mm: Move pgtable_cache_init() earlier
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
06f22f13 24#include <linux/kmemleak.h>
81819f0f
CL
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
81819f0f
CL
32
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
5577bd8a 111#ifdef CONFIG_SLUB_DEBUG
8a38082d 112#define SLABDEBUG 1
5577bd8a
CL
113#else
114#define SLABDEBUG 0
115#endif
116
81819f0f
CL
117/*
118 * Issues still to be resolved:
119 *
81819f0f
CL
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
81819f0f
CL
122 * - Variable sizing of the per node arrays
123 */
124
125/* Enable to test recovery from slab corruption on boot */
126#undef SLUB_RESILIENCY_TEST
127
2086d26a
CL
128/*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
76be8950 132#define MIN_PARTIAL 5
e95eed57 133
2086d26a
CL
134/*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139#define MAX_PARTIAL 10
140
81819f0f
CL
141#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
672bba3a 143
81819f0f
CL
144/*
145 * Set of flags that will prevent slab merging
146 */
147#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 148 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
149
150#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 151 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
152
153#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 154#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 158#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
159#endif
160
210b5c06
CG
161#define OO_SHIFT 16
162#define OO_MASK ((1 << OO_SHIFT) - 1)
163#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164
81819f0f 165/* Internal SLUB flags */
1ceef402
CL
166#define __OBJECT_POISON 0x80000000 /* Poison object */
167#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
168
169static int kmem_size = sizeof(struct kmem_cache);
170
171#ifdef CONFIG_SMP
172static struct notifier_block slab_notifier;
173#endif
174
175static enum {
176 DOWN, /* No slab functionality available */
177 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 178 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
179 SYSFS /* Sysfs up */
180} slab_state = DOWN;
181
7e85ee0c
PE
182/*
183 * The slab allocator is initialized with interrupts disabled. Therefore, make
184 * sure early boot allocations don't accidentally enable interrupts.
185 */
186static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
187
81819f0f
CL
188/* A list of all slab caches on the system */
189static DECLARE_RWSEM(slub_lock);
5af328a5 190static LIST_HEAD(slab_caches);
81819f0f 191
02cbc874
CL
192/*
193 * Tracking user of a slab.
194 */
195struct track {
ce71e27c 196 unsigned long addr; /* Called from address */
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
f6acb635 204#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
151c602f
CL
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
8ff12cfc
CL
220static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221{
222#ifdef CONFIG_SLUB_STATS
223 c->stat[si]++;
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
238#ifdef CONFIG_NUMA
239 return s->node[node];
240#else
241 return &s->local_node;
242#endif
243}
244
dfb4f096
CL
245static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
246{
4c93c355
CL
247#ifdef CONFIG_SMP
248 return s->cpu_slab[cpu];
249#else
250 return &s->cpu_slab;
251#endif
dfb4f096
CL
252}
253
6446faa2 254/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
255static inline int check_valid_pointer(struct kmem_cache *s,
256 struct page *page, const void *object)
257{
258 void *base;
259
a973e9dd 260 if (!object)
02cbc874
CL
261 return 1;
262
a973e9dd 263 base = page_address(page);
39b26464 264 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
265 (object - base) % s->size) {
266 return 0;
267 }
268
269 return 1;
270}
271
7656c72b
CL
272/*
273 * Slow version of get and set free pointer.
274 *
275 * This version requires touching the cache lines of kmem_cache which
276 * we avoid to do in the fast alloc free paths. There we obtain the offset
277 * from the page struct.
278 */
279static inline void *get_freepointer(struct kmem_cache *s, void *object)
280{
281 return *(void **)(object + s->offset);
282}
283
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
294/* Scan freelist */
295#define for_each_free_object(__p, __s, __free) \
a973e9dd 296 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
297
298/* Determine object index from a given position */
299static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
300{
301 return (p - addr) / s->size;
302}
303
834f3d11
CL
304static inline struct kmem_cache_order_objects oo_make(int order,
305 unsigned long size)
306{
307 struct kmem_cache_order_objects x = {
210b5c06 308 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
309 };
310
311 return x;
312}
313
314static inline int oo_order(struct kmem_cache_order_objects x)
315{
210b5c06 316 return x.x >> OO_SHIFT;
834f3d11
CL
317}
318
319static inline int oo_objects(struct kmem_cache_order_objects x)
320{
210b5c06 321 return x.x & OO_MASK;
834f3d11
CL
322}
323
41ecc55b
CL
324#ifdef CONFIG_SLUB_DEBUG
325/*
326 * Debug settings:
327 */
f0630fff
CL
328#ifdef CONFIG_SLUB_DEBUG_ON
329static int slub_debug = DEBUG_DEFAULT_FLAGS;
330#else
41ecc55b 331static int slub_debug;
f0630fff 332#endif
41ecc55b
CL
333
334static char *slub_debug_slabs;
335
81819f0f
CL
336/*
337 * Object debugging
338 */
339static void print_section(char *text, u8 *addr, unsigned int length)
340{
341 int i, offset;
342 int newline = 1;
343 char ascii[17];
344
345 ascii[16] = 0;
346
347 for (i = 0; i < length; i++) {
348 if (newline) {
24922684 349 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
350 newline = 0;
351 }
06428780 352 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
353 offset = i % 16;
354 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
355 if (offset == 15) {
06428780 356 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
357 newline = 1;
358 }
359 }
360 if (!newline) {
361 i %= 16;
362 while (i < 16) {
06428780 363 printk(KERN_CONT " ");
81819f0f
CL
364 ascii[i] = ' ';
365 i++;
366 }
06428780 367 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
368 }
369}
370
81819f0f
CL
371static struct track *get_track(struct kmem_cache *s, void *object,
372 enum track_item alloc)
373{
374 struct track *p;
375
376 if (s->offset)
377 p = object + s->offset + sizeof(void *);
378 else
379 p = object + s->inuse;
380
381 return p + alloc;
382}
383
384static void set_track(struct kmem_cache *s, void *object,
ce71e27c 385 enum track_item alloc, unsigned long addr)
81819f0f 386{
1a00df4a 387 struct track *p = get_track(s, object, alloc);
81819f0f 388
81819f0f
CL
389 if (addr) {
390 p->addr = addr;
391 p->cpu = smp_processor_id();
88e4ccf2 392 p->pid = current->pid;
81819f0f
CL
393 p->when = jiffies;
394 } else
395 memset(p, 0, sizeof(struct track));
396}
397
81819f0f
CL
398static void init_tracking(struct kmem_cache *s, void *object)
399{
24922684
CL
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
402
ce71e27c
EGM
403 set_track(s, object, TRACK_FREE, 0UL);
404 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
405}
406
407static void print_track(const char *s, struct track *t)
408{
409 if (!t->addr)
410 return;
411
7daf705f 412 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 413 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
414}
415
416static void print_tracking(struct kmem_cache *s, void *object)
417{
418 if (!(s->flags & SLAB_STORE_USER))
419 return;
420
421 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
422 print_track("Freed", get_track(s, object, TRACK_FREE));
423}
424
425static void print_page_info(struct page *page)
426{
39b26464
CL
427 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
428 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
429
430}
431
432static void slab_bug(struct kmem_cache *s, char *fmt, ...)
433{
434 va_list args;
435 char buf[100];
436
437 va_start(args, fmt);
438 vsnprintf(buf, sizeof(buf), fmt, args);
439 va_end(args);
440 printk(KERN_ERR "========================================"
441 "=====================================\n");
442 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
443 printk(KERN_ERR "----------------------------------------"
444 "-------------------------------------\n\n");
81819f0f
CL
445}
446
24922684
CL
447static void slab_fix(struct kmem_cache *s, char *fmt, ...)
448{
449 va_list args;
450 char buf[100];
451
452 va_start(args, fmt);
453 vsnprintf(buf, sizeof(buf), fmt, args);
454 va_end(args);
455 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
456}
457
458static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
459{
460 unsigned int off; /* Offset of last byte */
a973e9dd 461 u8 *addr = page_address(page);
24922684
CL
462
463 print_tracking(s, p);
464
465 print_page_info(page);
466
467 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
468 p, p - addr, get_freepointer(s, p));
469
470 if (p > addr + 16)
471 print_section("Bytes b4", p - 16, 16);
472
0ebd652b 473 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
474
475 if (s->flags & SLAB_RED_ZONE)
476 print_section("Redzone", p + s->objsize,
477 s->inuse - s->objsize);
478
81819f0f
CL
479 if (s->offset)
480 off = s->offset + sizeof(void *);
481 else
482 off = s->inuse;
483
24922684 484 if (s->flags & SLAB_STORE_USER)
81819f0f 485 off += 2 * sizeof(struct track);
81819f0f
CL
486
487 if (off != s->size)
488 /* Beginning of the filler is the free pointer */
24922684
CL
489 print_section("Padding", p + off, s->size - off);
490
491 dump_stack();
81819f0f
CL
492}
493
494static void object_err(struct kmem_cache *s, struct page *page,
495 u8 *object, char *reason)
496{
3dc50637 497 slab_bug(s, "%s", reason);
24922684 498 print_trailer(s, page, object);
81819f0f
CL
499}
500
24922684 501static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
502{
503 va_list args;
504 char buf[100];
505
24922684
CL
506 va_start(args, fmt);
507 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 508 va_end(args);
3dc50637 509 slab_bug(s, "%s", buf);
24922684 510 print_page_info(page);
81819f0f
CL
511 dump_stack();
512}
513
514static void init_object(struct kmem_cache *s, void *object, int active)
515{
516 u8 *p = object;
517
518 if (s->flags & __OBJECT_POISON) {
519 memset(p, POISON_FREE, s->objsize - 1);
06428780 520 p[s->objsize - 1] = POISON_END;
81819f0f
CL
521 }
522
523 if (s->flags & SLAB_RED_ZONE)
524 memset(p + s->objsize,
525 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
526 s->inuse - s->objsize);
527}
528
24922684 529static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
530{
531 while (bytes) {
532 if (*start != (u8)value)
24922684 533 return start;
81819f0f
CL
534 start++;
535 bytes--;
536 }
24922684
CL
537 return NULL;
538}
539
540static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
541 void *from, void *to)
542{
543 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
544 memset(from, data, to - from);
545}
546
547static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
548 u8 *object, char *what,
06428780 549 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
550{
551 u8 *fault;
552 u8 *end;
553
554 fault = check_bytes(start, value, bytes);
555 if (!fault)
556 return 1;
557
558 end = start + bytes;
559 while (end > fault && end[-1] == value)
560 end--;
561
562 slab_bug(s, "%s overwritten", what);
563 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
564 fault, end - 1, fault[0], value);
565 print_trailer(s, page, object);
566
567 restore_bytes(s, what, value, fault, end);
568 return 0;
81819f0f
CL
569}
570
81819f0f
CL
571/*
572 * Object layout:
573 *
574 * object address
575 * Bytes of the object to be managed.
576 * If the freepointer may overlay the object then the free
577 * pointer is the first word of the object.
672bba3a 578 *
81819f0f
CL
579 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
580 * 0xa5 (POISON_END)
581 *
582 * object + s->objsize
583 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
584 * Padding is extended by another word if Redzoning is enabled and
585 * objsize == inuse.
586 *
81819f0f
CL
587 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
588 * 0xcc (RED_ACTIVE) for objects in use.
589 *
590 * object + s->inuse
672bba3a
CL
591 * Meta data starts here.
592 *
81819f0f
CL
593 * A. Free pointer (if we cannot overwrite object on free)
594 * B. Tracking data for SLAB_STORE_USER
672bba3a 595 * C. Padding to reach required alignment boundary or at mininum
6446faa2 596 * one word if debugging is on to be able to detect writes
672bba3a
CL
597 * before the word boundary.
598 *
599 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
600 *
601 * object + s->size
672bba3a 602 * Nothing is used beyond s->size.
81819f0f 603 *
672bba3a
CL
604 * If slabcaches are merged then the objsize and inuse boundaries are mostly
605 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
606 * may be used with merged slabcaches.
607 */
608
81819f0f
CL
609static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
610{
611 unsigned long off = s->inuse; /* The end of info */
612
613 if (s->offset)
614 /* Freepointer is placed after the object. */
615 off += sizeof(void *);
616
617 if (s->flags & SLAB_STORE_USER)
618 /* We also have user information there */
619 off += 2 * sizeof(struct track);
620
621 if (s->size == off)
622 return 1;
623
24922684
CL
624 return check_bytes_and_report(s, page, p, "Object padding",
625 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
626}
627
39b26464 628/* Check the pad bytes at the end of a slab page */
81819f0f
CL
629static int slab_pad_check(struct kmem_cache *s, struct page *page)
630{
24922684
CL
631 u8 *start;
632 u8 *fault;
633 u8 *end;
634 int length;
635 int remainder;
81819f0f
CL
636
637 if (!(s->flags & SLAB_POISON))
638 return 1;
639
a973e9dd 640 start = page_address(page);
834f3d11 641 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
642 end = start + length;
643 remainder = length % s->size;
81819f0f
CL
644 if (!remainder)
645 return 1;
646
39b26464 647 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
648 if (!fault)
649 return 1;
650 while (end > fault && end[-1] == POISON_INUSE)
651 end--;
652
653 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 654 print_section("Padding", end - remainder, remainder);
24922684
CL
655
656 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
657 return 0;
81819f0f
CL
658}
659
660static int check_object(struct kmem_cache *s, struct page *page,
661 void *object, int active)
662{
663 u8 *p = object;
664 u8 *endobject = object + s->objsize;
665
666 if (s->flags & SLAB_RED_ZONE) {
667 unsigned int red =
668 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
669
24922684
CL
670 if (!check_bytes_and_report(s, page, object, "Redzone",
671 endobject, red, s->inuse - s->objsize))
81819f0f 672 return 0;
81819f0f 673 } else {
3adbefee
IM
674 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
675 check_bytes_and_report(s, page, p, "Alignment padding",
676 endobject, POISON_INUSE, s->inuse - s->objsize);
677 }
81819f0f
CL
678 }
679
680 if (s->flags & SLAB_POISON) {
681 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
682 (!check_bytes_and_report(s, page, p, "Poison", p,
683 POISON_FREE, s->objsize - 1) ||
684 !check_bytes_and_report(s, page, p, "Poison",
06428780 685 p + s->objsize - 1, POISON_END, 1)))
81819f0f 686 return 0;
81819f0f
CL
687 /*
688 * check_pad_bytes cleans up on its own.
689 */
690 check_pad_bytes(s, page, p);
691 }
692
693 if (!s->offset && active)
694 /*
695 * Object and freepointer overlap. Cannot check
696 * freepointer while object is allocated.
697 */
698 return 1;
699
700 /* Check free pointer validity */
701 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
702 object_err(s, page, p, "Freepointer corrupt");
703 /*
9f6c708e 704 * No choice but to zap it and thus lose the remainder
81819f0f 705 * of the free objects in this slab. May cause
672bba3a 706 * another error because the object count is now wrong.
81819f0f 707 */
a973e9dd 708 set_freepointer(s, p, NULL);
81819f0f
CL
709 return 0;
710 }
711 return 1;
712}
713
714static int check_slab(struct kmem_cache *s, struct page *page)
715{
39b26464
CL
716 int maxobj;
717
81819f0f
CL
718 VM_BUG_ON(!irqs_disabled());
719
720 if (!PageSlab(page)) {
24922684 721 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
722 return 0;
723 }
39b26464
CL
724
725 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
726 if (page->objects > maxobj) {
727 slab_err(s, page, "objects %u > max %u",
728 s->name, page->objects, maxobj);
729 return 0;
730 }
731 if (page->inuse > page->objects) {
24922684 732 slab_err(s, page, "inuse %u > max %u",
39b26464 733 s->name, page->inuse, page->objects);
81819f0f
CL
734 return 0;
735 }
736 /* Slab_pad_check fixes things up after itself */
737 slab_pad_check(s, page);
738 return 1;
739}
740
741/*
672bba3a
CL
742 * Determine if a certain object on a page is on the freelist. Must hold the
743 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
744 */
745static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
746{
747 int nr = 0;
748 void *fp = page->freelist;
749 void *object = NULL;
224a88be 750 unsigned long max_objects;
81819f0f 751
39b26464 752 while (fp && nr <= page->objects) {
81819f0f
CL
753 if (fp == search)
754 return 1;
755 if (!check_valid_pointer(s, page, fp)) {
756 if (object) {
757 object_err(s, page, object,
758 "Freechain corrupt");
a973e9dd 759 set_freepointer(s, object, NULL);
81819f0f
CL
760 break;
761 } else {
24922684 762 slab_err(s, page, "Freepointer corrupt");
a973e9dd 763 page->freelist = NULL;
39b26464 764 page->inuse = page->objects;
24922684 765 slab_fix(s, "Freelist cleared");
81819f0f
CL
766 return 0;
767 }
768 break;
769 }
770 object = fp;
771 fp = get_freepointer(s, object);
772 nr++;
773 }
774
224a88be 775 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
776 if (max_objects > MAX_OBJS_PER_PAGE)
777 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
778
779 if (page->objects != max_objects) {
780 slab_err(s, page, "Wrong number of objects. Found %d but "
781 "should be %d", page->objects, max_objects);
782 page->objects = max_objects;
783 slab_fix(s, "Number of objects adjusted.");
784 }
39b26464 785 if (page->inuse != page->objects - nr) {
70d71228 786 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
787 "counted were %d", page->inuse, page->objects - nr);
788 page->inuse = page->objects - nr;
24922684 789 slab_fix(s, "Object count adjusted.");
81819f0f
CL
790 }
791 return search == NULL;
792}
793
0121c619
CL
794static void trace(struct kmem_cache *s, struct page *page, void *object,
795 int alloc)
3ec09742
CL
796{
797 if (s->flags & SLAB_TRACE) {
798 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
799 s->name,
800 alloc ? "alloc" : "free",
801 object, page->inuse,
802 page->freelist);
803
804 if (!alloc)
805 print_section("Object", (void *)object, s->objsize);
806
807 dump_stack();
808 }
809}
810
643b1138 811/*
672bba3a 812 * Tracking of fully allocated slabs for debugging purposes.
643b1138 813 */
e95eed57 814static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 815{
643b1138
CL
816 spin_lock(&n->list_lock);
817 list_add(&page->lru, &n->full);
818 spin_unlock(&n->list_lock);
819}
820
821static void remove_full(struct kmem_cache *s, struct page *page)
822{
823 struct kmem_cache_node *n;
824
825 if (!(s->flags & SLAB_STORE_USER))
826 return;
827
828 n = get_node(s, page_to_nid(page));
829
830 spin_lock(&n->list_lock);
831 list_del(&page->lru);
832 spin_unlock(&n->list_lock);
833}
834
0f389ec6
CL
835/* Tracking of the number of slabs for debugging purposes */
836static inline unsigned long slabs_node(struct kmem_cache *s, int node)
837{
838 struct kmem_cache_node *n = get_node(s, node);
839
840 return atomic_long_read(&n->nr_slabs);
841}
842
205ab99d 843static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
844{
845 struct kmem_cache_node *n = get_node(s, node);
846
847 /*
848 * May be called early in order to allocate a slab for the
849 * kmem_cache_node structure. Solve the chicken-egg
850 * dilemma by deferring the increment of the count during
851 * bootstrap (see early_kmem_cache_node_alloc).
852 */
205ab99d 853 if (!NUMA_BUILD || n) {
0f389ec6 854 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
855 atomic_long_add(objects, &n->total_objects);
856 }
0f389ec6 857}
205ab99d 858static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
859{
860 struct kmem_cache_node *n = get_node(s, node);
861
862 atomic_long_dec(&n->nr_slabs);
205ab99d 863 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
864}
865
866/* Object debug checks for alloc/free paths */
3ec09742
CL
867static void setup_object_debug(struct kmem_cache *s, struct page *page,
868 void *object)
869{
870 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
871 return;
872
873 init_object(s, object, 0);
874 init_tracking(s, object);
875}
876
877static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 878 void *object, unsigned long addr)
81819f0f
CL
879{
880 if (!check_slab(s, page))
881 goto bad;
882
d692ef6d 883 if (!on_freelist(s, page, object)) {
24922684 884 object_err(s, page, object, "Object already allocated");
70d71228 885 goto bad;
81819f0f
CL
886 }
887
888 if (!check_valid_pointer(s, page, object)) {
889 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 890 goto bad;
81819f0f
CL
891 }
892
d692ef6d 893 if (!check_object(s, page, object, 0))
81819f0f 894 goto bad;
81819f0f 895
3ec09742
CL
896 /* Success perform special debug activities for allocs */
897 if (s->flags & SLAB_STORE_USER)
898 set_track(s, object, TRACK_ALLOC, addr);
899 trace(s, page, object, 1);
900 init_object(s, object, 1);
81819f0f 901 return 1;
3ec09742 902
81819f0f
CL
903bad:
904 if (PageSlab(page)) {
905 /*
906 * If this is a slab page then lets do the best we can
907 * to avoid issues in the future. Marking all objects
672bba3a 908 * as used avoids touching the remaining objects.
81819f0f 909 */
24922684 910 slab_fix(s, "Marking all objects used");
39b26464 911 page->inuse = page->objects;
a973e9dd 912 page->freelist = NULL;
81819f0f
CL
913 }
914 return 0;
915}
916
3ec09742 917static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 918 void *object, unsigned long addr)
81819f0f
CL
919{
920 if (!check_slab(s, page))
921 goto fail;
922
923 if (!check_valid_pointer(s, page, object)) {
70d71228 924 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
925 goto fail;
926 }
927
928 if (on_freelist(s, page, object)) {
24922684 929 object_err(s, page, object, "Object already free");
81819f0f
CL
930 goto fail;
931 }
932
933 if (!check_object(s, page, object, 1))
934 return 0;
935
936 if (unlikely(s != page->slab)) {
3adbefee 937 if (!PageSlab(page)) {
70d71228
CL
938 slab_err(s, page, "Attempt to free object(0x%p) "
939 "outside of slab", object);
3adbefee 940 } else if (!page->slab) {
81819f0f 941 printk(KERN_ERR
70d71228 942 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 943 object);
70d71228 944 dump_stack();
06428780 945 } else
24922684
CL
946 object_err(s, page, object,
947 "page slab pointer corrupt.");
81819f0f
CL
948 goto fail;
949 }
3ec09742
CL
950
951 /* Special debug activities for freeing objects */
8a38082d 952 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
953 remove_full(s, page);
954 if (s->flags & SLAB_STORE_USER)
955 set_track(s, object, TRACK_FREE, addr);
956 trace(s, page, object, 0);
957 init_object(s, object, 0);
81819f0f 958 return 1;
3ec09742 959
81819f0f 960fail:
24922684 961 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
962 return 0;
963}
964
41ecc55b
CL
965static int __init setup_slub_debug(char *str)
966{
f0630fff
CL
967 slub_debug = DEBUG_DEFAULT_FLAGS;
968 if (*str++ != '=' || !*str)
969 /*
970 * No options specified. Switch on full debugging.
971 */
972 goto out;
973
974 if (*str == ',')
975 /*
976 * No options but restriction on slabs. This means full
977 * debugging for slabs matching a pattern.
978 */
979 goto check_slabs;
980
981 slub_debug = 0;
982 if (*str == '-')
983 /*
984 * Switch off all debugging measures.
985 */
986 goto out;
987
988 /*
989 * Determine which debug features should be switched on
990 */
06428780 991 for (; *str && *str != ','; str++) {
f0630fff
CL
992 switch (tolower(*str)) {
993 case 'f':
994 slub_debug |= SLAB_DEBUG_FREE;
995 break;
996 case 'z':
997 slub_debug |= SLAB_RED_ZONE;
998 break;
999 case 'p':
1000 slub_debug |= SLAB_POISON;
1001 break;
1002 case 'u':
1003 slub_debug |= SLAB_STORE_USER;
1004 break;
1005 case 't':
1006 slub_debug |= SLAB_TRACE;
1007 break;
1008 default:
1009 printk(KERN_ERR "slub_debug option '%c' "
06428780 1010 "unknown. skipped\n", *str);
f0630fff 1011 }
41ecc55b
CL
1012 }
1013
f0630fff 1014check_slabs:
41ecc55b
CL
1015 if (*str == ',')
1016 slub_debug_slabs = str + 1;
f0630fff 1017out:
41ecc55b
CL
1018 return 1;
1019}
1020
1021__setup("slub_debug", setup_slub_debug);
1022
ba0268a8
CL
1023static unsigned long kmem_cache_flags(unsigned long objsize,
1024 unsigned long flags, const char *name,
51cc5068 1025 void (*ctor)(void *))
41ecc55b
CL
1026{
1027 /*
e153362a 1028 * Enable debugging if selected on the kernel commandline.
41ecc55b 1029 */
e153362a
CL
1030 if (slub_debug && (!slub_debug_slabs ||
1031 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1032 flags |= slub_debug;
ba0268a8
CL
1033
1034 return flags;
41ecc55b
CL
1035}
1036#else
3ec09742
CL
1037static inline void setup_object_debug(struct kmem_cache *s,
1038 struct page *page, void *object) {}
41ecc55b 1039
3ec09742 1040static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1041 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1042
3ec09742 1043static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1044 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1045
41ecc55b
CL
1046static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1047 { return 1; }
1048static inline int check_object(struct kmem_cache *s, struct page *page,
1049 void *object, int active) { return 1; }
3ec09742 1050static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1051static inline unsigned long kmem_cache_flags(unsigned long objsize,
1052 unsigned long flags, const char *name,
51cc5068 1053 void (*ctor)(void *))
ba0268a8
CL
1054{
1055 return flags;
1056}
41ecc55b 1057#define slub_debug 0
0f389ec6
CL
1058
1059static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1060 { return 0; }
205ab99d
CL
1061static inline void inc_slabs_node(struct kmem_cache *s, int node,
1062 int objects) {}
1063static inline void dec_slabs_node(struct kmem_cache *s, int node,
1064 int objects) {}
41ecc55b 1065#endif
205ab99d 1066
81819f0f
CL
1067/*
1068 * Slab allocation and freeing
1069 */
65c3376a
CL
1070static inline struct page *alloc_slab_page(gfp_t flags, int node,
1071 struct kmem_cache_order_objects oo)
1072{
1073 int order = oo_order(oo);
1074
b1eeab67
VN
1075 flags |= __GFP_NOTRACK;
1076
65c3376a
CL
1077 if (node == -1)
1078 return alloc_pages(flags, order);
1079 else
1080 return alloc_pages_node(node, flags, order);
1081}
1082
81819f0f
CL
1083static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1084{
06428780 1085 struct page *page;
834f3d11 1086 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1087
b7a49f0d 1088 flags |= s->allocflags;
e12ba74d 1089
65c3376a
CL
1090 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1091 oo);
1092 if (unlikely(!page)) {
1093 oo = s->min;
1094 /*
1095 * Allocation may have failed due to fragmentation.
1096 * Try a lower order alloc if possible
1097 */
1098 page = alloc_slab_page(flags, node, oo);
1099 if (!page)
1100 return NULL;
81819f0f 1101
65c3376a
CL
1102 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1103 }
5a896d9e
VN
1104
1105 if (kmemcheck_enabled
1106 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1107 {
b1eeab67
VN
1108 int pages = 1 << oo_order(oo);
1109
1110 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1111
1112 /*
1113 * Objects from caches that have a constructor don't get
1114 * cleared when they're allocated, so we need to do it here.
1115 */
1116 if (s->ctor)
1117 kmemcheck_mark_uninitialized_pages(page, pages);
1118 else
1119 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1120 }
1121
834f3d11 1122 page->objects = oo_objects(oo);
81819f0f
CL
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1126 1 << oo_order(oo));
81819f0f
CL
1127
1128 return page;
1129}
1130
1131static void setup_object(struct kmem_cache *s, struct page *page,
1132 void *object)
1133{
3ec09742 1134 setup_object_debug(s, page, object);
4f104934 1135 if (unlikely(s->ctor))
51cc5068 1136 s->ctor(object);
81819f0f
CL
1137}
1138
1139static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1140{
1141 struct page *page;
81819f0f 1142 void *start;
81819f0f
CL
1143 void *last;
1144 void *p;
1145
6cb06229 1146 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1147
6cb06229
CL
1148 page = allocate_slab(s,
1149 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1150 if (!page)
1151 goto out;
1152
205ab99d 1153 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1154 page->slab = s;
1155 page->flags |= 1 << PG_slab;
1156 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1157 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1158 __SetPageSlubDebug(page);
81819f0f
CL
1159
1160 start = page_address(page);
81819f0f
CL
1161
1162 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1163 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1164
1165 last = start;
224a88be 1166 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1167 setup_object(s, page, last);
1168 set_freepointer(s, last, p);
1169 last = p;
1170 }
1171 setup_object(s, page, last);
a973e9dd 1172 set_freepointer(s, last, NULL);
81819f0f
CL
1173
1174 page->freelist = start;
1175 page->inuse = 0;
1176out:
81819f0f
CL
1177 return page;
1178}
1179
1180static void __free_slab(struct kmem_cache *s, struct page *page)
1181{
834f3d11
CL
1182 int order = compound_order(page);
1183 int pages = 1 << order;
81819f0f 1184
8a38082d 1185 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1186 void *p;
1187
1188 slab_pad_check(s, page);
224a88be
CL
1189 for_each_object(p, s, page_address(page),
1190 page->objects)
81819f0f 1191 check_object(s, page, p, 0);
8a38082d 1192 __ClearPageSlubDebug(page);
81819f0f
CL
1193 }
1194
b1eeab67 1195 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1196
81819f0f
CL
1197 mod_zone_page_state(page_zone(page),
1198 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1200 -pages);
81819f0f 1201
49bd5221
CL
1202 __ClearPageSlab(page);
1203 reset_page_mapcount(page);
1eb5ac64
NP
1204 if (current->reclaim_state)
1205 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1206 __free_pages(page, order);
81819f0f
CL
1207}
1208
1209static void rcu_free_slab(struct rcu_head *h)
1210{
1211 struct page *page;
1212
1213 page = container_of((struct list_head *)h, struct page, lru);
1214 __free_slab(page->slab, page);
1215}
1216
1217static void free_slab(struct kmem_cache *s, struct page *page)
1218{
1219 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1220 /*
1221 * RCU free overloads the RCU head over the LRU
1222 */
1223 struct rcu_head *head = (void *)&page->lru;
1224
1225 call_rcu(head, rcu_free_slab);
1226 } else
1227 __free_slab(s, page);
1228}
1229
1230static void discard_slab(struct kmem_cache *s, struct page *page)
1231{
205ab99d 1232 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1233 free_slab(s, page);
1234}
1235
1236/*
1237 * Per slab locking using the pagelock
1238 */
1239static __always_inline void slab_lock(struct page *page)
1240{
1241 bit_spin_lock(PG_locked, &page->flags);
1242}
1243
1244static __always_inline void slab_unlock(struct page *page)
1245{
a76d3546 1246 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1247}
1248
1249static __always_inline int slab_trylock(struct page *page)
1250{
1251 int rc = 1;
1252
1253 rc = bit_spin_trylock(PG_locked, &page->flags);
1254 return rc;
1255}
1256
1257/*
1258 * Management of partially allocated slabs
1259 */
7c2e132c
CL
1260static void add_partial(struct kmem_cache_node *n,
1261 struct page *page, int tail)
81819f0f 1262{
e95eed57
CL
1263 spin_lock(&n->list_lock);
1264 n->nr_partial++;
7c2e132c
CL
1265 if (tail)
1266 list_add_tail(&page->lru, &n->partial);
1267 else
1268 list_add(&page->lru, &n->partial);
81819f0f
CL
1269 spin_unlock(&n->list_lock);
1270}
1271
0121c619 1272static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1273{
1274 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1275
1276 spin_lock(&n->list_lock);
1277 list_del(&page->lru);
1278 n->nr_partial--;
1279 spin_unlock(&n->list_lock);
1280}
1281
1282/*
672bba3a 1283 * Lock slab and remove from the partial list.
81819f0f 1284 *
672bba3a 1285 * Must hold list_lock.
81819f0f 1286 */
0121c619
CL
1287static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1288 struct page *page)
81819f0f
CL
1289{
1290 if (slab_trylock(page)) {
1291 list_del(&page->lru);
1292 n->nr_partial--;
8a38082d 1293 __SetPageSlubFrozen(page);
81819f0f
CL
1294 return 1;
1295 }
1296 return 0;
1297}
1298
1299/*
672bba3a 1300 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1301 */
1302static struct page *get_partial_node(struct kmem_cache_node *n)
1303{
1304 struct page *page;
1305
1306 /*
1307 * Racy check. If we mistakenly see no partial slabs then we
1308 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1309 * partial slab and there is none available then get_partials()
1310 * will return NULL.
81819f0f
CL
1311 */
1312 if (!n || !n->nr_partial)
1313 return NULL;
1314
1315 spin_lock(&n->list_lock);
1316 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1317 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1318 goto out;
1319 page = NULL;
1320out:
1321 spin_unlock(&n->list_lock);
1322 return page;
1323}
1324
1325/*
672bba3a 1326 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1327 */
1328static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1329{
1330#ifdef CONFIG_NUMA
1331 struct zonelist *zonelist;
dd1a239f 1332 struct zoneref *z;
54a6eb5c
MG
1333 struct zone *zone;
1334 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1335 struct page *page;
1336
1337 /*
672bba3a
CL
1338 * The defrag ratio allows a configuration of the tradeoffs between
1339 * inter node defragmentation and node local allocations. A lower
1340 * defrag_ratio increases the tendency to do local allocations
1341 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1342 *
672bba3a
CL
1343 * If the defrag_ratio is set to 0 then kmalloc() always
1344 * returns node local objects. If the ratio is higher then kmalloc()
1345 * may return off node objects because partial slabs are obtained
1346 * from other nodes and filled up.
81819f0f 1347 *
6446faa2 1348 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1349 * defrag_ratio = 1000) then every (well almost) allocation will
1350 * first attempt to defrag slab caches on other nodes. This means
1351 * scanning over all nodes to look for partial slabs which may be
1352 * expensive if we do it every time we are trying to find a slab
1353 * with available objects.
81819f0f 1354 */
9824601e
CL
1355 if (!s->remote_node_defrag_ratio ||
1356 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1357 return NULL;
1358
0e88460d 1359 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1360 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1361 struct kmem_cache_node *n;
1362
54a6eb5c 1363 n = get_node(s, zone_to_nid(zone));
81819f0f 1364
54a6eb5c 1365 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1366 n->nr_partial > s->min_partial) {
81819f0f
CL
1367 page = get_partial_node(n);
1368 if (page)
1369 return page;
1370 }
1371 }
1372#endif
1373 return NULL;
1374}
1375
1376/*
1377 * Get a partial page, lock it and return it.
1378 */
1379static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1380{
1381 struct page *page;
1382 int searchnode = (node == -1) ? numa_node_id() : node;
1383
1384 page = get_partial_node(get_node(s, searchnode));
1385 if (page || (flags & __GFP_THISNODE))
1386 return page;
1387
1388 return get_any_partial(s, flags);
1389}
1390
1391/*
1392 * Move a page back to the lists.
1393 *
1394 * Must be called with the slab lock held.
1395 *
1396 * On exit the slab lock will have been dropped.
1397 */
7c2e132c 1398static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1399{
e95eed57 1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1401 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1402
8a38082d 1403 __ClearPageSlubFrozen(page);
81819f0f 1404 if (page->inuse) {
e95eed57 1405
a973e9dd 1406 if (page->freelist) {
7c2e132c 1407 add_partial(n, page, tail);
8ff12cfc
CL
1408 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1409 } else {
1410 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1411 if (SLABDEBUG && PageSlubDebug(page) &&
1412 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1413 add_full(n, page);
1414 }
81819f0f
CL
1415 slab_unlock(page);
1416 } else {
8ff12cfc 1417 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1418 if (n->nr_partial < s->min_partial) {
e95eed57 1419 /*
672bba3a
CL
1420 * Adding an empty slab to the partial slabs in order
1421 * to avoid page allocator overhead. This slab needs
1422 * to come after the other slabs with objects in
6446faa2
CL
1423 * so that the others get filled first. That way the
1424 * size of the partial list stays small.
1425 *
0121c619
CL
1426 * kmem_cache_shrink can reclaim any empty slabs from
1427 * the partial list.
e95eed57 1428 */
7c2e132c 1429 add_partial(n, page, 1);
e95eed57
CL
1430 slab_unlock(page);
1431 } else {
1432 slab_unlock(page);
8ff12cfc 1433 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1434 discard_slab(s, page);
1435 }
81819f0f
CL
1436 }
1437}
1438
1439/*
1440 * Remove the cpu slab
1441 */
dfb4f096 1442static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1443{
dfb4f096 1444 struct page *page = c->page;
7c2e132c 1445 int tail = 1;
8ff12cfc 1446
b773ad73 1447 if (page->freelist)
8ff12cfc 1448 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1449 /*
6446faa2 1450 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1451 * because both freelists are empty. So this is unlikely
1452 * to occur.
1453 */
a973e9dd 1454 while (unlikely(c->freelist)) {
894b8788
CL
1455 void **object;
1456
7c2e132c
CL
1457 tail = 0; /* Hot objects. Put the slab first */
1458
894b8788 1459 /* Retrieve object from cpu_freelist */
dfb4f096 1460 object = c->freelist;
b3fba8da 1461 c->freelist = c->freelist[c->offset];
894b8788
CL
1462
1463 /* And put onto the regular freelist */
b3fba8da 1464 object[c->offset] = page->freelist;
894b8788
CL
1465 page->freelist = object;
1466 page->inuse--;
1467 }
dfb4f096 1468 c->page = NULL;
7c2e132c 1469 unfreeze_slab(s, page, tail);
81819f0f
CL
1470}
1471
dfb4f096 1472static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1473{
8ff12cfc 1474 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1475 slab_lock(c->page);
1476 deactivate_slab(s, c);
81819f0f
CL
1477}
1478
1479/*
1480 * Flush cpu slab.
6446faa2 1481 *
81819f0f
CL
1482 * Called from IPI handler with interrupts disabled.
1483 */
0c710013 1484static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1485{
dfb4f096 1486 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1487
dfb4f096
CL
1488 if (likely(c && c->page))
1489 flush_slab(s, c);
81819f0f
CL
1490}
1491
1492static void flush_cpu_slab(void *d)
1493{
1494 struct kmem_cache *s = d;
81819f0f 1495
dfb4f096 1496 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1497}
1498
1499static void flush_all(struct kmem_cache *s)
1500{
15c8b6c1 1501 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1502}
1503
dfb4f096
CL
1504/*
1505 * Check if the objects in a per cpu structure fit numa
1506 * locality expectations.
1507 */
1508static inline int node_match(struct kmem_cache_cpu *c, int node)
1509{
1510#ifdef CONFIG_NUMA
1511 if (node != -1 && c->node != node)
1512 return 0;
1513#endif
1514 return 1;
1515}
1516
81819f0f 1517/*
894b8788
CL
1518 * Slow path. The lockless freelist is empty or we need to perform
1519 * debugging duties.
1520 *
1521 * Interrupts are disabled.
81819f0f 1522 *
894b8788
CL
1523 * Processing is still very fast if new objects have been freed to the
1524 * regular freelist. In that case we simply take over the regular freelist
1525 * as the lockless freelist and zap the regular freelist.
81819f0f 1526 *
894b8788
CL
1527 * If that is not working then we fall back to the partial lists. We take the
1528 * first element of the freelist as the object to allocate now and move the
1529 * rest of the freelist to the lockless freelist.
81819f0f 1530 *
894b8788 1531 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1532 * we need to allocate a new slab. This is the slowest path since it involves
1533 * a call to the page allocator and the setup of a new slab.
81819f0f 1534 */
ce71e27c
EGM
1535static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1536 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1537{
81819f0f 1538 void **object;
dfb4f096 1539 struct page *new;
81819f0f 1540
e72e9c23
LT
1541 /* We handle __GFP_ZERO in the caller */
1542 gfpflags &= ~__GFP_ZERO;
1543
dfb4f096 1544 if (!c->page)
81819f0f
CL
1545 goto new_slab;
1546
dfb4f096
CL
1547 slab_lock(c->page);
1548 if (unlikely(!node_match(c, node)))
81819f0f 1549 goto another_slab;
6446faa2 1550
8ff12cfc 1551 stat(c, ALLOC_REFILL);
6446faa2 1552
894b8788 1553load_freelist:
dfb4f096 1554 object = c->page->freelist;
a973e9dd 1555 if (unlikely(!object))
81819f0f 1556 goto another_slab;
8a38082d 1557 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1558 goto debug;
1559
b3fba8da 1560 c->freelist = object[c->offset];
39b26464 1561 c->page->inuse = c->page->objects;
a973e9dd 1562 c->page->freelist = NULL;
dfb4f096 1563 c->node = page_to_nid(c->page);
1f84260c 1564unlock_out:
dfb4f096 1565 slab_unlock(c->page);
8ff12cfc 1566 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1567 return object;
1568
1569another_slab:
dfb4f096 1570 deactivate_slab(s, c);
81819f0f
CL
1571
1572new_slab:
dfb4f096
CL
1573 new = get_partial(s, gfpflags, node);
1574 if (new) {
1575 c->page = new;
8ff12cfc 1576 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1577 goto load_freelist;
81819f0f
CL
1578 }
1579
b811c202
CL
1580 if (gfpflags & __GFP_WAIT)
1581 local_irq_enable();
1582
dfb4f096 1583 new = new_slab(s, gfpflags, node);
b811c202
CL
1584
1585 if (gfpflags & __GFP_WAIT)
1586 local_irq_disable();
1587
dfb4f096
CL
1588 if (new) {
1589 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1590 stat(c, ALLOC_SLAB);
05aa3450 1591 if (c->page)
dfb4f096 1592 flush_slab(s, c);
dfb4f096 1593 slab_lock(new);
8a38082d 1594 __SetPageSlubFrozen(new);
dfb4f096 1595 c->page = new;
4b6f0750 1596 goto load_freelist;
81819f0f 1597 }
71c7a06f 1598 return NULL;
81819f0f 1599debug:
dfb4f096 1600 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1601 goto another_slab;
894b8788 1602
dfb4f096 1603 c->page->inuse++;
b3fba8da 1604 c->page->freelist = object[c->offset];
ee3c72a1 1605 c->node = -1;
1f84260c 1606 goto unlock_out;
894b8788
CL
1607}
1608
1609/*
1610 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1611 * have the fastpath folded into their functions. So no function call
1612 * overhead for requests that can be satisfied on the fastpath.
1613 *
1614 * The fastpath works by first checking if the lockless freelist can be used.
1615 * If not then __slab_alloc is called for slow processing.
1616 *
1617 * Otherwise we can simply pick the next object from the lockless free list.
1618 */
06428780 1619static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1620 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1621{
894b8788 1622 void **object;
dfb4f096 1623 struct kmem_cache_cpu *c;
1f84260c 1624 unsigned long flags;
bdb21928 1625 unsigned int objsize;
1f84260c 1626
7e85ee0c
PE
1627 gfpflags &= slab_gfp_mask;
1628
cf40bd16 1629 lockdep_trace_alloc(gfpflags);
89124d70 1630 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1631
773ff60e
AM
1632 if (should_failslab(s->objsize, gfpflags))
1633 return NULL;
1f84260c 1634
894b8788 1635 local_irq_save(flags);
dfb4f096 1636 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1637 objsize = c->objsize;
a973e9dd 1638 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1639
dfb4f096 1640 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1641
1642 else {
dfb4f096 1643 object = c->freelist;
b3fba8da 1644 c->freelist = object[c->offset];
8ff12cfc 1645 stat(c, ALLOC_FASTPATH);
894b8788
CL
1646 }
1647 local_irq_restore(flags);
d07dbea4
CL
1648
1649 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1650 memset(object, 0, objsize);
d07dbea4 1651
5a896d9e 1652 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
06f22f13 1653 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
5a896d9e 1654
894b8788 1655 return object;
81819f0f
CL
1656}
1657
1658void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1659{
5b882be4
EGM
1660 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1661
ca2b84cb 1662 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1663
1664 return ret;
81819f0f
CL
1665}
1666EXPORT_SYMBOL(kmem_cache_alloc);
1667
5b882be4
EGM
1668#ifdef CONFIG_KMEMTRACE
1669void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1670{
1671 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1672}
1673EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1674#endif
1675
81819f0f
CL
1676#ifdef CONFIG_NUMA
1677void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1678{
5b882be4
EGM
1679 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1680
ca2b84cb
EGM
1681 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1682 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1683
1684 return ret;
81819f0f
CL
1685}
1686EXPORT_SYMBOL(kmem_cache_alloc_node);
1687#endif
1688
5b882be4
EGM
1689#ifdef CONFIG_KMEMTRACE
1690void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1691 gfp_t gfpflags,
1692 int node)
1693{
1694 return slab_alloc(s, gfpflags, node, _RET_IP_);
1695}
1696EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1697#endif
1698
81819f0f 1699/*
894b8788
CL
1700 * Slow patch handling. This may still be called frequently since objects
1701 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1702 *
894b8788
CL
1703 * So we still attempt to reduce cache line usage. Just take the slab
1704 * lock and free the item. If there is no additional partial page
1705 * handling required then we can return immediately.
81819f0f 1706 */
894b8788 1707static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1708 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1709{
1710 void *prior;
1711 void **object = (void *)x;
8ff12cfc 1712 struct kmem_cache_cpu *c;
81819f0f 1713
8ff12cfc
CL
1714 c = get_cpu_slab(s, raw_smp_processor_id());
1715 stat(c, FREE_SLOWPATH);
81819f0f
CL
1716 slab_lock(page);
1717
8a38082d 1718 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1719 goto debug;
6446faa2 1720
81819f0f 1721checks_ok:
b3fba8da 1722 prior = object[offset] = page->freelist;
81819f0f
CL
1723 page->freelist = object;
1724 page->inuse--;
1725
8a38082d 1726 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1727 stat(c, FREE_FROZEN);
81819f0f 1728 goto out_unlock;
8ff12cfc 1729 }
81819f0f
CL
1730
1731 if (unlikely(!page->inuse))
1732 goto slab_empty;
1733
1734 /*
6446faa2 1735 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1736 * then add it.
1737 */
a973e9dd 1738 if (unlikely(!prior)) {
7c2e132c 1739 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1740 stat(c, FREE_ADD_PARTIAL);
1741 }
81819f0f
CL
1742
1743out_unlock:
1744 slab_unlock(page);
81819f0f
CL
1745 return;
1746
1747slab_empty:
a973e9dd 1748 if (prior) {
81819f0f 1749 /*
672bba3a 1750 * Slab still on the partial list.
81819f0f
CL
1751 */
1752 remove_partial(s, page);
8ff12cfc
CL
1753 stat(c, FREE_REMOVE_PARTIAL);
1754 }
81819f0f 1755 slab_unlock(page);
8ff12cfc 1756 stat(c, FREE_SLAB);
81819f0f 1757 discard_slab(s, page);
81819f0f
CL
1758 return;
1759
1760debug:
3ec09742 1761 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1762 goto out_unlock;
77c5e2d0 1763 goto checks_ok;
81819f0f
CL
1764}
1765
894b8788
CL
1766/*
1767 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1768 * can perform fastpath freeing without additional function calls.
1769 *
1770 * The fastpath is only possible if we are freeing to the current cpu slab
1771 * of this processor. This typically the case if we have just allocated
1772 * the item before.
1773 *
1774 * If fastpath is not possible then fall back to __slab_free where we deal
1775 * with all sorts of special processing.
1776 */
06428780 1777static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1778 struct page *page, void *x, unsigned long addr)
894b8788
CL
1779{
1780 void **object = (void *)x;
dfb4f096 1781 struct kmem_cache_cpu *c;
1f84260c
CL
1782 unsigned long flags;
1783
06f22f13 1784 kmemleak_free_recursive(x, s->flags);
894b8788 1785 local_irq_save(flags);
dfb4f096 1786 c = get_cpu_slab(s, smp_processor_id());
5a896d9e 1787 kmemcheck_slab_free(s, object, c->objsize);
27d9e4e9 1788 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1789 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1790 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1791 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1792 object[c->offset] = c->freelist;
dfb4f096 1793 c->freelist = object;
8ff12cfc 1794 stat(c, FREE_FASTPATH);
894b8788 1795 } else
b3fba8da 1796 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1797
1798 local_irq_restore(flags);
1799}
1800
81819f0f
CL
1801void kmem_cache_free(struct kmem_cache *s, void *x)
1802{
77c5e2d0 1803 struct page *page;
81819f0f 1804
b49af68f 1805 page = virt_to_head_page(x);
81819f0f 1806
ce71e27c 1807 slab_free(s, page, x, _RET_IP_);
5b882be4 1808
ca2b84cb 1809 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1810}
1811EXPORT_SYMBOL(kmem_cache_free);
1812
e9beef18 1813/* Figure out on which slab page the object resides */
81819f0f
CL
1814static struct page *get_object_page(const void *x)
1815{
b49af68f 1816 struct page *page = virt_to_head_page(x);
81819f0f
CL
1817
1818 if (!PageSlab(page))
1819 return NULL;
1820
1821 return page;
1822}
1823
1824/*
672bba3a
CL
1825 * Object placement in a slab is made very easy because we always start at
1826 * offset 0. If we tune the size of the object to the alignment then we can
1827 * get the required alignment by putting one properly sized object after
1828 * another.
81819f0f
CL
1829 *
1830 * Notice that the allocation order determines the sizes of the per cpu
1831 * caches. Each processor has always one slab available for allocations.
1832 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1833 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1834 * locking overhead.
81819f0f
CL
1835 */
1836
1837/*
1838 * Mininum / Maximum order of slab pages. This influences locking overhead
1839 * and slab fragmentation. A higher order reduces the number of partial slabs
1840 * and increases the number of allocations possible without having to
1841 * take the list_lock.
1842 */
1843static int slub_min_order;
114e9e89 1844static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1845static int slub_min_objects;
81819f0f
CL
1846
1847/*
1848 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1849 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1850 */
1851static int slub_nomerge;
1852
81819f0f
CL
1853/*
1854 * Calculate the order of allocation given an slab object size.
1855 *
672bba3a
CL
1856 * The order of allocation has significant impact on performance and other
1857 * system components. Generally order 0 allocations should be preferred since
1858 * order 0 does not cause fragmentation in the page allocator. Larger objects
1859 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1860 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1861 * would be wasted.
1862 *
1863 * In order to reach satisfactory performance we must ensure that a minimum
1864 * number of objects is in one slab. Otherwise we may generate too much
1865 * activity on the partial lists which requires taking the list_lock. This is
1866 * less a concern for large slabs though which are rarely used.
81819f0f 1867 *
672bba3a
CL
1868 * slub_max_order specifies the order where we begin to stop considering the
1869 * number of objects in a slab as critical. If we reach slub_max_order then
1870 * we try to keep the page order as low as possible. So we accept more waste
1871 * of space in favor of a small page order.
81819f0f 1872 *
672bba3a
CL
1873 * Higher order allocations also allow the placement of more objects in a
1874 * slab and thereby reduce object handling overhead. If the user has
1875 * requested a higher mininum order then we start with that one instead of
1876 * the smallest order which will fit the object.
81819f0f 1877 */
5e6d444e
CL
1878static inline int slab_order(int size, int min_objects,
1879 int max_order, int fract_leftover)
81819f0f
CL
1880{
1881 int order;
1882 int rem;
6300ea75 1883 int min_order = slub_min_order;
81819f0f 1884
210b5c06
CG
1885 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1886 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1887
6300ea75 1888 for (order = max(min_order,
5e6d444e
CL
1889 fls(min_objects * size - 1) - PAGE_SHIFT);
1890 order <= max_order; order++) {
81819f0f 1891
5e6d444e 1892 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1893
5e6d444e 1894 if (slab_size < min_objects * size)
81819f0f
CL
1895 continue;
1896
1897 rem = slab_size % size;
1898
5e6d444e 1899 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1900 break;
1901
1902 }
672bba3a 1903
81819f0f
CL
1904 return order;
1905}
1906
5e6d444e
CL
1907static inline int calculate_order(int size)
1908{
1909 int order;
1910 int min_objects;
1911 int fraction;
e8120ff1 1912 int max_objects;
5e6d444e
CL
1913
1914 /*
1915 * Attempt to find best configuration for a slab. This
1916 * works by first attempting to generate a layout with
1917 * the best configuration and backing off gradually.
1918 *
1919 * First we reduce the acceptable waste in a slab. Then
1920 * we reduce the minimum objects required in a slab.
1921 */
1922 min_objects = slub_min_objects;
9b2cd506
CL
1923 if (!min_objects)
1924 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1925 max_objects = (PAGE_SIZE << slub_max_order)/size;
1926 min_objects = min(min_objects, max_objects);
1927
5e6d444e 1928 while (min_objects > 1) {
c124f5b5 1929 fraction = 16;
5e6d444e
CL
1930 while (fraction >= 4) {
1931 order = slab_order(size, min_objects,
1932 slub_max_order, fraction);
1933 if (order <= slub_max_order)
1934 return order;
1935 fraction /= 2;
1936 }
e8120ff1 1937 min_objects --;
5e6d444e
CL
1938 }
1939
1940 /*
1941 * We were unable to place multiple objects in a slab. Now
1942 * lets see if we can place a single object there.
1943 */
1944 order = slab_order(size, 1, slub_max_order, 1);
1945 if (order <= slub_max_order)
1946 return order;
1947
1948 /*
1949 * Doh this slab cannot be placed using slub_max_order.
1950 */
1951 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 1952 if (order < MAX_ORDER)
5e6d444e
CL
1953 return order;
1954 return -ENOSYS;
1955}
1956
81819f0f 1957/*
672bba3a 1958 * Figure out what the alignment of the objects will be.
81819f0f
CL
1959 */
1960static unsigned long calculate_alignment(unsigned long flags,
1961 unsigned long align, unsigned long size)
1962{
1963 /*
6446faa2
CL
1964 * If the user wants hardware cache aligned objects then follow that
1965 * suggestion if the object is sufficiently large.
81819f0f 1966 *
6446faa2
CL
1967 * The hardware cache alignment cannot override the specified
1968 * alignment though. If that is greater then use it.
81819f0f 1969 */
b6210386
NP
1970 if (flags & SLAB_HWCACHE_ALIGN) {
1971 unsigned long ralign = cache_line_size();
1972 while (size <= ralign / 2)
1973 ralign /= 2;
1974 align = max(align, ralign);
1975 }
81819f0f
CL
1976
1977 if (align < ARCH_SLAB_MINALIGN)
b6210386 1978 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1979
1980 return ALIGN(align, sizeof(void *));
1981}
1982
dfb4f096
CL
1983static void init_kmem_cache_cpu(struct kmem_cache *s,
1984 struct kmem_cache_cpu *c)
1985{
1986 c->page = NULL;
a973e9dd 1987 c->freelist = NULL;
dfb4f096 1988 c->node = 0;
42a9fdbb
CL
1989 c->offset = s->offset / sizeof(void *);
1990 c->objsize = s->objsize;
62f75532
PE
1991#ifdef CONFIG_SLUB_STATS
1992 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1993#endif
dfb4f096
CL
1994}
1995
5595cffc
PE
1996static void
1997init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1998{
1999 n->nr_partial = 0;
81819f0f
CL
2000 spin_lock_init(&n->list_lock);
2001 INIT_LIST_HEAD(&n->partial);
8ab1372f 2002#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2003 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2004 atomic_long_set(&n->total_objects, 0);
643b1138 2005 INIT_LIST_HEAD(&n->full);
8ab1372f 2006#endif
81819f0f
CL
2007}
2008
4c93c355
CL
2009#ifdef CONFIG_SMP
2010/*
2011 * Per cpu array for per cpu structures.
2012 *
2013 * The per cpu array places all kmem_cache_cpu structures from one processor
2014 * close together meaning that it becomes possible that multiple per cpu
2015 * structures are contained in one cacheline. This may be particularly
2016 * beneficial for the kmalloc caches.
2017 *
2018 * A desktop system typically has around 60-80 slabs. With 100 here we are
2019 * likely able to get per cpu structures for all caches from the array defined
2020 * here. We must be able to cover all kmalloc caches during bootstrap.
2021 *
2022 * If the per cpu array is exhausted then fall back to kmalloc
2023 * of individual cachelines. No sharing is possible then.
2024 */
2025#define NR_KMEM_CACHE_CPU 100
2026
2027static DEFINE_PER_CPU(struct kmem_cache_cpu,
2028 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2029
2030static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2031static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2032
2033static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2034 int cpu, gfp_t flags)
2035{
2036 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2037
2038 if (c)
2039 per_cpu(kmem_cache_cpu_free, cpu) =
2040 (void *)c->freelist;
2041 else {
2042 /* Table overflow: So allocate ourselves */
2043 c = kmalloc_node(
2044 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2045 flags, cpu_to_node(cpu));
2046 if (!c)
2047 return NULL;
2048 }
2049
2050 init_kmem_cache_cpu(s, c);
2051 return c;
2052}
2053
2054static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2055{
2056 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2057 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2058 kfree(c);
2059 return;
2060 }
2061 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2062 per_cpu(kmem_cache_cpu_free, cpu) = c;
2063}
2064
2065static void free_kmem_cache_cpus(struct kmem_cache *s)
2066{
2067 int cpu;
2068
2069 for_each_online_cpu(cpu) {
2070 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2071
2072 if (c) {
2073 s->cpu_slab[cpu] = NULL;
2074 free_kmem_cache_cpu(c, cpu);
2075 }
2076 }
2077}
2078
2079static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2080{
2081 int cpu;
2082
2083 for_each_online_cpu(cpu) {
2084 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2085
2086 if (c)
2087 continue;
2088
2089 c = alloc_kmem_cache_cpu(s, cpu, flags);
2090 if (!c) {
2091 free_kmem_cache_cpus(s);
2092 return 0;
2093 }
2094 s->cpu_slab[cpu] = c;
2095 }
2096 return 1;
2097}
2098
2099/*
2100 * Initialize the per cpu array.
2101 */
2102static void init_alloc_cpu_cpu(int cpu)
2103{
2104 int i;
2105
174596a0 2106 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2107 return;
2108
2109 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2110 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2111
174596a0 2112 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2113}
2114
2115static void __init init_alloc_cpu(void)
2116{
2117 int cpu;
2118
2119 for_each_online_cpu(cpu)
2120 init_alloc_cpu_cpu(cpu);
2121 }
2122
2123#else
2124static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2125static inline void init_alloc_cpu(void) {}
2126
2127static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2128{
2129 init_kmem_cache_cpu(s, &s->cpu_slab);
2130 return 1;
2131}
2132#endif
2133
81819f0f
CL
2134#ifdef CONFIG_NUMA
2135/*
2136 * No kmalloc_node yet so do it by hand. We know that this is the first
2137 * slab on the node for this slabcache. There are no concurrent accesses
2138 * possible.
2139 *
2140 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2141 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2142 * memory on a fresh node that has no slab structures yet.
81819f0f 2143 */
0094de92 2144static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2145{
2146 struct page *page;
2147 struct kmem_cache_node *n;
ba84c73c 2148 unsigned long flags;
81819f0f
CL
2149
2150 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2151
a2f92ee7 2152 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2153
2154 BUG_ON(!page);
a2f92ee7
CL
2155 if (page_to_nid(page) != node) {
2156 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2157 "node %d\n", node);
2158 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2159 "in order to be able to continue\n");
2160 }
2161
81819f0f
CL
2162 n = page->freelist;
2163 BUG_ON(!n);
2164 page->freelist = get_freepointer(kmalloc_caches, n);
2165 page->inuse++;
2166 kmalloc_caches->node[node] = n;
8ab1372f 2167#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2168 init_object(kmalloc_caches, n, 1);
2169 init_tracking(kmalloc_caches, n);
8ab1372f 2170#endif
5595cffc 2171 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2172 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2173
ba84c73c 2174 /*
2175 * lockdep requires consistent irq usage for each lock
2176 * so even though there cannot be a race this early in
2177 * the boot sequence, we still disable irqs.
2178 */
2179 local_irq_save(flags);
7c2e132c 2180 add_partial(n, page, 0);
ba84c73c 2181 local_irq_restore(flags);
81819f0f
CL
2182}
2183
2184static void free_kmem_cache_nodes(struct kmem_cache *s)
2185{
2186 int node;
2187
f64dc58c 2188 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2189 struct kmem_cache_node *n = s->node[node];
2190 if (n && n != &s->local_node)
2191 kmem_cache_free(kmalloc_caches, n);
2192 s->node[node] = NULL;
2193 }
2194}
2195
2196static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2197{
2198 int node;
2199 int local_node;
2200
2201 if (slab_state >= UP)
2202 local_node = page_to_nid(virt_to_page(s));
2203 else
2204 local_node = 0;
2205
f64dc58c 2206 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2207 struct kmem_cache_node *n;
2208
2209 if (local_node == node)
2210 n = &s->local_node;
2211 else {
2212 if (slab_state == DOWN) {
0094de92 2213 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2214 continue;
2215 }
2216 n = kmem_cache_alloc_node(kmalloc_caches,
2217 gfpflags, node);
2218
2219 if (!n) {
2220 free_kmem_cache_nodes(s);
2221 return 0;
2222 }
2223
2224 }
2225 s->node[node] = n;
5595cffc 2226 init_kmem_cache_node(n, s);
81819f0f
CL
2227 }
2228 return 1;
2229}
2230#else
2231static void free_kmem_cache_nodes(struct kmem_cache *s)
2232{
2233}
2234
2235static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2236{
5595cffc 2237 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2238 return 1;
2239}
2240#endif
2241
c0bdb232 2242static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2243{
2244 if (min < MIN_PARTIAL)
2245 min = MIN_PARTIAL;
2246 else if (min > MAX_PARTIAL)
2247 min = MAX_PARTIAL;
2248 s->min_partial = min;
2249}
2250
81819f0f
CL
2251/*
2252 * calculate_sizes() determines the order and the distribution of data within
2253 * a slab object.
2254 */
06b285dc 2255static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2256{
2257 unsigned long flags = s->flags;
2258 unsigned long size = s->objsize;
2259 unsigned long align = s->align;
834f3d11 2260 int order;
81819f0f 2261
d8b42bf5
CL
2262 /*
2263 * Round up object size to the next word boundary. We can only
2264 * place the free pointer at word boundaries and this determines
2265 * the possible location of the free pointer.
2266 */
2267 size = ALIGN(size, sizeof(void *));
2268
2269#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2270 /*
2271 * Determine if we can poison the object itself. If the user of
2272 * the slab may touch the object after free or before allocation
2273 * then we should never poison the object itself.
2274 */
2275 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2276 !s->ctor)
81819f0f
CL
2277 s->flags |= __OBJECT_POISON;
2278 else
2279 s->flags &= ~__OBJECT_POISON;
2280
81819f0f
CL
2281
2282 /*
672bba3a 2283 * If we are Redzoning then check if there is some space between the
81819f0f 2284 * end of the object and the free pointer. If not then add an
672bba3a 2285 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2286 */
2287 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2288 size += sizeof(void *);
41ecc55b 2289#endif
81819f0f
CL
2290
2291 /*
672bba3a
CL
2292 * With that we have determined the number of bytes in actual use
2293 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2294 */
2295 s->inuse = size;
2296
2297 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2298 s->ctor)) {
81819f0f
CL
2299 /*
2300 * Relocate free pointer after the object if it is not
2301 * permitted to overwrite the first word of the object on
2302 * kmem_cache_free.
2303 *
2304 * This is the case if we do RCU, have a constructor or
2305 * destructor or are poisoning the objects.
2306 */
2307 s->offset = size;
2308 size += sizeof(void *);
2309 }
2310
c12b3c62 2311#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2312 if (flags & SLAB_STORE_USER)
2313 /*
2314 * Need to store information about allocs and frees after
2315 * the object.
2316 */
2317 size += 2 * sizeof(struct track);
2318
be7b3fbc 2319 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2320 /*
2321 * Add some empty padding so that we can catch
2322 * overwrites from earlier objects rather than let
2323 * tracking information or the free pointer be
0211a9c8 2324 * corrupted if a user writes before the start
81819f0f
CL
2325 * of the object.
2326 */
2327 size += sizeof(void *);
41ecc55b 2328#endif
672bba3a 2329
81819f0f
CL
2330 /*
2331 * Determine the alignment based on various parameters that the
65c02d4c
CL
2332 * user specified and the dynamic determination of cache line size
2333 * on bootup.
81819f0f
CL
2334 */
2335 align = calculate_alignment(flags, align, s->objsize);
2336
2337 /*
2338 * SLUB stores one object immediately after another beginning from
2339 * offset 0. In order to align the objects we have to simply size
2340 * each object to conform to the alignment.
2341 */
2342 size = ALIGN(size, align);
2343 s->size = size;
06b285dc
CL
2344 if (forced_order >= 0)
2345 order = forced_order;
2346 else
2347 order = calculate_order(size);
81819f0f 2348
834f3d11 2349 if (order < 0)
81819f0f
CL
2350 return 0;
2351
b7a49f0d 2352 s->allocflags = 0;
834f3d11 2353 if (order)
b7a49f0d
CL
2354 s->allocflags |= __GFP_COMP;
2355
2356 if (s->flags & SLAB_CACHE_DMA)
2357 s->allocflags |= SLUB_DMA;
2358
2359 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2360 s->allocflags |= __GFP_RECLAIMABLE;
2361
81819f0f
CL
2362 /*
2363 * Determine the number of objects per slab
2364 */
834f3d11 2365 s->oo = oo_make(order, size);
65c3376a 2366 s->min = oo_make(get_order(size), size);
205ab99d
CL
2367 if (oo_objects(s->oo) > oo_objects(s->max))
2368 s->max = s->oo;
81819f0f 2369
834f3d11 2370 return !!oo_objects(s->oo);
81819f0f
CL
2371
2372}
2373
81819f0f
CL
2374static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2375 const char *name, size_t size,
2376 size_t align, unsigned long flags,
51cc5068 2377 void (*ctor)(void *))
81819f0f
CL
2378{
2379 memset(s, 0, kmem_size);
2380 s->name = name;
2381 s->ctor = ctor;
81819f0f 2382 s->objsize = size;
81819f0f 2383 s->align = align;
ba0268a8 2384 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2385
06b285dc 2386 if (!calculate_sizes(s, -1))
81819f0f
CL
2387 goto error;
2388
3b89d7d8
DR
2389 /*
2390 * The larger the object size is, the more pages we want on the partial
2391 * list to avoid pounding the page allocator excessively.
2392 */
c0bdb232 2393 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2394 s->refcount = 1;
2395#ifdef CONFIG_NUMA
e2cb96b7 2396 s->remote_node_defrag_ratio = 1000;
81819f0f 2397#endif
dfb4f096
CL
2398 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2399 goto error;
81819f0f 2400
dfb4f096 2401 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2402 return 1;
4c93c355 2403 free_kmem_cache_nodes(s);
81819f0f
CL
2404error:
2405 if (flags & SLAB_PANIC)
2406 panic("Cannot create slab %s size=%lu realsize=%u "
2407 "order=%u offset=%u flags=%lx\n",
834f3d11 2408 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2409 s->offset, flags);
2410 return 0;
2411}
81819f0f
CL
2412
2413/*
2414 * Check if a given pointer is valid
2415 */
2416int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2417{
06428780 2418 struct page *page;
81819f0f
CL
2419
2420 page = get_object_page(object);
2421
2422 if (!page || s != page->slab)
2423 /* No slab or wrong slab */
2424 return 0;
2425
abcd08a6 2426 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2427 return 0;
2428
2429 /*
2430 * We could also check if the object is on the slabs freelist.
2431 * But this would be too expensive and it seems that the main
6446faa2 2432 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2433 * to a certain slab.
2434 */
2435 return 1;
2436}
2437EXPORT_SYMBOL(kmem_ptr_validate);
2438
2439/*
2440 * Determine the size of a slab object
2441 */
2442unsigned int kmem_cache_size(struct kmem_cache *s)
2443{
2444 return s->objsize;
2445}
2446EXPORT_SYMBOL(kmem_cache_size);
2447
2448const char *kmem_cache_name(struct kmem_cache *s)
2449{
2450 return s->name;
2451}
2452EXPORT_SYMBOL(kmem_cache_name);
2453
33b12c38
CL
2454static void list_slab_objects(struct kmem_cache *s, struct page *page,
2455 const char *text)
2456{
2457#ifdef CONFIG_SLUB_DEBUG
2458 void *addr = page_address(page);
2459 void *p;
2460 DECLARE_BITMAP(map, page->objects);
2461
2462 bitmap_zero(map, page->objects);
2463 slab_err(s, page, "%s", text);
2464 slab_lock(page);
2465 for_each_free_object(p, s, page->freelist)
2466 set_bit(slab_index(p, s, addr), map);
2467
2468 for_each_object(p, s, addr, page->objects) {
2469
2470 if (!test_bit(slab_index(p, s, addr), map)) {
2471 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2472 p, p - addr);
2473 print_tracking(s, p);
2474 }
2475 }
2476 slab_unlock(page);
2477#endif
2478}
2479
81819f0f 2480/*
599870b1 2481 * Attempt to free all partial slabs on a node.
81819f0f 2482 */
599870b1 2483static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2484{
81819f0f
CL
2485 unsigned long flags;
2486 struct page *page, *h;
2487
2488 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2489 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2490 if (!page->inuse) {
2491 list_del(&page->lru);
2492 discard_slab(s, page);
599870b1 2493 n->nr_partial--;
33b12c38
CL
2494 } else {
2495 list_slab_objects(s, page,
2496 "Objects remaining on kmem_cache_close()");
599870b1 2497 }
33b12c38 2498 }
81819f0f 2499 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2500}
2501
2502/*
672bba3a 2503 * Release all resources used by a slab cache.
81819f0f 2504 */
0c710013 2505static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2506{
2507 int node;
2508
2509 flush_all(s);
2510
2511 /* Attempt to free all objects */
4c93c355 2512 free_kmem_cache_cpus(s);
f64dc58c 2513 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2514 struct kmem_cache_node *n = get_node(s, node);
2515
599870b1
CL
2516 free_partial(s, n);
2517 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2518 return 1;
2519 }
2520 free_kmem_cache_nodes(s);
2521 return 0;
2522}
2523
2524/*
2525 * Close a cache and release the kmem_cache structure
2526 * (must be used for caches created using kmem_cache_create)
2527 */
2528void kmem_cache_destroy(struct kmem_cache *s)
2529{
2530 down_write(&slub_lock);
2531 s->refcount--;
2532 if (!s->refcount) {
2533 list_del(&s->list);
a0e1d1be 2534 up_write(&slub_lock);
d629d819
PE
2535 if (kmem_cache_close(s)) {
2536 printk(KERN_ERR "SLUB %s: %s called for cache that "
2537 "still has objects.\n", s->name, __func__);
2538 dump_stack();
2539 }
81819f0f 2540 sysfs_slab_remove(s);
a0e1d1be
CL
2541 } else
2542 up_write(&slub_lock);
81819f0f
CL
2543}
2544EXPORT_SYMBOL(kmem_cache_destroy);
2545
2546/********************************************************************
2547 * Kmalloc subsystem
2548 *******************************************************************/
2549
ffadd4d0 2550struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2551EXPORT_SYMBOL(kmalloc_caches);
2552
81819f0f
CL
2553static int __init setup_slub_min_order(char *str)
2554{
06428780 2555 get_option(&str, &slub_min_order);
81819f0f
CL
2556
2557 return 1;
2558}
2559
2560__setup("slub_min_order=", setup_slub_min_order);
2561
2562static int __init setup_slub_max_order(char *str)
2563{
06428780 2564 get_option(&str, &slub_max_order);
818cf590 2565 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2566
2567 return 1;
2568}
2569
2570__setup("slub_max_order=", setup_slub_max_order);
2571
2572static int __init setup_slub_min_objects(char *str)
2573{
06428780 2574 get_option(&str, &slub_min_objects);
81819f0f
CL
2575
2576 return 1;
2577}
2578
2579__setup("slub_min_objects=", setup_slub_min_objects);
2580
2581static int __init setup_slub_nomerge(char *str)
2582{
2583 slub_nomerge = 1;
2584 return 1;
2585}
2586
2587__setup("slub_nomerge", setup_slub_nomerge);
2588
81819f0f
CL
2589static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2590 const char *name, int size, gfp_t gfp_flags)
2591{
2592 unsigned int flags = 0;
2593
2594 if (gfp_flags & SLUB_DMA)
2595 flags = SLAB_CACHE_DMA;
2596
83b519e8
PE
2597 /*
2598 * This function is called with IRQs disabled during early-boot on
2599 * single CPU so there's no need to take slub_lock here.
2600 */
81819f0f 2601 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2602 flags, NULL))
81819f0f
CL
2603 goto panic;
2604
2605 list_add(&s->list, &slab_caches);
83b519e8 2606
81819f0f
CL
2607 if (sysfs_slab_add(s))
2608 goto panic;
2609 return s;
2610
2611panic:
2612 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2613}
2614
2e443fd0 2615#ifdef CONFIG_ZONE_DMA
ffadd4d0 2616static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2617
2618static void sysfs_add_func(struct work_struct *w)
2619{
2620 struct kmem_cache *s;
2621
2622 down_write(&slub_lock);
2623 list_for_each_entry(s, &slab_caches, list) {
2624 if (s->flags & __SYSFS_ADD_DEFERRED) {
2625 s->flags &= ~__SYSFS_ADD_DEFERRED;
2626 sysfs_slab_add(s);
2627 }
2628 }
2629 up_write(&slub_lock);
2630}
2631
2632static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2633
2e443fd0
CL
2634static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2635{
2636 struct kmem_cache *s;
2e443fd0
CL
2637 char *text;
2638 size_t realsize;
2639
2640 s = kmalloc_caches_dma[index];
2641 if (s)
2642 return s;
2643
2644 /* Dynamically create dma cache */
1ceef402
CL
2645 if (flags & __GFP_WAIT)
2646 down_write(&slub_lock);
2647 else {
2648 if (!down_write_trylock(&slub_lock))
2649 goto out;
2650 }
2651
2652 if (kmalloc_caches_dma[index])
2653 goto unlock_out;
2e443fd0 2654
7b55f620 2655 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2656 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2657 (unsigned int)realsize);
1ceef402
CL
2658 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2659
2660 if (!s || !text || !kmem_cache_open(s, flags, text,
2661 realsize, ARCH_KMALLOC_MINALIGN,
5a896d9e
VN
2662 SLAB_CACHE_DMA|SLAB_NOTRACK|__SYSFS_ADD_DEFERRED,
2663 NULL)) {
1ceef402
CL
2664 kfree(s);
2665 kfree(text);
2666 goto unlock_out;
dfce8648 2667 }
1ceef402
CL
2668
2669 list_add(&s->list, &slab_caches);
2670 kmalloc_caches_dma[index] = s;
2671
2672 schedule_work(&sysfs_add_work);
2673
2674unlock_out:
dfce8648 2675 up_write(&slub_lock);
1ceef402 2676out:
dfce8648 2677 return kmalloc_caches_dma[index];
2e443fd0
CL
2678}
2679#endif
2680
f1b26339
CL
2681/*
2682 * Conversion table for small slabs sizes / 8 to the index in the
2683 * kmalloc array. This is necessary for slabs < 192 since we have non power
2684 * of two cache sizes there. The size of larger slabs can be determined using
2685 * fls.
2686 */
2687static s8 size_index[24] = {
2688 3, /* 8 */
2689 4, /* 16 */
2690 5, /* 24 */
2691 5, /* 32 */
2692 6, /* 40 */
2693 6, /* 48 */
2694 6, /* 56 */
2695 6, /* 64 */
2696 1, /* 72 */
2697 1, /* 80 */
2698 1, /* 88 */
2699 1, /* 96 */
2700 7, /* 104 */
2701 7, /* 112 */
2702 7, /* 120 */
2703 7, /* 128 */
2704 2, /* 136 */
2705 2, /* 144 */
2706 2, /* 152 */
2707 2, /* 160 */
2708 2, /* 168 */
2709 2, /* 176 */
2710 2, /* 184 */
2711 2 /* 192 */
2712};
2713
81819f0f
CL
2714static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2715{
f1b26339 2716 int index;
81819f0f 2717
f1b26339
CL
2718 if (size <= 192) {
2719 if (!size)
2720 return ZERO_SIZE_PTR;
81819f0f 2721
f1b26339 2722 index = size_index[(size - 1) / 8];
aadb4bc4 2723 } else
f1b26339 2724 index = fls(size - 1);
81819f0f
CL
2725
2726#ifdef CONFIG_ZONE_DMA
f1b26339 2727 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2728 return dma_kmalloc_cache(index, flags);
f1b26339 2729
81819f0f
CL
2730#endif
2731 return &kmalloc_caches[index];
2732}
2733
2734void *__kmalloc(size_t size, gfp_t flags)
2735{
aadb4bc4 2736 struct kmem_cache *s;
5b882be4 2737 void *ret;
81819f0f 2738
ffadd4d0 2739 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2740 return kmalloc_large(size, flags);
aadb4bc4
CL
2741
2742 s = get_slab(size, flags);
2743
2744 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2745 return s;
2746
5b882be4
EGM
2747 ret = slab_alloc(s, flags, -1, _RET_IP_);
2748
ca2b84cb 2749 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2750
2751 return ret;
81819f0f
CL
2752}
2753EXPORT_SYMBOL(__kmalloc);
2754
f619cfe1
CL
2755static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2756{
b1eeab67 2757 struct page *page;
f619cfe1 2758
b1eeab67
VN
2759 flags |= __GFP_COMP | __GFP_NOTRACK;
2760 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1
CL
2761 if (page)
2762 return page_address(page);
2763 else
2764 return NULL;
2765}
2766
81819f0f
CL
2767#ifdef CONFIG_NUMA
2768void *__kmalloc_node(size_t size, gfp_t flags, int node)
2769{
aadb4bc4 2770 struct kmem_cache *s;
5b882be4 2771 void *ret;
81819f0f 2772
057685cf 2773 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2774 ret = kmalloc_large_node(size, flags, node);
2775
ca2b84cb
EGM
2776 trace_kmalloc_node(_RET_IP_, ret,
2777 size, PAGE_SIZE << get_order(size),
2778 flags, node);
5b882be4
EGM
2779
2780 return ret;
2781 }
aadb4bc4
CL
2782
2783 s = get_slab(size, flags);
2784
2785 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2786 return s;
2787
5b882be4
EGM
2788 ret = slab_alloc(s, flags, node, _RET_IP_);
2789
ca2b84cb 2790 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2791
2792 return ret;
81819f0f
CL
2793}
2794EXPORT_SYMBOL(__kmalloc_node);
2795#endif
2796
2797size_t ksize(const void *object)
2798{
272c1d21 2799 struct page *page;
81819f0f
CL
2800 struct kmem_cache *s;
2801
ef8b4520 2802 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2803 return 0;
2804
294a80a8 2805 page = virt_to_head_page(object);
294a80a8 2806
76994412
PE
2807 if (unlikely(!PageSlab(page))) {
2808 WARN_ON(!PageCompound(page));
294a80a8 2809 return PAGE_SIZE << compound_order(page);
76994412 2810 }
81819f0f 2811 s = page->slab;
81819f0f 2812
ae20bfda 2813#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2814 /*
2815 * Debugging requires use of the padding between object
2816 * and whatever may come after it.
2817 */
2818 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2819 return s->objsize;
2820
ae20bfda 2821#endif
81819f0f
CL
2822 /*
2823 * If we have the need to store the freelist pointer
2824 * back there or track user information then we can
2825 * only use the space before that information.
2826 */
2827 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2828 return s->inuse;
81819f0f
CL
2829 /*
2830 * Else we can use all the padding etc for the allocation
2831 */
2832 return s->size;
2833}
b1aabecd 2834EXPORT_SYMBOL(ksize);
81819f0f
CL
2835
2836void kfree(const void *x)
2837{
81819f0f 2838 struct page *page;
5bb983b0 2839 void *object = (void *)x;
81819f0f 2840
2121db74
PE
2841 trace_kfree(_RET_IP_, x);
2842
2408c550 2843 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2844 return;
2845
b49af68f 2846 page = virt_to_head_page(x);
aadb4bc4 2847 if (unlikely(!PageSlab(page))) {
0937502a 2848 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2849 put_page(page);
2850 return;
2851 }
ce71e27c 2852 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2853}
2854EXPORT_SYMBOL(kfree);
2855
2086d26a 2856/*
672bba3a
CL
2857 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2858 * the remaining slabs by the number of items in use. The slabs with the
2859 * most items in use come first. New allocations will then fill those up
2860 * and thus they can be removed from the partial lists.
2861 *
2862 * The slabs with the least items are placed last. This results in them
2863 * being allocated from last increasing the chance that the last objects
2864 * are freed in them.
2086d26a
CL
2865 */
2866int kmem_cache_shrink(struct kmem_cache *s)
2867{
2868 int node;
2869 int i;
2870 struct kmem_cache_node *n;
2871 struct page *page;
2872 struct page *t;
205ab99d 2873 int objects = oo_objects(s->max);
2086d26a 2874 struct list_head *slabs_by_inuse =
834f3d11 2875 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2876 unsigned long flags;
2877
2878 if (!slabs_by_inuse)
2879 return -ENOMEM;
2880
2881 flush_all(s);
f64dc58c 2882 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2883 n = get_node(s, node);
2884
2885 if (!n->nr_partial)
2886 continue;
2887
834f3d11 2888 for (i = 0; i < objects; i++)
2086d26a
CL
2889 INIT_LIST_HEAD(slabs_by_inuse + i);
2890
2891 spin_lock_irqsave(&n->list_lock, flags);
2892
2893 /*
672bba3a 2894 * Build lists indexed by the items in use in each slab.
2086d26a 2895 *
672bba3a
CL
2896 * Note that concurrent frees may occur while we hold the
2897 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2898 */
2899 list_for_each_entry_safe(page, t, &n->partial, lru) {
2900 if (!page->inuse && slab_trylock(page)) {
2901 /*
2902 * Must hold slab lock here because slab_free
2903 * may have freed the last object and be
2904 * waiting to release the slab.
2905 */
2906 list_del(&page->lru);
2907 n->nr_partial--;
2908 slab_unlock(page);
2909 discard_slab(s, page);
2910 } else {
fcda3d89
CL
2911 list_move(&page->lru,
2912 slabs_by_inuse + page->inuse);
2086d26a
CL
2913 }
2914 }
2915
2086d26a 2916 /*
672bba3a
CL
2917 * Rebuild the partial list with the slabs filled up most
2918 * first and the least used slabs at the end.
2086d26a 2919 */
834f3d11 2920 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2921 list_splice(slabs_by_inuse + i, n->partial.prev);
2922
2086d26a
CL
2923 spin_unlock_irqrestore(&n->list_lock, flags);
2924 }
2925
2926 kfree(slabs_by_inuse);
2927 return 0;
2928}
2929EXPORT_SYMBOL(kmem_cache_shrink);
2930
b9049e23
YG
2931#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2932static int slab_mem_going_offline_callback(void *arg)
2933{
2934 struct kmem_cache *s;
2935
2936 down_read(&slub_lock);
2937 list_for_each_entry(s, &slab_caches, list)
2938 kmem_cache_shrink(s);
2939 up_read(&slub_lock);
2940
2941 return 0;
2942}
2943
2944static void slab_mem_offline_callback(void *arg)
2945{
2946 struct kmem_cache_node *n;
2947 struct kmem_cache *s;
2948 struct memory_notify *marg = arg;
2949 int offline_node;
2950
2951 offline_node = marg->status_change_nid;
2952
2953 /*
2954 * If the node still has available memory. we need kmem_cache_node
2955 * for it yet.
2956 */
2957 if (offline_node < 0)
2958 return;
2959
2960 down_read(&slub_lock);
2961 list_for_each_entry(s, &slab_caches, list) {
2962 n = get_node(s, offline_node);
2963 if (n) {
2964 /*
2965 * if n->nr_slabs > 0, slabs still exist on the node
2966 * that is going down. We were unable to free them,
2967 * and offline_pages() function shoudn't call this
2968 * callback. So, we must fail.
2969 */
0f389ec6 2970 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2971
2972 s->node[offline_node] = NULL;
2973 kmem_cache_free(kmalloc_caches, n);
2974 }
2975 }
2976 up_read(&slub_lock);
2977}
2978
2979static int slab_mem_going_online_callback(void *arg)
2980{
2981 struct kmem_cache_node *n;
2982 struct kmem_cache *s;
2983 struct memory_notify *marg = arg;
2984 int nid = marg->status_change_nid;
2985 int ret = 0;
2986
2987 /*
2988 * If the node's memory is already available, then kmem_cache_node is
2989 * already created. Nothing to do.
2990 */
2991 if (nid < 0)
2992 return 0;
2993
2994 /*
0121c619 2995 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2996 * allocate a kmem_cache_node structure in order to bring the node
2997 * online.
2998 */
2999 down_read(&slub_lock);
3000 list_for_each_entry(s, &slab_caches, list) {
3001 /*
3002 * XXX: kmem_cache_alloc_node will fallback to other nodes
3003 * since memory is not yet available from the node that
3004 * is brought up.
3005 */
3006 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3007 if (!n) {
3008 ret = -ENOMEM;
3009 goto out;
3010 }
5595cffc 3011 init_kmem_cache_node(n, s);
b9049e23
YG
3012 s->node[nid] = n;
3013 }
3014out:
3015 up_read(&slub_lock);
3016 return ret;
3017}
3018
3019static int slab_memory_callback(struct notifier_block *self,
3020 unsigned long action, void *arg)
3021{
3022 int ret = 0;
3023
3024 switch (action) {
3025 case MEM_GOING_ONLINE:
3026 ret = slab_mem_going_online_callback(arg);
3027 break;
3028 case MEM_GOING_OFFLINE:
3029 ret = slab_mem_going_offline_callback(arg);
3030 break;
3031 case MEM_OFFLINE:
3032 case MEM_CANCEL_ONLINE:
3033 slab_mem_offline_callback(arg);
3034 break;
3035 case MEM_ONLINE:
3036 case MEM_CANCEL_OFFLINE:
3037 break;
3038 }
dc19f9db
KH
3039 if (ret)
3040 ret = notifier_from_errno(ret);
3041 else
3042 ret = NOTIFY_OK;
b9049e23
YG
3043 return ret;
3044}
3045
3046#endif /* CONFIG_MEMORY_HOTPLUG */
3047
81819f0f
CL
3048/********************************************************************
3049 * Basic setup of slabs
3050 *******************************************************************/
3051
3052void __init kmem_cache_init(void)
3053{
3054 int i;
4b356be0 3055 int caches = 0;
81819f0f 3056
4c93c355
CL
3057 init_alloc_cpu();
3058
81819f0f
CL
3059#ifdef CONFIG_NUMA
3060 /*
3061 * Must first have the slab cache available for the allocations of the
672bba3a 3062 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3063 * kmem_cache_open for slab_state == DOWN.
3064 */
3065 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3066 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3067 kmalloc_caches[0].refcount = -1;
4b356be0 3068 caches++;
b9049e23 3069
0c40ba4f 3070 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3071#endif
3072
3073 /* Able to allocate the per node structures */
3074 slab_state = PARTIAL;
3075
3076 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3077 if (KMALLOC_MIN_SIZE <= 64) {
3078 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3079 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3080 caches++;
4b356be0 3081 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3082 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3083 caches++;
3084 }
81819f0f 3085
ffadd4d0 3086 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3087 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3088 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3089 caches++;
3090 }
81819f0f 3091
f1b26339
CL
3092
3093 /*
3094 * Patch up the size_index table if we have strange large alignment
3095 * requirements for the kmalloc array. This is only the case for
6446faa2 3096 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3097 *
3098 * Largest permitted alignment is 256 bytes due to the way we
3099 * handle the index determination for the smaller caches.
3100 *
3101 * Make sure that nothing crazy happens if someone starts tinkering
3102 * around with ARCH_KMALLOC_MINALIGN
3103 */
3104 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3105 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3106
12ad6843 3107 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3108 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3109
41d54d3b
CL
3110 if (KMALLOC_MIN_SIZE == 128) {
3111 /*
3112 * The 192 byte sized cache is not used if the alignment
3113 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3114 * instead.
3115 */
3116 for (i = 128 + 8; i <= 192; i += 8)
3117 size_index[(i - 1) / 8] = 8;
3118 }
3119
81819f0f
CL
3120 slab_state = UP;
3121
3122 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3123 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3124 kmalloc_caches[i]. name =
83b519e8 3125 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3126
3127#ifdef CONFIG_SMP
3128 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3129 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3130 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3131#else
3132 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3133#endif
3134
3adbefee
IM
3135 printk(KERN_INFO
3136 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3137 " CPUs=%d, Nodes=%d\n",
3138 caches, cache_line_size(),
81819f0f
CL
3139 slub_min_order, slub_max_order, slub_min_objects,
3140 nr_cpu_ids, nr_node_ids);
3141}
3142
7e85ee0c
PE
3143void __init kmem_cache_init_late(void)
3144{
3145 /*
3146 * Interrupts are enabled now so all GFP allocations are safe.
3147 */
3148 slab_gfp_mask = __GFP_BITS_MASK;
3149}
3150
81819f0f
CL
3151/*
3152 * Find a mergeable slab cache
3153 */
3154static int slab_unmergeable(struct kmem_cache *s)
3155{
3156 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3157 return 1;
3158
c59def9f 3159 if (s->ctor)
81819f0f
CL
3160 return 1;
3161
8ffa6875
CL
3162 /*
3163 * We may have set a slab to be unmergeable during bootstrap.
3164 */
3165 if (s->refcount < 0)
3166 return 1;
3167
81819f0f
CL
3168 return 0;
3169}
3170
3171static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3172 size_t align, unsigned long flags, const char *name,
51cc5068 3173 void (*ctor)(void *))
81819f0f 3174{
5b95a4ac 3175 struct kmem_cache *s;
81819f0f
CL
3176
3177 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3178 return NULL;
3179
c59def9f 3180 if (ctor)
81819f0f
CL
3181 return NULL;
3182
3183 size = ALIGN(size, sizeof(void *));
3184 align = calculate_alignment(flags, align, size);
3185 size = ALIGN(size, align);
ba0268a8 3186 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3187
5b95a4ac 3188 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3189 if (slab_unmergeable(s))
3190 continue;
3191
3192 if (size > s->size)
3193 continue;
3194
ba0268a8 3195 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3196 continue;
3197 /*
3198 * Check if alignment is compatible.
3199 * Courtesy of Adrian Drzewiecki
3200 */
06428780 3201 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3202 continue;
3203
3204 if (s->size - size >= sizeof(void *))
3205 continue;
3206
3207 return s;
3208 }
3209 return NULL;
3210}
3211
3212struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3213 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3214{
3215 struct kmem_cache *s;
3216
3217 down_write(&slub_lock);
ba0268a8 3218 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3219 if (s) {
42a9fdbb
CL
3220 int cpu;
3221
81819f0f
CL
3222 s->refcount++;
3223 /*
3224 * Adjust the object sizes so that we clear
3225 * the complete object on kzalloc.
3226 */
3227 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3228
3229 /*
3230 * And then we need to update the object size in the
3231 * per cpu structures
3232 */
3233 for_each_online_cpu(cpu)
3234 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3235
81819f0f 3236 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3237 up_write(&slub_lock);
6446faa2 3238
7b8f3b66
DR
3239 if (sysfs_slab_alias(s, name)) {
3240 down_write(&slub_lock);
3241 s->refcount--;
3242 up_write(&slub_lock);
81819f0f 3243 goto err;
7b8f3b66 3244 }
a0e1d1be
CL
3245 return s;
3246 }
6446faa2 3247
a0e1d1be
CL
3248 s = kmalloc(kmem_size, GFP_KERNEL);
3249 if (s) {
3250 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3251 size, align, flags, ctor)) {
81819f0f 3252 list_add(&s->list, &slab_caches);
a0e1d1be 3253 up_write(&slub_lock);
7b8f3b66
DR
3254 if (sysfs_slab_add(s)) {
3255 down_write(&slub_lock);
3256 list_del(&s->list);
3257 up_write(&slub_lock);
3258 kfree(s);
a0e1d1be 3259 goto err;
7b8f3b66 3260 }
a0e1d1be
CL
3261 return s;
3262 }
3263 kfree(s);
81819f0f
CL
3264 }
3265 up_write(&slub_lock);
81819f0f
CL
3266
3267err:
81819f0f
CL
3268 if (flags & SLAB_PANIC)
3269 panic("Cannot create slabcache %s\n", name);
3270 else
3271 s = NULL;
3272 return s;
3273}
3274EXPORT_SYMBOL(kmem_cache_create);
3275
81819f0f 3276#ifdef CONFIG_SMP
81819f0f 3277/*
672bba3a
CL
3278 * Use the cpu notifier to insure that the cpu slabs are flushed when
3279 * necessary.
81819f0f
CL
3280 */
3281static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3282 unsigned long action, void *hcpu)
3283{
3284 long cpu = (long)hcpu;
5b95a4ac
CL
3285 struct kmem_cache *s;
3286 unsigned long flags;
81819f0f
CL
3287
3288 switch (action) {
4c93c355
CL
3289 case CPU_UP_PREPARE:
3290 case CPU_UP_PREPARE_FROZEN:
3291 init_alloc_cpu_cpu(cpu);
3292 down_read(&slub_lock);
3293 list_for_each_entry(s, &slab_caches, list)
3294 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3295 GFP_KERNEL);
3296 up_read(&slub_lock);
3297 break;
3298
81819f0f 3299 case CPU_UP_CANCELED:
8bb78442 3300 case CPU_UP_CANCELED_FROZEN:
81819f0f 3301 case CPU_DEAD:
8bb78442 3302 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3303 down_read(&slub_lock);
3304 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3305 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3306
5b95a4ac
CL
3307 local_irq_save(flags);
3308 __flush_cpu_slab(s, cpu);
3309 local_irq_restore(flags);
4c93c355
CL
3310 free_kmem_cache_cpu(c, cpu);
3311 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3312 }
3313 up_read(&slub_lock);
81819f0f
CL
3314 break;
3315 default:
3316 break;
3317 }
3318 return NOTIFY_OK;
3319}
3320
06428780 3321static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3322 .notifier_call = slab_cpuup_callback
06428780 3323};
81819f0f
CL
3324
3325#endif
3326
ce71e27c 3327void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3328{
aadb4bc4 3329 struct kmem_cache *s;
94b528d0 3330 void *ret;
aadb4bc4 3331
ffadd4d0 3332 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3333 return kmalloc_large(size, gfpflags);
3334
aadb4bc4 3335 s = get_slab(size, gfpflags);
81819f0f 3336
2408c550 3337 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3338 return s;
81819f0f 3339
94b528d0
EGM
3340 ret = slab_alloc(s, gfpflags, -1, caller);
3341
3342 /* Honor the call site pointer we recieved. */
ca2b84cb 3343 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3344
3345 return ret;
81819f0f
CL
3346}
3347
3348void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3349 int node, unsigned long caller)
81819f0f 3350{
aadb4bc4 3351 struct kmem_cache *s;
94b528d0 3352 void *ret;
aadb4bc4 3353
ffadd4d0 3354 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3355 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3356
aadb4bc4 3357 s = get_slab(size, gfpflags);
81819f0f 3358
2408c550 3359 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3360 return s;
81819f0f 3361
94b528d0
EGM
3362 ret = slab_alloc(s, gfpflags, node, caller);
3363
3364 /* Honor the call site pointer we recieved. */
ca2b84cb 3365 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3366
3367 return ret;
81819f0f
CL
3368}
3369
f6acb635 3370#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3371static unsigned long count_partial(struct kmem_cache_node *n,
3372 int (*get_count)(struct page *))
5b06c853
CL
3373{
3374 unsigned long flags;
3375 unsigned long x = 0;
3376 struct page *page;
3377
3378 spin_lock_irqsave(&n->list_lock, flags);
3379 list_for_each_entry(page, &n->partial, lru)
205ab99d 3380 x += get_count(page);
5b06c853
CL
3381 spin_unlock_irqrestore(&n->list_lock, flags);
3382 return x;
3383}
205ab99d
CL
3384
3385static int count_inuse(struct page *page)
3386{
3387 return page->inuse;
3388}
3389
3390static int count_total(struct page *page)
3391{
3392 return page->objects;
3393}
3394
3395static int count_free(struct page *page)
3396{
3397 return page->objects - page->inuse;
3398}
5b06c853 3399
434e245d
CL
3400static int validate_slab(struct kmem_cache *s, struct page *page,
3401 unsigned long *map)
53e15af0
CL
3402{
3403 void *p;
a973e9dd 3404 void *addr = page_address(page);
53e15af0
CL
3405
3406 if (!check_slab(s, page) ||
3407 !on_freelist(s, page, NULL))
3408 return 0;
3409
3410 /* Now we know that a valid freelist exists */
39b26464 3411 bitmap_zero(map, page->objects);
53e15af0 3412
7656c72b
CL
3413 for_each_free_object(p, s, page->freelist) {
3414 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3415 if (!check_object(s, page, p, 0))
3416 return 0;
3417 }
3418
224a88be 3419 for_each_object(p, s, addr, page->objects)
7656c72b 3420 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3421 if (!check_object(s, page, p, 1))
3422 return 0;
3423 return 1;
3424}
3425
434e245d
CL
3426static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3427 unsigned long *map)
53e15af0
CL
3428{
3429 if (slab_trylock(page)) {
434e245d 3430 validate_slab(s, page, map);
53e15af0
CL
3431 slab_unlock(page);
3432 } else
3433 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3434 s->name, page);
3435
3436 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3437 if (!PageSlubDebug(page))
3438 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3439 "on slab 0x%p\n", s->name, page);
3440 } else {
8a38082d
AW
3441 if (PageSlubDebug(page))
3442 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3443 "slab 0x%p\n", s->name, page);
3444 }
3445}
3446
434e245d
CL
3447static int validate_slab_node(struct kmem_cache *s,
3448 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3449{
3450 unsigned long count = 0;
3451 struct page *page;
3452 unsigned long flags;
3453
3454 spin_lock_irqsave(&n->list_lock, flags);
3455
3456 list_for_each_entry(page, &n->partial, lru) {
434e245d 3457 validate_slab_slab(s, page, map);
53e15af0
CL
3458 count++;
3459 }
3460 if (count != n->nr_partial)
3461 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3462 "counter=%ld\n", s->name, count, n->nr_partial);
3463
3464 if (!(s->flags & SLAB_STORE_USER))
3465 goto out;
3466
3467 list_for_each_entry(page, &n->full, lru) {
434e245d 3468 validate_slab_slab(s, page, map);
53e15af0
CL
3469 count++;
3470 }
3471 if (count != atomic_long_read(&n->nr_slabs))
3472 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3473 "counter=%ld\n", s->name, count,
3474 atomic_long_read(&n->nr_slabs));
3475
3476out:
3477 spin_unlock_irqrestore(&n->list_lock, flags);
3478 return count;
3479}
3480
434e245d 3481static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3482{
3483 int node;
3484 unsigned long count = 0;
205ab99d 3485 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3486 sizeof(unsigned long), GFP_KERNEL);
3487
3488 if (!map)
3489 return -ENOMEM;
53e15af0
CL
3490
3491 flush_all(s);
f64dc58c 3492 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3493 struct kmem_cache_node *n = get_node(s, node);
3494
434e245d 3495 count += validate_slab_node(s, n, map);
53e15af0 3496 }
434e245d 3497 kfree(map);
53e15af0
CL
3498 return count;
3499}
3500
b3459709
CL
3501#ifdef SLUB_RESILIENCY_TEST
3502static void resiliency_test(void)
3503{
3504 u8 *p;
3505
3506 printk(KERN_ERR "SLUB resiliency testing\n");
3507 printk(KERN_ERR "-----------------------\n");
3508 printk(KERN_ERR "A. Corruption after allocation\n");
3509
3510 p = kzalloc(16, GFP_KERNEL);
3511 p[16] = 0x12;
3512 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3513 " 0x12->0x%p\n\n", p + 16);
3514
3515 validate_slab_cache(kmalloc_caches + 4);
3516
3517 /* Hmmm... The next two are dangerous */
3518 p = kzalloc(32, GFP_KERNEL);
3519 p[32 + sizeof(void *)] = 0x34;
3520 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3521 " 0x34 -> -0x%p\n", p);
3522 printk(KERN_ERR
3523 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3524
3525 validate_slab_cache(kmalloc_caches + 5);
3526 p = kzalloc(64, GFP_KERNEL);
3527 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3528 *p = 0x56;
3529 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3530 p);
3adbefee
IM
3531 printk(KERN_ERR
3532 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3533 validate_slab_cache(kmalloc_caches + 6);
3534
3535 printk(KERN_ERR "\nB. Corruption after free\n");
3536 p = kzalloc(128, GFP_KERNEL);
3537 kfree(p);
3538 *p = 0x78;
3539 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3540 validate_slab_cache(kmalloc_caches + 7);
3541
3542 p = kzalloc(256, GFP_KERNEL);
3543 kfree(p);
3544 p[50] = 0x9a;
3adbefee
IM
3545 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3546 p);
b3459709
CL
3547 validate_slab_cache(kmalloc_caches + 8);
3548
3549 p = kzalloc(512, GFP_KERNEL);
3550 kfree(p);
3551 p[512] = 0xab;
3552 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3553 validate_slab_cache(kmalloc_caches + 9);
3554}
3555#else
3556static void resiliency_test(void) {};
3557#endif
3558
88a420e4 3559/*
672bba3a 3560 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3561 * and freed.
3562 */
3563
3564struct location {
3565 unsigned long count;
ce71e27c 3566 unsigned long addr;
45edfa58
CL
3567 long long sum_time;
3568 long min_time;
3569 long max_time;
3570 long min_pid;
3571 long max_pid;
174596a0 3572 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3573 nodemask_t nodes;
88a420e4
CL
3574};
3575
3576struct loc_track {
3577 unsigned long max;
3578 unsigned long count;
3579 struct location *loc;
3580};
3581
3582static void free_loc_track(struct loc_track *t)
3583{
3584 if (t->max)
3585 free_pages((unsigned long)t->loc,
3586 get_order(sizeof(struct location) * t->max));
3587}
3588
68dff6a9 3589static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3590{
3591 struct location *l;
3592 int order;
3593
88a420e4
CL
3594 order = get_order(sizeof(struct location) * max);
3595
68dff6a9 3596 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3597 if (!l)
3598 return 0;
3599
3600 if (t->count) {
3601 memcpy(l, t->loc, sizeof(struct location) * t->count);
3602 free_loc_track(t);
3603 }
3604 t->max = max;
3605 t->loc = l;
3606 return 1;
3607}
3608
3609static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3610 const struct track *track)
88a420e4
CL
3611{
3612 long start, end, pos;
3613 struct location *l;
ce71e27c 3614 unsigned long caddr;
45edfa58 3615 unsigned long age = jiffies - track->when;
88a420e4
CL
3616
3617 start = -1;
3618 end = t->count;
3619
3620 for ( ; ; ) {
3621 pos = start + (end - start + 1) / 2;
3622
3623 /*
3624 * There is nothing at "end". If we end up there
3625 * we need to add something to before end.
3626 */
3627 if (pos == end)
3628 break;
3629
3630 caddr = t->loc[pos].addr;
45edfa58
CL
3631 if (track->addr == caddr) {
3632
3633 l = &t->loc[pos];
3634 l->count++;
3635 if (track->when) {
3636 l->sum_time += age;
3637 if (age < l->min_time)
3638 l->min_time = age;
3639 if (age > l->max_time)
3640 l->max_time = age;
3641
3642 if (track->pid < l->min_pid)
3643 l->min_pid = track->pid;
3644 if (track->pid > l->max_pid)
3645 l->max_pid = track->pid;
3646
174596a0
RR
3647 cpumask_set_cpu(track->cpu,
3648 to_cpumask(l->cpus));
45edfa58
CL
3649 }
3650 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3651 return 1;
3652 }
3653
45edfa58 3654 if (track->addr < caddr)
88a420e4
CL
3655 end = pos;
3656 else
3657 start = pos;
3658 }
3659
3660 /*
672bba3a 3661 * Not found. Insert new tracking element.
88a420e4 3662 */
68dff6a9 3663 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3664 return 0;
3665
3666 l = t->loc + pos;
3667 if (pos < t->count)
3668 memmove(l + 1, l,
3669 (t->count - pos) * sizeof(struct location));
3670 t->count++;
3671 l->count = 1;
45edfa58
CL
3672 l->addr = track->addr;
3673 l->sum_time = age;
3674 l->min_time = age;
3675 l->max_time = age;
3676 l->min_pid = track->pid;
3677 l->max_pid = track->pid;
174596a0
RR
3678 cpumask_clear(to_cpumask(l->cpus));
3679 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3680 nodes_clear(l->nodes);
3681 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3682 return 1;
3683}
3684
3685static void process_slab(struct loc_track *t, struct kmem_cache *s,
3686 struct page *page, enum track_item alloc)
3687{
a973e9dd 3688 void *addr = page_address(page);
39b26464 3689 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3690 void *p;
3691
39b26464 3692 bitmap_zero(map, page->objects);
7656c72b
CL
3693 for_each_free_object(p, s, page->freelist)
3694 set_bit(slab_index(p, s, addr), map);
88a420e4 3695
224a88be 3696 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3697 if (!test_bit(slab_index(p, s, addr), map))
3698 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3699}
3700
3701static int list_locations(struct kmem_cache *s, char *buf,
3702 enum track_item alloc)
3703{
e374d483 3704 int len = 0;
88a420e4 3705 unsigned long i;
68dff6a9 3706 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3707 int node;
3708
68dff6a9 3709 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3710 GFP_TEMPORARY))
68dff6a9 3711 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3712
3713 /* Push back cpu slabs */
3714 flush_all(s);
3715
f64dc58c 3716 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3717 struct kmem_cache_node *n = get_node(s, node);
3718 unsigned long flags;
3719 struct page *page;
3720
9e86943b 3721 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3722 continue;
3723
3724 spin_lock_irqsave(&n->list_lock, flags);
3725 list_for_each_entry(page, &n->partial, lru)
3726 process_slab(&t, s, page, alloc);
3727 list_for_each_entry(page, &n->full, lru)
3728 process_slab(&t, s, page, alloc);
3729 spin_unlock_irqrestore(&n->list_lock, flags);
3730 }
3731
3732 for (i = 0; i < t.count; i++) {
45edfa58 3733 struct location *l = &t.loc[i];
88a420e4 3734
9c246247 3735 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3736 break;
e374d483 3737 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3738
3739 if (l->addr)
e374d483 3740 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3741 else
e374d483 3742 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3743
3744 if (l->sum_time != l->min_time) {
e374d483 3745 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3746 l->min_time,
3747 (long)div_u64(l->sum_time, l->count),
3748 l->max_time);
45edfa58 3749 } else
e374d483 3750 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3751 l->min_time);
3752
3753 if (l->min_pid != l->max_pid)
e374d483 3754 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3755 l->min_pid, l->max_pid);
3756 else
e374d483 3757 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3758 l->min_pid);
3759
174596a0
RR
3760 if (num_online_cpus() > 1 &&
3761 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3762 len < PAGE_SIZE - 60) {
3763 len += sprintf(buf + len, " cpus=");
3764 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3765 to_cpumask(l->cpus));
45edfa58
CL
3766 }
3767
62bc62a8 3768 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3769 len < PAGE_SIZE - 60) {
3770 len += sprintf(buf + len, " nodes=");
3771 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3772 l->nodes);
3773 }
3774
e374d483 3775 len += sprintf(buf + len, "\n");
88a420e4
CL
3776 }
3777
3778 free_loc_track(&t);
3779 if (!t.count)
e374d483
HH
3780 len += sprintf(buf, "No data\n");
3781 return len;
88a420e4
CL
3782}
3783
81819f0f 3784enum slab_stat_type {
205ab99d
CL
3785 SL_ALL, /* All slabs */
3786 SL_PARTIAL, /* Only partially allocated slabs */
3787 SL_CPU, /* Only slabs used for cpu caches */
3788 SL_OBJECTS, /* Determine allocated objects not slabs */
3789 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3790};
3791
205ab99d 3792#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3793#define SO_PARTIAL (1 << SL_PARTIAL)
3794#define SO_CPU (1 << SL_CPU)
3795#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3796#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3797
62e5c4b4
CG
3798static ssize_t show_slab_objects(struct kmem_cache *s,
3799 char *buf, unsigned long flags)
81819f0f
CL
3800{
3801 unsigned long total = 0;
81819f0f
CL
3802 int node;
3803 int x;
3804 unsigned long *nodes;
3805 unsigned long *per_cpu;
3806
3807 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3808 if (!nodes)
3809 return -ENOMEM;
81819f0f
CL
3810 per_cpu = nodes + nr_node_ids;
3811
205ab99d
CL
3812 if (flags & SO_CPU) {
3813 int cpu;
81819f0f 3814
205ab99d
CL
3815 for_each_possible_cpu(cpu) {
3816 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3817
205ab99d
CL
3818 if (!c || c->node < 0)
3819 continue;
3820
3821 if (c->page) {
3822 if (flags & SO_TOTAL)
3823 x = c->page->objects;
3824 else if (flags & SO_OBJECTS)
3825 x = c->page->inuse;
81819f0f
CL
3826 else
3827 x = 1;
205ab99d 3828
81819f0f 3829 total += x;
205ab99d 3830 nodes[c->node] += x;
81819f0f 3831 }
205ab99d 3832 per_cpu[c->node]++;
81819f0f
CL
3833 }
3834 }
3835
205ab99d
CL
3836 if (flags & SO_ALL) {
3837 for_each_node_state(node, N_NORMAL_MEMORY) {
3838 struct kmem_cache_node *n = get_node(s, node);
3839
3840 if (flags & SO_TOTAL)
3841 x = atomic_long_read(&n->total_objects);
3842 else if (flags & SO_OBJECTS)
3843 x = atomic_long_read(&n->total_objects) -
3844 count_partial(n, count_free);
81819f0f 3845
81819f0f 3846 else
205ab99d 3847 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3848 total += x;
3849 nodes[node] += x;
3850 }
3851
205ab99d
CL
3852 } else if (flags & SO_PARTIAL) {
3853 for_each_node_state(node, N_NORMAL_MEMORY) {
3854 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3855
205ab99d
CL
3856 if (flags & SO_TOTAL)
3857 x = count_partial(n, count_total);
3858 else if (flags & SO_OBJECTS)
3859 x = count_partial(n, count_inuse);
81819f0f 3860 else
205ab99d 3861 x = n->nr_partial;
81819f0f
CL
3862 total += x;
3863 nodes[node] += x;
3864 }
3865 }
81819f0f
CL
3866 x = sprintf(buf, "%lu", total);
3867#ifdef CONFIG_NUMA
f64dc58c 3868 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3869 if (nodes[node])
3870 x += sprintf(buf + x, " N%d=%lu",
3871 node, nodes[node]);
3872#endif
3873 kfree(nodes);
3874 return x + sprintf(buf + x, "\n");
3875}
3876
3877static int any_slab_objects(struct kmem_cache *s)
3878{
3879 int node;
81819f0f 3880
dfb4f096 3881 for_each_online_node(node) {
81819f0f
CL
3882 struct kmem_cache_node *n = get_node(s, node);
3883
dfb4f096
CL
3884 if (!n)
3885 continue;
3886
4ea33e2d 3887 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3888 return 1;
3889 }
3890 return 0;
3891}
3892
3893#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3894#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3895
3896struct slab_attribute {
3897 struct attribute attr;
3898 ssize_t (*show)(struct kmem_cache *s, char *buf);
3899 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3900};
3901
3902#define SLAB_ATTR_RO(_name) \
3903 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3904
3905#define SLAB_ATTR(_name) \
3906 static struct slab_attribute _name##_attr = \
3907 __ATTR(_name, 0644, _name##_show, _name##_store)
3908
81819f0f
CL
3909static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3910{
3911 return sprintf(buf, "%d\n", s->size);
3912}
3913SLAB_ATTR_RO(slab_size);
3914
3915static ssize_t align_show(struct kmem_cache *s, char *buf)
3916{
3917 return sprintf(buf, "%d\n", s->align);
3918}
3919SLAB_ATTR_RO(align);
3920
3921static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3922{
3923 return sprintf(buf, "%d\n", s->objsize);
3924}
3925SLAB_ATTR_RO(object_size);
3926
3927static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3928{
834f3d11 3929 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3930}
3931SLAB_ATTR_RO(objs_per_slab);
3932
06b285dc
CL
3933static ssize_t order_store(struct kmem_cache *s,
3934 const char *buf, size_t length)
3935{
0121c619
CL
3936 unsigned long order;
3937 int err;
3938
3939 err = strict_strtoul(buf, 10, &order);
3940 if (err)
3941 return err;
06b285dc
CL
3942
3943 if (order > slub_max_order || order < slub_min_order)
3944 return -EINVAL;
3945
3946 calculate_sizes(s, order);
3947 return length;
3948}
3949
81819f0f
CL
3950static ssize_t order_show(struct kmem_cache *s, char *buf)
3951{
834f3d11 3952 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3953}
06b285dc 3954SLAB_ATTR(order);
81819f0f 3955
73d342b1
DR
3956static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3957{
3958 return sprintf(buf, "%lu\n", s->min_partial);
3959}
3960
3961static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3962 size_t length)
3963{
3964 unsigned long min;
3965 int err;
3966
3967 err = strict_strtoul(buf, 10, &min);
3968 if (err)
3969 return err;
3970
c0bdb232 3971 set_min_partial(s, min);
73d342b1
DR
3972 return length;
3973}
3974SLAB_ATTR(min_partial);
3975
81819f0f
CL
3976static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3977{
3978 if (s->ctor) {
3979 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3980
3981 return n + sprintf(buf + n, "\n");
3982 }
3983 return 0;
3984}
3985SLAB_ATTR_RO(ctor);
3986
81819f0f
CL
3987static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3988{
3989 return sprintf(buf, "%d\n", s->refcount - 1);
3990}
3991SLAB_ATTR_RO(aliases);
3992
3993static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3994{
205ab99d 3995 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3996}
3997SLAB_ATTR_RO(slabs);
3998
3999static ssize_t partial_show(struct kmem_cache *s, char *buf)
4000{
d9acf4b7 4001 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4002}
4003SLAB_ATTR_RO(partial);
4004
4005static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4006{
d9acf4b7 4007 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4008}
4009SLAB_ATTR_RO(cpu_slabs);
4010
4011static ssize_t objects_show(struct kmem_cache *s, char *buf)
4012{
205ab99d 4013 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4014}
4015SLAB_ATTR_RO(objects);
4016
205ab99d
CL
4017static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4018{
4019 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4020}
4021SLAB_ATTR_RO(objects_partial);
4022
4023static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4024{
4025 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4026}
4027SLAB_ATTR_RO(total_objects);
4028
81819f0f
CL
4029static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4030{
4031 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4032}
4033
4034static ssize_t sanity_checks_store(struct kmem_cache *s,
4035 const char *buf, size_t length)
4036{
4037 s->flags &= ~SLAB_DEBUG_FREE;
4038 if (buf[0] == '1')
4039 s->flags |= SLAB_DEBUG_FREE;
4040 return length;
4041}
4042SLAB_ATTR(sanity_checks);
4043
4044static ssize_t trace_show(struct kmem_cache *s, char *buf)
4045{
4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4047}
4048
4049static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4050 size_t length)
4051{
4052 s->flags &= ~SLAB_TRACE;
4053 if (buf[0] == '1')
4054 s->flags |= SLAB_TRACE;
4055 return length;
4056}
4057SLAB_ATTR(trace);
4058
4059static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4060{
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4062}
4063
4064static ssize_t reclaim_account_store(struct kmem_cache *s,
4065 const char *buf, size_t length)
4066{
4067 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4068 if (buf[0] == '1')
4069 s->flags |= SLAB_RECLAIM_ACCOUNT;
4070 return length;
4071}
4072SLAB_ATTR(reclaim_account);
4073
4074static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4075{
5af60839 4076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4077}
4078SLAB_ATTR_RO(hwcache_align);
4079
4080#ifdef CONFIG_ZONE_DMA
4081static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4082{
4083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4084}
4085SLAB_ATTR_RO(cache_dma);
4086#endif
4087
4088static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4089{
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4091}
4092SLAB_ATTR_RO(destroy_by_rcu);
4093
4094static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4095{
4096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4097}
4098
4099static ssize_t red_zone_store(struct kmem_cache *s,
4100 const char *buf, size_t length)
4101{
4102 if (any_slab_objects(s))
4103 return -EBUSY;
4104
4105 s->flags &= ~SLAB_RED_ZONE;
4106 if (buf[0] == '1')
4107 s->flags |= SLAB_RED_ZONE;
06b285dc 4108 calculate_sizes(s, -1);
81819f0f
CL
4109 return length;
4110}
4111SLAB_ATTR(red_zone);
4112
4113static ssize_t poison_show(struct kmem_cache *s, char *buf)
4114{
4115 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4116}
4117
4118static ssize_t poison_store(struct kmem_cache *s,
4119 const char *buf, size_t length)
4120{
4121 if (any_slab_objects(s))
4122 return -EBUSY;
4123
4124 s->flags &= ~SLAB_POISON;
4125 if (buf[0] == '1')
4126 s->flags |= SLAB_POISON;
06b285dc 4127 calculate_sizes(s, -1);
81819f0f
CL
4128 return length;
4129}
4130SLAB_ATTR(poison);
4131
4132static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4133{
4134 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4135}
4136
4137static ssize_t store_user_store(struct kmem_cache *s,
4138 const char *buf, size_t length)
4139{
4140 if (any_slab_objects(s))
4141 return -EBUSY;
4142
4143 s->flags &= ~SLAB_STORE_USER;
4144 if (buf[0] == '1')
4145 s->flags |= SLAB_STORE_USER;
06b285dc 4146 calculate_sizes(s, -1);
81819f0f
CL
4147 return length;
4148}
4149SLAB_ATTR(store_user);
4150
53e15af0
CL
4151static ssize_t validate_show(struct kmem_cache *s, char *buf)
4152{
4153 return 0;
4154}
4155
4156static ssize_t validate_store(struct kmem_cache *s,
4157 const char *buf, size_t length)
4158{
434e245d
CL
4159 int ret = -EINVAL;
4160
4161 if (buf[0] == '1') {
4162 ret = validate_slab_cache(s);
4163 if (ret >= 0)
4164 ret = length;
4165 }
4166 return ret;
53e15af0
CL
4167}
4168SLAB_ATTR(validate);
4169
2086d26a
CL
4170static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4171{
4172 return 0;
4173}
4174
4175static ssize_t shrink_store(struct kmem_cache *s,
4176 const char *buf, size_t length)
4177{
4178 if (buf[0] == '1') {
4179 int rc = kmem_cache_shrink(s);
4180
4181 if (rc)
4182 return rc;
4183 } else
4184 return -EINVAL;
4185 return length;
4186}
4187SLAB_ATTR(shrink);
4188
88a420e4
CL
4189static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4190{
4191 if (!(s->flags & SLAB_STORE_USER))
4192 return -ENOSYS;
4193 return list_locations(s, buf, TRACK_ALLOC);
4194}
4195SLAB_ATTR_RO(alloc_calls);
4196
4197static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4198{
4199 if (!(s->flags & SLAB_STORE_USER))
4200 return -ENOSYS;
4201 return list_locations(s, buf, TRACK_FREE);
4202}
4203SLAB_ATTR_RO(free_calls);
4204
81819f0f 4205#ifdef CONFIG_NUMA
9824601e 4206static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4207{
9824601e 4208 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4209}
4210
9824601e 4211static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4212 const char *buf, size_t length)
4213{
0121c619
CL
4214 unsigned long ratio;
4215 int err;
4216
4217 err = strict_strtoul(buf, 10, &ratio);
4218 if (err)
4219 return err;
4220
e2cb96b7 4221 if (ratio <= 100)
0121c619 4222 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4223
81819f0f
CL
4224 return length;
4225}
9824601e 4226SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4227#endif
4228
8ff12cfc 4229#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4230static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4231{
4232 unsigned long sum = 0;
4233 int cpu;
4234 int len;
4235 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4236
4237 if (!data)
4238 return -ENOMEM;
4239
4240 for_each_online_cpu(cpu) {
4241 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4242
4243 data[cpu] = x;
4244 sum += x;
4245 }
4246
4247 len = sprintf(buf, "%lu", sum);
4248
50ef37b9 4249#ifdef CONFIG_SMP
8ff12cfc
CL
4250 for_each_online_cpu(cpu) {
4251 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4252 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4253 }
50ef37b9 4254#endif
8ff12cfc
CL
4255 kfree(data);
4256 return len + sprintf(buf + len, "\n");
4257}
4258
4259#define STAT_ATTR(si, text) \
4260static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4261{ \
4262 return show_stat(s, buf, si); \
4263} \
4264SLAB_ATTR_RO(text); \
4265
4266STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4267STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4268STAT_ATTR(FREE_FASTPATH, free_fastpath);
4269STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4270STAT_ATTR(FREE_FROZEN, free_frozen);
4271STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4272STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4273STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4274STAT_ATTR(ALLOC_SLAB, alloc_slab);
4275STAT_ATTR(ALLOC_REFILL, alloc_refill);
4276STAT_ATTR(FREE_SLAB, free_slab);
4277STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4278STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4279STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4280STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4281STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4282STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4283STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4284#endif
4285
06428780 4286static struct attribute *slab_attrs[] = {
81819f0f
CL
4287 &slab_size_attr.attr,
4288 &object_size_attr.attr,
4289 &objs_per_slab_attr.attr,
4290 &order_attr.attr,
73d342b1 4291 &min_partial_attr.attr,
81819f0f 4292 &objects_attr.attr,
205ab99d
CL
4293 &objects_partial_attr.attr,
4294 &total_objects_attr.attr,
81819f0f
CL
4295 &slabs_attr.attr,
4296 &partial_attr.attr,
4297 &cpu_slabs_attr.attr,
4298 &ctor_attr.attr,
81819f0f
CL
4299 &aliases_attr.attr,
4300 &align_attr.attr,
4301 &sanity_checks_attr.attr,
4302 &trace_attr.attr,
4303 &hwcache_align_attr.attr,
4304 &reclaim_account_attr.attr,
4305 &destroy_by_rcu_attr.attr,
4306 &red_zone_attr.attr,
4307 &poison_attr.attr,
4308 &store_user_attr.attr,
53e15af0 4309 &validate_attr.attr,
2086d26a 4310 &shrink_attr.attr,
88a420e4
CL
4311 &alloc_calls_attr.attr,
4312 &free_calls_attr.attr,
81819f0f
CL
4313#ifdef CONFIG_ZONE_DMA
4314 &cache_dma_attr.attr,
4315#endif
4316#ifdef CONFIG_NUMA
9824601e 4317 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4318#endif
4319#ifdef CONFIG_SLUB_STATS
4320 &alloc_fastpath_attr.attr,
4321 &alloc_slowpath_attr.attr,
4322 &free_fastpath_attr.attr,
4323 &free_slowpath_attr.attr,
4324 &free_frozen_attr.attr,
4325 &free_add_partial_attr.attr,
4326 &free_remove_partial_attr.attr,
4327 &alloc_from_partial_attr.attr,
4328 &alloc_slab_attr.attr,
4329 &alloc_refill_attr.attr,
4330 &free_slab_attr.attr,
4331 &cpuslab_flush_attr.attr,
4332 &deactivate_full_attr.attr,
4333 &deactivate_empty_attr.attr,
4334 &deactivate_to_head_attr.attr,
4335 &deactivate_to_tail_attr.attr,
4336 &deactivate_remote_frees_attr.attr,
65c3376a 4337 &order_fallback_attr.attr,
81819f0f
CL
4338#endif
4339 NULL
4340};
4341
4342static struct attribute_group slab_attr_group = {
4343 .attrs = slab_attrs,
4344};
4345
4346static ssize_t slab_attr_show(struct kobject *kobj,
4347 struct attribute *attr,
4348 char *buf)
4349{
4350 struct slab_attribute *attribute;
4351 struct kmem_cache *s;
4352 int err;
4353
4354 attribute = to_slab_attr(attr);
4355 s = to_slab(kobj);
4356
4357 if (!attribute->show)
4358 return -EIO;
4359
4360 err = attribute->show(s, buf);
4361
4362 return err;
4363}
4364
4365static ssize_t slab_attr_store(struct kobject *kobj,
4366 struct attribute *attr,
4367 const char *buf, size_t len)
4368{
4369 struct slab_attribute *attribute;
4370 struct kmem_cache *s;
4371 int err;
4372
4373 attribute = to_slab_attr(attr);
4374 s = to_slab(kobj);
4375
4376 if (!attribute->store)
4377 return -EIO;
4378
4379 err = attribute->store(s, buf, len);
4380
4381 return err;
4382}
4383
151c602f
CL
4384static void kmem_cache_release(struct kobject *kobj)
4385{
4386 struct kmem_cache *s = to_slab(kobj);
4387
4388 kfree(s);
4389}
4390
81819f0f
CL
4391static struct sysfs_ops slab_sysfs_ops = {
4392 .show = slab_attr_show,
4393 .store = slab_attr_store,
4394};
4395
4396static struct kobj_type slab_ktype = {
4397 .sysfs_ops = &slab_sysfs_ops,
151c602f 4398 .release = kmem_cache_release
81819f0f
CL
4399};
4400
4401static int uevent_filter(struct kset *kset, struct kobject *kobj)
4402{
4403 struct kobj_type *ktype = get_ktype(kobj);
4404
4405 if (ktype == &slab_ktype)
4406 return 1;
4407 return 0;
4408}
4409
4410static struct kset_uevent_ops slab_uevent_ops = {
4411 .filter = uevent_filter,
4412};
4413
27c3a314 4414static struct kset *slab_kset;
81819f0f
CL
4415
4416#define ID_STR_LENGTH 64
4417
4418/* Create a unique string id for a slab cache:
6446faa2
CL
4419 *
4420 * Format :[flags-]size
81819f0f
CL
4421 */
4422static char *create_unique_id(struct kmem_cache *s)
4423{
4424 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4425 char *p = name;
4426
4427 BUG_ON(!name);
4428
4429 *p++ = ':';
4430 /*
4431 * First flags affecting slabcache operations. We will only
4432 * get here for aliasable slabs so we do not need to support
4433 * too many flags. The flags here must cover all flags that
4434 * are matched during merging to guarantee that the id is
4435 * unique.
4436 */
4437 if (s->flags & SLAB_CACHE_DMA)
4438 *p++ = 'd';
4439 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4440 *p++ = 'a';
4441 if (s->flags & SLAB_DEBUG_FREE)
4442 *p++ = 'F';
5a896d9e
VN
4443 if (!(s->flags & SLAB_NOTRACK))
4444 *p++ = 't';
81819f0f
CL
4445 if (p != name + 1)
4446 *p++ = '-';
4447 p += sprintf(p, "%07d", s->size);
4448 BUG_ON(p > name + ID_STR_LENGTH - 1);
4449 return name;
4450}
4451
4452static int sysfs_slab_add(struct kmem_cache *s)
4453{
4454 int err;
4455 const char *name;
4456 int unmergeable;
4457
4458 if (slab_state < SYSFS)
4459 /* Defer until later */
4460 return 0;
4461
4462 unmergeable = slab_unmergeable(s);
4463 if (unmergeable) {
4464 /*
4465 * Slabcache can never be merged so we can use the name proper.
4466 * This is typically the case for debug situations. In that
4467 * case we can catch duplicate names easily.
4468 */
27c3a314 4469 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4470 name = s->name;
4471 } else {
4472 /*
4473 * Create a unique name for the slab as a target
4474 * for the symlinks.
4475 */
4476 name = create_unique_id(s);
4477 }
4478
27c3a314 4479 s->kobj.kset = slab_kset;
1eada11c
GKH
4480 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4481 if (err) {
4482 kobject_put(&s->kobj);
81819f0f 4483 return err;
1eada11c 4484 }
81819f0f
CL
4485
4486 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4487 if (err)
4488 return err;
4489 kobject_uevent(&s->kobj, KOBJ_ADD);
4490 if (!unmergeable) {
4491 /* Setup first alias */
4492 sysfs_slab_alias(s, s->name);
4493 kfree(name);
4494 }
4495 return 0;
4496}
4497
4498static void sysfs_slab_remove(struct kmem_cache *s)
4499{
4500 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4501 kobject_del(&s->kobj);
151c602f 4502 kobject_put(&s->kobj);
81819f0f
CL
4503}
4504
4505/*
4506 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4507 * available lest we lose that information.
81819f0f
CL
4508 */
4509struct saved_alias {
4510 struct kmem_cache *s;
4511 const char *name;
4512 struct saved_alias *next;
4513};
4514
5af328a5 4515static struct saved_alias *alias_list;
81819f0f
CL
4516
4517static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4518{
4519 struct saved_alias *al;
4520
4521 if (slab_state == SYSFS) {
4522 /*
4523 * If we have a leftover link then remove it.
4524 */
27c3a314
GKH
4525 sysfs_remove_link(&slab_kset->kobj, name);
4526 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4527 }
4528
4529 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4530 if (!al)
4531 return -ENOMEM;
4532
4533 al->s = s;
4534 al->name = name;
4535 al->next = alias_list;
4536 alias_list = al;
4537 return 0;
4538}
4539
4540static int __init slab_sysfs_init(void)
4541{
5b95a4ac 4542 struct kmem_cache *s;
81819f0f
CL
4543 int err;
4544
0ff21e46 4545 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4546 if (!slab_kset) {
81819f0f
CL
4547 printk(KERN_ERR "Cannot register slab subsystem.\n");
4548 return -ENOSYS;
4549 }
4550
26a7bd03
CL
4551 slab_state = SYSFS;
4552
5b95a4ac 4553 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4554 err = sysfs_slab_add(s);
5d540fb7
CL
4555 if (err)
4556 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4557 " to sysfs\n", s->name);
26a7bd03 4558 }
81819f0f
CL
4559
4560 while (alias_list) {
4561 struct saved_alias *al = alias_list;
4562
4563 alias_list = alias_list->next;
4564 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4565 if (err)
4566 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4567 " %s to sysfs\n", s->name);
81819f0f
CL
4568 kfree(al);
4569 }
4570
4571 resiliency_test();
4572 return 0;
4573}
4574
4575__initcall(slab_sysfs_init);
81819f0f 4576#endif
57ed3eda
PE
4577
4578/*
4579 * The /proc/slabinfo ABI
4580 */
158a9624 4581#ifdef CONFIG_SLABINFO
57ed3eda
PE
4582static void print_slabinfo_header(struct seq_file *m)
4583{
4584 seq_puts(m, "slabinfo - version: 2.1\n");
4585 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4586 "<objperslab> <pagesperslab>");
4587 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4588 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4589 seq_putc(m, '\n');
4590}
4591
4592static void *s_start(struct seq_file *m, loff_t *pos)
4593{
4594 loff_t n = *pos;
4595
4596 down_read(&slub_lock);
4597 if (!n)
4598 print_slabinfo_header(m);
4599
4600 return seq_list_start(&slab_caches, *pos);
4601}
4602
4603static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4604{
4605 return seq_list_next(p, &slab_caches, pos);
4606}
4607
4608static void s_stop(struct seq_file *m, void *p)
4609{
4610 up_read(&slub_lock);
4611}
4612
4613static int s_show(struct seq_file *m, void *p)
4614{
4615 unsigned long nr_partials = 0;
4616 unsigned long nr_slabs = 0;
4617 unsigned long nr_inuse = 0;
205ab99d
CL
4618 unsigned long nr_objs = 0;
4619 unsigned long nr_free = 0;
57ed3eda
PE
4620 struct kmem_cache *s;
4621 int node;
4622
4623 s = list_entry(p, struct kmem_cache, list);
4624
4625 for_each_online_node(node) {
4626 struct kmem_cache_node *n = get_node(s, node);
4627
4628 if (!n)
4629 continue;
4630
4631 nr_partials += n->nr_partial;
4632 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4633 nr_objs += atomic_long_read(&n->total_objects);
4634 nr_free += count_partial(n, count_free);
57ed3eda
PE
4635 }
4636
205ab99d 4637 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4638
4639 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4640 nr_objs, s->size, oo_objects(s->oo),
4641 (1 << oo_order(s->oo)));
57ed3eda
PE
4642 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4643 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4644 0UL);
4645 seq_putc(m, '\n');
4646 return 0;
4647}
4648
7b3c3a50 4649static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4650 .start = s_start,
4651 .next = s_next,
4652 .stop = s_stop,
4653 .show = s_show,
4654};
4655
7b3c3a50
AD
4656static int slabinfo_open(struct inode *inode, struct file *file)
4657{
4658 return seq_open(file, &slabinfo_op);
4659}
4660
4661static const struct file_operations proc_slabinfo_operations = {
4662 .open = slabinfo_open,
4663 .read = seq_read,
4664 .llseek = seq_lseek,
4665 .release = seq_release,
4666};
4667
4668static int __init slab_proc_init(void)
4669{
4670 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4671 return 0;
4672}
4673module_init(slab_proc_init);
158a9624 4674#endif /* CONFIG_SLABINFO */
This page took 0.582418 seconds and 5 git commands to generate.