mem-hotplug: implement get/put_online_mems
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
e498be7d 194 spinlock_t lock;
bda5b655 195 void *entry[]; /*
a737b3e2
AM
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
072bb0aa
MG
199 *
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 203 */
1da177e4
LT
204};
205
072bb0aa
MG
206#define SLAB_OBJ_PFMEMALLOC 1
207static inline bool is_obj_pfmemalloc(void *objp)
208{
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210}
211
212static inline void set_obj_pfmemalloc(void **objp)
213{
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
216}
217
218static inline void clear_obj_pfmemalloc(void **objp)
219{
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221}
222
a737b3e2
AM
223/*
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
1da177e4
LT
226 */
227#define BOOT_CPUCACHE_ENTRIES 1
228struct arraycache_init {
229 struct array_cache cache;
b28a02de 230 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
231};
232
e498be7d
CL
233/*
234 * Need this for bootstrapping a per node allocator.
235 */
556a169d 236#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 237static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 238#define CACHE_CACHE 0
556a169d 239#define SIZE_AC MAX_NUMNODES
ce8eb6c4 240#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 241
ed11d9eb 242static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 243 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
244static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
83b519e8 246static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 247static void cache_reap(struct work_struct *unused);
ed11d9eb 248
e0a42726
IM
249static int slab_early_init = 1;
250
e3366016 251#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 252#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 253
ce8eb6c4 254static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
255{
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
2e1217cf 261 parent->colour_next = 0;
e498be7d
CL
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
265}
266
a737b3e2
AM
267#define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
6a67368c 270 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
271 } while (0)
272
a737b3e2
AM
273#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
e498be7d
CL
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
1da177e4 279
1da177e4
LT
280#define CFLGS_OFF_SLAB (0x80000000UL)
281#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
282
283#define BATCHREFILL_LIMIT 16
a737b3e2
AM
284/*
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
1da177e4 287 *
dc6f3f27 288 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
289 * which could lock up otherwise freeable slabs.
290 */
5f0985bb
JZ
291#define REAPTIMEOUT_AC (2*HZ)
292#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
293
294#if STATS
295#define STATS_INC_ACTIVE(x) ((x)->num_active++)
296#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 299#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
300#define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
1da177e4
LT
305#define STATS_INC_ERR(x) ((x)->errors++)
306#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 307#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 308#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
309#define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
1da177e4
LT
314#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318#else
319#define STATS_INC_ACTIVE(x) do { } while (0)
320#define STATS_DEC_ACTIVE(x) do { } while (0)
321#define STATS_INC_ALLOCED(x) do { } while (0)
322#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 323#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
324#define STATS_SET_HIGH(x) do { } while (0)
325#define STATS_INC_ERR(x) do { } while (0)
326#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 327#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 328#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 329#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
330#define STATS_INC_ALLOCHIT(x) do { } while (0)
331#define STATS_INC_ALLOCMISS(x) do { } while (0)
332#define STATS_INC_FREEHIT(x) do { } while (0)
333#define STATS_INC_FREEMISS(x) do { } while (0)
334#endif
335
336#if DEBUG
1da177e4 337
a737b3e2
AM
338/*
339 * memory layout of objects:
1da177e4 340 * 0 : objp
3dafccf2 341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
3dafccf2 344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 345 * redzone word.
3dafccf2 346 * cachep->obj_offset: The real object.
3b0efdfa
CL
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 349 * [BYTES_PER_WORD long]
1da177e4 350 */
343e0d7a 351static int obj_offset(struct kmem_cache *cachep)
1da177e4 352{
3dafccf2 353 return cachep->obj_offset;
1da177e4
LT
354}
355
b46b8f19 356static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
357{
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
1da177e4
LT
361}
362
b46b8f19 363static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
364{
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 367 return (unsigned long long *)(objp + cachep->size -
b46b8f19 368 sizeof(unsigned long long) -
87a927c7 369 REDZONE_ALIGN);
3b0efdfa 370 return (unsigned long long *) (objp + cachep->size -
b46b8f19 371 sizeof(unsigned long long));
1da177e4
LT
372}
373
343e0d7a 374static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
375{
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
378}
379
380#else
381
3dafccf2 382#define obj_offset(x) 0
b46b8f19
DW
383#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
385#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
386
387#endif
388
1da177e4 389/*
3df1cccd
DR
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
1da177e4 392 */
543585cc
DR
393#define SLAB_MAX_ORDER_HI 1
394#define SLAB_MAX_ORDER_LO 0
395static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 396static bool slab_max_order_set __initdata;
1da177e4 397
6ed5eb22
PE
398static inline struct kmem_cache *virt_to_cache(const void *obj)
399{
b49af68f 400 struct page *page = virt_to_head_page(obj);
35026088 401 return page->slab_cache;
6ed5eb22
PE
402}
403
8456a648 404static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
405 unsigned int idx)
406{
8456a648 407 return page->s_mem + cache->size * idx;
8fea4e96
PE
408}
409
6a2d7a95 410/*
3b0efdfa
CL
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
6a2d7a95
ED
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
415 */
416static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 417 const struct page *page, void *obj)
8fea4e96 418{
8456a648 419 u32 offset = (obj - page->s_mem);
6a2d7a95 420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
421}
422
1da177e4 423static struct arraycache_init initarray_generic =
b28a02de 424 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
425
426/* internal cache of cache description objs */
9b030cb8 427static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
428 .batchcount = 1,
429 .limit = BOOT_CPUCACHE_ENTRIES,
430 .shared = 1,
3b0efdfa 431 .size = sizeof(struct kmem_cache),
b28a02de 432 .name = "kmem_cache",
1da177e4
LT
433};
434
056c6241
RT
435#define BAD_ALIEN_MAGIC 0x01020304ul
436
f1aaee53
AV
437#ifdef CONFIG_LOCKDEP
438
439/*
440 * Slab sometimes uses the kmalloc slabs to store the slab headers
441 * for other slabs "off slab".
442 * The locking for this is tricky in that it nests within the locks
443 * of all other slabs in a few places; to deal with this special
444 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
445 *
446 * We set lock class for alien array caches which are up during init.
447 * The lock annotation will be lost if all cpus of a node goes down and
448 * then comes back up during hotplug
f1aaee53 449 */
056c6241
RT
450static struct lock_class_key on_slab_l3_key;
451static struct lock_class_key on_slab_alc_key;
452
83835b3d
PZ
453static struct lock_class_key debugobj_l3_key;
454static struct lock_class_key debugobj_alc_key;
455
456static void slab_set_lock_classes(struct kmem_cache *cachep,
457 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
458 int q)
459{
460 struct array_cache **alc;
ce8eb6c4 461 struct kmem_cache_node *n;
83835b3d
PZ
462 int r;
463
ce8eb6c4
CL
464 n = cachep->node[q];
465 if (!n)
83835b3d
PZ
466 return;
467
ce8eb6c4
CL
468 lockdep_set_class(&n->list_lock, l3_key);
469 alc = n->alien;
83835b3d
PZ
470 /*
471 * FIXME: This check for BAD_ALIEN_MAGIC
472 * should go away when common slab code is taught to
473 * work even without alien caches.
474 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 * for alloc_alien_cache,
476 */
477 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
478 return;
479 for_each_node(r) {
480 if (alc[r])
481 lockdep_set_class(&alc[r]->lock, alc_key);
482 }
483}
484
485static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
486{
487 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
488}
489
490static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
491{
492 int node;
493
494 for_each_online_node(node)
495 slab_set_debugobj_lock_classes_node(cachep, node);
496}
497
ce79ddc8 498static void init_node_lock_keys(int q)
f1aaee53 499{
e3366016 500 int i;
056c6241 501
97d06609 502 if (slab_state < UP)
ce79ddc8
PE
503 return;
504
0f8f8094 505 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 506 struct kmem_cache_node *n;
e3366016
CL
507 struct kmem_cache *cache = kmalloc_caches[i];
508
509 if (!cache)
510 continue;
ce79ddc8 511
ce8eb6c4
CL
512 n = cache->node[q];
513 if (!n || OFF_SLAB(cache))
00afa758 514 continue;
83835b3d 515
e3366016 516 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 517 &on_slab_alc_key, q);
f1aaee53
AV
518 }
519}
ce79ddc8 520
6ccfb5bc
GC
521static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
522{
6a67368c 523 if (!cachep->node[q])
6ccfb5bc
GC
524 return;
525
526 slab_set_lock_classes(cachep, &on_slab_l3_key,
527 &on_slab_alc_key, q);
528}
529
530static inline void on_slab_lock_classes(struct kmem_cache *cachep)
531{
532 int node;
533
534 VM_BUG_ON(OFF_SLAB(cachep));
535 for_each_node(node)
536 on_slab_lock_classes_node(cachep, node);
537}
538
ce79ddc8
PE
539static inline void init_lock_keys(void)
540{
541 int node;
542
543 for_each_node(node)
544 init_node_lock_keys(node);
545}
f1aaee53 546#else
ce79ddc8
PE
547static void init_node_lock_keys(int q)
548{
549}
550
056c6241 551static inline void init_lock_keys(void)
f1aaee53
AV
552{
553}
83835b3d 554
6ccfb5bc
GC
555static inline void on_slab_lock_classes(struct kmem_cache *cachep)
556{
557}
558
559static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
560{
561}
562
83835b3d
PZ
563static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
564{
565}
566
567static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
568{
569}
f1aaee53
AV
570#endif
571
1871e52c 572static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 573
343e0d7a 574static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
575{
576 return cachep->array[smp_processor_id()];
577}
578
9cef2e2b
JK
579static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
580 size_t idx_size, size_t align)
1da177e4 581{
9cef2e2b
JK
582 int nr_objs;
583 size_t freelist_size;
584
585 /*
586 * Ignore padding for the initial guess. The padding
587 * is at most @align-1 bytes, and @buffer_size is at
588 * least @align. In the worst case, this result will
589 * be one greater than the number of objects that fit
590 * into the memory allocation when taking the padding
591 * into account.
592 */
593 nr_objs = slab_size / (buffer_size + idx_size);
594
595 /*
596 * This calculated number will be either the right
597 * amount, or one greater than what we want.
598 */
599 freelist_size = slab_size - nr_objs * buffer_size;
600 if (freelist_size < ALIGN(nr_objs * idx_size, align))
601 nr_objs--;
602
603 return nr_objs;
fbaccacf 604}
1da177e4 605
a737b3e2
AM
606/*
607 * Calculate the number of objects and left-over bytes for a given buffer size.
608 */
fbaccacf
SR
609static void cache_estimate(unsigned long gfporder, size_t buffer_size,
610 size_t align, int flags, size_t *left_over,
611 unsigned int *num)
612{
613 int nr_objs;
614 size_t mgmt_size;
615 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 616
fbaccacf
SR
617 /*
618 * The slab management structure can be either off the slab or
619 * on it. For the latter case, the memory allocated for a
620 * slab is used for:
621 *
16025177 622 * - One unsigned int for each object
fbaccacf
SR
623 * - Padding to respect alignment of @align
624 * - @buffer_size bytes for each object
625 *
626 * If the slab management structure is off the slab, then the
627 * alignment will already be calculated into the size. Because
628 * the slabs are all pages aligned, the objects will be at the
629 * correct alignment when allocated.
630 */
631 if (flags & CFLGS_OFF_SLAB) {
632 mgmt_size = 0;
633 nr_objs = slab_size / buffer_size;
634
fbaccacf 635 } else {
9cef2e2b 636 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa
JK
637 sizeof(freelist_idx_t), align);
638 mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
fbaccacf
SR
639 }
640 *num = nr_objs;
641 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
642}
643
f28510d3 644#if DEBUG
d40cee24 645#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 646
a737b3e2
AM
647static void __slab_error(const char *function, struct kmem_cache *cachep,
648 char *msg)
1da177e4
LT
649{
650 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 651 function, cachep->name, msg);
1da177e4 652 dump_stack();
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 654}
f28510d3 655#endif
1da177e4 656
3395ee05
PM
657/*
658 * By default on NUMA we use alien caches to stage the freeing of
659 * objects allocated from other nodes. This causes massive memory
660 * inefficiencies when using fake NUMA setup to split memory into a
661 * large number of small nodes, so it can be disabled on the command
662 * line
663 */
664
665static int use_alien_caches __read_mostly = 1;
666static int __init noaliencache_setup(char *s)
667{
668 use_alien_caches = 0;
669 return 1;
670}
671__setup("noaliencache", noaliencache_setup);
672
3df1cccd
DR
673static int __init slab_max_order_setup(char *str)
674{
675 get_option(&str, &slab_max_order);
676 slab_max_order = slab_max_order < 0 ? 0 :
677 min(slab_max_order, MAX_ORDER - 1);
678 slab_max_order_set = true;
679
680 return 1;
681}
682__setup("slab_max_order=", slab_max_order_setup);
683
8fce4d8e
CL
684#ifdef CONFIG_NUMA
685/*
686 * Special reaping functions for NUMA systems called from cache_reap().
687 * These take care of doing round robin flushing of alien caches (containing
688 * objects freed on different nodes from which they were allocated) and the
689 * flushing of remote pcps by calling drain_node_pages.
690 */
1871e52c 691static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
692
693static void init_reap_node(int cpu)
694{
695 int node;
696
7d6e6d09 697 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 698 if (node == MAX_NUMNODES)
442295c9 699 node = first_node(node_online_map);
8fce4d8e 700
1871e52c 701 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
702}
703
704static void next_reap_node(void)
705{
909ea964 706 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 707
8fce4d8e
CL
708 node = next_node(node, node_online_map);
709 if (unlikely(node >= MAX_NUMNODES))
710 node = first_node(node_online_map);
909ea964 711 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
712}
713
714#else
715#define init_reap_node(cpu) do { } while (0)
716#define next_reap_node(void) do { } while (0)
717#endif
718
1da177e4
LT
719/*
720 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
721 * via the workqueue/eventd.
722 * Add the CPU number into the expiration time to minimize the possibility of
723 * the CPUs getting into lockstep and contending for the global cache chain
724 * lock.
725 */
0db0628d 726static void start_cpu_timer(int cpu)
1da177e4 727{
1871e52c 728 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
729
730 /*
731 * When this gets called from do_initcalls via cpucache_init(),
732 * init_workqueues() has already run, so keventd will be setup
733 * at that time.
734 */
52bad64d 735 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 736 init_reap_node(cpu);
203b42f7 737 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
738 schedule_delayed_work_on(cpu, reap_work,
739 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
740 }
741}
742
e498be7d 743static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 744 int batchcount, gfp_t gfp)
1da177e4 745{
b28a02de 746 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
747 struct array_cache *nc = NULL;
748
83b519e8 749 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
750 /*
751 * The array_cache structures contain pointers to free object.
25985edc 752 * However, when such objects are allocated or transferred to another
d5cff635
CM
753 * cache the pointers are not cleared and they could be counted as
754 * valid references during a kmemleak scan. Therefore, kmemleak must
755 * not scan such objects.
756 */
757 kmemleak_no_scan(nc);
1da177e4
LT
758 if (nc) {
759 nc->avail = 0;
760 nc->limit = entries;
761 nc->batchcount = batchcount;
762 nc->touched = 0;
e498be7d 763 spin_lock_init(&nc->lock);
1da177e4
LT
764 }
765 return nc;
766}
767
8456a648 768static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 769{
072bb0aa
MG
770 return PageSlabPfmemalloc(page);
771}
772
773/* Clears pfmemalloc_active if no slabs have pfmalloc set */
774static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
775 struct array_cache *ac)
776{
ce8eb6c4 777 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
8456a648 778 struct page *page;
072bb0aa
MG
779 unsigned long flags;
780
781 if (!pfmemalloc_active)
782 return;
783
ce8eb6c4 784 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
785 list_for_each_entry(page, &n->slabs_full, lru)
786 if (is_slab_pfmemalloc(page))
072bb0aa
MG
787 goto out;
788
8456a648
JK
789 list_for_each_entry(page, &n->slabs_partial, lru)
790 if (is_slab_pfmemalloc(page))
072bb0aa
MG
791 goto out;
792
8456a648
JK
793 list_for_each_entry(page, &n->slabs_free, lru)
794 if (is_slab_pfmemalloc(page))
072bb0aa
MG
795 goto out;
796
797 pfmemalloc_active = false;
798out:
ce8eb6c4 799 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
800}
801
381760ea 802static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
803 gfp_t flags, bool force_refill)
804{
805 int i;
806 void *objp = ac->entry[--ac->avail];
807
808 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 810 struct kmem_cache_node *n;
072bb0aa
MG
811
812 if (gfp_pfmemalloc_allowed(flags)) {
813 clear_obj_pfmemalloc(&objp);
814 return objp;
815 }
816
817 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 818 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
819 /* If a !PFMEMALLOC object is found, swap them */
820 if (!is_obj_pfmemalloc(ac->entry[i])) {
821 objp = ac->entry[i];
822 ac->entry[i] = ac->entry[ac->avail];
823 ac->entry[ac->avail] = objp;
824 return objp;
825 }
826 }
827
828 /*
829 * If there are empty slabs on the slabs_free list and we are
830 * being forced to refill the cache, mark this one !pfmemalloc.
831 */
ce8eb6c4
CL
832 n = cachep->node[numa_mem_id()];
833 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 834 struct page *page = virt_to_head_page(objp);
7ecccf9d 835 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
836 clear_obj_pfmemalloc(&objp);
837 recheck_pfmemalloc_active(cachep, ac);
838 return objp;
839 }
840
841 /* No !PFMEMALLOC objects available */
842 ac->avail++;
843 objp = NULL;
844 }
845
846 return objp;
847}
848
381760ea
MG
849static inline void *ac_get_obj(struct kmem_cache *cachep,
850 struct array_cache *ac, gfp_t flags, bool force_refill)
851{
852 void *objp;
853
854 if (unlikely(sk_memalloc_socks()))
855 objp = __ac_get_obj(cachep, ac, flags, force_refill);
856 else
857 objp = ac->entry[--ac->avail];
858
859 return objp;
860}
861
862static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
863 void *objp)
864{
865 if (unlikely(pfmemalloc_active)) {
866 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 867 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
868 if (PageSlabPfmemalloc(page))
869 set_obj_pfmemalloc(&objp);
870 }
871
381760ea
MG
872 return objp;
873}
874
875static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
876 void *objp)
877{
878 if (unlikely(sk_memalloc_socks()))
879 objp = __ac_put_obj(cachep, ac, objp);
880
072bb0aa
MG
881 ac->entry[ac->avail++] = objp;
882}
883
3ded175a
CL
884/*
885 * Transfer objects in one arraycache to another.
886 * Locking must be handled by the caller.
887 *
888 * Return the number of entries transferred.
889 */
890static int transfer_objects(struct array_cache *to,
891 struct array_cache *from, unsigned int max)
892{
893 /* Figure out how many entries to transfer */
732eacc0 894 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
895
896 if (!nr)
897 return 0;
898
899 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
900 sizeof(void *) *nr);
901
902 from->avail -= nr;
903 to->avail += nr;
3ded175a
CL
904 return nr;
905}
906
765c4507
CL
907#ifndef CONFIG_NUMA
908
909#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 910#define reap_alien(cachep, n) do { } while (0)
765c4507 911
83b519e8 912static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
913{
914 return (struct array_cache **)BAD_ALIEN_MAGIC;
915}
916
917static inline void free_alien_cache(struct array_cache **ac_ptr)
918{
919}
920
921static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
922{
923 return 0;
924}
925
926static inline void *alternate_node_alloc(struct kmem_cache *cachep,
927 gfp_t flags)
928{
929 return NULL;
930}
931
8b98c169 932static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
933 gfp_t flags, int nodeid)
934{
935 return NULL;
936}
937
938#else /* CONFIG_NUMA */
939
8b98c169 940static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 941static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 942
83b519e8 943static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
944{
945 struct array_cache **ac_ptr;
8ef82866 946 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
947 int i;
948
949 if (limit > 1)
950 limit = 12;
f3186a9c 951 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
952 if (ac_ptr) {
953 for_each_node(i) {
f3186a9c 954 if (i == node || !node_online(i))
e498be7d 955 continue;
83b519e8 956 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 957 if (!ac_ptr[i]) {
cc550def 958 for (i--; i >= 0; i--)
e498be7d
CL
959 kfree(ac_ptr[i]);
960 kfree(ac_ptr);
961 return NULL;
962 }
963 }
964 }
965 return ac_ptr;
966}
967
5295a74c 968static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
969{
970 int i;
971
972 if (!ac_ptr)
973 return;
e498be7d 974 for_each_node(i)
b28a02de 975 kfree(ac_ptr[i]);
e498be7d
CL
976 kfree(ac_ptr);
977}
978
343e0d7a 979static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 980 struct array_cache *ac, int node)
e498be7d 981{
ce8eb6c4 982 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
983
984 if (ac->avail) {
ce8eb6c4 985 spin_lock(&n->list_lock);
e00946fe
CL
986 /*
987 * Stuff objects into the remote nodes shared array first.
988 * That way we could avoid the overhead of putting the objects
989 * into the free lists and getting them back later.
990 */
ce8eb6c4
CL
991 if (n->shared)
992 transfer_objects(n->shared, ac, ac->limit);
e00946fe 993
ff69416e 994 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 995 ac->avail = 0;
ce8eb6c4 996 spin_unlock(&n->list_lock);
e498be7d
CL
997 }
998}
999
8fce4d8e
CL
1000/*
1001 * Called from cache_reap() to regularly drain alien caches round robin.
1002 */
ce8eb6c4 1003static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1004{
909ea964 1005 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1006
ce8eb6c4
CL
1007 if (n->alien) {
1008 struct array_cache *ac = n->alien[node];
e00946fe
CL
1009
1010 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1011 __drain_alien_cache(cachep, ac, node);
1012 spin_unlock_irq(&ac->lock);
1013 }
1014 }
1015}
1016
a737b3e2
AM
1017static void drain_alien_cache(struct kmem_cache *cachep,
1018 struct array_cache **alien)
e498be7d 1019{
b28a02de 1020 int i = 0;
e498be7d
CL
1021 struct array_cache *ac;
1022 unsigned long flags;
1023
1024 for_each_online_node(i) {
4484ebf1 1025 ac = alien[i];
e498be7d
CL
1026 if (ac) {
1027 spin_lock_irqsave(&ac->lock, flags);
1028 __drain_alien_cache(cachep, ac, i);
1029 spin_unlock_irqrestore(&ac->lock, flags);
1030 }
1031 }
1032}
729bd0b7 1033
873623df 1034static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1035{
1ea991b0 1036 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1037 struct kmem_cache_node *n;
729bd0b7 1038 struct array_cache *alien = NULL;
1ca4cb24
PE
1039 int node;
1040
7d6e6d09 1041 node = numa_mem_id();
729bd0b7
PE
1042
1043 /*
1044 * Make sure we are not freeing a object from another node to the array
1045 * cache on this cpu.
1046 */
1ea991b0 1047 if (likely(nodeid == node))
729bd0b7
PE
1048 return 0;
1049
ce8eb6c4 1050 n = cachep->node[node];
729bd0b7 1051 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1052 if (n->alien && n->alien[nodeid]) {
1053 alien = n->alien[nodeid];
873623df 1054 spin_lock(&alien->lock);
729bd0b7
PE
1055 if (unlikely(alien->avail == alien->limit)) {
1056 STATS_INC_ACOVERFLOW(cachep);
1057 __drain_alien_cache(cachep, alien, nodeid);
1058 }
072bb0aa 1059 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1060 spin_unlock(&alien->lock);
1061 } else {
6a67368c 1062 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1063 free_block(cachep, &objp, 1, nodeid);
6a67368c 1064 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1065 }
1066 return 1;
1067}
e498be7d
CL
1068#endif
1069
8f9f8d9e 1070/*
6a67368c 1071 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1072 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1073 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1074 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1075 * already in use.
1076 *
18004c5d 1077 * Must hold slab_mutex.
8f9f8d9e 1078 */
6a67368c 1079static int init_cache_node_node(int node)
8f9f8d9e
DR
1080{
1081 struct kmem_cache *cachep;
ce8eb6c4 1082 struct kmem_cache_node *n;
6744f087 1083 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1084
18004c5d 1085 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1086 /*
5f0985bb 1087 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1088 * begin anything. Make sure some other cpu on this
1089 * node has not already allocated this
1090 */
6a67368c 1091 if (!cachep->node[node]) {
ce8eb6c4
CL
1092 n = kmalloc_node(memsize, GFP_KERNEL, node);
1093 if (!n)
8f9f8d9e 1094 return -ENOMEM;
ce8eb6c4 1095 kmem_cache_node_init(n);
5f0985bb
JZ
1096 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1097 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1098
1099 /*
5f0985bb
JZ
1100 * The kmem_cache_nodes don't come and go as CPUs
1101 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1102 * protection here.
1103 */
ce8eb6c4 1104 cachep->node[node] = n;
8f9f8d9e
DR
1105 }
1106
6a67368c
CL
1107 spin_lock_irq(&cachep->node[node]->list_lock);
1108 cachep->node[node]->free_limit =
8f9f8d9e
DR
1109 (1 + nr_cpus_node(node)) *
1110 cachep->batchcount + cachep->num;
6a67368c 1111 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1112 }
1113 return 0;
1114}
1115
0fa8103b
WL
1116static inline int slabs_tofree(struct kmem_cache *cachep,
1117 struct kmem_cache_node *n)
1118{
1119 return (n->free_objects + cachep->num - 1) / cachep->num;
1120}
1121
0db0628d 1122static void cpuup_canceled(long cpu)
fbf1e473
AM
1123{
1124 struct kmem_cache *cachep;
ce8eb6c4 1125 struct kmem_cache_node *n = NULL;
7d6e6d09 1126 int node = cpu_to_mem(cpu);
a70f7302 1127 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1128
18004c5d 1129 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1130 struct array_cache *nc;
1131 struct array_cache *shared;
1132 struct array_cache **alien;
fbf1e473 1133
fbf1e473
AM
1134 /* cpu is dead; no one can alloc from it. */
1135 nc = cachep->array[cpu];
1136 cachep->array[cpu] = NULL;
ce8eb6c4 1137 n = cachep->node[node];
fbf1e473 1138
ce8eb6c4 1139 if (!n)
fbf1e473
AM
1140 goto free_array_cache;
1141
ce8eb6c4 1142 spin_lock_irq(&n->list_lock);
fbf1e473 1143
ce8eb6c4
CL
1144 /* Free limit for this kmem_cache_node */
1145 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1146 if (nc)
1147 free_block(cachep, nc->entry, nc->avail, node);
1148
58463c1f 1149 if (!cpumask_empty(mask)) {
ce8eb6c4 1150 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1151 goto free_array_cache;
1152 }
1153
ce8eb6c4 1154 shared = n->shared;
fbf1e473
AM
1155 if (shared) {
1156 free_block(cachep, shared->entry,
1157 shared->avail, node);
ce8eb6c4 1158 n->shared = NULL;
fbf1e473
AM
1159 }
1160
ce8eb6c4
CL
1161 alien = n->alien;
1162 n->alien = NULL;
fbf1e473 1163
ce8eb6c4 1164 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1165
1166 kfree(shared);
1167 if (alien) {
1168 drain_alien_cache(cachep, alien);
1169 free_alien_cache(alien);
1170 }
1171free_array_cache:
1172 kfree(nc);
1173 }
1174 /*
1175 * In the previous loop, all the objects were freed to
1176 * the respective cache's slabs, now we can go ahead and
1177 * shrink each nodelist to its limit.
1178 */
18004c5d 1179 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1180 n = cachep->node[node];
1181 if (!n)
fbf1e473 1182 continue;
0fa8103b 1183 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1184 }
1185}
1186
0db0628d 1187static int cpuup_prepare(long cpu)
1da177e4 1188{
343e0d7a 1189 struct kmem_cache *cachep;
ce8eb6c4 1190 struct kmem_cache_node *n = NULL;
7d6e6d09 1191 int node = cpu_to_mem(cpu);
8f9f8d9e 1192 int err;
1da177e4 1193
fbf1e473
AM
1194 /*
1195 * We need to do this right in the beginning since
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1198 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1199 */
6a67368c 1200 err = init_cache_node_node(node);
8f9f8d9e
DR
1201 if (err < 0)
1202 goto bad;
fbf1e473
AM
1203
1204 /*
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1207 */
18004c5d 1208 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1212
1213 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1214 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
83b519e8 1220 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1221 if (!shared) {
1222 kfree(nc);
1da177e4 1223 goto bad;
12d00f6a 1224 }
fbf1e473
AM
1225 }
1226 if (use_alien_caches) {
83b519e8 1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
fbf1e473 1231 goto bad;
12d00f6a 1232 }
fbf1e473
AM
1233 }
1234 cachep->array[cpu] = nc;
ce8eb6c4
CL
1235 n = cachep->node[node];
1236 BUG_ON(!n);
fbf1e473 1237
ce8eb6c4
CL
1238 spin_lock_irq(&n->list_lock);
1239 if (!n->shared) {
fbf1e473
AM
1240 /*
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1243 */
ce8eb6c4 1244 n->shared = shared;
fbf1e473
AM
1245 shared = NULL;
1246 }
4484ebf1 1247#ifdef CONFIG_NUMA
ce8eb6c4
CL
1248 if (!n->alien) {
1249 n->alien = alien;
fbf1e473 1250 alien = NULL;
1da177e4 1251 }
fbf1e473 1252#endif
ce8eb6c4 1253 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1254 kfree(shared);
1255 free_alien_cache(alien);
83835b3d
PZ
1256 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1257 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1258 else if (!OFF_SLAB(cachep) &&
1259 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1260 on_slab_lock_classes_node(cachep, node);
fbf1e473 1261 }
ce79ddc8
PE
1262 init_node_lock_keys(node);
1263
fbf1e473
AM
1264 return 0;
1265bad:
12d00f6a 1266 cpuup_canceled(cpu);
fbf1e473
AM
1267 return -ENOMEM;
1268}
1269
0db0628d 1270static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1271 unsigned long action, void *hcpu)
1272{
1273 long cpu = (long)hcpu;
1274 int err = 0;
1275
1276 switch (action) {
fbf1e473
AM
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
18004c5d 1279 mutex_lock(&slab_mutex);
fbf1e473 1280 err = cpuup_prepare(cpu);
18004c5d 1281 mutex_unlock(&slab_mutex);
1da177e4
LT
1282 break;
1283 case CPU_ONLINE:
8bb78442 1284 case CPU_ONLINE_FROZEN:
1da177e4
LT
1285 start_cpu_timer(cpu);
1286 break;
1287#ifdef CONFIG_HOTPLUG_CPU
5830c590 1288 case CPU_DOWN_PREPARE:
8bb78442 1289 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1290 /*
18004c5d 1291 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1295 */
afe2c511 1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1297 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1298 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1299 break;
1300 case CPU_DOWN_FAILED:
8bb78442 1301 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1302 start_cpu_timer(cpu);
1303 break;
1da177e4 1304 case CPU_DEAD:
8bb78442 1305 case CPU_DEAD_FROZEN:
4484ebf1
RT
1306 /*
1307 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1308 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1309 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1310 * memory from the node of the cpu going down. The node
4484ebf1
RT
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1313 */
183ff22b 1314 /* fall through */
8f5be20b 1315#endif
1da177e4 1316 case CPU_UP_CANCELED:
8bb78442 1317 case CPU_UP_CANCELED_FROZEN:
18004c5d 1318 mutex_lock(&slab_mutex);
fbf1e473 1319 cpuup_canceled(cpu);
18004c5d 1320 mutex_unlock(&slab_mutex);
1da177e4 1321 break;
1da177e4 1322 }
eac40680 1323 return notifier_from_errno(err);
1da177e4
LT
1324}
1325
0db0628d 1326static struct notifier_block cpucache_notifier = {
74b85f37
CS
1327 &cpuup_callback, NULL, 0
1328};
1da177e4 1329
8f9f8d9e
DR
1330#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331/*
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1334 * removed.
1335 *
18004c5d 1336 * Must hold slab_mutex.
8f9f8d9e 1337 */
6a67368c 1338static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1339{
1340 struct kmem_cache *cachep;
1341 int ret = 0;
1342
18004c5d 1343 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1344 struct kmem_cache_node *n;
8f9f8d9e 1345
ce8eb6c4
CL
1346 n = cachep->node[node];
1347 if (!n)
8f9f8d9e
DR
1348 continue;
1349
0fa8103b 1350 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1351
ce8eb6c4
CL
1352 if (!list_empty(&n->slabs_full) ||
1353 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1354 ret = -EBUSY;
1355 break;
1356 }
1357 }
1358 return ret;
1359}
1360
1361static int __meminit slab_memory_callback(struct notifier_block *self,
1362 unsigned long action, void *arg)
1363{
1364 struct memory_notify *mnb = arg;
1365 int ret = 0;
1366 int nid;
1367
1368 nid = mnb->status_change_nid;
1369 if (nid < 0)
1370 goto out;
1371
1372 switch (action) {
1373 case MEM_GOING_ONLINE:
18004c5d 1374 mutex_lock(&slab_mutex);
6a67368c 1375 ret = init_cache_node_node(nid);
18004c5d 1376 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1377 break;
1378 case MEM_GOING_OFFLINE:
18004c5d 1379 mutex_lock(&slab_mutex);
6a67368c 1380 ret = drain_cache_node_node(nid);
18004c5d 1381 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1382 break;
1383 case MEM_ONLINE:
1384 case MEM_OFFLINE:
1385 case MEM_CANCEL_ONLINE:
1386 case MEM_CANCEL_OFFLINE:
1387 break;
1388 }
1389out:
5fda1bd5 1390 return notifier_from_errno(ret);
8f9f8d9e
DR
1391}
1392#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393
e498be7d 1394/*
ce8eb6c4 1395 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1396 */
6744f087 1397static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1398 int nodeid)
e498be7d 1399{
6744f087 1400 struct kmem_cache_node *ptr;
e498be7d 1401
6744f087 1402 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1403 BUG_ON(!ptr);
1404
6744f087 1405 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1406 /*
1407 * Do not assume that spinlocks can be initialized via memcpy:
1408 */
1409 spin_lock_init(&ptr->list_lock);
1410
e498be7d 1411 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1412 cachep->node[nodeid] = ptr;
e498be7d
CL
1413}
1414
556a169d 1415/*
ce8eb6c4
CL
1416 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417 * size of kmem_cache_node.
556a169d 1418 */
ce8eb6c4 1419static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1420{
1421 int node;
1422
1423 for_each_online_node(node) {
ce8eb6c4 1424 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1425 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1426 REAPTIMEOUT_NODE +
1427 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1428 }
1429}
1430
3c583465
CL
1431/*
1432 * The memory after the last cpu cache pointer is used for the
6a67368c 1433 * the node pointer.
3c583465 1434 */
6a67368c 1435static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1436{
6a67368c 1437 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1438}
1439
a737b3e2
AM
1440/*
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1da177e4
LT
1443 */
1444void __init kmem_cache_init(void)
1445{
e498be7d
CL
1446 int i;
1447
68126702
JK
1448 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1449 sizeof(struct rcu_head));
9b030cb8 1450 kmem_cache = &kmem_cache_boot;
6a67368c 1451 setup_node_pointer(kmem_cache);
9b030cb8 1452
b6e68bc1 1453 if (num_possible_nodes() == 1)
62918a03
SS
1454 use_alien_caches = 0;
1455
3c583465 1456 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1457 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1458
ce8eb6c4 1459 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1460
1461 /*
1462 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1463 * page orders on machines with more than 32MB of memory if
1464 * not overridden on the command line.
1da177e4 1465 */
3df1cccd 1466 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1467 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1468
1da177e4
LT
1469 /* Bootstrap is tricky, because several objects are allocated
1470 * from caches that do not exist yet:
9b030cb8
CL
1471 * 1) initialize the kmem_cache cache: it contains the struct
1472 * kmem_cache structures of all caches, except kmem_cache itself:
1473 * kmem_cache is statically allocated.
e498be7d 1474 * Initially an __init data area is used for the head array and the
ce8eb6c4 1475 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1476 * array at the end of the bootstrap.
1da177e4 1477 * 2) Create the first kmalloc cache.
343e0d7a 1478 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1479 * An __init data area is used for the head array.
1480 * 3) Create the remaining kmalloc caches, with minimally sized
1481 * head arrays.
9b030cb8 1482 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1483 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1484 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1485 * the other cache's with kmalloc allocated memory.
1486 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1487 */
1488
9b030cb8 1489 /* 1) create the kmem_cache */
1da177e4 1490
8da3430d 1491 /*
b56efcf0 1492 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1493 */
2f9baa9f
CL
1494 create_boot_cache(kmem_cache, "kmem_cache",
1495 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1496 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1497 SLAB_HWCACHE_ALIGN);
1498 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1499
1500 /* 2+3) create the kmalloc caches */
1da177e4 1501
a737b3e2
AM
1502 /*
1503 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1504 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1505 * bug.
e498be7d
CL
1506 */
1507
e3366016
CL
1508 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1509 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1510
ce8eb6c4
CL
1511 if (INDEX_AC != INDEX_NODE)
1512 kmalloc_caches[INDEX_NODE] =
1513 create_kmalloc_cache("kmalloc-node",
1514 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1515
e0a42726
IM
1516 slab_early_init = 0;
1517
1da177e4
LT
1518 /* 4) Replace the bootstrap head arrays */
1519 {
2b2d5493 1520 struct array_cache *ptr;
e498be7d 1521
83b519e8 1522 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1523
9b030cb8 1524 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1525 sizeof(struct arraycache_init));
2b2d5493
IM
1526 /*
1527 * Do not assume that spinlocks can be initialized via memcpy:
1528 */
1529 spin_lock_init(&ptr->lock);
1530
9b030cb8 1531 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1532
83b519e8 1533 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1534
e3366016 1535 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1536 != &initarray_generic.cache);
e3366016 1537 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1538 sizeof(struct arraycache_init));
2b2d5493
IM
1539 /*
1540 * Do not assume that spinlocks can be initialized via memcpy:
1541 */
1542 spin_lock_init(&ptr->lock);
1543
e3366016 1544 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1545 }
ce8eb6c4 1546 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1547 {
1ca4cb24
PE
1548 int nid;
1549
9c09a95c 1550 for_each_online_node(nid) {
ce8eb6c4 1551 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1552
e3366016 1553 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1554 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1555
ce8eb6c4
CL
1556 if (INDEX_AC != INDEX_NODE) {
1557 init_list(kmalloc_caches[INDEX_NODE],
1558 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1559 }
1560 }
1561 }
1da177e4 1562
f97d5f63 1563 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1564}
1565
1566void __init kmem_cache_init_late(void)
1567{
1568 struct kmem_cache *cachep;
1569
97d06609 1570 slab_state = UP;
52cef189 1571
8429db5c 1572 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1573 mutex_lock(&slab_mutex);
1574 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1575 if (enable_cpucache(cachep, GFP_NOWAIT))
1576 BUG();
18004c5d 1577 mutex_unlock(&slab_mutex);
056c6241 1578
947ca185
MW
1579 /* Annotate slab for lockdep -- annotate the malloc caches */
1580 init_lock_keys();
1581
97d06609
CL
1582 /* Done! */
1583 slab_state = FULL;
1584
a737b3e2
AM
1585 /*
1586 * Register a cpu startup notifier callback that initializes
1587 * cpu_cache_get for all new cpus
1da177e4
LT
1588 */
1589 register_cpu_notifier(&cpucache_notifier);
1da177e4 1590
8f9f8d9e
DR
1591#ifdef CONFIG_NUMA
1592 /*
1593 * Register a memory hotplug callback that initializes and frees
6a67368c 1594 * node.
8f9f8d9e
DR
1595 */
1596 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1597#endif
1598
a737b3e2
AM
1599 /*
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1da177e4
LT
1602 */
1603}
1604
1605static int __init cpucache_init(void)
1606{
1607 int cpu;
1608
a737b3e2
AM
1609 /*
1610 * Register the timers that return unneeded pages to the page allocator
1da177e4 1611 */
e498be7d 1612 for_each_online_cpu(cpu)
a737b3e2 1613 start_cpu_timer(cpu);
a164f896
GC
1614
1615 /* Done! */
97d06609 1616 slab_state = FULL;
1da177e4
LT
1617 return 0;
1618}
1da177e4
LT
1619__initcall(cpucache_init);
1620
8bdec192
RA
1621static noinline void
1622slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1623{
9a02d699 1624#if DEBUG
ce8eb6c4 1625 struct kmem_cache_node *n;
8456a648 1626 struct page *page;
8bdec192
RA
1627 unsigned long flags;
1628 int node;
9a02d699
DR
1629 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1630 DEFAULT_RATELIMIT_BURST);
1631
1632 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1633 return;
8bdec192
RA
1634
1635 printk(KERN_WARNING
1636 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1637 nodeid, gfpflags);
1638 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1639 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1640
1641 for_each_online_node(node) {
1642 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1643 unsigned long active_slabs = 0, num_slabs = 0;
1644
ce8eb6c4
CL
1645 n = cachep->node[node];
1646 if (!n)
8bdec192
RA
1647 continue;
1648
ce8eb6c4 1649 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1650 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1651 active_objs += cachep->num;
1652 active_slabs++;
1653 }
8456a648
JK
1654 list_for_each_entry(page, &n->slabs_partial, lru) {
1655 active_objs += page->active;
8bdec192
RA
1656 active_slabs++;
1657 }
8456a648 1658 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1659 num_slabs++;
1660
ce8eb6c4
CL
1661 free_objects += n->free_objects;
1662 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1663
1664 num_slabs += active_slabs;
1665 num_objs = num_slabs * cachep->num;
1666 printk(KERN_WARNING
1667 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1668 node, active_slabs, num_slabs, active_objs, num_objs,
1669 free_objects);
1670 }
9a02d699 1671#endif
8bdec192
RA
1672}
1673
1da177e4
LT
1674/*
1675 * Interface to system's page allocator. No need to hold the cache-lock.
1676 *
1677 * If we requested dmaable memory, we will get it. Even if we
1678 * did not request dmaable memory, we might get it, but that
1679 * would be relatively rare and ignorable.
1680 */
0c3aa83e
JK
1681static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1682 int nodeid)
1da177e4
LT
1683{
1684 struct page *page;
e1b6aa6f 1685 int nr_pages;
765c4507 1686
a618e89f 1687 flags |= cachep->allocflags;
e12ba74d
MG
1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1689 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1690
5dfb4175
VD
1691 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1692 return NULL;
1693
517d0869 1694 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1695 if (!page) {
5dfb4175 1696 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1697 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1698 return NULL;
8bdec192 1699 }
1da177e4 1700
b37f1dd0 1701 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1702 if (unlikely(page->pfmemalloc))
1703 pfmemalloc_active = true;
1704
e1b6aa6f 1705 nr_pages = (1 << cachep->gfporder);
1da177e4 1706 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1707 add_zone_page_state(page_zone(page),
1708 NR_SLAB_RECLAIMABLE, nr_pages);
1709 else
1710 add_zone_page_state(page_zone(page),
1711 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1712 __SetPageSlab(page);
1713 if (page->pfmemalloc)
1714 SetPageSlabPfmemalloc(page);
1f458cbf 1715 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1716
b1eeab67
VN
1717 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1718 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1719
1720 if (cachep->ctor)
1721 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1722 else
1723 kmemcheck_mark_unallocated_pages(page, nr_pages);
1724 }
c175eea4 1725
0c3aa83e 1726 return page;
1da177e4
LT
1727}
1728
1729/*
1730 * Interface to system's page release.
1731 */
0c3aa83e 1732static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1733{
a57a4988 1734 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1735
b1eeab67 1736 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1737
972d1a7b
CL
1738 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1739 sub_zone_page_state(page_zone(page),
1740 NR_SLAB_RECLAIMABLE, nr_freed);
1741 else
1742 sub_zone_page_state(page_zone(page),
1743 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1744
a57a4988 1745 BUG_ON(!PageSlab(page));
73293c2f 1746 __ClearPageSlabPfmemalloc(page);
a57a4988 1747 __ClearPageSlab(page);
8456a648
JK
1748 page_mapcount_reset(page);
1749 page->mapping = NULL;
1f458cbf
GC
1750
1751 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1752 if (current->reclaim_state)
1753 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1754 __free_pages(page, cachep->gfporder);
1755 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1756}
1757
1758static void kmem_rcu_free(struct rcu_head *head)
1759{
68126702
JK
1760 struct kmem_cache *cachep;
1761 struct page *page;
1da177e4 1762
68126702
JK
1763 page = container_of(head, struct page, rcu_head);
1764 cachep = page->slab_cache;
1765
1766 kmem_freepages(cachep, page);
1da177e4
LT
1767}
1768
1769#if DEBUG
1770
1771#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1772static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1773 unsigned long caller)
1da177e4 1774{
8c138bc0 1775 int size = cachep->object_size;
1da177e4 1776
3dafccf2 1777 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1778
b28a02de 1779 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1780 return;
1781
b28a02de
PE
1782 *addr++ = 0x12345678;
1783 *addr++ = caller;
1784 *addr++ = smp_processor_id();
1785 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1786 {
1787 unsigned long *sptr = &caller;
1788 unsigned long svalue;
1789
1790 while (!kstack_end(sptr)) {
1791 svalue = *sptr++;
1792 if (kernel_text_address(svalue)) {
b28a02de 1793 *addr++ = svalue;
1da177e4
LT
1794 size -= sizeof(unsigned long);
1795 if (size <= sizeof(unsigned long))
1796 break;
1797 }
1798 }
1799
1800 }
b28a02de 1801 *addr++ = 0x87654321;
1da177e4
LT
1802}
1803#endif
1804
343e0d7a 1805static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1806{
8c138bc0 1807 int size = cachep->object_size;
3dafccf2 1808 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1809
1810 memset(addr, val, size);
b28a02de 1811 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1812}
1813
1814static void dump_line(char *data, int offset, int limit)
1815{
1816 int i;
aa83aa40
DJ
1817 unsigned char error = 0;
1818 int bad_count = 0;
1819
fdde6abb 1820 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1821 for (i = 0; i < limit; i++) {
1822 if (data[offset + i] != POISON_FREE) {
1823 error = data[offset + i];
1824 bad_count++;
1825 }
aa83aa40 1826 }
fdde6abb
SAS
1827 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1828 &data[offset], limit, 1);
aa83aa40
DJ
1829
1830 if (bad_count == 1) {
1831 error ^= POISON_FREE;
1832 if (!(error & (error - 1))) {
1833 printk(KERN_ERR "Single bit error detected. Probably "
1834 "bad RAM.\n");
1835#ifdef CONFIG_X86
1836 printk(KERN_ERR "Run memtest86+ or a similar memory "
1837 "test tool.\n");
1838#else
1839 printk(KERN_ERR "Run a memory test tool.\n");
1840#endif
1841 }
1842 }
1da177e4
LT
1843}
1844#endif
1845
1846#if DEBUG
1847
343e0d7a 1848static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1849{
1850 int i, size;
1851 char *realobj;
1852
1853 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1854 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1855 *dbg_redzone1(cachep, objp),
1856 *dbg_redzone2(cachep, objp));
1da177e4
LT
1857 }
1858
1859 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1860 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1861 *dbg_userword(cachep, objp),
1862 *dbg_userword(cachep, objp));
1da177e4 1863 }
3dafccf2 1864 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1865 size = cachep->object_size;
b28a02de 1866 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1867 int limit;
1868 limit = 16;
b28a02de
PE
1869 if (i + limit > size)
1870 limit = size - i;
1da177e4
LT
1871 dump_line(realobj, i, limit);
1872 }
1873}
1874
343e0d7a 1875static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1876{
1877 char *realobj;
1878 int size, i;
1879 int lines = 0;
1880
3dafccf2 1881 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1882 size = cachep->object_size;
1da177e4 1883
b28a02de 1884 for (i = 0; i < size; i++) {
1da177e4 1885 char exp = POISON_FREE;
b28a02de 1886 if (i == size - 1)
1da177e4
LT
1887 exp = POISON_END;
1888 if (realobj[i] != exp) {
1889 int limit;
1890 /* Mismatch ! */
1891 /* Print header */
1892 if (lines == 0) {
b28a02de 1893 printk(KERN_ERR
face37f5
DJ
1894 "Slab corruption (%s): %s start=%p, len=%d\n",
1895 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1896 print_objinfo(cachep, objp, 0);
1897 }
1898 /* Hexdump the affected line */
b28a02de 1899 i = (i / 16) * 16;
1da177e4 1900 limit = 16;
b28a02de
PE
1901 if (i + limit > size)
1902 limit = size - i;
1da177e4
LT
1903 dump_line(realobj, i, limit);
1904 i += 16;
1905 lines++;
1906 /* Limit to 5 lines */
1907 if (lines > 5)
1908 break;
1909 }
1910 }
1911 if (lines != 0) {
1912 /* Print some data about the neighboring objects, if they
1913 * exist:
1914 */
8456a648 1915 struct page *page = virt_to_head_page(objp);
8fea4e96 1916 unsigned int objnr;
1da177e4 1917
8456a648 1918 objnr = obj_to_index(cachep, page, objp);
1da177e4 1919 if (objnr) {
8456a648 1920 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1921 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1922 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1923 realobj, size);
1da177e4
LT
1924 print_objinfo(cachep, objp, 2);
1925 }
b28a02de 1926 if (objnr + 1 < cachep->num) {
8456a648 1927 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1928 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1929 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1930 realobj, size);
1da177e4
LT
1931 print_objinfo(cachep, objp, 2);
1932 }
1933 }
1934}
1935#endif
1936
12dd36fa 1937#if DEBUG
8456a648
JK
1938static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1939 struct page *page)
1da177e4 1940{
1da177e4
LT
1941 int i;
1942 for (i = 0; i < cachep->num; i++) {
8456a648 1943 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1944
1945 if (cachep->flags & SLAB_POISON) {
1946#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1947 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1948 OFF_SLAB(cachep))
b28a02de 1949 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1950 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1951 else
1952 check_poison_obj(cachep, objp);
1953#else
1954 check_poison_obj(cachep, objp);
1955#endif
1956 }
1957 if (cachep->flags & SLAB_RED_ZONE) {
1958 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1959 slab_error(cachep, "start of a freed object "
b28a02de 1960 "was overwritten");
1da177e4
LT
1961 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1962 slab_error(cachep, "end of a freed object "
b28a02de 1963 "was overwritten");
1da177e4 1964 }
1da177e4 1965 }
12dd36fa 1966}
1da177e4 1967#else
8456a648
JK
1968static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1969 struct page *page)
12dd36fa 1970{
12dd36fa 1971}
1da177e4
LT
1972#endif
1973
911851e6
RD
1974/**
1975 * slab_destroy - destroy and release all objects in a slab
1976 * @cachep: cache pointer being destroyed
cb8ee1a3 1977 * @page: page pointer being destroyed
911851e6 1978 *
12dd36fa 1979 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1980 * Before calling the slab must have been unlinked from the cache. The
1981 * cache-lock is not held/needed.
12dd36fa 1982 */
8456a648 1983static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1984{
7e007355 1985 void *freelist;
12dd36fa 1986
8456a648
JK
1987 freelist = page->freelist;
1988 slab_destroy_debugcheck(cachep, page);
1da177e4 1989 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1990 struct rcu_head *head;
1991
1992 /*
1993 * RCU free overloads the RCU head over the LRU.
1994 * slab_page has been overloeaded over the LRU,
1995 * however it is not used from now on so that
1996 * we can use it safely.
1997 */
1998 head = (void *)&page->rcu_head;
1999 call_rcu(head, kmem_rcu_free);
1da177e4 2000
1da177e4 2001 } else {
0c3aa83e 2002 kmem_freepages(cachep, page);
1da177e4 2003 }
68126702
JK
2004
2005 /*
8456a648 2006 * From now on, we don't use freelist
68126702
JK
2007 * although actual page can be freed in rcu context
2008 */
2009 if (OFF_SLAB(cachep))
8456a648 2010 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
2011}
2012
4d268eba 2013/**
a70773dd
RD
2014 * calculate_slab_order - calculate size (page order) of slabs
2015 * @cachep: pointer to the cache that is being created
2016 * @size: size of objects to be created in this cache.
2017 * @align: required alignment for the objects.
2018 * @flags: slab allocation flags
2019 *
2020 * Also calculates the number of objects per slab.
4d268eba
PE
2021 *
2022 * This could be made much more intelligent. For now, try to avoid using
2023 * high order pages for slabs. When the gfp() functions are more friendly
2024 * towards high-order requests, this should be changed.
2025 */
a737b3e2 2026static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2027 size_t size, size_t align, unsigned long flags)
4d268eba 2028{
b1ab41c4 2029 unsigned long offslab_limit;
4d268eba 2030 size_t left_over = 0;
9888e6fa 2031 int gfporder;
4d268eba 2032
0aa817f0 2033 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2034 unsigned int num;
2035 size_t remainder;
2036
9888e6fa 2037 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2038 if (!num)
2039 continue;
9888e6fa 2040
f315e3fa
JK
2041 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2042 if (num > SLAB_OBJ_MAX_NUM)
2043 break;
2044
b1ab41c4
IM
2045 if (flags & CFLGS_OFF_SLAB) {
2046 /*
2047 * Max number of objs-per-slab for caches which
2048 * use off-slab slabs. Needed to avoid a possible
2049 * looping condition in cache_grow().
2050 */
8456a648 2051 offslab_limit = size;
a41adfaa 2052 offslab_limit /= sizeof(freelist_idx_t);
b1ab41c4
IM
2053
2054 if (num > offslab_limit)
2055 break;
2056 }
4d268eba 2057
9888e6fa 2058 /* Found something acceptable - save it away */
4d268eba 2059 cachep->num = num;
9888e6fa 2060 cachep->gfporder = gfporder;
4d268eba
PE
2061 left_over = remainder;
2062
f78bb8ad
LT
2063 /*
2064 * A VFS-reclaimable slab tends to have most allocations
2065 * as GFP_NOFS and we really don't want to have to be allocating
2066 * higher-order pages when we are unable to shrink dcache.
2067 */
2068 if (flags & SLAB_RECLAIM_ACCOUNT)
2069 break;
2070
4d268eba
PE
2071 /*
2072 * Large number of objects is good, but very large slabs are
2073 * currently bad for the gfp()s.
2074 */
543585cc 2075 if (gfporder >= slab_max_order)
4d268eba
PE
2076 break;
2077
9888e6fa
LT
2078 /*
2079 * Acceptable internal fragmentation?
2080 */
a737b3e2 2081 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2082 break;
2083 }
2084 return left_over;
2085}
2086
83b519e8 2087static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2088{
97d06609 2089 if (slab_state >= FULL)
83b519e8 2090 return enable_cpucache(cachep, gfp);
2ed3a4ef 2091
97d06609 2092 if (slab_state == DOWN) {
f30cf7d1 2093 /*
2f9baa9f 2094 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2095 * The setup_node is taken care
2f9baa9f
CL
2096 * of by the caller of __kmem_cache_create
2097 */
2098 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2099 slab_state = PARTIAL;
2100 } else if (slab_state == PARTIAL) {
2101 /*
2102 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2103 * that's used by kmalloc(24), otherwise the creation of
2104 * further caches will BUG().
2105 */
2106 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2107
2108 /*
ce8eb6c4
CL
2109 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2110 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2111 * otherwise the creation of further caches will BUG().
2112 */
ce8eb6c4
CL
2113 set_up_node(cachep, SIZE_AC);
2114 if (INDEX_AC == INDEX_NODE)
2115 slab_state = PARTIAL_NODE;
f30cf7d1 2116 else
97d06609 2117 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2118 } else {
2f9baa9f 2119 /* Remaining boot caches */
f30cf7d1 2120 cachep->array[smp_processor_id()] =
83b519e8 2121 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2122
97d06609 2123 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2124 set_up_node(cachep, SIZE_NODE);
2125 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2126 } else {
2127 int node;
556a169d 2128 for_each_online_node(node) {
6a67368c 2129 cachep->node[node] =
6744f087 2130 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2131 gfp, node);
6a67368c 2132 BUG_ON(!cachep->node[node]);
ce8eb6c4 2133 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2134 }
2135 }
2136 }
6a67368c 2137 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2138 jiffies + REAPTIMEOUT_NODE +
2139 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2140
2141 cpu_cache_get(cachep)->avail = 0;
2142 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2143 cpu_cache_get(cachep)->batchcount = 1;
2144 cpu_cache_get(cachep)->touched = 0;
2145 cachep->batchcount = 1;
2146 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2147 return 0;
f30cf7d1
PE
2148}
2149
1da177e4 2150/**
039363f3 2151 * __kmem_cache_create - Create a cache.
a755b76a 2152 * @cachep: cache management descriptor
1da177e4 2153 * @flags: SLAB flags
1da177e4
LT
2154 *
2155 * Returns a ptr to the cache on success, NULL on failure.
2156 * Cannot be called within a int, but can be interrupted.
20c2df83 2157 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2158 *
1da177e4
LT
2159 * The flags are
2160 *
2161 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2162 * to catch references to uninitialised memory.
2163 *
2164 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2165 * for buffer overruns.
2166 *
1da177e4
LT
2167 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2168 * cacheline. This can be beneficial if you're counting cycles as closely
2169 * as davem.
2170 */
278b1bb1 2171int
8a13a4cc 2172__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2173{
8456a648 2174 size_t left_over, freelist_size, ralign;
83b519e8 2175 gfp_t gfp;
278b1bb1 2176 int err;
8a13a4cc 2177 size_t size = cachep->size;
1da177e4 2178
1da177e4 2179#if DEBUG
1da177e4
LT
2180#if FORCED_DEBUG
2181 /*
2182 * Enable redzoning and last user accounting, except for caches with
2183 * large objects, if the increased size would increase the object size
2184 * above the next power of two: caches with object sizes just above a
2185 * power of two have a significant amount of internal fragmentation.
2186 */
87a927c7
DW
2187 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2188 2 * sizeof(unsigned long long)))
b28a02de 2189 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2190 if (!(flags & SLAB_DESTROY_BY_RCU))
2191 flags |= SLAB_POISON;
2192#endif
2193 if (flags & SLAB_DESTROY_BY_RCU)
2194 BUG_ON(flags & SLAB_POISON);
2195#endif
1da177e4 2196
a737b3e2
AM
2197 /*
2198 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2199 * unaligned accesses for some archs when redzoning is used, and makes
2200 * sure any on-slab bufctl's are also correctly aligned.
2201 */
b28a02de
PE
2202 if (size & (BYTES_PER_WORD - 1)) {
2203 size += (BYTES_PER_WORD - 1);
2204 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2205 }
2206
ca5f9703 2207 /*
87a927c7
DW
2208 * Redzoning and user store require word alignment or possibly larger.
2209 * Note this will be overridden by architecture or caller mandated
2210 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2211 */
87a927c7
DW
2212 if (flags & SLAB_STORE_USER)
2213 ralign = BYTES_PER_WORD;
2214
2215 if (flags & SLAB_RED_ZONE) {
2216 ralign = REDZONE_ALIGN;
2217 /* If redzoning, ensure that the second redzone is suitably
2218 * aligned, by adjusting the object size accordingly. */
2219 size += REDZONE_ALIGN - 1;
2220 size &= ~(REDZONE_ALIGN - 1);
2221 }
ca5f9703 2222
a44b56d3 2223 /* 3) caller mandated alignment */
8a13a4cc
CL
2224 if (ralign < cachep->align) {
2225 ralign = cachep->align;
1da177e4 2226 }
3ff84a7f
PE
2227 /* disable debug if necessary */
2228 if (ralign > __alignof__(unsigned long long))
a44b56d3 2229 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2230 /*
ca5f9703 2231 * 4) Store it.
1da177e4 2232 */
8a13a4cc 2233 cachep->align = ralign;
1da177e4 2234
83b519e8
PE
2235 if (slab_is_available())
2236 gfp = GFP_KERNEL;
2237 else
2238 gfp = GFP_NOWAIT;
2239
6a67368c 2240 setup_node_pointer(cachep);
1da177e4 2241#if DEBUG
1da177e4 2242
ca5f9703
PE
2243 /*
2244 * Both debugging options require word-alignment which is calculated
2245 * into align above.
2246 */
1da177e4 2247 if (flags & SLAB_RED_ZONE) {
1da177e4 2248 /* add space for red zone words */
3ff84a7f
PE
2249 cachep->obj_offset += sizeof(unsigned long long);
2250 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2251 }
2252 if (flags & SLAB_STORE_USER) {
ca5f9703 2253 /* user store requires one word storage behind the end of
87a927c7
DW
2254 * the real object. But if the second red zone needs to be
2255 * aligned to 64 bits, we must allow that much space.
1da177e4 2256 */
87a927c7
DW
2257 if (flags & SLAB_RED_ZONE)
2258 size += REDZONE_ALIGN;
2259 else
2260 size += BYTES_PER_WORD;
1da177e4
LT
2261 }
2262#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2263 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2264 && cachep->object_size > cache_line_size()
2265 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2266 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2267 size = PAGE_SIZE;
2268 }
2269#endif
2270#endif
2271
e0a42726
IM
2272 /*
2273 * Determine if the slab management is 'on' or 'off' slab.
2274 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2275 * it too early on. Always use on-slab management when
2276 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2277 */
8fc9cf42 2278 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
e7cb55b9 2279 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2280 /*
2281 * Size is large, assume best to place the slab management obj
2282 * off-slab (should allow better packing of objs).
2283 */
2284 flags |= CFLGS_OFF_SLAB;
2285
8a13a4cc 2286 size = ALIGN(size, cachep->align);
f315e3fa
JK
2287 /*
2288 * We should restrict the number of objects in a slab to implement
2289 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2290 */
2291 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2292 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2293
8a13a4cc 2294 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2295
8a13a4cc 2296 if (!cachep->num)
278b1bb1 2297 return -E2BIG;
1da177e4 2298
8456a648 2299 freelist_size =
a41adfaa 2300 ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
1da177e4
LT
2301
2302 /*
2303 * If the slab has been placed off-slab, and we have enough space then
2304 * move it on-slab. This is at the expense of any extra colouring.
2305 */
8456a648 2306 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2307 flags &= ~CFLGS_OFF_SLAB;
8456a648 2308 left_over -= freelist_size;
1da177e4
LT
2309 }
2310
2311 if (flags & CFLGS_OFF_SLAB) {
2312 /* really off slab. No need for manual alignment */
a41adfaa 2313 freelist_size = cachep->num * sizeof(freelist_idx_t);
67461365
RL
2314
2315#ifdef CONFIG_PAGE_POISONING
2316 /* If we're going to use the generic kernel_map_pages()
2317 * poisoning, then it's going to smash the contents of
2318 * the redzone and userword anyhow, so switch them off.
2319 */
2320 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2321 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2322#endif
1da177e4
LT
2323 }
2324
2325 cachep->colour_off = cache_line_size();
2326 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2327 if (cachep->colour_off < cachep->align)
2328 cachep->colour_off = cachep->align;
b28a02de 2329 cachep->colour = left_over / cachep->colour_off;
8456a648 2330 cachep->freelist_size = freelist_size;
1da177e4 2331 cachep->flags = flags;
a57a4988 2332 cachep->allocflags = __GFP_COMP;
4b51d669 2333 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2334 cachep->allocflags |= GFP_DMA;
3b0efdfa 2335 cachep->size = size;
6a2d7a95 2336 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2337
e5ac9c5a 2338 if (flags & CFLGS_OFF_SLAB) {
8456a648 2339 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2340 /*
5f0985bb 2341 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2342 * But since we go off slab only for object size greater than
5f0985bb
JZ
2343 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2344 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2345 * But leave a BUG_ON for some lucky dude.
2346 */
8456a648 2347 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2348 }
1da177e4 2349
278b1bb1
CL
2350 err = setup_cpu_cache(cachep, gfp);
2351 if (err) {
12c3667f 2352 __kmem_cache_shutdown(cachep);
278b1bb1 2353 return err;
2ed3a4ef 2354 }
1da177e4 2355
83835b3d
PZ
2356 if (flags & SLAB_DEBUG_OBJECTS) {
2357 /*
2358 * Would deadlock through slab_destroy()->call_rcu()->
2359 * debug_object_activate()->kmem_cache_alloc().
2360 */
2361 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2362
2363 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2364 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2365 on_slab_lock_classes(cachep);
83835b3d 2366
278b1bb1 2367 return 0;
1da177e4 2368}
1da177e4
LT
2369
2370#if DEBUG
2371static void check_irq_off(void)
2372{
2373 BUG_ON(!irqs_disabled());
2374}
2375
2376static void check_irq_on(void)
2377{
2378 BUG_ON(irqs_disabled());
2379}
2380
343e0d7a 2381static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2382{
2383#ifdef CONFIG_SMP
2384 check_irq_off();
6a67368c 2385 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2386#endif
2387}
e498be7d 2388
343e0d7a 2389static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2390{
2391#ifdef CONFIG_SMP
2392 check_irq_off();
6a67368c 2393 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2394#endif
2395}
2396
1da177e4
LT
2397#else
2398#define check_irq_off() do { } while(0)
2399#define check_irq_on() do { } while(0)
2400#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2401#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2402#endif
2403
ce8eb6c4 2404static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2405 struct array_cache *ac,
2406 int force, int node);
2407
1da177e4
LT
2408static void do_drain(void *arg)
2409{
a737b3e2 2410 struct kmem_cache *cachep = arg;
1da177e4 2411 struct array_cache *ac;
7d6e6d09 2412 int node = numa_mem_id();
1da177e4
LT
2413
2414 check_irq_off();
9a2dba4b 2415 ac = cpu_cache_get(cachep);
6a67368c 2416 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2417 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2418 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2419 ac->avail = 0;
2420}
2421
343e0d7a 2422static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2423{
ce8eb6c4 2424 struct kmem_cache_node *n;
e498be7d
CL
2425 int node;
2426
15c8b6c1 2427 on_each_cpu(do_drain, cachep, 1);
1da177e4 2428 check_irq_on();
b28a02de 2429 for_each_online_node(node) {
ce8eb6c4
CL
2430 n = cachep->node[node];
2431 if (n && n->alien)
2432 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2433 }
2434
2435 for_each_online_node(node) {
ce8eb6c4
CL
2436 n = cachep->node[node];
2437 if (n)
2438 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2439 }
1da177e4
LT
2440}
2441
ed11d9eb
CL
2442/*
2443 * Remove slabs from the list of free slabs.
2444 * Specify the number of slabs to drain in tofree.
2445 *
2446 * Returns the actual number of slabs released.
2447 */
2448static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2449 struct kmem_cache_node *n, int tofree)
1da177e4 2450{
ed11d9eb
CL
2451 struct list_head *p;
2452 int nr_freed;
8456a648 2453 struct page *page;
1da177e4 2454
ed11d9eb 2455 nr_freed = 0;
ce8eb6c4 2456 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2457
ce8eb6c4
CL
2458 spin_lock_irq(&n->list_lock);
2459 p = n->slabs_free.prev;
2460 if (p == &n->slabs_free) {
2461 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2462 goto out;
2463 }
1da177e4 2464
8456a648 2465 page = list_entry(p, struct page, lru);
1da177e4 2466#if DEBUG
8456a648 2467 BUG_ON(page->active);
1da177e4 2468#endif
8456a648 2469 list_del(&page->lru);
ed11d9eb
CL
2470 /*
2471 * Safe to drop the lock. The slab is no longer linked
2472 * to the cache.
2473 */
ce8eb6c4
CL
2474 n->free_objects -= cache->num;
2475 spin_unlock_irq(&n->list_lock);
8456a648 2476 slab_destroy(cache, page);
ed11d9eb 2477 nr_freed++;
1da177e4 2478 }
ed11d9eb
CL
2479out:
2480 return nr_freed;
1da177e4
LT
2481}
2482
18004c5d 2483/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2484static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2485{
2486 int ret = 0, i = 0;
ce8eb6c4 2487 struct kmem_cache_node *n;
e498be7d
CL
2488
2489 drain_cpu_caches(cachep);
2490
2491 check_irq_on();
2492 for_each_online_node(i) {
ce8eb6c4
CL
2493 n = cachep->node[i];
2494 if (!n)
ed11d9eb
CL
2495 continue;
2496
0fa8103b 2497 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2498
ce8eb6c4
CL
2499 ret += !list_empty(&n->slabs_full) ||
2500 !list_empty(&n->slabs_partial);
e498be7d
CL
2501 }
2502 return (ret ? 1 : 0);
2503}
2504
1da177e4
LT
2505/**
2506 * kmem_cache_shrink - Shrink a cache.
2507 * @cachep: The cache to shrink.
2508 *
2509 * Releases as many slabs as possible for a cache.
2510 * To help debugging, a zero exit status indicates all slabs were released.
2511 */
343e0d7a 2512int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2513{
8f5be20b 2514 int ret;
40094fa6 2515 BUG_ON(!cachep || in_interrupt());
1da177e4 2516
95402b38 2517 get_online_cpus();
18004c5d 2518 mutex_lock(&slab_mutex);
8f5be20b 2519 ret = __cache_shrink(cachep);
18004c5d 2520 mutex_unlock(&slab_mutex);
95402b38 2521 put_online_cpus();
8f5be20b 2522 return ret;
1da177e4
LT
2523}
2524EXPORT_SYMBOL(kmem_cache_shrink);
2525
945cf2b6 2526int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2527{
12c3667f 2528 int i;
ce8eb6c4 2529 struct kmem_cache_node *n;
12c3667f 2530 int rc = __cache_shrink(cachep);
1da177e4 2531
12c3667f
CL
2532 if (rc)
2533 return rc;
1da177e4 2534
12c3667f
CL
2535 for_each_online_cpu(i)
2536 kfree(cachep->array[i]);
1da177e4 2537
ce8eb6c4 2538 /* NUMA: free the node structures */
12c3667f 2539 for_each_online_node(i) {
ce8eb6c4
CL
2540 n = cachep->node[i];
2541 if (n) {
2542 kfree(n->shared);
2543 free_alien_cache(n->alien);
2544 kfree(n);
12c3667f
CL
2545 }
2546 }
2547 return 0;
1da177e4 2548}
1da177e4 2549
e5ac9c5a
RT
2550/*
2551 * Get the memory for a slab management obj.
5f0985bb
JZ
2552 *
2553 * For a slab cache when the slab descriptor is off-slab, the
2554 * slab descriptor can't come from the same cache which is being created,
2555 * Because if it is the case, that means we defer the creation of
2556 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2557 * And we eventually call down to __kmem_cache_create(), which
2558 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2559 * This is a "chicken-and-egg" problem.
2560 *
2561 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2562 * which are all initialized during kmem_cache_init().
e5ac9c5a 2563 */
7e007355 2564static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2565 struct page *page, int colour_off,
2566 gfp_t local_flags, int nodeid)
1da177e4 2567{
7e007355 2568 void *freelist;
0c3aa83e 2569 void *addr = page_address(page);
b28a02de 2570
1da177e4
LT
2571 if (OFF_SLAB(cachep)) {
2572 /* Slab management obj is off-slab. */
8456a648 2573 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2574 local_flags, nodeid);
8456a648 2575 if (!freelist)
1da177e4
LT
2576 return NULL;
2577 } else {
8456a648
JK
2578 freelist = addr + colour_off;
2579 colour_off += cachep->freelist_size;
1da177e4 2580 }
8456a648
JK
2581 page->active = 0;
2582 page->s_mem = addr + colour_off;
2583 return freelist;
1da177e4
LT
2584}
2585
7cc68973 2586static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2587{
a41adfaa 2588 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2589}
2590
2591static inline void set_free_obj(struct page *page,
7cc68973 2592 unsigned int idx, freelist_idx_t val)
e5c58dfd 2593{
a41adfaa 2594 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2595}
2596
343e0d7a 2597static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2598 struct page *page)
1da177e4
LT
2599{
2600 int i;
2601
2602 for (i = 0; i < cachep->num; i++) {
8456a648 2603 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2604#if DEBUG
2605 /* need to poison the objs? */
2606 if (cachep->flags & SLAB_POISON)
2607 poison_obj(cachep, objp, POISON_FREE);
2608 if (cachep->flags & SLAB_STORE_USER)
2609 *dbg_userword(cachep, objp) = NULL;
2610
2611 if (cachep->flags & SLAB_RED_ZONE) {
2612 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2613 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2614 }
2615 /*
a737b3e2
AM
2616 * Constructors are not allowed to allocate memory from the same
2617 * cache which they are a constructor for. Otherwise, deadlock.
2618 * They must also be threaded.
1da177e4
LT
2619 */
2620 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2621 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2622
2623 if (cachep->flags & SLAB_RED_ZONE) {
2624 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2625 slab_error(cachep, "constructor overwrote the"
b28a02de 2626 " end of an object");
1da177e4
LT
2627 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2628 slab_error(cachep, "constructor overwrote the"
b28a02de 2629 " start of an object");
1da177e4 2630 }
3b0efdfa 2631 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2632 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2633 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2634 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2635#else
2636 if (cachep->ctor)
51cc5068 2637 cachep->ctor(objp);
1da177e4 2638#endif
e5c58dfd 2639 set_free_obj(page, i, i);
1da177e4 2640 }
1da177e4
LT
2641}
2642
343e0d7a 2643static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2644{
4b51d669
CL
2645 if (CONFIG_ZONE_DMA_FLAG) {
2646 if (flags & GFP_DMA)
a618e89f 2647 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2648 else
a618e89f 2649 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2650 }
1da177e4
LT
2651}
2652
8456a648 2653static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2654 int nodeid)
78d382d7 2655{
b1cb0982 2656 void *objp;
78d382d7 2657
e5c58dfd 2658 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2659 page->active++;
78d382d7 2660#if DEBUG
1ea991b0 2661 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2662#endif
78d382d7
MD
2663
2664 return objp;
2665}
2666
8456a648 2667static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2668 void *objp, int nodeid)
78d382d7 2669{
8456a648 2670 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2671#if DEBUG
16025177 2672 unsigned int i;
b1cb0982 2673
78d382d7 2674 /* Verify that the slab belongs to the intended node */
1ea991b0 2675 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2676
b1cb0982 2677 /* Verify double free bug */
8456a648 2678 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2679 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2680 printk(KERN_ERR "slab: double free detected in cache "
2681 "'%s', objp %p\n", cachep->name, objp);
2682 BUG();
2683 }
78d382d7
MD
2684 }
2685#endif
8456a648 2686 page->active--;
e5c58dfd 2687 set_free_obj(page, page->active, objnr);
78d382d7
MD
2688}
2689
4776874f
PE
2690/*
2691 * Map pages beginning at addr to the given cache and slab. This is required
2692 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2693 * virtual address for kfree, ksize, and slab debugging.
4776874f 2694 */
8456a648 2695static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2696 void *freelist)
1da177e4 2697{
a57a4988 2698 page->slab_cache = cache;
8456a648 2699 page->freelist = freelist;
1da177e4
LT
2700}
2701
2702/*
2703 * Grow (by 1) the number of slabs within a cache. This is called by
2704 * kmem_cache_alloc() when there are no active objs left in a cache.
2705 */
3c517a61 2706static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2707 gfp_t flags, int nodeid, struct page *page)
1da177e4 2708{
7e007355 2709 void *freelist;
b28a02de
PE
2710 size_t offset;
2711 gfp_t local_flags;
ce8eb6c4 2712 struct kmem_cache_node *n;
1da177e4 2713
a737b3e2
AM
2714 /*
2715 * Be lazy and only check for valid flags here, keeping it out of the
2716 * critical path in kmem_cache_alloc().
1da177e4 2717 */
6cb06229
CL
2718 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2719 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2720
ce8eb6c4 2721 /* Take the node list lock to change the colour_next on this node */
1da177e4 2722 check_irq_off();
ce8eb6c4
CL
2723 n = cachep->node[nodeid];
2724 spin_lock(&n->list_lock);
1da177e4
LT
2725
2726 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2727 offset = n->colour_next;
2728 n->colour_next++;
2729 if (n->colour_next >= cachep->colour)
2730 n->colour_next = 0;
2731 spin_unlock(&n->list_lock);
1da177e4 2732
2e1217cf 2733 offset *= cachep->colour_off;
1da177e4
LT
2734
2735 if (local_flags & __GFP_WAIT)
2736 local_irq_enable();
2737
2738 /*
2739 * The test for missing atomic flag is performed here, rather than
2740 * the more obvious place, simply to reduce the critical path length
2741 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2742 * will eventually be caught here (where it matters).
2743 */
2744 kmem_flagcheck(cachep, flags);
2745
a737b3e2
AM
2746 /*
2747 * Get mem for the objs. Attempt to allocate a physical page from
2748 * 'nodeid'.
e498be7d 2749 */
0c3aa83e
JK
2750 if (!page)
2751 page = kmem_getpages(cachep, local_flags, nodeid);
2752 if (!page)
1da177e4
LT
2753 goto failed;
2754
2755 /* Get slab management. */
8456a648 2756 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2757 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2758 if (!freelist)
1da177e4
LT
2759 goto opps1;
2760
8456a648 2761 slab_map_pages(cachep, page, freelist);
1da177e4 2762
8456a648 2763 cache_init_objs(cachep, page);
1da177e4
LT
2764
2765 if (local_flags & __GFP_WAIT)
2766 local_irq_disable();
2767 check_irq_off();
ce8eb6c4 2768 spin_lock(&n->list_lock);
1da177e4
LT
2769
2770 /* Make slab active. */
8456a648 2771 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2772 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2773 n->free_objects += cachep->num;
2774 spin_unlock(&n->list_lock);
1da177e4 2775 return 1;
a737b3e2 2776opps1:
0c3aa83e 2777 kmem_freepages(cachep, page);
a737b3e2 2778failed:
1da177e4
LT
2779 if (local_flags & __GFP_WAIT)
2780 local_irq_disable();
2781 return 0;
2782}
2783
2784#if DEBUG
2785
2786/*
2787 * Perform extra freeing checks:
2788 * - detect bad pointers.
2789 * - POISON/RED_ZONE checking
1da177e4
LT
2790 */
2791static void kfree_debugcheck(const void *objp)
2792{
1da177e4
LT
2793 if (!virt_addr_valid(objp)) {
2794 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2795 (unsigned long)objp);
2796 BUG();
1da177e4 2797 }
1da177e4
LT
2798}
2799
58ce1fd5
PE
2800static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2801{
b46b8f19 2802 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2803
2804 redzone1 = *dbg_redzone1(cache, obj);
2805 redzone2 = *dbg_redzone2(cache, obj);
2806
2807 /*
2808 * Redzone is ok.
2809 */
2810 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2811 return;
2812
2813 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2814 slab_error(cache, "double free detected");
2815 else
2816 slab_error(cache, "memory outside object was overwritten");
2817
b46b8f19 2818 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2819 obj, redzone1, redzone2);
2820}
2821
343e0d7a 2822static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2823 unsigned long caller)
1da177e4 2824{
1da177e4 2825 unsigned int objnr;
8456a648 2826 struct page *page;
1da177e4 2827
80cbd911
MW
2828 BUG_ON(virt_to_cache(objp) != cachep);
2829
3dafccf2 2830 objp -= obj_offset(cachep);
1da177e4 2831 kfree_debugcheck(objp);
b49af68f 2832 page = virt_to_head_page(objp);
1da177e4 2833
1da177e4 2834 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2835 verify_redzone_free(cachep, objp);
1da177e4
LT
2836 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2837 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2838 }
2839 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2840 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2841
8456a648 2842 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2843
2844 BUG_ON(objnr >= cachep->num);
8456a648 2845 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2846
1da177e4
LT
2847 if (cachep->flags & SLAB_POISON) {
2848#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2849 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2850 store_stackinfo(cachep, objp, caller);
b28a02de 2851 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2852 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2853 } else {
2854 poison_obj(cachep, objp, POISON_FREE);
2855 }
2856#else
2857 poison_obj(cachep, objp, POISON_FREE);
2858#endif
2859 }
2860 return objp;
2861}
2862
1da177e4
LT
2863#else
2864#define kfree_debugcheck(x) do { } while(0)
2865#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2866#endif
2867
072bb0aa
MG
2868static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2869 bool force_refill)
1da177e4
LT
2870{
2871 int batchcount;
ce8eb6c4 2872 struct kmem_cache_node *n;
1da177e4 2873 struct array_cache *ac;
1ca4cb24
PE
2874 int node;
2875
1da177e4 2876 check_irq_off();
7d6e6d09 2877 node = numa_mem_id();
072bb0aa
MG
2878 if (unlikely(force_refill))
2879 goto force_grow;
2880retry:
9a2dba4b 2881 ac = cpu_cache_get(cachep);
1da177e4
LT
2882 batchcount = ac->batchcount;
2883 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2884 /*
2885 * If there was little recent activity on this cache, then
2886 * perform only a partial refill. Otherwise we could generate
2887 * refill bouncing.
1da177e4
LT
2888 */
2889 batchcount = BATCHREFILL_LIMIT;
2890 }
ce8eb6c4 2891 n = cachep->node[node];
e498be7d 2892
ce8eb6c4
CL
2893 BUG_ON(ac->avail > 0 || !n);
2894 spin_lock(&n->list_lock);
1da177e4 2895
3ded175a 2896 /* See if we can refill from the shared array */
ce8eb6c4
CL
2897 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2898 n->shared->touched = 1;
3ded175a 2899 goto alloc_done;
44b57f1c 2900 }
3ded175a 2901
1da177e4
LT
2902 while (batchcount > 0) {
2903 struct list_head *entry;
8456a648 2904 struct page *page;
1da177e4 2905 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2906 entry = n->slabs_partial.next;
2907 if (entry == &n->slabs_partial) {
2908 n->free_touched = 1;
2909 entry = n->slabs_free.next;
2910 if (entry == &n->slabs_free)
1da177e4
LT
2911 goto must_grow;
2912 }
2913
8456a648 2914 page = list_entry(entry, struct page, lru);
1da177e4 2915 check_spinlock_acquired(cachep);
714b8171
PE
2916
2917 /*
2918 * The slab was either on partial or free list so
2919 * there must be at least one object available for
2920 * allocation.
2921 */
8456a648 2922 BUG_ON(page->active >= cachep->num);
714b8171 2923
8456a648 2924 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2925 STATS_INC_ALLOCED(cachep);
2926 STATS_INC_ACTIVE(cachep);
2927 STATS_SET_HIGH(cachep);
2928
8456a648 2929 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2930 node));
1da177e4 2931 }
1da177e4
LT
2932
2933 /* move slabp to correct slabp list: */
8456a648
JK
2934 list_del(&page->lru);
2935 if (page->active == cachep->num)
34bf6ef9 2936 list_add(&page->lru, &n->slabs_full);
1da177e4 2937 else
34bf6ef9 2938 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2939 }
2940
a737b3e2 2941must_grow:
ce8eb6c4 2942 n->free_objects -= ac->avail;
a737b3e2 2943alloc_done:
ce8eb6c4 2944 spin_unlock(&n->list_lock);
1da177e4
LT
2945
2946 if (unlikely(!ac->avail)) {
2947 int x;
072bb0aa 2948force_grow:
3c517a61 2949 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2950
a737b3e2 2951 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2952 ac = cpu_cache_get(cachep);
51cd8e6f 2953 node = numa_mem_id();
072bb0aa
MG
2954
2955 /* no objects in sight? abort */
2956 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2957 return NULL;
2958
a737b3e2 2959 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2960 goto retry;
2961 }
2962 ac->touched = 1;
072bb0aa
MG
2963
2964 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2965}
2966
a737b3e2
AM
2967static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2968 gfp_t flags)
1da177e4
LT
2969{
2970 might_sleep_if(flags & __GFP_WAIT);
2971#if DEBUG
2972 kmem_flagcheck(cachep, flags);
2973#endif
2974}
2975
2976#if DEBUG
a737b3e2 2977static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2978 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2979{
b28a02de 2980 if (!objp)
1da177e4 2981 return objp;
b28a02de 2982 if (cachep->flags & SLAB_POISON) {
1da177e4 2983#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2984 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2985 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2986 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2987 else
2988 check_poison_obj(cachep, objp);
2989#else
2990 check_poison_obj(cachep, objp);
2991#endif
2992 poison_obj(cachep, objp, POISON_INUSE);
2993 }
2994 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2995 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2996
2997 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2998 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2999 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3000 slab_error(cachep, "double free, or memory outside"
3001 " object was overwritten");
b28a02de 3002 printk(KERN_ERR
b46b8f19 3003 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3004 objp, *dbg_redzone1(cachep, objp),
3005 *dbg_redzone2(cachep, objp));
1da177e4
LT
3006 }
3007 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3008 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3009 }
3dafccf2 3010 objp += obj_offset(cachep);
4f104934 3011 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3012 cachep->ctor(objp);
7ea466f2
TH
3013 if (ARCH_SLAB_MINALIGN &&
3014 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3015 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3016 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3017 }
1da177e4
LT
3018 return objp;
3019}
3020#else
3021#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3022#endif
3023
773ff60e 3024static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3025{
9b030cb8 3026 if (cachep == kmem_cache)
773ff60e 3027 return false;
8a8b6502 3028
8c138bc0 3029 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3030}
3031
343e0d7a 3032static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3033{
b28a02de 3034 void *objp;
1da177e4 3035 struct array_cache *ac;
072bb0aa 3036 bool force_refill = false;
1da177e4 3037
5c382300 3038 check_irq_off();
8a8b6502 3039
9a2dba4b 3040 ac = cpu_cache_get(cachep);
1da177e4 3041 if (likely(ac->avail)) {
1da177e4 3042 ac->touched = 1;
072bb0aa
MG
3043 objp = ac_get_obj(cachep, ac, flags, false);
3044
ddbf2e83 3045 /*
072bb0aa
MG
3046 * Allow for the possibility all avail objects are not allowed
3047 * by the current flags
ddbf2e83 3048 */
072bb0aa
MG
3049 if (objp) {
3050 STATS_INC_ALLOCHIT(cachep);
3051 goto out;
3052 }
3053 force_refill = true;
1da177e4 3054 }
072bb0aa
MG
3055
3056 STATS_INC_ALLOCMISS(cachep);
3057 objp = cache_alloc_refill(cachep, flags, force_refill);
3058 /*
3059 * the 'ac' may be updated by cache_alloc_refill(),
3060 * and kmemleak_erase() requires its correct value.
3061 */
3062 ac = cpu_cache_get(cachep);
3063
3064out:
d5cff635
CM
3065 /*
3066 * To avoid a false negative, if an object that is in one of the
3067 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3068 * treat the array pointers as a reference to the object.
3069 */
f3d8b53a
O
3070 if (objp)
3071 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3072 return objp;
3073}
3074
e498be7d 3075#ifdef CONFIG_NUMA
c61afb18 3076/*
f0432d15 3077 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3078 *
3079 * If we are in_interrupt, then process context, including cpusets and
3080 * mempolicy, may not apply and should not be used for allocation policy.
3081 */
3082static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3083{
3084 int nid_alloc, nid_here;
3085
765c4507 3086 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3087 return NULL;
7d6e6d09 3088 nid_alloc = nid_here = numa_mem_id();
c61afb18 3089 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3090 nid_alloc = cpuset_slab_spread_node();
c61afb18 3091 else if (current->mempolicy)
2a389610 3092 nid_alloc = mempolicy_slab_node();
c61afb18 3093 if (nid_alloc != nid_here)
8b98c169 3094 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3095 return NULL;
3096}
3097
765c4507
CL
3098/*
3099 * Fallback function if there was no memory available and no objects on a
3c517a61 3100 * certain node and fall back is permitted. First we scan all the
6a67368c 3101 * available node for available objects. If that fails then we
3c517a61
CL
3102 * perform an allocation without specifying a node. This allows the page
3103 * allocator to do its reclaim / fallback magic. We then insert the
3104 * slab into the proper nodelist and then allocate from it.
765c4507 3105 */
8c8cc2c1 3106static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3107{
8c8cc2c1
PE
3108 struct zonelist *zonelist;
3109 gfp_t local_flags;
dd1a239f 3110 struct zoneref *z;
54a6eb5c
MG
3111 struct zone *zone;
3112 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3113 void *obj = NULL;
3c517a61 3114 int nid;
cc9a6c87 3115 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3116
3117 if (flags & __GFP_THISNODE)
3118 return NULL;
3119
6cb06229 3120 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3121
cc9a6c87 3122retry_cpuset:
d26914d1 3123 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3124 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3125
3c517a61
CL
3126retry:
3127 /*
3128 * Look through allowed nodes for objects available
3129 * from existing per node queues.
3130 */
54a6eb5c
MG
3131 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3132 nid = zone_to_nid(zone);
aedb0eb1 3133
54a6eb5c 3134 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3135 cache->node[nid] &&
3136 cache->node[nid]->free_objects) {
3c517a61
CL
3137 obj = ____cache_alloc_node(cache,
3138 flags | GFP_THISNODE, nid);
481c5346
CL
3139 if (obj)
3140 break;
3141 }
3c517a61
CL
3142 }
3143
cfce6604 3144 if (!obj) {
3c517a61
CL
3145 /*
3146 * This allocation will be performed within the constraints
3147 * of the current cpuset / memory policy requirements.
3148 * We may trigger various forms of reclaim on the allowed
3149 * set and go into memory reserves if necessary.
3150 */
0c3aa83e
JK
3151 struct page *page;
3152
dd47ea75
CL
3153 if (local_flags & __GFP_WAIT)
3154 local_irq_enable();
3155 kmem_flagcheck(cache, flags);
0c3aa83e 3156 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3157 if (local_flags & __GFP_WAIT)
3158 local_irq_disable();
0c3aa83e 3159 if (page) {
3c517a61
CL
3160 /*
3161 * Insert into the appropriate per node queues
3162 */
0c3aa83e
JK
3163 nid = page_to_nid(page);
3164 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3165 obj = ____cache_alloc_node(cache,
3166 flags | GFP_THISNODE, nid);
3167 if (!obj)
3168 /*
3169 * Another processor may allocate the
3170 * objects in the slab since we are
3171 * not holding any locks.
3172 */
3173 goto retry;
3174 } else {
b6a60451 3175 /* cache_grow already freed obj */
3c517a61
CL
3176 obj = NULL;
3177 }
3178 }
aedb0eb1 3179 }
cc9a6c87 3180
d26914d1 3181 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3182 goto retry_cpuset;
765c4507
CL
3183 return obj;
3184}
3185
e498be7d
CL
3186/*
3187 * A interface to enable slab creation on nodeid
1da177e4 3188 */
8b98c169 3189static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3190 int nodeid)
e498be7d
CL
3191{
3192 struct list_head *entry;
8456a648 3193 struct page *page;
ce8eb6c4 3194 struct kmem_cache_node *n;
b28a02de 3195 void *obj;
b28a02de
PE
3196 int x;
3197
14e50c6a 3198 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3199 n = cachep->node[nodeid];
3200 BUG_ON(!n);
b28a02de 3201
a737b3e2 3202retry:
ca3b9b91 3203 check_irq_off();
ce8eb6c4
CL
3204 spin_lock(&n->list_lock);
3205 entry = n->slabs_partial.next;
3206 if (entry == &n->slabs_partial) {
3207 n->free_touched = 1;
3208 entry = n->slabs_free.next;
3209 if (entry == &n->slabs_free)
b28a02de
PE
3210 goto must_grow;
3211 }
3212
8456a648 3213 page = list_entry(entry, struct page, lru);
b28a02de 3214 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3215
3216 STATS_INC_NODEALLOCS(cachep);
3217 STATS_INC_ACTIVE(cachep);
3218 STATS_SET_HIGH(cachep);
3219
8456a648 3220 BUG_ON(page->active == cachep->num);
b28a02de 3221
8456a648 3222 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3223 n->free_objects--;
b28a02de 3224 /* move slabp to correct slabp list: */
8456a648 3225 list_del(&page->lru);
b28a02de 3226
8456a648
JK
3227 if (page->active == cachep->num)
3228 list_add(&page->lru, &n->slabs_full);
a737b3e2 3229 else
8456a648 3230 list_add(&page->lru, &n->slabs_partial);
e498be7d 3231
ce8eb6c4 3232 spin_unlock(&n->list_lock);
b28a02de 3233 goto done;
e498be7d 3234
a737b3e2 3235must_grow:
ce8eb6c4 3236 spin_unlock(&n->list_lock);
3c517a61 3237 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3238 if (x)
3239 goto retry;
1da177e4 3240
8c8cc2c1 3241 return fallback_alloc(cachep, flags);
e498be7d 3242
a737b3e2 3243done:
b28a02de 3244 return obj;
e498be7d 3245}
8c8cc2c1 3246
8c8cc2c1 3247static __always_inline void *
48356303 3248slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3249 unsigned long caller)
8c8cc2c1
PE
3250{
3251 unsigned long save_flags;
3252 void *ptr;
7d6e6d09 3253 int slab_node = numa_mem_id();
8c8cc2c1 3254
dcce284a 3255 flags &= gfp_allowed_mask;
7e85ee0c 3256
cf40bd16
NP
3257 lockdep_trace_alloc(flags);
3258
773ff60e 3259 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3260 return NULL;
3261
d79923fa
GC
3262 cachep = memcg_kmem_get_cache(cachep, flags);
3263
8c8cc2c1
PE
3264 cache_alloc_debugcheck_before(cachep, flags);
3265 local_irq_save(save_flags);
3266
eacbbae3 3267 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3268 nodeid = slab_node;
8c8cc2c1 3269
6a67368c 3270 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3271 /* Node not bootstrapped yet */
3272 ptr = fallback_alloc(cachep, flags);
3273 goto out;
3274 }
3275
7d6e6d09 3276 if (nodeid == slab_node) {
8c8cc2c1
PE
3277 /*
3278 * Use the locally cached objects if possible.
3279 * However ____cache_alloc does not allow fallback
3280 * to other nodes. It may fail while we still have
3281 * objects on other nodes available.
3282 */
3283 ptr = ____cache_alloc(cachep, flags);
3284 if (ptr)
3285 goto out;
3286 }
3287 /* ___cache_alloc_node can fall back to other nodes */
3288 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3289 out:
3290 local_irq_restore(save_flags);
3291 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3292 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3293 flags);
8c8cc2c1 3294
5087c822 3295 if (likely(ptr)) {
8c138bc0 3296 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3297 if (unlikely(flags & __GFP_ZERO))
3298 memset(ptr, 0, cachep->object_size);
3299 }
d07dbea4 3300
8c8cc2c1
PE
3301 return ptr;
3302}
3303
3304static __always_inline void *
3305__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3306{
3307 void *objp;
3308
f0432d15 3309 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
8c8cc2c1
PE
3310 objp = alternate_node_alloc(cache, flags);
3311 if (objp)
3312 goto out;
3313 }
3314 objp = ____cache_alloc(cache, flags);
3315
3316 /*
3317 * We may just have run out of memory on the local node.
3318 * ____cache_alloc_node() knows how to locate memory on other nodes
3319 */
7d6e6d09
LS
3320 if (!objp)
3321 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3322
3323 out:
3324 return objp;
3325}
3326#else
3327
3328static __always_inline void *
3329__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3330{
3331 return ____cache_alloc(cachep, flags);
3332}
3333
3334#endif /* CONFIG_NUMA */
3335
3336static __always_inline void *
48356303 3337slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3338{
3339 unsigned long save_flags;
3340 void *objp;
3341
dcce284a 3342 flags &= gfp_allowed_mask;
7e85ee0c 3343
cf40bd16
NP
3344 lockdep_trace_alloc(flags);
3345
773ff60e 3346 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3347 return NULL;
3348
d79923fa
GC
3349 cachep = memcg_kmem_get_cache(cachep, flags);
3350
8c8cc2c1
PE
3351 cache_alloc_debugcheck_before(cachep, flags);
3352 local_irq_save(save_flags);
3353 objp = __do_cache_alloc(cachep, flags);
3354 local_irq_restore(save_flags);
3355 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3356 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3357 flags);
8c8cc2c1
PE
3358 prefetchw(objp);
3359
5087c822 3360 if (likely(objp)) {
8c138bc0 3361 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3362 if (unlikely(flags & __GFP_ZERO))
3363 memset(objp, 0, cachep->object_size);
3364 }
d07dbea4 3365
8c8cc2c1
PE
3366 return objp;
3367}
e498be7d
CL
3368
3369/*
5f0985bb 3370 * Caller needs to acquire correct kmem_cache_node's list_lock
e498be7d 3371 */
343e0d7a 3372static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3373 int node)
1da177e4
LT
3374{
3375 int i;
ce8eb6c4 3376 struct kmem_cache_node *n;
1da177e4
LT
3377
3378 for (i = 0; i < nr_objects; i++) {
072bb0aa 3379 void *objp;
8456a648 3380 struct page *page;
1da177e4 3381
072bb0aa
MG
3382 clear_obj_pfmemalloc(&objpp[i]);
3383 objp = objpp[i];
3384
8456a648 3385 page = virt_to_head_page(objp);
ce8eb6c4 3386 n = cachep->node[node];
8456a648 3387 list_del(&page->lru);
ff69416e 3388 check_spinlock_acquired_node(cachep, node);
8456a648 3389 slab_put_obj(cachep, page, objp, node);
1da177e4 3390 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3391 n->free_objects++;
1da177e4
LT
3392
3393 /* fixup slab chains */
8456a648 3394 if (page->active == 0) {
ce8eb6c4
CL
3395 if (n->free_objects > n->free_limit) {
3396 n->free_objects -= cachep->num;
e5ac9c5a
RT
3397 /* No need to drop any previously held
3398 * lock here, even if we have a off-slab slab
3399 * descriptor it is guaranteed to come from
3400 * a different cache, refer to comments before
3401 * alloc_slabmgmt.
3402 */
8456a648 3403 slab_destroy(cachep, page);
1da177e4 3404 } else {
8456a648 3405 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3406 }
3407 } else {
3408 /* Unconditionally move a slab to the end of the
3409 * partial list on free - maximum time for the
3410 * other objects to be freed, too.
3411 */
8456a648 3412 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3413 }
3414 }
3415}
3416
343e0d7a 3417static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3418{
3419 int batchcount;
ce8eb6c4 3420 struct kmem_cache_node *n;
7d6e6d09 3421 int node = numa_mem_id();
1da177e4
LT
3422
3423 batchcount = ac->batchcount;
3424#if DEBUG
3425 BUG_ON(!batchcount || batchcount > ac->avail);
3426#endif
3427 check_irq_off();
ce8eb6c4
CL
3428 n = cachep->node[node];
3429 spin_lock(&n->list_lock);
3430 if (n->shared) {
3431 struct array_cache *shared_array = n->shared;
b28a02de 3432 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3433 if (max) {
3434 if (batchcount > max)
3435 batchcount = max;
e498be7d 3436 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3437 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3438 shared_array->avail += batchcount;
3439 goto free_done;
3440 }
3441 }
3442
ff69416e 3443 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3444free_done:
1da177e4
LT
3445#if STATS
3446 {
3447 int i = 0;
3448 struct list_head *p;
3449
ce8eb6c4
CL
3450 p = n->slabs_free.next;
3451 while (p != &(n->slabs_free)) {
8456a648 3452 struct page *page;
1da177e4 3453
8456a648
JK
3454 page = list_entry(p, struct page, lru);
3455 BUG_ON(page->active);
1da177e4
LT
3456
3457 i++;
3458 p = p->next;
3459 }
3460 STATS_SET_FREEABLE(cachep, i);
3461 }
3462#endif
ce8eb6c4 3463 spin_unlock(&n->list_lock);
1da177e4 3464 ac->avail -= batchcount;
a737b3e2 3465 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3466}
3467
3468/*
a737b3e2
AM
3469 * Release an obj back to its cache. If the obj has a constructed state, it must
3470 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3471 */
a947eb95 3472static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3473 unsigned long caller)
1da177e4 3474{
9a2dba4b 3475 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3476
3477 check_irq_off();
d5cff635 3478 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3479 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3480
8c138bc0 3481 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3482
1807a1aa
SS
3483 /*
3484 * Skip calling cache_free_alien() when the platform is not numa.
3485 * This will avoid cache misses that happen while accessing slabp (which
3486 * is per page memory reference) to get nodeid. Instead use a global
3487 * variable to skip the call, which is mostly likely to be present in
3488 * the cache.
3489 */
b6e68bc1 3490 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3491 return;
3492
1da177e4
LT
3493 if (likely(ac->avail < ac->limit)) {
3494 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3495 } else {
3496 STATS_INC_FREEMISS(cachep);
3497 cache_flusharray(cachep, ac);
1da177e4 3498 }
42c8c99c 3499
072bb0aa 3500 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3501}
3502
3503/**
3504 * kmem_cache_alloc - Allocate an object
3505 * @cachep: The cache to allocate from.
3506 * @flags: See kmalloc().
3507 *
3508 * Allocate an object from this cache. The flags are only relevant
3509 * if the cache has no available objects.
3510 */
343e0d7a 3511void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3512{
48356303 3513 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3514
ca2b84cb 3515 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3516 cachep->object_size, cachep->size, flags);
36555751
EGM
3517
3518 return ret;
1da177e4
LT
3519}
3520EXPORT_SYMBOL(kmem_cache_alloc);
3521
0f24f128 3522#ifdef CONFIG_TRACING
85beb586 3523void *
4052147c 3524kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3525{
85beb586
SR
3526 void *ret;
3527
48356303 3528 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3529
3530 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3531 size, cachep->size, flags);
85beb586 3532 return ret;
36555751 3533}
85beb586 3534EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3535#endif
3536
1da177e4 3537#ifdef CONFIG_NUMA
d0d04b78
ZL
3538/**
3539 * kmem_cache_alloc_node - Allocate an object on the specified node
3540 * @cachep: The cache to allocate from.
3541 * @flags: See kmalloc().
3542 * @nodeid: node number of the target node.
3543 *
3544 * Identical to kmem_cache_alloc but it will allocate memory on the given
3545 * node, which can improve the performance for cpu bound structures.
3546 *
3547 * Fallback to other node is possible if __GFP_THISNODE is not set.
3548 */
8b98c169
CH
3549void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3550{
48356303 3551 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3552
ca2b84cb 3553 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3554 cachep->object_size, cachep->size,
ca2b84cb 3555 flags, nodeid);
36555751
EGM
3556
3557 return ret;
8b98c169 3558}
1da177e4
LT
3559EXPORT_SYMBOL(kmem_cache_alloc_node);
3560
0f24f128 3561#ifdef CONFIG_TRACING
4052147c 3562void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3563 gfp_t flags,
4052147c
EG
3564 int nodeid,
3565 size_t size)
36555751 3566{
85beb586
SR
3567 void *ret;
3568
592f4145 3569 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3570
85beb586 3571 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3572 size, cachep->size,
85beb586
SR
3573 flags, nodeid);
3574 return ret;
36555751 3575}
85beb586 3576EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3577#endif
3578
8b98c169 3579static __always_inline void *
7c0cb9c6 3580__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3581{
343e0d7a 3582 struct kmem_cache *cachep;
97e2bde4 3583
2c59dd65 3584 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3585 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3586 return cachep;
4052147c 3587 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3588}
8b98c169 3589
0bb38a5c 3590#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3591void *__kmalloc_node(size_t size, gfp_t flags, int node)
3592{
7c0cb9c6 3593 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3594}
dbe5e69d 3595EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3596
3597void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3598 int node, unsigned long caller)
8b98c169 3599{
7c0cb9c6 3600 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3601}
3602EXPORT_SYMBOL(__kmalloc_node_track_caller);
3603#else
3604void *__kmalloc_node(size_t size, gfp_t flags, int node)
3605{
7c0cb9c6 3606 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3607}
3608EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3609#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3610#endif /* CONFIG_NUMA */
1da177e4
LT
3611
3612/**
800590f5 3613 * __do_kmalloc - allocate memory
1da177e4 3614 * @size: how many bytes of memory are required.
800590f5 3615 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3616 * @caller: function caller for debug tracking of the caller
1da177e4 3617 */
7fd6b141 3618static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3619 unsigned long caller)
1da177e4 3620{
343e0d7a 3621 struct kmem_cache *cachep;
36555751 3622 void *ret;
1da177e4 3623
2c59dd65 3624 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3625 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3626 return cachep;
48356303 3627 ret = slab_alloc(cachep, flags, caller);
36555751 3628
7c0cb9c6 3629 trace_kmalloc(caller, ret,
3b0efdfa 3630 size, cachep->size, flags);
36555751
EGM
3631
3632 return ret;
7fd6b141
PE
3633}
3634
7fd6b141 3635
0bb38a5c 3636#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3637void *__kmalloc(size_t size, gfp_t flags)
3638{
7c0cb9c6 3639 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3640}
3641EXPORT_SYMBOL(__kmalloc);
3642
ce71e27c 3643void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3644{
7c0cb9c6 3645 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3646}
3647EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3648
3649#else
3650void *__kmalloc(size_t size, gfp_t flags)
3651{
7c0cb9c6 3652 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3653}
3654EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3655#endif
3656
1da177e4
LT
3657/**
3658 * kmem_cache_free - Deallocate an object
3659 * @cachep: The cache the allocation was from.
3660 * @objp: The previously allocated object.
3661 *
3662 * Free an object which was previously allocated from this
3663 * cache.
3664 */
343e0d7a 3665void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3666{
3667 unsigned long flags;
b9ce5ef4
GC
3668 cachep = cache_from_obj(cachep, objp);
3669 if (!cachep)
3670 return;
1da177e4
LT
3671
3672 local_irq_save(flags);
d97d476b 3673 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3674 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3675 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3676 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3677 local_irq_restore(flags);
36555751 3678
ca2b84cb 3679 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3680}
3681EXPORT_SYMBOL(kmem_cache_free);
3682
1da177e4
LT
3683/**
3684 * kfree - free previously allocated memory
3685 * @objp: pointer returned by kmalloc.
3686 *
80e93eff
PE
3687 * If @objp is NULL, no operation is performed.
3688 *
1da177e4
LT
3689 * Don't free memory not originally allocated by kmalloc()
3690 * or you will run into trouble.
3691 */
3692void kfree(const void *objp)
3693{
343e0d7a 3694 struct kmem_cache *c;
1da177e4
LT
3695 unsigned long flags;
3696
2121db74
PE
3697 trace_kfree(_RET_IP_, objp);
3698
6cb8f913 3699 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3700 return;
3701 local_irq_save(flags);
3702 kfree_debugcheck(objp);
6ed5eb22 3703 c = virt_to_cache(objp);
8c138bc0
CL
3704 debug_check_no_locks_freed(objp, c->object_size);
3705
3706 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3707 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3708 local_irq_restore(flags);
3709}
3710EXPORT_SYMBOL(kfree);
3711
e498be7d 3712/*
ce8eb6c4 3713 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3714 */
5f0985bb 3715static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3716{
3717 int node;
ce8eb6c4 3718 struct kmem_cache_node *n;
cafeb02e 3719 struct array_cache *new_shared;
3395ee05 3720 struct array_cache **new_alien = NULL;
e498be7d 3721
9c09a95c 3722 for_each_online_node(node) {
cafeb02e 3723
3395ee05 3724 if (use_alien_caches) {
83b519e8 3725 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3726 if (!new_alien)
3727 goto fail;
3728 }
cafeb02e 3729
63109846
ED
3730 new_shared = NULL;
3731 if (cachep->shared) {
3732 new_shared = alloc_arraycache(node,
0718dc2a 3733 cachep->shared*cachep->batchcount,
83b519e8 3734 0xbaadf00d, gfp);
63109846
ED
3735 if (!new_shared) {
3736 free_alien_cache(new_alien);
3737 goto fail;
3738 }
0718dc2a 3739 }
cafeb02e 3740
ce8eb6c4
CL
3741 n = cachep->node[node];
3742 if (n) {
3743 struct array_cache *shared = n->shared;
cafeb02e 3744
ce8eb6c4 3745 spin_lock_irq(&n->list_lock);
e498be7d 3746
cafeb02e 3747 if (shared)
0718dc2a
CL
3748 free_block(cachep, shared->entry,
3749 shared->avail, node);
e498be7d 3750
ce8eb6c4
CL
3751 n->shared = new_shared;
3752 if (!n->alien) {
3753 n->alien = new_alien;
e498be7d
CL
3754 new_alien = NULL;
3755 }
ce8eb6c4 3756 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3757 cachep->batchcount + cachep->num;
ce8eb6c4 3758 spin_unlock_irq(&n->list_lock);
cafeb02e 3759 kfree(shared);
e498be7d
CL
3760 free_alien_cache(new_alien);
3761 continue;
3762 }
ce8eb6c4
CL
3763 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3764 if (!n) {
0718dc2a
CL
3765 free_alien_cache(new_alien);
3766 kfree(new_shared);
e498be7d 3767 goto fail;
0718dc2a 3768 }
e498be7d 3769
ce8eb6c4 3770 kmem_cache_node_init(n);
5f0985bb
JZ
3771 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3772 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3773 n->shared = new_shared;
3774 n->alien = new_alien;
3775 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3776 cachep->batchcount + cachep->num;
ce8eb6c4 3777 cachep->node[node] = n;
e498be7d 3778 }
cafeb02e 3779 return 0;
0718dc2a 3780
a737b3e2 3781fail:
3b0efdfa 3782 if (!cachep->list.next) {
0718dc2a
CL
3783 /* Cache is not active yet. Roll back what we did */
3784 node--;
3785 while (node >= 0) {
6a67368c 3786 if (cachep->node[node]) {
ce8eb6c4 3787 n = cachep->node[node];
0718dc2a 3788
ce8eb6c4
CL
3789 kfree(n->shared);
3790 free_alien_cache(n->alien);
3791 kfree(n);
6a67368c 3792 cachep->node[node] = NULL;
0718dc2a
CL
3793 }
3794 node--;
3795 }
3796 }
cafeb02e 3797 return -ENOMEM;
e498be7d
CL
3798}
3799
1da177e4 3800struct ccupdate_struct {
343e0d7a 3801 struct kmem_cache *cachep;
acfe7d74 3802 struct array_cache *new[0];
1da177e4
LT
3803};
3804
3805static void do_ccupdate_local(void *info)
3806{
a737b3e2 3807 struct ccupdate_struct *new = info;
1da177e4
LT
3808 struct array_cache *old;
3809
3810 check_irq_off();
9a2dba4b 3811 old = cpu_cache_get(new->cachep);
e498be7d 3812
1da177e4
LT
3813 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3814 new->new[smp_processor_id()] = old;
3815}
3816
18004c5d 3817/* Always called with the slab_mutex held */
943a451a 3818static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3819 int batchcount, int shared, gfp_t gfp)
1da177e4 3820{
d2e7b7d0 3821 struct ccupdate_struct *new;
2ed3a4ef 3822 int i;
1da177e4 3823
acfe7d74
ED
3824 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3825 gfp);
d2e7b7d0
SS
3826 if (!new)
3827 return -ENOMEM;
3828
e498be7d 3829 for_each_online_cpu(i) {
7d6e6d09 3830 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3831 batchcount, gfp);
d2e7b7d0 3832 if (!new->new[i]) {
b28a02de 3833 for (i--; i >= 0; i--)
d2e7b7d0
SS
3834 kfree(new->new[i]);
3835 kfree(new);
e498be7d 3836 return -ENOMEM;
1da177e4
LT
3837 }
3838 }
d2e7b7d0 3839 new->cachep = cachep;
1da177e4 3840
15c8b6c1 3841 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3842
1da177e4 3843 check_irq_on();
1da177e4
LT
3844 cachep->batchcount = batchcount;
3845 cachep->limit = limit;
e498be7d 3846 cachep->shared = shared;
1da177e4 3847
e498be7d 3848 for_each_online_cpu(i) {
d2e7b7d0 3849 struct array_cache *ccold = new->new[i];
1da177e4
LT
3850 if (!ccold)
3851 continue;
6a67368c 3852 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3853 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3854 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3855 kfree(ccold);
3856 }
d2e7b7d0 3857 kfree(new);
5f0985bb 3858 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3859}
3860
943a451a
GC
3861static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862 int batchcount, int shared, gfp_t gfp)
3863{
3864 int ret;
3865 struct kmem_cache *c = NULL;
3866 int i = 0;
3867
3868 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3869
3870 if (slab_state < FULL)
3871 return ret;
3872
3873 if ((ret < 0) || !is_root_cache(cachep))
3874 return ret;
3875
ebe945c2 3876 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a 3877 for_each_memcg_cache_index(i) {
2ade4de8 3878 c = cache_from_memcg_idx(cachep, i);
943a451a
GC
3879 if (c)
3880 /* return value determined by the parent cache only */
3881 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3882 }
3883
3884 return ret;
3885}
3886
18004c5d 3887/* Called with slab_mutex held always */
83b519e8 3888static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3889{
3890 int err;
943a451a
GC
3891 int limit = 0;
3892 int shared = 0;
3893 int batchcount = 0;
3894
3895 if (!is_root_cache(cachep)) {
3896 struct kmem_cache *root = memcg_root_cache(cachep);
3897 limit = root->limit;
3898 shared = root->shared;
3899 batchcount = root->batchcount;
3900 }
1da177e4 3901
943a451a
GC
3902 if (limit && shared && batchcount)
3903 goto skip_setup;
a737b3e2
AM
3904 /*
3905 * The head array serves three purposes:
1da177e4
LT
3906 * - create a LIFO ordering, i.e. return objects that are cache-warm
3907 * - reduce the number of spinlock operations.
a737b3e2 3908 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3909 * bufctl chains: array operations are cheaper.
3910 * The numbers are guessed, we should auto-tune as described by
3911 * Bonwick.
3912 */
3b0efdfa 3913 if (cachep->size > 131072)
1da177e4 3914 limit = 1;
3b0efdfa 3915 else if (cachep->size > PAGE_SIZE)
1da177e4 3916 limit = 8;
3b0efdfa 3917 else if (cachep->size > 1024)
1da177e4 3918 limit = 24;
3b0efdfa 3919 else if (cachep->size > 256)
1da177e4
LT
3920 limit = 54;
3921 else
3922 limit = 120;
3923
a737b3e2
AM
3924 /*
3925 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3926 * allocation behaviour: Most allocs on one cpu, most free operations
3927 * on another cpu. For these cases, an efficient object passing between
3928 * cpus is necessary. This is provided by a shared array. The array
3929 * replaces Bonwick's magazine layer.
3930 * On uniprocessor, it's functionally equivalent (but less efficient)
3931 * to a larger limit. Thus disabled by default.
3932 */
3933 shared = 0;
3b0efdfa 3934 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3935 shared = 8;
1da177e4
LT
3936
3937#if DEBUG
a737b3e2
AM
3938 /*
3939 * With debugging enabled, large batchcount lead to excessively long
3940 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3941 */
3942 if (limit > 32)
3943 limit = 32;
3944#endif
943a451a
GC
3945 batchcount = (limit + 1) / 2;
3946skip_setup:
3947 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3948 if (err)
3949 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3950 cachep->name, -err);
2ed3a4ef 3951 return err;
1da177e4
LT
3952}
3953
1b55253a 3954/*
ce8eb6c4
CL
3955 * Drain an array if it contains any elements taking the node lock only if
3956 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3957 * if drain_array() is used on the shared array.
1b55253a 3958 */
ce8eb6c4 3959static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3960 struct array_cache *ac, int force, int node)
1da177e4
LT
3961{
3962 int tofree;
3963
1b55253a
CL
3964 if (!ac || !ac->avail)
3965 return;
1da177e4
LT
3966 if (ac->touched && !force) {
3967 ac->touched = 0;
b18e7e65 3968 } else {
ce8eb6c4 3969 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3970 if (ac->avail) {
3971 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3972 if (tofree > ac->avail)
3973 tofree = (ac->avail + 1) / 2;
3974 free_block(cachep, ac->entry, tofree, node);
3975 ac->avail -= tofree;
3976 memmove(ac->entry, &(ac->entry[tofree]),
3977 sizeof(void *) * ac->avail);
3978 }
ce8eb6c4 3979 spin_unlock_irq(&n->list_lock);
1da177e4
LT
3980 }
3981}
3982
3983/**
3984 * cache_reap - Reclaim memory from caches.
05fb6bf0 3985 * @w: work descriptor
1da177e4
LT
3986 *
3987 * Called from workqueue/eventd every few seconds.
3988 * Purpose:
3989 * - clear the per-cpu caches for this CPU.
3990 * - return freeable pages to the main free memory pool.
3991 *
a737b3e2
AM
3992 * If we cannot acquire the cache chain mutex then just give up - we'll try
3993 * again on the next iteration.
1da177e4 3994 */
7c5cae36 3995static void cache_reap(struct work_struct *w)
1da177e4 3996{
7a7c381d 3997 struct kmem_cache *searchp;
ce8eb6c4 3998 struct kmem_cache_node *n;
7d6e6d09 3999 int node = numa_mem_id();
bf6aede7 4000 struct delayed_work *work = to_delayed_work(w);
1da177e4 4001
18004c5d 4002 if (!mutex_trylock(&slab_mutex))
1da177e4 4003 /* Give up. Setup the next iteration. */
7c5cae36 4004 goto out;
1da177e4 4005
18004c5d 4006 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4007 check_irq_on();
4008
35386e3b 4009 /*
ce8eb6c4 4010 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4011 * have established with reasonable certainty that
4012 * we can do some work if the lock was obtained.
4013 */
ce8eb6c4 4014 n = searchp->node[node];
35386e3b 4015
ce8eb6c4 4016 reap_alien(searchp, n);
1da177e4 4017
ce8eb6c4 4018 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4019
35386e3b
CL
4020 /*
4021 * These are racy checks but it does not matter
4022 * if we skip one check or scan twice.
4023 */
ce8eb6c4 4024 if (time_after(n->next_reap, jiffies))
35386e3b 4025 goto next;
1da177e4 4026
5f0985bb 4027 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4028
ce8eb6c4 4029 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4030
ce8eb6c4
CL
4031 if (n->free_touched)
4032 n->free_touched = 0;
ed11d9eb
CL
4033 else {
4034 int freed;
1da177e4 4035
ce8eb6c4 4036 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4037 5 * searchp->num - 1) / (5 * searchp->num));
4038 STATS_ADD_REAPED(searchp, freed);
4039 }
35386e3b 4040next:
1da177e4
LT
4041 cond_resched();
4042 }
4043 check_irq_on();
18004c5d 4044 mutex_unlock(&slab_mutex);
8fce4d8e 4045 next_reap_node();
7c5cae36 4046out:
a737b3e2 4047 /* Set up the next iteration */
5f0985bb 4048 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4049}
4050
158a9624 4051#ifdef CONFIG_SLABINFO
0d7561c6 4052void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4053{
8456a648 4054 struct page *page;
b28a02de
PE
4055 unsigned long active_objs;
4056 unsigned long num_objs;
4057 unsigned long active_slabs = 0;
4058 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4059 const char *name;
1da177e4 4060 char *error = NULL;
e498be7d 4061 int node;
ce8eb6c4 4062 struct kmem_cache_node *n;
1da177e4 4063
1da177e4
LT
4064 active_objs = 0;
4065 num_slabs = 0;
e498be7d 4066 for_each_online_node(node) {
ce8eb6c4
CL
4067 n = cachep->node[node];
4068 if (!n)
e498be7d
CL
4069 continue;
4070
ca3b9b91 4071 check_irq_on();
ce8eb6c4 4072 spin_lock_irq(&n->list_lock);
e498be7d 4073
8456a648
JK
4074 list_for_each_entry(page, &n->slabs_full, lru) {
4075 if (page->active != cachep->num && !error)
e498be7d
CL
4076 error = "slabs_full accounting error";
4077 active_objs += cachep->num;
4078 active_slabs++;
4079 }
8456a648
JK
4080 list_for_each_entry(page, &n->slabs_partial, lru) {
4081 if (page->active == cachep->num && !error)
106a74e1 4082 error = "slabs_partial accounting error";
8456a648 4083 if (!page->active && !error)
106a74e1 4084 error = "slabs_partial accounting error";
8456a648 4085 active_objs += page->active;
e498be7d
CL
4086 active_slabs++;
4087 }
8456a648
JK
4088 list_for_each_entry(page, &n->slabs_free, lru) {
4089 if (page->active && !error)
106a74e1 4090 error = "slabs_free accounting error";
e498be7d
CL
4091 num_slabs++;
4092 }
ce8eb6c4
CL
4093 free_objects += n->free_objects;
4094 if (n->shared)
4095 shared_avail += n->shared->avail;
e498be7d 4096
ce8eb6c4 4097 spin_unlock_irq(&n->list_lock);
1da177e4 4098 }
b28a02de
PE
4099 num_slabs += active_slabs;
4100 num_objs = num_slabs * cachep->num;
e498be7d 4101 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4102 error = "free_objects accounting error";
4103
b28a02de 4104 name = cachep->name;
1da177e4
LT
4105 if (error)
4106 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4107
0d7561c6
GC
4108 sinfo->active_objs = active_objs;
4109 sinfo->num_objs = num_objs;
4110 sinfo->active_slabs = active_slabs;
4111 sinfo->num_slabs = num_slabs;
4112 sinfo->shared_avail = shared_avail;
4113 sinfo->limit = cachep->limit;
4114 sinfo->batchcount = cachep->batchcount;
4115 sinfo->shared = cachep->shared;
4116 sinfo->objects_per_slab = cachep->num;
4117 sinfo->cache_order = cachep->gfporder;
4118}
4119
4120void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4121{
1da177e4 4122#if STATS
ce8eb6c4 4123 { /* node stats */
1da177e4
LT
4124 unsigned long high = cachep->high_mark;
4125 unsigned long allocs = cachep->num_allocations;
4126 unsigned long grown = cachep->grown;
4127 unsigned long reaped = cachep->reaped;
4128 unsigned long errors = cachep->errors;
4129 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4130 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4131 unsigned long node_frees = cachep->node_frees;
fb7faf33 4132 unsigned long overflows = cachep->node_overflow;
1da177e4 4133
e92dd4fd
JP
4134 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4135 "%4lu %4lu %4lu %4lu %4lu",
4136 allocs, high, grown,
4137 reaped, errors, max_freeable, node_allocs,
4138 node_frees, overflows);
1da177e4
LT
4139 }
4140 /* cpu stats */
4141 {
4142 unsigned long allochit = atomic_read(&cachep->allochit);
4143 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4144 unsigned long freehit = atomic_read(&cachep->freehit);
4145 unsigned long freemiss = atomic_read(&cachep->freemiss);
4146
4147 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4148 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4149 }
4150#endif
1da177e4
LT
4151}
4152
1da177e4
LT
4153#define MAX_SLABINFO_WRITE 128
4154/**
4155 * slabinfo_write - Tuning for the slab allocator
4156 * @file: unused
4157 * @buffer: user buffer
4158 * @count: data length
4159 * @ppos: unused
4160 */
b7454ad3 4161ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4162 size_t count, loff_t *ppos)
1da177e4 4163{
b28a02de 4164 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4165 int limit, batchcount, shared, res;
7a7c381d 4166 struct kmem_cache *cachep;
b28a02de 4167
1da177e4
LT
4168 if (count > MAX_SLABINFO_WRITE)
4169 return -EINVAL;
4170 if (copy_from_user(&kbuf, buffer, count))
4171 return -EFAULT;
b28a02de 4172 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4173
4174 tmp = strchr(kbuf, ' ');
4175 if (!tmp)
4176 return -EINVAL;
4177 *tmp = '\0';
4178 tmp++;
4179 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4180 return -EINVAL;
4181
4182 /* Find the cache in the chain of caches. */
18004c5d 4183 mutex_lock(&slab_mutex);
1da177e4 4184 res = -EINVAL;
18004c5d 4185 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4186 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4187 if (limit < 1 || batchcount < 1 ||
4188 batchcount > limit || shared < 0) {
e498be7d 4189 res = 0;
1da177e4 4190 } else {
e498be7d 4191 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4192 batchcount, shared,
4193 GFP_KERNEL);
1da177e4
LT
4194 }
4195 break;
4196 }
4197 }
18004c5d 4198 mutex_unlock(&slab_mutex);
1da177e4
LT
4199 if (res >= 0)
4200 res = count;
4201 return res;
4202}
871751e2
AV
4203
4204#ifdef CONFIG_DEBUG_SLAB_LEAK
4205
4206static void *leaks_start(struct seq_file *m, loff_t *pos)
4207{
18004c5d
CL
4208 mutex_lock(&slab_mutex);
4209 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4210}
4211
4212static inline int add_caller(unsigned long *n, unsigned long v)
4213{
4214 unsigned long *p;
4215 int l;
4216 if (!v)
4217 return 1;
4218 l = n[1];
4219 p = n + 2;
4220 while (l) {
4221 int i = l/2;
4222 unsigned long *q = p + 2 * i;
4223 if (*q == v) {
4224 q[1]++;
4225 return 1;
4226 }
4227 if (*q > v) {
4228 l = i;
4229 } else {
4230 p = q + 2;
4231 l -= i + 1;
4232 }
4233 }
4234 if (++n[1] == n[0])
4235 return 0;
4236 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4237 p[0] = v;
4238 p[1] = 1;
4239 return 1;
4240}
4241
8456a648
JK
4242static void handle_slab(unsigned long *n, struct kmem_cache *c,
4243 struct page *page)
871751e2
AV
4244{
4245 void *p;
b1cb0982
JK
4246 int i, j;
4247
871751e2
AV
4248 if (n[0] == n[1])
4249 return;
8456a648 4250 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
b1cb0982
JK
4251 bool active = true;
4252
8456a648 4253 for (j = page->active; j < c->num; j++) {
b1cb0982 4254 /* Skip freed item */
e5c58dfd 4255 if (get_free_obj(page, j) == i) {
b1cb0982
JK
4256 active = false;
4257 break;
4258 }
4259 }
4260 if (!active)
871751e2 4261 continue;
b1cb0982 4262
871751e2
AV
4263 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4264 return;
4265 }
4266}
4267
4268static void show_symbol(struct seq_file *m, unsigned long address)
4269{
4270#ifdef CONFIG_KALLSYMS
871751e2 4271 unsigned long offset, size;
9281acea 4272 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4273
a5c43dae 4274 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4275 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4276 if (modname[0])
871751e2
AV
4277 seq_printf(m, " [%s]", modname);
4278 return;
4279 }
4280#endif
4281 seq_printf(m, "%p", (void *)address);
4282}
4283
4284static int leaks_show(struct seq_file *m, void *p)
4285{
0672aa7c 4286 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4287 struct page *page;
ce8eb6c4 4288 struct kmem_cache_node *n;
871751e2 4289 const char *name;
db845067 4290 unsigned long *x = m->private;
871751e2
AV
4291 int node;
4292 int i;
4293
4294 if (!(cachep->flags & SLAB_STORE_USER))
4295 return 0;
4296 if (!(cachep->flags & SLAB_RED_ZONE))
4297 return 0;
4298
4299 /* OK, we can do it */
4300
db845067 4301 x[1] = 0;
871751e2
AV
4302
4303 for_each_online_node(node) {
ce8eb6c4
CL
4304 n = cachep->node[node];
4305 if (!n)
871751e2
AV
4306 continue;
4307
4308 check_irq_on();
ce8eb6c4 4309 spin_lock_irq(&n->list_lock);
871751e2 4310
8456a648
JK
4311 list_for_each_entry(page, &n->slabs_full, lru)
4312 handle_slab(x, cachep, page);
4313 list_for_each_entry(page, &n->slabs_partial, lru)
4314 handle_slab(x, cachep, page);
ce8eb6c4 4315 spin_unlock_irq(&n->list_lock);
871751e2
AV
4316 }
4317 name = cachep->name;
db845067 4318 if (x[0] == x[1]) {
871751e2 4319 /* Increase the buffer size */
18004c5d 4320 mutex_unlock(&slab_mutex);
db845067 4321 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4322 if (!m->private) {
4323 /* Too bad, we are really out */
db845067 4324 m->private = x;
18004c5d 4325 mutex_lock(&slab_mutex);
871751e2
AV
4326 return -ENOMEM;
4327 }
db845067
CL
4328 *(unsigned long *)m->private = x[0] * 2;
4329 kfree(x);
18004c5d 4330 mutex_lock(&slab_mutex);
871751e2
AV
4331 /* Now make sure this entry will be retried */
4332 m->count = m->size;
4333 return 0;
4334 }
db845067
CL
4335 for (i = 0; i < x[1]; i++) {
4336 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4337 show_symbol(m, x[2*i+2]);
871751e2
AV
4338 seq_putc(m, '\n');
4339 }
d2e7b7d0 4340
871751e2
AV
4341 return 0;
4342}
4343
a0ec95a8 4344static const struct seq_operations slabstats_op = {
871751e2 4345 .start = leaks_start,
276a2439
WL
4346 .next = slab_next,
4347 .stop = slab_stop,
871751e2
AV
4348 .show = leaks_show,
4349};
a0ec95a8
AD
4350
4351static int slabstats_open(struct inode *inode, struct file *file)
4352{
4353 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4354 int ret = -ENOMEM;
4355 if (n) {
4356 ret = seq_open(file, &slabstats_op);
4357 if (!ret) {
4358 struct seq_file *m = file->private_data;
4359 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4360 m->private = n;
4361 n = NULL;
4362 }
4363 kfree(n);
4364 }
4365 return ret;
4366}
4367
4368static const struct file_operations proc_slabstats_operations = {
4369 .open = slabstats_open,
4370 .read = seq_read,
4371 .llseek = seq_lseek,
4372 .release = seq_release_private,
4373};
4374#endif
4375
4376static int __init slab_proc_init(void)
4377{
4378#ifdef CONFIG_DEBUG_SLAB_LEAK
4379 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4380#endif
a0ec95a8
AD
4381 return 0;
4382}
4383module_init(slab_proc_init);
1da177e4
LT
4384#endif
4385
00e145b6
MS
4386/**
4387 * ksize - get the actual amount of memory allocated for a given object
4388 * @objp: Pointer to the object
4389 *
4390 * kmalloc may internally round up allocations and return more memory
4391 * than requested. ksize() can be used to determine the actual amount of
4392 * memory allocated. The caller may use this additional memory, even though
4393 * a smaller amount of memory was initially specified with the kmalloc call.
4394 * The caller must guarantee that objp points to a valid object previously
4395 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4396 * must not be freed during the duration of the call.
4397 */
fd76bab2 4398size_t ksize(const void *objp)
1da177e4 4399{
ef8b4520
CL
4400 BUG_ON(!objp);
4401 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4402 return 0;
1da177e4 4403
8c138bc0 4404 return virt_to_cache(objp)->object_size;
1da177e4 4405}
b1aabecd 4406EXPORT_SYMBOL(ksize);
This page took 1.216372 seconds and 5 git commands to generate.