slub: Use statically allocated kmem_cache boot structure for bootstrap
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/*
166 * kmem_bufctl_t:
167 *
168 * Bufctl's are used for linking objs within a slab
169 * linked offsets.
170 *
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
182 */
183
fa5b08d5 184typedef unsigned int kmem_bufctl_t;
1da177e4
LT
185#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
187#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 189
1da177e4
LT
190/*
191 * struct slab_rcu
192 *
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
200 *
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
1da177e4
LT
203 */
204struct slab_rcu {
b28a02de 205 struct rcu_head head;
343e0d7a 206 struct kmem_cache *cachep;
b28a02de 207 void *addr;
1da177e4
LT
208};
209
5bfe53a7
LJ
210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
218 union {
219 struct {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
226 };
227 struct slab_rcu __slab_cover_slab_rcu;
228 };
229};
230
1da177e4
LT
231/*
232 * struct array_cache
233 *
1da177e4
LT
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
238 *
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
241 *
242 */
243struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
e498be7d 248 spinlock_t lock;
bda5b655 249 void *entry[]; /*
a737b3e2
AM
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
072bb0aa
MG
253 *
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 257 */
1da177e4
LT
258};
259
072bb0aa
MG
260#define SLAB_OBJ_PFMEMALLOC 1
261static inline bool is_obj_pfmemalloc(void *objp)
262{
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
264}
265
266static inline void set_obj_pfmemalloc(void **objp)
267{
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
269 return;
270}
271
272static inline void clear_obj_pfmemalloc(void **objp)
273{
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
275}
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
556a169d 307#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 308static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 309#define CACHE_CACHE 0
556a169d
PE
310#define SIZE_AC MAX_NUMNODES
311#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
83b519e8 317static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
1c61fc40 336#include <linux/kmalloc_sizes.h>
e498be7d 337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4 374
1da177e4
LT
375#define CFLGS_OFF_SLAB (0x80000000UL)
376#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
377
378#define BATCHREFILL_LIMIT 16
a737b3e2
AM
379/*
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
1da177e4 382 *
dc6f3f27 383 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
384 * which could lock up otherwise freeable slabs.
385 */
386#define REAPTIMEOUT_CPUC (2*HZ)
387#define REAPTIMEOUT_LIST3 (4*HZ)
388
389#if STATS
390#define STATS_INC_ACTIVE(x) ((x)->num_active++)
391#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 394#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
395#define STATS_SET_HIGH(x) \
396 do { \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
399 } while (0)
1da177e4
LT
400#define STATS_INC_ERR(x) ((x)->errors++)
401#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 402#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 403#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
404#define STATS_SET_FREEABLE(x, i) \
405 do { \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
408 } while (0)
1da177e4
LT
409#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
413#else
414#define STATS_INC_ACTIVE(x) do { } while (0)
415#define STATS_DEC_ACTIVE(x) do { } while (0)
416#define STATS_INC_ALLOCED(x) do { } while (0)
417#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 418#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
419#define STATS_SET_HIGH(x) do { } while (0)
420#define STATS_INC_ERR(x) do { } while (0)
421#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 422#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 423#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 424#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
425#define STATS_INC_ALLOCHIT(x) do { } while (0)
426#define STATS_INC_ALLOCMISS(x) do { } while (0)
427#define STATS_INC_FREEHIT(x) do { } while (0)
428#define STATS_INC_FREEMISS(x) do { } while (0)
429#endif
430
431#if DEBUG
1da177e4 432
a737b3e2
AM
433/*
434 * memory layout of objects:
1da177e4 435 * 0 : objp
3dafccf2 436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
3dafccf2 439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 440 * redzone word.
3dafccf2 441 * cachep->obj_offset: The real object.
3b0efdfa
CL
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 444 * [BYTES_PER_WORD long]
1da177e4 445 */
343e0d7a 446static int obj_offset(struct kmem_cache *cachep)
1da177e4 447{
3dafccf2 448 return cachep->obj_offset;
1da177e4
LT
449}
450
b46b8f19 451static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
452{
453 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
454 return (unsigned long long*) (objp + obj_offset(cachep) -
455 sizeof(unsigned long long));
1da177e4
LT
456}
457
b46b8f19 458static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
459{
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
461 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 462 return (unsigned long long *)(objp + cachep->size -
b46b8f19 463 sizeof(unsigned long long) -
87a927c7 464 REDZONE_ALIGN);
3b0efdfa 465 return (unsigned long long *) (objp + cachep->size -
b46b8f19 466 sizeof(unsigned long long));
1da177e4
LT
467}
468
343e0d7a 469static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
470{
471 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 472 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
473}
474
475#else
476
3dafccf2 477#define obj_offset(x) 0
b46b8f19
DW
478#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
480#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
481
482#endif
483
1da177e4 484/*
3df1cccd
DR
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
1da177e4 487 */
543585cc
DR
488#define SLAB_MAX_ORDER_HI 1
489#define SLAB_MAX_ORDER_LO 0
490static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 491static bool slab_max_order_set __initdata;
1da177e4 492
6ed5eb22
PE
493static inline struct kmem_cache *virt_to_cache(const void *obj)
494{
b49af68f 495 struct page *page = virt_to_head_page(obj);
35026088 496 return page->slab_cache;
6ed5eb22
PE
497}
498
499static inline struct slab *virt_to_slab(const void *obj)
500{
b49af68f 501 struct page *page = virt_to_head_page(obj);
35026088
CL
502
503 VM_BUG_ON(!PageSlab(page));
504 return page->slab_page;
6ed5eb22
PE
505}
506
8fea4e96
PE
507static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
508 unsigned int idx)
509{
3b0efdfa 510 return slab->s_mem + cache->size * idx;
8fea4e96
PE
511}
512
6a2d7a95 513/*
3b0efdfa
CL
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
6a2d7a95
ED
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
518 */
519static inline unsigned int obj_to_index(const struct kmem_cache *cache,
520 const struct slab *slab, void *obj)
8fea4e96 521{
6a2d7a95
ED
522 u32 offset = (obj - slab->s_mem);
523 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
524}
525
a737b3e2
AM
526/*
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
528 */
1da177e4
LT
529struct cache_sizes malloc_sizes[] = {
530#define CACHE(x) { .cs_size = (x) },
531#include <linux/kmalloc_sizes.h>
532 CACHE(ULONG_MAX)
533#undef CACHE
534};
535EXPORT_SYMBOL(malloc_sizes);
536
537/* Must match cache_sizes above. Out of line to keep cache footprint low. */
538struct cache_names {
539 char *name;
540 char *name_dma;
541};
542
543static struct cache_names __initdata cache_names[] = {
544#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545#include <linux/kmalloc_sizes.h>
b28a02de 546 {NULL,}
1da177e4
LT
547#undef CACHE
548};
549
550static struct arraycache_init initarray_cache __initdata =
b28a02de 551 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 552static struct arraycache_init initarray_generic =
b28a02de 553 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
554
555/* internal cache of cache description objs */
9b030cb8 556static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
557 .batchcount = 1,
558 .limit = BOOT_CPUCACHE_ENTRIES,
559 .shared = 1,
3b0efdfa 560 .size = sizeof(struct kmem_cache),
b28a02de 561 .name = "kmem_cache",
1da177e4
LT
562};
563
056c6241
RT
564#define BAD_ALIEN_MAGIC 0x01020304ul
565
f1aaee53
AV
566#ifdef CONFIG_LOCKDEP
567
568/*
569 * Slab sometimes uses the kmalloc slabs to store the slab headers
570 * for other slabs "off slab".
571 * The locking for this is tricky in that it nests within the locks
572 * of all other slabs in a few places; to deal with this special
573 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
574 *
575 * We set lock class for alien array caches which are up during init.
576 * The lock annotation will be lost if all cpus of a node goes down and
577 * then comes back up during hotplug
f1aaee53 578 */
056c6241
RT
579static struct lock_class_key on_slab_l3_key;
580static struct lock_class_key on_slab_alc_key;
581
83835b3d
PZ
582static struct lock_class_key debugobj_l3_key;
583static struct lock_class_key debugobj_alc_key;
584
585static void slab_set_lock_classes(struct kmem_cache *cachep,
586 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
587 int q)
588{
589 struct array_cache **alc;
590 struct kmem_list3 *l3;
591 int r;
592
593 l3 = cachep->nodelists[q];
594 if (!l3)
595 return;
596
597 lockdep_set_class(&l3->list_lock, l3_key);
598 alc = l3->alien;
599 /*
600 * FIXME: This check for BAD_ALIEN_MAGIC
601 * should go away when common slab code is taught to
602 * work even without alien caches.
603 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
604 * for alloc_alien_cache,
605 */
606 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
607 return;
608 for_each_node(r) {
609 if (alc[r])
610 lockdep_set_class(&alc[r]->lock, alc_key);
611 }
612}
613
614static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
615{
616 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
617}
618
619static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
620{
621 int node;
622
623 for_each_online_node(node)
624 slab_set_debugobj_lock_classes_node(cachep, node);
625}
626
ce79ddc8 627static void init_node_lock_keys(int q)
f1aaee53 628{
056c6241
RT
629 struct cache_sizes *s = malloc_sizes;
630
97d06609 631 if (slab_state < UP)
ce79ddc8
PE
632 return;
633
634 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 635 struct kmem_list3 *l3;
ce79ddc8
PE
636
637 l3 = s->cs_cachep->nodelists[q];
638 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 639 continue;
83835b3d
PZ
640
641 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
642 &on_slab_alc_key, q);
f1aaee53
AV
643 }
644}
ce79ddc8
PE
645
646static inline void init_lock_keys(void)
647{
648 int node;
649
650 for_each_node(node)
651 init_node_lock_keys(node);
652}
f1aaee53 653#else
ce79ddc8
PE
654static void init_node_lock_keys(int q)
655{
656}
657
056c6241 658static inline void init_lock_keys(void)
f1aaee53
AV
659{
660}
83835b3d
PZ
661
662static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
663{
664}
665
666static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
667{
668}
f1aaee53
AV
669#endif
670
1871e52c 671static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 672
343e0d7a 673static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
674{
675 return cachep->array[smp_processor_id()];
676}
677
a737b3e2
AM
678static inline struct kmem_cache *__find_general_cachep(size_t size,
679 gfp_t gfpflags)
1da177e4
LT
680{
681 struct cache_sizes *csizep = malloc_sizes;
682
683#if DEBUG
684 /* This happens if someone tries to call
b28a02de
PE
685 * kmem_cache_create(), or __kmalloc(), before
686 * the generic caches are initialized.
687 */
c7e43c78 688 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 689#endif
6cb8f913
CL
690 if (!size)
691 return ZERO_SIZE_PTR;
692
1da177e4
LT
693 while (size > csizep->cs_size)
694 csizep++;
695
696 /*
0abf40c1 697 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
698 * has cs_{dma,}cachep==NULL. Thus no special case
699 * for large kmalloc calls required.
700 */
4b51d669 701#ifdef CONFIG_ZONE_DMA
1da177e4
LT
702 if (unlikely(gfpflags & GFP_DMA))
703 return csizep->cs_dmacachep;
4b51d669 704#endif
1da177e4
LT
705 return csizep->cs_cachep;
706}
707
b221385b 708static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
709{
710 return __find_general_cachep(size, gfpflags);
711}
97e2bde4 712
fbaccacf 713static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 714{
fbaccacf
SR
715 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
716}
1da177e4 717
a737b3e2
AM
718/*
719 * Calculate the number of objects and left-over bytes for a given buffer size.
720 */
fbaccacf
SR
721static void cache_estimate(unsigned long gfporder, size_t buffer_size,
722 size_t align, int flags, size_t *left_over,
723 unsigned int *num)
724{
725 int nr_objs;
726 size_t mgmt_size;
727 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 728
fbaccacf
SR
729 /*
730 * The slab management structure can be either off the slab or
731 * on it. For the latter case, the memory allocated for a
732 * slab is used for:
733 *
734 * - The struct slab
735 * - One kmem_bufctl_t for each object
736 * - Padding to respect alignment of @align
737 * - @buffer_size bytes for each object
738 *
739 * If the slab management structure is off the slab, then the
740 * alignment will already be calculated into the size. Because
741 * the slabs are all pages aligned, the objects will be at the
742 * correct alignment when allocated.
743 */
744 if (flags & CFLGS_OFF_SLAB) {
745 mgmt_size = 0;
746 nr_objs = slab_size / buffer_size;
747
748 if (nr_objs > SLAB_LIMIT)
749 nr_objs = SLAB_LIMIT;
750 } else {
751 /*
752 * Ignore padding for the initial guess. The padding
753 * is at most @align-1 bytes, and @buffer_size is at
754 * least @align. In the worst case, this result will
755 * be one greater than the number of objects that fit
756 * into the memory allocation when taking the padding
757 * into account.
758 */
759 nr_objs = (slab_size - sizeof(struct slab)) /
760 (buffer_size + sizeof(kmem_bufctl_t));
761
762 /*
763 * This calculated number will be either the right
764 * amount, or one greater than what we want.
765 */
766 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
767 > slab_size)
768 nr_objs--;
769
770 if (nr_objs > SLAB_LIMIT)
771 nr_objs = SLAB_LIMIT;
772
773 mgmt_size = slab_mgmt_size(nr_objs, align);
774 }
775 *num = nr_objs;
776 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
777}
778
f28510d3 779#if DEBUG
d40cee24 780#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 781
a737b3e2
AM
782static void __slab_error(const char *function, struct kmem_cache *cachep,
783 char *msg)
1da177e4
LT
784{
785 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 786 function, cachep->name, msg);
1da177e4 787 dump_stack();
645df230 788 add_taint(TAINT_BAD_PAGE);
1da177e4 789}
f28510d3 790#endif
1da177e4 791
3395ee05
PM
792/*
793 * By default on NUMA we use alien caches to stage the freeing of
794 * objects allocated from other nodes. This causes massive memory
795 * inefficiencies when using fake NUMA setup to split memory into a
796 * large number of small nodes, so it can be disabled on the command
797 * line
798 */
799
800static int use_alien_caches __read_mostly = 1;
801static int __init noaliencache_setup(char *s)
802{
803 use_alien_caches = 0;
804 return 1;
805}
806__setup("noaliencache", noaliencache_setup);
807
3df1cccd
DR
808static int __init slab_max_order_setup(char *str)
809{
810 get_option(&str, &slab_max_order);
811 slab_max_order = slab_max_order < 0 ? 0 :
812 min(slab_max_order, MAX_ORDER - 1);
813 slab_max_order_set = true;
814
815 return 1;
816}
817__setup("slab_max_order=", slab_max_order_setup);
818
8fce4d8e
CL
819#ifdef CONFIG_NUMA
820/*
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
825 */
1871e52c 826static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
827
828static void init_reap_node(int cpu)
829{
830 int node;
831
7d6e6d09 832 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 833 if (node == MAX_NUMNODES)
442295c9 834 node = first_node(node_online_map);
8fce4d8e 835
1871e52c 836 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
837}
838
839static void next_reap_node(void)
840{
909ea964 841 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 842
8fce4d8e
CL
843 node = next_node(node, node_online_map);
844 if (unlikely(node >= MAX_NUMNODES))
845 node = first_node(node_online_map);
909ea964 846 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
847}
848
849#else
850#define init_reap_node(cpu) do { } while (0)
851#define next_reap_node(void) do { } while (0)
852#endif
853
1da177e4
LT
854/*
855 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
856 * via the workqueue/eventd.
857 * Add the CPU number into the expiration time to minimize the possibility of
858 * the CPUs getting into lockstep and contending for the global cache chain
859 * lock.
860 */
897e679b 861static void __cpuinit start_cpu_timer(int cpu)
1da177e4 862{
1871e52c 863 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
864
865 /*
866 * When this gets called from do_initcalls via cpucache_init(),
867 * init_workqueues() has already run, so keventd will be setup
868 * at that time.
869 */
52bad64d 870 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 871 init_reap_node(cpu);
203b42f7 872 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
873 schedule_delayed_work_on(cpu, reap_work,
874 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
875 }
876}
877
e498be7d 878static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 879 int batchcount, gfp_t gfp)
1da177e4 880{
b28a02de 881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
882 struct array_cache *nc = NULL;
883
83b519e8 884 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
885 /*
886 * The array_cache structures contain pointers to free object.
25985edc 887 * However, when such objects are allocated or transferred to another
d5cff635
CM
888 * cache the pointers are not cleared and they could be counted as
889 * valid references during a kmemleak scan. Therefore, kmemleak must
890 * not scan such objects.
891 */
892 kmemleak_no_scan(nc);
1da177e4
LT
893 if (nc) {
894 nc->avail = 0;
895 nc->limit = entries;
896 nc->batchcount = batchcount;
897 nc->touched = 0;
e498be7d 898 spin_lock_init(&nc->lock);
1da177e4
LT
899 }
900 return nc;
901}
902
072bb0aa
MG
903static inline bool is_slab_pfmemalloc(struct slab *slabp)
904{
905 struct page *page = virt_to_page(slabp->s_mem);
906
907 return PageSlabPfmemalloc(page);
908}
909
910/* Clears pfmemalloc_active if no slabs have pfmalloc set */
911static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
912 struct array_cache *ac)
913{
914 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
915 struct slab *slabp;
916 unsigned long flags;
917
918 if (!pfmemalloc_active)
919 return;
920
921 spin_lock_irqsave(&l3->list_lock, flags);
922 list_for_each_entry(slabp, &l3->slabs_full, list)
923 if (is_slab_pfmemalloc(slabp))
924 goto out;
925
926 list_for_each_entry(slabp, &l3->slabs_partial, list)
927 if (is_slab_pfmemalloc(slabp))
928 goto out;
929
930 list_for_each_entry(slabp, &l3->slabs_free, list)
931 if (is_slab_pfmemalloc(slabp))
932 goto out;
933
934 pfmemalloc_active = false;
935out:
936 spin_unlock_irqrestore(&l3->list_lock, flags);
937}
938
381760ea 939static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
940 gfp_t flags, bool force_refill)
941{
942 int i;
943 void *objp = ac->entry[--ac->avail];
944
945 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
946 if (unlikely(is_obj_pfmemalloc(objp))) {
947 struct kmem_list3 *l3;
948
949 if (gfp_pfmemalloc_allowed(flags)) {
950 clear_obj_pfmemalloc(&objp);
951 return objp;
952 }
953
954 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 955 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
956 /* If a !PFMEMALLOC object is found, swap them */
957 if (!is_obj_pfmemalloc(ac->entry[i])) {
958 objp = ac->entry[i];
959 ac->entry[i] = ac->entry[ac->avail];
960 ac->entry[ac->avail] = objp;
961 return objp;
962 }
963 }
964
965 /*
966 * If there are empty slabs on the slabs_free list and we are
967 * being forced to refill the cache, mark this one !pfmemalloc.
968 */
969 l3 = cachep->nodelists[numa_mem_id()];
970 if (!list_empty(&l3->slabs_free) && force_refill) {
971 struct slab *slabp = virt_to_slab(objp);
30c29bea 972 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
973 clear_obj_pfmemalloc(&objp);
974 recheck_pfmemalloc_active(cachep, ac);
975 return objp;
976 }
977
978 /* No !PFMEMALLOC objects available */
979 ac->avail++;
980 objp = NULL;
981 }
982
983 return objp;
984}
985
381760ea
MG
986static inline void *ac_get_obj(struct kmem_cache *cachep,
987 struct array_cache *ac, gfp_t flags, bool force_refill)
988{
989 void *objp;
990
991 if (unlikely(sk_memalloc_socks()))
992 objp = __ac_get_obj(cachep, ac, flags, force_refill);
993 else
994 objp = ac->entry[--ac->avail];
995
996 return objp;
997}
998
999static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1000 void *objp)
1001{
1002 if (unlikely(pfmemalloc_active)) {
1003 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 1004 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
1005 if (PageSlabPfmemalloc(page))
1006 set_obj_pfmemalloc(&objp);
1007 }
1008
381760ea
MG
1009 return objp;
1010}
1011
1012static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1013 void *objp)
1014{
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_put_obj(cachep, ac, objp);
1017
072bb0aa
MG
1018 ac->entry[ac->avail++] = objp;
1019}
1020
3ded175a
CL
1021/*
1022 * Transfer objects in one arraycache to another.
1023 * Locking must be handled by the caller.
1024 *
1025 * Return the number of entries transferred.
1026 */
1027static int transfer_objects(struct array_cache *to,
1028 struct array_cache *from, unsigned int max)
1029{
1030 /* Figure out how many entries to transfer */
732eacc0 1031 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1032
1033 if (!nr)
1034 return 0;
1035
1036 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1037 sizeof(void *) *nr);
1038
1039 from->avail -= nr;
1040 to->avail += nr;
3ded175a
CL
1041 return nr;
1042}
1043
765c4507
CL
1044#ifndef CONFIG_NUMA
1045
1046#define drain_alien_cache(cachep, alien) do { } while (0)
1047#define reap_alien(cachep, l3) do { } while (0)
1048
83b519e8 1049static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1050{
1051 return (struct array_cache **)BAD_ALIEN_MAGIC;
1052}
1053
1054static inline void free_alien_cache(struct array_cache **ac_ptr)
1055{
1056}
1057
1058static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1059{
1060 return 0;
1061}
1062
1063static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1064 gfp_t flags)
1065{
1066 return NULL;
1067}
1068
8b98c169 1069static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1070 gfp_t flags, int nodeid)
1071{
1072 return NULL;
1073}
1074
1075#else /* CONFIG_NUMA */
1076
8b98c169 1077static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1078static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1079
83b519e8 1080static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1081{
1082 struct array_cache **ac_ptr;
8ef82866 1083 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1084 int i;
1085
1086 if (limit > 1)
1087 limit = 12;
f3186a9c 1088 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1089 if (ac_ptr) {
1090 for_each_node(i) {
f3186a9c 1091 if (i == node || !node_online(i))
e498be7d 1092 continue;
83b519e8 1093 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1094 if (!ac_ptr[i]) {
cc550def 1095 for (i--; i >= 0; i--)
e498be7d
CL
1096 kfree(ac_ptr[i]);
1097 kfree(ac_ptr);
1098 return NULL;
1099 }
1100 }
1101 }
1102 return ac_ptr;
1103}
1104
5295a74c 1105static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1106{
1107 int i;
1108
1109 if (!ac_ptr)
1110 return;
e498be7d 1111 for_each_node(i)
b28a02de 1112 kfree(ac_ptr[i]);
e498be7d
CL
1113 kfree(ac_ptr);
1114}
1115
343e0d7a 1116static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1117 struct array_cache *ac, int node)
e498be7d
CL
1118{
1119 struct kmem_list3 *rl3 = cachep->nodelists[node];
1120
1121 if (ac->avail) {
1122 spin_lock(&rl3->list_lock);
e00946fe
CL
1123 /*
1124 * Stuff objects into the remote nodes shared array first.
1125 * That way we could avoid the overhead of putting the objects
1126 * into the free lists and getting them back later.
1127 */
693f7d36 1128 if (rl3->shared)
1129 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1130
ff69416e 1131 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1132 ac->avail = 0;
1133 spin_unlock(&rl3->list_lock);
1134 }
1135}
1136
8fce4d8e
CL
1137/*
1138 * Called from cache_reap() to regularly drain alien caches round robin.
1139 */
1140static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1141{
909ea964 1142 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1143
1144 if (l3->alien) {
1145 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1146
1147 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1148 __drain_alien_cache(cachep, ac, node);
1149 spin_unlock_irq(&ac->lock);
1150 }
1151 }
1152}
1153
a737b3e2
AM
1154static void drain_alien_cache(struct kmem_cache *cachep,
1155 struct array_cache **alien)
e498be7d 1156{
b28a02de 1157 int i = 0;
e498be7d
CL
1158 struct array_cache *ac;
1159 unsigned long flags;
1160
1161 for_each_online_node(i) {
4484ebf1 1162 ac = alien[i];
e498be7d
CL
1163 if (ac) {
1164 spin_lock_irqsave(&ac->lock, flags);
1165 __drain_alien_cache(cachep, ac, i);
1166 spin_unlock_irqrestore(&ac->lock, flags);
1167 }
1168 }
1169}
729bd0b7 1170
873623df 1171static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1172{
1173 struct slab *slabp = virt_to_slab(objp);
1174 int nodeid = slabp->nodeid;
1175 struct kmem_list3 *l3;
1176 struct array_cache *alien = NULL;
1ca4cb24
PE
1177 int node;
1178
7d6e6d09 1179 node = numa_mem_id();
729bd0b7
PE
1180
1181 /*
1182 * Make sure we are not freeing a object from another node to the array
1183 * cache on this cpu.
1184 */
62918a03 1185 if (likely(slabp->nodeid == node))
729bd0b7
PE
1186 return 0;
1187
1ca4cb24 1188 l3 = cachep->nodelists[node];
729bd0b7
PE
1189 STATS_INC_NODEFREES(cachep);
1190 if (l3->alien && l3->alien[nodeid]) {
1191 alien = l3->alien[nodeid];
873623df 1192 spin_lock(&alien->lock);
729bd0b7
PE
1193 if (unlikely(alien->avail == alien->limit)) {
1194 STATS_INC_ACOVERFLOW(cachep);
1195 __drain_alien_cache(cachep, alien, nodeid);
1196 }
072bb0aa 1197 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1198 spin_unlock(&alien->lock);
1199 } else {
1200 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1201 free_block(cachep, &objp, 1, nodeid);
1202 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1203 }
1204 return 1;
1205}
e498be7d
CL
1206#endif
1207
8f9f8d9e
DR
1208/*
1209 * Allocates and initializes nodelists for a node on each slab cache, used for
1210 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1211 * will be allocated off-node since memory is not yet online for the new node.
1212 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1213 * already in use.
1214 *
18004c5d 1215 * Must hold slab_mutex.
8f9f8d9e
DR
1216 */
1217static int init_cache_nodelists_node(int node)
1218{
1219 struct kmem_cache *cachep;
1220 struct kmem_list3 *l3;
1221 const int memsize = sizeof(struct kmem_list3);
1222
18004c5d 1223 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1224 /*
1225 * Set up the size64 kmemlist for cpu before we can
1226 * begin anything. Make sure some other cpu on this
1227 * node has not already allocated this
1228 */
1229 if (!cachep->nodelists[node]) {
1230 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1231 if (!l3)
1232 return -ENOMEM;
1233 kmem_list3_init(l3);
1234 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1235 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1236
1237 /*
1238 * The l3s don't come and go as CPUs come and
18004c5d 1239 * go. slab_mutex is sufficient
8f9f8d9e
DR
1240 * protection here.
1241 */
1242 cachep->nodelists[node] = l3;
1243 }
1244
1245 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1246 cachep->nodelists[node]->free_limit =
1247 (1 + nr_cpus_node(node)) *
1248 cachep->batchcount + cachep->num;
1249 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1250 }
1251 return 0;
1252}
1253
fbf1e473
AM
1254static void __cpuinit cpuup_canceled(long cpu)
1255{
1256 struct kmem_cache *cachep;
1257 struct kmem_list3 *l3 = NULL;
7d6e6d09 1258 int node = cpu_to_mem(cpu);
a70f7302 1259 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1260
18004c5d 1261 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1262 struct array_cache *nc;
1263 struct array_cache *shared;
1264 struct array_cache **alien;
fbf1e473 1265
fbf1e473
AM
1266 /* cpu is dead; no one can alloc from it. */
1267 nc = cachep->array[cpu];
1268 cachep->array[cpu] = NULL;
1269 l3 = cachep->nodelists[node];
1270
1271 if (!l3)
1272 goto free_array_cache;
1273
1274 spin_lock_irq(&l3->list_lock);
1275
1276 /* Free limit for this kmem_list3 */
1277 l3->free_limit -= cachep->batchcount;
1278 if (nc)
1279 free_block(cachep, nc->entry, nc->avail, node);
1280
58463c1f 1281 if (!cpumask_empty(mask)) {
fbf1e473
AM
1282 spin_unlock_irq(&l3->list_lock);
1283 goto free_array_cache;
1284 }
1285
1286 shared = l3->shared;
1287 if (shared) {
1288 free_block(cachep, shared->entry,
1289 shared->avail, node);
1290 l3->shared = NULL;
1291 }
1292
1293 alien = l3->alien;
1294 l3->alien = NULL;
1295
1296 spin_unlock_irq(&l3->list_lock);
1297
1298 kfree(shared);
1299 if (alien) {
1300 drain_alien_cache(cachep, alien);
1301 free_alien_cache(alien);
1302 }
1303free_array_cache:
1304 kfree(nc);
1305 }
1306 /*
1307 * In the previous loop, all the objects were freed to
1308 * the respective cache's slabs, now we can go ahead and
1309 * shrink each nodelist to its limit.
1310 */
18004c5d 1311 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1312 l3 = cachep->nodelists[node];
1313 if (!l3)
1314 continue;
1315 drain_freelist(cachep, l3, l3->free_objects);
1316 }
1317}
1318
1319static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1320{
343e0d7a 1321 struct kmem_cache *cachep;
e498be7d 1322 struct kmem_list3 *l3 = NULL;
7d6e6d09 1323 int node = cpu_to_mem(cpu);
8f9f8d9e 1324 int err;
1da177e4 1325
fbf1e473
AM
1326 /*
1327 * We need to do this right in the beginning since
1328 * alloc_arraycache's are going to use this list.
1329 * kmalloc_node allows us to add the slab to the right
1330 * kmem_list3 and not this cpu's kmem_list3
1331 */
8f9f8d9e
DR
1332 err = init_cache_nodelists_node(node);
1333 if (err < 0)
1334 goto bad;
fbf1e473
AM
1335
1336 /*
1337 * Now we can go ahead with allocating the shared arrays and
1338 * array caches
1339 */
18004c5d 1340 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1341 struct array_cache *nc;
1342 struct array_cache *shared = NULL;
1343 struct array_cache **alien = NULL;
1344
1345 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1346 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1347 if (!nc)
1348 goto bad;
1349 if (cachep->shared) {
1350 shared = alloc_arraycache(node,
1351 cachep->shared * cachep->batchcount,
83b519e8 1352 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1353 if (!shared) {
1354 kfree(nc);
1da177e4 1355 goto bad;
12d00f6a 1356 }
fbf1e473
AM
1357 }
1358 if (use_alien_caches) {
83b519e8 1359 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1360 if (!alien) {
1361 kfree(shared);
1362 kfree(nc);
fbf1e473 1363 goto bad;
12d00f6a 1364 }
fbf1e473
AM
1365 }
1366 cachep->array[cpu] = nc;
1367 l3 = cachep->nodelists[node];
1368 BUG_ON(!l3);
1369
1370 spin_lock_irq(&l3->list_lock);
1371 if (!l3->shared) {
1372 /*
1373 * We are serialised from CPU_DEAD or
1374 * CPU_UP_CANCELLED by the cpucontrol lock
1375 */
1376 l3->shared = shared;
1377 shared = NULL;
1378 }
4484ebf1 1379#ifdef CONFIG_NUMA
fbf1e473
AM
1380 if (!l3->alien) {
1381 l3->alien = alien;
1382 alien = NULL;
1da177e4 1383 }
fbf1e473
AM
1384#endif
1385 spin_unlock_irq(&l3->list_lock);
1386 kfree(shared);
1387 free_alien_cache(alien);
83835b3d
PZ
1388 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1389 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1390 }
ce79ddc8
PE
1391 init_node_lock_keys(node);
1392
fbf1e473
AM
1393 return 0;
1394bad:
12d00f6a 1395 cpuup_canceled(cpu);
fbf1e473
AM
1396 return -ENOMEM;
1397}
1398
1399static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1400 unsigned long action, void *hcpu)
1401{
1402 long cpu = (long)hcpu;
1403 int err = 0;
1404
1405 switch (action) {
fbf1e473
AM
1406 case CPU_UP_PREPARE:
1407 case CPU_UP_PREPARE_FROZEN:
18004c5d 1408 mutex_lock(&slab_mutex);
fbf1e473 1409 err = cpuup_prepare(cpu);
18004c5d 1410 mutex_unlock(&slab_mutex);
1da177e4
LT
1411 break;
1412 case CPU_ONLINE:
8bb78442 1413 case CPU_ONLINE_FROZEN:
1da177e4
LT
1414 start_cpu_timer(cpu);
1415 break;
1416#ifdef CONFIG_HOTPLUG_CPU
5830c590 1417 case CPU_DOWN_PREPARE:
8bb78442 1418 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1419 /*
18004c5d 1420 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1421 * held so that if cache_reap() is invoked it cannot do
1422 * anything expensive but will only modify reap_work
1423 * and reschedule the timer.
1424 */
afe2c511 1425 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1426 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1427 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1428 break;
1429 case CPU_DOWN_FAILED:
8bb78442 1430 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1431 start_cpu_timer(cpu);
1432 break;
1da177e4 1433 case CPU_DEAD:
8bb78442 1434 case CPU_DEAD_FROZEN:
4484ebf1
RT
1435 /*
1436 * Even if all the cpus of a node are down, we don't free the
1437 * kmem_list3 of any cache. This to avoid a race between
1438 * cpu_down, and a kmalloc allocation from another cpu for
1439 * memory from the node of the cpu going down. The list3
1440 * structure is usually allocated from kmem_cache_create() and
1441 * gets destroyed at kmem_cache_destroy().
1442 */
183ff22b 1443 /* fall through */
8f5be20b 1444#endif
1da177e4 1445 case CPU_UP_CANCELED:
8bb78442 1446 case CPU_UP_CANCELED_FROZEN:
18004c5d 1447 mutex_lock(&slab_mutex);
fbf1e473 1448 cpuup_canceled(cpu);
18004c5d 1449 mutex_unlock(&slab_mutex);
1da177e4 1450 break;
1da177e4 1451 }
eac40680 1452 return notifier_from_errno(err);
1da177e4
LT
1453}
1454
74b85f37
CS
1455static struct notifier_block __cpuinitdata cpucache_notifier = {
1456 &cpuup_callback, NULL, 0
1457};
1da177e4 1458
8f9f8d9e
DR
1459#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1460/*
1461 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1462 * Returns -EBUSY if all objects cannot be drained so that the node is not
1463 * removed.
1464 *
18004c5d 1465 * Must hold slab_mutex.
8f9f8d9e
DR
1466 */
1467static int __meminit drain_cache_nodelists_node(int node)
1468{
1469 struct kmem_cache *cachep;
1470 int ret = 0;
1471
18004c5d 1472 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1473 struct kmem_list3 *l3;
1474
1475 l3 = cachep->nodelists[node];
1476 if (!l3)
1477 continue;
1478
1479 drain_freelist(cachep, l3, l3->free_objects);
1480
1481 if (!list_empty(&l3->slabs_full) ||
1482 !list_empty(&l3->slabs_partial)) {
1483 ret = -EBUSY;
1484 break;
1485 }
1486 }
1487 return ret;
1488}
1489
1490static int __meminit slab_memory_callback(struct notifier_block *self,
1491 unsigned long action, void *arg)
1492{
1493 struct memory_notify *mnb = arg;
1494 int ret = 0;
1495 int nid;
1496
1497 nid = mnb->status_change_nid;
1498 if (nid < 0)
1499 goto out;
1500
1501 switch (action) {
1502 case MEM_GOING_ONLINE:
18004c5d 1503 mutex_lock(&slab_mutex);
8f9f8d9e 1504 ret = init_cache_nodelists_node(nid);
18004c5d 1505 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1506 break;
1507 case MEM_GOING_OFFLINE:
18004c5d 1508 mutex_lock(&slab_mutex);
8f9f8d9e 1509 ret = drain_cache_nodelists_node(nid);
18004c5d 1510 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1511 break;
1512 case MEM_ONLINE:
1513 case MEM_OFFLINE:
1514 case MEM_CANCEL_ONLINE:
1515 case MEM_CANCEL_OFFLINE:
1516 break;
1517 }
1518out:
5fda1bd5 1519 return notifier_from_errno(ret);
8f9f8d9e
DR
1520}
1521#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1522
e498be7d
CL
1523/*
1524 * swap the static kmem_list3 with kmalloced memory
1525 */
8f9f8d9e
DR
1526static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1527 int nodeid)
e498be7d
CL
1528{
1529 struct kmem_list3 *ptr;
1530
83b519e8 1531 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1532 BUG_ON(!ptr);
1533
e498be7d 1534 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1535 /*
1536 * Do not assume that spinlocks can be initialized via memcpy:
1537 */
1538 spin_lock_init(&ptr->list_lock);
1539
e498be7d
CL
1540 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1541 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1542}
1543
556a169d
PE
1544/*
1545 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1546 * size of kmem_list3.
1547 */
1548static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1549{
1550 int node;
1551
1552 for_each_online_node(node) {
1553 cachep->nodelists[node] = &initkmem_list3[index + node];
1554 cachep->nodelists[node]->next_reap = jiffies +
1555 REAPTIMEOUT_LIST3 +
1556 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1557 }
1558}
1559
3c583465
CL
1560/*
1561 * The memory after the last cpu cache pointer is used for the
1562 * the nodelists pointer.
1563 */
1564static void setup_nodelists_pointer(struct kmem_cache *cachep)
1565{
1566 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1567}
1568
a737b3e2
AM
1569/*
1570 * Initialisation. Called after the page allocator have been initialised and
1571 * before smp_init().
1da177e4
LT
1572 */
1573void __init kmem_cache_init(void)
1574{
1575 size_t left_over;
1576 struct cache_sizes *sizes;
1577 struct cache_names *names;
e498be7d 1578 int i;
07ed76b2 1579 int order;
1ca4cb24 1580 int node;
e498be7d 1581
9b030cb8 1582 kmem_cache = &kmem_cache_boot;
3c583465 1583 setup_nodelists_pointer(kmem_cache);
9b030cb8 1584
b6e68bc1 1585 if (num_possible_nodes() == 1)
62918a03
SS
1586 use_alien_caches = 0;
1587
3c583465 1588 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1589 kmem_list3_init(&initkmem_list3[i]);
3c583465 1590
9b030cb8 1591 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1592
1593 /*
1594 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1595 * page orders on machines with more than 32MB of memory if
1596 * not overridden on the command line.
1da177e4 1597 */
3df1cccd 1598 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1599 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1600
1da177e4
LT
1601 /* Bootstrap is tricky, because several objects are allocated
1602 * from caches that do not exist yet:
9b030cb8
CL
1603 * 1) initialize the kmem_cache cache: it contains the struct
1604 * kmem_cache structures of all caches, except kmem_cache itself:
1605 * kmem_cache is statically allocated.
e498be7d
CL
1606 * Initially an __init data area is used for the head array and the
1607 * kmem_list3 structures, it's replaced with a kmalloc allocated
1608 * array at the end of the bootstrap.
1da177e4 1609 * 2) Create the first kmalloc cache.
343e0d7a 1610 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1611 * An __init data area is used for the head array.
1612 * 3) Create the remaining kmalloc caches, with minimally sized
1613 * head arrays.
9b030cb8 1614 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1615 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1616 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1617 * the other cache's with kmalloc allocated memory.
1618 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1619 */
1620
7d6e6d09 1621 node = numa_mem_id();
1ca4cb24 1622
9b030cb8 1623 /* 1) create the kmem_cache */
18004c5d 1624 INIT_LIST_HEAD(&slab_caches);
9b030cb8
CL
1625 list_add(&kmem_cache->list, &slab_caches);
1626 kmem_cache->colour_off = cache_line_size();
1627 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1da177e4 1628
8da3430d 1629 /*
b56efcf0 1630 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1631 */
9b030cb8 1632 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1633 nr_node_ids * sizeof(struct kmem_list3 *);
9b030cb8
CL
1634 kmem_cache->object_size = kmem_cache->size;
1635 kmem_cache->size = ALIGN(kmem_cache->object_size,
a737b3e2 1636 cache_line_size());
9b030cb8
CL
1637 kmem_cache->reciprocal_buffer_size =
1638 reciprocal_value(kmem_cache->size);
1da177e4 1639
07ed76b2 1640 for (order = 0; order < MAX_ORDER; order++) {
9b030cb8
CL
1641 cache_estimate(order, kmem_cache->size,
1642 cache_line_size(), 0, &left_over, &kmem_cache->num);
1643 if (kmem_cache->num)
07ed76b2
JS
1644 break;
1645 }
9b030cb8
CL
1646 BUG_ON(!kmem_cache->num);
1647 kmem_cache->gfporder = order;
1648 kmem_cache->colour = left_over / kmem_cache->colour_off;
1649 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
b28a02de 1650 sizeof(struct slab), cache_line_size());
1da177e4
LT
1651
1652 /* 2+3) create the kmalloc caches */
1653 sizes = malloc_sizes;
1654 names = cache_names;
1655
a737b3e2
AM
1656 /*
1657 * Initialize the caches that provide memory for the array cache and the
1658 * kmem_list3 structures first. Without this, further allocations will
1659 * bug.
e498be7d
CL
1660 */
1661
45530c44
CL
1662 sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
1663 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
1664
1665 if (INDEX_AC != INDEX_L3)
1666 sizes[INDEX_L3].cs_cachep =
1667 create_kmalloc_cache(names[INDEX_L3].name,
1668 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
e498be7d 1669
e0a42726
IM
1670 slab_early_init = 0;
1671
1da177e4 1672 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1673 /*
1674 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1675 * This should be particularly beneficial on SMP boxes, as it
1676 * eliminates "false sharing".
1677 * Note for systems short on memory removing the alignment will
e498be7d
CL
1678 * allow tighter packing of the smaller caches.
1679 */
45530c44
CL
1680 if (!sizes->cs_cachep)
1681 sizes->cs_cachep = create_kmalloc_cache(names->name,
1682 sizes->cs_size, ARCH_KMALLOC_FLAGS);
1683
4b51d669 1684#ifdef CONFIG_ZONE_DMA
45530c44
CL
1685 sizes->cs_dmacachep = create_kmalloc_cache(
1686 names->name_dma, sizes->cs_size,
1687 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
4b51d669 1688#endif
1da177e4
LT
1689 sizes++;
1690 names++;
1691 }
1692 /* 4) Replace the bootstrap head arrays */
1693 {
2b2d5493 1694 struct array_cache *ptr;
e498be7d 1695
83b519e8 1696 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1697
9b030cb8
CL
1698 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1699 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1700 sizeof(struct arraycache_init));
2b2d5493
IM
1701 /*
1702 * Do not assume that spinlocks can be initialized via memcpy:
1703 */
1704 spin_lock_init(&ptr->lock);
1705
9b030cb8 1706 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1707
83b519e8 1708 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1709
9a2dba4b 1710 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1711 != &initarray_generic.cache);
9a2dba4b 1712 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1713 sizeof(struct arraycache_init));
2b2d5493
IM
1714 /*
1715 * Do not assume that spinlocks can be initialized via memcpy:
1716 */
1717 spin_lock_init(&ptr->lock);
1718
e498be7d 1719 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1720 ptr;
1da177e4 1721 }
e498be7d
CL
1722 /* 5) Replace the bootstrap kmem_list3's */
1723 {
1ca4cb24
PE
1724 int nid;
1725
9c09a95c 1726 for_each_online_node(nid) {
9b030cb8 1727 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1728
e498be7d 1729 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1730 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1731
1732 if (INDEX_AC != INDEX_L3) {
1733 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1734 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1735 }
1736 }
1737 }
1da177e4 1738
97d06609 1739 slab_state = UP;
8429db5c
PE
1740}
1741
1742void __init kmem_cache_init_late(void)
1743{
1744 struct kmem_cache *cachep;
1745
97d06609 1746 slab_state = UP;
52cef189 1747
8429db5c 1748 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1749 mutex_lock(&slab_mutex);
1750 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1751 if (enable_cpucache(cachep, GFP_NOWAIT))
1752 BUG();
18004c5d 1753 mutex_unlock(&slab_mutex);
056c6241 1754
947ca185
MW
1755 /* Annotate slab for lockdep -- annotate the malloc caches */
1756 init_lock_keys();
1757
97d06609
CL
1758 /* Done! */
1759 slab_state = FULL;
1760
a737b3e2
AM
1761 /*
1762 * Register a cpu startup notifier callback that initializes
1763 * cpu_cache_get for all new cpus
1da177e4
LT
1764 */
1765 register_cpu_notifier(&cpucache_notifier);
1da177e4 1766
8f9f8d9e
DR
1767#ifdef CONFIG_NUMA
1768 /*
1769 * Register a memory hotplug callback that initializes and frees
1770 * nodelists.
1771 */
1772 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1773#endif
1774
a737b3e2
AM
1775 /*
1776 * The reap timers are started later, with a module init call: That part
1777 * of the kernel is not yet operational.
1da177e4
LT
1778 */
1779}
1780
1781static int __init cpucache_init(void)
1782{
1783 int cpu;
1784
a737b3e2
AM
1785 /*
1786 * Register the timers that return unneeded pages to the page allocator
1da177e4 1787 */
e498be7d 1788 for_each_online_cpu(cpu)
a737b3e2 1789 start_cpu_timer(cpu);
a164f896
GC
1790
1791 /* Done! */
97d06609 1792 slab_state = FULL;
1da177e4
LT
1793 return 0;
1794}
1da177e4
LT
1795__initcall(cpucache_init);
1796
8bdec192
RA
1797static noinline void
1798slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1799{
1800 struct kmem_list3 *l3;
1801 struct slab *slabp;
1802 unsigned long flags;
1803 int node;
1804
1805 printk(KERN_WARNING
1806 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1807 nodeid, gfpflags);
1808 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1809 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1810
1811 for_each_online_node(node) {
1812 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1813 unsigned long active_slabs = 0, num_slabs = 0;
1814
1815 l3 = cachep->nodelists[node];
1816 if (!l3)
1817 continue;
1818
1819 spin_lock_irqsave(&l3->list_lock, flags);
1820 list_for_each_entry(slabp, &l3->slabs_full, list) {
1821 active_objs += cachep->num;
1822 active_slabs++;
1823 }
1824 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1825 active_objs += slabp->inuse;
1826 active_slabs++;
1827 }
1828 list_for_each_entry(slabp, &l3->slabs_free, list)
1829 num_slabs++;
1830
1831 free_objects += l3->free_objects;
1832 spin_unlock_irqrestore(&l3->list_lock, flags);
1833
1834 num_slabs += active_slabs;
1835 num_objs = num_slabs * cachep->num;
1836 printk(KERN_WARNING
1837 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1838 node, active_slabs, num_slabs, active_objs, num_objs,
1839 free_objects);
1840 }
1841}
1842
1da177e4
LT
1843/*
1844 * Interface to system's page allocator. No need to hold the cache-lock.
1845 *
1846 * If we requested dmaable memory, we will get it. Even if we
1847 * did not request dmaable memory, we might get it, but that
1848 * would be relatively rare and ignorable.
1849 */
343e0d7a 1850static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1851{
1852 struct page *page;
e1b6aa6f 1853 int nr_pages;
1da177e4
LT
1854 int i;
1855
d6fef9da 1856#ifndef CONFIG_MMU
e1b6aa6f
CH
1857 /*
1858 * Nommu uses slab's for process anonymous memory allocations, and thus
1859 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1860 */
e1b6aa6f 1861 flags |= __GFP_COMP;
d6fef9da 1862#endif
765c4507 1863
a618e89f 1864 flags |= cachep->allocflags;
e12ba74d
MG
1865 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1866 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1867
517d0869 1868 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1869 if (!page) {
1870 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1871 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1872 return NULL;
8bdec192 1873 }
1da177e4 1874
b37f1dd0 1875 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1876 if (unlikely(page->pfmemalloc))
1877 pfmemalloc_active = true;
1878
e1b6aa6f 1879 nr_pages = (1 << cachep->gfporder);
1da177e4 1880 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1881 add_zone_page_state(page_zone(page),
1882 NR_SLAB_RECLAIMABLE, nr_pages);
1883 else
1884 add_zone_page_state(page_zone(page),
1885 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1886 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1887 __SetPageSlab(page + i);
c175eea4 1888
072bb0aa
MG
1889 if (page->pfmemalloc)
1890 SetPageSlabPfmemalloc(page + i);
1891 }
1892
b1eeab67
VN
1893 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1894 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1895
1896 if (cachep->ctor)
1897 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1898 else
1899 kmemcheck_mark_unallocated_pages(page, nr_pages);
1900 }
c175eea4 1901
e1b6aa6f 1902 return page_address(page);
1da177e4
LT
1903}
1904
1905/*
1906 * Interface to system's page release.
1907 */
343e0d7a 1908static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1909{
b28a02de 1910 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1911 struct page *page = virt_to_page(addr);
1912 const unsigned long nr_freed = i;
1913
b1eeab67 1914 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1915
972d1a7b
CL
1916 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1917 sub_zone_page_state(page_zone(page),
1918 NR_SLAB_RECLAIMABLE, nr_freed);
1919 else
1920 sub_zone_page_state(page_zone(page),
1921 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1922 while (i--) {
f205b2fe 1923 BUG_ON(!PageSlab(page));
072bb0aa 1924 __ClearPageSlabPfmemalloc(page);
f205b2fe 1925 __ClearPageSlab(page);
1da177e4
LT
1926 page++;
1927 }
1da177e4
LT
1928 if (current->reclaim_state)
1929 current->reclaim_state->reclaimed_slab += nr_freed;
1930 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1931}
1932
1933static void kmem_rcu_free(struct rcu_head *head)
1934{
b28a02de 1935 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1936 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1937
1938 kmem_freepages(cachep, slab_rcu->addr);
1939 if (OFF_SLAB(cachep))
1940 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1941}
1942
1943#if DEBUG
1944
1945#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1946static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1947 unsigned long caller)
1da177e4 1948{
8c138bc0 1949 int size = cachep->object_size;
1da177e4 1950
3dafccf2 1951 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1952
b28a02de 1953 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1954 return;
1955
b28a02de
PE
1956 *addr++ = 0x12345678;
1957 *addr++ = caller;
1958 *addr++ = smp_processor_id();
1959 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1960 {
1961 unsigned long *sptr = &caller;
1962 unsigned long svalue;
1963
1964 while (!kstack_end(sptr)) {
1965 svalue = *sptr++;
1966 if (kernel_text_address(svalue)) {
b28a02de 1967 *addr++ = svalue;
1da177e4
LT
1968 size -= sizeof(unsigned long);
1969 if (size <= sizeof(unsigned long))
1970 break;
1971 }
1972 }
1973
1974 }
b28a02de 1975 *addr++ = 0x87654321;
1da177e4
LT
1976}
1977#endif
1978
343e0d7a 1979static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1980{
8c138bc0 1981 int size = cachep->object_size;
3dafccf2 1982 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1983
1984 memset(addr, val, size);
b28a02de 1985 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1986}
1987
1988static void dump_line(char *data, int offset, int limit)
1989{
1990 int i;
aa83aa40
DJ
1991 unsigned char error = 0;
1992 int bad_count = 0;
1993
fdde6abb 1994 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1995 for (i = 0; i < limit; i++) {
1996 if (data[offset + i] != POISON_FREE) {
1997 error = data[offset + i];
1998 bad_count++;
1999 }
aa83aa40 2000 }
fdde6abb
SAS
2001 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2002 &data[offset], limit, 1);
aa83aa40
DJ
2003
2004 if (bad_count == 1) {
2005 error ^= POISON_FREE;
2006 if (!(error & (error - 1))) {
2007 printk(KERN_ERR "Single bit error detected. Probably "
2008 "bad RAM.\n");
2009#ifdef CONFIG_X86
2010 printk(KERN_ERR "Run memtest86+ or a similar memory "
2011 "test tool.\n");
2012#else
2013 printk(KERN_ERR "Run a memory test tool.\n");
2014#endif
2015 }
2016 }
1da177e4
LT
2017}
2018#endif
2019
2020#if DEBUG
2021
343e0d7a 2022static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2023{
2024 int i, size;
2025 char *realobj;
2026
2027 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2028 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2029 *dbg_redzone1(cachep, objp),
2030 *dbg_redzone2(cachep, objp));
1da177e4
LT
2031 }
2032
2033 if (cachep->flags & SLAB_STORE_USER) {
2034 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2035 *dbg_userword(cachep, objp));
1da177e4 2036 print_symbol("(%s)",
a737b3e2 2037 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2038 printk("\n");
2039 }
3dafccf2 2040 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2041 size = cachep->object_size;
b28a02de 2042 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2043 int limit;
2044 limit = 16;
b28a02de
PE
2045 if (i + limit > size)
2046 limit = size - i;
1da177e4
LT
2047 dump_line(realobj, i, limit);
2048 }
2049}
2050
343e0d7a 2051static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2052{
2053 char *realobj;
2054 int size, i;
2055 int lines = 0;
2056
3dafccf2 2057 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2058 size = cachep->object_size;
1da177e4 2059
b28a02de 2060 for (i = 0; i < size; i++) {
1da177e4 2061 char exp = POISON_FREE;
b28a02de 2062 if (i == size - 1)
1da177e4
LT
2063 exp = POISON_END;
2064 if (realobj[i] != exp) {
2065 int limit;
2066 /* Mismatch ! */
2067 /* Print header */
2068 if (lines == 0) {
b28a02de 2069 printk(KERN_ERR
face37f5
DJ
2070 "Slab corruption (%s): %s start=%p, len=%d\n",
2071 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2072 print_objinfo(cachep, objp, 0);
2073 }
2074 /* Hexdump the affected line */
b28a02de 2075 i = (i / 16) * 16;
1da177e4 2076 limit = 16;
b28a02de
PE
2077 if (i + limit > size)
2078 limit = size - i;
1da177e4
LT
2079 dump_line(realobj, i, limit);
2080 i += 16;
2081 lines++;
2082 /* Limit to 5 lines */
2083 if (lines > 5)
2084 break;
2085 }
2086 }
2087 if (lines != 0) {
2088 /* Print some data about the neighboring objects, if they
2089 * exist:
2090 */
6ed5eb22 2091 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2092 unsigned int objnr;
1da177e4 2093
8fea4e96 2094 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2095 if (objnr) {
8fea4e96 2096 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2097 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2098 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2099 realobj, size);
1da177e4
LT
2100 print_objinfo(cachep, objp, 2);
2101 }
b28a02de 2102 if (objnr + 1 < cachep->num) {
8fea4e96 2103 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2104 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2105 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2106 realobj, size);
1da177e4
LT
2107 print_objinfo(cachep, objp, 2);
2108 }
2109 }
2110}
2111#endif
2112
12dd36fa 2113#if DEBUG
e79aec29 2114static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2115{
1da177e4
LT
2116 int i;
2117 for (i = 0; i < cachep->num; i++) {
8fea4e96 2118 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2119
2120 if (cachep->flags & SLAB_POISON) {
2121#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2122 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2123 OFF_SLAB(cachep))
b28a02de 2124 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2125 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2126 else
2127 check_poison_obj(cachep, objp);
2128#else
2129 check_poison_obj(cachep, objp);
2130#endif
2131 }
2132 if (cachep->flags & SLAB_RED_ZONE) {
2133 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2134 slab_error(cachep, "start of a freed object "
b28a02de 2135 "was overwritten");
1da177e4
LT
2136 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2137 slab_error(cachep, "end of a freed object "
b28a02de 2138 "was overwritten");
1da177e4 2139 }
1da177e4 2140 }
12dd36fa 2141}
1da177e4 2142#else
e79aec29 2143static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2144{
12dd36fa 2145}
1da177e4
LT
2146#endif
2147
911851e6
RD
2148/**
2149 * slab_destroy - destroy and release all objects in a slab
2150 * @cachep: cache pointer being destroyed
2151 * @slabp: slab pointer being destroyed
2152 *
12dd36fa 2153 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2154 * Before calling the slab must have been unlinked from the cache. The
2155 * cache-lock is not held/needed.
12dd36fa 2156 */
343e0d7a 2157static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2158{
2159 void *addr = slabp->s_mem - slabp->colouroff;
2160
e79aec29 2161 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2162 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2163 struct slab_rcu *slab_rcu;
2164
b28a02de 2165 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2166 slab_rcu->cachep = cachep;
2167 slab_rcu->addr = addr;
2168 call_rcu(&slab_rcu->head, kmem_rcu_free);
2169 } else {
2170 kmem_freepages(cachep, addr);
873623df
IM
2171 if (OFF_SLAB(cachep))
2172 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2173 }
2174}
2175
4d268eba 2176/**
a70773dd
RD
2177 * calculate_slab_order - calculate size (page order) of slabs
2178 * @cachep: pointer to the cache that is being created
2179 * @size: size of objects to be created in this cache.
2180 * @align: required alignment for the objects.
2181 * @flags: slab allocation flags
2182 *
2183 * Also calculates the number of objects per slab.
4d268eba
PE
2184 *
2185 * This could be made much more intelligent. For now, try to avoid using
2186 * high order pages for slabs. When the gfp() functions are more friendly
2187 * towards high-order requests, this should be changed.
2188 */
a737b3e2 2189static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2190 size_t size, size_t align, unsigned long flags)
4d268eba 2191{
b1ab41c4 2192 unsigned long offslab_limit;
4d268eba 2193 size_t left_over = 0;
9888e6fa 2194 int gfporder;
4d268eba 2195
0aa817f0 2196 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2197 unsigned int num;
2198 size_t remainder;
2199
9888e6fa 2200 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2201 if (!num)
2202 continue;
9888e6fa 2203
b1ab41c4
IM
2204 if (flags & CFLGS_OFF_SLAB) {
2205 /*
2206 * Max number of objs-per-slab for caches which
2207 * use off-slab slabs. Needed to avoid a possible
2208 * looping condition in cache_grow().
2209 */
2210 offslab_limit = size - sizeof(struct slab);
2211 offslab_limit /= sizeof(kmem_bufctl_t);
2212
2213 if (num > offslab_limit)
2214 break;
2215 }
4d268eba 2216
9888e6fa 2217 /* Found something acceptable - save it away */
4d268eba 2218 cachep->num = num;
9888e6fa 2219 cachep->gfporder = gfporder;
4d268eba
PE
2220 left_over = remainder;
2221
f78bb8ad
LT
2222 /*
2223 * A VFS-reclaimable slab tends to have most allocations
2224 * as GFP_NOFS and we really don't want to have to be allocating
2225 * higher-order pages when we are unable to shrink dcache.
2226 */
2227 if (flags & SLAB_RECLAIM_ACCOUNT)
2228 break;
2229
4d268eba
PE
2230 /*
2231 * Large number of objects is good, but very large slabs are
2232 * currently bad for the gfp()s.
2233 */
543585cc 2234 if (gfporder >= slab_max_order)
4d268eba
PE
2235 break;
2236
9888e6fa
LT
2237 /*
2238 * Acceptable internal fragmentation?
2239 */
a737b3e2 2240 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2241 break;
2242 }
2243 return left_over;
2244}
2245
83b519e8 2246static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2247{
97d06609 2248 if (slab_state >= FULL)
83b519e8 2249 return enable_cpucache(cachep, gfp);
2ed3a4ef 2250
97d06609 2251 if (slab_state == DOWN) {
f30cf7d1
PE
2252 /*
2253 * Note: the first kmem_cache_create must create the cache
2254 * that's used by kmalloc(24), otherwise the creation of
2255 * further caches will BUG().
2256 */
2257 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2258
2259 /*
2260 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2261 * the first cache, then we need to set up all its list3s,
2262 * otherwise the creation of further caches will BUG().
2263 */
2264 set_up_list3s(cachep, SIZE_AC);
2265 if (INDEX_AC == INDEX_L3)
97d06609 2266 slab_state = PARTIAL_L3;
f30cf7d1 2267 else
97d06609 2268 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2269 } else {
2270 cachep->array[smp_processor_id()] =
83b519e8 2271 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2272
97d06609 2273 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2274 set_up_list3s(cachep, SIZE_L3);
97d06609 2275 slab_state = PARTIAL_L3;
f30cf7d1
PE
2276 } else {
2277 int node;
556a169d 2278 for_each_online_node(node) {
f30cf7d1
PE
2279 cachep->nodelists[node] =
2280 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2281 gfp, node);
f30cf7d1
PE
2282 BUG_ON(!cachep->nodelists[node]);
2283 kmem_list3_init(cachep->nodelists[node]);
2284 }
2285 }
2286 }
7d6e6d09 2287 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2288 jiffies + REAPTIMEOUT_LIST3 +
2289 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2290
2291 cpu_cache_get(cachep)->avail = 0;
2292 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2293 cpu_cache_get(cachep)->batchcount = 1;
2294 cpu_cache_get(cachep)->touched = 0;
2295 cachep->batchcount = 1;
2296 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2297 return 0;
f30cf7d1
PE
2298}
2299
1da177e4 2300/**
039363f3 2301 * __kmem_cache_create - Create a cache.
a755b76a 2302 * @cachep: cache management descriptor
1da177e4 2303 * @flags: SLAB flags
1da177e4
LT
2304 *
2305 * Returns a ptr to the cache on success, NULL on failure.
2306 * Cannot be called within a int, but can be interrupted.
20c2df83 2307 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2308 *
1da177e4
LT
2309 * The flags are
2310 *
2311 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2312 * to catch references to uninitialised memory.
2313 *
2314 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2315 * for buffer overruns.
2316 *
1da177e4
LT
2317 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2318 * cacheline. This can be beneficial if you're counting cycles as closely
2319 * as davem.
2320 */
278b1bb1 2321int
8a13a4cc 2322__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2323{
2324 size_t left_over, slab_size, ralign;
83b519e8 2325 gfp_t gfp;
278b1bb1 2326 int err;
8a13a4cc 2327 size_t size = cachep->size;
1da177e4 2328
1da177e4 2329#if DEBUG
1da177e4
LT
2330#if FORCED_DEBUG
2331 /*
2332 * Enable redzoning and last user accounting, except for caches with
2333 * large objects, if the increased size would increase the object size
2334 * above the next power of two: caches with object sizes just above a
2335 * power of two have a significant amount of internal fragmentation.
2336 */
87a927c7
DW
2337 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2338 2 * sizeof(unsigned long long)))
b28a02de 2339 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2340 if (!(flags & SLAB_DESTROY_BY_RCU))
2341 flags |= SLAB_POISON;
2342#endif
2343 if (flags & SLAB_DESTROY_BY_RCU)
2344 BUG_ON(flags & SLAB_POISON);
2345#endif
1da177e4 2346
a737b3e2
AM
2347 /*
2348 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2349 * unaligned accesses for some archs when redzoning is used, and makes
2350 * sure any on-slab bufctl's are also correctly aligned.
2351 */
b28a02de
PE
2352 if (size & (BYTES_PER_WORD - 1)) {
2353 size += (BYTES_PER_WORD - 1);
2354 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2355 }
2356
a737b3e2
AM
2357 /* calculate the final buffer alignment: */
2358
1da177e4
LT
2359 /* 1) arch recommendation: can be overridden for debug */
2360 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2361 /*
2362 * Default alignment: as specified by the arch code. Except if
2363 * an object is really small, then squeeze multiple objects into
2364 * one cacheline.
1da177e4
LT
2365 */
2366 ralign = cache_line_size();
b28a02de 2367 while (size <= ralign / 2)
1da177e4
LT
2368 ralign /= 2;
2369 } else {
2370 ralign = BYTES_PER_WORD;
2371 }
ca5f9703
PE
2372
2373 /*
87a927c7
DW
2374 * Redzoning and user store require word alignment or possibly larger.
2375 * Note this will be overridden by architecture or caller mandated
2376 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2377 */
87a927c7
DW
2378 if (flags & SLAB_STORE_USER)
2379 ralign = BYTES_PER_WORD;
2380
2381 if (flags & SLAB_RED_ZONE) {
2382 ralign = REDZONE_ALIGN;
2383 /* If redzoning, ensure that the second redzone is suitably
2384 * aligned, by adjusting the object size accordingly. */
2385 size += REDZONE_ALIGN - 1;
2386 size &= ~(REDZONE_ALIGN - 1);
2387 }
ca5f9703 2388
a44b56d3 2389 /* 2) arch mandated alignment */
1da177e4
LT
2390 if (ralign < ARCH_SLAB_MINALIGN) {
2391 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2392 }
a44b56d3 2393 /* 3) caller mandated alignment */
8a13a4cc
CL
2394 if (ralign < cachep->align) {
2395 ralign = cachep->align;
1da177e4 2396 }
3ff84a7f
PE
2397 /* disable debug if necessary */
2398 if (ralign > __alignof__(unsigned long long))
a44b56d3 2399 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2400 /*
ca5f9703 2401 * 4) Store it.
1da177e4 2402 */
8a13a4cc 2403 cachep->align = ralign;
1da177e4 2404
83b519e8
PE
2405 if (slab_is_available())
2406 gfp = GFP_KERNEL;
2407 else
2408 gfp = GFP_NOWAIT;
2409
3c583465 2410 setup_nodelists_pointer(cachep);
1da177e4 2411#if DEBUG
1da177e4 2412
ca5f9703
PE
2413 /*
2414 * Both debugging options require word-alignment which is calculated
2415 * into align above.
2416 */
1da177e4 2417 if (flags & SLAB_RED_ZONE) {
1da177e4 2418 /* add space for red zone words */
3ff84a7f
PE
2419 cachep->obj_offset += sizeof(unsigned long long);
2420 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2421 }
2422 if (flags & SLAB_STORE_USER) {
ca5f9703 2423 /* user store requires one word storage behind the end of
87a927c7
DW
2424 * the real object. But if the second red zone needs to be
2425 * aligned to 64 bits, we must allow that much space.
1da177e4 2426 */
87a927c7
DW
2427 if (flags & SLAB_RED_ZONE)
2428 size += REDZONE_ALIGN;
2429 else
2430 size += BYTES_PER_WORD;
1da177e4
LT
2431 }
2432#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2433 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
608da7e3
TH
2434 && cachep->object_size > cache_line_size()
2435 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2436 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2437 size = PAGE_SIZE;
2438 }
2439#endif
2440#endif
2441
e0a42726
IM
2442 /*
2443 * Determine if the slab management is 'on' or 'off' slab.
2444 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2445 * it too early on. Always use on-slab management when
2446 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2447 */
e7cb55b9
CM
2448 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2449 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2450 /*
2451 * Size is large, assume best to place the slab management obj
2452 * off-slab (should allow better packing of objs).
2453 */
2454 flags |= CFLGS_OFF_SLAB;
2455
8a13a4cc 2456 size = ALIGN(size, cachep->align);
1da177e4 2457
8a13a4cc 2458 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2459
8a13a4cc 2460 if (!cachep->num)
278b1bb1 2461 return -E2BIG;
1da177e4 2462
b28a02de 2463 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2464 + sizeof(struct slab), cachep->align);
1da177e4
LT
2465
2466 /*
2467 * If the slab has been placed off-slab, and we have enough space then
2468 * move it on-slab. This is at the expense of any extra colouring.
2469 */
2470 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2471 flags &= ~CFLGS_OFF_SLAB;
2472 left_over -= slab_size;
2473 }
2474
2475 if (flags & CFLGS_OFF_SLAB) {
2476 /* really off slab. No need for manual alignment */
b28a02de
PE
2477 slab_size =
2478 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2479
2480#ifdef CONFIG_PAGE_POISONING
2481 /* If we're going to use the generic kernel_map_pages()
2482 * poisoning, then it's going to smash the contents of
2483 * the redzone and userword anyhow, so switch them off.
2484 */
2485 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2486 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2487#endif
1da177e4
LT
2488 }
2489
2490 cachep->colour_off = cache_line_size();
2491 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2492 if (cachep->colour_off < cachep->align)
2493 cachep->colour_off = cachep->align;
b28a02de 2494 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2495 cachep->slab_size = slab_size;
2496 cachep->flags = flags;
a618e89f 2497 cachep->allocflags = 0;
4b51d669 2498 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2499 cachep->allocflags |= GFP_DMA;
3b0efdfa 2500 cachep->size = size;
6a2d7a95 2501 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2502
e5ac9c5a 2503 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2504 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2505 /*
2506 * This is a possibility for one of the malloc_sizes caches.
2507 * But since we go off slab only for object size greater than
2508 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2509 * this should not happen at all.
2510 * But leave a BUG_ON for some lucky dude.
2511 */
6cb8f913 2512 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2513 }
1da177e4 2514
278b1bb1
CL
2515 err = setup_cpu_cache(cachep, gfp);
2516 if (err) {
12c3667f 2517 __kmem_cache_shutdown(cachep);
278b1bb1 2518 return err;
2ed3a4ef 2519 }
1da177e4 2520
83835b3d
PZ
2521 if (flags & SLAB_DEBUG_OBJECTS) {
2522 /*
2523 * Would deadlock through slab_destroy()->call_rcu()->
2524 * debug_object_activate()->kmem_cache_alloc().
2525 */
2526 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2527
2528 slab_set_debugobj_lock_classes(cachep);
2529 }
2530
278b1bb1 2531 return 0;
1da177e4 2532}
1da177e4
LT
2533
2534#if DEBUG
2535static void check_irq_off(void)
2536{
2537 BUG_ON(!irqs_disabled());
2538}
2539
2540static void check_irq_on(void)
2541{
2542 BUG_ON(irqs_disabled());
2543}
2544
343e0d7a 2545static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2546{
2547#ifdef CONFIG_SMP
2548 check_irq_off();
7d6e6d09 2549 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2550#endif
2551}
e498be7d 2552
343e0d7a 2553static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2554{
2555#ifdef CONFIG_SMP
2556 check_irq_off();
2557 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2558#endif
2559}
2560
1da177e4
LT
2561#else
2562#define check_irq_off() do { } while(0)
2563#define check_irq_on() do { } while(0)
2564#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2565#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2566#endif
2567
aab2207c
CL
2568static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2569 struct array_cache *ac,
2570 int force, int node);
2571
1da177e4
LT
2572static void do_drain(void *arg)
2573{
a737b3e2 2574 struct kmem_cache *cachep = arg;
1da177e4 2575 struct array_cache *ac;
7d6e6d09 2576 int node = numa_mem_id();
1da177e4
LT
2577
2578 check_irq_off();
9a2dba4b 2579 ac = cpu_cache_get(cachep);
ff69416e
CL
2580 spin_lock(&cachep->nodelists[node]->list_lock);
2581 free_block(cachep, ac->entry, ac->avail, node);
2582 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2583 ac->avail = 0;
2584}
2585
343e0d7a 2586static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2587{
e498be7d
CL
2588 struct kmem_list3 *l3;
2589 int node;
2590
15c8b6c1 2591 on_each_cpu(do_drain, cachep, 1);
1da177e4 2592 check_irq_on();
b28a02de 2593 for_each_online_node(node) {
e498be7d 2594 l3 = cachep->nodelists[node];
a4523a8b
RD
2595 if (l3 && l3->alien)
2596 drain_alien_cache(cachep, l3->alien);
2597 }
2598
2599 for_each_online_node(node) {
2600 l3 = cachep->nodelists[node];
2601 if (l3)
aab2207c 2602 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2603 }
1da177e4
LT
2604}
2605
ed11d9eb
CL
2606/*
2607 * Remove slabs from the list of free slabs.
2608 * Specify the number of slabs to drain in tofree.
2609 *
2610 * Returns the actual number of slabs released.
2611 */
2612static int drain_freelist(struct kmem_cache *cache,
2613 struct kmem_list3 *l3, int tofree)
1da177e4 2614{
ed11d9eb
CL
2615 struct list_head *p;
2616 int nr_freed;
1da177e4 2617 struct slab *slabp;
1da177e4 2618
ed11d9eb
CL
2619 nr_freed = 0;
2620 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2621
ed11d9eb 2622 spin_lock_irq(&l3->list_lock);
e498be7d 2623 p = l3->slabs_free.prev;
ed11d9eb
CL
2624 if (p == &l3->slabs_free) {
2625 spin_unlock_irq(&l3->list_lock);
2626 goto out;
2627 }
1da177e4 2628
ed11d9eb 2629 slabp = list_entry(p, struct slab, list);
1da177e4 2630#if DEBUG
40094fa6 2631 BUG_ON(slabp->inuse);
1da177e4
LT
2632#endif
2633 list_del(&slabp->list);
ed11d9eb
CL
2634 /*
2635 * Safe to drop the lock. The slab is no longer linked
2636 * to the cache.
2637 */
2638 l3->free_objects -= cache->num;
e498be7d 2639 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2640 slab_destroy(cache, slabp);
2641 nr_freed++;
1da177e4 2642 }
ed11d9eb
CL
2643out:
2644 return nr_freed;
1da177e4
LT
2645}
2646
18004c5d 2647/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2648static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2649{
2650 int ret = 0, i = 0;
2651 struct kmem_list3 *l3;
2652
2653 drain_cpu_caches(cachep);
2654
2655 check_irq_on();
2656 for_each_online_node(i) {
2657 l3 = cachep->nodelists[i];
ed11d9eb
CL
2658 if (!l3)
2659 continue;
2660
2661 drain_freelist(cachep, l3, l3->free_objects);
2662
2663 ret += !list_empty(&l3->slabs_full) ||
2664 !list_empty(&l3->slabs_partial);
e498be7d
CL
2665 }
2666 return (ret ? 1 : 0);
2667}
2668
1da177e4
LT
2669/**
2670 * kmem_cache_shrink - Shrink a cache.
2671 * @cachep: The cache to shrink.
2672 *
2673 * Releases as many slabs as possible for a cache.
2674 * To help debugging, a zero exit status indicates all slabs were released.
2675 */
343e0d7a 2676int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2677{
8f5be20b 2678 int ret;
40094fa6 2679 BUG_ON(!cachep || in_interrupt());
1da177e4 2680
95402b38 2681 get_online_cpus();
18004c5d 2682 mutex_lock(&slab_mutex);
8f5be20b 2683 ret = __cache_shrink(cachep);
18004c5d 2684 mutex_unlock(&slab_mutex);
95402b38 2685 put_online_cpus();
8f5be20b 2686 return ret;
1da177e4
LT
2687}
2688EXPORT_SYMBOL(kmem_cache_shrink);
2689
945cf2b6 2690int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2691{
12c3667f
CL
2692 int i;
2693 struct kmem_list3 *l3;
2694 int rc = __cache_shrink(cachep);
1da177e4 2695
12c3667f
CL
2696 if (rc)
2697 return rc;
1da177e4 2698
12c3667f
CL
2699 for_each_online_cpu(i)
2700 kfree(cachep->array[i]);
1da177e4 2701
12c3667f
CL
2702 /* NUMA: free the list3 structures */
2703 for_each_online_node(i) {
2704 l3 = cachep->nodelists[i];
2705 if (l3) {
2706 kfree(l3->shared);
2707 free_alien_cache(l3->alien);
2708 kfree(l3);
2709 }
2710 }
2711 return 0;
1da177e4 2712}
1da177e4 2713
e5ac9c5a
RT
2714/*
2715 * Get the memory for a slab management obj.
2716 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2717 * always come from malloc_sizes caches. The slab descriptor cannot
2718 * come from the same cache which is getting created because,
2719 * when we are searching for an appropriate cache for these
2720 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2721 * If we are creating a malloc_sizes cache here it would not be visible to
2722 * kmem_find_general_cachep till the initialization is complete.
2723 * Hence we cannot have slabp_cache same as the original cache.
2724 */
343e0d7a 2725static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2726 int colour_off, gfp_t local_flags,
2727 int nodeid)
1da177e4
LT
2728{
2729 struct slab *slabp;
b28a02de 2730
1da177e4
LT
2731 if (OFF_SLAB(cachep)) {
2732 /* Slab management obj is off-slab. */
5b74ada7 2733 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2734 local_flags, nodeid);
d5cff635
CM
2735 /*
2736 * If the first object in the slab is leaked (it's allocated
2737 * but no one has a reference to it), we want to make sure
2738 * kmemleak does not treat the ->s_mem pointer as a reference
2739 * to the object. Otherwise we will not report the leak.
2740 */
c017b4be
CM
2741 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2742 local_flags);
1da177e4
LT
2743 if (!slabp)
2744 return NULL;
2745 } else {
b28a02de 2746 slabp = objp + colour_off;
1da177e4
LT
2747 colour_off += cachep->slab_size;
2748 }
2749 slabp->inuse = 0;
2750 slabp->colouroff = colour_off;
b28a02de 2751 slabp->s_mem = objp + colour_off;
5b74ada7 2752 slabp->nodeid = nodeid;
e51bfd0a 2753 slabp->free = 0;
1da177e4
LT
2754 return slabp;
2755}
2756
2757static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2758{
b28a02de 2759 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2760}
2761
343e0d7a 2762static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2763 struct slab *slabp)
1da177e4
LT
2764{
2765 int i;
2766
2767 for (i = 0; i < cachep->num; i++) {
8fea4e96 2768 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2769#if DEBUG
2770 /* need to poison the objs? */
2771 if (cachep->flags & SLAB_POISON)
2772 poison_obj(cachep, objp, POISON_FREE);
2773 if (cachep->flags & SLAB_STORE_USER)
2774 *dbg_userword(cachep, objp) = NULL;
2775
2776 if (cachep->flags & SLAB_RED_ZONE) {
2777 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2778 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2779 }
2780 /*
a737b3e2
AM
2781 * Constructors are not allowed to allocate memory from the same
2782 * cache which they are a constructor for. Otherwise, deadlock.
2783 * They must also be threaded.
1da177e4
LT
2784 */
2785 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2786 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2787
2788 if (cachep->flags & SLAB_RED_ZONE) {
2789 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2790 slab_error(cachep, "constructor overwrote the"
b28a02de 2791 " end of an object");
1da177e4
LT
2792 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2793 slab_error(cachep, "constructor overwrote the"
b28a02de 2794 " start of an object");
1da177e4 2795 }
3b0efdfa 2796 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2797 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2798 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2799 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2800#else
2801 if (cachep->ctor)
51cc5068 2802 cachep->ctor(objp);
1da177e4 2803#endif
b28a02de 2804 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2805 }
b28a02de 2806 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2807}
2808
343e0d7a 2809static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2810{
4b51d669
CL
2811 if (CONFIG_ZONE_DMA_FLAG) {
2812 if (flags & GFP_DMA)
a618e89f 2813 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2814 else
a618e89f 2815 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2816 }
1da177e4
LT
2817}
2818
a737b3e2
AM
2819static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2820 int nodeid)
78d382d7 2821{
8fea4e96 2822 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2823 kmem_bufctl_t next;
2824
2825 slabp->inuse++;
2826 next = slab_bufctl(slabp)[slabp->free];
2827#if DEBUG
2828 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2829 WARN_ON(slabp->nodeid != nodeid);
2830#endif
2831 slabp->free = next;
2832
2833 return objp;
2834}
2835
a737b3e2
AM
2836static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2837 void *objp, int nodeid)
78d382d7 2838{
8fea4e96 2839 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2840
2841#if DEBUG
2842 /* Verify that the slab belongs to the intended node */
2843 WARN_ON(slabp->nodeid != nodeid);
2844
871751e2 2845 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2846 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2847 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2848 BUG();
2849 }
2850#endif
2851 slab_bufctl(slabp)[objnr] = slabp->free;
2852 slabp->free = objnr;
2853 slabp->inuse--;
2854}
2855
4776874f
PE
2856/*
2857 * Map pages beginning at addr to the given cache and slab. This is required
2858 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2859 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2860 */
2861static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2862 void *addr)
1da177e4 2863{
4776874f 2864 int nr_pages;
1da177e4
LT
2865 struct page *page;
2866
4776874f 2867 page = virt_to_page(addr);
84097518 2868
4776874f 2869 nr_pages = 1;
84097518 2870 if (likely(!PageCompound(page)))
4776874f
PE
2871 nr_pages <<= cache->gfporder;
2872
1da177e4 2873 do {
35026088
CL
2874 page->slab_cache = cache;
2875 page->slab_page = slab;
1da177e4 2876 page++;
4776874f 2877 } while (--nr_pages);
1da177e4
LT
2878}
2879
2880/*
2881 * Grow (by 1) the number of slabs within a cache. This is called by
2882 * kmem_cache_alloc() when there are no active objs left in a cache.
2883 */
3c517a61
CL
2884static int cache_grow(struct kmem_cache *cachep,
2885 gfp_t flags, int nodeid, void *objp)
1da177e4 2886{
b28a02de 2887 struct slab *slabp;
b28a02de
PE
2888 size_t offset;
2889 gfp_t local_flags;
e498be7d 2890 struct kmem_list3 *l3;
1da177e4 2891
a737b3e2
AM
2892 /*
2893 * Be lazy and only check for valid flags here, keeping it out of the
2894 * critical path in kmem_cache_alloc().
1da177e4 2895 */
6cb06229
CL
2896 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2897 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2898
2e1217cf 2899 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2900 check_irq_off();
2e1217cf
RT
2901 l3 = cachep->nodelists[nodeid];
2902 spin_lock(&l3->list_lock);
1da177e4
LT
2903
2904 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2905 offset = l3->colour_next;
2906 l3->colour_next++;
2907 if (l3->colour_next >= cachep->colour)
2908 l3->colour_next = 0;
2909 spin_unlock(&l3->list_lock);
1da177e4 2910
2e1217cf 2911 offset *= cachep->colour_off;
1da177e4
LT
2912
2913 if (local_flags & __GFP_WAIT)
2914 local_irq_enable();
2915
2916 /*
2917 * The test for missing atomic flag is performed here, rather than
2918 * the more obvious place, simply to reduce the critical path length
2919 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2920 * will eventually be caught here (where it matters).
2921 */
2922 kmem_flagcheck(cachep, flags);
2923
a737b3e2
AM
2924 /*
2925 * Get mem for the objs. Attempt to allocate a physical page from
2926 * 'nodeid'.
e498be7d 2927 */
3c517a61 2928 if (!objp)
b8c1c5da 2929 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2930 if (!objp)
1da177e4
LT
2931 goto failed;
2932
2933 /* Get slab management. */
3c517a61 2934 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2935 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2936 if (!slabp)
1da177e4
LT
2937 goto opps1;
2938
4776874f 2939 slab_map_pages(cachep, slabp, objp);
1da177e4 2940
a35afb83 2941 cache_init_objs(cachep, slabp);
1da177e4
LT
2942
2943 if (local_flags & __GFP_WAIT)
2944 local_irq_disable();
2945 check_irq_off();
e498be7d 2946 spin_lock(&l3->list_lock);
1da177e4
LT
2947
2948 /* Make slab active. */
e498be7d 2949 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2950 STATS_INC_GROWN(cachep);
e498be7d
CL
2951 l3->free_objects += cachep->num;
2952 spin_unlock(&l3->list_lock);
1da177e4 2953 return 1;
a737b3e2 2954opps1:
1da177e4 2955 kmem_freepages(cachep, objp);
a737b3e2 2956failed:
1da177e4
LT
2957 if (local_flags & __GFP_WAIT)
2958 local_irq_disable();
2959 return 0;
2960}
2961
2962#if DEBUG
2963
2964/*
2965 * Perform extra freeing checks:
2966 * - detect bad pointers.
2967 * - POISON/RED_ZONE checking
1da177e4
LT
2968 */
2969static void kfree_debugcheck(const void *objp)
2970{
1da177e4
LT
2971 if (!virt_addr_valid(objp)) {
2972 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2973 (unsigned long)objp);
2974 BUG();
1da177e4 2975 }
1da177e4
LT
2976}
2977
58ce1fd5
PE
2978static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2979{
b46b8f19 2980 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2981
2982 redzone1 = *dbg_redzone1(cache, obj);
2983 redzone2 = *dbg_redzone2(cache, obj);
2984
2985 /*
2986 * Redzone is ok.
2987 */
2988 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2989 return;
2990
2991 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2992 slab_error(cache, "double free detected");
2993 else
2994 slab_error(cache, "memory outside object was overwritten");
2995
b46b8f19 2996 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2997 obj, redzone1, redzone2);
2998}
2999
343e0d7a 3000static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3001 unsigned long caller)
1da177e4
LT
3002{
3003 struct page *page;
3004 unsigned int objnr;
3005 struct slab *slabp;
3006
80cbd911
MW
3007 BUG_ON(virt_to_cache(objp) != cachep);
3008
3dafccf2 3009 objp -= obj_offset(cachep);
1da177e4 3010 kfree_debugcheck(objp);
b49af68f 3011 page = virt_to_head_page(objp);
1da177e4 3012
35026088 3013 slabp = page->slab_page;
1da177e4
LT
3014
3015 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3016 verify_redzone_free(cachep, objp);
1da177e4
LT
3017 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3018 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3019 }
3020 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3021 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3022
8fea4e96 3023 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3024
3025 BUG_ON(objnr >= cachep->num);
8fea4e96 3026 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3027
871751e2
AV
3028#ifdef CONFIG_DEBUG_SLAB_LEAK
3029 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3030#endif
1da177e4
LT
3031 if (cachep->flags & SLAB_POISON) {
3032#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3033 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3034 store_stackinfo(cachep, objp, caller);
b28a02de 3035 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3036 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3037 } else {
3038 poison_obj(cachep, objp, POISON_FREE);
3039 }
3040#else
3041 poison_obj(cachep, objp, POISON_FREE);
3042#endif
3043 }
3044 return objp;
3045}
3046
343e0d7a 3047static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3048{
3049 kmem_bufctl_t i;
3050 int entries = 0;
b28a02de 3051
1da177e4
LT
3052 /* Check slab's freelist to see if this obj is there. */
3053 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3054 entries++;
3055 if (entries > cachep->num || i >= cachep->num)
3056 goto bad;
3057 }
3058 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3059bad:
3060 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3061 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3062 cachep->name, cachep->num, slabp, slabp->inuse,
3063 print_tainted());
fdde6abb
SAS
3064 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3065 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3066 1);
1da177e4
LT
3067 BUG();
3068 }
3069}
3070#else
3071#define kfree_debugcheck(x) do { } while(0)
3072#define cache_free_debugcheck(x,objp,z) (objp)
3073#define check_slabp(x,y) do { } while(0)
3074#endif
3075
072bb0aa
MG
3076static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3077 bool force_refill)
1da177e4
LT
3078{
3079 int batchcount;
3080 struct kmem_list3 *l3;
3081 struct array_cache *ac;
1ca4cb24
PE
3082 int node;
3083
1da177e4 3084 check_irq_off();
7d6e6d09 3085 node = numa_mem_id();
072bb0aa
MG
3086 if (unlikely(force_refill))
3087 goto force_grow;
3088retry:
9a2dba4b 3089 ac = cpu_cache_get(cachep);
1da177e4
LT
3090 batchcount = ac->batchcount;
3091 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3092 /*
3093 * If there was little recent activity on this cache, then
3094 * perform only a partial refill. Otherwise we could generate
3095 * refill bouncing.
1da177e4
LT
3096 */
3097 batchcount = BATCHREFILL_LIMIT;
3098 }
1ca4cb24 3099 l3 = cachep->nodelists[node];
e498be7d
CL
3100
3101 BUG_ON(ac->avail > 0 || !l3);
3102 spin_lock(&l3->list_lock);
1da177e4 3103
3ded175a 3104 /* See if we can refill from the shared array */
44b57f1c
NP
3105 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3106 l3->shared->touched = 1;
3ded175a 3107 goto alloc_done;
44b57f1c 3108 }
3ded175a 3109
1da177e4
LT
3110 while (batchcount > 0) {
3111 struct list_head *entry;
3112 struct slab *slabp;
3113 /* Get slab alloc is to come from. */
3114 entry = l3->slabs_partial.next;
3115 if (entry == &l3->slabs_partial) {
3116 l3->free_touched = 1;
3117 entry = l3->slabs_free.next;
3118 if (entry == &l3->slabs_free)
3119 goto must_grow;
3120 }
3121
3122 slabp = list_entry(entry, struct slab, list);
3123 check_slabp(cachep, slabp);
3124 check_spinlock_acquired(cachep);
714b8171
PE
3125
3126 /*
3127 * The slab was either on partial or free list so
3128 * there must be at least one object available for
3129 * allocation.
3130 */
249b9f33 3131 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3132
1da177e4 3133 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3134 STATS_INC_ALLOCED(cachep);
3135 STATS_INC_ACTIVE(cachep);
3136 STATS_SET_HIGH(cachep);
3137
072bb0aa
MG
3138 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3139 node));
1da177e4
LT
3140 }
3141 check_slabp(cachep, slabp);
3142
3143 /* move slabp to correct slabp list: */
3144 list_del(&slabp->list);
3145 if (slabp->free == BUFCTL_END)
3146 list_add(&slabp->list, &l3->slabs_full);
3147 else
3148 list_add(&slabp->list, &l3->slabs_partial);
3149 }
3150
a737b3e2 3151must_grow:
1da177e4 3152 l3->free_objects -= ac->avail;
a737b3e2 3153alloc_done:
e498be7d 3154 spin_unlock(&l3->list_lock);
1da177e4
LT
3155
3156 if (unlikely(!ac->avail)) {
3157 int x;
072bb0aa 3158force_grow:
3c517a61 3159 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3160
a737b3e2 3161 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3162 ac = cpu_cache_get(cachep);
51cd8e6f 3163 node = numa_mem_id();
072bb0aa
MG
3164
3165 /* no objects in sight? abort */
3166 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3167 return NULL;
3168
a737b3e2 3169 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3170 goto retry;
3171 }
3172 ac->touched = 1;
072bb0aa
MG
3173
3174 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3175}
3176
a737b3e2
AM
3177static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3178 gfp_t flags)
1da177e4
LT
3179{
3180 might_sleep_if(flags & __GFP_WAIT);
3181#if DEBUG
3182 kmem_flagcheck(cachep, flags);
3183#endif
3184}
3185
3186#if DEBUG
a737b3e2 3187static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3188 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3189{
b28a02de 3190 if (!objp)
1da177e4 3191 return objp;
b28a02de 3192 if (cachep->flags & SLAB_POISON) {
1da177e4 3193#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3194 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3195 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3196 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3197 else
3198 check_poison_obj(cachep, objp);
3199#else
3200 check_poison_obj(cachep, objp);
3201#endif
3202 poison_obj(cachep, objp, POISON_INUSE);
3203 }
3204 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3205 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3206
3207 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3208 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3209 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3210 slab_error(cachep, "double free, or memory outside"
3211 " object was overwritten");
b28a02de 3212 printk(KERN_ERR
b46b8f19 3213 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3214 objp, *dbg_redzone1(cachep, objp),
3215 *dbg_redzone2(cachep, objp));
1da177e4
LT
3216 }
3217 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3218 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3219 }
871751e2
AV
3220#ifdef CONFIG_DEBUG_SLAB_LEAK
3221 {
3222 struct slab *slabp;
3223 unsigned objnr;
3224
35026088 3225 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3226 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3227 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3228 }
3229#endif
3dafccf2 3230 objp += obj_offset(cachep);
4f104934 3231 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3232 cachep->ctor(objp);
7ea466f2
TH
3233 if (ARCH_SLAB_MINALIGN &&
3234 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3235 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3236 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3237 }
1da177e4
LT
3238 return objp;
3239}
3240#else
3241#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3242#endif
3243
773ff60e 3244static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3245{
9b030cb8 3246 if (cachep == kmem_cache)
773ff60e 3247 return false;
8a8b6502 3248
8c138bc0 3249 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3250}
3251
343e0d7a 3252static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3253{
b28a02de 3254 void *objp;
1da177e4 3255 struct array_cache *ac;
072bb0aa 3256 bool force_refill = false;
1da177e4 3257
5c382300 3258 check_irq_off();
8a8b6502 3259
9a2dba4b 3260 ac = cpu_cache_get(cachep);
1da177e4 3261 if (likely(ac->avail)) {
1da177e4 3262 ac->touched = 1;
072bb0aa
MG
3263 objp = ac_get_obj(cachep, ac, flags, false);
3264
ddbf2e83 3265 /*
072bb0aa
MG
3266 * Allow for the possibility all avail objects are not allowed
3267 * by the current flags
ddbf2e83 3268 */
072bb0aa
MG
3269 if (objp) {
3270 STATS_INC_ALLOCHIT(cachep);
3271 goto out;
3272 }
3273 force_refill = true;
1da177e4 3274 }
072bb0aa
MG
3275
3276 STATS_INC_ALLOCMISS(cachep);
3277 objp = cache_alloc_refill(cachep, flags, force_refill);
3278 /*
3279 * the 'ac' may be updated by cache_alloc_refill(),
3280 * and kmemleak_erase() requires its correct value.
3281 */
3282 ac = cpu_cache_get(cachep);
3283
3284out:
d5cff635
CM
3285 /*
3286 * To avoid a false negative, if an object that is in one of the
3287 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3288 * treat the array pointers as a reference to the object.
3289 */
f3d8b53a
O
3290 if (objp)
3291 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3292 return objp;
3293}
3294
e498be7d 3295#ifdef CONFIG_NUMA
c61afb18 3296/*
b2455396 3297 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3298 *
3299 * If we are in_interrupt, then process context, including cpusets and
3300 * mempolicy, may not apply and should not be used for allocation policy.
3301 */
3302static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3303{
3304 int nid_alloc, nid_here;
3305
765c4507 3306 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3307 return NULL;
7d6e6d09 3308 nid_alloc = nid_here = numa_mem_id();
c61afb18 3309 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3310 nid_alloc = cpuset_slab_spread_node();
c61afb18 3311 else if (current->mempolicy)
e7b691b0 3312 nid_alloc = slab_node();
c61afb18 3313 if (nid_alloc != nid_here)
8b98c169 3314 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3315 return NULL;
3316}
3317
765c4507
CL
3318/*
3319 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3320 * certain node and fall back is permitted. First we scan all the
3321 * available nodelists for available objects. If that fails then we
3322 * perform an allocation without specifying a node. This allows the page
3323 * allocator to do its reclaim / fallback magic. We then insert the
3324 * slab into the proper nodelist and then allocate from it.
765c4507 3325 */
8c8cc2c1 3326static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3327{
8c8cc2c1
PE
3328 struct zonelist *zonelist;
3329 gfp_t local_flags;
dd1a239f 3330 struct zoneref *z;
54a6eb5c
MG
3331 struct zone *zone;
3332 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3333 void *obj = NULL;
3c517a61 3334 int nid;
cc9a6c87 3335 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3336
3337 if (flags & __GFP_THISNODE)
3338 return NULL;
3339
6cb06229 3340 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3341
cc9a6c87
MG
3342retry_cpuset:
3343 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3344 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3345
3c517a61
CL
3346retry:
3347 /*
3348 * Look through allowed nodes for objects available
3349 * from existing per node queues.
3350 */
54a6eb5c
MG
3351 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3352 nid = zone_to_nid(zone);
aedb0eb1 3353
54a6eb5c 3354 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3355 cache->nodelists[nid] &&
481c5346 3356 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3357 obj = ____cache_alloc_node(cache,
3358 flags | GFP_THISNODE, nid);
481c5346
CL
3359 if (obj)
3360 break;
3361 }
3c517a61
CL
3362 }
3363
cfce6604 3364 if (!obj) {
3c517a61
CL
3365 /*
3366 * This allocation will be performed within the constraints
3367 * of the current cpuset / memory policy requirements.
3368 * We may trigger various forms of reclaim on the allowed
3369 * set and go into memory reserves if necessary.
3370 */
dd47ea75
CL
3371 if (local_flags & __GFP_WAIT)
3372 local_irq_enable();
3373 kmem_flagcheck(cache, flags);
7d6e6d09 3374 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3375 if (local_flags & __GFP_WAIT)
3376 local_irq_disable();
3c517a61
CL
3377 if (obj) {
3378 /*
3379 * Insert into the appropriate per node queues
3380 */
3381 nid = page_to_nid(virt_to_page(obj));
3382 if (cache_grow(cache, flags, nid, obj)) {
3383 obj = ____cache_alloc_node(cache,
3384 flags | GFP_THISNODE, nid);
3385 if (!obj)
3386 /*
3387 * Another processor may allocate the
3388 * objects in the slab since we are
3389 * not holding any locks.
3390 */
3391 goto retry;
3392 } else {
b6a60451 3393 /* cache_grow already freed obj */
3c517a61
CL
3394 obj = NULL;
3395 }
3396 }
aedb0eb1 3397 }
cc9a6c87
MG
3398
3399 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3400 goto retry_cpuset;
765c4507
CL
3401 return obj;
3402}
3403
e498be7d
CL
3404/*
3405 * A interface to enable slab creation on nodeid
1da177e4 3406 */
8b98c169 3407static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3408 int nodeid)
e498be7d
CL
3409{
3410 struct list_head *entry;
b28a02de
PE
3411 struct slab *slabp;
3412 struct kmem_list3 *l3;
3413 void *obj;
b28a02de
PE
3414 int x;
3415
3416 l3 = cachep->nodelists[nodeid];
3417 BUG_ON(!l3);
3418
a737b3e2 3419retry:
ca3b9b91 3420 check_irq_off();
b28a02de
PE
3421 spin_lock(&l3->list_lock);
3422 entry = l3->slabs_partial.next;
3423 if (entry == &l3->slabs_partial) {
3424 l3->free_touched = 1;
3425 entry = l3->slabs_free.next;
3426 if (entry == &l3->slabs_free)
3427 goto must_grow;
3428 }
3429
3430 slabp = list_entry(entry, struct slab, list);
3431 check_spinlock_acquired_node(cachep, nodeid);
3432 check_slabp(cachep, slabp);
3433
3434 STATS_INC_NODEALLOCS(cachep);
3435 STATS_INC_ACTIVE(cachep);
3436 STATS_SET_HIGH(cachep);
3437
3438 BUG_ON(slabp->inuse == cachep->num);
3439
78d382d7 3440 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3441 check_slabp(cachep, slabp);
3442 l3->free_objects--;
3443 /* move slabp to correct slabp list: */
3444 list_del(&slabp->list);
3445
a737b3e2 3446 if (slabp->free == BUFCTL_END)
b28a02de 3447 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3448 else
b28a02de 3449 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3450
b28a02de
PE
3451 spin_unlock(&l3->list_lock);
3452 goto done;
e498be7d 3453
a737b3e2 3454must_grow:
b28a02de 3455 spin_unlock(&l3->list_lock);
3c517a61 3456 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3457 if (x)
3458 goto retry;
1da177e4 3459
8c8cc2c1 3460 return fallback_alloc(cachep, flags);
e498be7d 3461
a737b3e2 3462done:
b28a02de 3463 return obj;
e498be7d 3464}
8c8cc2c1
PE
3465
3466/**
3467 * kmem_cache_alloc_node - Allocate an object on the specified node
3468 * @cachep: The cache to allocate from.
3469 * @flags: See kmalloc().
3470 * @nodeid: node number of the target node.
3471 * @caller: return address of caller, used for debug information
3472 *
3473 * Identical to kmem_cache_alloc but it will allocate memory on the given
3474 * node, which can improve the performance for cpu bound structures.
3475 *
3476 * Fallback to other node is possible if __GFP_THISNODE is not set.
3477 */
3478static __always_inline void *
48356303 3479slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3480 unsigned long caller)
8c8cc2c1
PE
3481{
3482 unsigned long save_flags;
3483 void *ptr;
7d6e6d09 3484 int slab_node = numa_mem_id();
8c8cc2c1 3485
dcce284a 3486 flags &= gfp_allowed_mask;
7e85ee0c 3487
cf40bd16
NP
3488 lockdep_trace_alloc(flags);
3489
773ff60e 3490 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3491 return NULL;
3492
8c8cc2c1
PE
3493 cache_alloc_debugcheck_before(cachep, flags);
3494 local_irq_save(save_flags);
3495
eacbbae3 3496 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3497 nodeid = slab_node;
8c8cc2c1
PE
3498
3499 if (unlikely(!cachep->nodelists[nodeid])) {
3500 /* Node not bootstrapped yet */
3501 ptr = fallback_alloc(cachep, flags);
3502 goto out;
3503 }
3504
7d6e6d09 3505 if (nodeid == slab_node) {
8c8cc2c1
PE
3506 /*
3507 * Use the locally cached objects if possible.
3508 * However ____cache_alloc does not allow fallback
3509 * to other nodes. It may fail while we still have
3510 * objects on other nodes available.
3511 */
3512 ptr = ____cache_alloc(cachep, flags);
3513 if (ptr)
3514 goto out;
3515 }
3516 /* ___cache_alloc_node can fall back to other nodes */
3517 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3518 out:
3519 local_irq_restore(save_flags);
3520 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3521 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3522 flags);
8c8cc2c1 3523
c175eea4 3524 if (likely(ptr))
8c138bc0 3525 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3526
d07dbea4 3527 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3528 memset(ptr, 0, cachep->object_size);
d07dbea4 3529
8c8cc2c1
PE
3530 return ptr;
3531}
3532
3533static __always_inline void *
3534__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3535{
3536 void *objp;
3537
3538 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3539 objp = alternate_node_alloc(cache, flags);
3540 if (objp)
3541 goto out;
3542 }
3543 objp = ____cache_alloc(cache, flags);
3544
3545 /*
3546 * We may just have run out of memory on the local node.
3547 * ____cache_alloc_node() knows how to locate memory on other nodes
3548 */
7d6e6d09
LS
3549 if (!objp)
3550 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3551
3552 out:
3553 return objp;
3554}
3555#else
3556
3557static __always_inline void *
3558__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3559{
3560 return ____cache_alloc(cachep, flags);
3561}
3562
3563#endif /* CONFIG_NUMA */
3564
3565static __always_inline void *
48356303 3566slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3567{
3568 unsigned long save_flags;
3569 void *objp;
3570
dcce284a 3571 flags &= gfp_allowed_mask;
7e85ee0c 3572
cf40bd16
NP
3573 lockdep_trace_alloc(flags);
3574
773ff60e 3575 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3576 return NULL;
3577
8c8cc2c1
PE
3578 cache_alloc_debugcheck_before(cachep, flags);
3579 local_irq_save(save_flags);
3580 objp = __do_cache_alloc(cachep, flags);
3581 local_irq_restore(save_flags);
3582 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3583 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3584 flags);
8c8cc2c1
PE
3585 prefetchw(objp);
3586
c175eea4 3587 if (likely(objp))
8c138bc0 3588 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3589
d07dbea4 3590 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3591 memset(objp, 0, cachep->object_size);
d07dbea4 3592
8c8cc2c1
PE
3593 return objp;
3594}
e498be7d
CL
3595
3596/*
3597 * Caller needs to acquire correct kmem_list's list_lock
3598 */
343e0d7a 3599static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3600 int node)
1da177e4
LT
3601{
3602 int i;
e498be7d 3603 struct kmem_list3 *l3;
1da177e4
LT
3604
3605 for (i = 0; i < nr_objects; i++) {
072bb0aa 3606 void *objp;
1da177e4 3607 struct slab *slabp;
1da177e4 3608
072bb0aa
MG
3609 clear_obj_pfmemalloc(&objpp[i]);
3610 objp = objpp[i];
3611
6ed5eb22 3612 slabp = virt_to_slab(objp);
ff69416e 3613 l3 = cachep->nodelists[node];
1da177e4 3614 list_del(&slabp->list);
ff69416e 3615 check_spinlock_acquired_node(cachep, node);
1da177e4 3616 check_slabp(cachep, slabp);
78d382d7 3617 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3618 STATS_DEC_ACTIVE(cachep);
e498be7d 3619 l3->free_objects++;
1da177e4
LT
3620 check_slabp(cachep, slabp);
3621
3622 /* fixup slab chains */
3623 if (slabp->inuse == 0) {
e498be7d
CL
3624 if (l3->free_objects > l3->free_limit) {
3625 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3626 /* No need to drop any previously held
3627 * lock here, even if we have a off-slab slab
3628 * descriptor it is guaranteed to come from
3629 * a different cache, refer to comments before
3630 * alloc_slabmgmt.
3631 */
1da177e4
LT
3632 slab_destroy(cachep, slabp);
3633 } else {
e498be7d 3634 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3635 }
3636 } else {
3637 /* Unconditionally move a slab to the end of the
3638 * partial list on free - maximum time for the
3639 * other objects to be freed, too.
3640 */
e498be7d 3641 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3642 }
3643 }
3644}
3645
343e0d7a 3646static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3647{
3648 int batchcount;
e498be7d 3649 struct kmem_list3 *l3;
7d6e6d09 3650 int node = numa_mem_id();
1da177e4
LT
3651
3652 batchcount = ac->batchcount;
3653#if DEBUG
3654 BUG_ON(!batchcount || batchcount > ac->avail);
3655#endif
3656 check_irq_off();
ff69416e 3657 l3 = cachep->nodelists[node];
873623df 3658 spin_lock(&l3->list_lock);
e498be7d
CL
3659 if (l3->shared) {
3660 struct array_cache *shared_array = l3->shared;
b28a02de 3661 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3662 if (max) {
3663 if (batchcount > max)
3664 batchcount = max;
e498be7d 3665 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3666 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3667 shared_array->avail += batchcount;
3668 goto free_done;
3669 }
3670 }
3671
ff69416e 3672 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3673free_done:
1da177e4
LT
3674#if STATS
3675 {
3676 int i = 0;
3677 struct list_head *p;
3678
e498be7d
CL
3679 p = l3->slabs_free.next;
3680 while (p != &(l3->slabs_free)) {
1da177e4
LT
3681 struct slab *slabp;
3682
3683 slabp = list_entry(p, struct slab, list);
3684 BUG_ON(slabp->inuse);
3685
3686 i++;
3687 p = p->next;
3688 }
3689 STATS_SET_FREEABLE(cachep, i);
3690 }
3691#endif
e498be7d 3692 spin_unlock(&l3->list_lock);
1da177e4 3693 ac->avail -= batchcount;
a737b3e2 3694 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3695}
3696
3697/*
a737b3e2
AM
3698 * Release an obj back to its cache. If the obj has a constructed state, it must
3699 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3700 */
a947eb95 3701static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3702 unsigned long caller)
1da177e4 3703{
9a2dba4b 3704 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3705
3706 check_irq_off();
d5cff635 3707 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3708 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3709
8c138bc0 3710 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3711
1807a1aa
SS
3712 /*
3713 * Skip calling cache_free_alien() when the platform is not numa.
3714 * This will avoid cache misses that happen while accessing slabp (which
3715 * is per page memory reference) to get nodeid. Instead use a global
3716 * variable to skip the call, which is mostly likely to be present in
3717 * the cache.
3718 */
b6e68bc1 3719 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3720 return;
3721
1da177e4
LT
3722 if (likely(ac->avail < ac->limit)) {
3723 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3724 } else {
3725 STATS_INC_FREEMISS(cachep);
3726 cache_flusharray(cachep, ac);
1da177e4 3727 }
42c8c99c 3728
072bb0aa 3729 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3730}
3731
3732/**
3733 * kmem_cache_alloc - Allocate an object
3734 * @cachep: The cache to allocate from.
3735 * @flags: See kmalloc().
3736 *
3737 * Allocate an object from this cache. The flags are only relevant
3738 * if the cache has no available objects.
3739 */
343e0d7a 3740void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3741{
48356303 3742 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3743
ca2b84cb 3744 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3745 cachep->object_size, cachep->size, flags);
36555751
EGM
3746
3747 return ret;
1da177e4
LT
3748}
3749EXPORT_SYMBOL(kmem_cache_alloc);
3750
0f24f128 3751#ifdef CONFIG_TRACING
85beb586 3752void *
4052147c 3753kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3754{
85beb586
SR
3755 void *ret;
3756
48356303 3757 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3758
3759 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3760 size, cachep->size, flags);
85beb586 3761 return ret;
36555751 3762}
85beb586 3763EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3764#endif
3765
1da177e4 3766#ifdef CONFIG_NUMA
8b98c169
CH
3767void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3768{
48356303 3769 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3770
ca2b84cb 3771 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3772 cachep->object_size, cachep->size,
ca2b84cb 3773 flags, nodeid);
36555751
EGM
3774
3775 return ret;
8b98c169 3776}
1da177e4
LT
3777EXPORT_SYMBOL(kmem_cache_alloc_node);
3778
0f24f128 3779#ifdef CONFIG_TRACING
4052147c 3780void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3781 gfp_t flags,
4052147c
EG
3782 int nodeid,
3783 size_t size)
36555751 3784{
85beb586
SR
3785 void *ret;
3786
592f4145 3787 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3788
85beb586 3789 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3790 size, cachep->size,
85beb586
SR
3791 flags, nodeid);
3792 return ret;
36555751 3793}
85beb586 3794EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3795#endif
3796
8b98c169 3797static __always_inline void *
7c0cb9c6 3798__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3799{
343e0d7a 3800 struct kmem_cache *cachep;
97e2bde4
MS
3801
3802 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3803 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3804 return cachep;
4052147c 3805 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3806}
8b98c169 3807
0bb38a5c 3808#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3809void *__kmalloc_node(size_t size, gfp_t flags, int node)
3810{
7c0cb9c6 3811 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3812}
dbe5e69d 3813EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3814
3815void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3816 int node, unsigned long caller)
8b98c169 3817{
7c0cb9c6 3818 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3819}
3820EXPORT_SYMBOL(__kmalloc_node_track_caller);
3821#else
3822void *__kmalloc_node(size_t size, gfp_t flags, int node)
3823{
7c0cb9c6 3824 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3825}
3826EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3827#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3828#endif /* CONFIG_NUMA */
1da177e4
LT
3829
3830/**
800590f5 3831 * __do_kmalloc - allocate memory
1da177e4 3832 * @size: how many bytes of memory are required.
800590f5 3833 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3834 * @caller: function caller for debug tracking of the caller
1da177e4 3835 */
7fd6b141 3836static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3837 unsigned long caller)
1da177e4 3838{
343e0d7a 3839 struct kmem_cache *cachep;
36555751 3840 void *ret;
1da177e4 3841
97e2bde4
MS
3842 /* If you want to save a few bytes .text space: replace
3843 * __ with kmem_.
3844 * Then kmalloc uses the uninlined functions instead of the inline
3845 * functions.
3846 */
3847 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3848 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3849 return cachep;
48356303 3850 ret = slab_alloc(cachep, flags, caller);
36555751 3851
7c0cb9c6 3852 trace_kmalloc(caller, ret,
3b0efdfa 3853 size, cachep->size, flags);
36555751
EGM
3854
3855 return ret;
7fd6b141
PE
3856}
3857
7fd6b141 3858
0bb38a5c 3859#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3860void *__kmalloc(size_t size, gfp_t flags)
3861{
7c0cb9c6 3862 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3863}
3864EXPORT_SYMBOL(__kmalloc);
3865
ce71e27c 3866void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3867{
7c0cb9c6 3868 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3869}
3870EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3871
3872#else
3873void *__kmalloc(size_t size, gfp_t flags)
3874{
7c0cb9c6 3875 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3876}
3877EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3878#endif
3879
1da177e4
LT
3880/**
3881 * kmem_cache_free - Deallocate an object
3882 * @cachep: The cache the allocation was from.
3883 * @objp: The previously allocated object.
3884 *
3885 * Free an object which was previously allocated from this
3886 * cache.
3887 */
343e0d7a 3888void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3889{
3890 unsigned long flags;
3891
3892 local_irq_save(flags);
d97d476b 3893 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3894 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3895 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3896 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3897 local_irq_restore(flags);
36555751 3898
ca2b84cb 3899 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3900}
3901EXPORT_SYMBOL(kmem_cache_free);
3902
1da177e4
LT
3903/**
3904 * kfree - free previously allocated memory
3905 * @objp: pointer returned by kmalloc.
3906 *
80e93eff
PE
3907 * If @objp is NULL, no operation is performed.
3908 *
1da177e4
LT
3909 * Don't free memory not originally allocated by kmalloc()
3910 * or you will run into trouble.
3911 */
3912void kfree(const void *objp)
3913{
343e0d7a 3914 struct kmem_cache *c;
1da177e4
LT
3915 unsigned long flags;
3916
2121db74
PE
3917 trace_kfree(_RET_IP_, objp);
3918
6cb8f913 3919 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3920 return;
3921 local_irq_save(flags);
3922 kfree_debugcheck(objp);
6ed5eb22 3923 c = virt_to_cache(objp);
8c138bc0
CL
3924 debug_check_no_locks_freed(objp, c->object_size);
3925
3926 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3927 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3928 local_irq_restore(flags);
3929}
3930EXPORT_SYMBOL(kfree);
3931
e498be7d 3932/*
183ff22b 3933 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3934 */
83b519e8 3935static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3936{
3937 int node;
3938 struct kmem_list3 *l3;
cafeb02e 3939 struct array_cache *new_shared;
3395ee05 3940 struct array_cache **new_alien = NULL;
e498be7d 3941
9c09a95c 3942 for_each_online_node(node) {
cafeb02e 3943
3395ee05 3944 if (use_alien_caches) {
83b519e8 3945 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3946 if (!new_alien)
3947 goto fail;
3948 }
cafeb02e 3949
63109846
ED
3950 new_shared = NULL;
3951 if (cachep->shared) {
3952 new_shared = alloc_arraycache(node,
0718dc2a 3953 cachep->shared*cachep->batchcount,
83b519e8 3954 0xbaadf00d, gfp);
63109846
ED
3955 if (!new_shared) {
3956 free_alien_cache(new_alien);
3957 goto fail;
3958 }
0718dc2a 3959 }
cafeb02e 3960
a737b3e2
AM
3961 l3 = cachep->nodelists[node];
3962 if (l3) {
cafeb02e
CL
3963 struct array_cache *shared = l3->shared;
3964
e498be7d
CL
3965 spin_lock_irq(&l3->list_lock);
3966
cafeb02e 3967 if (shared)
0718dc2a
CL
3968 free_block(cachep, shared->entry,
3969 shared->avail, node);
e498be7d 3970
cafeb02e
CL
3971 l3->shared = new_shared;
3972 if (!l3->alien) {
e498be7d
CL
3973 l3->alien = new_alien;
3974 new_alien = NULL;
3975 }
b28a02de 3976 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3977 cachep->batchcount + cachep->num;
e498be7d 3978 spin_unlock_irq(&l3->list_lock);
cafeb02e 3979 kfree(shared);
e498be7d
CL
3980 free_alien_cache(new_alien);
3981 continue;
3982 }
83b519e8 3983 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3984 if (!l3) {
3985 free_alien_cache(new_alien);
3986 kfree(new_shared);
e498be7d 3987 goto fail;
0718dc2a 3988 }
e498be7d
CL
3989
3990 kmem_list3_init(l3);
3991 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3992 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3993 l3->shared = new_shared;
e498be7d 3994 l3->alien = new_alien;
b28a02de 3995 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3996 cachep->batchcount + cachep->num;
e498be7d
CL
3997 cachep->nodelists[node] = l3;
3998 }
cafeb02e 3999 return 0;
0718dc2a 4000
a737b3e2 4001fail:
3b0efdfa 4002 if (!cachep->list.next) {
0718dc2a
CL
4003 /* Cache is not active yet. Roll back what we did */
4004 node--;
4005 while (node >= 0) {
4006 if (cachep->nodelists[node]) {
4007 l3 = cachep->nodelists[node];
4008
4009 kfree(l3->shared);
4010 free_alien_cache(l3->alien);
4011 kfree(l3);
4012 cachep->nodelists[node] = NULL;
4013 }
4014 node--;
4015 }
4016 }
cafeb02e 4017 return -ENOMEM;
e498be7d
CL
4018}
4019
1da177e4 4020struct ccupdate_struct {
343e0d7a 4021 struct kmem_cache *cachep;
acfe7d74 4022 struct array_cache *new[0];
1da177e4
LT
4023};
4024
4025static void do_ccupdate_local(void *info)
4026{
a737b3e2 4027 struct ccupdate_struct *new = info;
1da177e4
LT
4028 struct array_cache *old;
4029
4030 check_irq_off();
9a2dba4b 4031 old = cpu_cache_get(new->cachep);
e498be7d 4032
1da177e4
LT
4033 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4034 new->new[smp_processor_id()] = old;
4035}
4036
18004c5d 4037/* Always called with the slab_mutex held */
a737b3e2 4038static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4039 int batchcount, int shared, gfp_t gfp)
1da177e4 4040{
d2e7b7d0 4041 struct ccupdate_struct *new;
2ed3a4ef 4042 int i;
1da177e4 4043
acfe7d74
ED
4044 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4045 gfp);
d2e7b7d0
SS
4046 if (!new)
4047 return -ENOMEM;
4048
e498be7d 4049 for_each_online_cpu(i) {
7d6e6d09 4050 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4051 batchcount, gfp);
d2e7b7d0 4052 if (!new->new[i]) {
b28a02de 4053 for (i--; i >= 0; i--)
d2e7b7d0
SS
4054 kfree(new->new[i]);
4055 kfree(new);
e498be7d 4056 return -ENOMEM;
1da177e4
LT
4057 }
4058 }
d2e7b7d0 4059 new->cachep = cachep;
1da177e4 4060
15c8b6c1 4061 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4062
1da177e4 4063 check_irq_on();
1da177e4
LT
4064 cachep->batchcount = batchcount;
4065 cachep->limit = limit;
e498be7d 4066 cachep->shared = shared;
1da177e4 4067
e498be7d 4068 for_each_online_cpu(i) {
d2e7b7d0 4069 struct array_cache *ccold = new->new[i];
1da177e4
LT
4070 if (!ccold)
4071 continue;
7d6e6d09
LS
4072 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4073 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4074 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4075 kfree(ccold);
4076 }
d2e7b7d0 4077 kfree(new);
83b519e8 4078 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4079}
4080
18004c5d 4081/* Called with slab_mutex held always */
83b519e8 4082static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4083{
4084 int err;
4085 int limit, shared;
4086
a737b3e2
AM
4087 /*
4088 * The head array serves three purposes:
1da177e4
LT
4089 * - create a LIFO ordering, i.e. return objects that are cache-warm
4090 * - reduce the number of spinlock operations.
a737b3e2 4091 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4092 * bufctl chains: array operations are cheaper.
4093 * The numbers are guessed, we should auto-tune as described by
4094 * Bonwick.
4095 */
3b0efdfa 4096 if (cachep->size > 131072)
1da177e4 4097 limit = 1;
3b0efdfa 4098 else if (cachep->size > PAGE_SIZE)
1da177e4 4099 limit = 8;
3b0efdfa 4100 else if (cachep->size > 1024)
1da177e4 4101 limit = 24;
3b0efdfa 4102 else if (cachep->size > 256)
1da177e4
LT
4103 limit = 54;
4104 else
4105 limit = 120;
4106
a737b3e2
AM
4107 /*
4108 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4109 * allocation behaviour: Most allocs on one cpu, most free operations
4110 * on another cpu. For these cases, an efficient object passing between
4111 * cpus is necessary. This is provided by a shared array. The array
4112 * replaces Bonwick's magazine layer.
4113 * On uniprocessor, it's functionally equivalent (but less efficient)
4114 * to a larger limit. Thus disabled by default.
4115 */
4116 shared = 0;
3b0efdfa 4117 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4118 shared = 8;
1da177e4
LT
4119
4120#if DEBUG
a737b3e2
AM
4121 /*
4122 * With debugging enabled, large batchcount lead to excessively long
4123 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4124 */
4125 if (limit > 32)
4126 limit = 32;
4127#endif
83b519e8 4128 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4129 if (err)
4130 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4131 cachep->name, -err);
2ed3a4ef 4132 return err;
1da177e4
LT
4133}
4134
1b55253a
CL
4135/*
4136 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4137 * necessary. Note that the l3 listlock also protects the array_cache
4138 * if drain_array() is used on the shared array.
1b55253a 4139 */
68a1b195 4140static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4141 struct array_cache *ac, int force, int node)
1da177e4
LT
4142{
4143 int tofree;
4144
1b55253a
CL
4145 if (!ac || !ac->avail)
4146 return;
1da177e4
LT
4147 if (ac->touched && !force) {
4148 ac->touched = 0;
b18e7e65 4149 } else {
1b55253a 4150 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4151 if (ac->avail) {
4152 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4153 if (tofree > ac->avail)
4154 tofree = (ac->avail + 1) / 2;
4155 free_block(cachep, ac->entry, tofree, node);
4156 ac->avail -= tofree;
4157 memmove(ac->entry, &(ac->entry[tofree]),
4158 sizeof(void *) * ac->avail);
4159 }
1b55253a 4160 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4161 }
4162}
4163
4164/**
4165 * cache_reap - Reclaim memory from caches.
05fb6bf0 4166 * @w: work descriptor
1da177e4
LT
4167 *
4168 * Called from workqueue/eventd every few seconds.
4169 * Purpose:
4170 * - clear the per-cpu caches for this CPU.
4171 * - return freeable pages to the main free memory pool.
4172 *
a737b3e2
AM
4173 * If we cannot acquire the cache chain mutex then just give up - we'll try
4174 * again on the next iteration.
1da177e4 4175 */
7c5cae36 4176static void cache_reap(struct work_struct *w)
1da177e4 4177{
7a7c381d 4178 struct kmem_cache *searchp;
e498be7d 4179 struct kmem_list3 *l3;
7d6e6d09 4180 int node = numa_mem_id();
bf6aede7 4181 struct delayed_work *work = to_delayed_work(w);
1da177e4 4182
18004c5d 4183 if (!mutex_trylock(&slab_mutex))
1da177e4 4184 /* Give up. Setup the next iteration. */
7c5cae36 4185 goto out;
1da177e4 4186
18004c5d 4187 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4188 check_irq_on();
4189
35386e3b
CL
4190 /*
4191 * We only take the l3 lock if absolutely necessary and we
4192 * have established with reasonable certainty that
4193 * we can do some work if the lock was obtained.
4194 */
aab2207c 4195 l3 = searchp->nodelists[node];
35386e3b 4196
8fce4d8e 4197 reap_alien(searchp, l3);
1da177e4 4198
aab2207c 4199 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4200
35386e3b
CL
4201 /*
4202 * These are racy checks but it does not matter
4203 * if we skip one check or scan twice.
4204 */
e498be7d 4205 if (time_after(l3->next_reap, jiffies))
35386e3b 4206 goto next;
1da177e4 4207
e498be7d 4208 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4209
aab2207c 4210 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4211
ed11d9eb 4212 if (l3->free_touched)
e498be7d 4213 l3->free_touched = 0;
ed11d9eb
CL
4214 else {
4215 int freed;
1da177e4 4216
ed11d9eb
CL
4217 freed = drain_freelist(searchp, l3, (l3->free_limit +
4218 5 * searchp->num - 1) / (5 * searchp->num));
4219 STATS_ADD_REAPED(searchp, freed);
4220 }
35386e3b 4221next:
1da177e4
LT
4222 cond_resched();
4223 }
4224 check_irq_on();
18004c5d 4225 mutex_unlock(&slab_mutex);
8fce4d8e 4226 next_reap_node();
7c5cae36 4227out:
a737b3e2 4228 /* Set up the next iteration */
7c5cae36 4229 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4230}
4231
158a9624 4232#ifdef CONFIG_SLABINFO
0d7561c6 4233void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4234{
b28a02de
PE
4235 struct slab *slabp;
4236 unsigned long active_objs;
4237 unsigned long num_objs;
4238 unsigned long active_slabs = 0;
4239 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4240 const char *name;
1da177e4 4241 char *error = NULL;
e498be7d
CL
4242 int node;
4243 struct kmem_list3 *l3;
1da177e4 4244
1da177e4
LT
4245 active_objs = 0;
4246 num_slabs = 0;
e498be7d
CL
4247 for_each_online_node(node) {
4248 l3 = cachep->nodelists[node];
4249 if (!l3)
4250 continue;
4251
ca3b9b91
RT
4252 check_irq_on();
4253 spin_lock_irq(&l3->list_lock);
e498be7d 4254
7a7c381d 4255 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4256 if (slabp->inuse != cachep->num && !error)
4257 error = "slabs_full accounting error";
4258 active_objs += cachep->num;
4259 active_slabs++;
4260 }
7a7c381d 4261 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4262 if (slabp->inuse == cachep->num && !error)
4263 error = "slabs_partial inuse accounting error";
4264 if (!slabp->inuse && !error)
4265 error = "slabs_partial/inuse accounting error";
4266 active_objs += slabp->inuse;
4267 active_slabs++;
4268 }
7a7c381d 4269 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4270 if (slabp->inuse && !error)
4271 error = "slabs_free/inuse accounting error";
4272 num_slabs++;
4273 }
4274 free_objects += l3->free_objects;
4484ebf1
RT
4275 if (l3->shared)
4276 shared_avail += l3->shared->avail;
e498be7d 4277
ca3b9b91 4278 spin_unlock_irq(&l3->list_lock);
1da177e4 4279 }
b28a02de
PE
4280 num_slabs += active_slabs;
4281 num_objs = num_slabs * cachep->num;
e498be7d 4282 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4283 error = "free_objects accounting error";
4284
b28a02de 4285 name = cachep->name;
1da177e4
LT
4286 if (error)
4287 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4288
0d7561c6
GC
4289 sinfo->active_objs = active_objs;
4290 sinfo->num_objs = num_objs;
4291 sinfo->active_slabs = active_slabs;
4292 sinfo->num_slabs = num_slabs;
4293 sinfo->shared_avail = shared_avail;
4294 sinfo->limit = cachep->limit;
4295 sinfo->batchcount = cachep->batchcount;
4296 sinfo->shared = cachep->shared;
4297 sinfo->objects_per_slab = cachep->num;
4298 sinfo->cache_order = cachep->gfporder;
4299}
4300
4301void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4302{
1da177e4 4303#if STATS
b28a02de 4304 { /* list3 stats */
1da177e4
LT
4305 unsigned long high = cachep->high_mark;
4306 unsigned long allocs = cachep->num_allocations;
4307 unsigned long grown = cachep->grown;
4308 unsigned long reaped = cachep->reaped;
4309 unsigned long errors = cachep->errors;
4310 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4311 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4312 unsigned long node_frees = cachep->node_frees;
fb7faf33 4313 unsigned long overflows = cachep->node_overflow;
1da177e4 4314
e92dd4fd
JP
4315 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4316 "%4lu %4lu %4lu %4lu %4lu",
4317 allocs, high, grown,
4318 reaped, errors, max_freeable, node_allocs,
4319 node_frees, overflows);
1da177e4
LT
4320 }
4321 /* cpu stats */
4322 {
4323 unsigned long allochit = atomic_read(&cachep->allochit);
4324 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4325 unsigned long freehit = atomic_read(&cachep->freehit);
4326 unsigned long freemiss = atomic_read(&cachep->freemiss);
4327
4328 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4329 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4330 }
4331#endif
1da177e4
LT
4332}
4333
1da177e4
LT
4334#define MAX_SLABINFO_WRITE 128
4335/**
4336 * slabinfo_write - Tuning for the slab allocator
4337 * @file: unused
4338 * @buffer: user buffer
4339 * @count: data length
4340 * @ppos: unused
4341 */
b7454ad3 4342ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4343 size_t count, loff_t *ppos)
1da177e4 4344{
b28a02de 4345 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4346 int limit, batchcount, shared, res;
7a7c381d 4347 struct kmem_cache *cachep;
b28a02de 4348
1da177e4
LT
4349 if (count > MAX_SLABINFO_WRITE)
4350 return -EINVAL;
4351 if (copy_from_user(&kbuf, buffer, count))
4352 return -EFAULT;
b28a02de 4353 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4354
4355 tmp = strchr(kbuf, ' ');
4356 if (!tmp)
4357 return -EINVAL;
4358 *tmp = '\0';
4359 tmp++;
4360 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4361 return -EINVAL;
4362
4363 /* Find the cache in the chain of caches. */
18004c5d 4364 mutex_lock(&slab_mutex);
1da177e4 4365 res = -EINVAL;
18004c5d 4366 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4367 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4368 if (limit < 1 || batchcount < 1 ||
4369 batchcount > limit || shared < 0) {
e498be7d 4370 res = 0;
1da177e4 4371 } else {
e498be7d 4372 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4373 batchcount, shared,
4374 GFP_KERNEL);
1da177e4
LT
4375 }
4376 break;
4377 }
4378 }
18004c5d 4379 mutex_unlock(&slab_mutex);
1da177e4
LT
4380 if (res >= 0)
4381 res = count;
4382 return res;
4383}
871751e2
AV
4384
4385#ifdef CONFIG_DEBUG_SLAB_LEAK
4386
4387static void *leaks_start(struct seq_file *m, loff_t *pos)
4388{
18004c5d
CL
4389 mutex_lock(&slab_mutex);
4390 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4391}
4392
4393static inline int add_caller(unsigned long *n, unsigned long v)
4394{
4395 unsigned long *p;
4396 int l;
4397 if (!v)
4398 return 1;
4399 l = n[1];
4400 p = n + 2;
4401 while (l) {
4402 int i = l/2;
4403 unsigned long *q = p + 2 * i;
4404 if (*q == v) {
4405 q[1]++;
4406 return 1;
4407 }
4408 if (*q > v) {
4409 l = i;
4410 } else {
4411 p = q + 2;
4412 l -= i + 1;
4413 }
4414 }
4415 if (++n[1] == n[0])
4416 return 0;
4417 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4418 p[0] = v;
4419 p[1] = 1;
4420 return 1;
4421}
4422
4423static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4424{
4425 void *p;
4426 int i;
4427 if (n[0] == n[1])
4428 return;
3b0efdfa 4429 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4430 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4431 continue;
4432 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4433 return;
4434 }
4435}
4436
4437static void show_symbol(struct seq_file *m, unsigned long address)
4438{
4439#ifdef CONFIG_KALLSYMS
871751e2 4440 unsigned long offset, size;
9281acea 4441 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4442
a5c43dae 4443 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4444 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4445 if (modname[0])
871751e2
AV
4446 seq_printf(m, " [%s]", modname);
4447 return;
4448 }
4449#endif
4450 seq_printf(m, "%p", (void *)address);
4451}
4452
4453static int leaks_show(struct seq_file *m, void *p)
4454{
0672aa7c 4455 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4456 struct slab *slabp;
4457 struct kmem_list3 *l3;
4458 const char *name;
4459 unsigned long *n = m->private;
4460 int node;
4461 int i;
4462
4463 if (!(cachep->flags & SLAB_STORE_USER))
4464 return 0;
4465 if (!(cachep->flags & SLAB_RED_ZONE))
4466 return 0;
4467
4468 /* OK, we can do it */
4469
4470 n[1] = 0;
4471
4472 for_each_online_node(node) {
4473 l3 = cachep->nodelists[node];
4474 if (!l3)
4475 continue;
4476
4477 check_irq_on();
4478 spin_lock_irq(&l3->list_lock);
4479
7a7c381d 4480 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4481 handle_slab(n, cachep, slabp);
7a7c381d 4482 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4483 handle_slab(n, cachep, slabp);
871751e2
AV
4484 spin_unlock_irq(&l3->list_lock);
4485 }
4486 name = cachep->name;
4487 if (n[0] == n[1]) {
4488 /* Increase the buffer size */
18004c5d 4489 mutex_unlock(&slab_mutex);
871751e2
AV
4490 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4491 if (!m->private) {
4492 /* Too bad, we are really out */
4493 m->private = n;
18004c5d 4494 mutex_lock(&slab_mutex);
871751e2
AV
4495 return -ENOMEM;
4496 }
4497 *(unsigned long *)m->private = n[0] * 2;
4498 kfree(n);
18004c5d 4499 mutex_lock(&slab_mutex);
871751e2
AV
4500 /* Now make sure this entry will be retried */
4501 m->count = m->size;
4502 return 0;
4503 }
4504 for (i = 0; i < n[1]; i++) {
4505 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4506 show_symbol(m, n[2*i+2]);
4507 seq_putc(m, '\n');
4508 }
d2e7b7d0 4509
871751e2
AV
4510 return 0;
4511}
4512
b7454ad3
GC
4513static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4514{
4515 return seq_list_next(p, &slab_caches, pos);
4516}
4517
4518static void s_stop(struct seq_file *m, void *p)
4519{
4520 mutex_unlock(&slab_mutex);
4521}
4522
a0ec95a8 4523static const struct seq_operations slabstats_op = {
871751e2
AV
4524 .start = leaks_start,
4525 .next = s_next,
4526 .stop = s_stop,
4527 .show = leaks_show,
4528};
a0ec95a8
AD
4529
4530static int slabstats_open(struct inode *inode, struct file *file)
4531{
4532 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4533 int ret = -ENOMEM;
4534 if (n) {
4535 ret = seq_open(file, &slabstats_op);
4536 if (!ret) {
4537 struct seq_file *m = file->private_data;
4538 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4539 m->private = n;
4540 n = NULL;
4541 }
4542 kfree(n);
4543 }
4544 return ret;
4545}
4546
4547static const struct file_operations proc_slabstats_operations = {
4548 .open = slabstats_open,
4549 .read = seq_read,
4550 .llseek = seq_lseek,
4551 .release = seq_release_private,
4552};
4553#endif
4554
4555static int __init slab_proc_init(void)
4556{
4557#ifdef CONFIG_DEBUG_SLAB_LEAK
4558 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4559#endif
a0ec95a8
AD
4560 return 0;
4561}
4562module_init(slab_proc_init);
1da177e4
LT
4563#endif
4564
00e145b6
MS
4565/**
4566 * ksize - get the actual amount of memory allocated for a given object
4567 * @objp: Pointer to the object
4568 *
4569 * kmalloc may internally round up allocations and return more memory
4570 * than requested. ksize() can be used to determine the actual amount of
4571 * memory allocated. The caller may use this additional memory, even though
4572 * a smaller amount of memory was initially specified with the kmalloc call.
4573 * The caller must guarantee that objp points to a valid object previously
4574 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4575 * must not be freed during the duration of the call.
4576 */
fd76bab2 4577size_t ksize(const void *objp)
1da177e4 4578{
ef8b4520
CL
4579 BUG_ON(!objp);
4580 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4581 return 0;
1da177e4 4582
8c138bc0 4583 return virt_to_cache(objp)->object_size;
1da177e4 4584}
b1aabecd 4585EXPORT_SYMBOL(ksize);
This page took 1.841322 seconds and 5 git commands to generate.