Merge branch 'dma_mb'
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 203static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 204#else
0c710013
CL
205static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
107dab5c 208static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
209#endif
210
4fdccdfb 211static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
212{
213#ifdef CONFIG_SLUB_STATS
88da03a6
CL
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
6446faa2 226/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
227static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229{
230 void *base;
231
a973e9dd 232 if (!object)
02cbc874
CL
233 return 1;
234
a973e9dd 235 base = page_address(page);
39b26464 236 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242}
243
7656c72b
CL
244static inline void *get_freepointer(struct kmem_cache *s, void *object)
245{
246 return *(void **)(object + s->offset);
247}
248
0ad9500e
ED
249static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250{
251 prefetch(object + s->offset);
252}
253
1393d9a1
CL
254static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255{
256 void *p;
257
258#ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260#else
261 p = get_freepointer(s, object);
262#endif
263 return p;
264}
265
7656c72b
CL
266static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267{
268 *(void **)(object + s->offset) = fp;
269}
270
271/* Loop over all objects in a slab */
224a88be
CL
272#define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
274 __p += (__s)->size)
275
54266640
WY
276#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
a0320865
DH
348static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349{
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
a0320865 384 set_page_slub_counters(page, counters_new);
1d07171c
CL
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
398 return 0;
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
a0320865 423 set_page_slub_counters(page, counters_new);
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 return 1;
427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
439 return 0;
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
41ecc55b
CL
458/*
459 * Debug settings:
460 */
f0630fff
CL
461#ifdef CONFIG_SLUB_DEBUG_ON
462static int slub_debug = DEBUG_DEFAULT_FLAGS;
463#else
41ecc55b 464static int slub_debug;
f0630fff 465#endif
41ecc55b
CL
466
467static char *slub_debug_slabs;
fa5ec8a1 468static int disable_higher_order_debug;
41ecc55b 469
81819f0f
CL
470/*
471 * Object debugging
472 */
473static void print_section(char *text, u8 *addr, unsigned int length)
474{
ffc79d28
SAS
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
81819f0f
CL
477}
478
81819f0f
CL
479static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481{
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490}
491
492static void set_track(struct kmem_cache *s, void *object,
ce71e27c 493 enum track_item alloc, unsigned long addr)
81819f0f 494{
1a00df4a 495 struct track *p = get_track(s, object, alloc);
81819f0f 496
81819f0f 497 if (addr) {
d6543e39
BG
498#ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515#endif
81819f0f
CL
516 p->addr = addr;
517 p->cpu = smp_processor_id();
88e4ccf2 518 p->pid = current->pid;
81819f0f
CL
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522}
523
81819f0f
CL
524static void init_tracking(struct kmem_cache *s, void *object)
525{
24922684
CL
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
ce71e27c
EGM
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
531}
532
533static void print_track(const char *s, struct track *t)
534{
535 if (!t->addr)
536 return;
537
f9f58285
FF
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
540#ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
f9f58285 545 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
546 else
547 break;
548 }
549#endif
24922684
CL
550}
551
552static void print_tracking(struct kmem_cache *s, void *object)
553{
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559}
560
561static void print_page_info(struct page *page)
562{
f9f58285 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 564 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
565
566}
567
568static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569{
ecc42fbe 570 struct va_format vaf;
24922684 571 va_list args;
24922684
CL
572
573 va_start(args, fmt);
ecc42fbe
FF
574 vaf.fmt = fmt;
575 vaf.va = &args;
f9f58285 576 pr_err("=============================================================================\n");
ecc42fbe 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 578 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 579
373d4d09 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 581 va_end(args);
81819f0f
CL
582}
583
24922684
CL
584static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585{
ecc42fbe 586 struct va_format vaf;
24922684 587 va_list args;
24922684
CL
588
589 va_start(args, fmt);
ecc42fbe
FF
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 593 va_end(args);
24922684
CL
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
f9f58285
FF
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
24922684
CL
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
3b0efdfa 611 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
81819f0f 616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
d0e0ac97
CG
639static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
f9f58285 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
3adbefee 801 }
81819f0f
CL
802 }
803
804 if (s->flags & SLAB_POISON) {
f7cb1933 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 806 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 807 POISON_FREE, s->object_size - 1) ||
24922684 808 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 809 p + s->object_size - 1, POISON_END, 1)))
81819f0f 810 return 0;
81819f0f
CL
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
f7cb1933 817 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
9f6c708e 828 * No choice but to zap it and thus lose the remainder
81819f0f 829 * of the free objects in this slab. May cause
672bba3a 830 * another error because the object count is now wrong.
81819f0f 831 */
a973e9dd 832 set_freepointer(s, p, NULL);
81819f0f
CL
833 return 0;
834 }
835 return 1;
836}
837
838static int check_slab(struct kmem_cache *s, struct page *page)
839{
39b26464
CL
840 int maxobj;
841
81819f0f
CL
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
24922684 845 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
846 return 0;
847 }
39b26464 848
ab9a0f19 849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
f6edde9c 852 page->objects, maxobj);
39b26464
CL
853 return 0;
854 }
855 if (page->inuse > page->objects) {
24922684 856 slab_err(s, page, "inuse %u > max %u",
f6edde9c 857 page->inuse, page->objects);
81819f0f
CL
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863}
864
865/*
672bba3a
CL
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
868 */
869static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870{
871 int nr = 0;
881db7fb 872 void *fp;
81819f0f 873 void *object = NULL;
f6edde9c 874 int max_objects;
81819f0f 875
881db7fb 876 fp = page->freelist;
39b26464 877 while (fp && nr <= page->objects) {
81819f0f
CL
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
a973e9dd 884 set_freepointer(s, object, NULL);
81819f0f 885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
f9f58285 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
d0e0ac97
CG
929 print_section("Object ", (void *)object,
930 s->object_size);
3ec09742
CL
931
932 dump_stack();
933 }
934}
935
643b1138 936/*
672bba3a 937 * Tracking of fully allocated slabs for debugging purposes.
643b1138 938 */
5cc6eee8
CL
939static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
643b1138 941{
5cc6eee8
CL
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
255d0884 945 lockdep_assert_held(&n->list_lock);
643b1138 946 list_add(&page->lru, &n->full);
643b1138
CL
947}
948
c65c1877 949static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
255d0884 954 lockdep_assert_held(&n->list_lock);
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
338b2642 981 if (likely(n)) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
d0e0ac97
CG
1005static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
ce71e27c 1007 void *object, unsigned long addr)
81819f0f
CL
1008{
1009 if (!check_slab(s, page))
1010 goto bad;
1011
81819f0f
CL
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1014 goto bad;
81819f0f
CL
1015 }
1016
f7cb1933 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1018 goto bad;
81819f0f 1019
3ec09742
CL
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
f7cb1933 1024 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1025 return 1;
3ec09742 1026
81819f0f
CL
1027bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
672bba3a 1032 * as used avoids touching the remaining objects.
81819f0f 1033 */
24922684 1034 slab_fix(s, "Marking all objects used");
39b26464 1035 page->inuse = page->objects;
a973e9dd 1036 page->freelist = NULL;
81819f0f
CL
1037 }
1038 return 0;
1039}
1040
19c7ff9e
CL
1041static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
81819f0f 1044{
19c7ff9e 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1046
19c7ff9e 1047 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1048 slab_lock(page);
1049
81819f0f
CL
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
70d71228 1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
24922684 1059 object_err(s, page, object, "Object already free");
81819f0f
CL
1060 goto fail;
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1064 goto out;
81819f0f 1065
1b4f59e3 1066 if (unlikely(s != page->slab_cache)) {
3adbefee 1067 if (!PageSlab(page)) {
70d71228
CL
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1b4f59e3 1070 } else if (!page->slab_cache) {
f9f58285
FF
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1084out:
881db7fb 1085 slab_unlock(page);
19c7ff9e
CL
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
3ec09742 1091
81819f0f 1092fail:
19c7ff9e
CL
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1095 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1096 return NULL;
81819f0f
CL
1097}
1098
41ecc55b
CL
1099static int __init setup_slub_debug(char *str)
1100{
f0630fff
CL
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
fa5ec8a1
DR
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
f0630fff
CL
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
06428780 1134 for (; *str && *str != ','; str++) {
f0630fff
CL
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
4c13dd3b
DM
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
f0630fff 1154 default:
f9f58285
FF
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
f0630fff 1157 }
41ecc55b
CL
1158 }
1159
f0630fff 1160check_slabs:
41ecc55b
CL
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
f0630fff 1163out:
41ecc55b
CL
1164 return 1;
1165}
1166
1167__setup("slub_debug", setup_slub_debug);
1168
423c929c 1169unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1170 unsigned long flags, const char *name,
51cc5068 1171 void (*ctor)(void *))
41ecc55b
CL
1172{
1173 /*
e153362a 1174 * Enable debugging if selected on the kernel commandline.
41ecc55b 1175 */
c6f58d9b
CL
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1178 flags |= slub_debug;
ba0268a8
CL
1179
1180 return flags;
41ecc55b
CL
1181}
1182#else
3ec09742
CL
1183static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
41ecc55b 1185
3ec09742 1186static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1187 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1188
19c7ff9e
CL
1189static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1192
41ecc55b
CL
1193static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1196 void *object, u8 val) { return 1; }
5cc6eee8
CL
1197static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
c65c1877
PZ
1199static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
423c929c 1201unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
ba0268a8
CL
1204{
1205 return flags;
1206}
41ecc55b 1207#define slub_debug 0
0f389ec6 1208
fdaa45e9
IM
1209#define disable_higher_order_debug 0
1210
0f389ec6
CL
1211static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
26c02cf0
AB
1213static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
205ab99d
CL
1215static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
7d550c56 1219
02e72cc6
AR
1220#endif /* CONFIG_SLUB_DEBUG */
1221
1222/*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
d56791b3
RB
1226static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227{
1228 kmemleak_alloc(ptr, size, 1, flags);
1229}
1230
1231static inline void kfree_hook(const void *x)
1232{
1233 kmemleak_free(x);
1234}
1235
7d550c56 1236static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
02e72cc6
AR
1237{
1238 flags &= gfp_allowed_mask;
1239 lockdep_trace_alloc(flags);
1240 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1241
02e72cc6
AR
1242 return should_failslab(s->object_size, flags, s->flags);
1243}
1244
1245static inline void slab_post_alloc_hook(struct kmem_cache *s,
1246 gfp_t flags, void *object)
d56791b3 1247{
02e72cc6
AR
1248 flags &= gfp_allowed_mask;
1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
d56791b3 1251}
7d550c56 1252
d56791b3
RB
1253static inline void slab_free_hook(struct kmem_cache *s, void *x)
1254{
1255 kmemleak_free_recursive(x, s->flags);
7d550c56 1256
02e72cc6
AR
1257 /*
1258 * Trouble is that we may no longer disable interrupts in the fast path
1259 * So in order to make the debug calls that expect irqs to be
1260 * disabled we need to disable interrupts temporarily.
1261 */
1262#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1263 {
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267 kmemcheck_slab_free(s, x, s->object_size);
1268 debug_check_no_locks_freed(x, s->object_size);
1269 local_irq_restore(flags);
1270 }
1271#endif
1272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1273 debug_check_no_obj_freed(x, s->object_size);
1274}
205ab99d 1275
81819f0f
CL
1276/*
1277 * Slab allocation and freeing
1278 */
5dfb4175
VD
1279static inline struct page *alloc_slab_page(struct kmem_cache *s,
1280 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1281{
5dfb4175 1282 struct page *page;
65c3376a
CL
1283 int order = oo_order(oo);
1284
b1eeab67
VN
1285 flags |= __GFP_NOTRACK;
1286
5dfb4175
VD
1287 if (memcg_charge_slab(s, flags, order))
1288 return NULL;
1289
2154a336 1290 if (node == NUMA_NO_NODE)
5dfb4175 1291 page = alloc_pages(flags, order);
65c3376a 1292 else
5dfb4175
VD
1293 page = alloc_pages_exact_node(node, flags, order);
1294
1295 if (!page)
1296 memcg_uncharge_slab(s, order);
1297
1298 return page;
65c3376a
CL
1299}
1300
81819f0f
CL
1301static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1302{
06428780 1303 struct page *page;
834f3d11 1304 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1305 gfp_t alloc_gfp;
81819f0f 1306
7e0528da
CL
1307 flags &= gfp_allowed_mask;
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_enable();
1311
b7a49f0d 1312 flags |= s->allocflags;
e12ba74d 1313
ba52270d
PE
1314 /*
1315 * Let the initial higher-order allocation fail under memory pressure
1316 * so we fall-back to the minimum order allocation.
1317 */
1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1319
5dfb4175 1320 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1321 if (unlikely(!page)) {
1322 oo = s->min;
80c3a998 1323 alloc_gfp = flags;
65c3376a
CL
1324 /*
1325 * Allocation may have failed due to fragmentation.
1326 * Try a lower order alloc if possible
1327 */
5dfb4175 1328 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1329
7e0528da
CL
1330 if (page)
1331 stat(s, ORDER_FALLBACK);
65c3376a 1332 }
5a896d9e 1333
737b719e 1334 if (kmemcheck_enabled && page
5086c389 1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1336 int pages = 1 << oo_order(oo);
1337
80c3a998 1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1339
1340 /*
1341 * Objects from caches that have a constructor don't get
1342 * cleared when they're allocated, so we need to do it here.
1343 */
1344 if (s->ctor)
1345 kmemcheck_mark_uninitialized_pages(page, pages);
1346 else
1347 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1348 }
1349
737b719e
DR
1350 if (flags & __GFP_WAIT)
1351 local_irq_disable();
1352 if (!page)
1353 return NULL;
1354
834f3d11 1355 page->objects = oo_objects(oo);
81819f0f
CL
1356 mod_zone_page_state(page_zone(page),
1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1359 1 << oo_order(oo));
81819f0f
CL
1360
1361 return page;
1362}
1363
1364static void setup_object(struct kmem_cache *s, struct page *page,
1365 void *object)
1366{
3ec09742 1367 setup_object_debug(s, page, object);
4f104934 1368 if (unlikely(s->ctor))
51cc5068 1369 s->ctor(object);
81819f0f
CL
1370}
1371
1372static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1373{
1374 struct page *page;
81819f0f 1375 void *start;
81819f0f 1376 void *p;
1f458cbf 1377 int order;
54266640 1378 int idx;
81819f0f 1379
c871ac4e
AM
1380 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1381 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1382 BUG();
1383 }
81819f0f 1384
6cb06229
CL
1385 page = allocate_slab(s,
1386 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1387 if (!page)
1388 goto out;
1389
1f458cbf 1390 order = compound_order(page);
205ab99d 1391 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1392 page->slab_cache = s;
c03f94cc 1393 __SetPageSlab(page);
072bb0aa
MG
1394 if (page->pfmemalloc)
1395 SetPageSlabPfmemalloc(page);
81819f0f
CL
1396
1397 start = page_address(page);
81819f0f
CL
1398
1399 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1400 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1401
54266640
WY
1402 for_each_object_idx(p, idx, s, start, page->objects) {
1403 setup_object(s, page, p);
1404 if (likely(idx < page->objects))
1405 set_freepointer(s, p, p + s->size);
1406 else
1407 set_freepointer(s, p, NULL);
81819f0f 1408 }
81819f0f
CL
1409
1410 page->freelist = start;
e6e82ea1 1411 page->inuse = page->objects;
8cb0a506 1412 page->frozen = 1;
81819f0f 1413out:
81819f0f
CL
1414 return page;
1415}
1416
1417static void __free_slab(struct kmem_cache *s, struct page *page)
1418{
834f3d11
CL
1419 int order = compound_order(page);
1420 int pages = 1 << order;
81819f0f 1421
af537b0a 1422 if (kmem_cache_debug(s)) {
81819f0f
CL
1423 void *p;
1424
1425 slab_pad_check(s, page);
224a88be
CL
1426 for_each_object(p, s, page_address(page),
1427 page->objects)
f7cb1933 1428 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1429 }
1430
b1eeab67 1431 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1432
81819f0f
CL
1433 mod_zone_page_state(page_zone(page),
1434 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1435 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1436 -pages);
81819f0f 1437
072bb0aa 1438 __ClearPageSlabPfmemalloc(page);
49bd5221 1439 __ClearPageSlab(page);
1f458cbf 1440
22b751c3 1441 page_mapcount_reset(page);
1eb5ac64
NP
1442 if (current->reclaim_state)
1443 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1444 __free_pages(page, order);
1445 memcg_uncharge_slab(s, order);
81819f0f
CL
1446}
1447
da9a638c
LJ
1448#define need_reserve_slab_rcu \
1449 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1450
81819f0f
CL
1451static void rcu_free_slab(struct rcu_head *h)
1452{
1453 struct page *page;
1454
da9a638c
LJ
1455 if (need_reserve_slab_rcu)
1456 page = virt_to_head_page(h);
1457 else
1458 page = container_of((struct list_head *)h, struct page, lru);
1459
1b4f59e3 1460 __free_slab(page->slab_cache, page);
81819f0f
CL
1461}
1462
1463static void free_slab(struct kmem_cache *s, struct page *page)
1464{
1465 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1466 struct rcu_head *head;
1467
1468 if (need_reserve_slab_rcu) {
1469 int order = compound_order(page);
1470 int offset = (PAGE_SIZE << order) - s->reserved;
1471
1472 VM_BUG_ON(s->reserved != sizeof(*head));
1473 head = page_address(page) + offset;
1474 } else {
1475 /*
1476 * RCU free overloads the RCU head over the LRU
1477 */
1478 head = (void *)&page->lru;
1479 }
81819f0f
CL
1480
1481 call_rcu(head, rcu_free_slab);
1482 } else
1483 __free_slab(s, page);
1484}
1485
1486static void discard_slab(struct kmem_cache *s, struct page *page)
1487{
205ab99d 1488 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1489 free_slab(s, page);
1490}
1491
1492/*
5cc6eee8 1493 * Management of partially allocated slabs.
81819f0f 1494 */
1e4dd946
SR
1495static inline void
1496__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1497{
e95eed57 1498 n->nr_partial++;
136333d1 1499 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1500 list_add_tail(&page->lru, &n->partial);
1501 else
1502 list_add(&page->lru, &n->partial);
81819f0f
CL
1503}
1504
1e4dd946
SR
1505static inline void add_partial(struct kmem_cache_node *n,
1506 struct page *page, int tail)
62e346a8 1507{
c65c1877 1508 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1509 __add_partial(n, page, tail);
1510}
c65c1877 1511
1e4dd946
SR
1512static inline void
1513__remove_partial(struct kmem_cache_node *n, struct page *page)
1514{
62e346a8
CL
1515 list_del(&page->lru);
1516 n->nr_partial--;
1517}
1518
1e4dd946
SR
1519static inline void remove_partial(struct kmem_cache_node *n,
1520 struct page *page)
1521{
1522 lockdep_assert_held(&n->list_lock);
1523 __remove_partial(n, page);
1524}
1525
81819f0f 1526/*
7ced3719
CL
1527 * Remove slab from the partial list, freeze it and
1528 * return the pointer to the freelist.
81819f0f 1529 *
497b66f2 1530 * Returns a list of objects or NULL if it fails.
81819f0f 1531 */
497b66f2 1532static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1533 struct kmem_cache_node *n, struct page *page,
633b0764 1534 int mode, int *objects)
81819f0f 1535{
2cfb7455
CL
1536 void *freelist;
1537 unsigned long counters;
1538 struct page new;
1539
c65c1877
PZ
1540 lockdep_assert_held(&n->list_lock);
1541
2cfb7455
CL
1542 /*
1543 * Zap the freelist and set the frozen bit.
1544 * The old freelist is the list of objects for the
1545 * per cpu allocation list.
1546 */
7ced3719
CL
1547 freelist = page->freelist;
1548 counters = page->counters;
1549 new.counters = counters;
633b0764 1550 *objects = new.objects - new.inuse;
23910c50 1551 if (mode) {
7ced3719 1552 new.inuse = page->objects;
23910c50
PE
1553 new.freelist = NULL;
1554 } else {
1555 new.freelist = freelist;
1556 }
2cfb7455 1557
a0132ac0 1558 VM_BUG_ON(new.frozen);
7ced3719 1559 new.frozen = 1;
2cfb7455 1560
7ced3719 1561 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1562 freelist, counters,
02d7633f 1563 new.freelist, new.counters,
7ced3719 1564 "acquire_slab"))
7ced3719 1565 return NULL;
2cfb7455
CL
1566
1567 remove_partial(n, page);
7ced3719 1568 WARN_ON(!freelist);
49e22585 1569 return freelist;
81819f0f
CL
1570}
1571
633b0764 1572static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1573static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1574
81819f0f 1575/*
672bba3a 1576 * Try to allocate a partial slab from a specific node.
81819f0f 1577 */
8ba00bb6
JK
1578static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1579 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1580{
49e22585
CL
1581 struct page *page, *page2;
1582 void *object = NULL;
633b0764
JK
1583 int available = 0;
1584 int objects;
81819f0f
CL
1585
1586 /*
1587 * Racy check. If we mistakenly see no partial slabs then we
1588 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1589 * partial slab and there is none available then get_partials()
1590 * will return NULL.
81819f0f
CL
1591 */
1592 if (!n || !n->nr_partial)
1593 return NULL;
1594
1595 spin_lock(&n->list_lock);
49e22585 1596 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1597 void *t;
49e22585 1598
8ba00bb6
JK
1599 if (!pfmemalloc_match(page, flags))
1600 continue;
1601
633b0764 1602 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1603 if (!t)
1604 break;
1605
633b0764 1606 available += objects;
12d79634 1607 if (!object) {
49e22585 1608 c->page = page;
49e22585 1609 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1610 object = t;
49e22585 1611 } else {
633b0764 1612 put_cpu_partial(s, page, 0);
8028dcea 1613 stat(s, CPU_PARTIAL_NODE);
49e22585 1614 }
345c905d
JK
1615 if (!kmem_cache_has_cpu_partial(s)
1616 || available > s->cpu_partial / 2)
49e22585
CL
1617 break;
1618
497b66f2 1619 }
81819f0f 1620 spin_unlock(&n->list_lock);
497b66f2 1621 return object;
81819f0f
CL
1622}
1623
1624/*
672bba3a 1625 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1626 */
de3ec035 1627static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1628 struct kmem_cache_cpu *c)
81819f0f
CL
1629{
1630#ifdef CONFIG_NUMA
1631 struct zonelist *zonelist;
dd1a239f 1632 struct zoneref *z;
54a6eb5c
MG
1633 struct zone *zone;
1634 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1635 void *object;
cc9a6c87 1636 unsigned int cpuset_mems_cookie;
81819f0f
CL
1637
1638 /*
672bba3a
CL
1639 * The defrag ratio allows a configuration of the tradeoffs between
1640 * inter node defragmentation and node local allocations. A lower
1641 * defrag_ratio increases the tendency to do local allocations
1642 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1643 *
672bba3a
CL
1644 * If the defrag_ratio is set to 0 then kmalloc() always
1645 * returns node local objects. If the ratio is higher then kmalloc()
1646 * may return off node objects because partial slabs are obtained
1647 * from other nodes and filled up.
81819f0f 1648 *
6446faa2 1649 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1650 * defrag_ratio = 1000) then every (well almost) allocation will
1651 * first attempt to defrag slab caches on other nodes. This means
1652 * scanning over all nodes to look for partial slabs which may be
1653 * expensive if we do it every time we are trying to find a slab
1654 * with available objects.
81819f0f 1655 */
9824601e
CL
1656 if (!s->remote_node_defrag_ratio ||
1657 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1658 return NULL;
1659
cc9a6c87 1660 do {
d26914d1 1661 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1662 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1663 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1664 struct kmem_cache_node *n;
1665
1666 n = get_node(s, zone_to_nid(zone));
1667
1668 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1669 n->nr_partial > s->min_partial) {
8ba00bb6 1670 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1671 if (object) {
1672 /*
d26914d1
MG
1673 * Don't check read_mems_allowed_retry()
1674 * here - if mems_allowed was updated in
1675 * parallel, that was a harmless race
1676 * between allocation and the cpuset
1677 * update
cc9a6c87 1678 */
cc9a6c87
MG
1679 return object;
1680 }
c0ff7453 1681 }
81819f0f 1682 }
d26914d1 1683 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1684#endif
1685 return NULL;
1686}
1687
1688/*
1689 * Get a partial page, lock it and return it.
1690 */
497b66f2 1691static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1692 struct kmem_cache_cpu *c)
81819f0f 1693{
497b66f2 1694 void *object;
a561ce00
JK
1695 int searchnode = node;
1696
1697 if (node == NUMA_NO_NODE)
1698 searchnode = numa_mem_id();
1699 else if (!node_present_pages(node))
1700 searchnode = node_to_mem_node(node);
81819f0f 1701
8ba00bb6 1702 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1703 if (object || node != NUMA_NO_NODE)
1704 return object;
81819f0f 1705
acd19fd1 1706 return get_any_partial(s, flags, c);
81819f0f
CL
1707}
1708
8a5ec0ba
CL
1709#ifdef CONFIG_PREEMPT
1710/*
1711 * Calculate the next globally unique transaction for disambiguiation
1712 * during cmpxchg. The transactions start with the cpu number and are then
1713 * incremented by CONFIG_NR_CPUS.
1714 */
1715#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1716#else
1717/*
1718 * No preemption supported therefore also no need to check for
1719 * different cpus.
1720 */
1721#define TID_STEP 1
1722#endif
1723
1724static inline unsigned long next_tid(unsigned long tid)
1725{
1726 return tid + TID_STEP;
1727}
1728
1729static inline unsigned int tid_to_cpu(unsigned long tid)
1730{
1731 return tid % TID_STEP;
1732}
1733
1734static inline unsigned long tid_to_event(unsigned long tid)
1735{
1736 return tid / TID_STEP;
1737}
1738
1739static inline unsigned int init_tid(int cpu)
1740{
1741 return cpu;
1742}
1743
1744static inline void note_cmpxchg_failure(const char *n,
1745 const struct kmem_cache *s, unsigned long tid)
1746{
1747#ifdef SLUB_DEBUG_CMPXCHG
1748 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1749
f9f58285 1750 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1751
1752#ifdef CONFIG_PREEMPT
1753 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1754 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1755 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1756 else
1757#endif
1758 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1759 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1760 tid_to_event(tid), tid_to_event(actual_tid));
1761 else
f9f58285 1762 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1763 actual_tid, tid, next_tid(tid));
1764#endif
4fdccdfb 1765 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1766}
1767
788e1aad 1768static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1769{
8a5ec0ba
CL
1770 int cpu;
1771
1772 for_each_possible_cpu(cpu)
1773 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1774}
2cfb7455 1775
81819f0f
CL
1776/*
1777 * Remove the cpu slab
1778 */
d0e0ac97
CG
1779static void deactivate_slab(struct kmem_cache *s, struct page *page,
1780 void *freelist)
81819f0f 1781{
2cfb7455 1782 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1783 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1784 int lock = 0;
1785 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1786 void *nextfree;
136333d1 1787 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1788 struct page new;
1789 struct page old;
1790
1791 if (page->freelist) {
84e554e6 1792 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1793 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1794 }
1795
894b8788 1796 /*
2cfb7455
CL
1797 * Stage one: Free all available per cpu objects back
1798 * to the page freelist while it is still frozen. Leave the
1799 * last one.
1800 *
1801 * There is no need to take the list->lock because the page
1802 * is still frozen.
1803 */
1804 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1805 void *prior;
1806 unsigned long counters;
1807
1808 do {
1809 prior = page->freelist;
1810 counters = page->counters;
1811 set_freepointer(s, freelist, prior);
1812 new.counters = counters;
1813 new.inuse--;
a0132ac0 1814 VM_BUG_ON(!new.frozen);
2cfb7455 1815
1d07171c 1816 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1817 prior, counters,
1818 freelist, new.counters,
1819 "drain percpu freelist"));
1820
1821 freelist = nextfree;
1822 }
1823
894b8788 1824 /*
2cfb7455
CL
1825 * Stage two: Ensure that the page is unfrozen while the
1826 * list presence reflects the actual number of objects
1827 * during unfreeze.
1828 *
1829 * We setup the list membership and then perform a cmpxchg
1830 * with the count. If there is a mismatch then the page
1831 * is not unfrozen but the page is on the wrong list.
1832 *
1833 * Then we restart the process which may have to remove
1834 * the page from the list that we just put it on again
1835 * because the number of objects in the slab may have
1836 * changed.
894b8788 1837 */
2cfb7455 1838redo:
894b8788 1839
2cfb7455
CL
1840 old.freelist = page->freelist;
1841 old.counters = page->counters;
a0132ac0 1842 VM_BUG_ON(!old.frozen);
7c2e132c 1843
2cfb7455
CL
1844 /* Determine target state of the slab */
1845 new.counters = old.counters;
1846 if (freelist) {
1847 new.inuse--;
1848 set_freepointer(s, freelist, old.freelist);
1849 new.freelist = freelist;
1850 } else
1851 new.freelist = old.freelist;
1852
1853 new.frozen = 0;
1854
8a5b20ae 1855 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1856 m = M_FREE;
1857 else if (new.freelist) {
1858 m = M_PARTIAL;
1859 if (!lock) {
1860 lock = 1;
1861 /*
1862 * Taking the spinlock removes the possiblity
1863 * that acquire_slab() will see a slab page that
1864 * is frozen
1865 */
1866 spin_lock(&n->list_lock);
1867 }
1868 } else {
1869 m = M_FULL;
1870 if (kmem_cache_debug(s) && !lock) {
1871 lock = 1;
1872 /*
1873 * This also ensures that the scanning of full
1874 * slabs from diagnostic functions will not see
1875 * any frozen slabs.
1876 */
1877 spin_lock(&n->list_lock);
1878 }
1879 }
1880
1881 if (l != m) {
1882
1883 if (l == M_PARTIAL)
1884
1885 remove_partial(n, page);
1886
1887 else if (l == M_FULL)
894b8788 1888
c65c1877 1889 remove_full(s, n, page);
2cfb7455
CL
1890
1891 if (m == M_PARTIAL) {
1892
1893 add_partial(n, page, tail);
136333d1 1894 stat(s, tail);
2cfb7455
CL
1895
1896 } else if (m == M_FULL) {
894b8788 1897
2cfb7455
CL
1898 stat(s, DEACTIVATE_FULL);
1899 add_full(s, n, page);
1900
1901 }
1902 }
1903
1904 l = m;
1d07171c 1905 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1906 old.freelist, old.counters,
1907 new.freelist, new.counters,
1908 "unfreezing slab"))
1909 goto redo;
1910
2cfb7455
CL
1911 if (lock)
1912 spin_unlock(&n->list_lock);
1913
1914 if (m == M_FREE) {
1915 stat(s, DEACTIVATE_EMPTY);
1916 discard_slab(s, page);
1917 stat(s, FREE_SLAB);
894b8788 1918 }
81819f0f
CL
1919}
1920
d24ac77f
JK
1921/*
1922 * Unfreeze all the cpu partial slabs.
1923 *
59a09917
CL
1924 * This function must be called with interrupts disabled
1925 * for the cpu using c (or some other guarantee must be there
1926 * to guarantee no concurrent accesses).
d24ac77f 1927 */
59a09917
CL
1928static void unfreeze_partials(struct kmem_cache *s,
1929 struct kmem_cache_cpu *c)
49e22585 1930{
345c905d 1931#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1932 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1933 struct page *page, *discard_page = NULL;
49e22585
CL
1934
1935 while ((page = c->partial)) {
49e22585
CL
1936 struct page new;
1937 struct page old;
1938
1939 c->partial = page->next;
43d77867
JK
1940
1941 n2 = get_node(s, page_to_nid(page));
1942 if (n != n2) {
1943 if (n)
1944 spin_unlock(&n->list_lock);
1945
1946 n = n2;
1947 spin_lock(&n->list_lock);
1948 }
49e22585
CL
1949
1950 do {
1951
1952 old.freelist = page->freelist;
1953 old.counters = page->counters;
a0132ac0 1954 VM_BUG_ON(!old.frozen);
49e22585
CL
1955
1956 new.counters = old.counters;
1957 new.freelist = old.freelist;
1958
1959 new.frozen = 0;
1960
d24ac77f 1961 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1962 old.freelist, old.counters,
1963 new.freelist, new.counters,
1964 "unfreezing slab"));
1965
8a5b20ae 1966 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1967 page->next = discard_page;
1968 discard_page = page;
43d77867
JK
1969 } else {
1970 add_partial(n, page, DEACTIVATE_TO_TAIL);
1971 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1972 }
1973 }
1974
1975 if (n)
1976 spin_unlock(&n->list_lock);
9ada1934
SL
1977
1978 while (discard_page) {
1979 page = discard_page;
1980 discard_page = discard_page->next;
1981
1982 stat(s, DEACTIVATE_EMPTY);
1983 discard_slab(s, page);
1984 stat(s, FREE_SLAB);
1985 }
345c905d 1986#endif
49e22585
CL
1987}
1988
1989/*
1990 * Put a page that was just frozen (in __slab_free) into a partial page
1991 * slot if available. This is done without interrupts disabled and without
1992 * preemption disabled. The cmpxchg is racy and may put the partial page
1993 * onto a random cpus partial slot.
1994 *
1995 * If we did not find a slot then simply move all the partials to the
1996 * per node partial list.
1997 */
633b0764 1998static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 1999{
345c905d 2000#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2001 struct page *oldpage;
2002 int pages;
2003 int pobjects;
2004
2005 do {
2006 pages = 0;
2007 pobjects = 0;
2008 oldpage = this_cpu_read(s->cpu_slab->partial);
2009
2010 if (oldpage) {
2011 pobjects = oldpage->pobjects;
2012 pages = oldpage->pages;
2013 if (drain && pobjects > s->cpu_partial) {
2014 unsigned long flags;
2015 /*
2016 * partial array is full. Move the existing
2017 * set to the per node partial list.
2018 */
2019 local_irq_save(flags);
59a09917 2020 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2021 local_irq_restore(flags);
e24fc410 2022 oldpage = NULL;
49e22585
CL
2023 pobjects = 0;
2024 pages = 0;
8028dcea 2025 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2026 }
2027 }
2028
2029 pages++;
2030 pobjects += page->objects - page->inuse;
2031
2032 page->pages = pages;
2033 page->pobjects = pobjects;
2034 page->next = oldpage;
2035
d0e0ac97
CG
2036 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2037 != oldpage);
345c905d 2038#endif
49e22585
CL
2039}
2040
dfb4f096 2041static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2042{
84e554e6 2043 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2044 deactivate_slab(s, c->page, c->freelist);
2045
2046 c->tid = next_tid(c->tid);
2047 c->page = NULL;
2048 c->freelist = NULL;
81819f0f
CL
2049}
2050
2051/*
2052 * Flush cpu slab.
6446faa2 2053 *
81819f0f
CL
2054 * Called from IPI handler with interrupts disabled.
2055 */
0c710013 2056static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2057{
9dfc6e68 2058 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2059
49e22585
CL
2060 if (likely(c)) {
2061 if (c->page)
2062 flush_slab(s, c);
2063
59a09917 2064 unfreeze_partials(s, c);
49e22585 2065 }
81819f0f
CL
2066}
2067
2068static void flush_cpu_slab(void *d)
2069{
2070 struct kmem_cache *s = d;
81819f0f 2071
dfb4f096 2072 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2073}
2074
a8364d55
GBY
2075static bool has_cpu_slab(int cpu, void *info)
2076{
2077 struct kmem_cache *s = info;
2078 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2079
02e1a9cd 2080 return c->page || c->partial;
a8364d55
GBY
2081}
2082
81819f0f
CL
2083static void flush_all(struct kmem_cache *s)
2084{
a8364d55 2085 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2086}
2087
dfb4f096
CL
2088/*
2089 * Check if the objects in a per cpu structure fit numa
2090 * locality expectations.
2091 */
57d437d2 2092static inline int node_match(struct page *page, int node)
dfb4f096
CL
2093{
2094#ifdef CONFIG_NUMA
4d7868e6 2095 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2096 return 0;
2097#endif
2098 return 1;
2099}
2100
9a02d699 2101#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2102static int count_free(struct page *page)
2103{
2104 return page->objects - page->inuse;
2105}
2106
9a02d699
DR
2107static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2108{
2109 return atomic_long_read(&n->total_objects);
2110}
2111#endif /* CONFIG_SLUB_DEBUG */
2112
2113#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2114static unsigned long count_partial(struct kmem_cache_node *n,
2115 int (*get_count)(struct page *))
2116{
2117 unsigned long flags;
2118 unsigned long x = 0;
2119 struct page *page;
2120
2121 spin_lock_irqsave(&n->list_lock, flags);
2122 list_for_each_entry(page, &n->partial, lru)
2123 x += get_count(page);
2124 spin_unlock_irqrestore(&n->list_lock, flags);
2125 return x;
2126}
9a02d699 2127#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2128
781b2ba6
PE
2129static noinline void
2130slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2131{
9a02d699
DR
2132#ifdef CONFIG_SLUB_DEBUG
2133 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2134 DEFAULT_RATELIMIT_BURST);
781b2ba6 2135 int node;
fa45dc25 2136 struct kmem_cache_node *n;
781b2ba6 2137
9a02d699
DR
2138 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2139 return;
2140
f9f58285 2141 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2142 nid, gfpflags);
f9f58285
FF
2143 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2144 s->name, s->object_size, s->size, oo_order(s->oo),
2145 oo_order(s->min));
781b2ba6 2146
3b0efdfa 2147 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2148 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2149 s->name);
fa5ec8a1 2150
fa45dc25 2151 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2152 unsigned long nr_slabs;
2153 unsigned long nr_objs;
2154 unsigned long nr_free;
2155
26c02cf0
AB
2156 nr_free = count_partial(n, count_free);
2157 nr_slabs = node_nr_slabs(n);
2158 nr_objs = node_nr_objs(n);
781b2ba6 2159
f9f58285 2160 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2161 node, nr_slabs, nr_objs, nr_free);
2162 }
9a02d699 2163#endif
781b2ba6
PE
2164}
2165
497b66f2
CL
2166static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2167 int node, struct kmem_cache_cpu **pc)
2168{
6faa6833 2169 void *freelist;
188fd063
CL
2170 struct kmem_cache_cpu *c = *pc;
2171 struct page *page;
497b66f2 2172
188fd063 2173 freelist = get_partial(s, flags, node, c);
497b66f2 2174
188fd063
CL
2175 if (freelist)
2176 return freelist;
2177
2178 page = new_slab(s, flags, node);
497b66f2 2179 if (page) {
7c8e0181 2180 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2181 if (c->page)
2182 flush_slab(s, c);
2183
2184 /*
2185 * No other reference to the page yet so we can
2186 * muck around with it freely without cmpxchg
2187 */
6faa6833 2188 freelist = page->freelist;
497b66f2
CL
2189 page->freelist = NULL;
2190
2191 stat(s, ALLOC_SLAB);
497b66f2
CL
2192 c->page = page;
2193 *pc = c;
2194 } else
6faa6833 2195 freelist = NULL;
497b66f2 2196
6faa6833 2197 return freelist;
497b66f2
CL
2198}
2199
072bb0aa
MG
2200static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2201{
2202 if (unlikely(PageSlabPfmemalloc(page)))
2203 return gfp_pfmemalloc_allowed(gfpflags);
2204
2205 return true;
2206}
2207
213eeb9f 2208/*
d0e0ac97
CG
2209 * Check the page->freelist of a page and either transfer the freelist to the
2210 * per cpu freelist or deactivate the page.
213eeb9f
CL
2211 *
2212 * The page is still frozen if the return value is not NULL.
2213 *
2214 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2215 *
2216 * This function must be called with interrupt disabled.
213eeb9f
CL
2217 */
2218static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2219{
2220 struct page new;
2221 unsigned long counters;
2222 void *freelist;
2223
2224 do {
2225 freelist = page->freelist;
2226 counters = page->counters;
6faa6833 2227
213eeb9f 2228 new.counters = counters;
a0132ac0 2229 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2230
2231 new.inuse = page->objects;
2232 new.frozen = freelist != NULL;
2233
d24ac77f 2234 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2235 freelist, counters,
2236 NULL, new.counters,
2237 "get_freelist"));
2238
2239 return freelist;
2240}
2241
81819f0f 2242/*
894b8788
CL
2243 * Slow path. The lockless freelist is empty or we need to perform
2244 * debugging duties.
2245 *
894b8788
CL
2246 * Processing is still very fast if new objects have been freed to the
2247 * regular freelist. In that case we simply take over the regular freelist
2248 * as the lockless freelist and zap the regular freelist.
81819f0f 2249 *
894b8788
CL
2250 * If that is not working then we fall back to the partial lists. We take the
2251 * first element of the freelist as the object to allocate now and move the
2252 * rest of the freelist to the lockless freelist.
81819f0f 2253 *
894b8788 2254 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2255 * we need to allocate a new slab. This is the slowest path since it involves
2256 * a call to the page allocator and the setup of a new slab.
81819f0f 2257 */
ce71e27c
EGM
2258static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2259 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2260{
6faa6833 2261 void *freelist;
f6e7def7 2262 struct page *page;
8a5ec0ba
CL
2263 unsigned long flags;
2264
2265 local_irq_save(flags);
2266#ifdef CONFIG_PREEMPT
2267 /*
2268 * We may have been preempted and rescheduled on a different
2269 * cpu before disabling interrupts. Need to reload cpu area
2270 * pointer.
2271 */
2272 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2273#endif
81819f0f 2274
f6e7def7
CL
2275 page = c->page;
2276 if (!page)
81819f0f 2277 goto new_slab;
49e22585 2278redo:
6faa6833 2279
57d437d2 2280 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2281 int searchnode = node;
2282
2283 if (node != NUMA_NO_NODE && !node_present_pages(node))
2284 searchnode = node_to_mem_node(node);
2285
2286 if (unlikely(!node_match(page, searchnode))) {
2287 stat(s, ALLOC_NODE_MISMATCH);
2288 deactivate_slab(s, page, c->freelist);
2289 c->page = NULL;
2290 c->freelist = NULL;
2291 goto new_slab;
2292 }
fc59c053 2293 }
6446faa2 2294
072bb0aa
MG
2295 /*
2296 * By rights, we should be searching for a slab page that was
2297 * PFMEMALLOC but right now, we are losing the pfmemalloc
2298 * information when the page leaves the per-cpu allocator
2299 */
2300 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2301 deactivate_slab(s, page, c->freelist);
2302 c->page = NULL;
2303 c->freelist = NULL;
2304 goto new_slab;
2305 }
2306
73736e03 2307 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2308 freelist = c->freelist;
2309 if (freelist)
73736e03 2310 goto load_freelist;
03e404af 2311
f6e7def7 2312 freelist = get_freelist(s, page);
6446faa2 2313
6faa6833 2314 if (!freelist) {
03e404af
CL
2315 c->page = NULL;
2316 stat(s, DEACTIVATE_BYPASS);
fc59c053 2317 goto new_slab;
03e404af 2318 }
6446faa2 2319
84e554e6 2320 stat(s, ALLOC_REFILL);
6446faa2 2321
894b8788 2322load_freelist:
507effea
CL
2323 /*
2324 * freelist is pointing to the list of objects to be used.
2325 * page is pointing to the page from which the objects are obtained.
2326 * That page must be frozen for per cpu allocations to work.
2327 */
a0132ac0 2328 VM_BUG_ON(!c->page->frozen);
6faa6833 2329 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2330 c->tid = next_tid(c->tid);
2331 local_irq_restore(flags);
6faa6833 2332 return freelist;
81819f0f 2333
81819f0f 2334new_slab:
2cfb7455 2335
49e22585 2336 if (c->partial) {
f6e7def7
CL
2337 page = c->page = c->partial;
2338 c->partial = page->next;
49e22585
CL
2339 stat(s, CPU_PARTIAL_ALLOC);
2340 c->freelist = NULL;
2341 goto redo;
81819f0f
CL
2342 }
2343
188fd063 2344 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2345
f4697436 2346 if (unlikely(!freelist)) {
9a02d699 2347 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2348 local_irq_restore(flags);
2349 return NULL;
81819f0f 2350 }
2cfb7455 2351
f6e7def7 2352 page = c->page;
5091b74a 2353 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2354 goto load_freelist;
2cfb7455 2355
497b66f2 2356 /* Only entered in the debug case */
d0e0ac97
CG
2357 if (kmem_cache_debug(s) &&
2358 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2359 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2360
f6e7def7 2361 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2362 c->page = NULL;
2363 c->freelist = NULL;
a71ae47a 2364 local_irq_restore(flags);
6faa6833 2365 return freelist;
894b8788
CL
2366}
2367
2368/*
2369 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2370 * have the fastpath folded into their functions. So no function call
2371 * overhead for requests that can be satisfied on the fastpath.
2372 *
2373 * The fastpath works by first checking if the lockless freelist can be used.
2374 * If not then __slab_alloc is called for slow processing.
2375 *
2376 * Otherwise we can simply pick the next object from the lockless free list.
2377 */
2b847c3c 2378static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2379 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2380{
894b8788 2381 void **object;
dfb4f096 2382 struct kmem_cache_cpu *c;
57d437d2 2383 struct page *page;
8a5ec0ba 2384 unsigned long tid;
1f84260c 2385
c016b0bd 2386 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2387 return NULL;
1f84260c 2388
d79923fa 2389 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2390redo:
8a5ec0ba
CL
2391 /*
2392 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2393 * enabled. We may switch back and forth between cpus while
2394 * reading from one cpu area. That does not matter as long
2395 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2396 *
2397 * Preemption is disabled for the retrieval of the tid because that
2398 * must occur from the current processor. We cannot allow rescheduling
2399 * on a different processor between the determination of the pointer
2400 * and the retrieval of the tid.
8a5ec0ba 2401 */
7cccd80b 2402 preempt_disable();
7c8e0181 2403 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2404
8a5ec0ba
CL
2405 /*
2406 * The transaction ids are globally unique per cpu and per operation on
2407 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2408 * occurs on the right processor and that there was no operation on the
2409 * linked list in between.
2410 */
2411 tid = c->tid;
7cccd80b 2412 preempt_enable();
8a5ec0ba 2413
9dfc6e68 2414 object = c->freelist;
57d437d2 2415 page = c->page;
8eae1492 2416 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2417 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2418 stat(s, ALLOC_SLOWPATH);
2419 } else {
0ad9500e
ED
2420 void *next_object = get_freepointer_safe(s, object);
2421
8a5ec0ba 2422 /*
25985edc 2423 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2424 * operation and if we are on the right processor.
2425 *
d0e0ac97
CG
2426 * The cmpxchg does the following atomically (without lock
2427 * semantics!)
8a5ec0ba
CL
2428 * 1. Relocate first pointer to the current per cpu area.
2429 * 2. Verify that tid and freelist have not been changed
2430 * 3. If they were not changed replace tid and freelist
2431 *
d0e0ac97
CG
2432 * Since this is without lock semantics the protection is only
2433 * against code executing on this cpu *not* from access by
2434 * other cpus.
8a5ec0ba 2435 */
933393f5 2436 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2437 s->cpu_slab->freelist, s->cpu_slab->tid,
2438 object, tid,
0ad9500e 2439 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2440
2441 note_cmpxchg_failure("slab_alloc", s, tid);
2442 goto redo;
2443 }
0ad9500e 2444 prefetch_freepointer(s, next_object);
84e554e6 2445 stat(s, ALLOC_FASTPATH);
894b8788 2446 }
8a5ec0ba 2447
74e2134f 2448 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2449 memset(object, 0, s->object_size);
d07dbea4 2450
c016b0bd 2451 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2452
894b8788 2453 return object;
81819f0f
CL
2454}
2455
2b847c3c
EG
2456static __always_inline void *slab_alloc(struct kmem_cache *s,
2457 gfp_t gfpflags, unsigned long addr)
2458{
2459 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2460}
2461
81819f0f
CL
2462void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2463{
2b847c3c 2464 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2465
d0e0ac97
CG
2466 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2467 s->size, gfpflags);
5b882be4
EGM
2468
2469 return ret;
81819f0f
CL
2470}
2471EXPORT_SYMBOL(kmem_cache_alloc);
2472
0f24f128 2473#ifdef CONFIG_TRACING
4a92379b
RK
2474void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2475{
2b847c3c 2476 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2477 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2478 return ret;
2479}
2480EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2481#endif
2482
81819f0f
CL
2483#ifdef CONFIG_NUMA
2484void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2485{
2b847c3c 2486 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2487
ca2b84cb 2488 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2489 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2490
2491 return ret;
81819f0f
CL
2492}
2493EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2494
0f24f128 2495#ifdef CONFIG_TRACING
4a92379b 2496void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2497 gfp_t gfpflags,
4a92379b 2498 int node, size_t size)
5b882be4 2499{
2b847c3c 2500 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2501
2502 trace_kmalloc_node(_RET_IP_, ret,
2503 size, s->size, gfpflags, node);
2504 return ret;
5b882be4 2505}
4a92379b 2506EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2507#endif
5d1f57e4 2508#endif
5b882be4 2509
81819f0f 2510/*
894b8788
CL
2511 * Slow patch handling. This may still be called frequently since objects
2512 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2513 *
894b8788
CL
2514 * So we still attempt to reduce cache line usage. Just take the slab
2515 * lock and free the item. If there is no additional partial page
2516 * handling required then we can return immediately.
81819f0f 2517 */
894b8788 2518static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2519 void *x, unsigned long addr)
81819f0f
CL
2520{
2521 void *prior;
2522 void **object = (void *)x;
2cfb7455 2523 int was_frozen;
2cfb7455
CL
2524 struct page new;
2525 unsigned long counters;
2526 struct kmem_cache_node *n = NULL;
61728d1e 2527 unsigned long uninitialized_var(flags);
81819f0f 2528
8a5ec0ba 2529 stat(s, FREE_SLOWPATH);
81819f0f 2530
19c7ff9e
CL
2531 if (kmem_cache_debug(s) &&
2532 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2533 return;
6446faa2 2534
2cfb7455 2535 do {
837d678d
JK
2536 if (unlikely(n)) {
2537 spin_unlock_irqrestore(&n->list_lock, flags);
2538 n = NULL;
2539 }
2cfb7455
CL
2540 prior = page->freelist;
2541 counters = page->counters;
2542 set_freepointer(s, object, prior);
2543 new.counters = counters;
2544 was_frozen = new.frozen;
2545 new.inuse--;
837d678d 2546 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2547
c65c1877 2548 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2549
2550 /*
d0e0ac97
CG
2551 * Slab was on no list before and will be
2552 * partially empty
2553 * We can defer the list move and instead
2554 * freeze it.
49e22585
CL
2555 */
2556 new.frozen = 1;
2557
c65c1877 2558 } else { /* Needs to be taken off a list */
49e22585 2559
b455def2 2560 n = get_node(s, page_to_nid(page));
49e22585
CL
2561 /*
2562 * Speculatively acquire the list_lock.
2563 * If the cmpxchg does not succeed then we may
2564 * drop the list_lock without any processing.
2565 *
2566 * Otherwise the list_lock will synchronize with
2567 * other processors updating the list of slabs.
2568 */
2569 spin_lock_irqsave(&n->list_lock, flags);
2570
2571 }
2cfb7455 2572 }
81819f0f 2573
2cfb7455
CL
2574 } while (!cmpxchg_double_slab(s, page,
2575 prior, counters,
2576 object, new.counters,
2577 "__slab_free"));
81819f0f 2578
2cfb7455 2579 if (likely(!n)) {
49e22585
CL
2580
2581 /*
2582 * If we just froze the page then put it onto the
2583 * per cpu partial list.
2584 */
8028dcea 2585 if (new.frozen && !was_frozen) {
49e22585 2586 put_cpu_partial(s, page, 1);
8028dcea
AS
2587 stat(s, CPU_PARTIAL_FREE);
2588 }
49e22585 2589 /*
2cfb7455
CL
2590 * The list lock was not taken therefore no list
2591 * activity can be necessary.
2592 */
b455def2
L
2593 if (was_frozen)
2594 stat(s, FREE_FROZEN);
2595 return;
2596 }
81819f0f 2597
8a5b20ae 2598 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2599 goto slab_empty;
2600
81819f0f 2601 /*
837d678d
JK
2602 * Objects left in the slab. If it was not on the partial list before
2603 * then add it.
81819f0f 2604 */
345c905d
JK
2605 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2606 if (kmem_cache_debug(s))
c65c1877 2607 remove_full(s, n, page);
837d678d
JK
2608 add_partial(n, page, DEACTIVATE_TO_TAIL);
2609 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2610 }
80f08c19 2611 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2612 return;
2613
2614slab_empty:
a973e9dd 2615 if (prior) {
81819f0f 2616 /*
6fbabb20 2617 * Slab on the partial list.
81819f0f 2618 */
5cc6eee8 2619 remove_partial(n, page);
84e554e6 2620 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2621 } else {
6fbabb20 2622 /* Slab must be on the full list */
c65c1877
PZ
2623 remove_full(s, n, page);
2624 }
2cfb7455 2625
80f08c19 2626 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2627 stat(s, FREE_SLAB);
81819f0f 2628 discard_slab(s, page);
81819f0f
CL
2629}
2630
894b8788
CL
2631/*
2632 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2633 * can perform fastpath freeing without additional function calls.
2634 *
2635 * The fastpath is only possible if we are freeing to the current cpu slab
2636 * of this processor. This typically the case if we have just allocated
2637 * the item before.
2638 *
2639 * If fastpath is not possible then fall back to __slab_free where we deal
2640 * with all sorts of special processing.
2641 */
06428780 2642static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2643 struct page *page, void *x, unsigned long addr)
894b8788
CL
2644{
2645 void **object = (void *)x;
dfb4f096 2646 struct kmem_cache_cpu *c;
8a5ec0ba 2647 unsigned long tid;
1f84260c 2648
c016b0bd
CL
2649 slab_free_hook(s, x);
2650
8a5ec0ba
CL
2651redo:
2652 /*
2653 * Determine the currently cpus per cpu slab.
2654 * The cpu may change afterward. However that does not matter since
2655 * data is retrieved via this pointer. If we are on the same cpu
2656 * during the cmpxchg then the free will succedd.
2657 */
7cccd80b 2658 preempt_disable();
7c8e0181 2659 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2660
8a5ec0ba 2661 tid = c->tid;
7cccd80b 2662 preempt_enable();
c016b0bd 2663
442b06bc 2664 if (likely(page == c->page)) {
ff12059e 2665 set_freepointer(s, object, c->freelist);
8a5ec0ba 2666
933393f5 2667 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2668 s->cpu_slab->freelist, s->cpu_slab->tid,
2669 c->freelist, tid,
2670 object, next_tid(tid)))) {
2671
2672 note_cmpxchg_failure("slab_free", s, tid);
2673 goto redo;
2674 }
84e554e6 2675 stat(s, FREE_FASTPATH);
894b8788 2676 } else
ff12059e 2677 __slab_free(s, page, x, addr);
894b8788 2678
894b8788
CL
2679}
2680
81819f0f
CL
2681void kmem_cache_free(struct kmem_cache *s, void *x)
2682{
b9ce5ef4
GC
2683 s = cache_from_obj(s, x);
2684 if (!s)
79576102 2685 return;
b9ce5ef4 2686 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2687 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2688}
2689EXPORT_SYMBOL(kmem_cache_free);
2690
81819f0f 2691/*
672bba3a
CL
2692 * Object placement in a slab is made very easy because we always start at
2693 * offset 0. If we tune the size of the object to the alignment then we can
2694 * get the required alignment by putting one properly sized object after
2695 * another.
81819f0f
CL
2696 *
2697 * Notice that the allocation order determines the sizes of the per cpu
2698 * caches. Each processor has always one slab available for allocations.
2699 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2700 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2701 * locking overhead.
81819f0f
CL
2702 */
2703
2704/*
2705 * Mininum / Maximum order of slab pages. This influences locking overhead
2706 * and slab fragmentation. A higher order reduces the number of partial slabs
2707 * and increases the number of allocations possible without having to
2708 * take the list_lock.
2709 */
2710static int slub_min_order;
114e9e89 2711static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2712static int slub_min_objects;
81819f0f 2713
81819f0f
CL
2714/*
2715 * Calculate the order of allocation given an slab object size.
2716 *
672bba3a
CL
2717 * The order of allocation has significant impact on performance and other
2718 * system components. Generally order 0 allocations should be preferred since
2719 * order 0 does not cause fragmentation in the page allocator. Larger objects
2720 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2721 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2722 * would be wasted.
2723 *
2724 * In order to reach satisfactory performance we must ensure that a minimum
2725 * number of objects is in one slab. Otherwise we may generate too much
2726 * activity on the partial lists which requires taking the list_lock. This is
2727 * less a concern for large slabs though which are rarely used.
81819f0f 2728 *
672bba3a
CL
2729 * slub_max_order specifies the order where we begin to stop considering the
2730 * number of objects in a slab as critical. If we reach slub_max_order then
2731 * we try to keep the page order as low as possible. So we accept more waste
2732 * of space in favor of a small page order.
81819f0f 2733 *
672bba3a
CL
2734 * Higher order allocations also allow the placement of more objects in a
2735 * slab and thereby reduce object handling overhead. If the user has
2736 * requested a higher mininum order then we start with that one instead of
2737 * the smallest order which will fit the object.
81819f0f 2738 */
5e6d444e 2739static inline int slab_order(int size, int min_objects,
ab9a0f19 2740 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2741{
2742 int order;
2743 int rem;
6300ea75 2744 int min_order = slub_min_order;
81819f0f 2745
ab9a0f19 2746 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2747 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2748
6300ea75 2749 for (order = max(min_order,
5e6d444e
CL
2750 fls(min_objects * size - 1) - PAGE_SHIFT);
2751 order <= max_order; order++) {
81819f0f 2752
5e6d444e 2753 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2754
ab9a0f19 2755 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2756 continue;
2757
ab9a0f19 2758 rem = (slab_size - reserved) % size;
81819f0f 2759
5e6d444e 2760 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2761 break;
2762
2763 }
672bba3a 2764
81819f0f
CL
2765 return order;
2766}
2767
ab9a0f19 2768static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2769{
2770 int order;
2771 int min_objects;
2772 int fraction;
e8120ff1 2773 int max_objects;
5e6d444e
CL
2774
2775 /*
2776 * Attempt to find best configuration for a slab. This
2777 * works by first attempting to generate a layout with
2778 * the best configuration and backing off gradually.
2779 *
2780 * First we reduce the acceptable waste in a slab. Then
2781 * we reduce the minimum objects required in a slab.
2782 */
2783 min_objects = slub_min_objects;
9b2cd506
CL
2784 if (!min_objects)
2785 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2786 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2787 min_objects = min(min_objects, max_objects);
2788
5e6d444e 2789 while (min_objects > 1) {
c124f5b5 2790 fraction = 16;
5e6d444e
CL
2791 while (fraction >= 4) {
2792 order = slab_order(size, min_objects,
ab9a0f19 2793 slub_max_order, fraction, reserved);
5e6d444e
CL
2794 if (order <= slub_max_order)
2795 return order;
2796 fraction /= 2;
2797 }
5086c389 2798 min_objects--;
5e6d444e
CL
2799 }
2800
2801 /*
2802 * We were unable to place multiple objects in a slab. Now
2803 * lets see if we can place a single object there.
2804 */
ab9a0f19 2805 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2806 if (order <= slub_max_order)
2807 return order;
2808
2809 /*
2810 * Doh this slab cannot be placed using slub_max_order.
2811 */
ab9a0f19 2812 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2813 if (order < MAX_ORDER)
5e6d444e
CL
2814 return order;
2815 return -ENOSYS;
2816}
2817
5595cffc 2818static void
4053497d 2819init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2820{
2821 n->nr_partial = 0;
81819f0f
CL
2822 spin_lock_init(&n->list_lock);
2823 INIT_LIST_HEAD(&n->partial);
8ab1372f 2824#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2825 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2826 atomic_long_set(&n->total_objects, 0);
643b1138 2827 INIT_LIST_HEAD(&n->full);
8ab1372f 2828#endif
81819f0f
CL
2829}
2830
55136592 2831static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2832{
6c182dc0 2833 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2834 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2835
8a5ec0ba 2836 /*
d4d84fef
CM
2837 * Must align to double word boundary for the double cmpxchg
2838 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2839 */
d4d84fef
CM
2840 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2841 2 * sizeof(void *));
8a5ec0ba
CL
2842
2843 if (!s->cpu_slab)
2844 return 0;
2845
2846 init_kmem_cache_cpus(s);
4c93c355 2847
8a5ec0ba 2848 return 1;
4c93c355 2849}
4c93c355 2850
51df1142
CL
2851static struct kmem_cache *kmem_cache_node;
2852
81819f0f
CL
2853/*
2854 * No kmalloc_node yet so do it by hand. We know that this is the first
2855 * slab on the node for this slabcache. There are no concurrent accesses
2856 * possible.
2857 *
721ae22a
ZYW
2858 * Note that this function only works on the kmem_cache_node
2859 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2860 * memory on a fresh node that has no slab structures yet.
81819f0f 2861 */
55136592 2862static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2863{
2864 struct page *page;
2865 struct kmem_cache_node *n;
2866
51df1142 2867 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2868
51df1142 2869 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2870
2871 BUG_ON(!page);
a2f92ee7 2872 if (page_to_nid(page) != node) {
f9f58285
FF
2873 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2874 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2875 }
2876
81819f0f
CL
2877 n = page->freelist;
2878 BUG_ON(!n);
51df1142 2879 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2880 page->inuse = 1;
8cb0a506 2881 page->frozen = 0;
51df1142 2882 kmem_cache_node->node[node] = n;
8ab1372f 2883#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2884 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2885 init_tracking(kmem_cache_node, n);
8ab1372f 2886#endif
4053497d 2887 init_kmem_cache_node(n);
51df1142 2888 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2889
67b6c900 2890 /*
1e4dd946
SR
2891 * No locks need to be taken here as it has just been
2892 * initialized and there is no concurrent access.
67b6c900 2893 */
1e4dd946 2894 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2895}
2896
2897static void free_kmem_cache_nodes(struct kmem_cache *s)
2898{
2899 int node;
fa45dc25 2900 struct kmem_cache_node *n;
81819f0f 2901
fa45dc25
CL
2902 for_each_kmem_cache_node(s, node, n) {
2903 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2904 s->node[node] = NULL;
2905 }
2906}
2907
55136592 2908static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2909{
2910 int node;
81819f0f 2911
f64dc58c 2912 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2913 struct kmem_cache_node *n;
2914
73367bd8 2915 if (slab_state == DOWN) {
55136592 2916 early_kmem_cache_node_alloc(node);
73367bd8
AD
2917 continue;
2918 }
51df1142 2919 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2920 GFP_KERNEL, node);
81819f0f 2921
73367bd8
AD
2922 if (!n) {
2923 free_kmem_cache_nodes(s);
2924 return 0;
81819f0f 2925 }
73367bd8 2926
81819f0f 2927 s->node[node] = n;
4053497d 2928 init_kmem_cache_node(n);
81819f0f
CL
2929 }
2930 return 1;
2931}
81819f0f 2932
c0bdb232 2933static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2934{
2935 if (min < MIN_PARTIAL)
2936 min = MIN_PARTIAL;
2937 else if (min > MAX_PARTIAL)
2938 min = MAX_PARTIAL;
2939 s->min_partial = min;
2940}
2941
81819f0f
CL
2942/*
2943 * calculate_sizes() determines the order and the distribution of data within
2944 * a slab object.
2945 */
06b285dc 2946static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2947{
2948 unsigned long flags = s->flags;
3b0efdfa 2949 unsigned long size = s->object_size;
834f3d11 2950 int order;
81819f0f 2951
d8b42bf5
CL
2952 /*
2953 * Round up object size to the next word boundary. We can only
2954 * place the free pointer at word boundaries and this determines
2955 * the possible location of the free pointer.
2956 */
2957 size = ALIGN(size, sizeof(void *));
2958
2959#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2960 /*
2961 * Determine if we can poison the object itself. If the user of
2962 * the slab may touch the object after free or before allocation
2963 * then we should never poison the object itself.
2964 */
2965 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2966 !s->ctor)
81819f0f
CL
2967 s->flags |= __OBJECT_POISON;
2968 else
2969 s->flags &= ~__OBJECT_POISON;
2970
81819f0f
CL
2971
2972 /*
672bba3a 2973 * If we are Redzoning then check if there is some space between the
81819f0f 2974 * end of the object and the free pointer. If not then add an
672bba3a 2975 * additional word to have some bytes to store Redzone information.
81819f0f 2976 */
3b0efdfa 2977 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2978 size += sizeof(void *);
41ecc55b 2979#endif
81819f0f
CL
2980
2981 /*
672bba3a
CL
2982 * With that we have determined the number of bytes in actual use
2983 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2984 */
2985 s->inuse = size;
2986
2987 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2988 s->ctor)) {
81819f0f
CL
2989 /*
2990 * Relocate free pointer after the object if it is not
2991 * permitted to overwrite the first word of the object on
2992 * kmem_cache_free.
2993 *
2994 * This is the case if we do RCU, have a constructor or
2995 * destructor or are poisoning the objects.
2996 */
2997 s->offset = size;
2998 size += sizeof(void *);
2999 }
3000
c12b3c62 3001#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3002 if (flags & SLAB_STORE_USER)
3003 /*
3004 * Need to store information about allocs and frees after
3005 * the object.
3006 */
3007 size += 2 * sizeof(struct track);
3008
be7b3fbc 3009 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3010 /*
3011 * Add some empty padding so that we can catch
3012 * overwrites from earlier objects rather than let
3013 * tracking information or the free pointer be
0211a9c8 3014 * corrupted if a user writes before the start
81819f0f
CL
3015 * of the object.
3016 */
3017 size += sizeof(void *);
41ecc55b 3018#endif
672bba3a 3019
81819f0f
CL
3020 /*
3021 * SLUB stores one object immediately after another beginning from
3022 * offset 0. In order to align the objects we have to simply size
3023 * each object to conform to the alignment.
3024 */
45906855 3025 size = ALIGN(size, s->align);
81819f0f 3026 s->size = size;
06b285dc
CL
3027 if (forced_order >= 0)
3028 order = forced_order;
3029 else
ab9a0f19 3030 order = calculate_order(size, s->reserved);
81819f0f 3031
834f3d11 3032 if (order < 0)
81819f0f
CL
3033 return 0;
3034
b7a49f0d 3035 s->allocflags = 0;
834f3d11 3036 if (order)
b7a49f0d
CL
3037 s->allocflags |= __GFP_COMP;
3038
3039 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3040 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3041
3042 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3043 s->allocflags |= __GFP_RECLAIMABLE;
3044
81819f0f
CL
3045 /*
3046 * Determine the number of objects per slab
3047 */
ab9a0f19
LJ
3048 s->oo = oo_make(order, size, s->reserved);
3049 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3050 if (oo_objects(s->oo) > oo_objects(s->max))
3051 s->max = s->oo;
81819f0f 3052
834f3d11 3053 return !!oo_objects(s->oo);
81819f0f
CL
3054}
3055
8a13a4cc 3056static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3057{
8a13a4cc 3058 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3059 s->reserved = 0;
81819f0f 3060
da9a638c
LJ
3061 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3062 s->reserved = sizeof(struct rcu_head);
81819f0f 3063
06b285dc 3064 if (!calculate_sizes(s, -1))
81819f0f 3065 goto error;
3de47213
DR
3066 if (disable_higher_order_debug) {
3067 /*
3068 * Disable debugging flags that store metadata if the min slab
3069 * order increased.
3070 */
3b0efdfa 3071 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3072 s->flags &= ~DEBUG_METADATA_FLAGS;
3073 s->offset = 0;
3074 if (!calculate_sizes(s, -1))
3075 goto error;
3076 }
3077 }
81819f0f 3078
2565409f
HC
3079#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3080 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3081 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3082 /* Enable fast mode */
3083 s->flags |= __CMPXCHG_DOUBLE;
3084#endif
3085
3b89d7d8
DR
3086 /*
3087 * The larger the object size is, the more pages we want on the partial
3088 * list to avoid pounding the page allocator excessively.
3089 */
49e22585
CL
3090 set_min_partial(s, ilog2(s->size) / 2);
3091
3092 /*
3093 * cpu_partial determined the maximum number of objects kept in the
3094 * per cpu partial lists of a processor.
3095 *
3096 * Per cpu partial lists mainly contain slabs that just have one
3097 * object freed. If they are used for allocation then they can be
3098 * filled up again with minimal effort. The slab will never hit the
3099 * per node partial lists and therefore no locking will be required.
3100 *
3101 * This setting also determines
3102 *
3103 * A) The number of objects from per cpu partial slabs dumped to the
3104 * per node list when we reach the limit.
9f264904 3105 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3106 * per node list when we run out of per cpu objects. We only fetch
3107 * 50% to keep some capacity around for frees.
49e22585 3108 */
345c905d 3109 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3110 s->cpu_partial = 0;
3111 else if (s->size >= PAGE_SIZE)
49e22585
CL
3112 s->cpu_partial = 2;
3113 else if (s->size >= 1024)
3114 s->cpu_partial = 6;
3115 else if (s->size >= 256)
3116 s->cpu_partial = 13;
3117 else
3118 s->cpu_partial = 30;
3119
81819f0f 3120#ifdef CONFIG_NUMA
e2cb96b7 3121 s->remote_node_defrag_ratio = 1000;
81819f0f 3122#endif
55136592 3123 if (!init_kmem_cache_nodes(s))
dfb4f096 3124 goto error;
81819f0f 3125
55136592 3126 if (alloc_kmem_cache_cpus(s))
278b1bb1 3127 return 0;
ff12059e 3128
4c93c355 3129 free_kmem_cache_nodes(s);
81819f0f
CL
3130error:
3131 if (flags & SLAB_PANIC)
3132 panic("Cannot create slab %s size=%lu realsize=%u "
3133 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3134 s->name, (unsigned long)s->size, s->size,
3135 oo_order(s->oo), s->offset, flags);
278b1bb1 3136 return -EINVAL;
81819f0f 3137}
81819f0f 3138
33b12c38
CL
3139static void list_slab_objects(struct kmem_cache *s, struct page *page,
3140 const char *text)
3141{
3142#ifdef CONFIG_SLUB_DEBUG
3143 void *addr = page_address(page);
3144 void *p;
a5dd5c11
NK
3145 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3146 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3147 if (!map)
3148 return;
945cf2b6 3149 slab_err(s, page, text, s->name);
33b12c38 3150 slab_lock(page);
33b12c38 3151
5f80b13a 3152 get_map(s, page, map);
33b12c38
CL
3153 for_each_object(p, s, addr, page->objects) {
3154
3155 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3156 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3157 print_tracking(s, p);
3158 }
3159 }
3160 slab_unlock(page);
bbd7d57b 3161 kfree(map);
33b12c38
CL
3162#endif
3163}
3164
81819f0f 3165/*
599870b1 3166 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3167 * This is called from kmem_cache_close(). We must be the last thread
3168 * using the cache and therefore we do not need to lock anymore.
81819f0f 3169 */
599870b1 3170static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3171{
81819f0f
CL
3172 struct page *page, *h;
3173
33b12c38 3174 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3175 if (!page->inuse) {
1e4dd946 3176 __remove_partial(n, page);
81819f0f 3177 discard_slab(s, page);
33b12c38
CL
3178 } else {
3179 list_slab_objects(s, page,
945cf2b6 3180 "Objects remaining in %s on kmem_cache_close()");
599870b1 3181 }
33b12c38 3182 }
81819f0f
CL
3183}
3184
3185/*
672bba3a 3186 * Release all resources used by a slab cache.
81819f0f 3187 */
0c710013 3188static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3189{
3190 int node;
fa45dc25 3191 struct kmem_cache_node *n;
81819f0f
CL
3192
3193 flush_all(s);
81819f0f 3194 /* Attempt to free all objects */
fa45dc25 3195 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3196 free_partial(s, n);
3197 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3198 return 1;
3199 }
945cf2b6 3200 free_percpu(s->cpu_slab);
81819f0f
CL
3201 free_kmem_cache_nodes(s);
3202 return 0;
3203}
3204
945cf2b6 3205int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3206{
41a21285 3207 return kmem_cache_close(s);
81819f0f 3208}
81819f0f
CL
3209
3210/********************************************************************
3211 * Kmalloc subsystem
3212 *******************************************************************/
3213
81819f0f
CL
3214static int __init setup_slub_min_order(char *str)
3215{
06428780 3216 get_option(&str, &slub_min_order);
81819f0f
CL
3217
3218 return 1;
3219}
3220
3221__setup("slub_min_order=", setup_slub_min_order);
3222
3223static int __init setup_slub_max_order(char *str)
3224{
06428780 3225 get_option(&str, &slub_max_order);
818cf590 3226 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3227
3228 return 1;
3229}
3230
3231__setup("slub_max_order=", setup_slub_max_order);
3232
3233static int __init setup_slub_min_objects(char *str)
3234{
06428780 3235 get_option(&str, &slub_min_objects);
81819f0f
CL
3236
3237 return 1;
3238}
3239
3240__setup("slub_min_objects=", setup_slub_min_objects);
3241
81819f0f
CL
3242void *__kmalloc(size_t size, gfp_t flags)
3243{
aadb4bc4 3244 struct kmem_cache *s;
5b882be4 3245 void *ret;
81819f0f 3246
95a05b42 3247 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3248 return kmalloc_large(size, flags);
aadb4bc4 3249
2c59dd65 3250 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3251
3252 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3253 return s;
3254
2b847c3c 3255 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3256
ca2b84cb 3257 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3258
3259 return ret;
81819f0f
CL
3260}
3261EXPORT_SYMBOL(__kmalloc);
3262
5d1f57e4 3263#ifdef CONFIG_NUMA
f619cfe1
CL
3264static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3265{
b1eeab67 3266 struct page *page;
e4f7c0b4 3267 void *ptr = NULL;
f619cfe1 3268
52383431
VD
3269 flags |= __GFP_COMP | __GFP_NOTRACK;
3270 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3271 if (page)
e4f7c0b4
CM
3272 ptr = page_address(page);
3273
d56791b3 3274 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3275 return ptr;
f619cfe1
CL
3276}
3277
81819f0f
CL
3278void *__kmalloc_node(size_t size, gfp_t flags, int node)
3279{
aadb4bc4 3280 struct kmem_cache *s;
5b882be4 3281 void *ret;
81819f0f 3282
95a05b42 3283 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3284 ret = kmalloc_large_node(size, flags, node);
3285
ca2b84cb
EGM
3286 trace_kmalloc_node(_RET_IP_, ret,
3287 size, PAGE_SIZE << get_order(size),
3288 flags, node);
5b882be4
EGM
3289
3290 return ret;
3291 }
aadb4bc4 3292
2c59dd65 3293 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3294
3295 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3296 return s;
3297
2b847c3c 3298 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3299
ca2b84cb 3300 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3301
3302 return ret;
81819f0f
CL
3303}
3304EXPORT_SYMBOL(__kmalloc_node);
3305#endif
3306
3307size_t ksize(const void *object)
3308{
272c1d21 3309 struct page *page;
81819f0f 3310
ef8b4520 3311 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3312 return 0;
3313
294a80a8 3314 page = virt_to_head_page(object);
294a80a8 3315
76994412
PE
3316 if (unlikely(!PageSlab(page))) {
3317 WARN_ON(!PageCompound(page));
294a80a8 3318 return PAGE_SIZE << compound_order(page);
76994412 3319 }
81819f0f 3320
1b4f59e3 3321 return slab_ksize(page->slab_cache);
81819f0f 3322}
b1aabecd 3323EXPORT_SYMBOL(ksize);
81819f0f
CL
3324
3325void kfree(const void *x)
3326{
81819f0f 3327 struct page *page;
5bb983b0 3328 void *object = (void *)x;
81819f0f 3329
2121db74
PE
3330 trace_kfree(_RET_IP_, x);
3331
2408c550 3332 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3333 return;
3334
b49af68f 3335 page = virt_to_head_page(x);
aadb4bc4 3336 if (unlikely(!PageSlab(page))) {
0937502a 3337 BUG_ON(!PageCompound(page));
d56791b3 3338 kfree_hook(x);
52383431 3339 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3340 return;
3341 }
1b4f59e3 3342 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3343}
3344EXPORT_SYMBOL(kfree);
3345
2086d26a 3346/*
672bba3a
CL
3347 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3348 * the remaining slabs by the number of items in use. The slabs with the
3349 * most items in use come first. New allocations will then fill those up
3350 * and thus they can be removed from the partial lists.
3351 *
3352 * The slabs with the least items are placed last. This results in them
3353 * being allocated from last increasing the chance that the last objects
3354 * are freed in them.
2086d26a 3355 */
03afc0e2 3356int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3357{
3358 int node;
3359 int i;
3360 struct kmem_cache_node *n;
3361 struct page *page;
3362 struct page *t;
205ab99d 3363 int objects = oo_objects(s->max);
2086d26a 3364 struct list_head *slabs_by_inuse =
834f3d11 3365 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3366 unsigned long flags;
3367
3368 if (!slabs_by_inuse)
3369 return -ENOMEM;
3370
3371 flush_all(s);
fa45dc25 3372 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3373 if (!n->nr_partial)
3374 continue;
3375
834f3d11 3376 for (i = 0; i < objects; i++)
2086d26a
CL
3377 INIT_LIST_HEAD(slabs_by_inuse + i);
3378
3379 spin_lock_irqsave(&n->list_lock, flags);
3380
3381 /*
672bba3a 3382 * Build lists indexed by the items in use in each slab.
2086d26a 3383 *
672bba3a
CL
3384 * Note that concurrent frees may occur while we hold the
3385 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3386 */
3387 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3388 list_move(&page->lru, slabs_by_inuse + page->inuse);
3389 if (!page->inuse)
3390 n->nr_partial--;
2086d26a
CL
3391 }
3392
2086d26a 3393 /*
672bba3a
CL
3394 * Rebuild the partial list with the slabs filled up most
3395 * first and the least used slabs at the end.
2086d26a 3396 */
69cb8e6b 3397 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3398 list_splice(slabs_by_inuse + i, n->partial.prev);
3399
2086d26a 3400 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3401
3402 /* Release empty slabs */
3403 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3404 discard_slab(s, page);
2086d26a
CL
3405 }
3406
3407 kfree(slabs_by_inuse);
3408 return 0;
3409}
2086d26a 3410
b9049e23
YG
3411static int slab_mem_going_offline_callback(void *arg)
3412{
3413 struct kmem_cache *s;
3414
18004c5d 3415 mutex_lock(&slab_mutex);
b9049e23 3416 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3417 __kmem_cache_shrink(s);
18004c5d 3418 mutex_unlock(&slab_mutex);
b9049e23
YG
3419
3420 return 0;
3421}
3422
3423static void slab_mem_offline_callback(void *arg)
3424{
3425 struct kmem_cache_node *n;
3426 struct kmem_cache *s;
3427 struct memory_notify *marg = arg;
3428 int offline_node;
3429
b9d5ab25 3430 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3431
3432 /*
3433 * If the node still has available memory. we need kmem_cache_node
3434 * for it yet.
3435 */
3436 if (offline_node < 0)
3437 return;
3438
18004c5d 3439 mutex_lock(&slab_mutex);
b9049e23
YG
3440 list_for_each_entry(s, &slab_caches, list) {
3441 n = get_node(s, offline_node);
3442 if (n) {
3443 /*
3444 * if n->nr_slabs > 0, slabs still exist on the node
3445 * that is going down. We were unable to free them,
c9404c9c 3446 * and offline_pages() function shouldn't call this
b9049e23
YG
3447 * callback. So, we must fail.
3448 */
0f389ec6 3449 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3450
3451 s->node[offline_node] = NULL;
8de66a0c 3452 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3453 }
3454 }
18004c5d 3455 mutex_unlock(&slab_mutex);
b9049e23
YG
3456}
3457
3458static int slab_mem_going_online_callback(void *arg)
3459{
3460 struct kmem_cache_node *n;
3461 struct kmem_cache *s;
3462 struct memory_notify *marg = arg;
b9d5ab25 3463 int nid = marg->status_change_nid_normal;
b9049e23
YG
3464 int ret = 0;
3465
3466 /*
3467 * If the node's memory is already available, then kmem_cache_node is
3468 * already created. Nothing to do.
3469 */
3470 if (nid < 0)
3471 return 0;
3472
3473 /*
0121c619 3474 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3475 * allocate a kmem_cache_node structure in order to bring the node
3476 * online.
3477 */
18004c5d 3478 mutex_lock(&slab_mutex);
b9049e23
YG
3479 list_for_each_entry(s, &slab_caches, list) {
3480 /*
3481 * XXX: kmem_cache_alloc_node will fallback to other nodes
3482 * since memory is not yet available from the node that
3483 * is brought up.
3484 */
8de66a0c 3485 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3486 if (!n) {
3487 ret = -ENOMEM;
3488 goto out;
3489 }
4053497d 3490 init_kmem_cache_node(n);
b9049e23
YG
3491 s->node[nid] = n;
3492 }
3493out:
18004c5d 3494 mutex_unlock(&slab_mutex);
b9049e23
YG
3495 return ret;
3496}
3497
3498static int slab_memory_callback(struct notifier_block *self,
3499 unsigned long action, void *arg)
3500{
3501 int ret = 0;
3502
3503 switch (action) {
3504 case MEM_GOING_ONLINE:
3505 ret = slab_mem_going_online_callback(arg);
3506 break;
3507 case MEM_GOING_OFFLINE:
3508 ret = slab_mem_going_offline_callback(arg);
3509 break;
3510 case MEM_OFFLINE:
3511 case MEM_CANCEL_ONLINE:
3512 slab_mem_offline_callback(arg);
3513 break;
3514 case MEM_ONLINE:
3515 case MEM_CANCEL_OFFLINE:
3516 break;
3517 }
dc19f9db
KH
3518 if (ret)
3519 ret = notifier_from_errno(ret);
3520 else
3521 ret = NOTIFY_OK;
b9049e23
YG
3522 return ret;
3523}
3524
3ac38faa
AM
3525static struct notifier_block slab_memory_callback_nb = {
3526 .notifier_call = slab_memory_callback,
3527 .priority = SLAB_CALLBACK_PRI,
3528};
b9049e23 3529
81819f0f
CL
3530/********************************************************************
3531 * Basic setup of slabs
3532 *******************************************************************/
3533
51df1142
CL
3534/*
3535 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3536 * the page allocator. Allocate them properly then fix up the pointers
3537 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3538 */
3539
dffb4d60 3540static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3541{
3542 int node;
dffb4d60 3543 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3544 struct kmem_cache_node *n;
51df1142 3545
dffb4d60 3546 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3547
7d557b3c
GC
3548 /*
3549 * This runs very early, and only the boot processor is supposed to be
3550 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3551 * IPIs around.
3552 */
3553 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3554 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3555 struct page *p;
3556
fa45dc25
CL
3557 list_for_each_entry(p, &n->partial, lru)
3558 p->slab_cache = s;
51df1142 3559
607bf324 3560#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3561 list_for_each_entry(p, &n->full, lru)
3562 p->slab_cache = s;
51df1142 3563#endif
51df1142 3564 }
dffb4d60
CL
3565 list_add(&s->list, &slab_caches);
3566 return s;
51df1142
CL
3567}
3568
81819f0f
CL
3569void __init kmem_cache_init(void)
3570{
dffb4d60
CL
3571 static __initdata struct kmem_cache boot_kmem_cache,
3572 boot_kmem_cache_node;
51df1142 3573
fc8d8620
SG
3574 if (debug_guardpage_minorder())
3575 slub_max_order = 0;
3576
dffb4d60
CL
3577 kmem_cache_node = &boot_kmem_cache_node;
3578 kmem_cache = &boot_kmem_cache;
51df1142 3579
dffb4d60
CL
3580 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3581 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3582
3ac38faa 3583 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3584
3585 /* Able to allocate the per node structures */
3586 slab_state = PARTIAL;
3587
dffb4d60
CL
3588 create_boot_cache(kmem_cache, "kmem_cache",
3589 offsetof(struct kmem_cache, node) +
3590 nr_node_ids * sizeof(struct kmem_cache_node *),
3591 SLAB_HWCACHE_ALIGN);
8a13a4cc 3592
dffb4d60 3593 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3594
51df1142
CL
3595 /*
3596 * Allocate kmem_cache_node properly from the kmem_cache slab.
3597 * kmem_cache_node is separately allocated so no need to
3598 * update any list pointers.
3599 */
dffb4d60 3600 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3601
3602 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3603 create_kmalloc_caches(0);
81819f0f
CL
3604
3605#ifdef CONFIG_SMP
3606 register_cpu_notifier(&slab_notifier);
9dfc6e68 3607#endif
81819f0f 3608
f9f58285 3609 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3610 cache_line_size(),
81819f0f
CL
3611 slub_min_order, slub_max_order, slub_min_objects,
3612 nr_cpu_ids, nr_node_ids);
3613}
3614
7e85ee0c
PE
3615void __init kmem_cache_init_late(void)
3616{
7e85ee0c
PE
3617}
3618
2633d7a0 3619struct kmem_cache *
a44cb944
VD
3620__kmem_cache_alias(const char *name, size_t size, size_t align,
3621 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3622{
3623 struct kmem_cache *s;
3624
a44cb944 3625 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3626 if (s) {
84d0ddd6
VD
3627 int i;
3628 struct kmem_cache *c;
3629
81819f0f 3630 s->refcount++;
84d0ddd6 3631
81819f0f
CL
3632 /*
3633 * Adjust the object sizes so that we clear
3634 * the complete object on kzalloc.
3635 */
3b0efdfa 3636 s->object_size = max(s->object_size, (int)size);
81819f0f 3637 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3638
84d0ddd6
VD
3639 for_each_memcg_cache_index(i) {
3640 c = cache_from_memcg_idx(s, i);
3641 if (!c)
3642 continue;
3643 c->object_size = s->object_size;
3644 c->inuse = max_t(int, c->inuse,
3645 ALIGN(size, sizeof(void *)));
3646 }
3647
7b8f3b66 3648 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3649 s->refcount--;
cbb79694 3650 s = NULL;
7b8f3b66 3651 }
a0e1d1be 3652 }
6446faa2 3653
cbb79694
CL
3654 return s;
3655}
84c1cf62 3656
8a13a4cc 3657int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3658{
aac3a166
PE
3659 int err;
3660
3661 err = kmem_cache_open(s, flags);
3662 if (err)
3663 return err;
20cea968 3664
45530c44
CL
3665 /* Mutex is not taken during early boot */
3666 if (slab_state <= UP)
3667 return 0;
3668
107dab5c 3669 memcg_propagate_slab_attrs(s);
aac3a166 3670 err = sysfs_slab_add(s);
aac3a166
PE
3671 if (err)
3672 kmem_cache_close(s);
20cea968 3673
aac3a166 3674 return err;
81819f0f 3675}
81819f0f 3676
81819f0f 3677#ifdef CONFIG_SMP
81819f0f 3678/*
672bba3a
CL
3679 * Use the cpu notifier to insure that the cpu slabs are flushed when
3680 * necessary.
81819f0f 3681 */
0db0628d 3682static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3683 unsigned long action, void *hcpu)
3684{
3685 long cpu = (long)hcpu;
5b95a4ac
CL
3686 struct kmem_cache *s;
3687 unsigned long flags;
81819f0f
CL
3688
3689 switch (action) {
3690 case CPU_UP_CANCELED:
8bb78442 3691 case CPU_UP_CANCELED_FROZEN:
81819f0f 3692 case CPU_DEAD:
8bb78442 3693 case CPU_DEAD_FROZEN:
18004c5d 3694 mutex_lock(&slab_mutex);
5b95a4ac
CL
3695 list_for_each_entry(s, &slab_caches, list) {
3696 local_irq_save(flags);
3697 __flush_cpu_slab(s, cpu);
3698 local_irq_restore(flags);
3699 }
18004c5d 3700 mutex_unlock(&slab_mutex);
81819f0f
CL
3701 break;
3702 default:
3703 break;
3704 }
3705 return NOTIFY_OK;
3706}
3707
0db0628d 3708static struct notifier_block slab_notifier = {
3adbefee 3709 .notifier_call = slab_cpuup_callback
06428780 3710};
81819f0f
CL
3711
3712#endif
3713
ce71e27c 3714void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3715{
aadb4bc4 3716 struct kmem_cache *s;
94b528d0 3717 void *ret;
aadb4bc4 3718
95a05b42 3719 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3720 return kmalloc_large(size, gfpflags);
3721
2c59dd65 3722 s = kmalloc_slab(size, gfpflags);
81819f0f 3723
2408c550 3724 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3725 return s;
81819f0f 3726
2b847c3c 3727 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3728
25985edc 3729 /* Honor the call site pointer we received. */
ca2b84cb 3730 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3731
3732 return ret;
81819f0f
CL
3733}
3734
5d1f57e4 3735#ifdef CONFIG_NUMA
81819f0f 3736void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3737 int node, unsigned long caller)
81819f0f 3738{
aadb4bc4 3739 struct kmem_cache *s;
94b528d0 3740 void *ret;
aadb4bc4 3741
95a05b42 3742 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3743 ret = kmalloc_large_node(size, gfpflags, node);
3744
3745 trace_kmalloc_node(caller, ret,
3746 size, PAGE_SIZE << get_order(size),
3747 gfpflags, node);
3748
3749 return ret;
3750 }
eada35ef 3751
2c59dd65 3752 s = kmalloc_slab(size, gfpflags);
81819f0f 3753
2408c550 3754 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3755 return s;
81819f0f 3756
2b847c3c 3757 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3758
25985edc 3759 /* Honor the call site pointer we received. */
ca2b84cb 3760 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3761
3762 return ret;
81819f0f 3763}
5d1f57e4 3764#endif
81819f0f 3765
ab4d5ed5 3766#ifdef CONFIG_SYSFS
205ab99d
CL
3767static int count_inuse(struct page *page)
3768{
3769 return page->inuse;
3770}
3771
3772static int count_total(struct page *page)
3773{
3774 return page->objects;
3775}
ab4d5ed5 3776#endif
205ab99d 3777
ab4d5ed5 3778#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3779static int validate_slab(struct kmem_cache *s, struct page *page,
3780 unsigned long *map)
53e15af0
CL
3781{
3782 void *p;
a973e9dd 3783 void *addr = page_address(page);
53e15af0
CL
3784
3785 if (!check_slab(s, page) ||
3786 !on_freelist(s, page, NULL))
3787 return 0;
3788
3789 /* Now we know that a valid freelist exists */
39b26464 3790 bitmap_zero(map, page->objects);
53e15af0 3791
5f80b13a
CL
3792 get_map(s, page, map);
3793 for_each_object(p, s, addr, page->objects) {
3794 if (test_bit(slab_index(p, s, addr), map))
3795 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3796 return 0;
53e15af0
CL
3797 }
3798
224a88be 3799 for_each_object(p, s, addr, page->objects)
7656c72b 3800 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3801 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3802 return 0;
3803 return 1;
3804}
3805
434e245d
CL
3806static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3807 unsigned long *map)
53e15af0 3808{
881db7fb
CL
3809 slab_lock(page);
3810 validate_slab(s, page, map);
3811 slab_unlock(page);
53e15af0
CL
3812}
3813
434e245d
CL
3814static int validate_slab_node(struct kmem_cache *s,
3815 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3816{
3817 unsigned long count = 0;
3818 struct page *page;
3819 unsigned long flags;
3820
3821 spin_lock_irqsave(&n->list_lock, flags);
3822
3823 list_for_each_entry(page, &n->partial, lru) {
434e245d 3824 validate_slab_slab(s, page, map);
53e15af0
CL
3825 count++;
3826 }
3827 if (count != n->nr_partial)
f9f58285
FF
3828 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3829 s->name, count, n->nr_partial);
53e15af0
CL
3830
3831 if (!(s->flags & SLAB_STORE_USER))
3832 goto out;
3833
3834 list_for_each_entry(page, &n->full, lru) {
434e245d 3835 validate_slab_slab(s, page, map);
53e15af0
CL
3836 count++;
3837 }
3838 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3839 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3840 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3841
3842out:
3843 spin_unlock_irqrestore(&n->list_lock, flags);
3844 return count;
3845}
3846
434e245d 3847static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3848{
3849 int node;
3850 unsigned long count = 0;
205ab99d 3851 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3852 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3853 struct kmem_cache_node *n;
434e245d
CL
3854
3855 if (!map)
3856 return -ENOMEM;
53e15af0
CL
3857
3858 flush_all(s);
fa45dc25 3859 for_each_kmem_cache_node(s, node, n)
434e245d 3860 count += validate_slab_node(s, n, map);
434e245d 3861 kfree(map);
53e15af0
CL
3862 return count;
3863}
88a420e4 3864/*
672bba3a 3865 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3866 * and freed.
3867 */
3868
3869struct location {
3870 unsigned long count;
ce71e27c 3871 unsigned long addr;
45edfa58
CL
3872 long long sum_time;
3873 long min_time;
3874 long max_time;
3875 long min_pid;
3876 long max_pid;
174596a0 3877 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3878 nodemask_t nodes;
88a420e4
CL
3879};
3880
3881struct loc_track {
3882 unsigned long max;
3883 unsigned long count;
3884 struct location *loc;
3885};
3886
3887static void free_loc_track(struct loc_track *t)
3888{
3889 if (t->max)
3890 free_pages((unsigned long)t->loc,
3891 get_order(sizeof(struct location) * t->max));
3892}
3893
68dff6a9 3894static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3895{
3896 struct location *l;
3897 int order;
3898
88a420e4
CL
3899 order = get_order(sizeof(struct location) * max);
3900
68dff6a9 3901 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3902 if (!l)
3903 return 0;
3904
3905 if (t->count) {
3906 memcpy(l, t->loc, sizeof(struct location) * t->count);
3907 free_loc_track(t);
3908 }
3909 t->max = max;
3910 t->loc = l;
3911 return 1;
3912}
3913
3914static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3915 const struct track *track)
88a420e4
CL
3916{
3917 long start, end, pos;
3918 struct location *l;
ce71e27c 3919 unsigned long caddr;
45edfa58 3920 unsigned long age = jiffies - track->when;
88a420e4
CL
3921
3922 start = -1;
3923 end = t->count;
3924
3925 for ( ; ; ) {
3926 pos = start + (end - start + 1) / 2;
3927
3928 /*
3929 * There is nothing at "end". If we end up there
3930 * we need to add something to before end.
3931 */
3932 if (pos == end)
3933 break;
3934
3935 caddr = t->loc[pos].addr;
45edfa58
CL
3936 if (track->addr == caddr) {
3937
3938 l = &t->loc[pos];
3939 l->count++;
3940 if (track->when) {
3941 l->sum_time += age;
3942 if (age < l->min_time)
3943 l->min_time = age;
3944 if (age > l->max_time)
3945 l->max_time = age;
3946
3947 if (track->pid < l->min_pid)
3948 l->min_pid = track->pid;
3949 if (track->pid > l->max_pid)
3950 l->max_pid = track->pid;
3951
174596a0
RR
3952 cpumask_set_cpu(track->cpu,
3953 to_cpumask(l->cpus));
45edfa58
CL
3954 }
3955 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3956 return 1;
3957 }
3958
45edfa58 3959 if (track->addr < caddr)
88a420e4
CL
3960 end = pos;
3961 else
3962 start = pos;
3963 }
3964
3965 /*
672bba3a 3966 * Not found. Insert new tracking element.
88a420e4 3967 */
68dff6a9 3968 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3969 return 0;
3970
3971 l = t->loc + pos;
3972 if (pos < t->count)
3973 memmove(l + 1, l,
3974 (t->count - pos) * sizeof(struct location));
3975 t->count++;
3976 l->count = 1;
45edfa58
CL
3977 l->addr = track->addr;
3978 l->sum_time = age;
3979 l->min_time = age;
3980 l->max_time = age;
3981 l->min_pid = track->pid;
3982 l->max_pid = track->pid;
174596a0
RR
3983 cpumask_clear(to_cpumask(l->cpus));
3984 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3985 nodes_clear(l->nodes);
3986 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3987 return 1;
3988}
3989
3990static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3991 struct page *page, enum track_item alloc,
a5dd5c11 3992 unsigned long *map)
88a420e4 3993{
a973e9dd 3994 void *addr = page_address(page);
88a420e4
CL
3995 void *p;
3996
39b26464 3997 bitmap_zero(map, page->objects);
5f80b13a 3998 get_map(s, page, map);
88a420e4 3999
224a88be 4000 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4001 if (!test_bit(slab_index(p, s, addr), map))
4002 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4003}
4004
4005static int list_locations(struct kmem_cache *s, char *buf,
4006 enum track_item alloc)
4007{
e374d483 4008 int len = 0;
88a420e4 4009 unsigned long i;
68dff6a9 4010 struct loc_track t = { 0, 0, NULL };
88a420e4 4011 int node;
bbd7d57b
ED
4012 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4013 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4014 struct kmem_cache_node *n;
88a420e4 4015
bbd7d57b
ED
4016 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4017 GFP_TEMPORARY)) {
4018 kfree(map);
68dff6a9 4019 return sprintf(buf, "Out of memory\n");
bbd7d57b 4020 }
88a420e4
CL
4021 /* Push back cpu slabs */
4022 flush_all(s);
4023
fa45dc25 4024 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4025 unsigned long flags;
4026 struct page *page;
4027
9e86943b 4028 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4029 continue;
4030
4031 spin_lock_irqsave(&n->list_lock, flags);
4032 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4033 process_slab(&t, s, page, alloc, map);
88a420e4 4034 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4035 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4036 spin_unlock_irqrestore(&n->list_lock, flags);
4037 }
4038
4039 for (i = 0; i < t.count; i++) {
45edfa58 4040 struct location *l = &t.loc[i];
88a420e4 4041
9c246247 4042 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4043 break;
e374d483 4044 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4045
4046 if (l->addr)
62c70bce 4047 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4048 else
e374d483 4049 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4050
4051 if (l->sum_time != l->min_time) {
e374d483 4052 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4053 l->min_time,
4054 (long)div_u64(l->sum_time, l->count),
4055 l->max_time);
45edfa58 4056 } else
e374d483 4057 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4058 l->min_time);
4059
4060 if (l->min_pid != l->max_pid)
e374d483 4061 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4062 l->min_pid, l->max_pid);
4063 else
e374d483 4064 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4065 l->min_pid);
4066
174596a0
RR
4067 if (num_online_cpus() > 1 &&
4068 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4069 len < PAGE_SIZE - 60) {
4070 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4071 len += cpulist_scnprintf(buf + len,
4072 PAGE_SIZE - len - 50,
174596a0 4073 to_cpumask(l->cpus));
45edfa58
CL
4074 }
4075
62bc62a8 4076 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4077 len < PAGE_SIZE - 60) {
4078 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4079 len += nodelist_scnprintf(buf + len,
4080 PAGE_SIZE - len - 50,
4081 l->nodes);
45edfa58
CL
4082 }
4083
e374d483 4084 len += sprintf(buf + len, "\n");
88a420e4
CL
4085 }
4086
4087 free_loc_track(&t);
bbd7d57b 4088 kfree(map);
88a420e4 4089 if (!t.count)
e374d483
HH
4090 len += sprintf(buf, "No data\n");
4091 return len;
88a420e4 4092}
ab4d5ed5 4093#endif
88a420e4 4094
a5a84755 4095#ifdef SLUB_RESILIENCY_TEST
c07b8183 4096static void __init resiliency_test(void)
a5a84755
CL
4097{
4098 u8 *p;
4099
95a05b42 4100 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4101
f9f58285
FF
4102 pr_err("SLUB resiliency testing\n");
4103 pr_err("-----------------------\n");
4104 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4105
4106 p = kzalloc(16, GFP_KERNEL);
4107 p[16] = 0x12;
f9f58285
FF
4108 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4109 p + 16);
a5a84755
CL
4110
4111 validate_slab_cache(kmalloc_caches[4]);
4112
4113 /* Hmmm... The next two are dangerous */
4114 p = kzalloc(32, GFP_KERNEL);
4115 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4116 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4117 p);
4118 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4119
4120 validate_slab_cache(kmalloc_caches[5]);
4121 p = kzalloc(64, GFP_KERNEL);
4122 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4123 *p = 0x56;
f9f58285
FF
4124 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4125 p);
4126 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4127 validate_slab_cache(kmalloc_caches[6]);
4128
f9f58285 4129 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4130 p = kzalloc(128, GFP_KERNEL);
4131 kfree(p);
4132 *p = 0x78;
f9f58285 4133 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4134 validate_slab_cache(kmalloc_caches[7]);
4135
4136 p = kzalloc(256, GFP_KERNEL);
4137 kfree(p);
4138 p[50] = 0x9a;
f9f58285 4139 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4140 validate_slab_cache(kmalloc_caches[8]);
4141
4142 p = kzalloc(512, GFP_KERNEL);
4143 kfree(p);
4144 p[512] = 0xab;
f9f58285 4145 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4146 validate_slab_cache(kmalloc_caches[9]);
4147}
4148#else
4149#ifdef CONFIG_SYSFS
4150static void resiliency_test(void) {};
4151#endif
4152#endif
4153
ab4d5ed5 4154#ifdef CONFIG_SYSFS
81819f0f 4155enum slab_stat_type {
205ab99d
CL
4156 SL_ALL, /* All slabs */
4157 SL_PARTIAL, /* Only partially allocated slabs */
4158 SL_CPU, /* Only slabs used for cpu caches */
4159 SL_OBJECTS, /* Determine allocated objects not slabs */
4160 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4161};
4162
205ab99d 4163#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4164#define SO_PARTIAL (1 << SL_PARTIAL)
4165#define SO_CPU (1 << SL_CPU)
4166#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4167#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4168
62e5c4b4
CG
4169static ssize_t show_slab_objects(struct kmem_cache *s,
4170 char *buf, unsigned long flags)
81819f0f
CL
4171{
4172 unsigned long total = 0;
81819f0f
CL
4173 int node;
4174 int x;
4175 unsigned long *nodes;
81819f0f 4176
e35e1a97 4177 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4178 if (!nodes)
4179 return -ENOMEM;
81819f0f 4180
205ab99d
CL
4181 if (flags & SO_CPU) {
4182 int cpu;
81819f0f 4183
205ab99d 4184 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4185 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4186 cpu);
ec3ab083 4187 int node;
49e22585 4188 struct page *page;
dfb4f096 4189
bc6697d8 4190 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4191 if (!page)
4192 continue;
205ab99d 4193
ec3ab083
CL
4194 node = page_to_nid(page);
4195 if (flags & SO_TOTAL)
4196 x = page->objects;
4197 else if (flags & SO_OBJECTS)
4198 x = page->inuse;
4199 else
4200 x = 1;
49e22585 4201
ec3ab083
CL
4202 total += x;
4203 nodes[node] += x;
4204
4205 page = ACCESS_ONCE(c->partial);
49e22585 4206 if (page) {
8afb1474
LZ
4207 node = page_to_nid(page);
4208 if (flags & SO_TOTAL)
4209 WARN_ON_ONCE(1);
4210 else if (flags & SO_OBJECTS)
4211 WARN_ON_ONCE(1);
4212 else
4213 x = page->pages;
bc6697d8
ED
4214 total += x;
4215 nodes[node] += x;
49e22585 4216 }
81819f0f
CL
4217 }
4218 }
4219
bfc8c901 4220 get_online_mems();
ab4d5ed5 4221#ifdef CONFIG_SLUB_DEBUG
205ab99d 4222 if (flags & SO_ALL) {
fa45dc25
CL
4223 struct kmem_cache_node *n;
4224
4225 for_each_kmem_cache_node(s, node, n) {
205ab99d 4226
d0e0ac97
CG
4227 if (flags & SO_TOTAL)
4228 x = atomic_long_read(&n->total_objects);
4229 else if (flags & SO_OBJECTS)
4230 x = atomic_long_read(&n->total_objects) -
4231 count_partial(n, count_free);
81819f0f 4232 else
205ab99d 4233 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4234 total += x;
4235 nodes[node] += x;
4236 }
4237
ab4d5ed5
CL
4238 } else
4239#endif
4240 if (flags & SO_PARTIAL) {
fa45dc25 4241 struct kmem_cache_node *n;
81819f0f 4242
fa45dc25 4243 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4244 if (flags & SO_TOTAL)
4245 x = count_partial(n, count_total);
4246 else if (flags & SO_OBJECTS)
4247 x = count_partial(n, count_inuse);
81819f0f 4248 else
205ab99d 4249 x = n->nr_partial;
81819f0f
CL
4250 total += x;
4251 nodes[node] += x;
4252 }
4253 }
81819f0f
CL
4254 x = sprintf(buf, "%lu", total);
4255#ifdef CONFIG_NUMA
fa45dc25 4256 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4257 if (nodes[node])
4258 x += sprintf(buf + x, " N%d=%lu",
4259 node, nodes[node]);
4260#endif
bfc8c901 4261 put_online_mems();
81819f0f
CL
4262 kfree(nodes);
4263 return x + sprintf(buf + x, "\n");
4264}
4265
ab4d5ed5 4266#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4267static int any_slab_objects(struct kmem_cache *s)
4268{
4269 int node;
fa45dc25 4270 struct kmem_cache_node *n;
81819f0f 4271
fa45dc25 4272 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4273 if (atomic_long_read(&n->total_objects))
81819f0f 4274 return 1;
fa45dc25 4275
81819f0f
CL
4276 return 0;
4277}
ab4d5ed5 4278#endif
81819f0f
CL
4279
4280#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4281#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4282
4283struct slab_attribute {
4284 struct attribute attr;
4285 ssize_t (*show)(struct kmem_cache *s, char *buf);
4286 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4287};
4288
4289#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4290 static struct slab_attribute _name##_attr = \
4291 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4292
4293#define SLAB_ATTR(_name) \
4294 static struct slab_attribute _name##_attr = \
ab067e99 4295 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4296
81819f0f
CL
4297static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4298{
4299 return sprintf(buf, "%d\n", s->size);
4300}
4301SLAB_ATTR_RO(slab_size);
4302
4303static ssize_t align_show(struct kmem_cache *s, char *buf)
4304{
4305 return sprintf(buf, "%d\n", s->align);
4306}
4307SLAB_ATTR_RO(align);
4308
4309static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4310{
3b0efdfa 4311 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4312}
4313SLAB_ATTR_RO(object_size);
4314
4315static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4316{
834f3d11 4317 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4318}
4319SLAB_ATTR_RO(objs_per_slab);
4320
06b285dc
CL
4321static ssize_t order_store(struct kmem_cache *s,
4322 const char *buf, size_t length)
4323{
0121c619
CL
4324 unsigned long order;
4325 int err;
4326
3dbb95f7 4327 err = kstrtoul(buf, 10, &order);
0121c619
CL
4328 if (err)
4329 return err;
06b285dc
CL
4330
4331 if (order > slub_max_order || order < slub_min_order)
4332 return -EINVAL;
4333
4334 calculate_sizes(s, order);
4335 return length;
4336}
4337
81819f0f
CL
4338static ssize_t order_show(struct kmem_cache *s, char *buf)
4339{
834f3d11 4340 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4341}
06b285dc 4342SLAB_ATTR(order);
81819f0f 4343
73d342b1
DR
4344static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4345{
4346 return sprintf(buf, "%lu\n", s->min_partial);
4347}
4348
4349static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4350 size_t length)
4351{
4352 unsigned long min;
4353 int err;
4354
3dbb95f7 4355 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4356 if (err)
4357 return err;
4358
c0bdb232 4359 set_min_partial(s, min);
73d342b1
DR
4360 return length;
4361}
4362SLAB_ATTR(min_partial);
4363
49e22585
CL
4364static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4365{
4366 return sprintf(buf, "%u\n", s->cpu_partial);
4367}
4368
4369static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4370 size_t length)
4371{
4372 unsigned long objects;
4373 int err;
4374
3dbb95f7 4375 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4376 if (err)
4377 return err;
345c905d 4378 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4379 return -EINVAL;
49e22585
CL
4380
4381 s->cpu_partial = objects;
4382 flush_all(s);
4383 return length;
4384}
4385SLAB_ATTR(cpu_partial);
4386
81819f0f
CL
4387static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4388{
62c70bce
JP
4389 if (!s->ctor)
4390 return 0;
4391 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4392}
4393SLAB_ATTR_RO(ctor);
4394
81819f0f
CL
4395static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4396{
4307c14f 4397 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4398}
4399SLAB_ATTR_RO(aliases);
4400
81819f0f
CL
4401static ssize_t partial_show(struct kmem_cache *s, char *buf)
4402{
d9acf4b7 4403 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4404}
4405SLAB_ATTR_RO(partial);
4406
4407static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4408{
d9acf4b7 4409 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4410}
4411SLAB_ATTR_RO(cpu_slabs);
4412
4413static ssize_t objects_show(struct kmem_cache *s, char *buf)
4414{
205ab99d 4415 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4416}
4417SLAB_ATTR_RO(objects);
4418
205ab99d
CL
4419static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4420{
4421 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4422}
4423SLAB_ATTR_RO(objects_partial);
4424
49e22585
CL
4425static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4426{
4427 int objects = 0;
4428 int pages = 0;
4429 int cpu;
4430 int len;
4431
4432 for_each_online_cpu(cpu) {
4433 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4434
4435 if (page) {
4436 pages += page->pages;
4437 objects += page->pobjects;
4438 }
4439 }
4440
4441 len = sprintf(buf, "%d(%d)", objects, pages);
4442
4443#ifdef CONFIG_SMP
4444 for_each_online_cpu(cpu) {
4445 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4446
4447 if (page && len < PAGE_SIZE - 20)
4448 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4449 page->pobjects, page->pages);
4450 }
4451#endif
4452 return len + sprintf(buf + len, "\n");
4453}
4454SLAB_ATTR_RO(slabs_cpu_partial);
4455
a5a84755
CL
4456static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4457{
4458 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4459}
4460
4461static ssize_t reclaim_account_store(struct kmem_cache *s,
4462 const char *buf, size_t length)
4463{
4464 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4465 if (buf[0] == '1')
4466 s->flags |= SLAB_RECLAIM_ACCOUNT;
4467 return length;
4468}
4469SLAB_ATTR(reclaim_account);
4470
4471static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4472{
4473 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4474}
4475SLAB_ATTR_RO(hwcache_align);
4476
4477#ifdef CONFIG_ZONE_DMA
4478static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4479{
4480 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4481}
4482SLAB_ATTR_RO(cache_dma);
4483#endif
4484
4485static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4486{
4487 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4488}
4489SLAB_ATTR_RO(destroy_by_rcu);
4490
ab9a0f19
LJ
4491static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4492{
4493 return sprintf(buf, "%d\n", s->reserved);
4494}
4495SLAB_ATTR_RO(reserved);
4496
ab4d5ed5 4497#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4498static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4499{
4500 return show_slab_objects(s, buf, SO_ALL);
4501}
4502SLAB_ATTR_RO(slabs);
4503
205ab99d
CL
4504static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4505{
4506 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4507}
4508SLAB_ATTR_RO(total_objects);
4509
81819f0f
CL
4510static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4511{
4512 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4513}
4514
4515static ssize_t sanity_checks_store(struct kmem_cache *s,
4516 const char *buf, size_t length)
4517{
4518 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4519 if (buf[0] == '1') {
4520 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4521 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4522 }
81819f0f
CL
4523 return length;
4524}
4525SLAB_ATTR(sanity_checks);
4526
4527static ssize_t trace_show(struct kmem_cache *s, char *buf)
4528{
4529 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4530}
4531
4532static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4533 size_t length)
4534{
c9e16131
CL
4535 /*
4536 * Tracing a merged cache is going to give confusing results
4537 * as well as cause other issues like converting a mergeable
4538 * cache into an umergeable one.
4539 */
4540 if (s->refcount > 1)
4541 return -EINVAL;
4542
81819f0f 4543 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4544 if (buf[0] == '1') {
4545 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4546 s->flags |= SLAB_TRACE;
b789ef51 4547 }
81819f0f
CL
4548 return length;
4549}
4550SLAB_ATTR(trace);
4551
81819f0f
CL
4552static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4553{
4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4555}
4556
4557static ssize_t red_zone_store(struct kmem_cache *s,
4558 const char *buf, size_t length)
4559{
4560 if (any_slab_objects(s))
4561 return -EBUSY;
4562
4563 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4564 if (buf[0] == '1') {
4565 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4566 s->flags |= SLAB_RED_ZONE;
b789ef51 4567 }
06b285dc 4568 calculate_sizes(s, -1);
81819f0f
CL
4569 return length;
4570}
4571SLAB_ATTR(red_zone);
4572
4573static ssize_t poison_show(struct kmem_cache *s, char *buf)
4574{
4575 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4576}
4577
4578static ssize_t poison_store(struct kmem_cache *s,
4579 const char *buf, size_t length)
4580{
4581 if (any_slab_objects(s))
4582 return -EBUSY;
4583
4584 s->flags &= ~SLAB_POISON;
b789ef51
CL
4585 if (buf[0] == '1') {
4586 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4587 s->flags |= SLAB_POISON;
b789ef51 4588 }
06b285dc 4589 calculate_sizes(s, -1);
81819f0f
CL
4590 return length;
4591}
4592SLAB_ATTR(poison);
4593
4594static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4597}
4598
4599static ssize_t store_user_store(struct kmem_cache *s,
4600 const char *buf, size_t length)
4601{
4602 if (any_slab_objects(s))
4603 return -EBUSY;
4604
4605 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4606 if (buf[0] == '1') {
4607 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4608 s->flags |= SLAB_STORE_USER;
b789ef51 4609 }
06b285dc 4610 calculate_sizes(s, -1);
81819f0f
CL
4611 return length;
4612}
4613SLAB_ATTR(store_user);
4614
53e15af0
CL
4615static ssize_t validate_show(struct kmem_cache *s, char *buf)
4616{
4617 return 0;
4618}
4619
4620static ssize_t validate_store(struct kmem_cache *s,
4621 const char *buf, size_t length)
4622{
434e245d
CL
4623 int ret = -EINVAL;
4624
4625 if (buf[0] == '1') {
4626 ret = validate_slab_cache(s);
4627 if (ret >= 0)
4628 ret = length;
4629 }
4630 return ret;
53e15af0
CL
4631}
4632SLAB_ATTR(validate);
a5a84755
CL
4633
4634static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4635{
4636 if (!(s->flags & SLAB_STORE_USER))
4637 return -ENOSYS;
4638 return list_locations(s, buf, TRACK_ALLOC);
4639}
4640SLAB_ATTR_RO(alloc_calls);
4641
4642static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4643{
4644 if (!(s->flags & SLAB_STORE_USER))
4645 return -ENOSYS;
4646 return list_locations(s, buf, TRACK_FREE);
4647}
4648SLAB_ATTR_RO(free_calls);
4649#endif /* CONFIG_SLUB_DEBUG */
4650
4651#ifdef CONFIG_FAILSLAB
4652static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4653{
4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4655}
4656
4657static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4658 size_t length)
4659{
c9e16131
CL
4660 if (s->refcount > 1)
4661 return -EINVAL;
4662
a5a84755
CL
4663 s->flags &= ~SLAB_FAILSLAB;
4664 if (buf[0] == '1')
4665 s->flags |= SLAB_FAILSLAB;
4666 return length;
4667}
4668SLAB_ATTR(failslab);
ab4d5ed5 4669#endif
53e15af0 4670
2086d26a
CL
4671static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4672{
4673 return 0;
4674}
4675
4676static ssize_t shrink_store(struct kmem_cache *s,
4677 const char *buf, size_t length)
4678{
4679 if (buf[0] == '1') {
4680 int rc = kmem_cache_shrink(s);
4681
4682 if (rc)
4683 return rc;
4684 } else
4685 return -EINVAL;
4686 return length;
4687}
4688SLAB_ATTR(shrink);
4689
81819f0f 4690#ifdef CONFIG_NUMA
9824601e 4691static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4692{
9824601e 4693 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4694}
4695
9824601e 4696static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4697 const char *buf, size_t length)
4698{
0121c619
CL
4699 unsigned long ratio;
4700 int err;
4701
3dbb95f7 4702 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4703 if (err)
4704 return err;
4705
e2cb96b7 4706 if (ratio <= 100)
0121c619 4707 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4708
81819f0f
CL
4709 return length;
4710}
9824601e 4711SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4712#endif
4713
8ff12cfc 4714#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4715static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4716{
4717 unsigned long sum = 0;
4718 int cpu;
4719 int len;
4720 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4721
4722 if (!data)
4723 return -ENOMEM;
4724
4725 for_each_online_cpu(cpu) {
9dfc6e68 4726 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4727
4728 data[cpu] = x;
4729 sum += x;
4730 }
4731
4732 len = sprintf(buf, "%lu", sum);
4733
50ef37b9 4734#ifdef CONFIG_SMP
8ff12cfc
CL
4735 for_each_online_cpu(cpu) {
4736 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4737 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4738 }
50ef37b9 4739#endif
8ff12cfc
CL
4740 kfree(data);
4741 return len + sprintf(buf + len, "\n");
4742}
4743
78eb00cc
DR
4744static void clear_stat(struct kmem_cache *s, enum stat_item si)
4745{
4746 int cpu;
4747
4748 for_each_online_cpu(cpu)
9dfc6e68 4749 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4750}
4751
8ff12cfc
CL
4752#define STAT_ATTR(si, text) \
4753static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4754{ \
4755 return show_stat(s, buf, si); \
4756} \
78eb00cc
DR
4757static ssize_t text##_store(struct kmem_cache *s, \
4758 const char *buf, size_t length) \
4759{ \
4760 if (buf[0] != '0') \
4761 return -EINVAL; \
4762 clear_stat(s, si); \
4763 return length; \
4764} \
4765SLAB_ATTR(text); \
8ff12cfc
CL
4766
4767STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4768STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4769STAT_ATTR(FREE_FASTPATH, free_fastpath);
4770STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4771STAT_ATTR(FREE_FROZEN, free_frozen);
4772STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4773STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4774STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4775STAT_ATTR(ALLOC_SLAB, alloc_slab);
4776STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4777STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4778STAT_ATTR(FREE_SLAB, free_slab);
4779STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4780STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4781STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4782STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4783STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4784STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4785STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4786STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4787STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4788STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4789STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4790STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4791STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4792STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4793#endif
4794
06428780 4795static struct attribute *slab_attrs[] = {
81819f0f
CL
4796 &slab_size_attr.attr,
4797 &object_size_attr.attr,
4798 &objs_per_slab_attr.attr,
4799 &order_attr.attr,
73d342b1 4800 &min_partial_attr.attr,
49e22585 4801 &cpu_partial_attr.attr,
81819f0f 4802 &objects_attr.attr,
205ab99d 4803 &objects_partial_attr.attr,
81819f0f
CL
4804 &partial_attr.attr,
4805 &cpu_slabs_attr.attr,
4806 &ctor_attr.attr,
81819f0f
CL
4807 &aliases_attr.attr,
4808 &align_attr.attr,
81819f0f
CL
4809 &hwcache_align_attr.attr,
4810 &reclaim_account_attr.attr,
4811 &destroy_by_rcu_attr.attr,
a5a84755 4812 &shrink_attr.attr,
ab9a0f19 4813 &reserved_attr.attr,
49e22585 4814 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4815#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4816 &total_objects_attr.attr,
4817 &slabs_attr.attr,
4818 &sanity_checks_attr.attr,
4819 &trace_attr.attr,
81819f0f
CL
4820 &red_zone_attr.attr,
4821 &poison_attr.attr,
4822 &store_user_attr.attr,
53e15af0 4823 &validate_attr.attr,
88a420e4
CL
4824 &alloc_calls_attr.attr,
4825 &free_calls_attr.attr,
ab4d5ed5 4826#endif
81819f0f
CL
4827#ifdef CONFIG_ZONE_DMA
4828 &cache_dma_attr.attr,
4829#endif
4830#ifdef CONFIG_NUMA
9824601e 4831 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4832#endif
4833#ifdef CONFIG_SLUB_STATS
4834 &alloc_fastpath_attr.attr,
4835 &alloc_slowpath_attr.attr,
4836 &free_fastpath_attr.attr,
4837 &free_slowpath_attr.attr,
4838 &free_frozen_attr.attr,
4839 &free_add_partial_attr.attr,
4840 &free_remove_partial_attr.attr,
4841 &alloc_from_partial_attr.attr,
4842 &alloc_slab_attr.attr,
4843 &alloc_refill_attr.attr,
e36a2652 4844 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4845 &free_slab_attr.attr,
4846 &cpuslab_flush_attr.attr,
4847 &deactivate_full_attr.attr,
4848 &deactivate_empty_attr.attr,
4849 &deactivate_to_head_attr.attr,
4850 &deactivate_to_tail_attr.attr,
4851 &deactivate_remote_frees_attr.attr,
03e404af 4852 &deactivate_bypass_attr.attr,
65c3376a 4853 &order_fallback_attr.attr,
b789ef51
CL
4854 &cmpxchg_double_fail_attr.attr,
4855 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4856 &cpu_partial_alloc_attr.attr,
4857 &cpu_partial_free_attr.attr,
8028dcea
AS
4858 &cpu_partial_node_attr.attr,
4859 &cpu_partial_drain_attr.attr,
81819f0f 4860#endif
4c13dd3b
DM
4861#ifdef CONFIG_FAILSLAB
4862 &failslab_attr.attr,
4863#endif
4864
81819f0f
CL
4865 NULL
4866};
4867
4868static struct attribute_group slab_attr_group = {
4869 .attrs = slab_attrs,
4870};
4871
4872static ssize_t slab_attr_show(struct kobject *kobj,
4873 struct attribute *attr,
4874 char *buf)
4875{
4876 struct slab_attribute *attribute;
4877 struct kmem_cache *s;
4878 int err;
4879
4880 attribute = to_slab_attr(attr);
4881 s = to_slab(kobj);
4882
4883 if (!attribute->show)
4884 return -EIO;
4885
4886 err = attribute->show(s, buf);
4887
4888 return err;
4889}
4890
4891static ssize_t slab_attr_store(struct kobject *kobj,
4892 struct attribute *attr,
4893 const char *buf, size_t len)
4894{
4895 struct slab_attribute *attribute;
4896 struct kmem_cache *s;
4897 int err;
4898
4899 attribute = to_slab_attr(attr);
4900 s = to_slab(kobj);
4901
4902 if (!attribute->store)
4903 return -EIO;
4904
4905 err = attribute->store(s, buf, len);
107dab5c
GC
4906#ifdef CONFIG_MEMCG_KMEM
4907 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4908 int i;
81819f0f 4909
107dab5c
GC
4910 mutex_lock(&slab_mutex);
4911 if (s->max_attr_size < len)
4912 s->max_attr_size = len;
4913
ebe945c2
GC
4914 /*
4915 * This is a best effort propagation, so this function's return
4916 * value will be determined by the parent cache only. This is
4917 * basically because not all attributes will have a well
4918 * defined semantics for rollbacks - most of the actions will
4919 * have permanent effects.
4920 *
4921 * Returning the error value of any of the children that fail
4922 * is not 100 % defined, in the sense that users seeing the
4923 * error code won't be able to know anything about the state of
4924 * the cache.
4925 *
4926 * Only returning the error code for the parent cache at least
4927 * has well defined semantics. The cache being written to
4928 * directly either failed or succeeded, in which case we loop
4929 * through the descendants with best-effort propagation.
4930 */
107dab5c 4931 for_each_memcg_cache_index(i) {
2ade4de8 4932 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
4933 if (c)
4934 attribute->store(c, buf, len);
4935 }
4936 mutex_unlock(&slab_mutex);
4937 }
4938#endif
81819f0f
CL
4939 return err;
4940}
4941
107dab5c
GC
4942static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4943{
4944#ifdef CONFIG_MEMCG_KMEM
4945 int i;
4946 char *buffer = NULL;
93030d83 4947 struct kmem_cache *root_cache;
107dab5c 4948
93030d83 4949 if (is_root_cache(s))
107dab5c
GC
4950 return;
4951
93030d83
VD
4952 root_cache = s->memcg_params->root_cache;
4953
107dab5c
GC
4954 /*
4955 * This mean this cache had no attribute written. Therefore, no point
4956 * in copying default values around
4957 */
93030d83 4958 if (!root_cache->max_attr_size)
107dab5c
GC
4959 return;
4960
4961 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4962 char mbuf[64];
4963 char *buf;
4964 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4965
4966 if (!attr || !attr->store || !attr->show)
4967 continue;
4968
4969 /*
4970 * It is really bad that we have to allocate here, so we will
4971 * do it only as a fallback. If we actually allocate, though,
4972 * we can just use the allocated buffer until the end.
4973 *
4974 * Most of the slub attributes will tend to be very small in
4975 * size, but sysfs allows buffers up to a page, so they can
4976 * theoretically happen.
4977 */
4978 if (buffer)
4979 buf = buffer;
93030d83 4980 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
4981 buf = mbuf;
4982 else {
4983 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4984 if (WARN_ON(!buffer))
4985 continue;
4986 buf = buffer;
4987 }
4988
93030d83 4989 attr->show(root_cache, buf);
107dab5c
GC
4990 attr->store(s, buf, strlen(buf));
4991 }
4992
4993 if (buffer)
4994 free_page((unsigned long)buffer);
4995#endif
4996}
4997
41a21285
CL
4998static void kmem_cache_release(struct kobject *k)
4999{
5000 slab_kmem_cache_release(to_slab(k));
5001}
5002
52cf25d0 5003static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5004 .show = slab_attr_show,
5005 .store = slab_attr_store,
5006};
5007
5008static struct kobj_type slab_ktype = {
5009 .sysfs_ops = &slab_sysfs_ops,
41a21285 5010 .release = kmem_cache_release,
81819f0f
CL
5011};
5012
5013static int uevent_filter(struct kset *kset, struct kobject *kobj)
5014{
5015 struct kobj_type *ktype = get_ktype(kobj);
5016
5017 if (ktype == &slab_ktype)
5018 return 1;
5019 return 0;
5020}
5021
9cd43611 5022static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5023 .filter = uevent_filter,
5024};
5025
27c3a314 5026static struct kset *slab_kset;
81819f0f 5027
9a41707b
VD
5028static inline struct kset *cache_kset(struct kmem_cache *s)
5029{
5030#ifdef CONFIG_MEMCG_KMEM
5031 if (!is_root_cache(s))
5032 return s->memcg_params->root_cache->memcg_kset;
5033#endif
5034 return slab_kset;
5035}
5036
81819f0f
CL
5037#define ID_STR_LENGTH 64
5038
5039/* Create a unique string id for a slab cache:
6446faa2
CL
5040 *
5041 * Format :[flags-]size
81819f0f
CL
5042 */
5043static char *create_unique_id(struct kmem_cache *s)
5044{
5045 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5046 char *p = name;
5047
5048 BUG_ON(!name);
5049
5050 *p++ = ':';
5051 /*
5052 * First flags affecting slabcache operations. We will only
5053 * get here for aliasable slabs so we do not need to support
5054 * too many flags. The flags here must cover all flags that
5055 * are matched during merging to guarantee that the id is
5056 * unique.
5057 */
5058 if (s->flags & SLAB_CACHE_DMA)
5059 *p++ = 'd';
5060 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5061 *p++ = 'a';
5062 if (s->flags & SLAB_DEBUG_FREE)
5063 *p++ = 'F';
5a896d9e
VN
5064 if (!(s->flags & SLAB_NOTRACK))
5065 *p++ = 't';
81819f0f
CL
5066 if (p != name + 1)
5067 *p++ = '-';
5068 p += sprintf(p, "%07d", s->size);
2633d7a0 5069
81819f0f
CL
5070 BUG_ON(p > name + ID_STR_LENGTH - 1);
5071 return name;
5072}
5073
5074static int sysfs_slab_add(struct kmem_cache *s)
5075{
5076 int err;
5077 const char *name;
45530c44 5078 int unmergeable = slab_unmergeable(s);
81819f0f 5079
81819f0f
CL
5080 if (unmergeable) {
5081 /*
5082 * Slabcache can never be merged so we can use the name proper.
5083 * This is typically the case for debug situations. In that
5084 * case we can catch duplicate names easily.
5085 */
27c3a314 5086 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5087 name = s->name;
5088 } else {
5089 /*
5090 * Create a unique name for the slab as a target
5091 * for the symlinks.
5092 */
5093 name = create_unique_id(s);
5094 }
5095
9a41707b 5096 s->kobj.kset = cache_kset(s);
26e4f205 5097 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5098 if (err)
5099 goto out_put_kobj;
81819f0f
CL
5100
5101 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5102 if (err)
5103 goto out_del_kobj;
9a41707b
VD
5104
5105#ifdef CONFIG_MEMCG_KMEM
5106 if (is_root_cache(s)) {
5107 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5108 if (!s->memcg_kset) {
54b6a731
DJ
5109 err = -ENOMEM;
5110 goto out_del_kobj;
9a41707b
VD
5111 }
5112 }
5113#endif
5114
81819f0f
CL
5115 kobject_uevent(&s->kobj, KOBJ_ADD);
5116 if (!unmergeable) {
5117 /* Setup first alias */
5118 sysfs_slab_alias(s, s->name);
81819f0f 5119 }
54b6a731
DJ
5120out:
5121 if (!unmergeable)
5122 kfree(name);
5123 return err;
5124out_del_kobj:
5125 kobject_del(&s->kobj);
5126out_put_kobj:
5127 kobject_put(&s->kobj);
5128 goto out;
81819f0f
CL
5129}
5130
41a21285 5131void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5132{
97d06609 5133 if (slab_state < FULL)
2bce6485
CL
5134 /*
5135 * Sysfs has not been setup yet so no need to remove the
5136 * cache from sysfs.
5137 */
5138 return;
5139
9a41707b
VD
5140#ifdef CONFIG_MEMCG_KMEM
5141 kset_unregister(s->memcg_kset);
5142#endif
81819f0f
CL
5143 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5144 kobject_del(&s->kobj);
151c602f 5145 kobject_put(&s->kobj);
81819f0f
CL
5146}
5147
5148/*
5149 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5150 * available lest we lose that information.
81819f0f
CL
5151 */
5152struct saved_alias {
5153 struct kmem_cache *s;
5154 const char *name;
5155 struct saved_alias *next;
5156};
5157
5af328a5 5158static struct saved_alias *alias_list;
81819f0f
CL
5159
5160static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5161{
5162 struct saved_alias *al;
5163
97d06609 5164 if (slab_state == FULL) {
81819f0f
CL
5165 /*
5166 * If we have a leftover link then remove it.
5167 */
27c3a314
GKH
5168 sysfs_remove_link(&slab_kset->kobj, name);
5169 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5170 }
5171
5172 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5173 if (!al)
5174 return -ENOMEM;
5175
5176 al->s = s;
5177 al->name = name;
5178 al->next = alias_list;
5179 alias_list = al;
5180 return 0;
5181}
5182
5183static int __init slab_sysfs_init(void)
5184{
5b95a4ac 5185 struct kmem_cache *s;
81819f0f
CL
5186 int err;
5187
18004c5d 5188 mutex_lock(&slab_mutex);
2bce6485 5189
0ff21e46 5190 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5191 if (!slab_kset) {
18004c5d 5192 mutex_unlock(&slab_mutex);
f9f58285 5193 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5194 return -ENOSYS;
5195 }
5196
97d06609 5197 slab_state = FULL;
26a7bd03 5198
5b95a4ac 5199 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5200 err = sysfs_slab_add(s);
5d540fb7 5201 if (err)
f9f58285
FF
5202 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5203 s->name);
26a7bd03 5204 }
81819f0f
CL
5205
5206 while (alias_list) {
5207 struct saved_alias *al = alias_list;
5208
5209 alias_list = alias_list->next;
5210 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5211 if (err)
f9f58285
FF
5212 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5213 al->name);
81819f0f
CL
5214 kfree(al);
5215 }
5216
18004c5d 5217 mutex_unlock(&slab_mutex);
81819f0f
CL
5218 resiliency_test();
5219 return 0;
5220}
5221
5222__initcall(slab_sysfs_init);
ab4d5ed5 5223#endif /* CONFIG_SYSFS */
57ed3eda
PE
5224
5225/*
5226 * The /proc/slabinfo ABI
5227 */
158a9624 5228#ifdef CONFIG_SLABINFO
0d7561c6 5229void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5230{
57ed3eda 5231 unsigned long nr_slabs = 0;
205ab99d
CL
5232 unsigned long nr_objs = 0;
5233 unsigned long nr_free = 0;
57ed3eda 5234 int node;
fa45dc25 5235 struct kmem_cache_node *n;
57ed3eda 5236
fa45dc25 5237 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5238 nr_slabs += node_nr_slabs(n);
5239 nr_objs += node_nr_objs(n);
205ab99d 5240 nr_free += count_partial(n, count_free);
57ed3eda
PE
5241 }
5242
0d7561c6
GC
5243 sinfo->active_objs = nr_objs - nr_free;
5244 sinfo->num_objs = nr_objs;
5245 sinfo->active_slabs = nr_slabs;
5246 sinfo->num_slabs = nr_slabs;
5247 sinfo->objects_per_slab = oo_objects(s->oo);
5248 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5249}
5250
0d7561c6 5251void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5252{
7b3c3a50
AD
5253}
5254
b7454ad3
GC
5255ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5256 size_t count, loff_t *ppos)
7b3c3a50 5257{
b7454ad3 5258 return -EIO;
7b3c3a50 5259}
158a9624 5260#endif /* CONFIG_SLABINFO */
This page took 1.225704 seconds and 5 git commands to generate.