp, 0, cachep->object_size);
d07dbea4 3685
8c8cc2c1
PE
3686 return objp;
3687}
e498be7d
CL
3688
3689/*
3690 * Caller needs to acquire correct kmem_list's list_lock
3691 */
343e0d7a 3692static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3693 int node)
1da177e4
LT
3694{
3695 int i;
e498be7d 3696 struct kmem_list3 *l3;
1da177e4
LT
3697
3698 for (i = 0; i < nr_objects; i++) {
072bb0aa 3699 void *objp;
1da177e4 3700 struct slab *slabp;
1da177e4 3701
072bb0aa
MG
3702 clear_obj_pfmemalloc(&objpp[i]);
3703 objp = objpp[i];
3704
6ed5eb22 3705 slabp = virt_to_slab(objp);
ff69416e 3706 l3 = cachep->nodelists[node];
1da177e4 3707 list_del(&slabp->list);
ff69416e 3708 check_spinlock_acquired_node(cachep, node);
1da177e4 3709 check_slabp(cachep, slabp);
78d382d7 3710 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3711 STATS_DEC_ACTIVE(cachep);
e498be7d 3712 l3->free_objects++;
1da177e4
LT
3713 check_slabp(cachep, slabp);
3714
3715 /* fixup slab chains */
3716 if (slabp->inuse == 0) {
e498be7d
CL
3717 if (l3->free_objects > l3->free_limit) {
3718 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3719 /* No need to drop any previously held
3720 * lock here, even if we have a off-slab slab
3721 * descriptor it is guaranteed to come from
3722 * a different cache, refer to comments before
3723 * alloc_slabmgmt.
3724 */
1da177e4
LT
3725 slab_destroy(cachep, slabp);
3726 } else {
e498be7d 3727 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3728 }
3729 } else {
3730 /* Unconditionally move a slab to the end of the
3731 * partial list on free - maximum time for the
3732 * other objects to be freed, too.
3733 */
e498be7d 3734 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3735 }
3736 }
3737}
3738
343e0d7a 3739static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3740{
3741 int batchcount;
e498be7d 3742 struct kmem_list3 *l3;
7d6e6d09 3743 int node = numa_mem_id();
1da177e4
LT
3744
3745 batchcount = ac->batchcount;
3746#if DEBUG
3747 BUG_ON(!batchcount || batchcount > ac->avail);
3748#endif
3749 check_irq_off();
ff69416e 3750 l3 = cachep->nodelists[node];
873623df 3751 spin_lock(&l3->list_lock);
e498be7d
CL
3752 if (l3->shared) {
3753 struct array_cache *shared_array = l3->shared;
b28a02de 3754 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3755 if (max) {
3756 if (batchcount > max)
3757 batchcount = max;
e498be7d 3758 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3759 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3760 shared_array->avail += batchcount;
3761 goto free_done;
3762 }
3763 }
3764
ff69416e 3765 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3766free_done:
1da177e4
LT
3767#if STATS
3768 {
3769 int i = 0;
3770 struct list_head *p;
3771
e498be7d
CL
3772 p = l3->slabs_free.next;
3773 while (p != &(l3->slabs_free)) {
1da177e4
LT
3774 struct slab *slabp;
3775
3776 slabp = list_entry(p, struct slab, list);
3777 BUG_ON(slabp->inuse);
3778
3779 i++;
3780 p = p->next;
3781 }
3782 STATS_SET_FREEABLE(cachep, i);
3783 }
3784#endif
e498be7d 3785 spin_unlock(&l3->list_lock);
1da177e4 3786 ac->avail -= batchcount;
a737b3e2 3787 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3788}
3789
3790/*
a737b3e2
AM
3791 * Release an obj back to its cache. If the obj has a constructed state, it must
3792 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3793 */
a947eb95
SS
3794static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3795 void *caller)
1da177e4 3796{
9a2dba4b 3797 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3798
3799 check_irq_off();
d5cff635 3800 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3801 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3802
8c138bc0 3803 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3804
1807a1aa
SS
3805 /*
3806 * Skip calling cache_free_alien() when the platform is not numa.
3807 * This will avoid cache misses that happen while accessing slabp (which
3808 * is per page memory reference) to get nodeid. Instead use a global
3809 * variable to skip the call, which is mostly likely to be present in
3810 * the cache.
3811 */
b6e68bc1 3812 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3813 return;
3814
1da177e4
LT
3815 if (likely(ac->avail < ac->limit)) {
3816 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3817 } else {
3818 STATS_INC_FREEMISS(cachep);
3819 cache_flusharray(cachep, ac);
1da177e4 3820 }
42c8c99c 3821
072bb0aa 3822 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3823}
3824
3825/**
3826 * kmem_cache_alloc - Allocate an object
3827 * @cachep: The cache to allocate from.
3828 * @flags: See kmalloc().
3829 *
3830 * Allocate an object from this cache. The flags are only relevant
3831 * if the cache has no available objects.
3832 */
343e0d7a 3833void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3834{
36555751
EGM
3835 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3836
ca2b84cb 3837 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3838 cachep->object_size, cachep->size, flags);
36555751
EGM
3839
3840 return ret;
1da177e4
LT
3841}
3842EXPORT_SYMBOL(kmem_cache_alloc);
3843
0f24f128 3844#ifdef CONFIG_TRACING
85beb586
SR
3845void *
3846kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3847{
85beb586
SR
3848 void *ret;
3849
3850 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3851
3852 trace_kmalloc(_RET_IP_, ret,
3853 size, slab_buffer_size(cachep), flags);
3854 return ret;
36555751 3855}
85beb586 3856EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3857#endif
3858
1da177e4 3859#ifdef CONFIG_NUMA
8b98c169
CH
3860void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3861{
36555751
EGM
3862 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3863 __builtin_return_address(0));
3864
ca2b84cb 3865 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3866 cachep->object_size, cachep->size,
ca2b84cb 3867 flags, nodeid);
36555751
EGM
3868
3869 return ret;
8b98c169 3870}
1da177e4
LT
3871EXPORT_SYMBOL(kmem_cache_alloc_node);
3872
0f24f128 3873#ifdef CONFIG_TRACING
85beb586
SR
3874void *kmem_cache_alloc_node_trace(size_t size,
3875 struct kmem_cache *cachep,
3876 gfp_t flags,
3877 int nodeid)
36555751 3878{
85beb586
SR
3879 void *ret;
3880
3881 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3882 __builtin_return_address(0));
85beb586
SR
3883 trace_kmalloc_node(_RET_IP_, ret,
3884 size, slab_buffer_size(cachep),
3885 flags, nodeid);
3886 return ret;
36555751 3887}
85beb586 3888EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3889#endif
3890
8b98c169
CH
3891static __always_inline void *
3892__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3893{
343e0d7a 3894 struct kmem_cache *cachep;
97e2bde4
MS
3895
3896 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3897 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3898 return cachep;
85beb586 3899 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3900}
8b98c169 3901
0bb38a5c 3902#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3903void *__kmalloc_node(size_t size, gfp_t flags, int node)
3904{
3905 return __do_kmalloc_node(size, flags, node,
3906 __builtin_return_address(0));
3907}
dbe5e69d 3908EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3909
3910void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3911 int node, unsigned long caller)
8b98c169 3912{
ce71e27c 3913 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3914}
3915EXPORT_SYMBOL(__kmalloc_node_track_caller);
3916#else
3917void *__kmalloc_node(size_t size, gfp_t flags, int node)
3918{
3919 return __do_kmalloc_node(size, flags, node, NULL);
3920}
3921EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3922#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3923#endif /* CONFIG_NUMA */
1da177e4
LT
3924
3925/**
800590f5 3926 * __do_kmalloc - allocate memory
1da177e4 3927 * @size: how many bytes of memory are required.
800590f5 3928 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3929 * @caller: function caller for debug tracking of the caller
1da177e4 3930 */
7fd6b141
PE
3931static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3932 void *caller)
1da177e4 3933{
343e0d7a 3934 struct kmem_cache *cachep;
36555751 3935 void *ret;
1da177e4 3936
97e2bde4
MS
3937 /* If you want to save a few bytes .text space: replace
3938 * __ with kmem_.
3939 * Then kmalloc uses the uninlined functions instead of the inline
3940 * functions.
3941 */
3942 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3943 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3944 return cachep;
36555751
EGM
3945 ret = __cache_alloc(cachep, flags, caller);
3946
ca2b84cb 3947 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3948 size, cachep->size, flags);
36555751
EGM
3949
3950 return ret;
7fd6b141
PE
3951}
3952
7fd6b141 3953
0bb38a5c 3954#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3955void *__kmalloc(size_t size, gfp_t flags)
3956{
871751e2 3957 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3958}
3959EXPORT_SYMBOL(__kmalloc);
3960
ce71e27c 3961void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3962{
ce71e27c 3963 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3964}
3965EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3966
3967#else
3968void *__kmalloc(size_t size, gfp_t flags)
3969{
3970 return __do_kmalloc(size, flags, NULL);
3971}
3972EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3973#endif
3974
1da177e4
LT
3975/**
3976 * kmem_cache_free - Deallocate an object
3977 * @cachep: The cache the allocation was from.
3978 * @objp: The previously allocated object.
3979 *
3980 * Free an object which was previously allocated from this
3981 * cache.
3982 */
343e0d7a 3983void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3984{
3985 unsigned long flags;
3986
3987 local_irq_save(flags);
d97d476b 3988 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3989 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3990 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3991 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3992 local_irq_restore(flags);
36555751 3993
ca2b84cb 3994 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3995}
3996EXPORT_SYMBOL(kmem_cache_free);
3997
1da177e4
LT
3998/**
3999 * kfree - free previously allocated memory
4000 * @objp: pointer returned by kmalloc.
4001 *
80e93eff
PE
4002 * If @objp is NULL, no operation is performed.
4003 *
1da177e4
LT
4004 * Don't free memory not originally allocated by kmalloc()
4005 * or you will run into trouble.
4006 */
4007void kfree(const void *objp)
4008{
343e0d7a 4009 struct kmem_cache *c;
1da177e4
LT
4010 unsigned long flags;
4011
2121db74
PE
4012 trace_kfree(_RET_IP_, objp);
4013
6cb8f913 4014 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
4015 return;
4016 local_irq_save(flags);
4017 kfree_debugcheck(objp);
6ed5eb22 4018 c = virt_to_cache(objp);
8c138bc0
CL
4019 debug_check_no_locks_freed(objp, c->object_size);
4020
4021 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 4022 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
4023 local_irq_restore(flags);
4024}
4025EXPORT_SYMBOL(kfree);
4026
343e0d7a 4027unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 4028{
8c138bc0 4029 return cachep->object_size;
1da177e4
LT
4030}
4031EXPORT_SYMBOL(kmem_cache_size);
4032
e498be7d 4033/*
183ff22b 4034 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 4035 */
83b519e8 4036static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
4037{
4038 int node;
4039 struct kmem_list3 *l3;
cafeb02e 4040 struct array_cache *new_shared;
3395ee05 4041 struct array_cache **new_alien = NULL;
e498be7d 4042
9c09a95c 4043 for_each_online_node(node) {
cafeb02e 4044
3395ee05 4045 if (use_alien_caches) {
83b519e8 4046 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
4047 if (!new_alien)
4048 goto fail;
4049 }
cafeb02e 4050
63109846
ED
4051 new_shared = NULL;
4052 if (cachep->shared) {
4053 new_shared = alloc_arraycache(node,
0718dc2a 4054 cachep->shared*cachep->batchcount,
83b519e8 4055 0xbaadf00d, gfp);
63109846
ED
4056 if (!new_shared) {
4057 free_alien_cache(new_alien);
4058 goto fail;
4059 }
0718dc2a 4060 }
cafeb02e 4061
a737b3e2
AM
4062 l3 = cachep->nodelists[node];
4063 if (l3) {
cafeb02e
CL
4064 struct array_cache *shared = l3->shared;
4065
e498be7d
CL
4066 spin_lock_irq(&l3->list_lock);
4067
cafeb02e 4068 if (shared)
0718dc2a
CL
4069 free_block(cachep, shared->entry,
4070 shared->avail, node);
e498be7d 4071
cafeb02e
CL
4072 l3->shared = new_shared;
4073 if (!l3->alien) {
e498be7d
CL
4074 l3->alien = new_alien;
4075 new_alien = NULL;
4076 }
b28a02de 4077 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4078 cachep->batchcount + cachep->num;
e498be7d 4079 spin_unlock_irq(&l3->list_lock);
cafeb02e 4080 kfree(shared);
e498be7d
CL
4081 free_alien_cache(new_alien);
4082 continue;
4083 }
83b519e8 4084 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4085 if (!l3) {
4086 free_alien_cache(new_alien);
4087 kfree(new_shared);
e498be7d 4088 goto fail;
0718dc2a 4089 }
e498be7d
CL
4090
4091 kmem_list3_init(l3);
4092 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4093 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4094 l3->shared = new_shared;
e498be7d 4095 l3->alien = new_alien;
b28a02de 4096 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4097 cachep->batchcount + cachep->num;
e498be7d
CL
4098 cachep->nodelists[node] = l3;
4099 }
cafeb02e 4100 return 0;
0718dc2a 4101
a737b3e2 4102fail:
3b0efdfa 4103 if (!cachep->list.next) {
0718dc2a
CL
4104 /* Cache is not active yet. Roll back what we did */
4105 node--;
4106 while (node >= 0) {
4107 if (cachep->nodelists[node]) {
4108 l3 = cachep->nodelists[node];
4109
4110 kfree(l3->shared);
4111 free_alien_cache(l3->alien);
4112 kfree(l3);
4113 cachep->nodelists[node] = NULL;
4114 }
4115 node--;
4116 }
4117 }
cafeb02e 4118 return -ENOMEM;
e498be7d
CL
4119}
4120
1da177e4 4121struct ccupdate_struct {
343e0d7a 4122 struct kmem_cache *cachep;
acfe7d74 4123 struct array_cache *new[0];
1da177e4
LT
4124};
4125
4126static void do_ccupdate_local(void *info)
4127{
a737b3e2 4128 struct ccupdate_struct *new = info;
1da177e4
LT
4129 struct array_cache *old;
4130
4131 check_irq_off();
9a2dba4b 4132 old = cpu_cache_get(new->cachep);
e498be7d 4133
1da177e4
LT
4134 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4135 new->new[smp_processor_id()] = old;
4136}
4137
18004c5d 4138/* Always called with the slab_mutex held */
a737b3e2 4139static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4140 int batchcount, int shared, gfp_t gfp)
1da177e4 4141{
d2e7b7d0 4142 struct ccupdate_struct *new;
2ed3a4ef 4143 int i;
1da177e4 4144
acfe7d74
ED
4145 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4146 gfp);
d2e7b7d0
SS
4147 if (!new)
4148 return -ENOMEM;
4149
e498be7d 4150 for_each_online_cpu(i) {
7d6e6d09 4151 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4152 batchcount, gfp);
d2e7b7d0 4153 if (!new->new[i]) {
b28a02de 4154 for (i--; i >= 0; i--)
d2e7b7d0
SS
4155 kfree(new->new[i]);
4156 kfree(new);
e498be7d 4157 return -ENOMEM;
1da177e4
LT
4158 }
4159 }
d2e7b7d0 4160 new->cachep = cachep;
1da177e4 4161
15c8b6c1 4162 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4163
1da177e4 4164 check_irq_on();
1da177e4
LT
4165 cachep->batchcount = batchcount;
4166 cachep->limit = limit;
e498be7d 4167 cachep->shared = shared;
1da177e4 4168
e498be7d 4169 for_each_online_cpu(i) {
d2e7b7d0 4170 struct array_cache *ccold = new->new[i];
1da177e4
LT
4171 if (!ccold)
4172 continue;
7d6e6d09
LS
4173 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4174 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4175 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4176 kfree(ccold);
4177 }
d2e7b7d0 4178 kfree(new);
83b519e8 4179 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4180}
4181
18004c5d 4182/* Called with slab_mutex held always */
83b519e8 4183static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4184{
4185 int err;
4186 int limit, shared;
4187
a737b3e2
AM
4188 /*
4189 * The head array serves three purposes:
1da177e4
LT
4190 * - create a LIFO ordering, i.e. return objects that are cache-warm
4191 * - reduce the number of spinlock operations.
a737b3e2 4192 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4193 * bufctl chains: array operations are cheaper.
4194 * The numbers are guessed, we should auto-tune as described by
4195 * Bonwick.
4196 */
3b0efdfa 4197 if (cachep->size > 131072)
1da177e4 4198 limit = 1;
3b0efdfa 4199 else if (cachep->size > PAGE_SIZE)
1da177e4 4200 limit = 8;
3b0efdfa 4201 else if (cachep->size > 1024)
1da177e4 4202 limit = 24;
3b0efdfa 4203 else if (cachep->size > 256)
1da177e4
LT
4204 limit = 54;
4205 else
4206 limit = 120;
4207
a737b3e2
AM
4208 /*
4209 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4210 * allocation behaviour: Most allocs on one cpu, most free operations
4211 * on another cpu. For these cases, an efficient object passing between
4212 * cpus is necessary. This is provided by a shared array. The array
4213 * replaces Bonwick's magazine layer.
4214 * On uniprocessor, it's functionally equivalent (but less efficient)
4215 * to a larger limit. Thus disabled by default.
4216 */
4217 shared = 0;
3b0efdfa 4218 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4219 shared = 8;
1da177e4
LT
4220
4221#if DEBUG
a737b3e2
AM
4222 /*
4223 * With debugging enabled, large batchcount lead to excessively long
4224 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4225 */
4226 if (limit > 32)
4227 limit = 32;
4228#endif
83b519e8 4229 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4230 if (err)
4231 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4232 cachep->name, -err);
2ed3a4ef 4233 return err;
1da177e4
LT
4234}
4235
1b55253a
CL
4236/*
4237 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4238 * necessary. Note that the l3 listlock also protects the array_cache
4239 * if drain_array() is used on the shared array.
1b55253a 4240 */
68a1b195 4241static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4242 struct array_cache *ac, int force, int node)
1da177e4
LT
4243{
4244 int tofree;
4245
1b55253a
CL
4246 if (!ac || !ac->avail)
4247 return;
1da177e4
LT
4248 if (ac->touched && !force) {
4249 ac->touched = 0;
b18e7e65 4250 } else {
1b55253a 4251 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4252 if (ac->avail) {
4253 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4254 if (tofree > ac->avail)
4255 tofree = (ac->avail + 1) / 2;
4256 free_block(cachep, ac->entry, tofree, node);
4257 ac->avail -= tofree;
4258 memmove(ac->entry, &(ac->entry[tofree]),
4259 sizeof(void *) * ac->avail);
4260 }
1b55253a 4261 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4262 }
4263}
4264
4265/**
4266 * cache_reap - Reclaim memory from caches.
05fb6bf0 4267 * @w: work descriptor
1da177e4
LT
4268 *
4269 * Called from workqueue/eventd every few seconds.
4270 * Purpose:
4271 * - clear the per-cpu caches for this CPU.
4272 * - return freeable pages to the main free memory pool.
4273 *
a737b3e2
AM
4274 * If we cannot acquire the cache chain mutex then just give up - we'll try
4275 * again on the next iteration.
1da177e4 4276 */
7c5cae36 4277static void cache_reap(struct work_struct *w)
1da177e4 4278{
7a7c381d 4279 struct kmem_cache *searchp;
e498be7d 4280 struct kmem_list3 *l3;
7d6e6d09 4281 int node = numa_mem_id();
bf6aede7 4282 struct delayed_work *work = to_delayed_work(w);
1da177e4 4283
18004c5d 4284 if (!mutex_trylock(&slab_mutex))
1da177e4 4285 /* Give up. Setup the next iteration. */
7c5cae36 4286 goto out;
1da177e4 4287
18004c5d 4288 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4289 check_irq_on();
4290
35386e3b
CL
4291 /*
4292 * We only take the l3 lock if absolutely necessary and we
4293 * have established with reasonable certainty that
4294 * we can do some work if the lock was obtained.
4295 */
aab2207c 4296 l3 = searchp->nodelists[node];
35386e3b 4297
8fce4d8e 4298 reap_alien(searchp, l3);
1da177e4 4299
aab2207c 4300 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4301
35386e3b
CL
4302 /*
4303 * These are racy checks but it does not matter
4304 * if we skip one check or scan twice.
4305 */
e498be7d 4306 if (time_after(l3->next_reap, jiffies))
35386e3b 4307 goto next;
1da177e4 4308
e498be7d 4309 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4310
aab2207c 4311 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4312
ed11d9eb 4313 if (l3->free_touched)
e498be7d 4314 l3->free_touched = 0;
ed11d9eb
CL
4315 else {
4316 int freed;
1da177e4 4317
ed11d9eb
CL
4318 freed = drain_freelist(searchp, l3, (l3->free_limit +
4319 5 * searchp->num - 1) / (5 * searchp->num));
4320 STATS_ADD_REAPED(searchp, freed);
4321 }
35386e3b 4322next:
1da177e4
LT
4323 cond_resched();
4324 }
4325 check_irq_on();
18004c5d 4326 mutex_unlock(&slab_mutex);
8fce4d8e 4327 next_reap_node();
7c5cae36 4328out:
a737b3e2 4329 /* Set up the next iteration */
7c5cae36 4330 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4331}
4332
158a9624 4333#ifdef CONFIG_SLABINFO
1da177e4 4334
85289f98 4335static void print_slabinfo_header(struct seq_file *m)
1da177e4 4336{
85289f98
PE
4337 /*
4338 * Output format version, so at least we can change it
4339 * without _too_ many complaints.
4340 */
1da177e4 4341#if STATS
85289f98 4342 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4343#else
85289f98 4344 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4345#endif
85289f98
PE
4346 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4347 "<objperslab> <pagesperslab>");
4348 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4349 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4350#if STATS
85289f98 4351 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4352 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4353 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4354#endif
85289f98
PE
4355 seq_putc(m, '\n');
4356}
4357
4358static void *s_start(struct seq_file *m, loff_t *pos)
4359{
4360 loff_t n = *pos;
85289f98 4361
18004c5d 4362 mutex_lock(&slab_mutex);
85289f98
PE
4363 if (!n)
4364 print_slabinfo_header(m);
b92151ba 4365
18004c5d 4366 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4367}
4368
4369static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4370{
18004c5d 4371 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4372}
4373
4374static void s_stop(struct seq_file *m, void *p)
4375{
18004c5d 4376 mutex_unlock(&slab_mutex);
1da177e4
LT
4377}
4378
4379static int s_show(struct seq_file *m, void *p)
4380{
3b0efdfa 4381 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4382 struct slab *slabp;
4383 unsigned long active_objs;
4384 unsigned long num_objs;
4385 unsigned long active_slabs = 0;
4386 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4387 const char *name;
1da177e4 4388 char *error = NULL;
e498be7d
CL
4389 int node;
4390 struct kmem_list3 *l3;
1da177e4 4391
1da177e4
LT
4392 active_objs = 0;
4393 num_slabs = 0;
e498be7d
CL
4394 for_each_online_node(node) {
4395 l3 = cachep->nodelists[node];
4396 if (!l3)
4397 continue;
4398
ca3b9b91
RT
4399 check_irq_on();
4400 spin_lock_irq(&l3->list_lock);
e498be7d 4401
7a7c381d 4402 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4403 if (slabp->inuse != cachep->num && !error)
4404 error = "slabs_full accounting error";
4405 active_objs += cachep->num;
4406 active_slabs++;
4407 }
7a7c381d 4408 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4409 if (slabp->inuse == cachep->num && !error)
4410 error = "slabs_partial inuse accounting error";
4411 if (!slabp->inuse && !error)
4412 error = "slabs_partial/inuse accounting error";
4413 active_objs += slabp->inuse;
4414 active_slabs++;
4415 }
7a7c381d 4416 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4417 if (slabp->inuse && !error)
4418 error = "slabs_free/inuse accounting error";
4419 num_slabs++;
4420 }
4421 free_objects += l3->free_objects;
4484ebf1
RT
4422 if (l3->shared)
4423 shared_avail += l3->shared->avail;
e498be7d 4424
ca3b9b91 4425 spin_unlock_irq(&l3->list_lock);
1da177e4 4426 }
b28a02de
PE
4427 num_slabs += active_slabs;
4428 num_objs = num_slabs * cachep->num;
e498be7d 4429 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4430 error = "free_objects accounting error";
4431
b28a02de 4432 name = cachep->name;
1da177e4
LT
4433 if (error)
4434 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4435
4436 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4437 name, active_objs, num_objs, cachep->size,
b28a02de 4438 cachep->num, (1 << cachep->gfporder));
1da177e4 4439 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4440 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4441 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4442 active_slabs, num_slabs, shared_avail);
1da177e4 4443#if STATS
b28a02de 4444 { /* list3 stats */
1da177e4
LT
4445 unsigned long high = cachep->high_mark;
4446 unsigned long allocs = cachep->num_allocations;
4447 unsigned long grown = cachep->grown;
4448 unsigned long reaped = cachep->reaped;
4449 unsigned long errors = cachep->errors;
4450 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4451 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4452 unsigned long node_frees = cachep->node_frees;
fb7faf33 4453 unsigned long overflows = cachep->node_overflow;
1da177e4 4454
e92dd4fd
JP
4455 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4456 "%4lu %4lu %4lu %4lu %4lu",
4457 allocs, high, grown,
4458 reaped, errors, max_freeable, node_allocs,
4459 node_frees, overflows);
1da177e4
LT
4460 }
4461 /* cpu stats */
4462 {
4463 unsigned long allochit = atomic_read(&cachep->allochit);
4464 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4465 unsigned long freehit = atomic_read(&cachep->freehit);
4466 unsigned long freemiss = atomic_read(&cachep->freemiss);
4467
4468 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4469 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4470 }
4471#endif
4472 seq_putc(m, '\n');
1da177e4
LT
4473 return 0;
4474}
4475
4476/*
4477 * slabinfo_op - iterator that generates /proc/slabinfo
4478 *
4479 * Output layout:
4480 * cache-name
4481 * num-active-objs
4482 * total-objs
4483 * object size
4484 * num-active-slabs
4485 * total-slabs
4486 * num-pages-per-slab
4487 * + further values on SMP and with statistics enabled
4488 */
4489
7b3c3a50 4490static const struct seq_operations slabinfo_op = {
b28a02de
PE
4491 .start = s_start,
4492 .next = s_next,
4493 .stop = s_stop,
4494 .show = s_show,
1da177e4
LT
4495};
4496
4497#define MAX_SLABINFO_WRITE 128
4498/**
4499 * slabinfo_write - Tuning for the slab allocator
4500 * @file: unused
4501 * @buffer: user buffer
4502 * @count: data length
4503 * @ppos: unused
4504 */
68a1b195 4505static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4506 size_t count, loff_t *ppos)
1da177e4 4507{
b28a02de 4508 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4509 int limit, batchcount, shared, res;
7a7c381d 4510 struct kmem_cache *cachep;
b28a02de 4511
1da177e4
LT
4512 if (count > MAX_SLABINFO_WRITE)
4513 return -EINVAL;
4514 if (copy_from_user(&kbuf, buffer, count))
4515 return -EFAULT;
b28a02de 4516 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4517
4518 tmp = strchr(kbuf, ' ');
4519 if (!tmp)
4520 return -EINVAL;
4521 *tmp = '\0';
4522 tmp++;
4523 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4524 return -EINVAL;
4525
4526 /* Find the cache in the chain of caches. */
18004c5d 4527 mutex_lock(&slab_mutex);
1da177e4 4528 res = -EINVAL;
18004c5d 4529 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4530 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4531 if (limit < 1 || batchcount < 1 ||
4532 batchcount > limit || shared < 0) {
e498be7d 4533 res = 0;
1da177e4 4534 } else {
e498be7d 4535 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4536 batchcount, shared,
4537 GFP_KERNEL);
1da177e4
LT
4538 }
4539 break;
4540 }
4541 }
18004c5d 4542 mutex_unlock(&slab_mutex);
1da177e4
LT
4543 if (res >= 0)
4544 res = count;
4545 return res;
4546}
871751e2 4547
7b3c3a50
AD
4548static int slabinfo_open(struct inode *inode, struct file *file)
4549{
4550 return seq_open(file, &slabinfo_op);
4551}
4552
4553static const struct file_operations proc_slabinfo_operations = {
4554 .open = slabinfo_open,
4555 .read = seq_read,
4556 .write = slabinfo_write,
4557 .llseek = seq_lseek,
4558 .release = seq_release,
4559};
4560
871751e2
AV
4561#ifdef CONFIG_DEBUG_SLAB_LEAK
4562
4563static void *leaks_start(struct seq_file *m, loff_t *pos)
4564{
18004c5d
CL
4565 mutex_lock(&slab_mutex);
4566 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4567}
4568
4569static inline int add_caller(unsigned long *n, unsigned long v)
4570{
4571 unsigned long *p;
4572 int l;
4573 if (!v)
4574 return 1;
4575 l = n[1];
4576 p = n + 2;
4577 while (l) {
4578 int i = l/2;
4579 unsigned long *q = p + 2 * i;
4580 if (*q == v) {
4581 q[1]++;
4582 return 1;
4583 }
4584 if (*q > v) {
4585 l = i;
4586 } else {
4587 p = q + 2;
4588 l -= i + 1;
4589 }
4590 }
4591 if (++n[1] == n[0])
4592 return 0;
4593 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4594 p[0] = v;
4595 p[1] = 1;
4596 return 1;
4597}
4598
4599static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4600{
4601 void *p;
4602 int i;
4603 if (n[0] == n[1])
4604 return;
3b0efdfa 4605 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4606 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4607 continue;
4608 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4609 return;
4610 }
4611}
4612
4613static void show_symbol(struct seq_file *m, unsigned long address)
4614{
4615#ifdef CONFIG_KALLSYMS
871751e2 4616 unsigned long offset, size;
9281acea 4617 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4618
a5c43dae 4619 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4620 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4621 if (modname[0])
871751e2
AV
4622 seq_printf(m, " [%s]", modname);
4623 return;
4624 }
4625#endif
4626 seq_printf(m, "%p", (void *)address);
4627}
4628
4629static int leaks_show(struct seq_file *m, void *p)
4630{
0672aa7c 4631 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4632 struct slab *slabp;
4633 struct kmem_list3 *l3;
4634 const char *name;
4635 unsigned long *n = m->private;
4636 int node;
4637 int i;
4638
4639 if (!(cachep->flags & SLAB_STORE_USER))
4640 return 0;
4641 if (!(cachep->flags & SLAB_RED_ZONE))
4642 return 0;
4643
4644 /* OK, we can do it */
4645
4646 n[1] = 0;
4647
4648 for_each_online_node(node) {
4649 l3 = cachep->nodelists[node];
4650 if (!l3)
4651 continue;
4652
4653 check_irq_on();
4654 spin_lock_irq(&l3->list_lock);
4655
7a7c381d 4656 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4657 handle_slab(n, cachep, slabp);
7a7c381d 4658 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4659 handle_slab(n, cachep, slabp);
871751e2
AV
4660 spin_unlock_irq(&l3->list_lock);
4661 }
4662 name = cachep->name;
4663 if (n[0] == n[1]) {
4664 /* Increase the buffer size */
18004c5d 4665 mutex_unlock(&slab_mutex);
871751e2
AV
4666 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4667 if (!m->private) {
4668 /* Too bad, we are really out */
4669 m->private = n;
18004c5d 4670 mutex_lock(&slab_mutex);
871751e2
AV
4671 return -ENOMEM;
4672 }
4673 *(unsigned long *)m->private = n[0] * 2;
4674 kfree(n);
18004c5d 4675 mutex_lock(&slab_mutex);
871751e2
AV
4676 /* Now make sure this entry will be retried */
4677 m->count = m->size;
4678 return 0;
4679 }
4680 for (i = 0; i < n[1]; i++) {
4681 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4682 show_symbol(m, n[2*i+2]);
4683 seq_putc(m, '\n');
4684 }
d2e7b7d0 4685
871751e2
AV
4686 return 0;
4687}
4688
a0ec95a8 4689static const struct seq_operations slabstats_op = {
871751e2
AV
4690 .start = leaks_start,
4691 .next = s_next,
4692 .stop = s_stop,
4693 .show = leaks_show,
4694};
a0ec95a8
AD
4695
4696static int slabstats_open(struct inode *inode, struct file *file)
4697{
4698 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4699 int ret = -ENOMEM;
4700 if (n) {
4701 ret = seq_open(file, &slabstats_op);
4702 if (!ret) {
4703 struct seq_file *m = file->private_data;
4704 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4705 m->private = n;
4706 n = NULL;
4707 }
4708 kfree(n);
4709 }
4710 return ret;
4711}
4712
4713static const struct file_operations proc_slabstats_operations = {
4714 .open = slabstats_open,
4715 .read = seq_read,
4716 .llseek = seq_lseek,
4717 .release = seq_release_private,
4718};
4719#endif
4720
4721static int __init slab_proc_init(void)
4722{
ab067e99 4723 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4724#ifdef CONFIG_DEBUG_SLAB_LEAK
4725 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4726#endif
a0ec95a8
AD
4727 return 0;
4728}
4729module_init(slab_proc_init);
1da177e4
LT
4730#endif
4731
00e145b6
MS
4732/**
4733 * ksize - get the actual amount of memory allocated for a given object
4734 * @objp: Pointer to the object
4735 *
4736 * kmalloc may internally round up allocations and return more memory
4737 * than requested. ksize() can be used to determine the actual amount of
4738 * memory allocated. The caller may use this additional memory, even though
4739 * a smaller amount of memory was initially specified with the kmalloc call.
4740 * The caller must guarantee that objp points to a valid object previously
4741 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4742 * must not be freed during the duration of the call.
4743 */
fd76bab2 4744size_t ksize(const void *objp)
1da177e4 4745{
ef8b4520
CL
4746 BUG_ON(!objp);
4747 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4748 return 0;
1da177e4 4749
8c138bc0 4750 return virt_to_cache(objp)->object_size;
1da177e4 4751}
b1aabecd 4752EXPORT_SYMBOL(ksize);
This page took 1.186378 seconds and 5 git commands to generate.