x86, pat: ioremap to follow same PAT restrictions as other PAT users
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
06f22f13 24#include <linux/kmemleak.h>
81819f0f
CL
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
81819f0f
CL
32
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
5577bd8a 111#ifdef CONFIG_SLUB_DEBUG
8a38082d 112#define SLABDEBUG 1
5577bd8a
CL
113#else
114#define SLABDEBUG 0
115#endif
116
81819f0f
CL
117/*
118 * Issues still to be resolved:
119 *
81819f0f
CL
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
81819f0f
CL
122 * - Variable sizing of the per node arrays
123 */
124
125/* Enable to test recovery from slab corruption on boot */
126#undef SLUB_RESILIENCY_TEST
127
2086d26a
CL
128/*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
76be8950 132#define MIN_PARTIAL 5
e95eed57 133
2086d26a
CL
134/*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139#define MAX_PARTIAL 10
140
81819f0f
CL
141#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
672bba3a 143
81819f0f
CL
144/*
145 * Set of flags that will prevent slab merging
146 */
147#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 148 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
149
150#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 151 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
152
153#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 154#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 158#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
159#endif
160
210b5c06
CG
161#define OO_SHIFT 16
162#define OO_MASK ((1 << OO_SHIFT) - 1)
163#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164
81819f0f 165/* Internal SLUB flags */
1ceef402
CL
166#define __OBJECT_POISON 0x80000000 /* Poison object */
167#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
168
169static int kmem_size = sizeof(struct kmem_cache);
170
171#ifdef CONFIG_SMP
172static struct notifier_block slab_notifier;
173#endif
174
175static enum {
176 DOWN, /* No slab functionality available */
177 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 178 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
179 SYSFS /* Sysfs up */
180} slab_state = DOWN;
181
182/* A list of all slab caches on the system */
183static DECLARE_RWSEM(slub_lock);
5af328a5 184static LIST_HEAD(slab_caches);
81819f0f 185
02cbc874
CL
186/*
187 * Tracking user of a slab.
188 */
189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
02cbc874
CL
191 int cpu; /* Was running on cpu */
192 int pid; /* Pid context */
193 unsigned long when; /* When did the operation occur */
194};
195
196enum track_item { TRACK_ALLOC, TRACK_FREE };
197
f6acb635 198#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
199static int sysfs_slab_add(struct kmem_cache *);
200static int sysfs_slab_alias(struct kmem_cache *, const char *);
201static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 202
81819f0f 203#else
0c710013
CL
204static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
205static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
206 { return 0; }
151c602f
CL
207static inline void sysfs_slab_remove(struct kmem_cache *s)
208{
209 kfree(s);
210}
8ff12cfc 211
81819f0f
CL
212#endif
213
8ff12cfc
CL
214static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
215{
216#ifdef CONFIG_SLUB_STATS
217 c->stat[si]++;
218#endif
219}
220
81819f0f
CL
221/********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225int slab_is_available(void)
226{
227 return slab_state >= UP;
228}
229
230static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
231{
232#ifdef CONFIG_NUMA
233 return s->node[node];
234#else
235 return &s->local_node;
236#endif
237}
238
dfb4f096
CL
239static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
240{
4c93c355
CL
241#ifdef CONFIG_SMP
242 return s->cpu_slab[cpu];
243#else
244 return &s->cpu_slab;
245#endif
dfb4f096
CL
246}
247
6446faa2 248/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
249static inline int check_valid_pointer(struct kmem_cache *s,
250 struct page *page, const void *object)
251{
252 void *base;
253
a973e9dd 254 if (!object)
02cbc874
CL
255 return 1;
256
a973e9dd 257 base = page_address(page);
39b26464 258 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
259 (object - base) % s->size) {
260 return 0;
261 }
262
263 return 1;
264}
265
7656c72b
CL
266/*
267 * Slow version of get and set free pointer.
268 *
269 * This version requires touching the cache lines of kmem_cache which
270 * we avoid to do in the fast alloc free paths. There we obtain the offset
271 * from the page struct.
272 */
273static inline void *get_freepointer(struct kmem_cache *s, void *object)
274{
275 return *(void **)(object + s->offset);
276}
277
278static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
279{
280 *(void **)(object + s->offset) = fp;
281}
282
283/* Loop over all objects in a slab */
224a88be
CL
284#define for_each_object(__p, __s, __addr, __objects) \
285 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
286 __p += (__s)->size)
287
288/* Scan freelist */
289#define for_each_free_object(__p, __s, __free) \
a973e9dd 290 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
291
292/* Determine object index from a given position */
293static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
294{
295 return (p - addr) / s->size;
296}
297
834f3d11
CL
298static inline struct kmem_cache_order_objects oo_make(int order,
299 unsigned long size)
300{
301 struct kmem_cache_order_objects x = {
210b5c06 302 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
303 };
304
305 return x;
306}
307
308static inline int oo_order(struct kmem_cache_order_objects x)
309{
210b5c06 310 return x.x >> OO_SHIFT;
834f3d11
CL
311}
312
313static inline int oo_objects(struct kmem_cache_order_objects x)
314{
210b5c06 315 return x.x & OO_MASK;
834f3d11
CL
316}
317
41ecc55b
CL
318#ifdef CONFIG_SLUB_DEBUG
319/*
320 * Debug settings:
321 */
f0630fff
CL
322#ifdef CONFIG_SLUB_DEBUG_ON
323static int slub_debug = DEBUG_DEFAULT_FLAGS;
324#else
41ecc55b 325static int slub_debug;
f0630fff 326#endif
41ecc55b
CL
327
328static char *slub_debug_slabs;
329
81819f0f
CL
330/*
331 * Object debugging
332 */
333static void print_section(char *text, u8 *addr, unsigned int length)
334{
335 int i, offset;
336 int newline = 1;
337 char ascii[17];
338
339 ascii[16] = 0;
340
341 for (i = 0; i < length; i++) {
342 if (newline) {
24922684 343 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
344 newline = 0;
345 }
06428780 346 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
347 offset = i % 16;
348 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 if (offset == 15) {
06428780 350 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
351 newline = 1;
352 }
353 }
354 if (!newline) {
355 i %= 16;
356 while (i < 16) {
06428780 357 printk(KERN_CONT " ");
81819f0f
CL
358 ascii[i] = ' ';
359 i++;
360 }
06428780 361 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
362 }
363}
364
81819f0f
CL
365static struct track *get_track(struct kmem_cache *s, void *object,
366 enum track_item alloc)
367{
368 struct track *p;
369
370 if (s->offset)
371 p = object + s->offset + sizeof(void *);
372 else
373 p = object + s->inuse;
374
375 return p + alloc;
376}
377
378static void set_track(struct kmem_cache *s, void *object,
ce71e27c 379 enum track_item alloc, unsigned long addr)
81819f0f 380{
1a00df4a 381 struct track *p = get_track(s, object, alloc);
81819f0f 382
81819f0f
CL
383 if (addr) {
384 p->addr = addr;
385 p->cpu = smp_processor_id();
88e4ccf2 386 p->pid = current->pid;
81819f0f
CL
387 p->when = jiffies;
388 } else
389 memset(p, 0, sizeof(struct track));
390}
391
81819f0f
CL
392static void init_tracking(struct kmem_cache *s, void *object)
393{
24922684
CL
394 if (!(s->flags & SLAB_STORE_USER))
395 return;
396
ce71e27c
EGM
397 set_track(s, object, TRACK_FREE, 0UL);
398 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
399}
400
401static void print_track(const char *s, struct track *t)
402{
403 if (!t->addr)
404 return;
405
7daf705f 406 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 407 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
408}
409
410static void print_tracking(struct kmem_cache *s, void *object)
411{
412 if (!(s->flags & SLAB_STORE_USER))
413 return;
414
415 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
416 print_track("Freed", get_track(s, object, TRACK_FREE));
417}
418
419static void print_page_info(struct page *page)
420{
39b26464
CL
421 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
422 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
423
424}
425
426static void slab_bug(struct kmem_cache *s, char *fmt, ...)
427{
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "========================================"
435 "=====================================\n");
436 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
437 printk(KERN_ERR "----------------------------------------"
438 "-------------------------------------\n\n");
81819f0f
CL
439}
440
24922684
CL
441static void slab_fix(struct kmem_cache *s, char *fmt, ...)
442{
443 va_list args;
444 char buf[100];
445
446 va_start(args, fmt);
447 vsnprintf(buf, sizeof(buf), fmt, args);
448 va_end(args);
449 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
450}
451
452static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
453{
454 unsigned int off; /* Offset of last byte */
a973e9dd 455 u8 *addr = page_address(page);
24922684
CL
456
457 print_tracking(s, p);
458
459 print_page_info(page);
460
461 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
462 p, p - addr, get_freepointer(s, p));
463
464 if (p > addr + 16)
465 print_section("Bytes b4", p - 16, 16);
466
0ebd652b 467 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
468
469 if (s->flags & SLAB_RED_ZONE)
470 print_section("Redzone", p + s->objsize,
471 s->inuse - s->objsize);
472
81819f0f
CL
473 if (s->offset)
474 off = s->offset + sizeof(void *);
475 else
476 off = s->inuse;
477
24922684 478 if (s->flags & SLAB_STORE_USER)
81819f0f 479 off += 2 * sizeof(struct track);
81819f0f
CL
480
481 if (off != s->size)
482 /* Beginning of the filler is the free pointer */
24922684
CL
483 print_section("Padding", p + off, s->size - off);
484
485 dump_stack();
81819f0f
CL
486}
487
488static void object_err(struct kmem_cache *s, struct page *page,
489 u8 *object, char *reason)
490{
3dc50637 491 slab_bug(s, "%s", reason);
24922684 492 print_trailer(s, page, object);
81819f0f
CL
493}
494
24922684 495static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
496{
497 va_list args;
498 char buf[100];
499
24922684
CL
500 va_start(args, fmt);
501 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 502 va_end(args);
3dc50637 503 slab_bug(s, "%s", buf);
24922684 504 print_page_info(page);
81819f0f
CL
505 dump_stack();
506}
507
508static void init_object(struct kmem_cache *s, void *object, int active)
509{
510 u8 *p = object;
511
512 if (s->flags & __OBJECT_POISON) {
513 memset(p, POISON_FREE, s->objsize - 1);
06428780 514 p[s->objsize - 1] = POISON_END;
81819f0f
CL
515 }
516
517 if (s->flags & SLAB_RED_ZONE)
518 memset(p + s->objsize,
519 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
520 s->inuse - s->objsize);
521}
522
24922684 523static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
524{
525 while (bytes) {
526 if (*start != (u8)value)
24922684 527 return start;
81819f0f
CL
528 start++;
529 bytes--;
530 }
24922684
CL
531 return NULL;
532}
533
534static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
535 void *from, void *to)
536{
537 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
538 memset(from, data, to - from);
539}
540
541static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
542 u8 *object, char *what,
06428780 543 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
544{
545 u8 *fault;
546 u8 *end;
547
548 fault = check_bytes(start, value, bytes);
549 if (!fault)
550 return 1;
551
552 end = start + bytes;
553 while (end > fault && end[-1] == value)
554 end--;
555
556 slab_bug(s, "%s overwritten", what);
557 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
558 fault, end - 1, fault[0], value);
559 print_trailer(s, page, object);
560
561 restore_bytes(s, what, value, fault, end);
562 return 0;
81819f0f
CL
563}
564
81819f0f
CL
565/*
566 * Object layout:
567 *
568 * object address
569 * Bytes of the object to be managed.
570 * If the freepointer may overlay the object then the free
571 * pointer is the first word of the object.
672bba3a 572 *
81819f0f
CL
573 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
574 * 0xa5 (POISON_END)
575 *
576 * object + s->objsize
577 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
578 * Padding is extended by another word if Redzoning is enabled and
579 * objsize == inuse.
580 *
81819f0f
CL
581 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
582 * 0xcc (RED_ACTIVE) for objects in use.
583 *
584 * object + s->inuse
672bba3a
CL
585 * Meta data starts here.
586 *
81819f0f
CL
587 * A. Free pointer (if we cannot overwrite object on free)
588 * B. Tracking data for SLAB_STORE_USER
672bba3a 589 * C. Padding to reach required alignment boundary or at mininum
6446faa2 590 * one word if debugging is on to be able to detect writes
672bba3a
CL
591 * before the word boundary.
592 *
593 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
594 *
595 * object + s->size
672bba3a 596 * Nothing is used beyond s->size.
81819f0f 597 *
672bba3a
CL
598 * If slabcaches are merged then the objsize and inuse boundaries are mostly
599 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
600 * may be used with merged slabcaches.
601 */
602
81819f0f
CL
603static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
604{
605 unsigned long off = s->inuse; /* The end of info */
606
607 if (s->offset)
608 /* Freepointer is placed after the object. */
609 off += sizeof(void *);
610
611 if (s->flags & SLAB_STORE_USER)
612 /* We also have user information there */
613 off += 2 * sizeof(struct track);
614
615 if (s->size == off)
616 return 1;
617
24922684
CL
618 return check_bytes_and_report(s, page, p, "Object padding",
619 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
620}
621
39b26464 622/* Check the pad bytes at the end of a slab page */
81819f0f
CL
623static int slab_pad_check(struct kmem_cache *s, struct page *page)
624{
24922684
CL
625 u8 *start;
626 u8 *fault;
627 u8 *end;
628 int length;
629 int remainder;
81819f0f
CL
630
631 if (!(s->flags & SLAB_POISON))
632 return 1;
633
a973e9dd 634 start = page_address(page);
834f3d11 635 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
636 end = start + length;
637 remainder = length % s->size;
81819f0f
CL
638 if (!remainder)
639 return 1;
640
39b26464 641 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
642 if (!fault)
643 return 1;
644 while (end > fault && end[-1] == POISON_INUSE)
645 end--;
646
647 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 648 print_section("Padding", end - remainder, remainder);
24922684
CL
649
650 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
651 return 0;
81819f0f
CL
652}
653
654static int check_object(struct kmem_cache *s, struct page *page,
655 void *object, int active)
656{
657 u8 *p = object;
658 u8 *endobject = object + s->objsize;
659
660 if (s->flags & SLAB_RED_ZONE) {
661 unsigned int red =
662 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
663
24922684
CL
664 if (!check_bytes_and_report(s, page, object, "Redzone",
665 endobject, red, s->inuse - s->objsize))
81819f0f 666 return 0;
81819f0f 667 } else {
3adbefee
IM
668 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
669 check_bytes_and_report(s, page, p, "Alignment padding",
670 endobject, POISON_INUSE, s->inuse - s->objsize);
671 }
81819f0f
CL
672 }
673
674 if (s->flags & SLAB_POISON) {
675 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
676 (!check_bytes_and_report(s, page, p, "Poison", p,
677 POISON_FREE, s->objsize - 1) ||
678 !check_bytes_and_report(s, page, p, "Poison",
06428780 679 p + s->objsize - 1, POISON_END, 1)))
81819f0f 680 return 0;
81819f0f
CL
681 /*
682 * check_pad_bytes cleans up on its own.
683 */
684 check_pad_bytes(s, page, p);
685 }
686
687 if (!s->offset && active)
688 /*
689 * Object and freepointer overlap. Cannot check
690 * freepointer while object is allocated.
691 */
692 return 1;
693
694 /* Check free pointer validity */
695 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
696 object_err(s, page, p, "Freepointer corrupt");
697 /*
9f6c708e 698 * No choice but to zap it and thus lose the remainder
81819f0f 699 * of the free objects in this slab. May cause
672bba3a 700 * another error because the object count is now wrong.
81819f0f 701 */
a973e9dd 702 set_freepointer(s, p, NULL);
81819f0f
CL
703 return 0;
704 }
705 return 1;
706}
707
708static int check_slab(struct kmem_cache *s, struct page *page)
709{
39b26464
CL
710 int maxobj;
711
81819f0f
CL
712 VM_BUG_ON(!irqs_disabled());
713
714 if (!PageSlab(page)) {
24922684 715 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
716 return 0;
717 }
39b26464
CL
718
719 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
720 if (page->objects > maxobj) {
721 slab_err(s, page, "objects %u > max %u",
722 s->name, page->objects, maxobj);
723 return 0;
724 }
725 if (page->inuse > page->objects) {
24922684 726 slab_err(s, page, "inuse %u > max %u",
39b26464 727 s->name, page->inuse, page->objects);
81819f0f
CL
728 return 0;
729 }
730 /* Slab_pad_check fixes things up after itself */
731 slab_pad_check(s, page);
732 return 1;
733}
734
735/*
672bba3a
CL
736 * Determine if a certain object on a page is on the freelist. Must hold the
737 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
738 */
739static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
740{
741 int nr = 0;
742 void *fp = page->freelist;
743 void *object = NULL;
224a88be 744 unsigned long max_objects;
81819f0f 745
39b26464 746 while (fp && nr <= page->objects) {
81819f0f
CL
747 if (fp == search)
748 return 1;
749 if (!check_valid_pointer(s, page, fp)) {
750 if (object) {
751 object_err(s, page, object,
752 "Freechain corrupt");
a973e9dd 753 set_freepointer(s, object, NULL);
81819f0f
CL
754 break;
755 } else {
24922684 756 slab_err(s, page, "Freepointer corrupt");
a973e9dd 757 page->freelist = NULL;
39b26464 758 page->inuse = page->objects;
24922684 759 slab_fix(s, "Freelist cleared");
81819f0f
CL
760 return 0;
761 }
762 break;
763 }
764 object = fp;
765 fp = get_freepointer(s, object);
766 nr++;
767 }
768
224a88be 769 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
770 if (max_objects > MAX_OBJS_PER_PAGE)
771 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
772
773 if (page->objects != max_objects) {
774 slab_err(s, page, "Wrong number of objects. Found %d but "
775 "should be %d", page->objects, max_objects);
776 page->objects = max_objects;
777 slab_fix(s, "Number of objects adjusted.");
778 }
39b26464 779 if (page->inuse != page->objects - nr) {
70d71228 780 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
781 "counted were %d", page->inuse, page->objects - nr);
782 page->inuse = page->objects - nr;
24922684 783 slab_fix(s, "Object count adjusted.");
81819f0f
CL
784 }
785 return search == NULL;
786}
787
0121c619
CL
788static void trace(struct kmem_cache *s, struct page *page, void *object,
789 int alloc)
3ec09742
CL
790{
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803}
804
643b1138 805/*
672bba3a 806 * Tracking of fully allocated slabs for debugging purposes.
643b1138 807 */
e95eed57 808static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 809{
643b1138
CL
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813}
814
815static void remove_full(struct kmem_cache *s, struct page *page)
816{
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827}
828
0f389ec6
CL
829/* Tracking of the number of slabs for debugging purposes */
830static inline unsigned long slabs_node(struct kmem_cache *s, int node)
831{
832 struct kmem_cache_node *n = get_node(s, node);
833
834 return atomic_long_read(&n->nr_slabs);
835}
836
26c02cf0
AB
837static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
838{
839 return atomic_long_read(&n->nr_slabs);
840}
841
205ab99d 842static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
843{
844 struct kmem_cache_node *n = get_node(s, node);
845
846 /*
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
851 */
205ab99d 852 if (!NUMA_BUILD || n) {
0f389ec6 853 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
854 atomic_long_add(objects, &n->total_objects);
855 }
0f389ec6 856}
205ab99d 857static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
858{
859 struct kmem_cache_node *n = get_node(s, node);
860
861 atomic_long_dec(&n->nr_slabs);
205ab99d 862 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
863}
864
865/* Object debug checks for alloc/free paths */
3ec09742
CL
866static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 void *object)
868{
869 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 return;
871
872 init_object(s, object, 0);
873 init_tracking(s, object);
874}
875
876static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 877 void *object, unsigned long addr)
81819f0f
CL
878{
879 if (!check_slab(s, page))
880 goto bad;
881
d692ef6d 882 if (!on_freelist(s, page, object)) {
24922684 883 object_err(s, page, object, "Object already allocated");
70d71228 884 goto bad;
81819f0f
CL
885 }
886
887 if (!check_valid_pointer(s, page, object)) {
888 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 889 goto bad;
81819f0f
CL
890 }
891
d692ef6d 892 if (!check_object(s, page, object, 0))
81819f0f 893 goto bad;
81819f0f 894
3ec09742
CL
895 /* Success perform special debug activities for allocs */
896 if (s->flags & SLAB_STORE_USER)
897 set_track(s, object, TRACK_ALLOC, addr);
898 trace(s, page, object, 1);
899 init_object(s, object, 1);
81819f0f 900 return 1;
3ec09742 901
81819f0f
CL
902bad:
903 if (PageSlab(page)) {
904 /*
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
672bba3a 907 * as used avoids touching the remaining objects.
81819f0f 908 */
24922684 909 slab_fix(s, "Marking all objects used");
39b26464 910 page->inuse = page->objects;
a973e9dd 911 page->freelist = NULL;
81819f0f
CL
912 }
913 return 0;
914}
915
3ec09742 916static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 917 void *object, unsigned long addr)
81819f0f
CL
918{
919 if (!check_slab(s, page))
920 goto fail;
921
922 if (!check_valid_pointer(s, page, object)) {
70d71228 923 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
924 goto fail;
925 }
926
927 if (on_freelist(s, page, object)) {
24922684 928 object_err(s, page, object, "Object already free");
81819f0f
CL
929 goto fail;
930 }
931
932 if (!check_object(s, page, object, 1))
933 return 0;
934
935 if (unlikely(s != page->slab)) {
3adbefee 936 if (!PageSlab(page)) {
70d71228
CL
937 slab_err(s, page, "Attempt to free object(0x%p) "
938 "outside of slab", object);
3adbefee 939 } else if (!page->slab) {
81819f0f 940 printk(KERN_ERR
70d71228 941 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 942 object);
70d71228 943 dump_stack();
06428780 944 } else
24922684
CL
945 object_err(s, page, object,
946 "page slab pointer corrupt.");
81819f0f
CL
947 goto fail;
948 }
3ec09742
CL
949
950 /* Special debug activities for freeing objects */
8a38082d 951 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
952 remove_full(s, page);
953 if (s->flags & SLAB_STORE_USER)
954 set_track(s, object, TRACK_FREE, addr);
955 trace(s, page, object, 0);
956 init_object(s, object, 0);
81819f0f 957 return 1;
3ec09742 958
81819f0f 959fail:
24922684 960 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
961 return 0;
962}
963
41ecc55b
CL
964static int __init setup_slub_debug(char *str)
965{
f0630fff
CL
966 slub_debug = DEBUG_DEFAULT_FLAGS;
967 if (*str++ != '=' || !*str)
968 /*
969 * No options specified. Switch on full debugging.
970 */
971 goto out;
972
973 if (*str == ',')
974 /*
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
977 */
978 goto check_slabs;
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
06428780 990 for (; *str && *str != ','; str++) {
f0630fff
CL
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
06428780 1009 "unknown. skipped\n", *str);
f0630fff 1010 }
41ecc55b
CL
1011 }
1012
f0630fff 1013check_slabs:
41ecc55b
CL
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
f0630fff 1016out:
41ecc55b
CL
1017 return 1;
1018}
1019
1020__setup("slub_debug", setup_slub_debug);
1021
ba0268a8
CL
1022static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
51cc5068 1024 void (*ctor)(void *))
41ecc55b
CL
1025{
1026 /*
e153362a 1027 * Enable debugging if selected on the kernel commandline.
41ecc55b 1028 */
e153362a
CL
1029 if (slub_debug && (!slub_debug_slabs ||
1030 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 flags |= slub_debug;
ba0268a8
CL
1032
1033 return flags;
41ecc55b
CL
1034}
1035#else
3ec09742
CL
1036static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
41ecc55b 1038
3ec09742 1039static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1040 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1041
3ec09742 1042static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1043 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1044
41ecc55b
CL
1045static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
3ec09742 1049static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1050static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
51cc5068 1052 void (*ctor)(void *))
ba0268a8
CL
1053{
1054 return flags;
1055}
41ecc55b 1056#define slub_debug 0
0f389ec6
CL
1057
1058static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 { return 0; }
26c02cf0
AB
1060static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1061 { return 0; }
205ab99d
CL
1062static inline void inc_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064static inline void dec_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
41ecc55b 1066#endif
205ab99d 1067
81819f0f
CL
1068/*
1069 * Slab allocation and freeing
1070 */
65c3376a
CL
1071static inline struct page *alloc_slab_page(gfp_t flags, int node,
1072 struct kmem_cache_order_objects oo)
1073{
1074 int order = oo_order(oo);
1075
b1eeab67
VN
1076 flags |= __GFP_NOTRACK;
1077
65c3376a
CL
1078 if (node == -1)
1079 return alloc_pages(flags, order);
1080 else
1081 return alloc_pages_node(node, flags, order);
1082}
1083
81819f0f
CL
1084static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1085{
06428780 1086 struct page *page;
834f3d11 1087 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1088 gfp_t alloc_gfp;
81819f0f 1089
b7a49f0d 1090 flags |= s->allocflags;
e12ba74d 1091
ba52270d
PE
1092 /*
1093 * Let the initial higher-order allocation fail under memory pressure
1094 * so we fall-back to the minimum order allocation.
1095 */
1096 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1097
1098 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1099 if (unlikely(!page)) {
1100 oo = s->min;
1101 /*
1102 * Allocation may have failed due to fragmentation.
1103 * Try a lower order alloc if possible
1104 */
1105 page = alloc_slab_page(flags, node, oo);
1106 if (!page)
1107 return NULL;
81819f0f 1108
65c3376a
CL
1109 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1110 }
5a896d9e
VN
1111
1112 if (kmemcheck_enabled
1113 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1114 {
b1eeab67
VN
1115 int pages = 1 << oo_order(oo);
1116
1117 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1118
1119 /*
1120 * Objects from caches that have a constructor don't get
1121 * cleared when they're allocated, so we need to do it here.
1122 */
1123 if (s->ctor)
1124 kmemcheck_mark_uninitialized_pages(page, pages);
1125 else
1126 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1127 }
1128
834f3d11 1129 page->objects = oo_objects(oo);
81819f0f
CL
1130 mod_zone_page_state(page_zone(page),
1131 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1132 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1133 1 << oo_order(oo));
81819f0f
CL
1134
1135 return page;
1136}
1137
1138static void setup_object(struct kmem_cache *s, struct page *page,
1139 void *object)
1140{
3ec09742 1141 setup_object_debug(s, page, object);
4f104934 1142 if (unlikely(s->ctor))
51cc5068 1143 s->ctor(object);
81819f0f
CL
1144}
1145
1146static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1147{
1148 struct page *page;
81819f0f 1149 void *start;
81819f0f
CL
1150 void *last;
1151 void *p;
1152
6cb06229 1153 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1154
6cb06229
CL
1155 page = allocate_slab(s,
1156 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1157 if (!page)
1158 goto out;
1159
205ab99d 1160 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1161 page->slab = s;
1162 page->flags |= 1 << PG_slab;
1163 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1164 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1165 __SetPageSlubDebug(page);
81819f0f
CL
1166
1167 start = page_address(page);
81819f0f
CL
1168
1169 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1170 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1171
1172 last = start;
224a88be 1173 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, p);
1176 last = p;
1177 }
1178 setup_object(s, page, last);
a973e9dd 1179 set_freepointer(s, last, NULL);
81819f0f
CL
1180
1181 page->freelist = start;
1182 page->inuse = 0;
1183out:
81819f0f
CL
1184 return page;
1185}
1186
1187static void __free_slab(struct kmem_cache *s, struct page *page)
1188{
834f3d11
CL
1189 int order = compound_order(page);
1190 int pages = 1 << order;
81819f0f 1191
8a38082d 1192 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1193 void *p;
1194
1195 slab_pad_check(s, page);
224a88be
CL
1196 for_each_object(p, s, page_address(page),
1197 page->objects)
81819f0f 1198 check_object(s, page, p, 0);
8a38082d 1199 __ClearPageSlubDebug(page);
81819f0f
CL
1200 }
1201
b1eeab67 1202 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1203
81819f0f
CL
1204 mod_zone_page_state(page_zone(page),
1205 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1206 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1207 -pages);
81819f0f 1208
49bd5221
CL
1209 __ClearPageSlab(page);
1210 reset_page_mapcount(page);
1eb5ac64
NP
1211 if (current->reclaim_state)
1212 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1213 __free_pages(page, order);
81819f0f
CL
1214}
1215
1216static void rcu_free_slab(struct rcu_head *h)
1217{
1218 struct page *page;
1219
1220 page = container_of((struct list_head *)h, struct page, lru);
1221 __free_slab(page->slab, page);
1222}
1223
1224static void free_slab(struct kmem_cache *s, struct page *page)
1225{
1226 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1227 /*
1228 * RCU free overloads the RCU head over the LRU
1229 */
1230 struct rcu_head *head = (void *)&page->lru;
1231
1232 call_rcu(head, rcu_free_slab);
1233 } else
1234 __free_slab(s, page);
1235}
1236
1237static void discard_slab(struct kmem_cache *s, struct page *page)
1238{
205ab99d 1239 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1240 free_slab(s, page);
1241}
1242
1243/*
1244 * Per slab locking using the pagelock
1245 */
1246static __always_inline void slab_lock(struct page *page)
1247{
1248 bit_spin_lock(PG_locked, &page->flags);
1249}
1250
1251static __always_inline void slab_unlock(struct page *page)
1252{
a76d3546 1253 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1254}
1255
1256static __always_inline int slab_trylock(struct page *page)
1257{
1258 int rc = 1;
1259
1260 rc = bit_spin_trylock(PG_locked, &page->flags);
1261 return rc;
1262}
1263
1264/*
1265 * Management of partially allocated slabs
1266 */
7c2e132c
CL
1267static void add_partial(struct kmem_cache_node *n,
1268 struct page *page, int tail)
81819f0f 1269{
e95eed57
CL
1270 spin_lock(&n->list_lock);
1271 n->nr_partial++;
7c2e132c
CL
1272 if (tail)
1273 list_add_tail(&page->lru, &n->partial);
1274 else
1275 list_add(&page->lru, &n->partial);
81819f0f
CL
1276 spin_unlock(&n->list_lock);
1277}
1278
0121c619 1279static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1280{
1281 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1282
1283 spin_lock(&n->list_lock);
1284 list_del(&page->lru);
1285 n->nr_partial--;
1286 spin_unlock(&n->list_lock);
1287}
1288
1289/*
672bba3a 1290 * Lock slab and remove from the partial list.
81819f0f 1291 *
672bba3a 1292 * Must hold list_lock.
81819f0f 1293 */
0121c619
CL
1294static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1295 struct page *page)
81819f0f
CL
1296{
1297 if (slab_trylock(page)) {
1298 list_del(&page->lru);
1299 n->nr_partial--;
8a38082d 1300 __SetPageSlubFrozen(page);
81819f0f
CL
1301 return 1;
1302 }
1303 return 0;
1304}
1305
1306/*
672bba3a 1307 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1308 */
1309static struct page *get_partial_node(struct kmem_cache_node *n)
1310{
1311 struct page *page;
1312
1313 /*
1314 * Racy check. If we mistakenly see no partial slabs then we
1315 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1316 * partial slab and there is none available then get_partials()
1317 * will return NULL.
81819f0f
CL
1318 */
1319 if (!n || !n->nr_partial)
1320 return NULL;
1321
1322 spin_lock(&n->list_lock);
1323 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1324 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1325 goto out;
1326 page = NULL;
1327out:
1328 spin_unlock(&n->list_lock);
1329 return page;
1330}
1331
1332/*
672bba3a 1333 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1334 */
1335static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1336{
1337#ifdef CONFIG_NUMA
1338 struct zonelist *zonelist;
dd1a239f 1339 struct zoneref *z;
54a6eb5c
MG
1340 struct zone *zone;
1341 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1342 struct page *page;
1343
1344 /*
672bba3a
CL
1345 * The defrag ratio allows a configuration of the tradeoffs between
1346 * inter node defragmentation and node local allocations. A lower
1347 * defrag_ratio increases the tendency to do local allocations
1348 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1349 *
672bba3a
CL
1350 * If the defrag_ratio is set to 0 then kmalloc() always
1351 * returns node local objects. If the ratio is higher then kmalloc()
1352 * may return off node objects because partial slabs are obtained
1353 * from other nodes and filled up.
81819f0f 1354 *
6446faa2 1355 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1356 * defrag_ratio = 1000) then every (well almost) allocation will
1357 * first attempt to defrag slab caches on other nodes. This means
1358 * scanning over all nodes to look for partial slabs which may be
1359 * expensive if we do it every time we are trying to find a slab
1360 * with available objects.
81819f0f 1361 */
9824601e
CL
1362 if (!s->remote_node_defrag_ratio ||
1363 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1364 return NULL;
1365
0e88460d 1366 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1367 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1368 struct kmem_cache_node *n;
1369
54a6eb5c 1370 n = get_node(s, zone_to_nid(zone));
81819f0f 1371
54a6eb5c 1372 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1373 n->nr_partial > s->min_partial) {
81819f0f
CL
1374 page = get_partial_node(n);
1375 if (page)
1376 return page;
1377 }
1378 }
1379#endif
1380 return NULL;
1381}
1382
1383/*
1384 * Get a partial page, lock it and return it.
1385 */
1386static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1387{
1388 struct page *page;
1389 int searchnode = (node == -1) ? numa_node_id() : node;
1390
1391 page = get_partial_node(get_node(s, searchnode));
1392 if (page || (flags & __GFP_THISNODE))
1393 return page;
1394
1395 return get_any_partial(s, flags);
1396}
1397
1398/*
1399 * Move a page back to the lists.
1400 *
1401 * Must be called with the slab lock held.
1402 *
1403 * On exit the slab lock will have been dropped.
1404 */
7c2e132c 1405static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1406{
e95eed57 1407 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1408 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1409
8a38082d 1410 __ClearPageSlubFrozen(page);
81819f0f 1411 if (page->inuse) {
e95eed57 1412
a973e9dd 1413 if (page->freelist) {
7c2e132c 1414 add_partial(n, page, tail);
8ff12cfc
CL
1415 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1416 } else {
1417 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1418 if (SLABDEBUG && PageSlubDebug(page) &&
1419 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1420 add_full(n, page);
1421 }
81819f0f
CL
1422 slab_unlock(page);
1423 } else {
8ff12cfc 1424 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1425 if (n->nr_partial < s->min_partial) {
e95eed57 1426 /*
672bba3a
CL
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
6446faa2
CL
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1432 *
0121c619
CL
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
e95eed57 1435 */
7c2e132c 1436 add_partial(n, page, 1);
e95eed57
CL
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
8ff12cfc 1440 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1441 discard_slab(s, page);
1442 }
81819f0f
CL
1443 }
1444}
1445
1446/*
1447 * Remove the cpu slab
1448 */
dfb4f096 1449static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1450{
dfb4f096 1451 struct page *page = c->page;
7c2e132c 1452 int tail = 1;
8ff12cfc 1453
b773ad73 1454 if (page->freelist)
8ff12cfc 1455 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1456 /*
6446faa2 1457 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1460 */
a973e9dd 1461 while (unlikely(c->freelist)) {
894b8788
CL
1462 void **object;
1463
7c2e132c
CL
1464 tail = 0; /* Hot objects. Put the slab first */
1465
894b8788 1466 /* Retrieve object from cpu_freelist */
dfb4f096 1467 object = c->freelist;
b3fba8da 1468 c->freelist = c->freelist[c->offset];
894b8788
CL
1469
1470 /* And put onto the regular freelist */
b3fba8da 1471 object[c->offset] = page->freelist;
894b8788
CL
1472 page->freelist = object;
1473 page->inuse--;
1474 }
dfb4f096 1475 c->page = NULL;
7c2e132c 1476 unfreeze_slab(s, page, tail);
81819f0f
CL
1477}
1478
dfb4f096 1479static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1480{
8ff12cfc 1481 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
81819f0f
CL
1484}
1485
1486/*
1487 * Flush cpu slab.
6446faa2 1488 *
81819f0f
CL
1489 * Called from IPI handler with interrupts disabled.
1490 */
0c710013 1491static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1492{
dfb4f096 1493 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1494
dfb4f096
CL
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
81819f0f
CL
1497}
1498
1499static void flush_cpu_slab(void *d)
1500{
1501 struct kmem_cache *s = d;
81819f0f 1502
dfb4f096 1503 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1504}
1505
1506static void flush_all(struct kmem_cache *s)
1507{
15c8b6c1 1508 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1509}
1510
dfb4f096
CL
1511/*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515static inline int node_match(struct kmem_cache_cpu *c, int node)
1516{
1517#ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520#endif
1521 return 1;
1522}
1523
781b2ba6
PE
1524static int count_free(struct page *page)
1525{
1526 return page->objects - page->inuse;
1527}
1528
1529static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1531{
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1535
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1541}
1542
26c02cf0
AB
1543static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544{
1545#ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547#else
1548 return 0;
1549#endif
1550}
1551
781b2ba6
PE
1552static noinline void
1553slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554{
1555 int node;
1556
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1563
1564 for_each_online_node(node) {
1565 struct kmem_cache_node *n = get_node(s, node);
1566 unsigned long nr_slabs;
1567 unsigned long nr_objs;
1568 unsigned long nr_free;
1569
1570 if (!n)
1571 continue;
1572
26c02cf0
AB
1573 nr_free = count_partial(n, count_free);
1574 nr_slabs = node_nr_slabs(n);
1575 nr_objs = node_nr_objs(n);
781b2ba6
PE
1576
1577 printk(KERN_WARNING
1578 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1579 node, nr_slabs, nr_objs, nr_free);
1580 }
1581}
1582
81819f0f 1583/*
894b8788
CL
1584 * Slow path. The lockless freelist is empty or we need to perform
1585 * debugging duties.
1586 *
1587 * Interrupts are disabled.
81819f0f 1588 *
894b8788
CL
1589 * Processing is still very fast if new objects have been freed to the
1590 * regular freelist. In that case we simply take over the regular freelist
1591 * as the lockless freelist and zap the regular freelist.
81819f0f 1592 *
894b8788
CL
1593 * If that is not working then we fall back to the partial lists. We take the
1594 * first element of the freelist as the object to allocate now and move the
1595 * rest of the freelist to the lockless freelist.
81819f0f 1596 *
894b8788 1597 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1598 * we need to allocate a new slab. This is the slowest path since it involves
1599 * a call to the page allocator and the setup of a new slab.
81819f0f 1600 */
ce71e27c
EGM
1601static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1602 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1603{
81819f0f 1604 void **object;
dfb4f096 1605 struct page *new;
81819f0f 1606
e72e9c23
LT
1607 /* We handle __GFP_ZERO in the caller */
1608 gfpflags &= ~__GFP_ZERO;
1609
dfb4f096 1610 if (!c->page)
81819f0f
CL
1611 goto new_slab;
1612
dfb4f096
CL
1613 slab_lock(c->page);
1614 if (unlikely(!node_match(c, node)))
81819f0f 1615 goto another_slab;
6446faa2 1616
8ff12cfc 1617 stat(c, ALLOC_REFILL);
6446faa2 1618
894b8788 1619load_freelist:
dfb4f096 1620 object = c->page->freelist;
a973e9dd 1621 if (unlikely(!object))
81819f0f 1622 goto another_slab;
8a38082d 1623 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1624 goto debug;
1625
b3fba8da 1626 c->freelist = object[c->offset];
39b26464 1627 c->page->inuse = c->page->objects;
a973e9dd 1628 c->page->freelist = NULL;
dfb4f096 1629 c->node = page_to_nid(c->page);
1f84260c 1630unlock_out:
dfb4f096 1631 slab_unlock(c->page);
8ff12cfc 1632 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1633 return object;
1634
1635another_slab:
dfb4f096 1636 deactivate_slab(s, c);
81819f0f
CL
1637
1638new_slab:
dfb4f096
CL
1639 new = get_partial(s, gfpflags, node);
1640 if (new) {
1641 c->page = new;
8ff12cfc 1642 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1643 goto load_freelist;
81819f0f
CL
1644 }
1645
b811c202
CL
1646 if (gfpflags & __GFP_WAIT)
1647 local_irq_enable();
1648
dfb4f096 1649 new = new_slab(s, gfpflags, node);
b811c202
CL
1650
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_disable();
1653
dfb4f096
CL
1654 if (new) {
1655 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1656 stat(c, ALLOC_SLAB);
05aa3450 1657 if (c->page)
dfb4f096 1658 flush_slab(s, c);
dfb4f096 1659 slab_lock(new);
8a38082d 1660 __SetPageSlubFrozen(new);
dfb4f096 1661 c->page = new;
4b6f0750 1662 goto load_freelist;
81819f0f 1663 }
95f85989
PE
1664 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1665 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1666 return NULL;
81819f0f 1667debug:
dfb4f096 1668 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1669 goto another_slab;
894b8788 1670
dfb4f096 1671 c->page->inuse++;
b3fba8da 1672 c->page->freelist = object[c->offset];
ee3c72a1 1673 c->node = -1;
1f84260c 1674 goto unlock_out;
894b8788
CL
1675}
1676
1677/*
1678 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1679 * have the fastpath folded into their functions. So no function call
1680 * overhead for requests that can be satisfied on the fastpath.
1681 *
1682 * The fastpath works by first checking if the lockless freelist can be used.
1683 * If not then __slab_alloc is called for slow processing.
1684 *
1685 * Otherwise we can simply pick the next object from the lockless free list.
1686 */
06428780 1687static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1688 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1689{
894b8788 1690 void **object;
dfb4f096 1691 struct kmem_cache_cpu *c;
1f84260c 1692 unsigned long flags;
bdb21928 1693 unsigned int objsize;
1f84260c 1694
dcce284a 1695 gfpflags &= gfp_allowed_mask;
7e85ee0c 1696
cf40bd16 1697 lockdep_trace_alloc(gfpflags);
89124d70 1698 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1699
773ff60e
AM
1700 if (should_failslab(s->objsize, gfpflags))
1701 return NULL;
1f84260c 1702
894b8788 1703 local_irq_save(flags);
dfb4f096 1704 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1705 objsize = c->objsize;
a973e9dd 1706 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1707
dfb4f096 1708 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1709
1710 else {
dfb4f096 1711 object = c->freelist;
b3fba8da 1712 c->freelist = object[c->offset];
8ff12cfc 1713 stat(c, ALLOC_FASTPATH);
894b8788
CL
1714 }
1715 local_irq_restore(flags);
d07dbea4
CL
1716
1717 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1718 memset(object, 0, objsize);
d07dbea4 1719
5a896d9e 1720 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
06f22f13 1721 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
5a896d9e 1722
894b8788 1723 return object;
81819f0f
CL
1724}
1725
1726void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1727{
5b882be4
EGM
1728 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1729
ca2b84cb 1730 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1731
1732 return ret;
81819f0f
CL
1733}
1734EXPORT_SYMBOL(kmem_cache_alloc);
1735
5b882be4
EGM
1736#ifdef CONFIG_KMEMTRACE
1737void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1738{
1739 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1740}
1741EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1742#endif
1743
81819f0f
CL
1744#ifdef CONFIG_NUMA
1745void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1746{
5b882be4
EGM
1747 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1748
ca2b84cb
EGM
1749 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1750 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1751
1752 return ret;
81819f0f
CL
1753}
1754EXPORT_SYMBOL(kmem_cache_alloc_node);
1755#endif
1756
5b882be4
EGM
1757#ifdef CONFIG_KMEMTRACE
1758void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1759 gfp_t gfpflags,
1760 int node)
1761{
1762 return slab_alloc(s, gfpflags, node, _RET_IP_);
1763}
1764EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1765#endif
1766
81819f0f 1767/*
894b8788
CL
1768 * Slow patch handling. This may still be called frequently since objects
1769 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1770 *
894b8788
CL
1771 * So we still attempt to reduce cache line usage. Just take the slab
1772 * lock and free the item. If there is no additional partial page
1773 * handling required then we can return immediately.
81819f0f 1774 */
894b8788 1775static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1776 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1777{
1778 void *prior;
1779 void **object = (void *)x;
8ff12cfc 1780 struct kmem_cache_cpu *c;
81819f0f 1781
8ff12cfc
CL
1782 c = get_cpu_slab(s, raw_smp_processor_id());
1783 stat(c, FREE_SLOWPATH);
81819f0f
CL
1784 slab_lock(page);
1785
8a38082d 1786 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1787 goto debug;
6446faa2 1788
81819f0f 1789checks_ok:
b3fba8da 1790 prior = object[offset] = page->freelist;
81819f0f
CL
1791 page->freelist = object;
1792 page->inuse--;
1793
8a38082d 1794 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1795 stat(c, FREE_FROZEN);
81819f0f 1796 goto out_unlock;
8ff12cfc 1797 }
81819f0f
CL
1798
1799 if (unlikely(!page->inuse))
1800 goto slab_empty;
1801
1802 /*
6446faa2 1803 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1804 * then add it.
1805 */
a973e9dd 1806 if (unlikely(!prior)) {
7c2e132c 1807 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1808 stat(c, FREE_ADD_PARTIAL);
1809 }
81819f0f
CL
1810
1811out_unlock:
1812 slab_unlock(page);
81819f0f
CL
1813 return;
1814
1815slab_empty:
a973e9dd 1816 if (prior) {
81819f0f 1817 /*
672bba3a 1818 * Slab still on the partial list.
81819f0f
CL
1819 */
1820 remove_partial(s, page);
8ff12cfc
CL
1821 stat(c, FREE_REMOVE_PARTIAL);
1822 }
81819f0f 1823 slab_unlock(page);
8ff12cfc 1824 stat(c, FREE_SLAB);
81819f0f 1825 discard_slab(s, page);
81819f0f
CL
1826 return;
1827
1828debug:
3ec09742 1829 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1830 goto out_unlock;
77c5e2d0 1831 goto checks_ok;
81819f0f
CL
1832}
1833
894b8788
CL
1834/*
1835 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1836 * can perform fastpath freeing without additional function calls.
1837 *
1838 * The fastpath is only possible if we are freeing to the current cpu slab
1839 * of this processor. This typically the case if we have just allocated
1840 * the item before.
1841 *
1842 * If fastpath is not possible then fall back to __slab_free where we deal
1843 * with all sorts of special processing.
1844 */
06428780 1845static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1846 struct page *page, void *x, unsigned long addr)
894b8788
CL
1847{
1848 void **object = (void *)x;
dfb4f096 1849 struct kmem_cache_cpu *c;
1f84260c
CL
1850 unsigned long flags;
1851
06f22f13 1852 kmemleak_free_recursive(x, s->flags);
894b8788 1853 local_irq_save(flags);
dfb4f096 1854 c = get_cpu_slab(s, smp_processor_id());
5a896d9e 1855 kmemcheck_slab_free(s, object, c->objsize);
27d9e4e9 1856 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1857 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1858 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1859 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1860 object[c->offset] = c->freelist;
dfb4f096 1861 c->freelist = object;
8ff12cfc 1862 stat(c, FREE_FASTPATH);
894b8788 1863 } else
b3fba8da 1864 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1865
1866 local_irq_restore(flags);
1867}
1868
81819f0f
CL
1869void kmem_cache_free(struct kmem_cache *s, void *x)
1870{
77c5e2d0 1871 struct page *page;
81819f0f 1872
b49af68f 1873 page = virt_to_head_page(x);
81819f0f 1874
ce71e27c 1875 slab_free(s, page, x, _RET_IP_);
5b882be4 1876
ca2b84cb 1877 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1878}
1879EXPORT_SYMBOL(kmem_cache_free);
1880
e9beef18 1881/* Figure out on which slab page the object resides */
81819f0f
CL
1882static struct page *get_object_page(const void *x)
1883{
b49af68f 1884 struct page *page = virt_to_head_page(x);
81819f0f
CL
1885
1886 if (!PageSlab(page))
1887 return NULL;
1888
1889 return page;
1890}
1891
1892/*
672bba3a
CL
1893 * Object placement in a slab is made very easy because we always start at
1894 * offset 0. If we tune the size of the object to the alignment then we can
1895 * get the required alignment by putting one properly sized object after
1896 * another.
81819f0f
CL
1897 *
1898 * Notice that the allocation order determines the sizes of the per cpu
1899 * caches. Each processor has always one slab available for allocations.
1900 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1901 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1902 * locking overhead.
81819f0f
CL
1903 */
1904
1905/*
1906 * Mininum / Maximum order of slab pages. This influences locking overhead
1907 * and slab fragmentation. A higher order reduces the number of partial slabs
1908 * and increases the number of allocations possible without having to
1909 * take the list_lock.
1910 */
1911static int slub_min_order;
114e9e89 1912static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1913static int slub_min_objects;
81819f0f
CL
1914
1915/*
1916 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1917 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1918 */
1919static int slub_nomerge;
1920
81819f0f
CL
1921/*
1922 * Calculate the order of allocation given an slab object size.
1923 *
672bba3a
CL
1924 * The order of allocation has significant impact on performance and other
1925 * system components. Generally order 0 allocations should be preferred since
1926 * order 0 does not cause fragmentation in the page allocator. Larger objects
1927 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1928 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1929 * would be wasted.
1930 *
1931 * In order to reach satisfactory performance we must ensure that a minimum
1932 * number of objects is in one slab. Otherwise we may generate too much
1933 * activity on the partial lists which requires taking the list_lock. This is
1934 * less a concern for large slabs though which are rarely used.
81819f0f 1935 *
672bba3a
CL
1936 * slub_max_order specifies the order where we begin to stop considering the
1937 * number of objects in a slab as critical. If we reach slub_max_order then
1938 * we try to keep the page order as low as possible. So we accept more waste
1939 * of space in favor of a small page order.
81819f0f 1940 *
672bba3a
CL
1941 * Higher order allocations also allow the placement of more objects in a
1942 * slab and thereby reduce object handling overhead. If the user has
1943 * requested a higher mininum order then we start with that one instead of
1944 * the smallest order which will fit the object.
81819f0f 1945 */
5e6d444e
CL
1946static inline int slab_order(int size, int min_objects,
1947 int max_order, int fract_leftover)
81819f0f
CL
1948{
1949 int order;
1950 int rem;
6300ea75 1951 int min_order = slub_min_order;
81819f0f 1952
210b5c06
CG
1953 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1955
6300ea75 1956 for (order = max(min_order,
5e6d444e
CL
1957 fls(min_objects * size - 1) - PAGE_SHIFT);
1958 order <= max_order; order++) {
81819f0f 1959
5e6d444e 1960 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1961
5e6d444e 1962 if (slab_size < min_objects * size)
81819f0f
CL
1963 continue;
1964
1965 rem = slab_size % size;
1966
5e6d444e 1967 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1968 break;
1969
1970 }
672bba3a 1971
81819f0f
CL
1972 return order;
1973}
1974
5e6d444e
CL
1975static inline int calculate_order(int size)
1976{
1977 int order;
1978 int min_objects;
1979 int fraction;
e8120ff1 1980 int max_objects;
5e6d444e
CL
1981
1982 /*
1983 * Attempt to find best configuration for a slab. This
1984 * works by first attempting to generate a layout with
1985 * the best configuration and backing off gradually.
1986 *
1987 * First we reduce the acceptable waste in a slab. Then
1988 * we reduce the minimum objects required in a slab.
1989 */
1990 min_objects = slub_min_objects;
9b2cd506
CL
1991 if (!min_objects)
1992 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1993 max_objects = (PAGE_SIZE << slub_max_order)/size;
1994 min_objects = min(min_objects, max_objects);
1995
5e6d444e 1996 while (min_objects > 1) {
c124f5b5 1997 fraction = 16;
5e6d444e
CL
1998 while (fraction >= 4) {
1999 order = slab_order(size, min_objects,
2000 slub_max_order, fraction);
2001 if (order <= slub_max_order)
2002 return order;
2003 fraction /= 2;
2004 }
e8120ff1 2005 min_objects --;
5e6d444e
CL
2006 }
2007
2008 /*
2009 * We were unable to place multiple objects in a slab. Now
2010 * lets see if we can place a single object there.
2011 */
2012 order = slab_order(size, 1, slub_max_order, 1);
2013 if (order <= slub_max_order)
2014 return order;
2015
2016 /*
2017 * Doh this slab cannot be placed using slub_max_order.
2018 */
2019 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2020 if (order < MAX_ORDER)
5e6d444e
CL
2021 return order;
2022 return -ENOSYS;
2023}
2024
81819f0f 2025/*
672bba3a 2026 * Figure out what the alignment of the objects will be.
81819f0f
CL
2027 */
2028static unsigned long calculate_alignment(unsigned long flags,
2029 unsigned long align, unsigned long size)
2030{
2031 /*
6446faa2
CL
2032 * If the user wants hardware cache aligned objects then follow that
2033 * suggestion if the object is sufficiently large.
81819f0f 2034 *
6446faa2
CL
2035 * The hardware cache alignment cannot override the specified
2036 * alignment though. If that is greater then use it.
81819f0f 2037 */
b6210386
NP
2038 if (flags & SLAB_HWCACHE_ALIGN) {
2039 unsigned long ralign = cache_line_size();
2040 while (size <= ralign / 2)
2041 ralign /= 2;
2042 align = max(align, ralign);
2043 }
81819f0f
CL
2044
2045 if (align < ARCH_SLAB_MINALIGN)
b6210386 2046 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2047
2048 return ALIGN(align, sizeof(void *));
2049}
2050
dfb4f096
CL
2051static void init_kmem_cache_cpu(struct kmem_cache *s,
2052 struct kmem_cache_cpu *c)
2053{
2054 c->page = NULL;
a973e9dd 2055 c->freelist = NULL;
dfb4f096 2056 c->node = 0;
42a9fdbb
CL
2057 c->offset = s->offset / sizeof(void *);
2058 c->objsize = s->objsize;
62f75532
PE
2059#ifdef CONFIG_SLUB_STATS
2060 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2061#endif
dfb4f096
CL
2062}
2063
5595cffc
PE
2064static void
2065init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2066{
2067 n->nr_partial = 0;
81819f0f
CL
2068 spin_lock_init(&n->list_lock);
2069 INIT_LIST_HEAD(&n->partial);
8ab1372f 2070#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2071 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2072 atomic_long_set(&n->total_objects, 0);
643b1138 2073 INIT_LIST_HEAD(&n->full);
8ab1372f 2074#endif
81819f0f
CL
2075}
2076
4c93c355
CL
2077#ifdef CONFIG_SMP
2078/*
2079 * Per cpu array for per cpu structures.
2080 *
2081 * The per cpu array places all kmem_cache_cpu structures from one processor
2082 * close together meaning that it becomes possible that multiple per cpu
2083 * structures are contained in one cacheline. This may be particularly
2084 * beneficial for the kmalloc caches.
2085 *
2086 * A desktop system typically has around 60-80 slabs. With 100 here we are
2087 * likely able to get per cpu structures for all caches from the array defined
2088 * here. We must be able to cover all kmalloc caches during bootstrap.
2089 *
2090 * If the per cpu array is exhausted then fall back to kmalloc
2091 * of individual cachelines. No sharing is possible then.
2092 */
2093#define NR_KMEM_CACHE_CPU 100
2094
2095static DEFINE_PER_CPU(struct kmem_cache_cpu,
2096 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2097
2098static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2099static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2100
2101static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2102 int cpu, gfp_t flags)
2103{
2104 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2105
2106 if (c)
2107 per_cpu(kmem_cache_cpu_free, cpu) =
2108 (void *)c->freelist;
2109 else {
2110 /* Table overflow: So allocate ourselves */
2111 c = kmalloc_node(
2112 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2113 flags, cpu_to_node(cpu));
2114 if (!c)
2115 return NULL;
2116 }
2117
2118 init_kmem_cache_cpu(s, c);
2119 return c;
2120}
2121
2122static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2123{
2124 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2125 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2126 kfree(c);
2127 return;
2128 }
2129 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2130 per_cpu(kmem_cache_cpu_free, cpu) = c;
2131}
2132
2133static void free_kmem_cache_cpus(struct kmem_cache *s)
2134{
2135 int cpu;
2136
2137 for_each_online_cpu(cpu) {
2138 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2139
2140 if (c) {
2141 s->cpu_slab[cpu] = NULL;
2142 free_kmem_cache_cpu(c, cpu);
2143 }
2144 }
2145}
2146
2147static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2148{
2149 int cpu;
2150
2151 for_each_online_cpu(cpu) {
2152 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2153
2154 if (c)
2155 continue;
2156
2157 c = alloc_kmem_cache_cpu(s, cpu, flags);
2158 if (!c) {
2159 free_kmem_cache_cpus(s);
2160 return 0;
2161 }
2162 s->cpu_slab[cpu] = c;
2163 }
2164 return 1;
2165}
2166
2167/*
2168 * Initialize the per cpu array.
2169 */
2170static void init_alloc_cpu_cpu(int cpu)
2171{
2172 int i;
2173
174596a0 2174 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2175 return;
2176
2177 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2178 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2179
174596a0 2180 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2181}
2182
2183static void __init init_alloc_cpu(void)
2184{
2185 int cpu;
2186
2187 for_each_online_cpu(cpu)
2188 init_alloc_cpu_cpu(cpu);
2189 }
2190
2191#else
2192static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2193static inline void init_alloc_cpu(void) {}
2194
2195static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2196{
2197 init_kmem_cache_cpu(s, &s->cpu_slab);
2198 return 1;
2199}
2200#endif
2201
81819f0f
CL
2202#ifdef CONFIG_NUMA
2203/*
2204 * No kmalloc_node yet so do it by hand. We know that this is the first
2205 * slab on the node for this slabcache. There are no concurrent accesses
2206 * possible.
2207 *
2208 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2209 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2210 * memory on a fresh node that has no slab structures yet.
81819f0f 2211 */
0094de92 2212static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2213{
2214 struct page *page;
2215 struct kmem_cache_node *n;
ba84c73c 2216 unsigned long flags;
81819f0f
CL
2217
2218 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2219
a2f92ee7 2220 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2221
2222 BUG_ON(!page);
a2f92ee7
CL
2223 if (page_to_nid(page) != node) {
2224 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2225 "node %d\n", node);
2226 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2227 "in order to be able to continue\n");
2228 }
2229
81819f0f
CL
2230 n = page->freelist;
2231 BUG_ON(!n);
2232 page->freelist = get_freepointer(kmalloc_caches, n);
2233 page->inuse++;
2234 kmalloc_caches->node[node] = n;
8ab1372f 2235#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2236 init_object(kmalloc_caches, n, 1);
2237 init_tracking(kmalloc_caches, n);
8ab1372f 2238#endif
5595cffc 2239 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2240 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2241
ba84c73c 2242 /*
2243 * lockdep requires consistent irq usage for each lock
2244 * so even though there cannot be a race this early in
2245 * the boot sequence, we still disable irqs.
2246 */
2247 local_irq_save(flags);
7c2e132c 2248 add_partial(n, page, 0);
ba84c73c 2249 local_irq_restore(flags);
81819f0f
CL
2250}
2251
2252static void free_kmem_cache_nodes(struct kmem_cache *s)
2253{
2254 int node;
2255
f64dc58c 2256 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2257 struct kmem_cache_node *n = s->node[node];
2258 if (n && n != &s->local_node)
2259 kmem_cache_free(kmalloc_caches, n);
2260 s->node[node] = NULL;
2261 }
2262}
2263
2264static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2265{
2266 int node;
2267 int local_node;
2268
2269 if (slab_state >= UP)
2270 local_node = page_to_nid(virt_to_page(s));
2271 else
2272 local_node = 0;
2273
f64dc58c 2274 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2275 struct kmem_cache_node *n;
2276
2277 if (local_node == node)
2278 n = &s->local_node;
2279 else {
2280 if (slab_state == DOWN) {
0094de92 2281 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2282 continue;
2283 }
2284 n = kmem_cache_alloc_node(kmalloc_caches,
2285 gfpflags, node);
2286
2287 if (!n) {
2288 free_kmem_cache_nodes(s);
2289 return 0;
2290 }
2291
2292 }
2293 s->node[node] = n;
5595cffc 2294 init_kmem_cache_node(n, s);
81819f0f
CL
2295 }
2296 return 1;
2297}
2298#else
2299static void free_kmem_cache_nodes(struct kmem_cache *s)
2300{
2301}
2302
2303static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2304{
5595cffc 2305 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2306 return 1;
2307}
2308#endif
2309
c0bdb232 2310static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2311{
2312 if (min < MIN_PARTIAL)
2313 min = MIN_PARTIAL;
2314 else if (min > MAX_PARTIAL)
2315 min = MAX_PARTIAL;
2316 s->min_partial = min;
2317}
2318
81819f0f
CL
2319/*
2320 * calculate_sizes() determines the order and the distribution of data within
2321 * a slab object.
2322 */
06b285dc 2323static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2324{
2325 unsigned long flags = s->flags;
2326 unsigned long size = s->objsize;
2327 unsigned long align = s->align;
834f3d11 2328 int order;
81819f0f 2329
d8b42bf5
CL
2330 /*
2331 * Round up object size to the next word boundary. We can only
2332 * place the free pointer at word boundaries and this determines
2333 * the possible location of the free pointer.
2334 */
2335 size = ALIGN(size, sizeof(void *));
2336
2337#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2338 /*
2339 * Determine if we can poison the object itself. If the user of
2340 * the slab may touch the object after free or before allocation
2341 * then we should never poison the object itself.
2342 */
2343 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2344 !s->ctor)
81819f0f
CL
2345 s->flags |= __OBJECT_POISON;
2346 else
2347 s->flags &= ~__OBJECT_POISON;
2348
81819f0f
CL
2349
2350 /*
672bba3a 2351 * If we are Redzoning then check if there is some space between the
81819f0f 2352 * end of the object and the free pointer. If not then add an
672bba3a 2353 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2354 */
2355 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2356 size += sizeof(void *);
41ecc55b 2357#endif
81819f0f
CL
2358
2359 /*
672bba3a
CL
2360 * With that we have determined the number of bytes in actual use
2361 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2362 */
2363 s->inuse = size;
2364
2365 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2366 s->ctor)) {
81819f0f
CL
2367 /*
2368 * Relocate free pointer after the object if it is not
2369 * permitted to overwrite the first word of the object on
2370 * kmem_cache_free.
2371 *
2372 * This is the case if we do RCU, have a constructor or
2373 * destructor or are poisoning the objects.
2374 */
2375 s->offset = size;
2376 size += sizeof(void *);
2377 }
2378
c12b3c62 2379#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2380 if (flags & SLAB_STORE_USER)
2381 /*
2382 * Need to store information about allocs and frees after
2383 * the object.
2384 */
2385 size += 2 * sizeof(struct track);
2386
be7b3fbc 2387 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2388 /*
2389 * Add some empty padding so that we can catch
2390 * overwrites from earlier objects rather than let
2391 * tracking information or the free pointer be
0211a9c8 2392 * corrupted if a user writes before the start
81819f0f
CL
2393 * of the object.
2394 */
2395 size += sizeof(void *);
41ecc55b 2396#endif
672bba3a 2397
81819f0f
CL
2398 /*
2399 * Determine the alignment based on various parameters that the
65c02d4c
CL
2400 * user specified and the dynamic determination of cache line size
2401 * on bootup.
81819f0f
CL
2402 */
2403 align = calculate_alignment(flags, align, s->objsize);
2404
2405 /*
2406 * SLUB stores one object immediately after another beginning from
2407 * offset 0. In order to align the objects we have to simply size
2408 * each object to conform to the alignment.
2409 */
2410 size = ALIGN(size, align);
2411 s->size = size;
06b285dc
CL
2412 if (forced_order >= 0)
2413 order = forced_order;
2414 else
2415 order = calculate_order(size);
81819f0f 2416
834f3d11 2417 if (order < 0)
81819f0f
CL
2418 return 0;
2419
b7a49f0d 2420 s->allocflags = 0;
834f3d11 2421 if (order)
b7a49f0d
CL
2422 s->allocflags |= __GFP_COMP;
2423
2424 if (s->flags & SLAB_CACHE_DMA)
2425 s->allocflags |= SLUB_DMA;
2426
2427 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2428 s->allocflags |= __GFP_RECLAIMABLE;
2429
81819f0f
CL
2430 /*
2431 * Determine the number of objects per slab
2432 */
834f3d11 2433 s->oo = oo_make(order, size);
65c3376a 2434 s->min = oo_make(get_order(size), size);
205ab99d
CL
2435 if (oo_objects(s->oo) > oo_objects(s->max))
2436 s->max = s->oo;
81819f0f 2437
834f3d11 2438 return !!oo_objects(s->oo);
81819f0f
CL
2439
2440}
2441
81819f0f
CL
2442static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2443 const char *name, size_t size,
2444 size_t align, unsigned long flags,
51cc5068 2445 void (*ctor)(void *))
81819f0f
CL
2446{
2447 memset(s, 0, kmem_size);
2448 s->name = name;
2449 s->ctor = ctor;
81819f0f 2450 s->objsize = size;
81819f0f 2451 s->align = align;
ba0268a8 2452 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2453
06b285dc 2454 if (!calculate_sizes(s, -1))
81819f0f
CL
2455 goto error;
2456
3b89d7d8
DR
2457 /*
2458 * The larger the object size is, the more pages we want on the partial
2459 * list to avoid pounding the page allocator excessively.
2460 */
c0bdb232 2461 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2462 s->refcount = 1;
2463#ifdef CONFIG_NUMA
e2cb96b7 2464 s->remote_node_defrag_ratio = 1000;
81819f0f 2465#endif
dfb4f096
CL
2466 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2467 goto error;
81819f0f 2468
dfb4f096 2469 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2470 return 1;
4c93c355 2471 free_kmem_cache_nodes(s);
81819f0f
CL
2472error:
2473 if (flags & SLAB_PANIC)
2474 panic("Cannot create slab %s size=%lu realsize=%u "
2475 "order=%u offset=%u flags=%lx\n",
834f3d11 2476 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2477 s->offset, flags);
2478 return 0;
2479}
81819f0f
CL
2480
2481/*
2482 * Check if a given pointer is valid
2483 */
2484int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2485{
06428780 2486 struct page *page;
81819f0f
CL
2487
2488 page = get_object_page(object);
2489
2490 if (!page || s != page->slab)
2491 /* No slab or wrong slab */
2492 return 0;
2493
abcd08a6 2494 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2495 return 0;
2496
2497 /*
2498 * We could also check if the object is on the slabs freelist.
2499 * But this would be too expensive and it seems that the main
6446faa2 2500 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2501 * to a certain slab.
2502 */
2503 return 1;
2504}
2505EXPORT_SYMBOL(kmem_ptr_validate);
2506
2507/*
2508 * Determine the size of a slab object
2509 */
2510unsigned int kmem_cache_size(struct kmem_cache *s)
2511{
2512 return s->objsize;
2513}
2514EXPORT_SYMBOL(kmem_cache_size);
2515
2516const char *kmem_cache_name(struct kmem_cache *s)
2517{
2518 return s->name;
2519}
2520EXPORT_SYMBOL(kmem_cache_name);
2521
33b12c38
CL
2522static void list_slab_objects(struct kmem_cache *s, struct page *page,
2523 const char *text)
2524{
2525#ifdef CONFIG_SLUB_DEBUG
2526 void *addr = page_address(page);
2527 void *p;
2528 DECLARE_BITMAP(map, page->objects);
2529
2530 bitmap_zero(map, page->objects);
2531 slab_err(s, page, "%s", text);
2532 slab_lock(page);
2533 for_each_free_object(p, s, page->freelist)
2534 set_bit(slab_index(p, s, addr), map);
2535
2536 for_each_object(p, s, addr, page->objects) {
2537
2538 if (!test_bit(slab_index(p, s, addr), map)) {
2539 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2540 p, p - addr);
2541 print_tracking(s, p);
2542 }
2543 }
2544 slab_unlock(page);
2545#endif
2546}
2547
81819f0f 2548/*
599870b1 2549 * Attempt to free all partial slabs on a node.
81819f0f 2550 */
599870b1 2551static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2552{
81819f0f
CL
2553 unsigned long flags;
2554 struct page *page, *h;
2555
2556 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2557 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2558 if (!page->inuse) {
2559 list_del(&page->lru);
2560 discard_slab(s, page);
599870b1 2561 n->nr_partial--;
33b12c38
CL
2562 } else {
2563 list_slab_objects(s, page,
2564 "Objects remaining on kmem_cache_close()");
599870b1 2565 }
33b12c38 2566 }
81819f0f 2567 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2568}
2569
2570/*
672bba3a 2571 * Release all resources used by a slab cache.
81819f0f 2572 */
0c710013 2573static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2574{
2575 int node;
2576
2577 flush_all(s);
2578
2579 /* Attempt to free all objects */
4c93c355 2580 free_kmem_cache_cpus(s);
f64dc58c 2581 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2582 struct kmem_cache_node *n = get_node(s, node);
2583
599870b1
CL
2584 free_partial(s, n);
2585 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2586 return 1;
2587 }
2588 free_kmem_cache_nodes(s);
2589 return 0;
2590}
2591
2592/*
2593 * Close a cache and release the kmem_cache structure
2594 * (must be used for caches created using kmem_cache_create)
2595 */
2596void kmem_cache_destroy(struct kmem_cache *s)
2597{
2598 down_write(&slub_lock);
2599 s->refcount--;
2600 if (!s->refcount) {
2601 list_del(&s->list);
a0e1d1be 2602 up_write(&slub_lock);
d629d819
PE
2603 if (kmem_cache_close(s)) {
2604 printk(KERN_ERR "SLUB %s: %s called for cache that "
2605 "still has objects.\n", s->name, __func__);
2606 dump_stack();
2607 }
81819f0f 2608 sysfs_slab_remove(s);
a0e1d1be
CL
2609 } else
2610 up_write(&slub_lock);
81819f0f
CL
2611}
2612EXPORT_SYMBOL(kmem_cache_destroy);
2613
2614/********************************************************************
2615 * Kmalloc subsystem
2616 *******************************************************************/
2617
ffadd4d0 2618struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2619EXPORT_SYMBOL(kmalloc_caches);
2620
81819f0f
CL
2621static int __init setup_slub_min_order(char *str)
2622{
06428780 2623 get_option(&str, &slub_min_order);
81819f0f
CL
2624
2625 return 1;
2626}
2627
2628__setup("slub_min_order=", setup_slub_min_order);
2629
2630static int __init setup_slub_max_order(char *str)
2631{
06428780 2632 get_option(&str, &slub_max_order);
818cf590 2633 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2634
2635 return 1;
2636}
2637
2638__setup("slub_max_order=", setup_slub_max_order);
2639
2640static int __init setup_slub_min_objects(char *str)
2641{
06428780 2642 get_option(&str, &slub_min_objects);
81819f0f
CL
2643
2644 return 1;
2645}
2646
2647__setup("slub_min_objects=", setup_slub_min_objects);
2648
2649static int __init setup_slub_nomerge(char *str)
2650{
2651 slub_nomerge = 1;
2652 return 1;
2653}
2654
2655__setup("slub_nomerge", setup_slub_nomerge);
2656
81819f0f
CL
2657static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2658 const char *name, int size, gfp_t gfp_flags)
2659{
2660 unsigned int flags = 0;
2661
2662 if (gfp_flags & SLUB_DMA)
2663 flags = SLAB_CACHE_DMA;
2664
83b519e8
PE
2665 /*
2666 * This function is called with IRQs disabled during early-boot on
2667 * single CPU so there's no need to take slub_lock here.
2668 */
81819f0f 2669 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2670 flags, NULL))
81819f0f
CL
2671 goto panic;
2672
2673 list_add(&s->list, &slab_caches);
83b519e8 2674
81819f0f
CL
2675 if (sysfs_slab_add(s))
2676 goto panic;
2677 return s;
2678
2679panic:
2680 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2681}
2682
2e443fd0 2683#ifdef CONFIG_ZONE_DMA
ffadd4d0 2684static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2685
2686static void sysfs_add_func(struct work_struct *w)
2687{
2688 struct kmem_cache *s;
2689
2690 down_write(&slub_lock);
2691 list_for_each_entry(s, &slab_caches, list) {
2692 if (s->flags & __SYSFS_ADD_DEFERRED) {
2693 s->flags &= ~__SYSFS_ADD_DEFERRED;
2694 sysfs_slab_add(s);
2695 }
2696 }
2697 up_write(&slub_lock);
2698}
2699
2700static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2701
2e443fd0
CL
2702static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2703{
2704 struct kmem_cache *s;
2e443fd0
CL
2705 char *text;
2706 size_t realsize;
964cf35c 2707 unsigned long slabflags;
2e443fd0
CL
2708
2709 s = kmalloc_caches_dma[index];
2710 if (s)
2711 return s;
2712
2713 /* Dynamically create dma cache */
1ceef402
CL
2714 if (flags & __GFP_WAIT)
2715 down_write(&slub_lock);
2716 else {
2717 if (!down_write_trylock(&slub_lock))
2718 goto out;
2719 }
2720
2721 if (kmalloc_caches_dma[index])
2722 goto unlock_out;
2e443fd0 2723
7b55f620 2724 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2725 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2726 (unsigned int)realsize);
1ceef402
CL
2727 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2728
964cf35c
NP
2729 /*
2730 * Must defer sysfs creation to a workqueue because we don't know
2731 * what context we are called from. Before sysfs comes up, we don't
2732 * need to do anything because our sysfs initcall will start by
2733 * adding all existing slabs to sysfs.
2734 */
5caf5c7d 2735 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2736 if (slab_state >= SYSFS)
2737 slabflags |= __SYSFS_ADD_DEFERRED;
2738
1ceef402 2739 if (!s || !text || !kmem_cache_open(s, flags, text,
964cf35c 2740 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
1ceef402
CL
2741 kfree(s);
2742 kfree(text);
2743 goto unlock_out;
dfce8648 2744 }
1ceef402
CL
2745
2746 list_add(&s->list, &slab_caches);
2747 kmalloc_caches_dma[index] = s;
2748
964cf35c
NP
2749 if (slab_state >= SYSFS)
2750 schedule_work(&sysfs_add_work);
1ceef402
CL
2751
2752unlock_out:
dfce8648 2753 up_write(&slub_lock);
1ceef402 2754out:
dfce8648 2755 return kmalloc_caches_dma[index];
2e443fd0
CL
2756}
2757#endif
2758
f1b26339
CL
2759/*
2760 * Conversion table for small slabs sizes / 8 to the index in the
2761 * kmalloc array. This is necessary for slabs < 192 since we have non power
2762 * of two cache sizes there. The size of larger slabs can be determined using
2763 * fls.
2764 */
2765static s8 size_index[24] = {
2766 3, /* 8 */
2767 4, /* 16 */
2768 5, /* 24 */
2769 5, /* 32 */
2770 6, /* 40 */
2771 6, /* 48 */
2772 6, /* 56 */
2773 6, /* 64 */
2774 1, /* 72 */
2775 1, /* 80 */
2776 1, /* 88 */
2777 1, /* 96 */
2778 7, /* 104 */
2779 7, /* 112 */
2780 7, /* 120 */
2781 7, /* 128 */
2782 2, /* 136 */
2783 2, /* 144 */
2784 2, /* 152 */
2785 2, /* 160 */
2786 2, /* 168 */
2787 2, /* 176 */
2788 2, /* 184 */
2789 2 /* 192 */
2790};
2791
81819f0f
CL
2792static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2793{
f1b26339 2794 int index;
81819f0f 2795
f1b26339
CL
2796 if (size <= 192) {
2797 if (!size)
2798 return ZERO_SIZE_PTR;
81819f0f 2799
f1b26339 2800 index = size_index[(size - 1) / 8];
aadb4bc4 2801 } else
f1b26339 2802 index = fls(size - 1);
81819f0f
CL
2803
2804#ifdef CONFIG_ZONE_DMA
f1b26339 2805 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2806 return dma_kmalloc_cache(index, flags);
f1b26339 2807
81819f0f
CL
2808#endif
2809 return &kmalloc_caches[index];
2810}
2811
2812void *__kmalloc(size_t size, gfp_t flags)
2813{
aadb4bc4 2814 struct kmem_cache *s;
5b882be4 2815 void *ret;
81819f0f 2816
ffadd4d0 2817 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2818 return kmalloc_large(size, flags);
aadb4bc4
CL
2819
2820 s = get_slab(size, flags);
2821
2822 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2823 return s;
2824
5b882be4
EGM
2825 ret = slab_alloc(s, flags, -1, _RET_IP_);
2826
ca2b84cb 2827 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2828
2829 return ret;
81819f0f
CL
2830}
2831EXPORT_SYMBOL(__kmalloc);
2832
f619cfe1
CL
2833static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2834{
b1eeab67 2835 struct page *page;
f619cfe1 2836
b1eeab67
VN
2837 flags |= __GFP_COMP | __GFP_NOTRACK;
2838 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1
CL
2839 if (page)
2840 return page_address(page);
2841 else
2842 return NULL;
2843}
2844
81819f0f
CL
2845#ifdef CONFIG_NUMA
2846void *__kmalloc_node(size_t size, gfp_t flags, int node)
2847{
aadb4bc4 2848 struct kmem_cache *s;
5b882be4 2849 void *ret;
81819f0f 2850
057685cf 2851 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2852 ret = kmalloc_large_node(size, flags, node);
2853
ca2b84cb
EGM
2854 trace_kmalloc_node(_RET_IP_, ret,
2855 size, PAGE_SIZE << get_order(size),
2856 flags, node);
5b882be4
EGM
2857
2858 return ret;
2859 }
aadb4bc4
CL
2860
2861 s = get_slab(size, flags);
2862
2863 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2864 return s;
2865
5b882be4
EGM
2866 ret = slab_alloc(s, flags, node, _RET_IP_);
2867
ca2b84cb 2868 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2869
2870 return ret;
81819f0f
CL
2871}
2872EXPORT_SYMBOL(__kmalloc_node);
2873#endif
2874
2875size_t ksize(const void *object)
2876{
272c1d21 2877 struct page *page;
81819f0f
CL
2878 struct kmem_cache *s;
2879
ef8b4520 2880 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2881 return 0;
2882
294a80a8 2883 page = virt_to_head_page(object);
294a80a8 2884
76994412
PE
2885 if (unlikely(!PageSlab(page))) {
2886 WARN_ON(!PageCompound(page));
294a80a8 2887 return PAGE_SIZE << compound_order(page);
76994412 2888 }
81819f0f 2889 s = page->slab;
81819f0f 2890
ae20bfda 2891#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2892 /*
2893 * Debugging requires use of the padding between object
2894 * and whatever may come after it.
2895 */
2896 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2897 return s->objsize;
2898
ae20bfda 2899#endif
81819f0f
CL
2900 /*
2901 * If we have the need to store the freelist pointer
2902 * back there or track user information then we can
2903 * only use the space before that information.
2904 */
2905 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2906 return s->inuse;
81819f0f
CL
2907 /*
2908 * Else we can use all the padding etc for the allocation
2909 */
2910 return s->size;
2911}
b1aabecd 2912EXPORT_SYMBOL(ksize);
81819f0f
CL
2913
2914void kfree(const void *x)
2915{
81819f0f 2916 struct page *page;
5bb983b0 2917 void *object = (void *)x;
81819f0f 2918
2121db74
PE
2919 trace_kfree(_RET_IP_, x);
2920
2408c550 2921 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2922 return;
2923
b49af68f 2924 page = virt_to_head_page(x);
aadb4bc4 2925 if (unlikely(!PageSlab(page))) {
0937502a 2926 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2927 put_page(page);
2928 return;
2929 }
ce71e27c 2930 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2931}
2932EXPORT_SYMBOL(kfree);
2933
2086d26a 2934/*
672bba3a
CL
2935 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2936 * the remaining slabs by the number of items in use. The slabs with the
2937 * most items in use come first. New allocations will then fill those up
2938 * and thus they can be removed from the partial lists.
2939 *
2940 * The slabs with the least items are placed last. This results in them
2941 * being allocated from last increasing the chance that the last objects
2942 * are freed in them.
2086d26a
CL
2943 */
2944int kmem_cache_shrink(struct kmem_cache *s)
2945{
2946 int node;
2947 int i;
2948 struct kmem_cache_node *n;
2949 struct page *page;
2950 struct page *t;
205ab99d 2951 int objects = oo_objects(s->max);
2086d26a 2952 struct list_head *slabs_by_inuse =
834f3d11 2953 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2954 unsigned long flags;
2955
2956 if (!slabs_by_inuse)
2957 return -ENOMEM;
2958
2959 flush_all(s);
f64dc58c 2960 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2961 n = get_node(s, node);
2962
2963 if (!n->nr_partial)
2964 continue;
2965
834f3d11 2966 for (i = 0; i < objects; i++)
2086d26a
CL
2967 INIT_LIST_HEAD(slabs_by_inuse + i);
2968
2969 spin_lock_irqsave(&n->list_lock, flags);
2970
2971 /*
672bba3a 2972 * Build lists indexed by the items in use in each slab.
2086d26a 2973 *
672bba3a
CL
2974 * Note that concurrent frees may occur while we hold the
2975 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2976 */
2977 list_for_each_entry_safe(page, t, &n->partial, lru) {
2978 if (!page->inuse && slab_trylock(page)) {
2979 /*
2980 * Must hold slab lock here because slab_free
2981 * may have freed the last object and be
2982 * waiting to release the slab.
2983 */
2984 list_del(&page->lru);
2985 n->nr_partial--;
2986 slab_unlock(page);
2987 discard_slab(s, page);
2988 } else {
fcda3d89
CL
2989 list_move(&page->lru,
2990 slabs_by_inuse + page->inuse);
2086d26a
CL
2991 }
2992 }
2993
2086d26a 2994 /*
672bba3a
CL
2995 * Rebuild the partial list with the slabs filled up most
2996 * first and the least used slabs at the end.
2086d26a 2997 */
834f3d11 2998 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2999 list_splice(slabs_by_inuse + i, n->partial.prev);
3000
2086d26a
CL
3001 spin_unlock_irqrestore(&n->list_lock, flags);
3002 }
3003
3004 kfree(slabs_by_inuse);
3005 return 0;
3006}
3007EXPORT_SYMBOL(kmem_cache_shrink);
3008
b9049e23
YG
3009#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3010static int slab_mem_going_offline_callback(void *arg)
3011{
3012 struct kmem_cache *s;
3013
3014 down_read(&slub_lock);
3015 list_for_each_entry(s, &slab_caches, list)
3016 kmem_cache_shrink(s);
3017 up_read(&slub_lock);
3018
3019 return 0;
3020}
3021
3022static void slab_mem_offline_callback(void *arg)
3023{
3024 struct kmem_cache_node *n;
3025 struct kmem_cache *s;
3026 struct memory_notify *marg = arg;
3027 int offline_node;
3028
3029 offline_node = marg->status_change_nid;
3030
3031 /*
3032 * If the node still has available memory. we need kmem_cache_node
3033 * for it yet.
3034 */
3035 if (offline_node < 0)
3036 return;
3037
3038 down_read(&slub_lock);
3039 list_for_each_entry(s, &slab_caches, list) {
3040 n = get_node(s, offline_node);
3041 if (n) {
3042 /*
3043 * if n->nr_slabs > 0, slabs still exist on the node
3044 * that is going down. We were unable to free them,
3045 * and offline_pages() function shoudn't call this
3046 * callback. So, we must fail.
3047 */
0f389ec6 3048 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3049
3050 s->node[offline_node] = NULL;
3051 kmem_cache_free(kmalloc_caches, n);
3052 }
3053 }
3054 up_read(&slub_lock);
3055}
3056
3057static int slab_mem_going_online_callback(void *arg)
3058{
3059 struct kmem_cache_node *n;
3060 struct kmem_cache *s;
3061 struct memory_notify *marg = arg;
3062 int nid = marg->status_change_nid;
3063 int ret = 0;
3064
3065 /*
3066 * If the node's memory is already available, then kmem_cache_node is
3067 * already created. Nothing to do.
3068 */
3069 if (nid < 0)
3070 return 0;
3071
3072 /*
0121c619 3073 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3074 * allocate a kmem_cache_node structure in order to bring the node
3075 * online.
3076 */
3077 down_read(&slub_lock);
3078 list_for_each_entry(s, &slab_caches, list) {
3079 /*
3080 * XXX: kmem_cache_alloc_node will fallback to other nodes
3081 * since memory is not yet available from the node that
3082 * is brought up.
3083 */
3084 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3085 if (!n) {
3086 ret = -ENOMEM;
3087 goto out;
3088 }
5595cffc 3089 init_kmem_cache_node(n, s);
b9049e23
YG
3090 s->node[nid] = n;
3091 }
3092out:
3093 up_read(&slub_lock);
3094 return ret;
3095}
3096
3097static int slab_memory_callback(struct notifier_block *self,
3098 unsigned long action, void *arg)
3099{
3100 int ret = 0;
3101
3102 switch (action) {
3103 case MEM_GOING_ONLINE:
3104 ret = slab_mem_going_online_callback(arg);
3105 break;
3106 case MEM_GOING_OFFLINE:
3107 ret = slab_mem_going_offline_callback(arg);
3108 break;
3109 case MEM_OFFLINE:
3110 case MEM_CANCEL_ONLINE:
3111 slab_mem_offline_callback(arg);
3112 break;
3113 case MEM_ONLINE:
3114 case MEM_CANCEL_OFFLINE:
3115 break;
3116 }
dc19f9db
KH
3117 if (ret)
3118 ret = notifier_from_errno(ret);
3119 else
3120 ret = NOTIFY_OK;
b9049e23
YG
3121 return ret;
3122}
3123
3124#endif /* CONFIG_MEMORY_HOTPLUG */
3125
81819f0f
CL
3126/********************************************************************
3127 * Basic setup of slabs
3128 *******************************************************************/
3129
3130void __init kmem_cache_init(void)
3131{
3132 int i;
4b356be0 3133 int caches = 0;
81819f0f 3134
4c93c355
CL
3135 init_alloc_cpu();
3136
81819f0f
CL
3137#ifdef CONFIG_NUMA
3138 /*
3139 * Must first have the slab cache available for the allocations of the
672bba3a 3140 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3141 * kmem_cache_open for slab_state == DOWN.
3142 */
3143 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3144 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3145 kmalloc_caches[0].refcount = -1;
4b356be0 3146 caches++;
b9049e23 3147
0c40ba4f 3148 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3149#endif
3150
3151 /* Able to allocate the per node structures */
3152 slab_state = PARTIAL;
3153
3154 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3155 if (KMALLOC_MIN_SIZE <= 64) {
3156 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3157 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3158 caches++;
4b356be0 3159 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3160 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3161 caches++;
3162 }
81819f0f 3163
ffadd4d0 3164 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3165 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3166 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3167 caches++;
3168 }
81819f0f 3169
f1b26339
CL
3170
3171 /*
3172 * Patch up the size_index table if we have strange large alignment
3173 * requirements for the kmalloc array. This is only the case for
6446faa2 3174 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3175 *
3176 * Largest permitted alignment is 256 bytes due to the way we
3177 * handle the index determination for the smaller caches.
3178 *
3179 * Make sure that nothing crazy happens if someone starts tinkering
3180 * around with ARCH_KMALLOC_MINALIGN
3181 */
3182 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3183 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3184
12ad6843 3185 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3186 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3187
41d54d3b
CL
3188 if (KMALLOC_MIN_SIZE == 128) {
3189 /*
3190 * The 192 byte sized cache is not used if the alignment
3191 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3192 * instead.
3193 */
3194 for (i = 128 + 8; i <= 192; i += 8)
3195 size_index[(i - 1) / 8] = 8;
3196 }
3197
81819f0f
CL
3198 slab_state = UP;
3199
3200 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3201 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3202 kmalloc_caches[i]. name =
83b519e8 3203 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3204
3205#ifdef CONFIG_SMP
3206 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3207 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3208 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3209#else
3210 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3211#endif
3212
3adbefee
IM
3213 printk(KERN_INFO
3214 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3215 " CPUs=%d, Nodes=%d\n",
3216 caches, cache_line_size(),
81819f0f
CL
3217 slub_min_order, slub_max_order, slub_min_objects,
3218 nr_cpu_ids, nr_node_ids);
3219}
3220
7e85ee0c
PE
3221void __init kmem_cache_init_late(void)
3222{
7e85ee0c
PE
3223}
3224
81819f0f
CL
3225/*
3226 * Find a mergeable slab cache
3227 */
3228static int slab_unmergeable(struct kmem_cache *s)
3229{
3230 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3231 return 1;
3232
c59def9f 3233 if (s->ctor)
81819f0f
CL
3234 return 1;
3235
8ffa6875
CL
3236 /*
3237 * We may have set a slab to be unmergeable during bootstrap.
3238 */
3239 if (s->refcount < 0)
3240 return 1;
3241
81819f0f
CL
3242 return 0;
3243}
3244
3245static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3246 size_t align, unsigned long flags, const char *name,
51cc5068 3247 void (*ctor)(void *))
81819f0f 3248{
5b95a4ac 3249 struct kmem_cache *s;
81819f0f
CL
3250
3251 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3252 return NULL;
3253
c59def9f 3254 if (ctor)
81819f0f
CL
3255 return NULL;
3256
3257 size = ALIGN(size, sizeof(void *));
3258 align = calculate_alignment(flags, align, size);
3259 size = ALIGN(size, align);
ba0268a8 3260 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3261
5b95a4ac 3262 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3263 if (slab_unmergeable(s))
3264 continue;
3265
3266 if (size > s->size)
3267 continue;
3268
ba0268a8 3269 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3270 continue;
3271 /*
3272 * Check if alignment is compatible.
3273 * Courtesy of Adrian Drzewiecki
3274 */
06428780 3275 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3276 continue;
3277
3278 if (s->size - size >= sizeof(void *))
3279 continue;
3280
3281 return s;
3282 }
3283 return NULL;
3284}
3285
3286struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3287 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3288{
3289 struct kmem_cache *s;
3290
3291 down_write(&slub_lock);
ba0268a8 3292 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3293 if (s) {
42a9fdbb
CL
3294 int cpu;
3295
81819f0f
CL
3296 s->refcount++;
3297 /*
3298 * Adjust the object sizes so that we clear
3299 * the complete object on kzalloc.
3300 */
3301 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3302
3303 /*
3304 * And then we need to update the object size in the
3305 * per cpu structures
3306 */
3307 for_each_online_cpu(cpu)
3308 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3309
81819f0f 3310 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3311 up_write(&slub_lock);
6446faa2 3312
7b8f3b66
DR
3313 if (sysfs_slab_alias(s, name)) {
3314 down_write(&slub_lock);
3315 s->refcount--;
3316 up_write(&slub_lock);
81819f0f 3317 goto err;
7b8f3b66 3318 }
a0e1d1be
CL
3319 return s;
3320 }
6446faa2 3321
a0e1d1be
CL
3322 s = kmalloc(kmem_size, GFP_KERNEL);
3323 if (s) {
3324 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3325 size, align, flags, ctor)) {
81819f0f 3326 list_add(&s->list, &slab_caches);
a0e1d1be 3327 up_write(&slub_lock);
7b8f3b66
DR
3328 if (sysfs_slab_add(s)) {
3329 down_write(&slub_lock);
3330 list_del(&s->list);
3331 up_write(&slub_lock);
3332 kfree(s);
a0e1d1be 3333 goto err;
7b8f3b66 3334 }
a0e1d1be
CL
3335 return s;
3336 }
3337 kfree(s);
81819f0f
CL
3338 }
3339 up_write(&slub_lock);
81819f0f
CL
3340
3341err:
81819f0f
CL
3342 if (flags & SLAB_PANIC)
3343 panic("Cannot create slabcache %s\n", name);
3344 else
3345 s = NULL;
3346 return s;
3347}
3348EXPORT_SYMBOL(kmem_cache_create);
3349
81819f0f 3350#ifdef CONFIG_SMP
81819f0f 3351/*
672bba3a
CL
3352 * Use the cpu notifier to insure that the cpu slabs are flushed when
3353 * necessary.
81819f0f
CL
3354 */
3355static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3356 unsigned long action, void *hcpu)
3357{
3358 long cpu = (long)hcpu;
5b95a4ac
CL
3359 struct kmem_cache *s;
3360 unsigned long flags;
81819f0f
CL
3361
3362 switch (action) {
4c93c355
CL
3363 case CPU_UP_PREPARE:
3364 case CPU_UP_PREPARE_FROZEN:
3365 init_alloc_cpu_cpu(cpu);
3366 down_read(&slub_lock);
3367 list_for_each_entry(s, &slab_caches, list)
3368 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3369 GFP_KERNEL);
3370 up_read(&slub_lock);
3371 break;
3372
81819f0f 3373 case CPU_UP_CANCELED:
8bb78442 3374 case CPU_UP_CANCELED_FROZEN:
81819f0f 3375 case CPU_DEAD:
8bb78442 3376 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3377 down_read(&slub_lock);
3378 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3379 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3380
5b95a4ac
CL
3381 local_irq_save(flags);
3382 __flush_cpu_slab(s, cpu);
3383 local_irq_restore(flags);
4c93c355
CL
3384 free_kmem_cache_cpu(c, cpu);
3385 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3386 }
3387 up_read(&slub_lock);
81819f0f
CL
3388 break;
3389 default:
3390 break;
3391 }
3392 return NOTIFY_OK;
3393}
3394
06428780 3395static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3396 .notifier_call = slab_cpuup_callback
06428780 3397};
81819f0f
CL
3398
3399#endif
3400
ce71e27c 3401void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3402{
aadb4bc4 3403 struct kmem_cache *s;
94b528d0 3404 void *ret;
aadb4bc4 3405
ffadd4d0 3406 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3407 return kmalloc_large(size, gfpflags);
3408
aadb4bc4 3409 s = get_slab(size, gfpflags);
81819f0f 3410
2408c550 3411 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3412 return s;
81819f0f 3413
94b528d0
EGM
3414 ret = slab_alloc(s, gfpflags, -1, caller);
3415
3416 /* Honor the call site pointer we recieved. */
ca2b84cb 3417 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3418
3419 return ret;
81819f0f
CL
3420}
3421
3422void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3423 int node, unsigned long caller)
81819f0f 3424{
aadb4bc4 3425 struct kmem_cache *s;
94b528d0 3426 void *ret;
aadb4bc4 3427
ffadd4d0 3428 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3429 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3430
aadb4bc4 3431 s = get_slab(size, gfpflags);
81819f0f 3432
2408c550 3433 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3434 return s;
81819f0f 3435
94b528d0
EGM
3436 ret = slab_alloc(s, gfpflags, node, caller);
3437
3438 /* Honor the call site pointer we recieved. */
ca2b84cb 3439 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3440
3441 return ret;
81819f0f
CL
3442}
3443
f6acb635 3444#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3445static int count_inuse(struct page *page)
3446{
3447 return page->inuse;
3448}
3449
3450static int count_total(struct page *page)
3451{
3452 return page->objects;
3453}
3454
434e245d
CL
3455static int validate_slab(struct kmem_cache *s, struct page *page,
3456 unsigned long *map)
53e15af0
CL
3457{
3458 void *p;
a973e9dd 3459 void *addr = page_address(page);
53e15af0
CL
3460
3461 if (!check_slab(s, page) ||
3462 !on_freelist(s, page, NULL))
3463 return 0;
3464
3465 /* Now we know that a valid freelist exists */
39b26464 3466 bitmap_zero(map, page->objects);
53e15af0 3467
7656c72b
CL
3468 for_each_free_object(p, s, page->freelist) {
3469 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3470 if (!check_object(s, page, p, 0))
3471 return 0;
3472 }
3473
224a88be 3474 for_each_object(p, s, addr, page->objects)
7656c72b 3475 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3476 if (!check_object(s, page, p, 1))
3477 return 0;
3478 return 1;
3479}
3480
434e245d
CL
3481static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3482 unsigned long *map)
53e15af0
CL
3483{
3484 if (slab_trylock(page)) {
434e245d 3485 validate_slab(s, page, map);
53e15af0
CL
3486 slab_unlock(page);
3487 } else
3488 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3489 s->name, page);
3490
3491 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3492 if (!PageSlubDebug(page))
3493 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3494 "on slab 0x%p\n", s->name, page);
3495 } else {
8a38082d
AW
3496 if (PageSlubDebug(page))
3497 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3498 "slab 0x%p\n", s->name, page);
3499 }
3500}
3501
434e245d
CL
3502static int validate_slab_node(struct kmem_cache *s,
3503 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3504{
3505 unsigned long count = 0;
3506 struct page *page;
3507 unsigned long flags;
3508
3509 spin_lock_irqsave(&n->list_lock, flags);
3510
3511 list_for_each_entry(page, &n->partial, lru) {
434e245d 3512 validate_slab_slab(s, page, map);
53e15af0
CL
3513 count++;
3514 }
3515 if (count != n->nr_partial)
3516 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3517 "counter=%ld\n", s->name, count, n->nr_partial);
3518
3519 if (!(s->flags & SLAB_STORE_USER))
3520 goto out;
3521
3522 list_for_each_entry(page, &n->full, lru) {
434e245d 3523 validate_slab_slab(s, page, map);
53e15af0
CL
3524 count++;
3525 }
3526 if (count != atomic_long_read(&n->nr_slabs))
3527 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3528 "counter=%ld\n", s->name, count,
3529 atomic_long_read(&n->nr_slabs));
3530
3531out:
3532 spin_unlock_irqrestore(&n->list_lock, flags);
3533 return count;
3534}
3535
434e245d 3536static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3537{
3538 int node;
3539 unsigned long count = 0;
205ab99d 3540 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3541 sizeof(unsigned long), GFP_KERNEL);
3542
3543 if (!map)
3544 return -ENOMEM;
53e15af0
CL
3545
3546 flush_all(s);
f64dc58c 3547 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3548 struct kmem_cache_node *n = get_node(s, node);
3549
434e245d 3550 count += validate_slab_node(s, n, map);
53e15af0 3551 }
434e245d 3552 kfree(map);
53e15af0
CL
3553 return count;
3554}
3555
b3459709
CL
3556#ifdef SLUB_RESILIENCY_TEST
3557static void resiliency_test(void)
3558{
3559 u8 *p;
3560
3561 printk(KERN_ERR "SLUB resiliency testing\n");
3562 printk(KERN_ERR "-----------------------\n");
3563 printk(KERN_ERR "A. Corruption after allocation\n");
3564
3565 p = kzalloc(16, GFP_KERNEL);
3566 p[16] = 0x12;
3567 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3568 " 0x12->0x%p\n\n", p + 16);
3569
3570 validate_slab_cache(kmalloc_caches + 4);
3571
3572 /* Hmmm... The next two are dangerous */
3573 p = kzalloc(32, GFP_KERNEL);
3574 p[32 + sizeof(void *)] = 0x34;
3575 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3576 " 0x34 -> -0x%p\n", p);
3577 printk(KERN_ERR
3578 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3579
3580 validate_slab_cache(kmalloc_caches + 5);
3581 p = kzalloc(64, GFP_KERNEL);
3582 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3583 *p = 0x56;
3584 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3585 p);
3adbefee
IM
3586 printk(KERN_ERR
3587 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3588 validate_slab_cache(kmalloc_caches + 6);
3589
3590 printk(KERN_ERR "\nB. Corruption after free\n");
3591 p = kzalloc(128, GFP_KERNEL);
3592 kfree(p);
3593 *p = 0x78;
3594 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3595 validate_slab_cache(kmalloc_caches + 7);
3596
3597 p = kzalloc(256, GFP_KERNEL);
3598 kfree(p);
3599 p[50] = 0x9a;
3adbefee
IM
3600 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3601 p);
b3459709
CL
3602 validate_slab_cache(kmalloc_caches + 8);
3603
3604 p = kzalloc(512, GFP_KERNEL);
3605 kfree(p);
3606 p[512] = 0xab;
3607 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3608 validate_slab_cache(kmalloc_caches + 9);
3609}
3610#else
3611static void resiliency_test(void) {};
3612#endif
3613
88a420e4 3614/*
672bba3a 3615 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3616 * and freed.
3617 */
3618
3619struct location {
3620 unsigned long count;
ce71e27c 3621 unsigned long addr;
45edfa58
CL
3622 long long sum_time;
3623 long min_time;
3624 long max_time;
3625 long min_pid;
3626 long max_pid;
174596a0 3627 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3628 nodemask_t nodes;
88a420e4
CL
3629};
3630
3631struct loc_track {
3632 unsigned long max;
3633 unsigned long count;
3634 struct location *loc;
3635};
3636
3637static void free_loc_track(struct loc_track *t)
3638{
3639 if (t->max)
3640 free_pages((unsigned long)t->loc,
3641 get_order(sizeof(struct location) * t->max));
3642}
3643
68dff6a9 3644static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3645{
3646 struct location *l;
3647 int order;
3648
88a420e4
CL
3649 order = get_order(sizeof(struct location) * max);
3650
68dff6a9 3651 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3652 if (!l)
3653 return 0;
3654
3655 if (t->count) {
3656 memcpy(l, t->loc, sizeof(struct location) * t->count);
3657 free_loc_track(t);
3658 }
3659 t->max = max;
3660 t->loc = l;
3661 return 1;
3662}
3663
3664static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3665 const struct track *track)
88a420e4
CL
3666{
3667 long start, end, pos;
3668 struct location *l;
ce71e27c 3669 unsigned long caddr;
45edfa58 3670 unsigned long age = jiffies - track->when;
88a420e4
CL
3671
3672 start = -1;
3673 end = t->count;
3674
3675 for ( ; ; ) {
3676 pos = start + (end - start + 1) / 2;
3677
3678 /*
3679 * There is nothing at "end". If we end up there
3680 * we need to add something to before end.
3681 */
3682 if (pos == end)
3683 break;
3684
3685 caddr = t->loc[pos].addr;
45edfa58
CL
3686 if (track->addr == caddr) {
3687
3688 l = &t->loc[pos];
3689 l->count++;
3690 if (track->when) {
3691 l->sum_time += age;
3692 if (age < l->min_time)
3693 l->min_time = age;
3694 if (age > l->max_time)
3695 l->max_time = age;
3696
3697 if (track->pid < l->min_pid)
3698 l->min_pid = track->pid;
3699 if (track->pid > l->max_pid)
3700 l->max_pid = track->pid;
3701
174596a0
RR
3702 cpumask_set_cpu(track->cpu,
3703 to_cpumask(l->cpus));
45edfa58
CL
3704 }
3705 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3706 return 1;
3707 }
3708
45edfa58 3709 if (track->addr < caddr)
88a420e4
CL
3710 end = pos;
3711 else
3712 start = pos;
3713 }
3714
3715 /*
672bba3a 3716 * Not found. Insert new tracking element.
88a420e4 3717 */
68dff6a9 3718 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3719 return 0;
3720
3721 l = t->loc + pos;
3722 if (pos < t->count)
3723 memmove(l + 1, l,
3724 (t->count - pos) * sizeof(struct location));
3725 t->count++;
3726 l->count = 1;
45edfa58
CL
3727 l->addr = track->addr;
3728 l->sum_time = age;
3729 l->min_time = age;
3730 l->max_time = age;
3731 l->min_pid = track->pid;
3732 l->max_pid = track->pid;
174596a0
RR
3733 cpumask_clear(to_cpumask(l->cpus));
3734 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3735 nodes_clear(l->nodes);
3736 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3737 return 1;
3738}
3739
3740static void process_slab(struct loc_track *t, struct kmem_cache *s,
3741 struct page *page, enum track_item alloc)
3742{
a973e9dd 3743 void *addr = page_address(page);
39b26464 3744 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3745 void *p;
3746
39b26464 3747 bitmap_zero(map, page->objects);
7656c72b
CL
3748 for_each_free_object(p, s, page->freelist)
3749 set_bit(slab_index(p, s, addr), map);
88a420e4 3750
224a88be 3751 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3752 if (!test_bit(slab_index(p, s, addr), map))
3753 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3754}
3755
3756static int list_locations(struct kmem_cache *s, char *buf,
3757 enum track_item alloc)
3758{
e374d483 3759 int len = 0;
88a420e4 3760 unsigned long i;
68dff6a9 3761 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3762 int node;
3763
68dff6a9 3764 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3765 GFP_TEMPORARY))
68dff6a9 3766 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3767
3768 /* Push back cpu slabs */
3769 flush_all(s);
3770
f64dc58c 3771 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3772 struct kmem_cache_node *n = get_node(s, node);
3773 unsigned long flags;
3774 struct page *page;
3775
9e86943b 3776 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3777 continue;
3778
3779 spin_lock_irqsave(&n->list_lock, flags);
3780 list_for_each_entry(page, &n->partial, lru)
3781 process_slab(&t, s, page, alloc);
3782 list_for_each_entry(page, &n->full, lru)
3783 process_slab(&t, s, page, alloc);
3784 spin_unlock_irqrestore(&n->list_lock, flags);
3785 }
3786
3787 for (i = 0; i < t.count; i++) {
45edfa58 3788 struct location *l = &t.loc[i];
88a420e4 3789
9c246247 3790 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3791 break;
e374d483 3792 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3793
3794 if (l->addr)
e374d483 3795 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3796 else
e374d483 3797 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3798
3799 if (l->sum_time != l->min_time) {
e374d483 3800 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3801 l->min_time,
3802 (long)div_u64(l->sum_time, l->count),
3803 l->max_time);
45edfa58 3804 } else
e374d483 3805 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3806 l->min_time);
3807
3808 if (l->min_pid != l->max_pid)
e374d483 3809 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3810 l->min_pid, l->max_pid);
3811 else
e374d483 3812 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3813 l->min_pid);
3814
174596a0
RR
3815 if (num_online_cpus() > 1 &&
3816 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3817 len < PAGE_SIZE - 60) {
3818 len += sprintf(buf + len, " cpus=");
3819 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3820 to_cpumask(l->cpus));
45edfa58
CL
3821 }
3822
62bc62a8 3823 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3824 len < PAGE_SIZE - 60) {
3825 len += sprintf(buf + len, " nodes=");
3826 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3827 l->nodes);
3828 }
3829
e374d483 3830 len += sprintf(buf + len, "\n");
88a420e4
CL
3831 }
3832
3833 free_loc_track(&t);
3834 if (!t.count)
e374d483
HH
3835 len += sprintf(buf, "No data\n");
3836 return len;
88a420e4
CL
3837}
3838
81819f0f 3839enum slab_stat_type {
205ab99d
CL
3840 SL_ALL, /* All slabs */
3841 SL_PARTIAL, /* Only partially allocated slabs */
3842 SL_CPU, /* Only slabs used for cpu caches */
3843 SL_OBJECTS, /* Determine allocated objects not slabs */
3844 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3845};
3846
205ab99d 3847#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3848#define SO_PARTIAL (1 << SL_PARTIAL)
3849#define SO_CPU (1 << SL_CPU)
3850#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3851#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3852
62e5c4b4
CG
3853static ssize_t show_slab_objects(struct kmem_cache *s,
3854 char *buf, unsigned long flags)
81819f0f
CL
3855{
3856 unsigned long total = 0;
81819f0f
CL
3857 int node;
3858 int x;
3859 unsigned long *nodes;
3860 unsigned long *per_cpu;
3861
3862 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3863 if (!nodes)
3864 return -ENOMEM;
81819f0f
CL
3865 per_cpu = nodes + nr_node_ids;
3866
205ab99d
CL
3867 if (flags & SO_CPU) {
3868 int cpu;
81819f0f 3869
205ab99d
CL
3870 for_each_possible_cpu(cpu) {
3871 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3872
205ab99d
CL
3873 if (!c || c->node < 0)
3874 continue;
3875
3876 if (c->page) {
3877 if (flags & SO_TOTAL)
3878 x = c->page->objects;
3879 else if (flags & SO_OBJECTS)
3880 x = c->page->inuse;
81819f0f
CL
3881 else
3882 x = 1;
205ab99d 3883
81819f0f 3884 total += x;
205ab99d 3885 nodes[c->node] += x;
81819f0f 3886 }
205ab99d 3887 per_cpu[c->node]++;
81819f0f
CL
3888 }
3889 }
3890
205ab99d
CL
3891 if (flags & SO_ALL) {
3892 for_each_node_state(node, N_NORMAL_MEMORY) {
3893 struct kmem_cache_node *n = get_node(s, node);
3894
3895 if (flags & SO_TOTAL)
3896 x = atomic_long_read(&n->total_objects);
3897 else if (flags & SO_OBJECTS)
3898 x = atomic_long_read(&n->total_objects) -
3899 count_partial(n, count_free);
81819f0f 3900
81819f0f 3901 else
205ab99d 3902 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3903 total += x;
3904 nodes[node] += x;
3905 }
3906
205ab99d
CL
3907 } else if (flags & SO_PARTIAL) {
3908 for_each_node_state(node, N_NORMAL_MEMORY) {
3909 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3910
205ab99d
CL
3911 if (flags & SO_TOTAL)
3912 x = count_partial(n, count_total);
3913 else if (flags & SO_OBJECTS)
3914 x = count_partial(n, count_inuse);
81819f0f 3915 else
205ab99d 3916 x = n->nr_partial;
81819f0f
CL
3917 total += x;
3918 nodes[node] += x;
3919 }
3920 }
81819f0f
CL
3921 x = sprintf(buf, "%lu", total);
3922#ifdef CONFIG_NUMA
f64dc58c 3923 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3924 if (nodes[node])
3925 x += sprintf(buf + x, " N%d=%lu",
3926 node, nodes[node]);
3927#endif
3928 kfree(nodes);
3929 return x + sprintf(buf + x, "\n");
3930}
3931
3932static int any_slab_objects(struct kmem_cache *s)
3933{
3934 int node;
81819f0f 3935
dfb4f096 3936 for_each_online_node(node) {
81819f0f
CL
3937 struct kmem_cache_node *n = get_node(s, node);
3938
dfb4f096
CL
3939 if (!n)
3940 continue;
3941
4ea33e2d 3942 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3943 return 1;
3944 }
3945 return 0;
3946}
3947
3948#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3949#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3950
3951struct slab_attribute {
3952 struct attribute attr;
3953 ssize_t (*show)(struct kmem_cache *s, char *buf);
3954 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3955};
3956
3957#define SLAB_ATTR_RO(_name) \
3958 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3959
3960#define SLAB_ATTR(_name) \
3961 static struct slab_attribute _name##_attr = \
3962 __ATTR(_name, 0644, _name##_show, _name##_store)
3963
81819f0f
CL
3964static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3965{
3966 return sprintf(buf, "%d\n", s->size);
3967}
3968SLAB_ATTR_RO(slab_size);
3969
3970static ssize_t align_show(struct kmem_cache *s, char *buf)
3971{
3972 return sprintf(buf, "%d\n", s->align);
3973}
3974SLAB_ATTR_RO(align);
3975
3976static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3977{
3978 return sprintf(buf, "%d\n", s->objsize);
3979}
3980SLAB_ATTR_RO(object_size);
3981
3982static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3983{
834f3d11 3984 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3985}
3986SLAB_ATTR_RO(objs_per_slab);
3987
06b285dc
CL
3988static ssize_t order_store(struct kmem_cache *s,
3989 const char *buf, size_t length)
3990{
0121c619
CL
3991 unsigned long order;
3992 int err;
3993
3994 err = strict_strtoul(buf, 10, &order);
3995 if (err)
3996 return err;
06b285dc
CL
3997
3998 if (order > slub_max_order || order < slub_min_order)
3999 return -EINVAL;
4000
4001 calculate_sizes(s, order);
4002 return length;
4003}
4004
81819f0f
CL
4005static ssize_t order_show(struct kmem_cache *s, char *buf)
4006{
834f3d11 4007 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4008}
06b285dc 4009SLAB_ATTR(order);
81819f0f 4010
73d342b1
DR
4011static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4012{
4013 return sprintf(buf, "%lu\n", s->min_partial);
4014}
4015
4016static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4017 size_t length)
4018{
4019 unsigned long min;
4020 int err;
4021
4022 err = strict_strtoul(buf, 10, &min);
4023 if (err)
4024 return err;
4025
c0bdb232 4026 set_min_partial(s, min);
73d342b1
DR
4027 return length;
4028}
4029SLAB_ATTR(min_partial);
4030
81819f0f
CL
4031static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4032{
4033 if (s->ctor) {
4034 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4035
4036 return n + sprintf(buf + n, "\n");
4037 }
4038 return 0;
4039}
4040SLAB_ATTR_RO(ctor);
4041
81819f0f
CL
4042static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4043{
4044 return sprintf(buf, "%d\n", s->refcount - 1);
4045}
4046SLAB_ATTR_RO(aliases);
4047
4048static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4049{
205ab99d 4050 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
4051}
4052SLAB_ATTR_RO(slabs);
4053
4054static ssize_t partial_show(struct kmem_cache *s, char *buf)
4055{
d9acf4b7 4056 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4057}
4058SLAB_ATTR_RO(partial);
4059
4060static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4061{
d9acf4b7 4062 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4063}
4064SLAB_ATTR_RO(cpu_slabs);
4065
4066static ssize_t objects_show(struct kmem_cache *s, char *buf)
4067{
205ab99d 4068 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4069}
4070SLAB_ATTR_RO(objects);
4071
205ab99d
CL
4072static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4073{
4074 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4075}
4076SLAB_ATTR_RO(objects_partial);
4077
4078static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4079{
4080 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4081}
4082SLAB_ATTR_RO(total_objects);
4083
81819f0f
CL
4084static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4085{
4086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4087}
4088
4089static ssize_t sanity_checks_store(struct kmem_cache *s,
4090 const char *buf, size_t length)
4091{
4092 s->flags &= ~SLAB_DEBUG_FREE;
4093 if (buf[0] == '1')
4094 s->flags |= SLAB_DEBUG_FREE;
4095 return length;
4096}
4097SLAB_ATTR(sanity_checks);
4098
4099static ssize_t trace_show(struct kmem_cache *s, char *buf)
4100{
4101 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4102}
4103
4104static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4105 size_t length)
4106{
4107 s->flags &= ~SLAB_TRACE;
4108 if (buf[0] == '1')
4109 s->flags |= SLAB_TRACE;
4110 return length;
4111}
4112SLAB_ATTR(trace);
4113
4114static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4115{
4116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4117}
4118
4119static ssize_t reclaim_account_store(struct kmem_cache *s,
4120 const char *buf, size_t length)
4121{
4122 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4123 if (buf[0] == '1')
4124 s->flags |= SLAB_RECLAIM_ACCOUNT;
4125 return length;
4126}
4127SLAB_ATTR(reclaim_account);
4128
4129static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4130{
5af60839 4131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4132}
4133SLAB_ATTR_RO(hwcache_align);
4134
4135#ifdef CONFIG_ZONE_DMA
4136static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4137{
4138 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4139}
4140SLAB_ATTR_RO(cache_dma);
4141#endif
4142
4143static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4144{
4145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4146}
4147SLAB_ATTR_RO(destroy_by_rcu);
4148
4149static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4150{
4151 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4152}
4153
4154static ssize_t red_zone_store(struct kmem_cache *s,
4155 const char *buf, size_t length)
4156{
4157 if (any_slab_objects(s))
4158 return -EBUSY;
4159
4160 s->flags &= ~SLAB_RED_ZONE;
4161 if (buf[0] == '1')
4162 s->flags |= SLAB_RED_ZONE;
06b285dc 4163 calculate_sizes(s, -1);
81819f0f
CL
4164 return length;
4165}
4166SLAB_ATTR(red_zone);
4167
4168static ssize_t poison_show(struct kmem_cache *s, char *buf)
4169{
4170 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4171}
4172
4173static ssize_t poison_store(struct kmem_cache *s,
4174 const char *buf, size_t length)
4175{
4176 if (any_slab_objects(s))
4177 return -EBUSY;
4178
4179 s->flags &= ~SLAB_POISON;
4180 if (buf[0] == '1')
4181 s->flags |= SLAB_POISON;
06b285dc 4182 calculate_sizes(s, -1);
81819f0f
CL
4183 return length;
4184}
4185SLAB_ATTR(poison);
4186
4187static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4188{
4189 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4190}
4191
4192static ssize_t store_user_store(struct kmem_cache *s,
4193 const char *buf, size_t length)
4194{
4195 if (any_slab_objects(s))
4196 return -EBUSY;
4197
4198 s->flags &= ~SLAB_STORE_USER;
4199 if (buf[0] == '1')
4200 s->flags |= SLAB_STORE_USER;
06b285dc 4201 calculate_sizes(s, -1);
81819f0f
CL
4202 return length;
4203}
4204SLAB_ATTR(store_user);
4205
53e15af0
CL
4206static ssize_t validate_show(struct kmem_cache *s, char *buf)
4207{
4208 return 0;
4209}
4210
4211static ssize_t validate_store(struct kmem_cache *s,
4212 const char *buf, size_t length)
4213{
434e245d
CL
4214 int ret = -EINVAL;
4215
4216 if (buf[0] == '1') {
4217 ret = validate_slab_cache(s);
4218 if (ret >= 0)
4219 ret = length;
4220 }
4221 return ret;
53e15af0
CL
4222}
4223SLAB_ATTR(validate);
4224
2086d26a
CL
4225static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4226{
4227 return 0;
4228}
4229
4230static ssize_t shrink_store(struct kmem_cache *s,
4231 const char *buf, size_t length)
4232{
4233 if (buf[0] == '1') {
4234 int rc = kmem_cache_shrink(s);
4235
4236 if (rc)
4237 return rc;
4238 } else
4239 return -EINVAL;
4240 return length;
4241}
4242SLAB_ATTR(shrink);
4243
88a420e4
CL
4244static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4245{
4246 if (!(s->flags & SLAB_STORE_USER))
4247 return -ENOSYS;
4248 return list_locations(s, buf, TRACK_ALLOC);
4249}
4250SLAB_ATTR_RO(alloc_calls);
4251
4252static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4253{
4254 if (!(s->flags & SLAB_STORE_USER))
4255 return -ENOSYS;
4256 return list_locations(s, buf, TRACK_FREE);
4257}
4258SLAB_ATTR_RO(free_calls);
4259
81819f0f 4260#ifdef CONFIG_NUMA
9824601e 4261static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4262{
9824601e 4263 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4264}
4265
9824601e 4266static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4267 const char *buf, size_t length)
4268{
0121c619
CL
4269 unsigned long ratio;
4270 int err;
4271
4272 err = strict_strtoul(buf, 10, &ratio);
4273 if (err)
4274 return err;
4275
e2cb96b7 4276 if (ratio <= 100)
0121c619 4277 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4278
81819f0f
CL
4279 return length;
4280}
9824601e 4281SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4282#endif
4283
8ff12cfc 4284#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4285static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4286{
4287 unsigned long sum = 0;
4288 int cpu;
4289 int len;
4290 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4291
4292 if (!data)
4293 return -ENOMEM;
4294
4295 for_each_online_cpu(cpu) {
4296 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4297
4298 data[cpu] = x;
4299 sum += x;
4300 }
4301
4302 len = sprintf(buf, "%lu", sum);
4303
50ef37b9 4304#ifdef CONFIG_SMP
8ff12cfc
CL
4305 for_each_online_cpu(cpu) {
4306 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4307 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4308 }
50ef37b9 4309#endif
8ff12cfc
CL
4310 kfree(data);
4311 return len + sprintf(buf + len, "\n");
4312}
4313
4314#define STAT_ATTR(si, text) \
4315static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4316{ \
4317 return show_stat(s, buf, si); \
4318} \
4319SLAB_ATTR_RO(text); \
4320
4321STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4322STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4323STAT_ATTR(FREE_FASTPATH, free_fastpath);
4324STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4325STAT_ATTR(FREE_FROZEN, free_frozen);
4326STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4327STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4328STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4329STAT_ATTR(ALLOC_SLAB, alloc_slab);
4330STAT_ATTR(ALLOC_REFILL, alloc_refill);
4331STAT_ATTR(FREE_SLAB, free_slab);
4332STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4333STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4334STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4335STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4336STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4337STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4338STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4339#endif
4340
06428780 4341static struct attribute *slab_attrs[] = {
81819f0f
CL
4342 &slab_size_attr.attr,
4343 &object_size_attr.attr,
4344 &objs_per_slab_attr.attr,
4345 &order_attr.attr,
73d342b1 4346 &min_partial_attr.attr,
81819f0f 4347 &objects_attr.attr,
205ab99d
CL
4348 &objects_partial_attr.attr,
4349 &total_objects_attr.attr,
81819f0f
CL
4350 &slabs_attr.attr,
4351 &partial_attr.attr,
4352 &cpu_slabs_attr.attr,
4353 &ctor_attr.attr,
81819f0f
CL
4354 &aliases_attr.attr,
4355 &align_attr.attr,
4356 &sanity_checks_attr.attr,
4357 &trace_attr.attr,
4358 &hwcache_align_attr.attr,
4359 &reclaim_account_attr.attr,
4360 &destroy_by_rcu_attr.attr,
4361 &red_zone_attr.attr,
4362 &poison_attr.attr,
4363 &store_user_attr.attr,
53e15af0 4364 &validate_attr.attr,
2086d26a 4365 &shrink_attr.attr,
88a420e4
CL
4366 &alloc_calls_attr.attr,
4367 &free_calls_attr.attr,
81819f0f
CL
4368#ifdef CONFIG_ZONE_DMA
4369 &cache_dma_attr.attr,
4370#endif
4371#ifdef CONFIG_NUMA
9824601e 4372 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4373#endif
4374#ifdef CONFIG_SLUB_STATS
4375 &alloc_fastpath_attr.attr,
4376 &alloc_slowpath_attr.attr,
4377 &free_fastpath_attr.attr,
4378 &free_slowpath_attr.attr,
4379 &free_frozen_attr.attr,
4380 &free_add_partial_attr.attr,
4381 &free_remove_partial_attr.attr,
4382 &alloc_from_partial_attr.attr,
4383 &alloc_slab_attr.attr,
4384 &alloc_refill_attr.attr,
4385 &free_slab_attr.attr,
4386 &cpuslab_flush_attr.attr,
4387 &deactivate_full_attr.attr,
4388 &deactivate_empty_attr.attr,
4389 &deactivate_to_head_attr.attr,
4390 &deactivate_to_tail_attr.attr,
4391 &deactivate_remote_frees_attr.attr,
65c3376a 4392 &order_fallback_attr.attr,
81819f0f
CL
4393#endif
4394 NULL
4395};
4396
4397static struct attribute_group slab_attr_group = {
4398 .attrs = slab_attrs,
4399};
4400
4401static ssize_t slab_attr_show(struct kobject *kobj,
4402 struct attribute *attr,
4403 char *buf)
4404{
4405 struct slab_attribute *attribute;
4406 struct kmem_cache *s;
4407 int err;
4408
4409 attribute = to_slab_attr(attr);
4410 s = to_slab(kobj);
4411
4412 if (!attribute->show)
4413 return -EIO;
4414
4415 err = attribute->show(s, buf);
4416
4417 return err;
4418}
4419
4420static ssize_t slab_attr_store(struct kobject *kobj,
4421 struct attribute *attr,
4422 const char *buf, size_t len)
4423{
4424 struct slab_attribute *attribute;
4425 struct kmem_cache *s;
4426 int err;
4427
4428 attribute = to_slab_attr(attr);
4429 s = to_slab(kobj);
4430
4431 if (!attribute->store)
4432 return -EIO;
4433
4434 err = attribute->store(s, buf, len);
4435
4436 return err;
4437}
4438
151c602f
CL
4439static void kmem_cache_release(struct kobject *kobj)
4440{
4441 struct kmem_cache *s = to_slab(kobj);
4442
4443 kfree(s);
4444}
4445
81819f0f
CL
4446static struct sysfs_ops slab_sysfs_ops = {
4447 .show = slab_attr_show,
4448 .store = slab_attr_store,
4449};
4450
4451static struct kobj_type slab_ktype = {
4452 .sysfs_ops = &slab_sysfs_ops,
151c602f 4453 .release = kmem_cache_release
81819f0f
CL
4454};
4455
4456static int uevent_filter(struct kset *kset, struct kobject *kobj)
4457{
4458 struct kobj_type *ktype = get_ktype(kobj);
4459
4460 if (ktype == &slab_ktype)
4461 return 1;
4462 return 0;
4463}
4464
4465static struct kset_uevent_ops slab_uevent_ops = {
4466 .filter = uevent_filter,
4467};
4468
27c3a314 4469static struct kset *slab_kset;
81819f0f
CL
4470
4471#define ID_STR_LENGTH 64
4472
4473/* Create a unique string id for a slab cache:
6446faa2
CL
4474 *
4475 * Format :[flags-]size
81819f0f
CL
4476 */
4477static char *create_unique_id(struct kmem_cache *s)
4478{
4479 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4480 char *p = name;
4481
4482 BUG_ON(!name);
4483
4484 *p++ = ':';
4485 /*
4486 * First flags affecting slabcache operations. We will only
4487 * get here for aliasable slabs so we do not need to support
4488 * too many flags. The flags here must cover all flags that
4489 * are matched during merging to guarantee that the id is
4490 * unique.
4491 */
4492 if (s->flags & SLAB_CACHE_DMA)
4493 *p++ = 'd';
4494 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4495 *p++ = 'a';
4496 if (s->flags & SLAB_DEBUG_FREE)
4497 *p++ = 'F';
5a896d9e
VN
4498 if (!(s->flags & SLAB_NOTRACK))
4499 *p++ = 't';
81819f0f
CL
4500 if (p != name + 1)
4501 *p++ = '-';
4502 p += sprintf(p, "%07d", s->size);
4503 BUG_ON(p > name + ID_STR_LENGTH - 1);
4504 return name;
4505}
4506
4507static int sysfs_slab_add(struct kmem_cache *s)
4508{
4509 int err;
4510 const char *name;
4511 int unmergeable;
4512
4513 if (slab_state < SYSFS)
4514 /* Defer until later */
4515 return 0;
4516
4517 unmergeable = slab_unmergeable(s);
4518 if (unmergeable) {
4519 /*
4520 * Slabcache can never be merged so we can use the name proper.
4521 * This is typically the case for debug situations. In that
4522 * case we can catch duplicate names easily.
4523 */
27c3a314 4524 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4525 name = s->name;
4526 } else {
4527 /*
4528 * Create a unique name for the slab as a target
4529 * for the symlinks.
4530 */
4531 name = create_unique_id(s);
4532 }
4533
27c3a314 4534 s->kobj.kset = slab_kset;
1eada11c
GKH
4535 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4536 if (err) {
4537 kobject_put(&s->kobj);
81819f0f 4538 return err;
1eada11c 4539 }
81819f0f
CL
4540
4541 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4542 if (err)
4543 return err;
4544 kobject_uevent(&s->kobj, KOBJ_ADD);
4545 if (!unmergeable) {
4546 /* Setup first alias */
4547 sysfs_slab_alias(s, s->name);
4548 kfree(name);
4549 }
4550 return 0;
4551}
4552
4553static void sysfs_slab_remove(struct kmem_cache *s)
4554{
4555 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4556 kobject_del(&s->kobj);
151c602f 4557 kobject_put(&s->kobj);
81819f0f
CL
4558}
4559
4560/*
4561 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4562 * available lest we lose that information.
81819f0f
CL
4563 */
4564struct saved_alias {
4565 struct kmem_cache *s;
4566 const char *name;
4567 struct saved_alias *next;
4568};
4569
5af328a5 4570static struct saved_alias *alias_list;
81819f0f
CL
4571
4572static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4573{
4574 struct saved_alias *al;
4575
4576 if (slab_state == SYSFS) {
4577 /*
4578 * If we have a leftover link then remove it.
4579 */
27c3a314
GKH
4580 sysfs_remove_link(&slab_kset->kobj, name);
4581 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4582 }
4583
4584 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4585 if (!al)
4586 return -ENOMEM;
4587
4588 al->s = s;
4589 al->name = name;
4590 al->next = alias_list;
4591 alias_list = al;
4592 return 0;
4593}
4594
4595static int __init slab_sysfs_init(void)
4596{
5b95a4ac 4597 struct kmem_cache *s;
81819f0f
CL
4598 int err;
4599
0ff21e46 4600 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4601 if (!slab_kset) {
81819f0f
CL
4602 printk(KERN_ERR "Cannot register slab subsystem.\n");
4603 return -ENOSYS;
4604 }
4605
26a7bd03
CL
4606 slab_state = SYSFS;
4607
5b95a4ac 4608 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4609 err = sysfs_slab_add(s);
5d540fb7
CL
4610 if (err)
4611 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4612 " to sysfs\n", s->name);
26a7bd03 4613 }
81819f0f
CL
4614
4615 while (alias_list) {
4616 struct saved_alias *al = alias_list;
4617
4618 alias_list = alias_list->next;
4619 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4620 if (err)
4621 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4622 " %s to sysfs\n", s->name);
81819f0f
CL
4623 kfree(al);
4624 }
4625
4626 resiliency_test();
4627 return 0;
4628}
4629
4630__initcall(slab_sysfs_init);
81819f0f 4631#endif
57ed3eda
PE
4632
4633/*
4634 * The /proc/slabinfo ABI
4635 */
158a9624 4636#ifdef CONFIG_SLABINFO
57ed3eda
PE
4637static void print_slabinfo_header(struct seq_file *m)
4638{
4639 seq_puts(m, "slabinfo - version: 2.1\n");
4640 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4641 "<objperslab> <pagesperslab>");
4642 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4643 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4644 seq_putc(m, '\n');
4645}
4646
4647static void *s_start(struct seq_file *m, loff_t *pos)
4648{
4649 loff_t n = *pos;
4650
4651 down_read(&slub_lock);
4652 if (!n)
4653 print_slabinfo_header(m);
4654
4655 return seq_list_start(&slab_caches, *pos);
4656}
4657
4658static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4659{
4660 return seq_list_next(p, &slab_caches, pos);
4661}
4662
4663static void s_stop(struct seq_file *m, void *p)
4664{
4665 up_read(&slub_lock);
4666}
4667
4668static int s_show(struct seq_file *m, void *p)
4669{
4670 unsigned long nr_partials = 0;
4671 unsigned long nr_slabs = 0;
4672 unsigned long nr_inuse = 0;
205ab99d
CL
4673 unsigned long nr_objs = 0;
4674 unsigned long nr_free = 0;
57ed3eda
PE
4675 struct kmem_cache *s;
4676 int node;
4677
4678 s = list_entry(p, struct kmem_cache, list);
4679
4680 for_each_online_node(node) {
4681 struct kmem_cache_node *n = get_node(s, node);
4682
4683 if (!n)
4684 continue;
4685
4686 nr_partials += n->nr_partial;
4687 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4688 nr_objs += atomic_long_read(&n->total_objects);
4689 nr_free += count_partial(n, count_free);
57ed3eda
PE
4690 }
4691
205ab99d 4692 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4693
4694 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4695 nr_objs, s->size, oo_objects(s->oo),
4696 (1 << oo_order(s->oo)));
57ed3eda
PE
4697 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4698 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4699 0UL);
4700 seq_putc(m, '\n');
4701 return 0;
4702}
4703
7b3c3a50 4704static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4705 .start = s_start,
4706 .next = s_next,
4707 .stop = s_stop,
4708 .show = s_show,
4709};
4710
7b3c3a50
AD
4711static int slabinfo_open(struct inode *inode, struct file *file)
4712{
4713 return seq_open(file, &slabinfo_op);
4714}
4715
4716static const struct file_operations proc_slabinfo_operations = {
4717 .open = slabinfo_open,
4718 .read = seq_read,
4719 .llseek = seq_lseek,
4720 .release = seq_release,
4721};
4722
4723static int __init slab_proc_init(void)
4724{
4725 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4726 return 0;
4727}
4728module_init(slab_proc_init);
158a9624 4729#endif /* CONFIG_SLABINFO */
This page took 0.611617 seconds and 5 git commands to generate.