cpu hotplug: slab: cleanup cpuup_callback()
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
87a927c7 140#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4
LT
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
fa5b08d5 208typedef unsigned int kmem_bufctl_t;
1da177e4
LT
209#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
211#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 213
1da177e4
LT
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
bda5b655 270 void *entry[]; /*
a737b3e2
AM
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
a737b3e2 274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
4ba9b9d0 410 void (*ctor)(struct kmem_cache *, void *);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
87a927c7 550 REDZONE_ALIGN);
b46b8f19
DW
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
1da177e4
LT
571/*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574#define BREAK_GFP_ORDER_HI 1
575#define BREAK_GFP_ORDER_LO 0
576static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
a737b3e2
AM
578/*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
1da177e4 582 */
065d41cb
PE
583static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584{
585 page->lru.next = (struct list_head *)cache;
586}
587
588static inline struct kmem_cache *page_get_cache(struct page *page)
589{
d85f3385 590 page = compound_head(page);
ddc2e812 591 BUG_ON(!PageSlab(page));
065d41cb
PE
592 return (struct kmem_cache *)page->lru.next;
593}
594
595static inline void page_set_slab(struct page *page, struct slab *slab)
596{
597 page->lru.prev = (struct list_head *)slab;
598}
599
600static inline struct slab *page_get_slab(struct page *page)
601{
ddc2e812 602 BUG_ON(!PageSlab(page));
065d41cb
PE
603 return (struct slab *)page->lru.prev;
604}
1da177e4 605
6ed5eb22
PE
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
b49af68f 608 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
b49af68f 614 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
615 return page_get_slab(page);
616}
617
8fea4e96
PE
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
6a2d7a95
ED
624/*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
8fea4e96 632{
6a2d7a95
ED
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
635}
636
a737b3e2
AM
637/*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
1da177e4
LT
640struct cache_sizes malloc_sizes[] = {
641#define CACHE(x) { .cs_size = (x) },
642#include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644#undef CACHE
645};
646EXPORT_SYMBOL(malloc_sizes);
647
648/* Must match cache_sizes above. Out of line to keep cache footprint low. */
649struct cache_names {
650 char *name;
651 char *name_dma;
652};
653
654static struct cache_names __initdata cache_names[] = {
655#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656#include <linux/kmalloc_sizes.h>
b28a02de 657 {NULL,}
1da177e4
LT
658#undef CACHE
659};
660
661static struct arraycache_init initarray_cache __initdata =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 663static struct arraycache_init initarray_generic =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
665
666/* internal cache of cache description objs */
343e0d7a 667static struct kmem_cache cache_cache = {
b28a02de
PE
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
343e0d7a 671 .buffer_size = sizeof(struct kmem_cache),
b28a02de 672 .name = "kmem_cache",
1da177e4
LT
673};
674
056c6241
RT
675#define BAD_ALIEN_MAGIC 0x01020304ul
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
f1aaee53 689 */
056c6241
RT
690static struct lock_class_key on_slab_l3_key;
691static struct lock_class_key on_slab_alc_key;
692
693static inline void init_lock_keys(void)
f1aaee53 694
f1aaee53
AV
695{
696 int q;
056c6241
RT
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
f1aaee53
AV
724 }
725}
f1aaee53 726#else
056c6241 727static inline void init_lock_keys(void)
f1aaee53
AV
728{
729}
730#endif
731
8f5be20b
RT
732/*
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
735 */
fc0abb14 736static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
737static struct list_head cache_chain;
738
1da177e4
LT
739/*
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
742 */
743static enum {
744 NONE,
e498be7d
CL
745 PARTIAL_AC,
746 PARTIAL_L3,
1da177e4
LT
747 FULL
748} g_cpucache_up;
749
39d24e64
MK
750/*
751 * used by boot code to determine if it can use slab based allocator
752 */
753int slab_is_available(void)
754{
755 return g_cpucache_up == FULL;
756}
757
52bad64d 758static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 759
343e0d7a 760static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
761{
762 return cachep->array[smp_processor_id()];
763}
764
a737b3e2
AM
765static inline struct kmem_cache *__find_general_cachep(size_t size,
766 gfp_t gfpflags)
1da177e4
LT
767{
768 struct cache_sizes *csizep = malloc_sizes;
769
770#if DEBUG
771 /* This happens if someone tries to call
b28a02de
PE
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
774 */
c7e43c78 775 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 776#endif
6cb8f913
CL
777 if (!size)
778 return ZERO_SIZE_PTR;
779
1da177e4
LT
780 while (size > csizep->cs_size)
781 csizep++;
782
783 /*
0abf40c1 784 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
785 * has cs_{dma,}cachep==NULL. Thus no special case
786 * for large kmalloc calls required.
787 */
4b51d669 788#ifdef CONFIG_ZONE_DMA
1da177e4
LT
789 if (unlikely(gfpflags & GFP_DMA))
790 return csizep->cs_dmacachep;
4b51d669 791#endif
1da177e4
LT
792 return csizep->cs_cachep;
793}
794
b221385b 795static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
796{
797 return __find_general_cachep(size, gfpflags);
798}
97e2bde4 799
fbaccacf 800static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 801{
fbaccacf
SR
802 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
803}
1da177e4 804
a737b3e2
AM
805/*
806 * Calculate the number of objects and left-over bytes for a given buffer size.
807 */
fbaccacf
SR
808static void cache_estimate(unsigned long gfporder, size_t buffer_size,
809 size_t align, int flags, size_t *left_over,
810 unsigned int *num)
811{
812 int nr_objs;
813 size_t mgmt_size;
814 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 815
fbaccacf
SR
816 /*
817 * The slab management structure can be either off the slab or
818 * on it. For the latter case, the memory allocated for a
819 * slab is used for:
820 *
821 * - The struct slab
822 * - One kmem_bufctl_t for each object
823 * - Padding to respect alignment of @align
824 * - @buffer_size bytes for each object
825 *
826 * If the slab management structure is off the slab, then the
827 * alignment will already be calculated into the size. Because
828 * the slabs are all pages aligned, the objects will be at the
829 * correct alignment when allocated.
830 */
831 if (flags & CFLGS_OFF_SLAB) {
832 mgmt_size = 0;
833 nr_objs = slab_size / buffer_size;
834
835 if (nr_objs > SLAB_LIMIT)
836 nr_objs = SLAB_LIMIT;
837 } else {
838 /*
839 * Ignore padding for the initial guess. The padding
840 * is at most @align-1 bytes, and @buffer_size is at
841 * least @align. In the worst case, this result will
842 * be one greater than the number of objects that fit
843 * into the memory allocation when taking the padding
844 * into account.
845 */
846 nr_objs = (slab_size - sizeof(struct slab)) /
847 (buffer_size + sizeof(kmem_bufctl_t));
848
849 /*
850 * This calculated number will be either the right
851 * amount, or one greater than what we want.
852 */
853 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
854 > slab_size)
855 nr_objs--;
856
857 if (nr_objs > SLAB_LIMIT)
858 nr_objs = SLAB_LIMIT;
859
860 mgmt_size = slab_mgmt_size(nr_objs, align);
861 }
862 *num = nr_objs;
863 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
864}
865
866#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
867
a737b3e2
AM
868static void __slab_error(const char *function, struct kmem_cache *cachep,
869 char *msg)
1da177e4
LT
870{
871 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 872 function, cachep->name, msg);
1da177e4
LT
873 dump_stack();
874}
875
3395ee05
PM
876/*
877 * By default on NUMA we use alien caches to stage the freeing of
878 * objects allocated from other nodes. This causes massive memory
879 * inefficiencies when using fake NUMA setup to split memory into a
880 * large number of small nodes, so it can be disabled on the command
881 * line
882 */
883
884static int use_alien_caches __read_mostly = 1;
1807a1aa 885static int numa_platform __read_mostly = 1;
3395ee05
PM
886static int __init noaliencache_setup(char *s)
887{
888 use_alien_caches = 0;
889 return 1;
890}
891__setup("noaliencache", noaliencache_setup);
892
8fce4d8e
CL
893#ifdef CONFIG_NUMA
894/*
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
899 */
900static DEFINE_PER_CPU(unsigned long, reap_node);
901
902static void init_reap_node(int cpu)
903{
904 int node;
905
906 node = next_node(cpu_to_node(cpu), node_online_map);
907 if (node == MAX_NUMNODES)
442295c9 908 node = first_node(node_online_map);
8fce4d8e 909
7f6b8876 910 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
911}
912
913static void next_reap_node(void)
914{
915 int node = __get_cpu_var(reap_node);
916
8fce4d8e
CL
917 node = next_node(node, node_online_map);
918 if (unlikely(node >= MAX_NUMNODES))
919 node = first_node(node_online_map);
920 __get_cpu_var(reap_node) = node;
921}
922
923#else
924#define init_reap_node(cpu) do { } while (0)
925#define next_reap_node(void) do { } while (0)
926#endif
927
1da177e4
LT
928/*
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
933 * lock.
934 */
897e679b 935static void __cpuinit start_cpu_timer(int cpu)
1da177e4 936{
52bad64d 937 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
938
939 /*
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
942 * at that time.
943 */
52bad64d 944 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 945 init_reap_node(cpu);
65f27f38 946 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
947 schedule_delayed_work_on(cpu, reap_work,
948 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
949 }
950}
951
e498be7d 952static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 953 int batchcount)
1da177e4 954{
b28a02de 955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
956 struct array_cache *nc = NULL;
957
e498be7d 958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
e498be7d 964 spin_lock_init(&nc->lock);
1da177e4
LT
965 }
966 return nc;
967}
968
3ded175a
CL
969/*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
977{
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
980
981 if (!nr)
982 return 0;
983
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
986
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
991}
992
765c4507
CL
993#ifndef CONFIG_NUMA
994
995#define drain_alien_cache(cachep, alien) do { } while (0)
996#define reap_alien(cachep, l3) do { } while (0)
997
998static inline struct array_cache **alloc_alien_cache(int node, int limit)
999{
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001}
1002
1003static inline void free_alien_cache(struct array_cache **ac_ptr)
1004{
1005}
1006
1007static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008{
1009 return 0;
1010}
1011
1012static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1014{
1015 return NULL;
1016}
1017
8b98c169 1018static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1019 gfp_t flags, int nodeid)
1020{
1021 return NULL;
1022}
1023
1024#else /* CONFIG_NUMA */
1025
8b98c169 1026static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1027static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1028
5295a74c 1029static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1030{
1031 struct array_cache **ac_ptr;
8ef82866 1032 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1033 int i;
1034
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1043 }
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
b28a02de 1046 for (i--; i <= 0; i--)
e498be7d
CL
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1050 }
1051 }
1052 }
1053 return ac_ptr;
1054}
1055
5295a74c 1056static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1057{
1058 int i;
1059
1060 if (!ac_ptr)
1061 return;
e498be7d 1062 for_each_node(i)
b28a02de 1063 kfree(ac_ptr[i]);
e498be7d
CL
1064 kfree(ac_ptr);
1065}
1066
343e0d7a 1067static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1068 struct array_cache *ac, int node)
e498be7d
CL
1069{
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
e00946fe
CL
1074 /*
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1078 */
693f7d36 1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1081
ff69416e 1082 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1085 }
1086}
1087
8fce4d8e
CL
1088/*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092{
1093 int node = __get_cpu_var(reap_node);
1094
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1097
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1101 }
1102 }
1103}
1104
a737b3e2
AM
1105static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
e498be7d 1107{
b28a02de 1108 int i = 0;
e498be7d
CL
1109 struct array_cache *ac;
1110 unsigned long flags;
1111
1112 for_each_online_node(i) {
4484ebf1 1113 ac = alien[i];
e498be7d
CL
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1118 }
1119 }
1120}
729bd0b7 1121
873623df 1122static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1123{
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1ca4cb24
PE
1128 int node;
1129
1130 node = numa_node_id();
729bd0b7
PE
1131
1132 /*
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1135 */
62918a03 1136 if (likely(slabp->nodeid == node))
729bd0b7
PE
1137 return 0;
1138
1ca4cb24 1139 l3 = cachep->nodelists[node];
729bd0b7
PE
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
873623df 1143 spin_lock(&alien->lock);
729bd0b7
PE
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1147 }
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 }
1155 return 1;
1156}
e498be7d
CL
1157#endif
1158
fbf1e473
AM
1159static void __cpuinit cpuup_canceled(long cpu)
1160{
1161 struct kmem_cache *cachep;
1162 struct kmem_list3 *l3 = NULL;
1163 int node = cpu_to_node(cpu);
1164
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 struct array_cache *nc;
1167 struct array_cache *shared;
1168 struct array_cache **alien;
1169 cpumask_t mask;
1170
1171 mask = node_to_cpumask(node);
1172 /* cpu is dead; no one can alloc from it. */
1173 nc = cachep->array[cpu];
1174 cachep->array[cpu] = NULL;
1175 l3 = cachep->nodelists[node];
1176
1177 if (!l3)
1178 goto free_array_cache;
1179
1180 spin_lock_irq(&l3->list_lock);
1181
1182 /* Free limit for this kmem_list3 */
1183 l3->free_limit -= cachep->batchcount;
1184 if (nc)
1185 free_block(cachep, nc->entry, nc->avail, node);
1186
1187 if (!cpus_empty(mask)) {
1188 spin_unlock_irq(&l3->list_lock);
1189 goto free_array_cache;
1190 }
1191
1192 shared = l3->shared;
1193 if (shared) {
1194 free_block(cachep, shared->entry,
1195 shared->avail, node);
1196 l3->shared = NULL;
1197 }
1198
1199 alien = l3->alien;
1200 l3->alien = NULL;
1201
1202 spin_unlock_irq(&l3->list_lock);
1203
1204 kfree(shared);
1205 if (alien) {
1206 drain_alien_cache(cachep, alien);
1207 free_alien_cache(alien);
1208 }
1209free_array_cache:
1210 kfree(nc);
1211 }
1212 /*
1213 * In the previous loop, all the objects were freed to
1214 * the respective cache's slabs, now we can go ahead and
1215 * shrink each nodelist to its limit.
1216 */
1217 list_for_each_entry(cachep, &cache_chain, next) {
1218 l3 = cachep->nodelists[node];
1219 if (!l3)
1220 continue;
1221 drain_freelist(cachep, l3, l3->free_objects);
1222 }
1223}
1224
1225static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1226{
343e0d7a 1227 struct kmem_cache *cachep;
e498be7d
CL
1228 struct kmem_list3 *l3 = NULL;
1229 int node = cpu_to_node(cpu);
ea02e3dd 1230 const int memsize = sizeof(struct kmem_list3);
1da177e4 1231
fbf1e473
AM
1232 /*
1233 * We need to do this right in the beginning since
1234 * alloc_arraycache's are going to use this list.
1235 * kmalloc_node allows us to add the slab to the right
1236 * kmem_list3 and not this cpu's kmem_list3
1237 */
1238
1239 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1240 /*
fbf1e473
AM
1241 * Set up the size64 kmemlist for cpu before we can
1242 * begin anything. Make sure some other cpu on this
1243 * node has not already allocated this
e498be7d 1244 */
fbf1e473
AM
1245 if (!cachep->nodelists[node]) {
1246 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1247 if (!l3)
1248 goto bad;
1249 kmem_list3_init(l3);
1250 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1251 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1252
a737b3e2 1253 /*
fbf1e473
AM
1254 * The l3s don't come and go as CPUs come and
1255 * go. cache_chain_mutex is sufficient
1256 * protection here.
e498be7d 1257 */
fbf1e473 1258 cachep->nodelists[node] = l3;
e498be7d
CL
1259 }
1260
fbf1e473
AM
1261 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1262 cachep->nodelists[node]->free_limit =
1263 (1 + nr_cpus_node(node)) *
1264 cachep->batchcount + cachep->num;
1265 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1266 }
1267
1268 /*
1269 * Now we can go ahead with allocating the shared arrays and
1270 * array caches
1271 */
1272 list_for_each_entry(cachep, &cache_chain, next) {
1273 struct array_cache *nc;
1274 struct array_cache *shared = NULL;
1275 struct array_cache **alien = NULL;
1276
1277 nc = alloc_arraycache(node, cachep->limit,
1278 cachep->batchcount);
1279 if (!nc)
1280 goto bad;
1281 if (cachep->shared) {
1282 shared = alloc_arraycache(node,
1283 cachep->shared * cachep->batchcount,
1284 0xbaadf00d);
1285 if (!shared)
1da177e4 1286 goto bad;
fbf1e473
AM
1287 }
1288 if (use_alien_caches) {
1289 alien = alloc_alien_cache(node, cachep->limit);
1290 if (!alien)
1291 goto bad;
1292 }
1293 cachep->array[cpu] = nc;
1294 l3 = cachep->nodelists[node];
1295 BUG_ON(!l3);
1296
1297 spin_lock_irq(&l3->list_lock);
1298 if (!l3->shared) {
1299 /*
1300 * We are serialised from CPU_DEAD or
1301 * CPU_UP_CANCELLED by the cpucontrol lock
1302 */
1303 l3->shared = shared;
1304 shared = NULL;
1305 }
4484ebf1 1306#ifdef CONFIG_NUMA
fbf1e473
AM
1307 if (!l3->alien) {
1308 l3->alien = alien;
1309 alien = NULL;
1da177e4 1310 }
fbf1e473
AM
1311#endif
1312 spin_unlock_irq(&l3->list_lock);
1313 kfree(shared);
1314 free_alien_cache(alien);
1315 }
1316 return 0;
1317bad:
1318 return -ENOMEM;
1319}
1320
1321static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1322 unsigned long action, void *hcpu)
1323{
1324 long cpu = (long)hcpu;
1325 int err = 0;
1326
1327 switch (action) {
1328 case CPU_LOCK_ACQUIRE:
1329 mutex_lock(&cache_chain_mutex);
1330 break;
1331 case CPU_UP_PREPARE:
1332 case CPU_UP_PREPARE_FROZEN:
1333 err = cpuup_prepare(cpu);
1da177e4
LT
1334 break;
1335 case CPU_ONLINE:
8bb78442 1336 case CPU_ONLINE_FROZEN:
1da177e4
LT
1337 start_cpu_timer(cpu);
1338 break;
1339#ifdef CONFIG_HOTPLUG_CPU
5830c590 1340 case CPU_DOWN_PREPARE:
8bb78442 1341 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1342 /*
1343 * Shutdown cache reaper. Note that the cache_chain_mutex is
1344 * held so that if cache_reap() is invoked it cannot do
1345 * anything expensive but will only modify reap_work
1346 * and reschedule the timer.
1347 */
1348 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1349 /* Now the cache_reaper is guaranteed to be not running. */
1350 per_cpu(reap_work, cpu).work.func = NULL;
1351 break;
1352 case CPU_DOWN_FAILED:
8bb78442 1353 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1354 start_cpu_timer(cpu);
1355 break;
1da177e4 1356 case CPU_DEAD:
8bb78442 1357 case CPU_DEAD_FROZEN:
4484ebf1
RT
1358 /*
1359 * Even if all the cpus of a node are down, we don't free the
1360 * kmem_list3 of any cache. This to avoid a race between
1361 * cpu_down, and a kmalloc allocation from another cpu for
1362 * memory from the node of the cpu going down. The list3
1363 * structure is usually allocated from kmem_cache_create() and
1364 * gets destroyed at kmem_cache_destroy().
1365 */
1da177e4 1366 /* fall thru */
8f5be20b 1367#endif
1da177e4 1368 case CPU_UP_CANCELED:
8bb78442 1369 case CPU_UP_CANCELED_FROZEN:
fbf1e473 1370 cpuup_canceled(cpu);
38c3bd96
HC
1371 break;
1372 case CPU_LOCK_RELEASE:
fc0abb14 1373 mutex_unlock(&cache_chain_mutex);
1da177e4 1374 break;
1da177e4 1375 }
fbf1e473 1376 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1377}
1378
74b85f37
CS
1379static struct notifier_block __cpuinitdata cpucache_notifier = {
1380 &cpuup_callback, NULL, 0
1381};
1da177e4 1382
e498be7d
CL
1383/*
1384 * swap the static kmem_list3 with kmalloced memory
1385 */
a737b3e2
AM
1386static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1387 int nodeid)
e498be7d
CL
1388{
1389 struct kmem_list3 *ptr;
1390
e498be7d
CL
1391 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1392 BUG_ON(!ptr);
1393
1394 local_irq_disable();
1395 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1396 /*
1397 * Do not assume that spinlocks can be initialized via memcpy:
1398 */
1399 spin_lock_init(&ptr->list_lock);
1400
e498be7d
CL
1401 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1402 cachep->nodelists[nodeid] = ptr;
1403 local_irq_enable();
1404}
1405
a737b3e2
AM
1406/*
1407 * Initialisation. Called after the page allocator have been initialised and
1408 * before smp_init().
1da177e4
LT
1409 */
1410void __init kmem_cache_init(void)
1411{
1412 size_t left_over;
1413 struct cache_sizes *sizes;
1414 struct cache_names *names;
e498be7d 1415 int i;
07ed76b2 1416 int order;
1ca4cb24 1417 int node;
e498be7d 1418
1807a1aa 1419 if (num_possible_nodes() == 1) {
62918a03 1420 use_alien_caches = 0;
1807a1aa
SS
1421 numa_platform = 0;
1422 }
62918a03 1423
e498be7d
CL
1424 for (i = 0; i < NUM_INIT_LISTS; i++) {
1425 kmem_list3_init(&initkmem_list3[i]);
1426 if (i < MAX_NUMNODES)
1427 cache_cache.nodelists[i] = NULL;
1428 }
1da177e4
LT
1429
1430 /*
1431 * Fragmentation resistance on low memory - only use bigger
1432 * page orders on machines with more than 32MB of memory.
1433 */
1434 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1435 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1436
1da177e4
LT
1437 /* Bootstrap is tricky, because several objects are allocated
1438 * from caches that do not exist yet:
a737b3e2
AM
1439 * 1) initialize the cache_cache cache: it contains the struct
1440 * kmem_cache structures of all caches, except cache_cache itself:
1441 * cache_cache is statically allocated.
e498be7d
CL
1442 * Initially an __init data area is used for the head array and the
1443 * kmem_list3 structures, it's replaced with a kmalloc allocated
1444 * array at the end of the bootstrap.
1da177e4 1445 * 2) Create the first kmalloc cache.
343e0d7a 1446 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1447 * An __init data area is used for the head array.
1448 * 3) Create the remaining kmalloc caches, with minimally sized
1449 * head arrays.
1da177e4
LT
1450 * 4) Replace the __init data head arrays for cache_cache and the first
1451 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1452 * 5) Replace the __init data for kmem_list3 for cache_cache and
1453 * the other cache's with kmalloc allocated memory.
1454 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1455 */
1456
1ca4cb24
PE
1457 node = numa_node_id();
1458
1da177e4 1459 /* 1) create the cache_cache */
1da177e4
LT
1460 INIT_LIST_HEAD(&cache_chain);
1461 list_add(&cache_cache.next, &cache_chain);
1462 cache_cache.colour_off = cache_line_size();
1463 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1464 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1465
8da3430d
ED
1466 /*
1467 * struct kmem_cache size depends on nr_node_ids, which
1468 * can be less than MAX_NUMNODES.
1469 */
1470 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1471 nr_node_ids * sizeof(struct kmem_list3 *);
1472#if DEBUG
1473 cache_cache.obj_size = cache_cache.buffer_size;
1474#endif
a737b3e2
AM
1475 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1476 cache_line_size());
6a2d7a95
ED
1477 cache_cache.reciprocal_buffer_size =
1478 reciprocal_value(cache_cache.buffer_size);
1da177e4 1479
07ed76b2
JS
1480 for (order = 0; order < MAX_ORDER; order++) {
1481 cache_estimate(order, cache_cache.buffer_size,
1482 cache_line_size(), 0, &left_over, &cache_cache.num);
1483 if (cache_cache.num)
1484 break;
1485 }
40094fa6 1486 BUG_ON(!cache_cache.num);
07ed76b2 1487 cache_cache.gfporder = order;
b28a02de 1488 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1489 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1490 sizeof(struct slab), cache_line_size());
1da177e4
LT
1491
1492 /* 2+3) create the kmalloc caches */
1493 sizes = malloc_sizes;
1494 names = cache_names;
1495
a737b3e2
AM
1496 /*
1497 * Initialize the caches that provide memory for the array cache and the
1498 * kmem_list3 structures first. Without this, further allocations will
1499 * bug.
e498be7d
CL
1500 */
1501
1502 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1503 sizes[INDEX_AC].cs_size,
1504 ARCH_KMALLOC_MINALIGN,
1505 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1506 NULL);
e498be7d 1507
a737b3e2 1508 if (INDEX_AC != INDEX_L3) {
e498be7d 1509 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1510 kmem_cache_create(names[INDEX_L3].name,
1511 sizes[INDEX_L3].cs_size,
1512 ARCH_KMALLOC_MINALIGN,
1513 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1514 NULL);
a737b3e2 1515 }
e498be7d 1516
e0a42726
IM
1517 slab_early_init = 0;
1518
1da177e4 1519 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1520 /*
1521 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1522 * This should be particularly beneficial on SMP boxes, as it
1523 * eliminates "false sharing".
1524 * Note for systems short on memory removing the alignment will
e498be7d
CL
1525 * allow tighter packing of the smaller caches.
1526 */
a737b3e2 1527 if (!sizes->cs_cachep) {
e498be7d 1528 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1529 sizes->cs_size,
1530 ARCH_KMALLOC_MINALIGN,
1531 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1532 NULL);
a737b3e2 1533 }
4b51d669
CL
1534#ifdef CONFIG_ZONE_DMA
1535 sizes->cs_dmacachep = kmem_cache_create(
1536 names->name_dma,
a737b3e2
AM
1537 sizes->cs_size,
1538 ARCH_KMALLOC_MINALIGN,
1539 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1540 SLAB_PANIC,
20c2df83 1541 NULL);
4b51d669 1542#endif
1da177e4
LT
1543 sizes++;
1544 names++;
1545 }
1546 /* 4) Replace the bootstrap head arrays */
1547 {
2b2d5493 1548 struct array_cache *ptr;
e498be7d 1549
1da177e4 1550 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1551
1da177e4 1552 local_irq_disable();
9a2dba4b
PE
1553 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1554 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1555 sizeof(struct arraycache_init));
2b2d5493
IM
1556 /*
1557 * Do not assume that spinlocks can be initialized via memcpy:
1558 */
1559 spin_lock_init(&ptr->lock);
1560
1da177e4
LT
1561 cache_cache.array[smp_processor_id()] = ptr;
1562 local_irq_enable();
e498be7d 1563
1da177e4 1564 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1565
1da177e4 1566 local_irq_disable();
9a2dba4b 1567 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1568 != &initarray_generic.cache);
9a2dba4b 1569 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1570 sizeof(struct arraycache_init));
2b2d5493
IM
1571 /*
1572 * Do not assume that spinlocks can be initialized via memcpy:
1573 */
1574 spin_lock_init(&ptr->lock);
1575
e498be7d 1576 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1577 ptr;
1da177e4
LT
1578 local_irq_enable();
1579 }
e498be7d
CL
1580 /* 5) Replace the bootstrap kmem_list3's */
1581 {
1ca4cb24
PE
1582 int nid;
1583
e498be7d 1584 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1585 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1586
04231b30 1587 for_each_node_state(nid, N_NORMAL_MEMORY) {
e498be7d 1588 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1589 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1590
1591 if (INDEX_AC != INDEX_L3) {
1592 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1593 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1594 }
1595 }
1596 }
1da177e4 1597
e498be7d 1598 /* 6) resize the head arrays to their final sizes */
1da177e4 1599 {
343e0d7a 1600 struct kmem_cache *cachep;
fc0abb14 1601 mutex_lock(&cache_chain_mutex);
1da177e4 1602 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1603 if (enable_cpucache(cachep))
1604 BUG();
fc0abb14 1605 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1606 }
1607
056c6241
RT
1608 /* Annotate slab for lockdep -- annotate the malloc caches */
1609 init_lock_keys();
1610
1611
1da177e4
LT
1612 /* Done! */
1613 g_cpucache_up = FULL;
1614
a737b3e2
AM
1615 /*
1616 * Register a cpu startup notifier callback that initializes
1617 * cpu_cache_get for all new cpus
1da177e4
LT
1618 */
1619 register_cpu_notifier(&cpucache_notifier);
1da177e4 1620
a737b3e2
AM
1621 /*
1622 * The reap timers are started later, with a module init call: That part
1623 * of the kernel is not yet operational.
1da177e4
LT
1624 */
1625}
1626
1627static int __init cpucache_init(void)
1628{
1629 int cpu;
1630
a737b3e2
AM
1631 /*
1632 * Register the timers that return unneeded pages to the page allocator
1da177e4 1633 */
e498be7d 1634 for_each_online_cpu(cpu)
a737b3e2 1635 start_cpu_timer(cpu);
1da177e4
LT
1636 return 0;
1637}
1da177e4
LT
1638__initcall(cpucache_init);
1639
1640/*
1641 * Interface to system's page allocator. No need to hold the cache-lock.
1642 *
1643 * If we requested dmaable memory, we will get it. Even if we
1644 * did not request dmaable memory, we might get it, but that
1645 * would be relatively rare and ignorable.
1646 */
343e0d7a 1647static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1648{
1649 struct page *page;
e1b6aa6f 1650 int nr_pages;
1da177e4
LT
1651 int i;
1652
d6fef9da 1653#ifndef CONFIG_MMU
e1b6aa6f
CH
1654 /*
1655 * Nommu uses slab's for process anonymous memory allocations, and thus
1656 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1657 */
e1b6aa6f 1658 flags |= __GFP_COMP;
d6fef9da 1659#endif
765c4507 1660
3c517a61 1661 flags |= cachep->gfpflags;
e12ba74d
MG
1662 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1663 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1664
1665 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1666 if (!page)
1667 return NULL;
1da177e4 1668
e1b6aa6f 1669 nr_pages = (1 << cachep->gfporder);
1da177e4 1670 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1671 add_zone_page_state(page_zone(page),
1672 NR_SLAB_RECLAIMABLE, nr_pages);
1673 else
1674 add_zone_page_state(page_zone(page),
1675 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1676 for (i = 0; i < nr_pages; i++)
1677 __SetPageSlab(page + i);
1678 return page_address(page);
1da177e4
LT
1679}
1680
1681/*
1682 * Interface to system's page release.
1683 */
343e0d7a 1684static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1685{
b28a02de 1686 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1687 struct page *page = virt_to_page(addr);
1688 const unsigned long nr_freed = i;
1689
972d1a7b
CL
1690 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1691 sub_zone_page_state(page_zone(page),
1692 NR_SLAB_RECLAIMABLE, nr_freed);
1693 else
1694 sub_zone_page_state(page_zone(page),
1695 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1696 while (i--) {
f205b2fe
NP
1697 BUG_ON(!PageSlab(page));
1698 __ClearPageSlab(page);
1da177e4
LT
1699 page++;
1700 }
1da177e4
LT
1701 if (current->reclaim_state)
1702 current->reclaim_state->reclaimed_slab += nr_freed;
1703 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1704}
1705
1706static void kmem_rcu_free(struct rcu_head *head)
1707{
b28a02de 1708 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1709 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1710
1711 kmem_freepages(cachep, slab_rcu->addr);
1712 if (OFF_SLAB(cachep))
1713 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1714}
1715
1716#if DEBUG
1717
1718#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1719static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1720 unsigned long caller)
1da177e4 1721{
3dafccf2 1722 int size = obj_size(cachep);
1da177e4 1723
3dafccf2 1724 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1725
b28a02de 1726 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1727 return;
1728
b28a02de
PE
1729 *addr++ = 0x12345678;
1730 *addr++ = caller;
1731 *addr++ = smp_processor_id();
1732 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1733 {
1734 unsigned long *sptr = &caller;
1735 unsigned long svalue;
1736
1737 while (!kstack_end(sptr)) {
1738 svalue = *sptr++;
1739 if (kernel_text_address(svalue)) {
b28a02de 1740 *addr++ = svalue;
1da177e4
LT
1741 size -= sizeof(unsigned long);
1742 if (size <= sizeof(unsigned long))
1743 break;
1744 }
1745 }
1746
1747 }
b28a02de 1748 *addr++ = 0x87654321;
1da177e4
LT
1749}
1750#endif
1751
343e0d7a 1752static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1753{
3dafccf2
MS
1754 int size = obj_size(cachep);
1755 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1756
1757 memset(addr, val, size);
b28a02de 1758 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1759}
1760
1761static void dump_line(char *data, int offset, int limit)
1762{
1763 int i;
aa83aa40
DJ
1764 unsigned char error = 0;
1765 int bad_count = 0;
1766
1da177e4 1767 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1768 for (i = 0; i < limit; i++) {
1769 if (data[offset + i] != POISON_FREE) {
1770 error = data[offset + i];
1771 bad_count++;
1772 }
b28a02de 1773 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1774 }
1da177e4 1775 printk("\n");
aa83aa40
DJ
1776
1777 if (bad_count == 1) {
1778 error ^= POISON_FREE;
1779 if (!(error & (error - 1))) {
1780 printk(KERN_ERR "Single bit error detected. Probably "
1781 "bad RAM.\n");
1782#ifdef CONFIG_X86
1783 printk(KERN_ERR "Run memtest86+ or a similar memory "
1784 "test tool.\n");
1785#else
1786 printk(KERN_ERR "Run a memory test tool.\n");
1787#endif
1788 }
1789 }
1da177e4
LT
1790}
1791#endif
1792
1793#if DEBUG
1794
343e0d7a 1795static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1796{
1797 int i, size;
1798 char *realobj;
1799
1800 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1801 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1802 *dbg_redzone1(cachep, objp),
1803 *dbg_redzone2(cachep, objp));
1da177e4
LT
1804 }
1805
1806 if (cachep->flags & SLAB_STORE_USER) {
1807 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1808 *dbg_userword(cachep, objp));
1da177e4 1809 print_symbol("(%s)",
a737b3e2 1810 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1811 printk("\n");
1812 }
3dafccf2
MS
1813 realobj = (char *)objp + obj_offset(cachep);
1814 size = obj_size(cachep);
b28a02de 1815 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1816 int limit;
1817 limit = 16;
b28a02de
PE
1818 if (i + limit > size)
1819 limit = size - i;
1da177e4
LT
1820 dump_line(realobj, i, limit);
1821 }
1822}
1823
343e0d7a 1824static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1825{
1826 char *realobj;
1827 int size, i;
1828 int lines = 0;
1829
3dafccf2
MS
1830 realobj = (char *)objp + obj_offset(cachep);
1831 size = obj_size(cachep);
1da177e4 1832
b28a02de 1833 for (i = 0; i < size; i++) {
1da177e4 1834 char exp = POISON_FREE;
b28a02de 1835 if (i == size - 1)
1da177e4
LT
1836 exp = POISON_END;
1837 if (realobj[i] != exp) {
1838 int limit;
1839 /* Mismatch ! */
1840 /* Print header */
1841 if (lines == 0) {
b28a02de 1842 printk(KERN_ERR
e94a40c5
DH
1843 "Slab corruption: %s start=%p, len=%d\n",
1844 cachep->name, realobj, size);
1da177e4
LT
1845 print_objinfo(cachep, objp, 0);
1846 }
1847 /* Hexdump the affected line */
b28a02de 1848 i = (i / 16) * 16;
1da177e4 1849 limit = 16;
b28a02de
PE
1850 if (i + limit > size)
1851 limit = size - i;
1da177e4
LT
1852 dump_line(realobj, i, limit);
1853 i += 16;
1854 lines++;
1855 /* Limit to 5 lines */
1856 if (lines > 5)
1857 break;
1858 }
1859 }
1860 if (lines != 0) {
1861 /* Print some data about the neighboring objects, if they
1862 * exist:
1863 */
6ed5eb22 1864 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1865 unsigned int objnr;
1da177e4 1866
8fea4e96 1867 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1868 if (objnr) {
8fea4e96 1869 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1870 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1871 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1872 realobj, size);
1da177e4
LT
1873 print_objinfo(cachep, objp, 2);
1874 }
b28a02de 1875 if (objnr + 1 < cachep->num) {
8fea4e96 1876 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1877 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1878 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1879 realobj, size);
1da177e4
LT
1880 print_objinfo(cachep, objp, 2);
1881 }
1882 }
1883}
1884#endif
1885
12dd36fa
MD
1886#if DEBUG
1887/**
911851e6
RD
1888 * slab_destroy_objs - destroy a slab and its objects
1889 * @cachep: cache pointer being destroyed
1890 * @slabp: slab pointer being destroyed
1891 *
1892 * Call the registered destructor for each object in a slab that is being
1893 * destroyed.
1da177e4 1894 */
343e0d7a 1895static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1896{
1da177e4
LT
1897 int i;
1898 for (i = 0; i < cachep->num; i++) {
8fea4e96 1899 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1900
1901 if (cachep->flags & SLAB_POISON) {
1902#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1903 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1904 OFF_SLAB(cachep))
b28a02de 1905 kernel_map_pages(virt_to_page(objp),
a737b3e2 1906 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1907 else
1908 check_poison_obj(cachep, objp);
1909#else
1910 check_poison_obj(cachep, objp);
1911#endif
1912 }
1913 if (cachep->flags & SLAB_RED_ZONE) {
1914 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1915 slab_error(cachep, "start of a freed object "
b28a02de 1916 "was overwritten");
1da177e4
LT
1917 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1918 slab_error(cachep, "end of a freed object "
b28a02de 1919 "was overwritten");
1da177e4 1920 }
1da177e4 1921 }
12dd36fa 1922}
1da177e4 1923#else
343e0d7a 1924static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1925{
12dd36fa 1926}
1da177e4
LT
1927#endif
1928
911851e6
RD
1929/**
1930 * slab_destroy - destroy and release all objects in a slab
1931 * @cachep: cache pointer being destroyed
1932 * @slabp: slab pointer being destroyed
1933 *
12dd36fa 1934 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1935 * Before calling the slab must have been unlinked from the cache. The
1936 * cache-lock is not held/needed.
12dd36fa 1937 */
343e0d7a 1938static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1939{
1940 void *addr = slabp->s_mem - slabp->colouroff;
1941
1942 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1943 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1944 struct slab_rcu *slab_rcu;
1945
b28a02de 1946 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1947 slab_rcu->cachep = cachep;
1948 slab_rcu->addr = addr;
1949 call_rcu(&slab_rcu->head, kmem_rcu_free);
1950 } else {
1951 kmem_freepages(cachep, addr);
873623df
IM
1952 if (OFF_SLAB(cachep))
1953 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1954 }
1955}
1956
a737b3e2
AM
1957/*
1958 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1959 * size of kmem_list3.
1960 */
a3a02be7 1961static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1962{
1963 int node;
1964
04231b30 1965 for_each_node_state(node, N_NORMAL_MEMORY) {
b28a02de 1966 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1967 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1968 REAPTIMEOUT_LIST3 +
1969 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1970 }
1971}
1972
117f6eb1
CL
1973static void __kmem_cache_destroy(struct kmem_cache *cachep)
1974{
1975 int i;
1976 struct kmem_list3 *l3;
1977
1978 for_each_online_cpu(i)
1979 kfree(cachep->array[i]);
1980
1981 /* NUMA: free the list3 structures */
1982 for_each_online_node(i) {
1983 l3 = cachep->nodelists[i];
1984 if (l3) {
1985 kfree(l3->shared);
1986 free_alien_cache(l3->alien);
1987 kfree(l3);
1988 }
1989 }
1990 kmem_cache_free(&cache_cache, cachep);
1991}
1992
1993
4d268eba 1994/**
a70773dd
RD
1995 * calculate_slab_order - calculate size (page order) of slabs
1996 * @cachep: pointer to the cache that is being created
1997 * @size: size of objects to be created in this cache.
1998 * @align: required alignment for the objects.
1999 * @flags: slab allocation flags
2000 *
2001 * Also calculates the number of objects per slab.
4d268eba
PE
2002 *
2003 * This could be made much more intelligent. For now, try to avoid using
2004 * high order pages for slabs. When the gfp() functions are more friendly
2005 * towards high-order requests, this should be changed.
2006 */
a737b3e2 2007static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2008 size_t size, size_t align, unsigned long flags)
4d268eba 2009{
b1ab41c4 2010 unsigned long offslab_limit;
4d268eba 2011 size_t left_over = 0;
9888e6fa 2012 int gfporder;
4d268eba 2013
0aa817f0 2014 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2015 unsigned int num;
2016 size_t remainder;
2017
9888e6fa 2018 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2019 if (!num)
2020 continue;
9888e6fa 2021
b1ab41c4
IM
2022 if (flags & CFLGS_OFF_SLAB) {
2023 /*
2024 * Max number of objs-per-slab for caches which
2025 * use off-slab slabs. Needed to avoid a possible
2026 * looping condition in cache_grow().
2027 */
2028 offslab_limit = size - sizeof(struct slab);
2029 offslab_limit /= sizeof(kmem_bufctl_t);
2030
2031 if (num > offslab_limit)
2032 break;
2033 }
4d268eba 2034
9888e6fa 2035 /* Found something acceptable - save it away */
4d268eba 2036 cachep->num = num;
9888e6fa 2037 cachep->gfporder = gfporder;
4d268eba
PE
2038 left_over = remainder;
2039
f78bb8ad
LT
2040 /*
2041 * A VFS-reclaimable slab tends to have most allocations
2042 * as GFP_NOFS and we really don't want to have to be allocating
2043 * higher-order pages when we are unable to shrink dcache.
2044 */
2045 if (flags & SLAB_RECLAIM_ACCOUNT)
2046 break;
2047
4d268eba
PE
2048 /*
2049 * Large number of objects is good, but very large slabs are
2050 * currently bad for the gfp()s.
2051 */
9888e6fa 2052 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2053 break;
2054
9888e6fa
LT
2055 /*
2056 * Acceptable internal fragmentation?
2057 */
a737b3e2 2058 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2059 break;
2060 }
2061 return left_over;
2062}
2063
38bdc32a 2064static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2065{
2ed3a4ef
CL
2066 if (g_cpucache_up == FULL)
2067 return enable_cpucache(cachep);
2068
f30cf7d1
PE
2069 if (g_cpucache_up == NONE) {
2070 /*
2071 * Note: the first kmem_cache_create must create the cache
2072 * that's used by kmalloc(24), otherwise the creation of
2073 * further caches will BUG().
2074 */
2075 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2076
2077 /*
2078 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2079 * the first cache, then we need to set up all its list3s,
2080 * otherwise the creation of further caches will BUG().
2081 */
2082 set_up_list3s(cachep, SIZE_AC);
2083 if (INDEX_AC == INDEX_L3)
2084 g_cpucache_up = PARTIAL_L3;
2085 else
2086 g_cpucache_up = PARTIAL_AC;
2087 } else {
2088 cachep->array[smp_processor_id()] =
2089 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2090
2091 if (g_cpucache_up == PARTIAL_AC) {
2092 set_up_list3s(cachep, SIZE_L3);
2093 g_cpucache_up = PARTIAL_L3;
2094 } else {
2095 int node;
04231b30 2096 for_each_node_state(node, N_NORMAL_MEMORY) {
f30cf7d1
PE
2097 cachep->nodelists[node] =
2098 kmalloc_node(sizeof(struct kmem_list3),
2099 GFP_KERNEL, node);
2100 BUG_ON(!cachep->nodelists[node]);
2101 kmem_list3_init(cachep->nodelists[node]);
2102 }
2103 }
2104 }
2105 cachep->nodelists[numa_node_id()]->next_reap =
2106 jiffies + REAPTIMEOUT_LIST3 +
2107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2108
2109 cpu_cache_get(cachep)->avail = 0;
2110 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2111 cpu_cache_get(cachep)->batchcount = 1;
2112 cpu_cache_get(cachep)->touched = 0;
2113 cachep->batchcount = 1;
2114 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2115 return 0;
f30cf7d1
PE
2116}
2117
1da177e4
LT
2118/**
2119 * kmem_cache_create - Create a cache.
2120 * @name: A string which is used in /proc/slabinfo to identify this cache.
2121 * @size: The size of objects to be created in this cache.
2122 * @align: The required alignment for the objects.
2123 * @flags: SLAB flags
2124 * @ctor: A constructor for the objects.
1da177e4
LT
2125 *
2126 * Returns a ptr to the cache on success, NULL on failure.
2127 * Cannot be called within a int, but can be interrupted.
20c2df83 2128 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2129 *
2130 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2131 * the module calling this has to destroy the cache before getting unloaded.
2132 *
1da177e4
LT
2133 * The flags are
2134 *
2135 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2136 * to catch references to uninitialised memory.
2137 *
2138 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2139 * for buffer overruns.
2140 *
1da177e4
LT
2141 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2142 * cacheline. This can be beneficial if you're counting cycles as closely
2143 * as davem.
2144 */
343e0d7a 2145struct kmem_cache *
1da177e4 2146kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2 2147 unsigned long flags,
4ba9b9d0 2148 void (*ctor)(struct kmem_cache *, void *))
1da177e4
LT
2149{
2150 size_t left_over, slab_size, ralign;
7a7c381d 2151 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2152
2153 /*
2154 * Sanity checks... these are all serious usage bugs.
2155 */
a737b3e2 2156 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2157 size > KMALLOC_MAX_SIZE) {
a737b3e2
AM
2158 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2159 name);
b28a02de
PE
2160 BUG();
2161 }
1da177e4 2162
f0188f47 2163 /*
8f5be20b
RT
2164 * We use cache_chain_mutex to ensure a consistent view of
2165 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2166 */
fc0abb14 2167 mutex_lock(&cache_chain_mutex);
4f12bb4f 2168
7a7c381d 2169 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2170 char tmp;
2171 int res;
2172
2173 /*
2174 * This happens when the module gets unloaded and doesn't
2175 * destroy its slab cache and no-one else reuses the vmalloc
2176 * area of the module. Print a warning.
2177 */
138ae663 2178 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2179 if (res) {
b4169525 2180 printk(KERN_ERR
2181 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2182 pc->buffer_size);
4f12bb4f
AM
2183 continue;
2184 }
2185
b28a02de 2186 if (!strcmp(pc->name, name)) {
b4169525 2187 printk(KERN_ERR
2188 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2189 dump_stack();
2190 goto oops;
2191 }
2192 }
2193
1da177e4
LT
2194#if DEBUG
2195 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2196#if FORCED_DEBUG
2197 /*
2198 * Enable redzoning and last user accounting, except for caches with
2199 * large objects, if the increased size would increase the object size
2200 * above the next power of two: caches with object sizes just above a
2201 * power of two have a significant amount of internal fragmentation.
2202 */
87a927c7
DW
2203 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2204 2 * sizeof(unsigned long long)))
b28a02de 2205 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2206 if (!(flags & SLAB_DESTROY_BY_RCU))
2207 flags |= SLAB_POISON;
2208#endif
2209 if (flags & SLAB_DESTROY_BY_RCU)
2210 BUG_ON(flags & SLAB_POISON);
2211#endif
1da177e4 2212 /*
a737b3e2
AM
2213 * Always checks flags, a caller might be expecting debug support which
2214 * isn't available.
1da177e4 2215 */
40094fa6 2216 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2217
a737b3e2
AM
2218 /*
2219 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2220 * unaligned accesses for some archs when redzoning is used, and makes
2221 * sure any on-slab bufctl's are also correctly aligned.
2222 */
b28a02de
PE
2223 if (size & (BYTES_PER_WORD - 1)) {
2224 size += (BYTES_PER_WORD - 1);
2225 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2226 }
2227
a737b3e2
AM
2228 /* calculate the final buffer alignment: */
2229
1da177e4
LT
2230 /* 1) arch recommendation: can be overridden for debug */
2231 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2232 /*
2233 * Default alignment: as specified by the arch code. Except if
2234 * an object is really small, then squeeze multiple objects into
2235 * one cacheline.
1da177e4
LT
2236 */
2237 ralign = cache_line_size();
b28a02de 2238 while (size <= ralign / 2)
1da177e4
LT
2239 ralign /= 2;
2240 } else {
2241 ralign = BYTES_PER_WORD;
2242 }
ca5f9703
PE
2243
2244 /*
87a927c7
DW
2245 * Redzoning and user store require word alignment or possibly larger.
2246 * Note this will be overridden by architecture or caller mandated
2247 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2248 */
87a927c7
DW
2249 if (flags & SLAB_STORE_USER)
2250 ralign = BYTES_PER_WORD;
2251
2252 if (flags & SLAB_RED_ZONE) {
2253 ralign = REDZONE_ALIGN;
2254 /* If redzoning, ensure that the second redzone is suitably
2255 * aligned, by adjusting the object size accordingly. */
2256 size += REDZONE_ALIGN - 1;
2257 size &= ~(REDZONE_ALIGN - 1);
2258 }
ca5f9703 2259
a44b56d3 2260 /* 2) arch mandated alignment */
1da177e4
LT
2261 if (ralign < ARCH_SLAB_MINALIGN) {
2262 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2263 }
a44b56d3 2264 /* 3) caller mandated alignment */
1da177e4
LT
2265 if (ralign < align) {
2266 ralign = align;
1da177e4 2267 }
a44b56d3 2268 /* disable debug if necessary */
b46b8f19 2269 if (ralign > __alignof__(unsigned long long))
a44b56d3 2270 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2271 /*
ca5f9703 2272 * 4) Store it.
1da177e4
LT
2273 */
2274 align = ralign;
2275
2276 /* Get cache's description obj. */
e94b1766 2277 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2278 if (!cachep)
4f12bb4f 2279 goto oops;
1da177e4
LT
2280
2281#if DEBUG
3dafccf2 2282 cachep->obj_size = size;
1da177e4 2283
ca5f9703
PE
2284 /*
2285 * Both debugging options require word-alignment which is calculated
2286 * into align above.
2287 */
1da177e4 2288 if (flags & SLAB_RED_ZONE) {
1da177e4 2289 /* add space for red zone words */
b46b8f19
DW
2290 cachep->obj_offset += sizeof(unsigned long long);
2291 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2292 }
2293 if (flags & SLAB_STORE_USER) {
ca5f9703 2294 /* user store requires one word storage behind the end of
87a927c7
DW
2295 * the real object. But if the second red zone needs to be
2296 * aligned to 64 bits, we must allow that much space.
1da177e4 2297 */
87a927c7
DW
2298 if (flags & SLAB_RED_ZONE)
2299 size += REDZONE_ALIGN;
2300 else
2301 size += BYTES_PER_WORD;
1da177e4
LT
2302 }
2303#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2304 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2305 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2306 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2307 size = PAGE_SIZE;
2308 }
2309#endif
2310#endif
2311
e0a42726
IM
2312 /*
2313 * Determine if the slab management is 'on' or 'off' slab.
2314 * (bootstrapping cannot cope with offslab caches so don't do
2315 * it too early on.)
2316 */
2317 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2318 /*
2319 * Size is large, assume best to place the slab management obj
2320 * off-slab (should allow better packing of objs).
2321 */
2322 flags |= CFLGS_OFF_SLAB;
2323
2324 size = ALIGN(size, align);
2325
f78bb8ad 2326 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2327
2328 if (!cachep->num) {
b4169525 2329 printk(KERN_ERR
2330 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2331 kmem_cache_free(&cache_cache, cachep);
2332 cachep = NULL;
4f12bb4f 2333 goto oops;
1da177e4 2334 }
b28a02de
PE
2335 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2336 + sizeof(struct slab), align);
1da177e4
LT
2337
2338 /*
2339 * If the slab has been placed off-slab, and we have enough space then
2340 * move it on-slab. This is at the expense of any extra colouring.
2341 */
2342 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2343 flags &= ~CFLGS_OFF_SLAB;
2344 left_over -= slab_size;
2345 }
2346
2347 if (flags & CFLGS_OFF_SLAB) {
2348 /* really off slab. No need for manual alignment */
b28a02de
PE
2349 slab_size =
2350 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2351 }
2352
2353 cachep->colour_off = cache_line_size();
2354 /* Offset must be a multiple of the alignment. */
2355 if (cachep->colour_off < align)
2356 cachep->colour_off = align;
b28a02de 2357 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2358 cachep->slab_size = slab_size;
2359 cachep->flags = flags;
2360 cachep->gfpflags = 0;
4b51d669 2361 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2362 cachep->gfpflags |= GFP_DMA;
3dafccf2 2363 cachep->buffer_size = size;
6a2d7a95 2364 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2365
e5ac9c5a 2366 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2367 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2368 /*
2369 * This is a possibility for one of the malloc_sizes caches.
2370 * But since we go off slab only for object size greater than
2371 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2372 * this should not happen at all.
2373 * But leave a BUG_ON for some lucky dude.
2374 */
6cb8f913 2375 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2376 }
1da177e4 2377 cachep->ctor = ctor;
1da177e4
LT
2378 cachep->name = name;
2379
2ed3a4ef
CL
2380 if (setup_cpu_cache(cachep)) {
2381 __kmem_cache_destroy(cachep);
2382 cachep = NULL;
2383 goto oops;
2384 }
1da177e4 2385
1da177e4
LT
2386 /* cache setup completed, link it into the list */
2387 list_add(&cachep->next, &cache_chain);
a737b3e2 2388oops:
1da177e4
LT
2389 if (!cachep && (flags & SLAB_PANIC))
2390 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2391 name);
fc0abb14 2392 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2393 return cachep;
2394}
2395EXPORT_SYMBOL(kmem_cache_create);
2396
2397#if DEBUG
2398static void check_irq_off(void)
2399{
2400 BUG_ON(!irqs_disabled());
2401}
2402
2403static void check_irq_on(void)
2404{
2405 BUG_ON(irqs_disabled());
2406}
2407
343e0d7a 2408static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2409{
2410#ifdef CONFIG_SMP
2411 check_irq_off();
e498be7d 2412 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2413#endif
2414}
e498be7d 2415
343e0d7a 2416static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2417{
2418#ifdef CONFIG_SMP
2419 check_irq_off();
2420 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2421#endif
2422}
2423
1da177e4
LT
2424#else
2425#define check_irq_off() do { } while(0)
2426#define check_irq_on() do { } while(0)
2427#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2428#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2429#endif
2430
aab2207c
CL
2431static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2432 struct array_cache *ac,
2433 int force, int node);
2434
1da177e4
LT
2435static void do_drain(void *arg)
2436{
a737b3e2 2437 struct kmem_cache *cachep = arg;
1da177e4 2438 struct array_cache *ac;
ff69416e 2439 int node = numa_node_id();
1da177e4
LT
2440
2441 check_irq_off();
9a2dba4b 2442 ac = cpu_cache_get(cachep);
ff69416e
CL
2443 spin_lock(&cachep->nodelists[node]->list_lock);
2444 free_block(cachep, ac->entry, ac->avail, node);
2445 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2446 ac->avail = 0;
2447}
2448
343e0d7a 2449static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2450{
e498be7d
CL
2451 struct kmem_list3 *l3;
2452 int node;
2453
a07fa394 2454 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2455 check_irq_on();
b28a02de 2456 for_each_online_node(node) {
e498be7d 2457 l3 = cachep->nodelists[node];
a4523a8b
RD
2458 if (l3 && l3->alien)
2459 drain_alien_cache(cachep, l3->alien);
2460 }
2461
2462 for_each_online_node(node) {
2463 l3 = cachep->nodelists[node];
2464 if (l3)
aab2207c 2465 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2466 }
1da177e4
LT
2467}
2468
ed11d9eb
CL
2469/*
2470 * Remove slabs from the list of free slabs.
2471 * Specify the number of slabs to drain in tofree.
2472 *
2473 * Returns the actual number of slabs released.
2474 */
2475static int drain_freelist(struct kmem_cache *cache,
2476 struct kmem_list3 *l3, int tofree)
1da177e4 2477{
ed11d9eb
CL
2478 struct list_head *p;
2479 int nr_freed;
1da177e4 2480 struct slab *slabp;
1da177e4 2481
ed11d9eb
CL
2482 nr_freed = 0;
2483 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2484
ed11d9eb 2485 spin_lock_irq(&l3->list_lock);
e498be7d 2486 p = l3->slabs_free.prev;
ed11d9eb
CL
2487 if (p == &l3->slabs_free) {
2488 spin_unlock_irq(&l3->list_lock);
2489 goto out;
2490 }
1da177e4 2491
ed11d9eb 2492 slabp = list_entry(p, struct slab, list);
1da177e4 2493#if DEBUG
40094fa6 2494 BUG_ON(slabp->inuse);
1da177e4
LT
2495#endif
2496 list_del(&slabp->list);
ed11d9eb
CL
2497 /*
2498 * Safe to drop the lock. The slab is no longer linked
2499 * to the cache.
2500 */
2501 l3->free_objects -= cache->num;
e498be7d 2502 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2503 slab_destroy(cache, slabp);
2504 nr_freed++;
1da177e4 2505 }
ed11d9eb
CL
2506out:
2507 return nr_freed;
1da177e4
LT
2508}
2509
8f5be20b 2510/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2511static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2512{
2513 int ret = 0, i = 0;
2514 struct kmem_list3 *l3;
2515
2516 drain_cpu_caches(cachep);
2517
2518 check_irq_on();
2519 for_each_online_node(i) {
2520 l3 = cachep->nodelists[i];
ed11d9eb
CL
2521 if (!l3)
2522 continue;
2523
2524 drain_freelist(cachep, l3, l3->free_objects);
2525
2526 ret += !list_empty(&l3->slabs_full) ||
2527 !list_empty(&l3->slabs_partial);
e498be7d
CL
2528 }
2529 return (ret ? 1 : 0);
2530}
2531
1da177e4
LT
2532/**
2533 * kmem_cache_shrink - Shrink a cache.
2534 * @cachep: The cache to shrink.
2535 *
2536 * Releases as many slabs as possible for a cache.
2537 * To help debugging, a zero exit status indicates all slabs were released.
2538 */
343e0d7a 2539int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2540{
8f5be20b 2541 int ret;
40094fa6 2542 BUG_ON(!cachep || in_interrupt());
1da177e4 2543
8f5be20b
RT
2544 mutex_lock(&cache_chain_mutex);
2545 ret = __cache_shrink(cachep);
2546 mutex_unlock(&cache_chain_mutex);
2547 return ret;
1da177e4
LT
2548}
2549EXPORT_SYMBOL(kmem_cache_shrink);
2550
2551/**
2552 * kmem_cache_destroy - delete a cache
2553 * @cachep: the cache to destroy
2554 *
72fd4a35 2555 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2556 *
2557 * It is expected this function will be called by a module when it is
2558 * unloaded. This will remove the cache completely, and avoid a duplicate
2559 * cache being allocated each time a module is loaded and unloaded, if the
2560 * module doesn't have persistent in-kernel storage across loads and unloads.
2561 *
2562 * The cache must be empty before calling this function.
2563 *
2564 * The caller must guarantee that noone will allocate memory from the cache
2565 * during the kmem_cache_destroy().
2566 */
133d205a 2567void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2568{
40094fa6 2569 BUG_ON(!cachep || in_interrupt());
1da177e4 2570
1da177e4 2571 /* Find the cache in the chain of caches. */
fc0abb14 2572 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2573 /*
2574 * the chain is never empty, cache_cache is never destroyed
2575 */
2576 list_del(&cachep->next);
1da177e4
LT
2577 if (__cache_shrink(cachep)) {
2578 slab_error(cachep, "Can't free all objects");
b28a02de 2579 list_add(&cachep->next, &cache_chain);
fc0abb14 2580 mutex_unlock(&cache_chain_mutex);
133d205a 2581 return;
1da177e4
LT
2582 }
2583
2584 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2585 synchronize_rcu();
1da177e4 2586
117f6eb1 2587 __kmem_cache_destroy(cachep);
8f5be20b 2588 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2589}
2590EXPORT_SYMBOL(kmem_cache_destroy);
2591
e5ac9c5a
RT
2592/*
2593 * Get the memory for a slab management obj.
2594 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2595 * always come from malloc_sizes caches. The slab descriptor cannot
2596 * come from the same cache which is getting created because,
2597 * when we are searching for an appropriate cache for these
2598 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2599 * If we are creating a malloc_sizes cache here it would not be visible to
2600 * kmem_find_general_cachep till the initialization is complete.
2601 * Hence we cannot have slabp_cache same as the original cache.
2602 */
343e0d7a 2603static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2604 int colour_off, gfp_t local_flags,
2605 int nodeid)
1da177e4
LT
2606{
2607 struct slab *slabp;
b28a02de 2608
1da177e4
LT
2609 if (OFF_SLAB(cachep)) {
2610 /* Slab management obj is off-slab. */
5b74ada7 2611 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2612 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2613 if (!slabp)
2614 return NULL;
2615 } else {
b28a02de 2616 slabp = objp + colour_off;
1da177e4
LT
2617 colour_off += cachep->slab_size;
2618 }
2619 slabp->inuse = 0;
2620 slabp->colouroff = colour_off;
b28a02de 2621 slabp->s_mem = objp + colour_off;
5b74ada7 2622 slabp->nodeid = nodeid;
1da177e4
LT
2623 return slabp;
2624}
2625
2626static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2627{
b28a02de 2628 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2629}
2630
343e0d7a 2631static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2632 struct slab *slabp)
1da177e4
LT
2633{
2634 int i;
2635
2636 for (i = 0; i < cachep->num; i++) {
8fea4e96 2637 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2638#if DEBUG
2639 /* need to poison the objs? */
2640 if (cachep->flags & SLAB_POISON)
2641 poison_obj(cachep, objp, POISON_FREE);
2642 if (cachep->flags & SLAB_STORE_USER)
2643 *dbg_userword(cachep, objp) = NULL;
2644
2645 if (cachep->flags & SLAB_RED_ZONE) {
2646 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2647 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2648 }
2649 /*
a737b3e2
AM
2650 * Constructors are not allowed to allocate memory from the same
2651 * cache which they are a constructor for. Otherwise, deadlock.
2652 * They must also be threaded.
1da177e4
LT
2653 */
2654 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
4ba9b9d0 2655 cachep->ctor(cachep, objp + obj_offset(cachep));
1da177e4
LT
2656
2657 if (cachep->flags & SLAB_RED_ZONE) {
2658 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2659 slab_error(cachep, "constructor overwrote the"
b28a02de 2660 " end of an object");
1da177e4
LT
2661 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2662 slab_error(cachep, "constructor overwrote the"
b28a02de 2663 " start of an object");
1da177e4 2664 }
a737b3e2
AM
2665 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2666 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2667 kernel_map_pages(virt_to_page(objp),
3dafccf2 2668 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2669#else
2670 if (cachep->ctor)
4ba9b9d0 2671 cachep->ctor(cachep, objp);
1da177e4 2672#endif
b28a02de 2673 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2674 }
b28a02de 2675 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2676 slabp->free = 0;
2677}
2678
343e0d7a 2679static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2680{
4b51d669
CL
2681 if (CONFIG_ZONE_DMA_FLAG) {
2682 if (flags & GFP_DMA)
2683 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2684 else
2685 BUG_ON(cachep->gfpflags & GFP_DMA);
2686 }
1da177e4
LT
2687}
2688
a737b3e2
AM
2689static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2690 int nodeid)
78d382d7 2691{
8fea4e96 2692 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2693 kmem_bufctl_t next;
2694
2695 slabp->inuse++;
2696 next = slab_bufctl(slabp)[slabp->free];
2697#if DEBUG
2698 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2699 WARN_ON(slabp->nodeid != nodeid);
2700#endif
2701 slabp->free = next;
2702
2703 return objp;
2704}
2705
a737b3e2
AM
2706static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2707 void *objp, int nodeid)
78d382d7 2708{
8fea4e96 2709 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2710
2711#if DEBUG
2712 /* Verify that the slab belongs to the intended node */
2713 WARN_ON(slabp->nodeid != nodeid);
2714
871751e2 2715 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2716 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2717 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2718 BUG();
2719 }
2720#endif
2721 slab_bufctl(slabp)[objnr] = slabp->free;
2722 slabp->free = objnr;
2723 slabp->inuse--;
2724}
2725
4776874f
PE
2726/*
2727 * Map pages beginning at addr to the given cache and slab. This is required
2728 * for the slab allocator to be able to lookup the cache and slab of a
2729 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2730 */
2731static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2732 void *addr)
1da177e4 2733{
4776874f 2734 int nr_pages;
1da177e4
LT
2735 struct page *page;
2736
4776874f 2737 page = virt_to_page(addr);
84097518 2738
4776874f 2739 nr_pages = 1;
84097518 2740 if (likely(!PageCompound(page)))
4776874f
PE
2741 nr_pages <<= cache->gfporder;
2742
1da177e4 2743 do {
4776874f
PE
2744 page_set_cache(page, cache);
2745 page_set_slab(page, slab);
1da177e4 2746 page++;
4776874f 2747 } while (--nr_pages);
1da177e4
LT
2748}
2749
2750/*
2751 * Grow (by 1) the number of slabs within a cache. This is called by
2752 * kmem_cache_alloc() when there are no active objs left in a cache.
2753 */
3c517a61
CL
2754static int cache_grow(struct kmem_cache *cachep,
2755 gfp_t flags, int nodeid, void *objp)
1da177e4 2756{
b28a02de 2757 struct slab *slabp;
b28a02de
PE
2758 size_t offset;
2759 gfp_t local_flags;
e498be7d 2760 struct kmem_list3 *l3;
1da177e4 2761
a737b3e2
AM
2762 /*
2763 * Be lazy and only check for valid flags here, keeping it out of the
2764 * critical path in kmem_cache_alloc().
1da177e4 2765 */
6cb06229
CL
2766 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2767 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2768
2e1217cf 2769 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2770 check_irq_off();
2e1217cf
RT
2771 l3 = cachep->nodelists[nodeid];
2772 spin_lock(&l3->list_lock);
1da177e4
LT
2773
2774 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2775 offset = l3->colour_next;
2776 l3->colour_next++;
2777 if (l3->colour_next >= cachep->colour)
2778 l3->colour_next = 0;
2779 spin_unlock(&l3->list_lock);
1da177e4 2780
2e1217cf 2781 offset *= cachep->colour_off;
1da177e4
LT
2782
2783 if (local_flags & __GFP_WAIT)
2784 local_irq_enable();
2785
2786 /*
2787 * The test for missing atomic flag is performed here, rather than
2788 * the more obvious place, simply to reduce the critical path length
2789 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2790 * will eventually be caught here (where it matters).
2791 */
2792 kmem_flagcheck(cachep, flags);
2793
a737b3e2
AM
2794 /*
2795 * Get mem for the objs. Attempt to allocate a physical page from
2796 * 'nodeid'.
e498be7d 2797 */
3c517a61 2798 if (!objp)
b8c1c5da 2799 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2800 if (!objp)
1da177e4
LT
2801 goto failed;
2802
2803 /* Get slab management. */
3c517a61 2804 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2805 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2806 if (!slabp)
1da177e4
LT
2807 goto opps1;
2808
e498be7d 2809 slabp->nodeid = nodeid;
4776874f 2810 slab_map_pages(cachep, slabp, objp);
1da177e4 2811
a35afb83 2812 cache_init_objs(cachep, slabp);
1da177e4
LT
2813
2814 if (local_flags & __GFP_WAIT)
2815 local_irq_disable();
2816 check_irq_off();
e498be7d 2817 spin_lock(&l3->list_lock);
1da177e4
LT
2818
2819 /* Make slab active. */
e498be7d 2820 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2821 STATS_INC_GROWN(cachep);
e498be7d
CL
2822 l3->free_objects += cachep->num;
2823 spin_unlock(&l3->list_lock);
1da177e4 2824 return 1;
a737b3e2 2825opps1:
1da177e4 2826 kmem_freepages(cachep, objp);
a737b3e2 2827failed:
1da177e4
LT
2828 if (local_flags & __GFP_WAIT)
2829 local_irq_disable();
2830 return 0;
2831}
2832
2833#if DEBUG
2834
2835/*
2836 * Perform extra freeing checks:
2837 * - detect bad pointers.
2838 * - POISON/RED_ZONE checking
1da177e4
LT
2839 */
2840static void kfree_debugcheck(const void *objp)
2841{
1da177e4
LT
2842 if (!virt_addr_valid(objp)) {
2843 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2844 (unsigned long)objp);
2845 BUG();
1da177e4 2846 }
1da177e4
LT
2847}
2848
58ce1fd5
PE
2849static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2850{
b46b8f19 2851 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2852
2853 redzone1 = *dbg_redzone1(cache, obj);
2854 redzone2 = *dbg_redzone2(cache, obj);
2855
2856 /*
2857 * Redzone is ok.
2858 */
2859 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2860 return;
2861
2862 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2863 slab_error(cache, "double free detected");
2864 else
2865 slab_error(cache, "memory outside object was overwritten");
2866
b46b8f19 2867 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2868 obj, redzone1, redzone2);
2869}
2870
343e0d7a 2871static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2872 void *caller)
1da177e4
LT
2873{
2874 struct page *page;
2875 unsigned int objnr;
2876 struct slab *slabp;
2877
3dafccf2 2878 objp -= obj_offset(cachep);
1da177e4 2879 kfree_debugcheck(objp);
b49af68f 2880 page = virt_to_head_page(objp);
1da177e4 2881
065d41cb 2882 slabp = page_get_slab(page);
1da177e4
LT
2883
2884 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2885 verify_redzone_free(cachep, objp);
1da177e4
LT
2886 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2887 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2888 }
2889 if (cachep->flags & SLAB_STORE_USER)
2890 *dbg_userword(cachep, objp) = caller;
2891
8fea4e96 2892 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2893
2894 BUG_ON(objnr >= cachep->num);
8fea4e96 2895 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2896
871751e2
AV
2897#ifdef CONFIG_DEBUG_SLAB_LEAK
2898 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2899#endif
1da177e4
LT
2900 if (cachep->flags & SLAB_POISON) {
2901#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2902 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2903 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2904 kernel_map_pages(virt_to_page(objp),
3dafccf2 2905 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2906 } else {
2907 poison_obj(cachep, objp, POISON_FREE);
2908 }
2909#else
2910 poison_obj(cachep, objp, POISON_FREE);
2911#endif
2912 }
2913 return objp;
2914}
2915
343e0d7a 2916static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2917{
2918 kmem_bufctl_t i;
2919 int entries = 0;
b28a02de 2920
1da177e4
LT
2921 /* Check slab's freelist to see if this obj is there. */
2922 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2923 entries++;
2924 if (entries > cachep->num || i >= cachep->num)
2925 goto bad;
2926 }
2927 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2928bad:
2929 printk(KERN_ERR "slab: Internal list corruption detected in "
2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2931 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2932 for (i = 0;
264132bc 2933 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2934 i++) {
a737b3e2 2935 if (i % 16 == 0)
1da177e4 2936 printk("\n%03x:", i);
b28a02de 2937 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2938 }
2939 printk("\n");
2940 BUG();
2941 }
2942}
2943#else
2944#define kfree_debugcheck(x) do { } while(0)
2945#define cache_free_debugcheck(x,objp,z) (objp)
2946#define check_slabp(x,y) do { } while(0)
2947#endif
2948
343e0d7a 2949static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2950{
2951 int batchcount;
2952 struct kmem_list3 *l3;
2953 struct array_cache *ac;
1ca4cb24
PE
2954 int node;
2955
2956 node = numa_node_id();
1da177e4
LT
2957
2958 check_irq_off();
9a2dba4b 2959 ac = cpu_cache_get(cachep);
a737b3e2 2960retry:
1da177e4
LT
2961 batchcount = ac->batchcount;
2962 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2963 /*
2964 * If there was little recent activity on this cache, then
2965 * perform only a partial refill. Otherwise we could generate
2966 * refill bouncing.
1da177e4
LT
2967 */
2968 batchcount = BATCHREFILL_LIMIT;
2969 }
1ca4cb24 2970 l3 = cachep->nodelists[node];
e498be7d
CL
2971
2972 BUG_ON(ac->avail > 0 || !l3);
2973 spin_lock(&l3->list_lock);
1da177e4 2974
3ded175a
CL
2975 /* See if we can refill from the shared array */
2976 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2977 goto alloc_done;
2978
1da177e4
LT
2979 while (batchcount > 0) {
2980 struct list_head *entry;
2981 struct slab *slabp;
2982 /* Get slab alloc is to come from. */
2983 entry = l3->slabs_partial.next;
2984 if (entry == &l3->slabs_partial) {
2985 l3->free_touched = 1;
2986 entry = l3->slabs_free.next;
2987 if (entry == &l3->slabs_free)
2988 goto must_grow;
2989 }
2990
2991 slabp = list_entry(entry, struct slab, list);
2992 check_slabp(cachep, slabp);
2993 check_spinlock_acquired(cachep);
714b8171
PE
2994
2995 /*
2996 * The slab was either on partial or free list so
2997 * there must be at least one object available for
2998 * allocation.
2999 */
3000 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3001
1da177e4 3002 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3003 STATS_INC_ALLOCED(cachep);
3004 STATS_INC_ACTIVE(cachep);
3005 STATS_SET_HIGH(cachep);
3006
78d382d7 3007 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3008 node);
1da177e4
LT
3009 }
3010 check_slabp(cachep, slabp);
3011
3012 /* move slabp to correct slabp list: */
3013 list_del(&slabp->list);
3014 if (slabp->free == BUFCTL_END)
3015 list_add(&slabp->list, &l3->slabs_full);
3016 else
3017 list_add(&slabp->list, &l3->slabs_partial);
3018 }
3019
a737b3e2 3020must_grow:
1da177e4 3021 l3->free_objects -= ac->avail;
a737b3e2 3022alloc_done:
e498be7d 3023 spin_unlock(&l3->list_lock);
1da177e4
LT
3024
3025 if (unlikely(!ac->avail)) {
3026 int x;
3c517a61 3027 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3028
a737b3e2 3029 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3030 ac = cpu_cache_get(cachep);
a737b3e2 3031 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3032 return NULL;
3033
a737b3e2 3034 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3035 goto retry;
3036 }
3037 ac->touched = 1;
e498be7d 3038 return ac->entry[--ac->avail];
1da177e4
LT
3039}
3040
a737b3e2
AM
3041static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3042 gfp_t flags)
1da177e4
LT
3043{
3044 might_sleep_if(flags & __GFP_WAIT);
3045#if DEBUG
3046 kmem_flagcheck(cachep, flags);
3047#endif
3048}
3049
3050#if DEBUG
a737b3e2
AM
3051static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3052 gfp_t flags, void *objp, void *caller)
1da177e4 3053{
b28a02de 3054 if (!objp)
1da177e4 3055 return objp;
b28a02de 3056 if (cachep->flags & SLAB_POISON) {
1da177e4 3057#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3058 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3059 kernel_map_pages(virt_to_page(objp),
3dafccf2 3060 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3061 else
3062 check_poison_obj(cachep, objp);
3063#else
3064 check_poison_obj(cachep, objp);
3065#endif
3066 poison_obj(cachep, objp, POISON_INUSE);
3067 }
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = caller;
3070
3071 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside"
3075 " object was overwritten");
b28a02de 3076 printk(KERN_ERR
b46b8f19 3077 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3078 objp, *dbg_redzone1(cachep, objp),
3079 *dbg_redzone2(cachep, objp));
1da177e4
LT
3080 }
3081 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3082 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3083 }
871751e2
AV
3084#ifdef CONFIG_DEBUG_SLAB_LEAK
3085 {
3086 struct slab *slabp;
3087 unsigned objnr;
3088
b49af68f 3089 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3090 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3091 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3092 }
3093#endif
3dafccf2 3094 objp += obj_offset(cachep);
4f104934 3095 if (cachep->ctor && cachep->flags & SLAB_POISON)
4ba9b9d0 3096 cachep->ctor(cachep, objp);
a44b56d3
KH
3097#if ARCH_SLAB_MINALIGN
3098 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3099 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3100 objp, ARCH_SLAB_MINALIGN);
3101 }
3102#endif
1da177e4
LT
3103 return objp;
3104}
3105#else
3106#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3107#endif
3108
8a8b6502
AM
3109#ifdef CONFIG_FAILSLAB
3110
3111static struct failslab_attr {
3112
3113 struct fault_attr attr;
3114
3115 u32 ignore_gfp_wait;
3116#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3117 struct dentry *ignore_gfp_wait_file;
3118#endif
3119
3120} failslab = {
3121 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3122 .ignore_gfp_wait = 1,
8a8b6502
AM
3123};
3124
3125static int __init setup_failslab(char *str)
3126{
3127 return setup_fault_attr(&failslab.attr, str);
3128}
3129__setup("failslab=", setup_failslab);
3130
3131static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3132{
3133 if (cachep == &cache_cache)
3134 return 0;
3135 if (flags & __GFP_NOFAIL)
3136 return 0;
3137 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3138 return 0;
3139
3140 return should_fail(&failslab.attr, obj_size(cachep));
3141}
3142
3143#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3144
3145static int __init failslab_debugfs(void)
3146{
3147 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3148 struct dentry *dir;
3149 int err;
3150
824ebef1 3151 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3152 if (err)
3153 return err;
3154 dir = failslab.attr.dentries.dir;
3155
3156 failslab.ignore_gfp_wait_file =
3157 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3158 &failslab.ignore_gfp_wait);
3159
3160 if (!failslab.ignore_gfp_wait_file) {
3161 err = -ENOMEM;
3162 debugfs_remove(failslab.ignore_gfp_wait_file);
3163 cleanup_fault_attr_dentries(&failslab.attr);
3164 }
3165
3166 return err;
3167}
3168
3169late_initcall(failslab_debugfs);
3170
3171#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3172
3173#else /* CONFIG_FAILSLAB */
3174
3175static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3176{
3177 return 0;
3178}
3179
3180#endif /* CONFIG_FAILSLAB */
3181
343e0d7a 3182static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3183{
b28a02de 3184 void *objp;
1da177e4
LT
3185 struct array_cache *ac;
3186
5c382300 3187 check_irq_off();
8a8b6502 3188
9a2dba4b 3189 ac = cpu_cache_get(cachep);
1da177e4
LT
3190 if (likely(ac->avail)) {
3191 STATS_INC_ALLOCHIT(cachep);
3192 ac->touched = 1;
e498be7d 3193 objp = ac->entry[--ac->avail];
1da177e4
LT
3194 } else {
3195 STATS_INC_ALLOCMISS(cachep);
3196 objp = cache_alloc_refill(cachep, flags);
3197 }
5c382300
AK
3198 return objp;
3199}
3200
e498be7d 3201#ifdef CONFIG_NUMA
c61afb18 3202/*
b2455396 3203 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3204 *
3205 * If we are in_interrupt, then process context, including cpusets and
3206 * mempolicy, may not apply and should not be used for allocation policy.
3207 */
3208static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3209{
3210 int nid_alloc, nid_here;
3211
765c4507 3212 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3213 return NULL;
3214 nid_alloc = nid_here = numa_node_id();
3215 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3216 nid_alloc = cpuset_mem_spread_node();
3217 else if (current->mempolicy)
3218 nid_alloc = slab_node(current->mempolicy);
3219 if (nid_alloc != nid_here)
8b98c169 3220 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3221 return NULL;
3222}
3223
765c4507
CL
3224/*
3225 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3226 * certain node and fall back is permitted. First we scan all the
3227 * available nodelists for available objects. If that fails then we
3228 * perform an allocation without specifying a node. This allows the page
3229 * allocator to do its reclaim / fallback magic. We then insert the
3230 * slab into the proper nodelist and then allocate from it.
765c4507 3231 */
8c8cc2c1 3232static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3233{
8c8cc2c1
PE
3234 struct zonelist *zonelist;
3235 gfp_t local_flags;
765c4507
CL
3236 struct zone **z;
3237 void *obj = NULL;
3c517a61 3238 int nid;
8c8cc2c1
PE
3239
3240 if (flags & __GFP_THISNODE)
3241 return NULL;
3242
3243 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3244 ->node_zonelists[gfp_zone(flags)];
6cb06229 3245 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3246
3c517a61
CL
3247retry:
3248 /*
3249 * Look through allowed nodes for objects available
3250 * from existing per node queues.
3251 */
aedb0eb1 3252 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3253 nid = zone_to_nid(*z);
aedb0eb1 3254
02a0e53d 3255 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3256 cache->nodelists[nid] &&
3257 cache->nodelists[nid]->free_objects)
3258 obj = ____cache_alloc_node(cache,
3259 flags | GFP_THISNODE, nid);
3260 }
3261
cfce6604 3262 if (!obj) {
3c517a61
CL
3263 /*
3264 * This allocation will be performed within the constraints
3265 * of the current cpuset / memory policy requirements.
3266 * We may trigger various forms of reclaim on the allowed
3267 * set and go into memory reserves if necessary.
3268 */
dd47ea75
CL
3269 if (local_flags & __GFP_WAIT)
3270 local_irq_enable();
3271 kmem_flagcheck(cache, flags);
3c517a61 3272 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3273 if (local_flags & __GFP_WAIT)
3274 local_irq_disable();
3c517a61
CL
3275 if (obj) {
3276 /*
3277 * Insert into the appropriate per node queues
3278 */
3279 nid = page_to_nid(virt_to_page(obj));
3280 if (cache_grow(cache, flags, nid, obj)) {
3281 obj = ____cache_alloc_node(cache,
3282 flags | GFP_THISNODE, nid);
3283 if (!obj)
3284 /*
3285 * Another processor may allocate the
3286 * objects in the slab since we are
3287 * not holding any locks.
3288 */
3289 goto retry;
3290 } else {
b6a60451 3291 /* cache_grow already freed obj */
3c517a61
CL
3292 obj = NULL;
3293 }
3294 }
aedb0eb1 3295 }
765c4507
CL
3296 return obj;
3297}
3298
e498be7d
CL
3299/*
3300 * A interface to enable slab creation on nodeid
1da177e4 3301 */
8b98c169 3302static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3303 int nodeid)
e498be7d
CL
3304{
3305 struct list_head *entry;
b28a02de
PE
3306 struct slab *slabp;
3307 struct kmem_list3 *l3;
3308 void *obj;
b28a02de
PE
3309 int x;
3310
3311 l3 = cachep->nodelists[nodeid];
3312 BUG_ON(!l3);
3313
a737b3e2 3314retry:
ca3b9b91 3315 check_irq_off();
b28a02de
PE
3316 spin_lock(&l3->list_lock);
3317 entry = l3->slabs_partial.next;
3318 if (entry == &l3->slabs_partial) {
3319 l3->free_touched = 1;
3320 entry = l3->slabs_free.next;
3321 if (entry == &l3->slabs_free)
3322 goto must_grow;
3323 }
3324
3325 slabp = list_entry(entry, struct slab, list);
3326 check_spinlock_acquired_node(cachep, nodeid);
3327 check_slabp(cachep, slabp);
3328
3329 STATS_INC_NODEALLOCS(cachep);
3330 STATS_INC_ACTIVE(cachep);
3331 STATS_SET_HIGH(cachep);
3332
3333 BUG_ON(slabp->inuse == cachep->num);
3334
78d382d7 3335 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3336 check_slabp(cachep, slabp);
3337 l3->free_objects--;
3338 /* move slabp to correct slabp list: */
3339 list_del(&slabp->list);
3340
a737b3e2 3341 if (slabp->free == BUFCTL_END)
b28a02de 3342 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3343 else
b28a02de 3344 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3345
b28a02de
PE
3346 spin_unlock(&l3->list_lock);
3347 goto done;
e498be7d 3348
a737b3e2 3349must_grow:
b28a02de 3350 spin_unlock(&l3->list_lock);
3c517a61 3351 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3352 if (x)
3353 goto retry;
1da177e4 3354
8c8cc2c1 3355 return fallback_alloc(cachep, flags);
e498be7d 3356
a737b3e2 3357done:
b28a02de 3358 return obj;
e498be7d 3359}
8c8cc2c1
PE
3360
3361/**
3362 * kmem_cache_alloc_node - Allocate an object on the specified node
3363 * @cachep: The cache to allocate from.
3364 * @flags: See kmalloc().
3365 * @nodeid: node number of the target node.
3366 * @caller: return address of caller, used for debug information
3367 *
3368 * Identical to kmem_cache_alloc but it will allocate memory on the given
3369 * node, which can improve the performance for cpu bound structures.
3370 *
3371 * Fallback to other node is possible if __GFP_THISNODE is not set.
3372 */
3373static __always_inline void *
3374__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3375 void *caller)
3376{
3377 unsigned long save_flags;
3378 void *ptr;
3379
824ebef1
AM
3380 if (should_failslab(cachep, flags))
3381 return NULL;
3382
8c8cc2c1
PE
3383 cache_alloc_debugcheck_before(cachep, flags);
3384 local_irq_save(save_flags);
3385
3386 if (unlikely(nodeid == -1))
3387 nodeid = numa_node_id();
3388
3389 if (unlikely(!cachep->nodelists[nodeid])) {
3390 /* Node not bootstrapped yet */
3391 ptr = fallback_alloc(cachep, flags);
3392 goto out;
3393 }
3394
3395 if (nodeid == numa_node_id()) {
3396 /*
3397 * Use the locally cached objects if possible.
3398 * However ____cache_alloc does not allow fallback
3399 * to other nodes. It may fail while we still have
3400 * objects on other nodes available.
3401 */
3402 ptr = ____cache_alloc(cachep, flags);
3403 if (ptr)
3404 goto out;
3405 }
3406 /* ___cache_alloc_node can fall back to other nodes */
3407 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3408 out:
3409 local_irq_restore(save_flags);
3410 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3411
d07dbea4
CL
3412 if (unlikely((flags & __GFP_ZERO) && ptr))
3413 memset(ptr, 0, obj_size(cachep));
3414
8c8cc2c1
PE
3415 return ptr;
3416}
3417
3418static __always_inline void *
3419__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3420{
3421 void *objp;
3422
3423 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3424 objp = alternate_node_alloc(cache, flags);
3425 if (objp)
3426 goto out;
3427 }
3428 objp = ____cache_alloc(cache, flags);
3429
3430 /*
3431 * We may just have run out of memory on the local node.
3432 * ____cache_alloc_node() knows how to locate memory on other nodes
3433 */
3434 if (!objp)
3435 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3436
3437 out:
3438 return objp;
3439}
3440#else
3441
3442static __always_inline void *
3443__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3444{
3445 return ____cache_alloc(cachep, flags);
3446}
3447
3448#endif /* CONFIG_NUMA */
3449
3450static __always_inline void *
3451__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3452{
3453 unsigned long save_flags;
3454 void *objp;
3455
824ebef1
AM
3456 if (should_failslab(cachep, flags))
3457 return NULL;
3458
8c8cc2c1
PE
3459 cache_alloc_debugcheck_before(cachep, flags);
3460 local_irq_save(save_flags);
3461 objp = __do_cache_alloc(cachep, flags);
3462 local_irq_restore(save_flags);
3463 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3464 prefetchw(objp);
3465
d07dbea4
CL
3466 if (unlikely((flags & __GFP_ZERO) && objp))
3467 memset(objp, 0, obj_size(cachep));
3468
8c8cc2c1
PE
3469 return objp;
3470}
e498be7d
CL
3471
3472/*
3473 * Caller needs to acquire correct kmem_list's list_lock
3474 */
343e0d7a 3475static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3476 int node)
1da177e4
LT
3477{
3478 int i;
e498be7d 3479 struct kmem_list3 *l3;
1da177e4
LT
3480
3481 for (i = 0; i < nr_objects; i++) {
3482 void *objp = objpp[i];
3483 struct slab *slabp;
1da177e4 3484
6ed5eb22 3485 slabp = virt_to_slab(objp);
ff69416e 3486 l3 = cachep->nodelists[node];
1da177e4 3487 list_del(&slabp->list);
ff69416e 3488 check_spinlock_acquired_node(cachep, node);
1da177e4 3489 check_slabp(cachep, slabp);
78d382d7 3490 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3491 STATS_DEC_ACTIVE(cachep);
e498be7d 3492 l3->free_objects++;
1da177e4
LT
3493 check_slabp(cachep, slabp);
3494
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
e498be7d
CL
3497 if (l3->free_objects > l3->free_limit) {
3498 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3504 */
1da177e4
LT
3505 slab_destroy(cachep, slabp);
3506 } else {
e498be7d 3507 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3508 }
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3513 */
e498be7d 3514 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3515 }
3516 }
3517}
3518
343e0d7a 3519static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3520{
3521 int batchcount;
e498be7d 3522 struct kmem_list3 *l3;
ff69416e 3523 int node = numa_node_id();
1da177e4
LT
3524
3525 batchcount = ac->batchcount;
3526#if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528#endif
3529 check_irq_off();
ff69416e 3530 l3 = cachep->nodelists[node];
873623df 3531 spin_lock(&l3->list_lock);
e498be7d
CL
3532 if (l3->shared) {
3533 struct array_cache *shared_array = l3->shared;
b28a02de 3534 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
e498be7d 3538 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3539 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3540 shared_array->avail += batchcount;
3541 goto free_done;
3542 }
3543 }
3544
ff69416e 3545 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3546free_done:
1da177e4
LT
3547#if STATS
3548 {
3549 int i = 0;
3550 struct list_head *p;
3551
e498be7d
CL
3552 p = l3->slabs_free.next;
3553 while (p != &(l3->slabs_free)) {
1da177e4
LT
3554 struct slab *slabp;
3555
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3558
3559 i++;
3560 p = p->next;
3561 }
3562 STATS_SET_FREEABLE(cachep, i);
3563 }
3564#endif
e498be7d 3565 spin_unlock(&l3->list_lock);
1da177e4 3566 ac->avail -= batchcount;
a737b3e2 3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3568}
3569
3570/*
a737b3e2
AM
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3573 */
873623df 3574static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3575{
9a2dba4b 3576 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3577
3578 check_irq_off();
3579 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3580
1807a1aa
SS
3581 /*
3582 * Skip calling cache_free_alien() when the platform is not numa.
3583 * This will avoid cache misses that happen while accessing slabp (which
3584 * is per page memory reference) to get nodeid. Instead use a global
3585 * variable to skip the call, which is mostly likely to be present in
3586 * the cache.
3587 */
3588 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3589 return;
3590
1da177e4
LT
3591 if (likely(ac->avail < ac->limit)) {
3592 STATS_INC_FREEHIT(cachep);
e498be7d 3593 ac->entry[ac->avail++] = objp;
1da177e4
LT
3594 return;
3595 } else {
3596 STATS_INC_FREEMISS(cachep);
3597 cache_flusharray(cachep, ac);
e498be7d 3598 ac->entry[ac->avail++] = objp;
1da177e4
LT
3599 }
3600}
3601
3602/**
3603 * kmem_cache_alloc - Allocate an object
3604 * @cachep: The cache to allocate from.
3605 * @flags: See kmalloc().
3606 *
3607 * Allocate an object from this cache. The flags are only relevant
3608 * if the cache has no available objects.
3609 */
343e0d7a 3610void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3611{
7fd6b141 3612 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3613}
3614EXPORT_SYMBOL(kmem_cache_alloc);
3615
3616/**
3617 * kmem_ptr_validate - check if an untrusted pointer might
3618 * be a slab entry.
3619 * @cachep: the cache we're checking against
3620 * @ptr: pointer to validate
3621 *
3622 * This verifies that the untrusted pointer looks sane:
3623 * it is _not_ a guarantee that the pointer is actually
3624 * part of the slab cache in question, but it at least
3625 * validates that the pointer can be dereferenced and
3626 * looks half-way sane.
3627 *
3628 * Currently only used for dentry validation.
3629 */
b7f869a2 3630int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3631{
b28a02de 3632 unsigned long addr = (unsigned long)ptr;
1da177e4 3633 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3634 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3635 unsigned long size = cachep->buffer_size;
1da177e4
LT
3636 struct page *page;
3637
3638 if (unlikely(addr < min_addr))
3639 goto out;
3640 if (unlikely(addr > (unsigned long)high_memory - size))
3641 goto out;
3642 if (unlikely(addr & align_mask))
3643 goto out;
3644 if (unlikely(!kern_addr_valid(addr)))
3645 goto out;
3646 if (unlikely(!kern_addr_valid(addr + size - 1)))
3647 goto out;
3648 page = virt_to_page(ptr);
3649 if (unlikely(!PageSlab(page)))
3650 goto out;
065d41cb 3651 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3652 goto out;
3653 return 1;
a737b3e2 3654out:
1da177e4
LT
3655 return 0;
3656}
3657
3658#ifdef CONFIG_NUMA
8b98c169
CH
3659void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3660{
3661 return __cache_alloc_node(cachep, flags, nodeid,
3662 __builtin_return_address(0));
3663}
1da177e4
LT
3664EXPORT_SYMBOL(kmem_cache_alloc_node);
3665
8b98c169
CH
3666static __always_inline void *
3667__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3668{
343e0d7a 3669 struct kmem_cache *cachep;
97e2bde4
MS
3670
3671 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3672 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3673 return cachep;
97e2bde4
MS
3674 return kmem_cache_alloc_node(cachep, flags, node);
3675}
8b98c169
CH
3676
3677#ifdef CONFIG_DEBUG_SLAB
3678void *__kmalloc_node(size_t size, gfp_t flags, int node)
3679{
3680 return __do_kmalloc_node(size, flags, node,
3681 __builtin_return_address(0));
3682}
dbe5e69d 3683EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3684
3685void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3686 int node, void *caller)
3687{
3688 return __do_kmalloc_node(size, flags, node, caller);
3689}
3690EXPORT_SYMBOL(__kmalloc_node_track_caller);
3691#else
3692void *__kmalloc_node(size_t size, gfp_t flags, int node)
3693{
3694 return __do_kmalloc_node(size, flags, node, NULL);
3695}
3696EXPORT_SYMBOL(__kmalloc_node);
3697#endif /* CONFIG_DEBUG_SLAB */
3698#endif /* CONFIG_NUMA */
1da177e4
LT
3699
3700/**
800590f5 3701 * __do_kmalloc - allocate memory
1da177e4 3702 * @size: how many bytes of memory are required.
800590f5 3703 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3704 * @caller: function caller for debug tracking of the caller
1da177e4 3705 */
7fd6b141
PE
3706static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3707 void *caller)
1da177e4 3708{
343e0d7a 3709 struct kmem_cache *cachep;
1da177e4 3710
97e2bde4
MS
3711 /* If you want to save a few bytes .text space: replace
3712 * __ with kmem_.
3713 * Then kmalloc uses the uninlined functions instead of the inline
3714 * functions.
3715 */
3716 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3717 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3718 return cachep;
7fd6b141
PE
3719 return __cache_alloc(cachep, flags, caller);
3720}
3721
7fd6b141 3722
1d2c8eea 3723#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3724void *__kmalloc(size_t size, gfp_t flags)
3725{
871751e2 3726 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3727}
3728EXPORT_SYMBOL(__kmalloc);
3729
7fd6b141
PE
3730void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3731{
3732 return __do_kmalloc(size, flags, caller);
3733}
3734EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3735
3736#else
3737void *__kmalloc(size_t size, gfp_t flags)
3738{
3739 return __do_kmalloc(size, flags, NULL);
3740}
3741EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3742#endif
3743
1da177e4
LT
3744/**
3745 * kmem_cache_free - Deallocate an object
3746 * @cachep: The cache the allocation was from.
3747 * @objp: The previously allocated object.
3748 *
3749 * Free an object which was previously allocated from this
3750 * cache.
3751 */
343e0d7a 3752void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3753{
3754 unsigned long flags;
3755
ddc2e812
PE
3756 BUG_ON(virt_to_cache(objp) != cachep);
3757
1da177e4 3758 local_irq_save(flags);
898552c9 3759 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3760 __cache_free(cachep, objp);
1da177e4
LT
3761 local_irq_restore(flags);
3762}
3763EXPORT_SYMBOL(kmem_cache_free);
3764
1da177e4
LT
3765/**
3766 * kfree - free previously allocated memory
3767 * @objp: pointer returned by kmalloc.
3768 *
80e93eff
PE
3769 * If @objp is NULL, no operation is performed.
3770 *
1da177e4
LT
3771 * Don't free memory not originally allocated by kmalloc()
3772 * or you will run into trouble.
3773 */
3774void kfree(const void *objp)
3775{
343e0d7a 3776 struct kmem_cache *c;
1da177e4
LT
3777 unsigned long flags;
3778
6cb8f913 3779 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3780 return;
3781 local_irq_save(flags);
3782 kfree_debugcheck(objp);
6ed5eb22 3783 c = virt_to_cache(objp);
f9b8404c 3784 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3785 __cache_free(c, (void *)objp);
1da177e4
LT
3786 local_irq_restore(flags);
3787}
3788EXPORT_SYMBOL(kfree);
3789
343e0d7a 3790unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3791{
3dafccf2 3792 return obj_size(cachep);
1da177e4
LT
3793}
3794EXPORT_SYMBOL(kmem_cache_size);
3795
343e0d7a 3796const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3797{
3798 return cachep->name;
3799}
3800EXPORT_SYMBOL_GPL(kmem_cache_name);
3801
e498be7d 3802/*
0718dc2a 3803 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3804 */
343e0d7a 3805static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3806{
3807 int node;
3808 struct kmem_list3 *l3;
cafeb02e 3809 struct array_cache *new_shared;
3395ee05 3810 struct array_cache **new_alien = NULL;
e498be7d 3811
04231b30 3812 for_each_node_state(node, N_NORMAL_MEMORY) {
cafeb02e 3813
3395ee05
PM
3814 if (use_alien_caches) {
3815 new_alien = alloc_alien_cache(node, cachep->limit);
3816 if (!new_alien)
3817 goto fail;
3818 }
cafeb02e 3819
63109846
ED
3820 new_shared = NULL;
3821 if (cachep->shared) {
3822 new_shared = alloc_arraycache(node,
0718dc2a 3823 cachep->shared*cachep->batchcount,
a737b3e2 3824 0xbaadf00d);
63109846
ED
3825 if (!new_shared) {
3826 free_alien_cache(new_alien);
3827 goto fail;
3828 }
0718dc2a 3829 }
cafeb02e 3830
a737b3e2
AM
3831 l3 = cachep->nodelists[node];
3832 if (l3) {
cafeb02e
CL
3833 struct array_cache *shared = l3->shared;
3834
e498be7d
CL
3835 spin_lock_irq(&l3->list_lock);
3836
cafeb02e 3837 if (shared)
0718dc2a
CL
3838 free_block(cachep, shared->entry,
3839 shared->avail, node);
e498be7d 3840
cafeb02e
CL
3841 l3->shared = new_shared;
3842 if (!l3->alien) {
e498be7d
CL
3843 l3->alien = new_alien;
3844 new_alien = NULL;
3845 }
b28a02de 3846 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3847 cachep->batchcount + cachep->num;
e498be7d 3848 spin_unlock_irq(&l3->list_lock);
cafeb02e 3849 kfree(shared);
e498be7d
CL
3850 free_alien_cache(new_alien);
3851 continue;
3852 }
a737b3e2 3853 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3854 if (!l3) {
3855 free_alien_cache(new_alien);
3856 kfree(new_shared);
e498be7d 3857 goto fail;
0718dc2a 3858 }
e498be7d
CL
3859
3860 kmem_list3_init(l3);
3861 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3862 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3863 l3->shared = new_shared;
e498be7d 3864 l3->alien = new_alien;
b28a02de 3865 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3866 cachep->batchcount + cachep->num;
e498be7d
CL
3867 cachep->nodelists[node] = l3;
3868 }
cafeb02e 3869 return 0;
0718dc2a 3870
a737b3e2 3871fail:
0718dc2a
CL
3872 if (!cachep->next.next) {
3873 /* Cache is not active yet. Roll back what we did */
3874 node--;
3875 while (node >= 0) {
3876 if (cachep->nodelists[node]) {
3877 l3 = cachep->nodelists[node];
3878
3879 kfree(l3->shared);
3880 free_alien_cache(l3->alien);
3881 kfree(l3);
3882 cachep->nodelists[node] = NULL;
3883 }
3884 node--;
3885 }
3886 }
cafeb02e 3887 return -ENOMEM;
e498be7d
CL
3888}
3889
1da177e4 3890struct ccupdate_struct {
343e0d7a 3891 struct kmem_cache *cachep;
1da177e4
LT
3892 struct array_cache *new[NR_CPUS];
3893};
3894
3895static void do_ccupdate_local(void *info)
3896{
a737b3e2 3897 struct ccupdate_struct *new = info;
1da177e4
LT
3898 struct array_cache *old;
3899
3900 check_irq_off();
9a2dba4b 3901 old = cpu_cache_get(new->cachep);
e498be7d 3902
1da177e4
LT
3903 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3904 new->new[smp_processor_id()] = old;
3905}
3906
b5d8ca7c 3907/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3908static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 int batchcount, int shared)
1da177e4 3910{
d2e7b7d0 3911 struct ccupdate_struct *new;
2ed3a4ef 3912 int i;
1da177e4 3913
d2e7b7d0
SS
3914 new = kzalloc(sizeof(*new), GFP_KERNEL);
3915 if (!new)
3916 return -ENOMEM;
3917
e498be7d 3918 for_each_online_cpu(i) {
d2e7b7d0 3919 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3920 batchcount);
d2e7b7d0 3921 if (!new->new[i]) {
b28a02de 3922 for (i--; i >= 0; i--)
d2e7b7d0
SS
3923 kfree(new->new[i]);
3924 kfree(new);
e498be7d 3925 return -ENOMEM;
1da177e4
LT
3926 }
3927 }
d2e7b7d0 3928 new->cachep = cachep;
1da177e4 3929
d2e7b7d0 3930 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3931
1da177e4 3932 check_irq_on();
1da177e4
LT
3933 cachep->batchcount = batchcount;
3934 cachep->limit = limit;
e498be7d 3935 cachep->shared = shared;
1da177e4 3936
e498be7d 3937 for_each_online_cpu(i) {
d2e7b7d0 3938 struct array_cache *ccold = new->new[i];
1da177e4
LT
3939 if (!ccold)
3940 continue;
e498be7d 3941 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3942 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3943 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3944 kfree(ccold);
3945 }
d2e7b7d0 3946 kfree(new);
2ed3a4ef 3947 return alloc_kmemlist(cachep);
1da177e4
LT
3948}
3949
b5d8ca7c 3950/* Called with cache_chain_mutex held always */
2ed3a4ef 3951static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3952{
3953 int err;
3954 int limit, shared;
3955
a737b3e2
AM
3956 /*
3957 * The head array serves three purposes:
1da177e4
LT
3958 * - create a LIFO ordering, i.e. return objects that are cache-warm
3959 * - reduce the number of spinlock operations.
a737b3e2 3960 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3961 * bufctl chains: array operations are cheaper.
3962 * The numbers are guessed, we should auto-tune as described by
3963 * Bonwick.
3964 */
3dafccf2 3965 if (cachep->buffer_size > 131072)
1da177e4 3966 limit = 1;
3dafccf2 3967 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3968 limit = 8;
3dafccf2 3969 else if (cachep->buffer_size > 1024)
1da177e4 3970 limit = 24;
3dafccf2 3971 else if (cachep->buffer_size > 256)
1da177e4
LT
3972 limit = 54;
3973 else
3974 limit = 120;
3975
a737b3e2
AM
3976 /*
3977 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3978 * allocation behaviour: Most allocs on one cpu, most free operations
3979 * on another cpu. For these cases, an efficient object passing between
3980 * cpus is necessary. This is provided by a shared array. The array
3981 * replaces Bonwick's magazine layer.
3982 * On uniprocessor, it's functionally equivalent (but less efficient)
3983 * to a larger limit. Thus disabled by default.
3984 */
3985 shared = 0;
364fbb29 3986 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3987 shared = 8;
1da177e4
LT
3988
3989#if DEBUG
a737b3e2
AM
3990 /*
3991 * With debugging enabled, large batchcount lead to excessively long
3992 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3993 */
3994 if (limit > 32)
3995 limit = 32;
3996#endif
b28a02de 3997 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3998 if (err)
3999 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4000 cachep->name, -err);
2ed3a4ef 4001 return err;
1da177e4
LT
4002}
4003
1b55253a
CL
4004/*
4005 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4006 * necessary. Note that the l3 listlock also protects the array_cache
4007 * if drain_array() is used on the shared array.
1b55253a
CL
4008 */
4009void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4010 struct array_cache *ac, int force, int node)
1da177e4
LT
4011{
4012 int tofree;
4013
1b55253a
CL
4014 if (!ac || !ac->avail)
4015 return;
1da177e4
LT
4016 if (ac->touched && !force) {
4017 ac->touched = 0;
b18e7e65 4018 } else {
1b55253a 4019 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4020 if (ac->avail) {
4021 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4022 if (tofree > ac->avail)
4023 tofree = (ac->avail + 1) / 2;
4024 free_block(cachep, ac->entry, tofree, node);
4025 ac->avail -= tofree;
4026 memmove(ac->entry, &(ac->entry[tofree]),
4027 sizeof(void *) * ac->avail);
4028 }
1b55253a 4029 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4030 }
4031}
4032
4033/**
4034 * cache_reap - Reclaim memory from caches.
05fb6bf0 4035 * @w: work descriptor
1da177e4
LT
4036 *
4037 * Called from workqueue/eventd every few seconds.
4038 * Purpose:
4039 * - clear the per-cpu caches for this CPU.
4040 * - return freeable pages to the main free memory pool.
4041 *
a737b3e2
AM
4042 * If we cannot acquire the cache chain mutex then just give up - we'll try
4043 * again on the next iteration.
1da177e4 4044 */
7c5cae36 4045static void cache_reap(struct work_struct *w)
1da177e4 4046{
7a7c381d 4047 struct kmem_cache *searchp;
e498be7d 4048 struct kmem_list3 *l3;
aab2207c 4049 int node = numa_node_id();
7c5cae36
CL
4050 struct delayed_work *work =
4051 container_of(w, struct delayed_work, work);
1da177e4 4052
7c5cae36 4053 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4054 /* Give up. Setup the next iteration. */
7c5cae36 4055 goto out;
1da177e4 4056
7a7c381d 4057 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4058 check_irq_on();
4059
35386e3b
CL
4060 /*
4061 * We only take the l3 lock if absolutely necessary and we
4062 * have established with reasonable certainty that
4063 * we can do some work if the lock was obtained.
4064 */
aab2207c 4065 l3 = searchp->nodelists[node];
35386e3b 4066
8fce4d8e 4067 reap_alien(searchp, l3);
1da177e4 4068
aab2207c 4069 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4070
35386e3b
CL
4071 /*
4072 * These are racy checks but it does not matter
4073 * if we skip one check or scan twice.
4074 */
e498be7d 4075 if (time_after(l3->next_reap, jiffies))
35386e3b 4076 goto next;
1da177e4 4077
e498be7d 4078 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4079
aab2207c 4080 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4081
ed11d9eb 4082 if (l3->free_touched)
e498be7d 4083 l3->free_touched = 0;
ed11d9eb
CL
4084 else {
4085 int freed;
1da177e4 4086
ed11d9eb
CL
4087 freed = drain_freelist(searchp, l3, (l3->free_limit +
4088 5 * searchp->num - 1) / (5 * searchp->num));
4089 STATS_ADD_REAPED(searchp, freed);
4090 }
35386e3b 4091next:
1da177e4
LT
4092 cond_resched();
4093 }
4094 check_irq_on();
fc0abb14 4095 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4096 next_reap_node();
7c5cae36 4097out:
a737b3e2 4098 /* Set up the next iteration */
7c5cae36 4099 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4100}
4101
4102#ifdef CONFIG_PROC_FS
4103
85289f98 4104static void print_slabinfo_header(struct seq_file *m)
1da177e4 4105{
85289f98
PE
4106 /*
4107 * Output format version, so at least we can change it
4108 * without _too_ many complaints.
4109 */
1da177e4 4110#if STATS
85289f98 4111 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4112#else
85289f98 4113 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4114#endif
85289f98
PE
4115 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4116 "<objperslab> <pagesperslab>");
4117 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4118 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4119#if STATS
85289f98 4120 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4121 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4122 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4123#endif
85289f98
PE
4124 seq_putc(m, '\n');
4125}
4126
4127static void *s_start(struct seq_file *m, loff_t *pos)
4128{
4129 loff_t n = *pos;
85289f98 4130
fc0abb14 4131 mutex_lock(&cache_chain_mutex);
85289f98
PE
4132 if (!n)
4133 print_slabinfo_header(m);
b92151ba
PE
4134
4135 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4136}
4137
4138static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4139{
b92151ba 4140 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4141}
4142
4143static void s_stop(struct seq_file *m, void *p)
4144{
fc0abb14 4145 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4146}
4147
4148static int s_show(struct seq_file *m, void *p)
4149{
b92151ba 4150 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4151 struct slab *slabp;
4152 unsigned long active_objs;
4153 unsigned long num_objs;
4154 unsigned long active_slabs = 0;
4155 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4156 const char *name;
1da177e4 4157 char *error = NULL;
e498be7d
CL
4158 int node;
4159 struct kmem_list3 *l3;
1da177e4 4160
1da177e4
LT
4161 active_objs = 0;
4162 num_slabs = 0;
e498be7d
CL
4163 for_each_online_node(node) {
4164 l3 = cachep->nodelists[node];
4165 if (!l3)
4166 continue;
4167
ca3b9b91
RT
4168 check_irq_on();
4169 spin_lock_irq(&l3->list_lock);
e498be7d 4170
7a7c381d 4171 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4172 if (slabp->inuse != cachep->num && !error)
4173 error = "slabs_full accounting error";
4174 active_objs += cachep->num;
4175 active_slabs++;
4176 }
7a7c381d 4177 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4178 if (slabp->inuse == cachep->num && !error)
4179 error = "slabs_partial inuse accounting error";
4180 if (!slabp->inuse && !error)
4181 error = "slabs_partial/inuse accounting error";
4182 active_objs += slabp->inuse;
4183 active_slabs++;
4184 }
7a7c381d 4185 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4186 if (slabp->inuse && !error)
4187 error = "slabs_free/inuse accounting error";
4188 num_slabs++;
4189 }
4190 free_objects += l3->free_objects;
4484ebf1
RT
4191 if (l3->shared)
4192 shared_avail += l3->shared->avail;
e498be7d 4193
ca3b9b91 4194 spin_unlock_irq(&l3->list_lock);
1da177e4 4195 }
b28a02de
PE
4196 num_slabs += active_slabs;
4197 num_objs = num_slabs * cachep->num;
e498be7d 4198 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4199 error = "free_objects accounting error";
4200
b28a02de 4201 name = cachep->name;
1da177e4
LT
4202 if (error)
4203 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4204
4205 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4206 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4207 cachep->num, (1 << cachep->gfporder));
1da177e4 4208 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4209 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4210 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4211 active_slabs, num_slabs, shared_avail);
1da177e4 4212#if STATS
b28a02de 4213 { /* list3 stats */
1da177e4
LT
4214 unsigned long high = cachep->high_mark;
4215 unsigned long allocs = cachep->num_allocations;
4216 unsigned long grown = cachep->grown;
4217 unsigned long reaped = cachep->reaped;
4218 unsigned long errors = cachep->errors;
4219 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4220 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4221 unsigned long node_frees = cachep->node_frees;
fb7faf33 4222 unsigned long overflows = cachep->node_overflow;
1da177e4 4223
e498be7d 4224 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4225 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4226 reaped, errors, max_freeable, node_allocs,
fb7faf33 4227 node_frees, overflows);
1da177e4
LT
4228 }
4229 /* cpu stats */
4230 {
4231 unsigned long allochit = atomic_read(&cachep->allochit);
4232 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4233 unsigned long freehit = atomic_read(&cachep->freehit);
4234 unsigned long freemiss = atomic_read(&cachep->freemiss);
4235
4236 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4237 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4238 }
4239#endif
4240 seq_putc(m, '\n');
1da177e4
LT
4241 return 0;
4242}
4243
4244/*
4245 * slabinfo_op - iterator that generates /proc/slabinfo
4246 *
4247 * Output layout:
4248 * cache-name
4249 * num-active-objs
4250 * total-objs
4251 * object size
4252 * num-active-slabs
4253 * total-slabs
4254 * num-pages-per-slab
4255 * + further values on SMP and with statistics enabled
4256 */
4257
15ad7cdc 4258const struct seq_operations slabinfo_op = {
b28a02de
PE
4259 .start = s_start,
4260 .next = s_next,
4261 .stop = s_stop,
4262 .show = s_show,
1da177e4
LT
4263};
4264
4265#define MAX_SLABINFO_WRITE 128
4266/**
4267 * slabinfo_write - Tuning for the slab allocator
4268 * @file: unused
4269 * @buffer: user buffer
4270 * @count: data length
4271 * @ppos: unused
4272 */
b28a02de
PE
4273ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4274 size_t count, loff_t *ppos)
1da177e4 4275{
b28a02de 4276 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4277 int limit, batchcount, shared, res;
7a7c381d 4278 struct kmem_cache *cachep;
b28a02de 4279
1da177e4
LT
4280 if (count > MAX_SLABINFO_WRITE)
4281 return -EINVAL;
4282 if (copy_from_user(&kbuf, buffer, count))
4283 return -EFAULT;
b28a02de 4284 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4285
4286 tmp = strchr(kbuf, ' ');
4287 if (!tmp)
4288 return -EINVAL;
4289 *tmp = '\0';
4290 tmp++;
4291 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4292 return -EINVAL;
4293
4294 /* Find the cache in the chain of caches. */
fc0abb14 4295 mutex_lock(&cache_chain_mutex);
1da177e4 4296 res = -EINVAL;
7a7c381d 4297 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4298 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4299 if (limit < 1 || batchcount < 1 ||
4300 batchcount > limit || shared < 0) {
e498be7d 4301 res = 0;
1da177e4 4302 } else {
e498be7d 4303 res = do_tune_cpucache(cachep, limit,
b28a02de 4304 batchcount, shared);
1da177e4
LT
4305 }
4306 break;
4307 }
4308 }
fc0abb14 4309 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4310 if (res >= 0)
4311 res = count;
4312 return res;
4313}
871751e2
AV
4314
4315#ifdef CONFIG_DEBUG_SLAB_LEAK
4316
4317static void *leaks_start(struct seq_file *m, loff_t *pos)
4318{
871751e2 4319 mutex_lock(&cache_chain_mutex);
b92151ba 4320 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4321}
4322
4323static inline int add_caller(unsigned long *n, unsigned long v)
4324{
4325 unsigned long *p;
4326 int l;
4327 if (!v)
4328 return 1;
4329 l = n[1];
4330 p = n + 2;
4331 while (l) {
4332 int i = l/2;
4333 unsigned long *q = p + 2 * i;
4334 if (*q == v) {
4335 q[1]++;
4336 return 1;
4337 }
4338 if (*q > v) {
4339 l = i;
4340 } else {
4341 p = q + 2;
4342 l -= i + 1;
4343 }
4344 }
4345 if (++n[1] == n[0])
4346 return 0;
4347 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4348 p[0] = v;
4349 p[1] = 1;
4350 return 1;
4351}
4352
4353static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4354{
4355 void *p;
4356 int i;
4357 if (n[0] == n[1])
4358 return;
4359 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4360 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4361 continue;
4362 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4363 return;
4364 }
4365}
4366
4367static void show_symbol(struct seq_file *m, unsigned long address)
4368{
4369#ifdef CONFIG_KALLSYMS
871751e2 4370 unsigned long offset, size;
9281acea 4371 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4372
a5c43dae 4373 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4374 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4375 if (modname[0])
871751e2
AV
4376 seq_printf(m, " [%s]", modname);
4377 return;
4378 }
4379#endif
4380 seq_printf(m, "%p", (void *)address);
4381}
4382
4383static int leaks_show(struct seq_file *m, void *p)
4384{
b92151ba 4385 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4386 struct slab *slabp;
4387 struct kmem_list3 *l3;
4388 const char *name;
4389 unsigned long *n = m->private;
4390 int node;
4391 int i;
4392
4393 if (!(cachep->flags & SLAB_STORE_USER))
4394 return 0;
4395 if (!(cachep->flags & SLAB_RED_ZONE))
4396 return 0;
4397
4398 /* OK, we can do it */
4399
4400 n[1] = 0;
4401
4402 for_each_online_node(node) {
4403 l3 = cachep->nodelists[node];
4404 if (!l3)
4405 continue;
4406
4407 check_irq_on();
4408 spin_lock_irq(&l3->list_lock);
4409
7a7c381d 4410 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4411 handle_slab(n, cachep, slabp);
7a7c381d 4412 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4413 handle_slab(n, cachep, slabp);
871751e2
AV
4414 spin_unlock_irq(&l3->list_lock);
4415 }
4416 name = cachep->name;
4417 if (n[0] == n[1]) {
4418 /* Increase the buffer size */
4419 mutex_unlock(&cache_chain_mutex);
4420 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4421 if (!m->private) {
4422 /* Too bad, we are really out */
4423 m->private = n;
4424 mutex_lock(&cache_chain_mutex);
4425 return -ENOMEM;
4426 }
4427 *(unsigned long *)m->private = n[0] * 2;
4428 kfree(n);
4429 mutex_lock(&cache_chain_mutex);
4430 /* Now make sure this entry will be retried */
4431 m->count = m->size;
4432 return 0;
4433 }
4434 for (i = 0; i < n[1]; i++) {
4435 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4436 show_symbol(m, n[2*i+2]);
4437 seq_putc(m, '\n');
4438 }
d2e7b7d0 4439
871751e2
AV
4440 return 0;
4441}
4442
15ad7cdc 4443const struct seq_operations slabstats_op = {
871751e2
AV
4444 .start = leaks_start,
4445 .next = s_next,
4446 .stop = s_stop,
4447 .show = leaks_show,
4448};
4449#endif
1da177e4
LT
4450#endif
4451
00e145b6
MS
4452/**
4453 * ksize - get the actual amount of memory allocated for a given object
4454 * @objp: Pointer to the object
4455 *
4456 * kmalloc may internally round up allocations and return more memory
4457 * than requested. ksize() can be used to determine the actual amount of
4458 * memory allocated. The caller may use this additional memory, even though
4459 * a smaller amount of memory was initially specified with the kmalloc call.
4460 * The caller must guarantee that objp points to a valid object previously
4461 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4462 * must not be freed during the duration of the call.
4463 */
fd76bab2 4464size_t ksize(const void *objp)
1da177e4 4465{
ef8b4520
CL
4466 BUG_ON(!objp);
4467 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4468 return 0;
1da177e4 4469
6ed5eb22 4470 return obj_size(virt_to_cache(objp));
1da177e4 4471}
This page took 1.074176 seconds and 5 git commands to generate.