Merge branch 'edac-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
84c1cf62 212 kfree(s->name);
151c602f
CL
213 kfree(s);
214}
8ff12cfc 215
81819f0f
CL
216#endif
217
84e554e6 218static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
219{
220#ifdef CONFIG_SLUB_STATS
84e554e6 221 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
222#endif
223}
224
81819f0f
CL
225/********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
228
229int slab_is_available(void)
230{
231 return slab_state >= UP;
232}
233
234static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235{
81819f0f 236 return s->node[node];
81819f0f
CL
237}
238
6446faa2 239/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
240static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242{
243 void *base;
244
a973e9dd 245 if (!object)
02cbc874
CL
246 return 1;
247
a973e9dd 248 base = page_address(page);
39b26464 249 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255}
256
7656c72b
CL
257static inline void *get_freepointer(struct kmem_cache *s, void *object)
258{
259 return *(void **)(object + s->offset);
260}
261
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be
CL
268#define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
270 __p += (__s)->size)
271
272/* Scan freelist */
273#define for_each_free_object(__p, __s, __free) \
a973e9dd 274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
275
276/* Determine object index from a given position */
277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278{
279 return (p - addr) / s->size;
280}
281
834f3d11
CL
282static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
284{
285 struct kmem_cache_order_objects x = {
210b5c06 286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
287 };
288
289 return x;
290}
291
292static inline int oo_order(struct kmem_cache_order_objects x)
293{
210b5c06 294 return x.x >> OO_SHIFT;
834f3d11
CL
295}
296
297static inline int oo_objects(struct kmem_cache_order_objects x)
298{
210b5c06 299 return x.x & OO_MASK;
834f3d11
CL
300}
301
41ecc55b
CL
302#ifdef CONFIG_SLUB_DEBUG
303/*
304 * Debug settings:
305 */
f0630fff
CL
306#ifdef CONFIG_SLUB_DEBUG_ON
307static int slub_debug = DEBUG_DEFAULT_FLAGS;
308#else
41ecc55b 309static int slub_debug;
f0630fff 310#endif
41ecc55b
CL
311
312static char *slub_debug_slabs;
fa5ec8a1 313static int disable_higher_order_debug;
41ecc55b 314
81819f0f
CL
315/*
316 * Object debugging
317 */
318static void print_section(char *text, u8 *addr, unsigned int length)
319{
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
323
324 ascii[16] = 0;
325
326 for (i = 0; i < length; i++) {
327 if (newline) {
24922684 328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
329 newline = 0;
330 }
06428780 331 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
06428780 335 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
336 newline = 1;
337 }
338 }
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
06428780 342 printk(KERN_CONT " ");
81819f0f
CL
343 ascii[i] = ' ';
344 i++;
345 }
06428780 346 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
347 }
348}
349
81819f0f
CL
350static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
352{
353 struct track *p;
354
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
359
360 return p + alloc;
361}
362
363static void set_track(struct kmem_cache *s, void *object,
ce71e27c 364 enum track_item alloc, unsigned long addr)
81819f0f 365{
1a00df4a 366 struct track *p = get_track(s, object, alloc);
81819f0f 367
81819f0f
CL
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
88e4ccf2 371 p->pid = current->pid;
81819f0f
CL
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
375}
376
81819f0f
CL
377static void init_tracking(struct kmem_cache *s, void *object)
378{
24922684
CL
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
381
ce71e27c
EGM
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
384}
385
386static void print_track(const char *s, struct track *t)
387{
388 if (!t->addr)
389 return;
390
7daf705f 391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
393}
394
395static void print_tracking(struct kmem_cache *s, void *object)
396{
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
399
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
402}
403
404static void print_page_info(struct page *page)
405{
39b26464
CL
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
408
409}
410
411static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412{
413 va_list args;
414 char buf[100];
415
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
81819f0f
CL
424}
425
24922684
CL
426static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427{
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435}
436
437static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
438{
439 unsigned int off; /* Offset of last byte */
a973e9dd 440 u8 *addr = page_address(page);
24922684
CL
441
442 print_tracking(s, p);
443
444 print_page_info(page);
445
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
448
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
451
0ebd652b 452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
453
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
457
81819f0f
CL
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
462
24922684 463 if (s->flags & SLAB_STORE_USER)
81819f0f 464 off += 2 * sizeof(struct track);
81819f0f
CL
465
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
24922684
CL
468 print_section("Padding", p + off, s->size - off);
469
470 dump_stack();
81819f0f
CL
471}
472
473static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
475{
3dc50637 476 slab_bug(s, "%s", reason);
24922684 477 print_trailer(s, page, object);
81819f0f
CL
478}
479
24922684 480static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
481{
482 va_list args;
483 char buf[100];
484
24922684
CL
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 487 va_end(args);
3dc50637 488 slab_bug(s, "%s", buf);
24922684 489 print_page_info(page);
81819f0f
CL
490 dump_stack();
491}
492
f7cb1933 493static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
494{
495 u8 *p = object;
496
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
06428780 499 p[s->objsize - 1] = POISON_END;
81819f0f
CL
500 }
501
502 if (s->flags & SLAB_RED_ZONE)
f7cb1933 503 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
504}
505
24922684 506static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
507{
508 while (bytes) {
509 if (*start != (u8)value)
24922684 510 return start;
81819f0f
CL
511 start++;
512 bytes--;
513 }
24922684
CL
514 return NULL;
515}
516
517static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
519{
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
522}
523
524static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
06428780 526 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
527{
528 u8 *fault;
529 u8 *end;
530
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
534
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
538
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
543
544 restore_bytes(s, what, value, fault, end);
545 return 0;
81819f0f
CL
546}
547
81819f0f
CL
548/*
549 * Object layout:
550 *
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
672bba3a 555 *
81819f0f
CL
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
558 *
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
563 *
81819f0f
CL
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
566 *
567 * object + s->inuse
672bba3a
CL
568 * Meta data starts here.
569 *
81819f0f
CL
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
672bba3a 572 * C. Padding to reach required alignment boundary or at mininum
6446faa2 573 * one word if debugging is on to be able to detect writes
672bba3a
CL
574 * before the word boundary.
575 *
576 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
577 *
578 * object + s->size
672bba3a 579 * Nothing is used beyond s->size.
81819f0f 580 *
672bba3a
CL
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
583 * may be used with merged slabcaches.
584 */
585
81819f0f
CL
586static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587{
588 unsigned long off = s->inuse; /* The end of info */
589
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
593
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
597
598 if (s->size == off)
599 return 1;
600
24922684
CL
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
603}
604
39b26464 605/* Check the pad bytes at the end of a slab page */
81819f0f
CL
606static int slab_pad_check(struct kmem_cache *s, struct page *page)
607{
24922684
CL
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
81819f0f
CL
613
614 if (!(s->flags & SLAB_POISON))
615 return 1;
616
a973e9dd 617 start = page_address(page);
834f3d11 618 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
619 end = start + length;
620 remainder = length % s->size;
81819f0f
CL
621 if (!remainder)
622 return 1;
623
39b26464 624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
629
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 631 print_section("Padding", end - remainder, remainder);
24922684 632
8a3d271d 633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 634 return 0;
81819f0f
CL
635}
636
637static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 638 void *object, u8 val)
81819f0f
CL
639{
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
642
643 if (s->flags & SLAB_RED_ZONE) {
24922684 644 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 645 endobject, val, s->inuse - s->objsize))
81819f0f 646 return 0;
81819f0f 647 } else {
3adbefee
IM
648 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649 check_bytes_and_report(s, page, p, "Alignment padding",
650 endobject, POISON_INUSE, s->inuse - s->objsize);
651 }
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_POISON) {
f7cb1933 655 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
656 (!check_bytes_and_report(s, page, p, "Poison", p,
657 POISON_FREE, s->objsize - 1) ||
658 !check_bytes_and_report(s, page, p, "Poison",
06428780 659 p + s->objsize - 1, POISON_END, 1)))
81819f0f 660 return 0;
81819f0f
CL
661 /*
662 * check_pad_bytes cleans up on its own.
663 */
664 check_pad_bytes(s, page, p);
665 }
666
f7cb1933 667 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
668 /*
669 * Object and freepointer overlap. Cannot check
670 * freepointer while object is allocated.
671 */
672 return 1;
673
674 /* Check free pointer validity */
675 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676 object_err(s, page, p, "Freepointer corrupt");
677 /*
9f6c708e 678 * No choice but to zap it and thus lose the remainder
81819f0f 679 * of the free objects in this slab. May cause
672bba3a 680 * another error because the object count is now wrong.
81819f0f 681 */
a973e9dd 682 set_freepointer(s, p, NULL);
81819f0f
CL
683 return 0;
684 }
685 return 1;
686}
687
688static int check_slab(struct kmem_cache *s, struct page *page)
689{
39b26464
CL
690 int maxobj;
691
81819f0f
CL
692 VM_BUG_ON(!irqs_disabled());
693
694 if (!PageSlab(page)) {
24922684 695 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
696 return 0;
697 }
39b26464
CL
698
699 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700 if (page->objects > maxobj) {
701 slab_err(s, page, "objects %u > max %u",
702 s->name, page->objects, maxobj);
703 return 0;
704 }
705 if (page->inuse > page->objects) {
24922684 706 slab_err(s, page, "inuse %u > max %u",
39b26464 707 s->name, page->inuse, page->objects);
81819f0f
CL
708 return 0;
709 }
710 /* Slab_pad_check fixes things up after itself */
711 slab_pad_check(s, page);
712 return 1;
713}
714
715/*
672bba3a
CL
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
718 */
719static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720{
721 int nr = 0;
722 void *fp = page->freelist;
723 void *object = NULL;
224a88be 724 unsigned long max_objects;
81819f0f 725
39b26464 726 while (fp && nr <= page->objects) {
81819f0f
CL
727 if (fp == search)
728 return 1;
729 if (!check_valid_pointer(s, page, fp)) {
730 if (object) {
731 object_err(s, page, object,
732 "Freechain corrupt");
a973e9dd 733 set_freepointer(s, object, NULL);
81819f0f
CL
734 break;
735 } else {
24922684 736 slab_err(s, page, "Freepointer corrupt");
a973e9dd 737 page->freelist = NULL;
39b26464 738 page->inuse = page->objects;
24922684 739 slab_fix(s, "Freelist cleared");
81819f0f
CL
740 return 0;
741 }
742 break;
743 }
744 object = fp;
745 fp = get_freepointer(s, object);
746 nr++;
747 }
748
224a88be 749 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
750 if (max_objects > MAX_OBJS_PER_PAGE)
751 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
752
753 if (page->objects != max_objects) {
754 slab_err(s, page, "Wrong number of objects. Found %d but "
755 "should be %d", page->objects, max_objects);
756 page->objects = max_objects;
757 slab_fix(s, "Number of objects adjusted.");
758 }
39b26464 759 if (page->inuse != page->objects - nr) {
70d71228 760 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
761 "counted were %d", page->inuse, page->objects - nr);
762 page->inuse = page->objects - nr;
24922684 763 slab_fix(s, "Object count adjusted.");
81819f0f
CL
764 }
765 return search == NULL;
766}
767
0121c619
CL
768static void trace(struct kmem_cache *s, struct page *page, void *object,
769 int alloc)
3ec09742
CL
770{
771 if (s->flags & SLAB_TRACE) {
772 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773 s->name,
774 alloc ? "alloc" : "free",
775 object, page->inuse,
776 page->freelist);
777
778 if (!alloc)
779 print_section("Object", (void *)object, s->objsize);
780
781 dump_stack();
782 }
783}
784
c016b0bd
CL
785/*
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
788 */
789static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790{
c1d50836 791 flags &= gfp_allowed_mask;
c016b0bd
CL
792 lockdep_trace_alloc(flags);
793 might_sleep_if(flags & __GFP_WAIT);
794
795 return should_failslab(s->objsize, flags, s->flags);
796}
797
798static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799{
c1d50836 800 flags &= gfp_allowed_mask;
c016b0bd
CL
801 kmemcheck_slab_alloc(s, flags, object, s->objsize);
802 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803}
804
805static inline void slab_free_hook(struct kmem_cache *s, void *x)
806{
807 kmemleak_free_recursive(x, s->flags);
808}
809
810static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811{
812 kmemcheck_slab_free(s, object, s->objsize);
813 debug_check_no_locks_freed(object, s->objsize);
814 if (!(s->flags & SLAB_DEBUG_OBJECTS))
815 debug_check_no_obj_freed(object, s->objsize);
816}
817
643b1138 818/*
672bba3a 819 * Tracking of fully allocated slabs for debugging purposes.
643b1138 820 */
e95eed57 821static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 822{
643b1138
CL
823 spin_lock(&n->list_lock);
824 list_add(&page->lru, &n->full);
825 spin_unlock(&n->list_lock);
826}
827
828static void remove_full(struct kmem_cache *s, struct page *page)
829{
830 struct kmem_cache_node *n;
831
832 if (!(s->flags & SLAB_STORE_USER))
833 return;
834
835 n = get_node(s, page_to_nid(page));
836
837 spin_lock(&n->list_lock);
838 list_del(&page->lru);
839 spin_unlock(&n->list_lock);
840}
841
0f389ec6
CL
842/* Tracking of the number of slabs for debugging purposes */
843static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844{
845 struct kmem_cache_node *n = get_node(s, node);
846
847 return atomic_long_read(&n->nr_slabs);
848}
849
26c02cf0
AB
850static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851{
852 return atomic_long_read(&n->nr_slabs);
853}
854
205ab99d 855static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
856{
857 struct kmem_cache_node *n = get_node(s, node);
858
859 /*
860 * May be called early in order to allocate a slab for the
861 * kmem_cache_node structure. Solve the chicken-egg
862 * dilemma by deferring the increment of the count during
863 * bootstrap (see early_kmem_cache_node_alloc).
864 */
7340cc84 865 if (n) {
0f389ec6 866 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
867 atomic_long_add(objects, &n->total_objects);
868 }
0f389ec6 869}
205ab99d 870static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
871{
872 struct kmem_cache_node *n = get_node(s, node);
873
874 atomic_long_dec(&n->nr_slabs);
205ab99d 875 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
876}
877
878/* Object debug checks for alloc/free paths */
3ec09742
CL
879static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 void *object)
881{
882 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 return;
884
f7cb1933 885 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
886 init_tracking(s, object);
887}
888
1537066c 889static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 890 void *object, unsigned long addr)
81819f0f
CL
891{
892 if (!check_slab(s, page))
893 goto bad;
894
d692ef6d 895 if (!on_freelist(s, page, object)) {
24922684 896 object_err(s, page, object, "Object already allocated");
70d71228 897 goto bad;
81819f0f
CL
898 }
899
900 if (!check_valid_pointer(s, page, object)) {
901 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 902 goto bad;
81819f0f
CL
903 }
904
f7cb1933 905 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 906 goto bad;
81819f0f 907
3ec09742
CL
908 /* Success perform special debug activities for allocs */
909 if (s->flags & SLAB_STORE_USER)
910 set_track(s, object, TRACK_ALLOC, addr);
911 trace(s, page, object, 1);
f7cb1933 912 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 913 return 1;
3ec09742 914
81819f0f
CL
915bad:
916 if (PageSlab(page)) {
917 /*
918 * If this is a slab page then lets do the best we can
919 * to avoid issues in the future. Marking all objects
672bba3a 920 * as used avoids touching the remaining objects.
81819f0f 921 */
24922684 922 slab_fix(s, "Marking all objects used");
39b26464 923 page->inuse = page->objects;
a973e9dd 924 page->freelist = NULL;
81819f0f
CL
925 }
926 return 0;
927}
928
1537066c
CL
929static noinline int free_debug_processing(struct kmem_cache *s,
930 struct page *page, void *object, unsigned long addr)
81819f0f
CL
931{
932 if (!check_slab(s, page))
933 goto fail;
934
935 if (!check_valid_pointer(s, page, object)) {
70d71228 936 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
937 goto fail;
938 }
939
940 if (on_freelist(s, page, object)) {
24922684 941 object_err(s, page, object, "Object already free");
81819f0f
CL
942 goto fail;
943 }
944
f7cb1933 945 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
946 return 0;
947
948 if (unlikely(s != page->slab)) {
3adbefee 949 if (!PageSlab(page)) {
70d71228
CL
950 slab_err(s, page, "Attempt to free object(0x%p) "
951 "outside of slab", object);
3adbefee 952 } else if (!page->slab) {
81819f0f 953 printk(KERN_ERR
70d71228 954 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 955 object);
70d71228 956 dump_stack();
06428780 957 } else
24922684
CL
958 object_err(s, page, object,
959 "page slab pointer corrupt.");
81819f0f
CL
960 goto fail;
961 }
3ec09742
CL
962
963 /* Special debug activities for freeing objects */
8a38082d 964 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
965 remove_full(s, page);
966 if (s->flags & SLAB_STORE_USER)
967 set_track(s, object, TRACK_FREE, addr);
968 trace(s, page, object, 0);
f7cb1933 969 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 970 return 1;
3ec09742 971
81819f0f 972fail:
24922684 973 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
974 return 0;
975}
976
41ecc55b
CL
977static int __init setup_slub_debug(char *str)
978{
f0630fff
CL
979 slub_debug = DEBUG_DEFAULT_FLAGS;
980 if (*str++ != '=' || !*str)
981 /*
982 * No options specified. Switch on full debugging.
983 */
984 goto out;
985
986 if (*str == ',')
987 /*
988 * No options but restriction on slabs. This means full
989 * debugging for slabs matching a pattern.
990 */
991 goto check_slabs;
992
fa5ec8a1
DR
993 if (tolower(*str) == 'o') {
994 /*
995 * Avoid enabling debugging on caches if its minimum order
996 * would increase as a result.
997 */
998 disable_higher_order_debug = 1;
999 goto out;
1000 }
1001
f0630fff
CL
1002 slub_debug = 0;
1003 if (*str == '-')
1004 /*
1005 * Switch off all debugging measures.
1006 */
1007 goto out;
1008
1009 /*
1010 * Determine which debug features should be switched on
1011 */
06428780 1012 for (; *str && *str != ','; str++) {
f0630fff
CL
1013 switch (tolower(*str)) {
1014 case 'f':
1015 slub_debug |= SLAB_DEBUG_FREE;
1016 break;
1017 case 'z':
1018 slub_debug |= SLAB_RED_ZONE;
1019 break;
1020 case 'p':
1021 slub_debug |= SLAB_POISON;
1022 break;
1023 case 'u':
1024 slub_debug |= SLAB_STORE_USER;
1025 break;
1026 case 't':
1027 slub_debug |= SLAB_TRACE;
1028 break;
4c13dd3b
DM
1029 case 'a':
1030 slub_debug |= SLAB_FAILSLAB;
1031 break;
f0630fff
CL
1032 default:
1033 printk(KERN_ERR "slub_debug option '%c' "
06428780 1034 "unknown. skipped\n", *str);
f0630fff 1035 }
41ecc55b
CL
1036 }
1037
f0630fff 1038check_slabs:
41ecc55b
CL
1039 if (*str == ',')
1040 slub_debug_slabs = str + 1;
f0630fff 1041out:
41ecc55b
CL
1042 return 1;
1043}
1044
1045__setup("slub_debug", setup_slub_debug);
1046
ba0268a8
CL
1047static unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
51cc5068 1049 void (*ctor)(void *))
41ecc55b
CL
1050{
1051 /*
e153362a 1052 * Enable debugging if selected on the kernel commandline.
41ecc55b 1053 */
e153362a 1054 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1055 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056 flags |= slub_debug;
ba0268a8
CL
1057
1058 return flags;
41ecc55b
CL
1059}
1060#else
3ec09742
CL
1061static inline void setup_object_debug(struct kmem_cache *s,
1062 struct page *page, void *object) {}
41ecc55b 1063
3ec09742 1064static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1065 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1066
3ec09742 1067static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1068 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1069
41ecc55b
CL
1070static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071 { return 1; }
1072static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1073 void *object, u8 val) { return 1; }
3ec09742 1074static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1075static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076 unsigned long flags, const char *name,
51cc5068 1077 void (*ctor)(void *))
ba0268a8
CL
1078{
1079 return flags;
1080}
41ecc55b 1081#define slub_debug 0
0f389ec6 1082
fdaa45e9
IM
1083#define disable_higher_order_debug 0
1084
0f389ec6
CL
1085static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 { return 0; }
26c02cf0
AB
1087static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 { return 0; }
205ab99d
CL
1089static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090 int objects) {}
1091static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092 int objects) {}
7d550c56
CL
1093
1094static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095 { return 0; }
1096
1097static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098 void *object) {}
1099
1100static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101
1102static inline void slab_free_hook_irq(struct kmem_cache *s,
1103 void *object) {}
1104
ab4d5ed5 1105#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1106
81819f0f
CL
1107/*
1108 * Slab allocation and freeing
1109 */
65c3376a
CL
1110static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111 struct kmem_cache_order_objects oo)
1112{
1113 int order = oo_order(oo);
1114
b1eeab67
VN
1115 flags |= __GFP_NOTRACK;
1116
2154a336 1117 if (node == NUMA_NO_NODE)
65c3376a
CL
1118 return alloc_pages(flags, order);
1119 else
6b65aaf3 1120 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1121}
1122
81819f0f
CL
1123static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124{
06428780 1125 struct page *page;
834f3d11 1126 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1127 gfp_t alloc_gfp;
81819f0f 1128
b7a49f0d 1129 flags |= s->allocflags;
e12ba74d 1130
ba52270d
PE
1131 /*
1132 * Let the initial higher-order allocation fail under memory pressure
1133 * so we fall-back to the minimum order allocation.
1134 */
1135 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136
1137 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1138 if (unlikely(!page)) {
1139 oo = s->min;
1140 /*
1141 * Allocation may have failed due to fragmentation.
1142 * Try a lower order alloc if possible
1143 */
1144 page = alloc_slab_page(flags, node, oo);
1145 if (!page)
1146 return NULL;
81819f0f 1147
84e554e6 1148 stat(s, ORDER_FALLBACK);
65c3376a 1149 }
5a896d9e
VN
1150
1151 if (kmemcheck_enabled
5086c389 1152 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1153 int pages = 1 << oo_order(oo);
1154
1155 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156
1157 /*
1158 * Objects from caches that have a constructor don't get
1159 * cleared when they're allocated, so we need to do it here.
1160 */
1161 if (s->ctor)
1162 kmemcheck_mark_uninitialized_pages(page, pages);
1163 else
1164 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1165 }
1166
834f3d11 1167 page->objects = oo_objects(oo);
81819f0f
CL
1168 mod_zone_page_state(page_zone(page),
1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1171 1 << oo_order(oo));
81819f0f
CL
1172
1173 return page;
1174}
1175
1176static void setup_object(struct kmem_cache *s, struct page *page,
1177 void *object)
1178{
3ec09742 1179 setup_object_debug(s, page, object);
4f104934 1180 if (unlikely(s->ctor))
51cc5068 1181 s->ctor(object);
81819f0f
CL
1182}
1183
1184static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
1186 struct page *page;
81819f0f 1187 void *start;
81819f0f
CL
1188 void *last;
1189 void *p;
1190
6cb06229 1191 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1192
6cb06229
CL
1193 page = allocate_slab(s,
1194 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1195 if (!page)
1196 goto out;
1197
205ab99d 1198 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1199 page->slab = s;
1200 page->flags |= 1 << PG_slab;
81819f0f
CL
1201
1202 start = page_address(page);
81819f0f
CL
1203
1204 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1205 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1206
1207 last = start;
224a88be 1208 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1209 setup_object(s, page, last);
1210 set_freepointer(s, last, p);
1211 last = p;
1212 }
1213 setup_object(s, page, last);
a973e9dd 1214 set_freepointer(s, last, NULL);
81819f0f
CL
1215
1216 page->freelist = start;
1217 page->inuse = 0;
1218out:
81819f0f
CL
1219 return page;
1220}
1221
1222static void __free_slab(struct kmem_cache *s, struct page *page)
1223{
834f3d11
CL
1224 int order = compound_order(page);
1225 int pages = 1 << order;
81819f0f 1226
af537b0a 1227 if (kmem_cache_debug(s)) {
81819f0f
CL
1228 void *p;
1229
1230 slab_pad_check(s, page);
224a88be
CL
1231 for_each_object(p, s, page_address(page),
1232 page->objects)
f7cb1933 1233 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1234 }
1235
b1eeab67 1236 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1237
81819f0f
CL
1238 mod_zone_page_state(page_zone(page),
1239 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1241 -pages);
81819f0f 1242
49bd5221
CL
1243 __ClearPageSlab(page);
1244 reset_page_mapcount(page);
1eb5ac64
NP
1245 if (current->reclaim_state)
1246 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1247 __free_pages(page, order);
81819f0f
CL
1248}
1249
1250static void rcu_free_slab(struct rcu_head *h)
1251{
1252 struct page *page;
1253
1254 page = container_of((struct list_head *)h, struct page, lru);
1255 __free_slab(page->slab, page);
1256}
1257
1258static void free_slab(struct kmem_cache *s, struct page *page)
1259{
1260 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261 /*
1262 * RCU free overloads the RCU head over the LRU
1263 */
1264 struct rcu_head *head = (void *)&page->lru;
1265
1266 call_rcu(head, rcu_free_slab);
1267 } else
1268 __free_slab(s, page);
1269}
1270
1271static void discard_slab(struct kmem_cache *s, struct page *page)
1272{
205ab99d 1273 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1274 free_slab(s, page);
1275}
1276
1277/*
1278 * Per slab locking using the pagelock
1279 */
1280static __always_inline void slab_lock(struct page *page)
1281{
1282 bit_spin_lock(PG_locked, &page->flags);
1283}
1284
1285static __always_inline void slab_unlock(struct page *page)
1286{
a76d3546 1287 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1288}
1289
1290static __always_inline int slab_trylock(struct page *page)
1291{
1292 int rc = 1;
1293
1294 rc = bit_spin_trylock(PG_locked, &page->flags);
1295 return rc;
1296}
1297
1298/*
1299 * Management of partially allocated slabs
1300 */
7c2e132c
CL
1301static void add_partial(struct kmem_cache_node *n,
1302 struct page *page, int tail)
81819f0f 1303{
e95eed57
CL
1304 spin_lock(&n->list_lock);
1305 n->nr_partial++;
7c2e132c
CL
1306 if (tail)
1307 list_add_tail(&page->lru, &n->partial);
1308 else
1309 list_add(&page->lru, &n->partial);
81819f0f
CL
1310 spin_unlock(&n->list_lock);
1311}
1312
62e346a8
CL
1313static inline void __remove_partial(struct kmem_cache_node *n,
1314 struct page *page)
1315{
1316 list_del(&page->lru);
1317 n->nr_partial--;
1318}
1319
0121c619 1320static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1321{
1322 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1323
1324 spin_lock(&n->list_lock);
62e346a8 1325 __remove_partial(n, page);
81819f0f
CL
1326 spin_unlock(&n->list_lock);
1327}
1328
1329/*
672bba3a 1330 * Lock slab and remove from the partial list.
81819f0f 1331 *
672bba3a 1332 * Must hold list_lock.
81819f0f 1333 */
0121c619
CL
1334static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335 struct page *page)
81819f0f
CL
1336{
1337 if (slab_trylock(page)) {
62e346a8 1338 __remove_partial(n, page);
8a38082d 1339 __SetPageSlubFrozen(page);
81819f0f
CL
1340 return 1;
1341 }
1342 return 0;
1343}
1344
1345/*
672bba3a 1346 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1347 */
1348static struct page *get_partial_node(struct kmem_cache_node *n)
1349{
1350 struct page *page;
1351
1352 /*
1353 * Racy check. If we mistakenly see no partial slabs then we
1354 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1355 * partial slab and there is none available then get_partials()
1356 * will return NULL.
81819f0f
CL
1357 */
1358 if (!n || !n->nr_partial)
1359 return NULL;
1360
1361 spin_lock(&n->list_lock);
1362 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1363 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1364 goto out;
1365 page = NULL;
1366out:
1367 spin_unlock(&n->list_lock);
1368 return page;
1369}
1370
1371/*
672bba3a 1372 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1373 */
1374static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375{
1376#ifdef CONFIG_NUMA
1377 struct zonelist *zonelist;
dd1a239f 1378 struct zoneref *z;
54a6eb5c
MG
1379 struct zone *zone;
1380 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1381 struct page *page;
1382
1383 /*
672bba3a
CL
1384 * The defrag ratio allows a configuration of the tradeoffs between
1385 * inter node defragmentation and node local allocations. A lower
1386 * defrag_ratio increases the tendency to do local allocations
1387 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1388 *
672bba3a
CL
1389 * If the defrag_ratio is set to 0 then kmalloc() always
1390 * returns node local objects. If the ratio is higher then kmalloc()
1391 * may return off node objects because partial slabs are obtained
1392 * from other nodes and filled up.
81819f0f 1393 *
6446faa2 1394 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1395 * defrag_ratio = 1000) then every (well almost) allocation will
1396 * first attempt to defrag slab caches on other nodes. This means
1397 * scanning over all nodes to look for partial slabs which may be
1398 * expensive if we do it every time we are trying to find a slab
1399 * with available objects.
81819f0f 1400 */
9824601e
CL
1401 if (!s->remote_node_defrag_ratio ||
1402 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1403 return NULL;
1404
c0ff7453 1405 get_mems_allowed();
0e88460d 1406 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1408 struct kmem_cache_node *n;
1409
54a6eb5c 1410 n = get_node(s, zone_to_nid(zone));
81819f0f 1411
54a6eb5c 1412 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1413 n->nr_partial > s->min_partial) {
81819f0f 1414 page = get_partial_node(n);
c0ff7453
MX
1415 if (page) {
1416 put_mems_allowed();
81819f0f 1417 return page;
c0ff7453 1418 }
81819f0f
CL
1419 }
1420 }
c0ff7453 1421 put_mems_allowed();
81819f0f
CL
1422#endif
1423 return NULL;
1424}
1425
1426/*
1427 * Get a partial page, lock it and return it.
1428 */
1429static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430{
1431 struct page *page;
2154a336 1432 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1433
1434 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1435 if (page || node != -1)
81819f0f
CL
1436 return page;
1437
1438 return get_any_partial(s, flags);
1439}
1440
1441/*
1442 * Move a page back to the lists.
1443 *
1444 * Must be called with the slab lock held.
1445 *
1446 * On exit the slab lock will have been dropped.
1447 */
7c2e132c 1448static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1449 __releases(bitlock)
81819f0f 1450{
e95eed57
CL
1451 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1452
8a38082d 1453 __ClearPageSlubFrozen(page);
81819f0f 1454 if (page->inuse) {
e95eed57 1455
a973e9dd 1456 if (page->freelist) {
7c2e132c 1457 add_partial(n, page, tail);
84e554e6 1458 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1459 } else {
84e554e6 1460 stat(s, DEACTIVATE_FULL);
af537b0a 1461 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1462 add_full(n, page);
1463 }
81819f0f
CL
1464 slab_unlock(page);
1465 } else {
84e554e6 1466 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1467 if (n->nr_partial < s->min_partial) {
e95eed57 1468 /*
672bba3a
CL
1469 * Adding an empty slab to the partial slabs in order
1470 * to avoid page allocator overhead. This slab needs
1471 * to come after the other slabs with objects in
6446faa2
CL
1472 * so that the others get filled first. That way the
1473 * size of the partial list stays small.
1474 *
0121c619
CL
1475 * kmem_cache_shrink can reclaim any empty slabs from
1476 * the partial list.
e95eed57 1477 */
7c2e132c 1478 add_partial(n, page, 1);
e95eed57
CL
1479 slab_unlock(page);
1480 } else {
1481 slab_unlock(page);
84e554e6 1482 stat(s, FREE_SLAB);
e95eed57
CL
1483 discard_slab(s, page);
1484 }
81819f0f
CL
1485 }
1486}
1487
1488/*
1489 * Remove the cpu slab
1490 */
dfb4f096 1491static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1492 __releases(bitlock)
81819f0f 1493{
dfb4f096 1494 struct page *page = c->page;
7c2e132c 1495 int tail = 1;
8ff12cfc 1496
b773ad73 1497 if (page->freelist)
84e554e6 1498 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1499 /*
6446faa2 1500 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1501 * because both freelists are empty. So this is unlikely
1502 * to occur.
1503 */
a973e9dd 1504 while (unlikely(c->freelist)) {
894b8788
CL
1505 void **object;
1506
7c2e132c
CL
1507 tail = 0; /* Hot objects. Put the slab first */
1508
894b8788 1509 /* Retrieve object from cpu_freelist */
dfb4f096 1510 object = c->freelist;
ff12059e 1511 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1512
1513 /* And put onto the regular freelist */
ff12059e 1514 set_freepointer(s, object, page->freelist);
894b8788
CL
1515 page->freelist = object;
1516 page->inuse--;
1517 }
dfb4f096 1518 c->page = NULL;
7c2e132c 1519 unfreeze_slab(s, page, tail);
81819f0f
CL
1520}
1521
dfb4f096 1522static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1523{
84e554e6 1524 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1525 slab_lock(c->page);
1526 deactivate_slab(s, c);
81819f0f
CL
1527}
1528
1529/*
1530 * Flush cpu slab.
6446faa2 1531 *
81819f0f
CL
1532 * Called from IPI handler with interrupts disabled.
1533 */
0c710013 1534static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1535{
9dfc6e68 1536 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1537
dfb4f096
CL
1538 if (likely(c && c->page))
1539 flush_slab(s, c);
81819f0f
CL
1540}
1541
1542static void flush_cpu_slab(void *d)
1543{
1544 struct kmem_cache *s = d;
81819f0f 1545
dfb4f096 1546 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1547}
1548
1549static void flush_all(struct kmem_cache *s)
1550{
15c8b6c1 1551 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1552}
1553
dfb4f096
CL
1554/*
1555 * Check if the objects in a per cpu structure fit numa
1556 * locality expectations.
1557 */
1558static inline int node_match(struct kmem_cache_cpu *c, int node)
1559{
1560#ifdef CONFIG_NUMA
2154a336 1561 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1562 return 0;
1563#endif
1564 return 1;
1565}
1566
781b2ba6
PE
1567static int count_free(struct page *page)
1568{
1569 return page->objects - page->inuse;
1570}
1571
1572static unsigned long count_partial(struct kmem_cache_node *n,
1573 int (*get_count)(struct page *))
1574{
1575 unsigned long flags;
1576 unsigned long x = 0;
1577 struct page *page;
1578
1579 spin_lock_irqsave(&n->list_lock, flags);
1580 list_for_each_entry(page, &n->partial, lru)
1581 x += get_count(page);
1582 spin_unlock_irqrestore(&n->list_lock, flags);
1583 return x;
1584}
1585
26c02cf0
AB
1586static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1587{
1588#ifdef CONFIG_SLUB_DEBUG
1589 return atomic_long_read(&n->total_objects);
1590#else
1591 return 0;
1592#endif
1593}
1594
781b2ba6
PE
1595static noinline void
1596slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1597{
1598 int node;
1599
1600 printk(KERN_WARNING
1601 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1602 nid, gfpflags);
1603 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1604 "default order: %d, min order: %d\n", s->name, s->objsize,
1605 s->size, oo_order(s->oo), oo_order(s->min));
1606
fa5ec8a1
DR
1607 if (oo_order(s->min) > get_order(s->objsize))
1608 printk(KERN_WARNING " %s debugging increased min order, use "
1609 "slub_debug=O to disable.\n", s->name);
1610
781b2ba6
PE
1611 for_each_online_node(node) {
1612 struct kmem_cache_node *n = get_node(s, node);
1613 unsigned long nr_slabs;
1614 unsigned long nr_objs;
1615 unsigned long nr_free;
1616
1617 if (!n)
1618 continue;
1619
26c02cf0
AB
1620 nr_free = count_partial(n, count_free);
1621 nr_slabs = node_nr_slabs(n);
1622 nr_objs = node_nr_objs(n);
781b2ba6
PE
1623
1624 printk(KERN_WARNING
1625 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1626 node, nr_slabs, nr_objs, nr_free);
1627 }
1628}
1629
81819f0f 1630/*
894b8788
CL
1631 * Slow path. The lockless freelist is empty or we need to perform
1632 * debugging duties.
1633 *
1634 * Interrupts are disabled.
81819f0f 1635 *
894b8788
CL
1636 * Processing is still very fast if new objects have been freed to the
1637 * regular freelist. In that case we simply take over the regular freelist
1638 * as the lockless freelist and zap the regular freelist.
81819f0f 1639 *
894b8788
CL
1640 * If that is not working then we fall back to the partial lists. We take the
1641 * first element of the freelist as the object to allocate now and move the
1642 * rest of the freelist to the lockless freelist.
81819f0f 1643 *
894b8788 1644 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1645 * we need to allocate a new slab. This is the slowest path since it involves
1646 * a call to the page allocator and the setup of a new slab.
81819f0f 1647 */
ce71e27c
EGM
1648static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1649 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1650{
81819f0f 1651 void **object;
dfb4f096 1652 struct page *new;
81819f0f 1653
e72e9c23
LT
1654 /* We handle __GFP_ZERO in the caller */
1655 gfpflags &= ~__GFP_ZERO;
1656
dfb4f096 1657 if (!c->page)
81819f0f
CL
1658 goto new_slab;
1659
dfb4f096
CL
1660 slab_lock(c->page);
1661 if (unlikely(!node_match(c, node)))
81819f0f 1662 goto another_slab;
6446faa2 1663
84e554e6 1664 stat(s, ALLOC_REFILL);
6446faa2 1665
894b8788 1666load_freelist:
dfb4f096 1667 object = c->page->freelist;
a973e9dd 1668 if (unlikely(!object))
81819f0f 1669 goto another_slab;
af537b0a 1670 if (kmem_cache_debug(s))
81819f0f
CL
1671 goto debug;
1672
ff12059e 1673 c->freelist = get_freepointer(s, object);
39b26464 1674 c->page->inuse = c->page->objects;
a973e9dd 1675 c->page->freelist = NULL;
dfb4f096 1676 c->node = page_to_nid(c->page);
1f84260c 1677unlock_out:
dfb4f096 1678 slab_unlock(c->page);
84e554e6 1679 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1680 return object;
1681
1682another_slab:
dfb4f096 1683 deactivate_slab(s, c);
81819f0f
CL
1684
1685new_slab:
dfb4f096
CL
1686 new = get_partial(s, gfpflags, node);
1687 if (new) {
1688 c->page = new;
84e554e6 1689 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1690 goto load_freelist;
81819f0f
CL
1691 }
1692
c1d50836 1693 gfpflags &= gfp_allowed_mask;
b811c202
CL
1694 if (gfpflags & __GFP_WAIT)
1695 local_irq_enable();
1696
dfb4f096 1697 new = new_slab(s, gfpflags, node);
b811c202
CL
1698
1699 if (gfpflags & __GFP_WAIT)
1700 local_irq_disable();
1701
dfb4f096 1702 if (new) {
9dfc6e68 1703 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1704 stat(s, ALLOC_SLAB);
05aa3450 1705 if (c->page)
dfb4f096 1706 flush_slab(s, c);
dfb4f096 1707 slab_lock(new);
8a38082d 1708 __SetPageSlubFrozen(new);
dfb4f096 1709 c->page = new;
4b6f0750 1710 goto load_freelist;
81819f0f 1711 }
95f85989
PE
1712 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1713 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1714 return NULL;
81819f0f 1715debug:
dfb4f096 1716 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1717 goto another_slab;
894b8788 1718
dfb4f096 1719 c->page->inuse++;
ff12059e 1720 c->page->freelist = get_freepointer(s, object);
15b7c514 1721 c->node = NUMA_NO_NODE;
1f84260c 1722 goto unlock_out;
894b8788
CL
1723}
1724
1725/*
1726 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1727 * have the fastpath folded into their functions. So no function call
1728 * overhead for requests that can be satisfied on the fastpath.
1729 *
1730 * The fastpath works by first checking if the lockless freelist can be used.
1731 * If not then __slab_alloc is called for slow processing.
1732 *
1733 * Otherwise we can simply pick the next object from the lockless free list.
1734 */
06428780 1735static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1736 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1737{
894b8788 1738 void **object;
dfb4f096 1739 struct kmem_cache_cpu *c;
1f84260c
CL
1740 unsigned long flags;
1741
c016b0bd 1742 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1743 return NULL;
1f84260c 1744
894b8788 1745 local_irq_save(flags);
9dfc6e68
CL
1746 c = __this_cpu_ptr(s->cpu_slab);
1747 object = c->freelist;
9dfc6e68 1748 if (unlikely(!object || !node_match(c, node)))
894b8788 1749
dfb4f096 1750 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1751
1752 else {
ff12059e 1753 c->freelist = get_freepointer(s, object);
84e554e6 1754 stat(s, ALLOC_FASTPATH);
894b8788
CL
1755 }
1756 local_irq_restore(flags);
d07dbea4 1757
74e2134f 1758 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1759 memset(object, 0, s->objsize);
d07dbea4 1760
c016b0bd 1761 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1762
894b8788 1763 return object;
81819f0f
CL
1764}
1765
1766void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1767{
2154a336 1768 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1769
ca2b84cb 1770 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1771
1772 return ret;
81819f0f
CL
1773}
1774EXPORT_SYMBOL(kmem_cache_alloc);
1775
0f24f128 1776#ifdef CONFIG_TRACING
5b882be4
EGM
1777void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1778{
2154a336 1779 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1780}
1781EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1782#endif
1783
81819f0f
CL
1784#ifdef CONFIG_NUMA
1785void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1786{
5b882be4
EGM
1787 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1788
ca2b84cb
EGM
1789 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1790 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1791
1792 return ret;
81819f0f
CL
1793}
1794EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 1795
0f24f128 1796#ifdef CONFIG_TRACING
5b882be4
EGM
1797void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1798 gfp_t gfpflags,
1799 int node)
1800{
1801 return slab_alloc(s, gfpflags, node, _RET_IP_);
1802}
1803EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1804#endif
5d1f57e4 1805#endif
5b882be4 1806
81819f0f 1807/*
894b8788
CL
1808 * Slow patch handling. This may still be called frequently since objects
1809 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1810 *
894b8788
CL
1811 * So we still attempt to reduce cache line usage. Just take the slab
1812 * lock and free the item. If there is no additional partial page
1813 * handling required then we can return immediately.
81819f0f 1814 */
894b8788 1815static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1816 void *x, unsigned long addr)
81819f0f
CL
1817{
1818 void *prior;
1819 void **object = (void *)x;
81819f0f 1820
84e554e6 1821 stat(s, FREE_SLOWPATH);
81819f0f
CL
1822 slab_lock(page);
1823
af537b0a 1824 if (kmem_cache_debug(s))
81819f0f 1825 goto debug;
6446faa2 1826
81819f0f 1827checks_ok:
ff12059e
CL
1828 prior = page->freelist;
1829 set_freepointer(s, object, prior);
81819f0f
CL
1830 page->freelist = object;
1831 page->inuse--;
1832
8a38082d 1833 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1834 stat(s, FREE_FROZEN);
81819f0f 1835 goto out_unlock;
8ff12cfc 1836 }
81819f0f
CL
1837
1838 if (unlikely(!page->inuse))
1839 goto slab_empty;
1840
1841 /*
6446faa2 1842 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1843 * then add it.
1844 */
a973e9dd 1845 if (unlikely(!prior)) {
7c2e132c 1846 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1847 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1848 }
81819f0f
CL
1849
1850out_unlock:
1851 slab_unlock(page);
81819f0f
CL
1852 return;
1853
1854slab_empty:
a973e9dd 1855 if (prior) {
81819f0f 1856 /*
672bba3a 1857 * Slab still on the partial list.
81819f0f
CL
1858 */
1859 remove_partial(s, page);
84e554e6 1860 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1861 }
81819f0f 1862 slab_unlock(page);
84e554e6 1863 stat(s, FREE_SLAB);
81819f0f 1864 discard_slab(s, page);
81819f0f
CL
1865 return;
1866
1867debug:
3ec09742 1868 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1869 goto out_unlock;
77c5e2d0 1870 goto checks_ok;
81819f0f
CL
1871}
1872
894b8788
CL
1873/*
1874 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1875 * can perform fastpath freeing without additional function calls.
1876 *
1877 * The fastpath is only possible if we are freeing to the current cpu slab
1878 * of this processor. This typically the case if we have just allocated
1879 * the item before.
1880 *
1881 * If fastpath is not possible then fall back to __slab_free where we deal
1882 * with all sorts of special processing.
1883 */
06428780 1884static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1885 struct page *page, void *x, unsigned long addr)
894b8788
CL
1886{
1887 void **object = (void *)x;
dfb4f096 1888 struct kmem_cache_cpu *c;
1f84260c
CL
1889 unsigned long flags;
1890
c016b0bd
CL
1891 slab_free_hook(s, x);
1892
894b8788 1893 local_irq_save(flags);
9dfc6e68 1894 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1895
1896 slab_free_hook_irq(s, x);
1897
15b7c514 1898 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 1899 set_freepointer(s, object, c->freelist);
dfb4f096 1900 c->freelist = object;
84e554e6 1901 stat(s, FREE_FASTPATH);
894b8788 1902 } else
ff12059e 1903 __slab_free(s, page, x, addr);
894b8788
CL
1904
1905 local_irq_restore(flags);
1906}
1907
81819f0f
CL
1908void kmem_cache_free(struct kmem_cache *s, void *x)
1909{
77c5e2d0 1910 struct page *page;
81819f0f 1911
b49af68f 1912 page = virt_to_head_page(x);
81819f0f 1913
ce71e27c 1914 slab_free(s, page, x, _RET_IP_);
5b882be4 1915
ca2b84cb 1916 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1917}
1918EXPORT_SYMBOL(kmem_cache_free);
1919
81819f0f 1920/*
672bba3a
CL
1921 * Object placement in a slab is made very easy because we always start at
1922 * offset 0. If we tune the size of the object to the alignment then we can
1923 * get the required alignment by putting one properly sized object after
1924 * another.
81819f0f
CL
1925 *
1926 * Notice that the allocation order determines the sizes of the per cpu
1927 * caches. Each processor has always one slab available for allocations.
1928 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1929 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1930 * locking overhead.
81819f0f
CL
1931 */
1932
1933/*
1934 * Mininum / Maximum order of slab pages. This influences locking overhead
1935 * and slab fragmentation. A higher order reduces the number of partial slabs
1936 * and increases the number of allocations possible without having to
1937 * take the list_lock.
1938 */
1939static int slub_min_order;
114e9e89 1940static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1941static int slub_min_objects;
81819f0f
CL
1942
1943/*
1944 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1945 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1946 */
1947static int slub_nomerge;
1948
81819f0f
CL
1949/*
1950 * Calculate the order of allocation given an slab object size.
1951 *
672bba3a
CL
1952 * The order of allocation has significant impact on performance and other
1953 * system components. Generally order 0 allocations should be preferred since
1954 * order 0 does not cause fragmentation in the page allocator. Larger objects
1955 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1956 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1957 * would be wasted.
1958 *
1959 * In order to reach satisfactory performance we must ensure that a minimum
1960 * number of objects is in one slab. Otherwise we may generate too much
1961 * activity on the partial lists which requires taking the list_lock. This is
1962 * less a concern for large slabs though which are rarely used.
81819f0f 1963 *
672bba3a
CL
1964 * slub_max_order specifies the order where we begin to stop considering the
1965 * number of objects in a slab as critical. If we reach slub_max_order then
1966 * we try to keep the page order as low as possible. So we accept more waste
1967 * of space in favor of a small page order.
81819f0f 1968 *
672bba3a
CL
1969 * Higher order allocations also allow the placement of more objects in a
1970 * slab and thereby reduce object handling overhead. If the user has
1971 * requested a higher mininum order then we start with that one instead of
1972 * the smallest order which will fit the object.
81819f0f 1973 */
5e6d444e
CL
1974static inline int slab_order(int size, int min_objects,
1975 int max_order, int fract_leftover)
81819f0f
CL
1976{
1977 int order;
1978 int rem;
6300ea75 1979 int min_order = slub_min_order;
81819f0f 1980
210b5c06
CG
1981 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1982 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1983
6300ea75 1984 for (order = max(min_order,
5e6d444e
CL
1985 fls(min_objects * size - 1) - PAGE_SHIFT);
1986 order <= max_order; order++) {
81819f0f 1987
5e6d444e 1988 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1989
5e6d444e 1990 if (slab_size < min_objects * size)
81819f0f
CL
1991 continue;
1992
1993 rem = slab_size % size;
1994
5e6d444e 1995 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1996 break;
1997
1998 }
672bba3a 1999
81819f0f
CL
2000 return order;
2001}
2002
5e6d444e
CL
2003static inline int calculate_order(int size)
2004{
2005 int order;
2006 int min_objects;
2007 int fraction;
e8120ff1 2008 int max_objects;
5e6d444e
CL
2009
2010 /*
2011 * Attempt to find best configuration for a slab. This
2012 * works by first attempting to generate a layout with
2013 * the best configuration and backing off gradually.
2014 *
2015 * First we reduce the acceptable waste in a slab. Then
2016 * we reduce the minimum objects required in a slab.
2017 */
2018 min_objects = slub_min_objects;
9b2cd506
CL
2019 if (!min_objects)
2020 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2021 max_objects = (PAGE_SIZE << slub_max_order)/size;
2022 min_objects = min(min_objects, max_objects);
2023
5e6d444e 2024 while (min_objects > 1) {
c124f5b5 2025 fraction = 16;
5e6d444e
CL
2026 while (fraction >= 4) {
2027 order = slab_order(size, min_objects,
2028 slub_max_order, fraction);
2029 if (order <= slub_max_order)
2030 return order;
2031 fraction /= 2;
2032 }
5086c389 2033 min_objects--;
5e6d444e
CL
2034 }
2035
2036 /*
2037 * We were unable to place multiple objects in a slab. Now
2038 * lets see if we can place a single object there.
2039 */
2040 order = slab_order(size, 1, slub_max_order, 1);
2041 if (order <= slub_max_order)
2042 return order;
2043
2044 /*
2045 * Doh this slab cannot be placed using slub_max_order.
2046 */
2047 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2048 if (order < MAX_ORDER)
5e6d444e
CL
2049 return order;
2050 return -ENOSYS;
2051}
2052
81819f0f 2053/*
672bba3a 2054 * Figure out what the alignment of the objects will be.
81819f0f
CL
2055 */
2056static unsigned long calculate_alignment(unsigned long flags,
2057 unsigned long align, unsigned long size)
2058{
2059 /*
6446faa2
CL
2060 * If the user wants hardware cache aligned objects then follow that
2061 * suggestion if the object is sufficiently large.
81819f0f 2062 *
6446faa2
CL
2063 * The hardware cache alignment cannot override the specified
2064 * alignment though. If that is greater then use it.
81819f0f 2065 */
b6210386
NP
2066 if (flags & SLAB_HWCACHE_ALIGN) {
2067 unsigned long ralign = cache_line_size();
2068 while (size <= ralign / 2)
2069 ralign /= 2;
2070 align = max(align, ralign);
2071 }
81819f0f
CL
2072
2073 if (align < ARCH_SLAB_MINALIGN)
b6210386 2074 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2075
2076 return ALIGN(align, sizeof(void *));
2077}
2078
5595cffc
PE
2079static void
2080init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2081{
2082 n->nr_partial = 0;
81819f0f
CL
2083 spin_lock_init(&n->list_lock);
2084 INIT_LIST_HEAD(&n->partial);
8ab1372f 2085#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2086 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2087 atomic_long_set(&n->total_objects, 0);
643b1138 2088 INIT_LIST_HEAD(&n->full);
8ab1372f 2089#endif
81819f0f
CL
2090}
2091
55136592 2092static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2093{
6c182dc0
CL
2094 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2095 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2096
6c182dc0 2097 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2098
6c182dc0 2099 return s->cpu_slab != NULL;
4c93c355 2100}
4c93c355 2101
51df1142
CL
2102static struct kmem_cache *kmem_cache_node;
2103
81819f0f
CL
2104/*
2105 * No kmalloc_node yet so do it by hand. We know that this is the first
2106 * slab on the node for this slabcache. There are no concurrent accesses
2107 * possible.
2108 *
2109 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2110 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2111 * memory on a fresh node that has no slab structures yet.
81819f0f 2112 */
55136592 2113static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2114{
2115 struct page *page;
2116 struct kmem_cache_node *n;
ba84c73c 2117 unsigned long flags;
81819f0f 2118
51df1142 2119 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2120
51df1142 2121 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2122
2123 BUG_ON(!page);
a2f92ee7
CL
2124 if (page_to_nid(page) != node) {
2125 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2126 "node %d\n", node);
2127 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2128 "in order to be able to continue\n");
2129 }
2130
81819f0f
CL
2131 n = page->freelist;
2132 BUG_ON(!n);
51df1142 2133 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2134 page->inuse++;
51df1142 2135 kmem_cache_node->node[node] = n;
8ab1372f 2136#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2137 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2138 init_tracking(kmem_cache_node, n);
8ab1372f 2139#endif
51df1142
CL
2140 init_kmem_cache_node(n, kmem_cache_node);
2141 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2142
ba84c73c 2143 /*
2144 * lockdep requires consistent irq usage for each lock
2145 * so even though there cannot be a race this early in
2146 * the boot sequence, we still disable irqs.
2147 */
2148 local_irq_save(flags);
7c2e132c 2149 add_partial(n, page, 0);
ba84c73c 2150 local_irq_restore(flags);
81819f0f
CL
2151}
2152
2153static void free_kmem_cache_nodes(struct kmem_cache *s)
2154{
2155 int node;
2156
f64dc58c 2157 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2158 struct kmem_cache_node *n = s->node[node];
51df1142 2159
73367bd8 2160 if (n)
51df1142
CL
2161 kmem_cache_free(kmem_cache_node, n);
2162
81819f0f
CL
2163 s->node[node] = NULL;
2164 }
2165}
2166
55136592 2167static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2168{
2169 int node;
81819f0f 2170
f64dc58c 2171 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2172 struct kmem_cache_node *n;
2173
73367bd8 2174 if (slab_state == DOWN) {
55136592 2175 early_kmem_cache_node_alloc(node);
73367bd8
AD
2176 continue;
2177 }
51df1142 2178 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2179 GFP_KERNEL, node);
81819f0f 2180
73367bd8
AD
2181 if (!n) {
2182 free_kmem_cache_nodes(s);
2183 return 0;
81819f0f 2184 }
73367bd8 2185
81819f0f 2186 s->node[node] = n;
5595cffc 2187 init_kmem_cache_node(n, s);
81819f0f
CL
2188 }
2189 return 1;
2190}
81819f0f 2191
c0bdb232 2192static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2193{
2194 if (min < MIN_PARTIAL)
2195 min = MIN_PARTIAL;
2196 else if (min > MAX_PARTIAL)
2197 min = MAX_PARTIAL;
2198 s->min_partial = min;
2199}
2200
81819f0f
CL
2201/*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
06b285dc 2205static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2206{
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
834f3d11 2210 int order;
81819f0f 2211
d8b42bf5
CL
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2226 !s->ctor)
81819f0f
CL
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
81819f0f
CL
2231
2232 /*
672bba3a 2233 * If we are Redzoning then check if there is some space between the
81819f0f 2234 * end of the object and the free pointer. If not then add an
672bba3a 2235 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
41ecc55b 2239#endif
81819f0f
CL
2240
2241 /*
672bba3a
CL
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2248 s->ctor)) {
81819f0f
CL
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
c12b3c62 2261#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
be7b3fbc 2269 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
0211a9c8 2274 * corrupted if a user writes before the start
81819f0f
CL
2275 * of the object.
2276 */
2277 size += sizeof(void *);
41ecc55b 2278#endif
672bba3a 2279
81819f0f
CL
2280 /*
2281 * Determine the alignment based on various parameters that the
65c02d4c
CL
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
81819f0f
CL
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2286 s->align = align;
81819f0f
CL
2287
2288 /*
2289 * SLUB stores one object immediately after another beginning from
2290 * offset 0. In order to align the objects we have to simply size
2291 * each object to conform to the alignment.
2292 */
2293 size = ALIGN(size, align);
2294 s->size = size;
06b285dc
CL
2295 if (forced_order >= 0)
2296 order = forced_order;
2297 else
2298 order = calculate_order(size);
81819f0f 2299
834f3d11 2300 if (order < 0)
81819f0f
CL
2301 return 0;
2302
b7a49f0d 2303 s->allocflags = 0;
834f3d11 2304 if (order)
b7a49f0d
CL
2305 s->allocflags |= __GFP_COMP;
2306
2307 if (s->flags & SLAB_CACHE_DMA)
2308 s->allocflags |= SLUB_DMA;
2309
2310 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2311 s->allocflags |= __GFP_RECLAIMABLE;
2312
81819f0f
CL
2313 /*
2314 * Determine the number of objects per slab
2315 */
834f3d11 2316 s->oo = oo_make(order, size);
65c3376a 2317 s->min = oo_make(get_order(size), size);
205ab99d
CL
2318 if (oo_objects(s->oo) > oo_objects(s->max))
2319 s->max = s->oo;
81819f0f 2320
834f3d11 2321 return !!oo_objects(s->oo);
81819f0f
CL
2322
2323}
2324
55136592 2325static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2326 const char *name, size_t size,
2327 size_t align, unsigned long flags,
51cc5068 2328 void (*ctor)(void *))
81819f0f
CL
2329{
2330 memset(s, 0, kmem_size);
2331 s->name = name;
2332 s->ctor = ctor;
81819f0f 2333 s->objsize = size;
81819f0f 2334 s->align = align;
ba0268a8 2335 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2336
06b285dc 2337 if (!calculate_sizes(s, -1))
81819f0f 2338 goto error;
3de47213
DR
2339 if (disable_higher_order_debug) {
2340 /*
2341 * Disable debugging flags that store metadata if the min slab
2342 * order increased.
2343 */
2344 if (get_order(s->size) > get_order(s->objsize)) {
2345 s->flags &= ~DEBUG_METADATA_FLAGS;
2346 s->offset = 0;
2347 if (!calculate_sizes(s, -1))
2348 goto error;
2349 }
2350 }
81819f0f 2351
3b89d7d8
DR
2352 /*
2353 * The larger the object size is, the more pages we want on the partial
2354 * list to avoid pounding the page allocator excessively.
2355 */
c0bdb232 2356 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2357 s->refcount = 1;
2358#ifdef CONFIG_NUMA
e2cb96b7 2359 s->remote_node_defrag_ratio = 1000;
81819f0f 2360#endif
55136592 2361 if (!init_kmem_cache_nodes(s))
dfb4f096 2362 goto error;
81819f0f 2363
55136592 2364 if (alloc_kmem_cache_cpus(s))
81819f0f 2365 return 1;
ff12059e 2366
4c93c355 2367 free_kmem_cache_nodes(s);
81819f0f
CL
2368error:
2369 if (flags & SLAB_PANIC)
2370 panic("Cannot create slab %s size=%lu realsize=%u "
2371 "order=%u offset=%u flags=%lx\n",
834f3d11 2372 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2373 s->offset, flags);
2374 return 0;
2375}
81819f0f 2376
81819f0f
CL
2377/*
2378 * Determine the size of a slab object
2379 */
2380unsigned int kmem_cache_size(struct kmem_cache *s)
2381{
2382 return s->objsize;
2383}
2384EXPORT_SYMBOL(kmem_cache_size);
2385
2386const char *kmem_cache_name(struct kmem_cache *s)
2387{
2388 return s->name;
2389}
2390EXPORT_SYMBOL(kmem_cache_name);
2391
33b12c38
CL
2392static void list_slab_objects(struct kmem_cache *s, struct page *page,
2393 const char *text)
2394{
2395#ifdef CONFIG_SLUB_DEBUG
2396 void *addr = page_address(page);
2397 void *p;
a5dd5c11
NK
2398 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2399 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2400 if (!map)
2401 return;
33b12c38
CL
2402 slab_err(s, page, "%s", text);
2403 slab_lock(page);
2404 for_each_free_object(p, s, page->freelist)
2405 set_bit(slab_index(p, s, addr), map);
2406
2407 for_each_object(p, s, addr, page->objects) {
2408
2409 if (!test_bit(slab_index(p, s, addr), map)) {
2410 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2411 p, p - addr);
2412 print_tracking(s, p);
2413 }
2414 }
2415 slab_unlock(page);
bbd7d57b 2416 kfree(map);
33b12c38
CL
2417#endif
2418}
2419
81819f0f 2420/*
599870b1 2421 * Attempt to free all partial slabs on a node.
81819f0f 2422 */
599870b1 2423static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2424{
81819f0f
CL
2425 unsigned long flags;
2426 struct page *page, *h;
2427
2428 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2429 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2430 if (!page->inuse) {
62e346a8 2431 __remove_partial(n, page);
81819f0f 2432 discard_slab(s, page);
33b12c38
CL
2433 } else {
2434 list_slab_objects(s, page,
2435 "Objects remaining on kmem_cache_close()");
599870b1 2436 }
33b12c38 2437 }
81819f0f 2438 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2439}
2440
2441/*
672bba3a 2442 * Release all resources used by a slab cache.
81819f0f 2443 */
0c710013 2444static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2445{
2446 int node;
2447
2448 flush_all(s);
9dfc6e68 2449 free_percpu(s->cpu_slab);
81819f0f 2450 /* Attempt to free all objects */
f64dc58c 2451 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2452 struct kmem_cache_node *n = get_node(s, node);
2453
599870b1
CL
2454 free_partial(s, n);
2455 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2456 return 1;
2457 }
2458 free_kmem_cache_nodes(s);
2459 return 0;
2460}
2461
2462/*
2463 * Close a cache and release the kmem_cache structure
2464 * (must be used for caches created using kmem_cache_create)
2465 */
2466void kmem_cache_destroy(struct kmem_cache *s)
2467{
2468 down_write(&slub_lock);
2469 s->refcount--;
2470 if (!s->refcount) {
2471 list_del(&s->list);
d629d819
PE
2472 if (kmem_cache_close(s)) {
2473 printk(KERN_ERR "SLUB %s: %s called for cache that "
2474 "still has objects.\n", s->name, __func__);
2475 dump_stack();
2476 }
d76b1590
ED
2477 if (s->flags & SLAB_DESTROY_BY_RCU)
2478 rcu_barrier();
81819f0f 2479 sysfs_slab_remove(s);
2bce6485
CL
2480 }
2481 up_write(&slub_lock);
81819f0f
CL
2482}
2483EXPORT_SYMBOL(kmem_cache_destroy);
2484
2485/********************************************************************
2486 * Kmalloc subsystem
2487 *******************************************************************/
2488
51df1142 2489struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2490EXPORT_SYMBOL(kmalloc_caches);
2491
51df1142
CL
2492static struct kmem_cache *kmem_cache;
2493
55136592 2494#ifdef CONFIG_ZONE_DMA
51df1142 2495static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2496#endif
2497
81819f0f
CL
2498static int __init setup_slub_min_order(char *str)
2499{
06428780 2500 get_option(&str, &slub_min_order);
81819f0f
CL
2501
2502 return 1;
2503}
2504
2505__setup("slub_min_order=", setup_slub_min_order);
2506
2507static int __init setup_slub_max_order(char *str)
2508{
06428780 2509 get_option(&str, &slub_max_order);
818cf590 2510 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2511
2512 return 1;
2513}
2514
2515__setup("slub_max_order=", setup_slub_max_order);
2516
2517static int __init setup_slub_min_objects(char *str)
2518{
06428780 2519 get_option(&str, &slub_min_objects);
81819f0f
CL
2520
2521 return 1;
2522}
2523
2524__setup("slub_min_objects=", setup_slub_min_objects);
2525
2526static int __init setup_slub_nomerge(char *str)
2527{
2528 slub_nomerge = 1;
2529 return 1;
2530}
2531
2532__setup("slub_nomerge", setup_slub_nomerge);
2533
51df1142
CL
2534static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2535 int size, unsigned int flags)
81819f0f 2536{
51df1142
CL
2537 struct kmem_cache *s;
2538
2539 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2540
83b519e8
PE
2541 /*
2542 * This function is called with IRQs disabled during early-boot on
2543 * single CPU so there's no need to take slub_lock here.
2544 */
55136592 2545 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2546 flags, NULL))
81819f0f
CL
2547 goto panic;
2548
2549 list_add(&s->list, &slab_caches);
51df1142 2550 return s;
81819f0f
CL
2551
2552panic:
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2554 return NULL;
81819f0f
CL
2555}
2556
f1b26339
CL
2557/*
2558 * Conversion table for small slabs sizes / 8 to the index in the
2559 * kmalloc array. This is necessary for slabs < 192 since we have non power
2560 * of two cache sizes there. The size of larger slabs can be determined using
2561 * fls.
2562 */
2563static s8 size_index[24] = {
2564 3, /* 8 */
2565 4, /* 16 */
2566 5, /* 24 */
2567 5, /* 32 */
2568 6, /* 40 */
2569 6, /* 48 */
2570 6, /* 56 */
2571 6, /* 64 */
2572 1, /* 72 */
2573 1, /* 80 */
2574 1, /* 88 */
2575 1, /* 96 */
2576 7, /* 104 */
2577 7, /* 112 */
2578 7, /* 120 */
2579 7, /* 128 */
2580 2, /* 136 */
2581 2, /* 144 */
2582 2, /* 152 */
2583 2, /* 160 */
2584 2, /* 168 */
2585 2, /* 176 */
2586 2, /* 184 */
2587 2 /* 192 */
2588};
2589
acdfcd04
AK
2590static inline int size_index_elem(size_t bytes)
2591{
2592 return (bytes - 1) / 8;
2593}
2594
81819f0f
CL
2595static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2596{
f1b26339 2597 int index;
81819f0f 2598
f1b26339
CL
2599 if (size <= 192) {
2600 if (!size)
2601 return ZERO_SIZE_PTR;
81819f0f 2602
acdfcd04 2603 index = size_index[size_index_elem(size)];
aadb4bc4 2604 } else
f1b26339 2605 index = fls(size - 1);
81819f0f
CL
2606
2607#ifdef CONFIG_ZONE_DMA
f1b26339 2608 if (unlikely((flags & SLUB_DMA)))
51df1142 2609 return kmalloc_dma_caches[index];
f1b26339 2610
81819f0f 2611#endif
51df1142 2612 return kmalloc_caches[index];
81819f0f
CL
2613}
2614
2615void *__kmalloc(size_t size, gfp_t flags)
2616{
aadb4bc4 2617 struct kmem_cache *s;
5b882be4 2618 void *ret;
81819f0f 2619
ffadd4d0 2620 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2621 return kmalloc_large(size, flags);
aadb4bc4
CL
2622
2623 s = get_slab(size, flags);
2624
2625 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2626 return s;
2627
2154a336 2628 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2629
ca2b84cb 2630 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2631
2632 return ret;
81819f0f
CL
2633}
2634EXPORT_SYMBOL(__kmalloc);
2635
5d1f57e4 2636#ifdef CONFIG_NUMA
f619cfe1
CL
2637static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2638{
b1eeab67 2639 struct page *page;
e4f7c0b4 2640 void *ptr = NULL;
f619cfe1 2641
b1eeab67
VN
2642 flags |= __GFP_COMP | __GFP_NOTRACK;
2643 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2644 if (page)
e4f7c0b4
CM
2645 ptr = page_address(page);
2646
2647 kmemleak_alloc(ptr, size, 1, flags);
2648 return ptr;
f619cfe1
CL
2649}
2650
81819f0f
CL
2651void *__kmalloc_node(size_t size, gfp_t flags, int node)
2652{
aadb4bc4 2653 struct kmem_cache *s;
5b882be4 2654 void *ret;
81819f0f 2655
057685cf 2656 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2657 ret = kmalloc_large_node(size, flags, node);
2658
ca2b84cb
EGM
2659 trace_kmalloc_node(_RET_IP_, ret,
2660 size, PAGE_SIZE << get_order(size),
2661 flags, node);
5b882be4
EGM
2662
2663 return ret;
2664 }
aadb4bc4
CL
2665
2666 s = get_slab(size, flags);
2667
2668 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2669 return s;
2670
5b882be4
EGM
2671 ret = slab_alloc(s, flags, node, _RET_IP_);
2672
ca2b84cb 2673 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2674
2675 return ret;
81819f0f
CL
2676}
2677EXPORT_SYMBOL(__kmalloc_node);
2678#endif
2679
2680size_t ksize(const void *object)
2681{
272c1d21 2682 struct page *page;
81819f0f
CL
2683 struct kmem_cache *s;
2684
ef8b4520 2685 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2686 return 0;
2687
294a80a8 2688 page = virt_to_head_page(object);
294a80a8 2689
76994412
PE
2690 if (unlikely(!PageSlab(page))) {
2691 WARN_ON(!PageCompound(page));
294a80a8 2692 return PAGE_SIZE << compound_order(page);
76994412 2693 }
81819f0f 2694 s = page->slab;
81819f0f 2695
ae20bfda 2696#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2697 /*
2698 * Debugging requires use of the padding between object
2699 * and whatever may come after it.
2700 */
2701 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2702 return s->objsize;
2703
ae20bfda 2704#endif
81819f0f
CL
2705 /*
2706 * If we have the need to store the freelist pointer
2707 * back there or track user information then we can
2708 * only use the space before that information.
2709 */
2710 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2711 return s->inuse;
81819f0f
CL
2712 /*
2713 * Else we can use all the padding etc for the allocation
2714 */
2715 return s->size;
2716}
b1aabecd 2717EXPORT_SYMBOL(ksize);
81819f0f
CL
2718
2719void kfree(const void *x)
2720{
81819f0f 2721 struct page *page;
5bb983b0 2722 void *object = (void *)x;
81819f0f 2723
2121db74
PE
2724 trace_kfree(_RET_IP_, x);
2725
2408c550 2726 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2727 return;
2728
b49af68f 2729 page = virt_to_head_page(x);
aadb4bc4 2730 if (unlikely(!PageSlab(page))) {
0937502a 2731 BUG_ON(!PageCompound(page));
e4f7c0b4 2732 kmemleak_free(x);
aadb4bc4
CL
2733 put_page(page);
2734 return;
2735 }
ce71e27c 2736 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2737}
2738EXPORT_SYMBOL(kfree);
2739
2086d26a 2740/*
672bba3a
CL
2741 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2742 * the remaining slabs by the number of items in use. The slabs with the
2743 * most items in use come first. New allocations will then fill those up
2744 * and thus they can be removed from the partial lists.
2745 *
2746 * The slabs with the least items are placed last. This results in them
2747 * being allocated from last increasing the chance that the last objects
2748 * are freed in them.
2086d26a
CL
2749 */
2750int kmem_cache_shrink(struct kmem_cache *s)
2751{
2752 int node;
2753 int i;
2754 struct kmem_cache_node *n;
2755 struct page *page;
2756 struct page *t;
205ab99d 2757 int objects = oo_objects(s->max);
2086d26a 2758 struct list_head *slabs_by_inuse =
834f3d11 2759 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2760 unsigned long flags;
2761
2762 if (!slabs_by_inuse)
2763 return -ENOMEM;
2764
2765 flush_all(s);
f64dc58c 2766 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2767 n = get_node(s, node);
2768
2769 if (!n->nr_partial)
2770 continue;
2771
834f3d11 2772 for (i = 0; i < objects; i++)
2086d26a
CL
2773 INIT_LIST_HEAD(slabs_by_inuse + i);
2774
2775 spin_lock_irqsave(&n->list_lock, flags);
2776
2777 /*
672bba3a 2778 * Build lists indexed by the items in use in each slab.
2086d26a 2779 *
672bba3a
CL
2780 * Note that concurrent frees may occur while we hold the
2781 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2782 */
2783 list_for_each_entry_safe(page, t, &n->partial, lru) {
2784 if (!page->inuse && slab_trylock(page)) {
2785 /*
2786 * Must hold slab lock here because slab_free
2787 * may have freed the last object and be
2788 * waiting to release the slab.
2789 */
62e346a8 2790 __remove_partial(n, page);
2086d26a
CL
2791 slab_unlock(page);
2792 discard_slab(s, page);
2793 } else {
fcda3d89
CL
2794 list_move(&page->lru,
2795 slabs_by_inuse + page->inuse);
2086d26a
CL
2796 }
2797 }
2798
2086d26a 2799 /*
672bba3a
CL
2800 * Rebuild the partial list with the slabs filled up most
2801 * first and the least used slabs at the end.
2086d26a 2802 */
834f3d11 2803 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2804 list_splice(slabs_by_inuse + i, n->partial.prev);
2805
2086d26a
CL
2806 spin_unlock_irqrestore(&n->list_lock, flags);
2807 }
2808
2809 kfree(slabs_by_inuse);
2810 return 0;
2811}
2812EXPORT_SYMBOL(kmem_cache_shrink);
2813
92a5bbc1 2814#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
2815static int slab_mem_going_offline_callback(void *arg)
2816{
2817 struct kmem_cache *s;
2818
2819 down_read(&slub_lock);
2820 list_for_each_entry(s, &slab_caches, list)
2821 kmem_cache_shrink(s);
2822 up_read(&slub_lock);
2823
2824 return 0;
2825}
2826
2827static void slab_mem_offline_callback(void *arg)
2828{
2829 struct kmem_cache_node *n;
2830 struct kmem_cache *s;
2831 struct memory_notify *marg = arg;
2832 int offline_node;
2833
2834 offline_node = marg->status_change_nid;
2835
2836 /*
2837 * If the node still has available memory. we need kmem_cache_node
2838 * for it yet.
2839 */
2840 if (offline_node < 0)
2841 return;
2842
2843 down_read(&slub_lock);
2844 list_for_each_entry(s, &slab_caches, list) {
2845 n = get_node(s, offline_node);
2846 if (n) {
2847 /*
2848 * if n->nr_slabs > 0, slabs still exist on the node
2849 * that is going down. We were unable to free them,
c9404c9c 2850 * and offline_pages() function shouldn't call this
b9049e23
YG
2851 * callback. So, we must fail.
2852 */
0f389ec6 2853 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2854
2855 s->node[offline_node] = NULL;
8de66a0c 2856 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2857 }
2858 }
2859 up_read(&slub_lock);
2860}
2861
2862static int slab_mem_going_online_callback(void *arg)
2863{
2864 struct kmem_cache_node *n;
2865 struct kmem_cache *s;
2866 struct memory_notify *marg = arg;
2867 int nid = marg->status_change_nid;
2868 int ret = 0;
2869
2870 /*
2871 * If the node's memory is already available, then kmem_cache_node is
2872 * already created. Nothing to do.
2873 */
2874 if (nid < 0)
2875 return 0;
2876
2877 /*
0121c619 2878 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2879 * allocate a kmem_cache_node structure in order to bring the node
2880 * online.
2881 */
2882 down_read(&slub_lock);
2883 list_for_each_entry(s, &slab_caches, list) {
2884 /*
2885 * XXX: kmem_cache_alloc_node will fallback to other nodes
2886 * since memory is not yet available from the node that
2887 * is brought up.
2888 */
8de66a0c 2889 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2890 if (!n) {
2891 ret = -ENOMEM;
2892 goto out;
2893 }
5595cffc 2894 init_kmem_cache_node(n, s);
b9049e23
YG
2895 s->node[nid] = n;
2896 }
2897out:
2898 up_read(&slub_lock);
2899 return ret;
2900}
2901
2902static int slab_memory_callback(struct notifier_block *self,
2903 unsigned long action, void *arg)
2904{
2905 int ret = 0;
2906
2907 switch (action) {
2908 case MEM_GOING_ONLINE:
2909 ret = slab_mem_going_online_callback(arg);
2910 break;
2911 case MEM_GOING_OFFLINE:
2912 ret = slab_mem_going_offline_callback(arg);
2913 break;
2914 case MEM_OFFLINE:
2915 case MEM_CANCEL_ONLINE:
2916 slab_mem_offline_callback(arg);
2917 break;
2918 case MEM_ONLINE:
2919 case MEM_CANCEL_OFFLINE:
2920 break;
2921 }
dc19f9db
KH
2922 if (ret)
2923 ret = notifier_from_errno(ret);
2924 else
2925 ret = NOTIFY_OK;
b9049e23
YG
2926 return ret;
2927}
2928
2929#endif /* CONFIG_MEMORY_HOTPLUG */
2930
81819f0f
CL
2931/********************************************************************
2932 * Basic setup of slabs
2933 *******************************************************************/
2934
51df1142
CL
2935/*
2936 * Used for early kmem_cache structures that were allocated using
2937 * the page allocator
2938 */
2939
2940static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2941{
2942 int node;
2943
2944 list_add(&s->list, &slab_caches);
2945 s->refcount = -1;
2946
2947 for_each_node_state(node, N_NORMAL_MEMORY) {
2948 struct kmem_cache_node *n = get_node(s, node);
2949 struct page *p;
2950
2951 if (n) {
2952 list_for_each_entry(p, &n->partial, lru)
2953 p->slab = s;
2954
2955#ifdef CONFIG_SLAB_DEBUG
2956 list_for_each_entry(p, &n->full, lru)
2957 p->slab = s;
2958#endif
2959 }
2960 }
2961}
2962
81819f0f
CL
2963void __init kmem_cache_init(void)
2964{
2965 int i;
4b356be0 2966 int caches = 0;
51df1142
CL
2967 struct kmem_cache *temp_kmem_cache;
2968 int order;
51df1142
CL
2969 struct kmem_cache *temp_kmem_cache_node;
2970 unsigned long kmalloc_size;
2971
2972 kmem_size = offsetof(struct kmem_cache, node) +
2973 nr_node_ids * sizeof(struct kmem_cache_node *);
2974
2975 /* Allocate two kmem_caches from the page allocator */
2976 kmalloc_size = ALIGN(kmem_size, cache_line_size());
2977 order = get_order(2 * kmalloc_size);
2978 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
2979
81819f0f
CL
2980 /*
2981 * Must first have the slab cache available for the allocations of the
672bba3a 2982 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2983 * kmem_cache_open for slab_state == DOWN.
2984 */
51df1142
CL
2985 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
2986
2987 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
2988 sizeof(struct kmem_cache_node),
2989 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 2990
0c40ba4f 2991 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2992
2993 /* Able to allocate the per node structures */
2994 slab_state = PARTIAL;
2995
51df1142
CL
2996 temp_kmem_cache = kmem_cache;
2997 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
2998 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2999 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3000 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3001
51df1142
CL
3002 /*
3003 * Allocate kmem_cache_node properly from the kmem_cache slab.
3004 * kmem_cache_node is separately allocated so no need to
3005 * update any list pointers.
3006 */
3007 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3008
51df1142
CL
3009 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3010 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3011
3012 kmem_cache_bootstrap_fixup(kmem_cache_node);
3013
3014 caches++;
51df1142
CL
3015 kmem_cache_bootstrap_fixup(kmem_cache);
3016 caches++;
3017 /* Free temporary boot structure */
3018 free_pages((unsigned long)temp_kmem_cache, order);
3019
3020 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3021
3022 /*
3023 * Patch up the size_index table if we have strange large alignment
3024 * requirements for the kmalloc array. This is only the case for
6446faa2 3025 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3026 *
3027 * Largest permitted alignment is 256 bytes due to the way we
3028 * handle the index determination for the smaller caches.
3029 *
3030 * Make sure that nothing crazy happens if someone starts tinkering
3031 * around with ARCH_KMALLOC_MINALIGN
3032 */
3033 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3034 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3035
acdfcd04
AK
3036 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3037 int elem = size_index_elem(i);
3038 if (elem >= ARRAY_SIZE(size_index))
3039 break;
3040 size_index[elem] = KMALLOC_SHIFT_LOW;
3041 }
f1b26339 3042
acdfcd04
AK
3043 if (KMALLOC_MIN_SIZE == 64) {
3044 /*
3045 * The 96 byte size cache is not used if the alignment
3046 * is 64 byte.
3047 */
3048 for (i = 64 + 8; i <= 96; i += 8)
3049 size_index[size_index_elem(i)] = 7;
3050 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3051 /*
3052 * The 192 byte sized cache is not used if the alignment
3053 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3054 * instead.
3055 */
3056 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3057 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3058 }
3059
51df1142
CL
3060 /* Caches that are not of the two-to-the-power-of size */
3061 if (KMALLOC_MIN_SIZE <= 32) {
3062 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3063 caches++;
3064 }
3065
3066 if (KMALLOC_MIN_SIZE <= 64) {
3067 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3068 caches++;
3069 }
3070
3071 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3072 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3073 caches++;
3074 }
3075
81819f0f
CL
3076 slab_state = UP;
3077
3078 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3079 if (KMALLOC_MIN_SIZE <= 32) {
3080 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3081 BUG_ON(!kmalloc_caches[1]->name);
3082 }
3083
3084 if (KMALLOC_MIN_SIZE <= 64) {
3085 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3086 BUG_ON(!kmalloc_caches[2]->name);
3087 }
3088
d7278bd7
CL
3089 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3090 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3091
3092 BUG_ON(!s);
51df1142 3093 kmalloc_caches[i]->name = s;
d7278bd7 3094 }
81819f0f
CL
3095
3096#ifdef CONFIG_SMP
3097 register_cpu_notifier(&slab_notifier);
9dfc6e68 3098#endif
81819f0f 3099
55136592 3100#ifdef CONFIG_ZONE_DMA
51df1142
CL
3101 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3102 struct kmem_cache *s = kmalloc_caches[i];
55136592 3103
51df1142 3104 if (s && s->size) {
55136592
CL
3105 char *name = kasprintf(GFP_NOWAIT,
3106 "dma-kmalloc-%d", s->objsize);
3107
3108 BUG_ON(!name);
51df1142
CL
3109 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3110 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3111 }
3112 }
3113#endif
3adbefee
IM
3114 printk(KERN_INFO
3115 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3116 " CPUs=%d, Nodes=%d\n",
3117 caches, cache_line_size(),
81819f0f
CL
3118 slub_min_order, slub_max_order, slub_min_objects,
3119 nr_cpu_ids, nr_node_ids);
3120}
3121
7e85ee0c
PE
3122void __init kmem_cache_init_late(void)
3123{
7e85ee0c
PE
3124}
3125
81819f0f
CL
3126/*
3127 * Find a mergeable slab cache
3128 */
3129static int slab_unmergeable(struct kmem_cache *s)
3130{
3131 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3132 return 1;
3133
c59def9f 3134 if (s->ctor)
81819f0f
CL
3135 return 1;
3136
8ffa6875
CL
3137 /*
3138 * We may have set a slab to be unmergeable during bootstrap.
3139 */
3140 if (s->refcount < 0)
3141 return 1;
3142
81819f0f
CL
3143 return 0;
3144}
3145
3146static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3147 size_t align, unsigned long flags, const char *name,
51cc5068 3148 void (*ctor)(void *))
81819f0f 3149{
5b95a4ac 3150 struct kmem_cache *s;
81819f0f
CL
3151
3152 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3153 return NULL;
3154
c59def9f 3155 if (ctor)
81819f0f
CL
3156 return NULL;
3157
3158 size = ALIGN(size, sizeof(void *));
3159 align = calculate_alignment(flags, align, size);
3160 size = ALIGN(size, align);
ba0268a8 3161 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3162
5b95a4ac 3163 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3164 if (slab_unmergeable(s))
3165 continue;
3166
3167 if (size > s->size)
3168 continue;
3169
ba0268a8 3170 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3171 continue;
3172 /*
3173 * Check if alignment is compatible.
3174 * Courtesy of Adrian Drzewiecki
3175 */
06428780 3176 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3177 continue;
3178
3179 if (s->size - size >= sizeof(void *))
3180 continue;
3181
3182 return s;
3183 }
3184 return NULL;
3185}
3186
3187struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3188 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3189{
3190 struct kmem_cache *s;
84c1cf62 3191 char *n;
81819f0f 3192
fe1ff49d
BH
3193 if (WARN_ON(!name))
3194 return NULL;
3195
81819f0f 3196 down_write(&slub_lock);
ba0268a8 3197 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3198 if (s) {
3199 s->refcount++;
3200 /*
3201 * Adjust the object sizes so that we clear
3202 * the complete object on kzalloc.
3203 */
3204 s->objsize = max(s->objsize, (int)size);
3205 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3206
7b8f3b66 3207 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3208 s->refcount--;
81819f0f 3209 goto err;
7b8f3b66 3210 }
2bce6485 3211 up_write(&slub_lock);
a0e1d1be
CL
3212 return s;
3213 }
6446faa2 3214
84c1cf62
PE
3215 n = kstrdup(name, GFP_KERNEL);
3216 if (!n)
3217 goto err;
3218
a0e1d1be
CL
3219 s = kmalloc(kmem_size, GFP_KERNEL);
3220 if (s) {
84c1cf62 3221 if (kmem_cache_open(s, n,
c59def9f 3222 size, align, flags, ctor)) {
81819f0f 3223 list_add(&s->list, &slab_caches);
7b8f3b66 3224 if (sysfs_slab_add(s)) {
7b8f3b66 3225 list_del(&s->list);
84c1cf62 3226 kfree(n);
7b8f3b66 3227 kfree(s);
a0e1d1be 3228 goto err;
7b8f3b66 3229 }
2bce6485 3230 up_write(&slub_lock);
a0e1d1be
CL
3231 return s;
3232 }
84c1cf62 3233 kfree(n);
a0e1d1be 3234 kfree(s);
81819f0f 3235 }
68cee4f1 3236err:
81819f0f 3237 up_write(&slub_lock);
81819f0f 3238
81819f0f
CL
3239 if (flags & SLAB_PANIC)
3240 panic("Cannot create slabcache %s\n", name);
3241 else
3242 s = NULL;
3243 return s;
3244}
3245EXPORT_SYMBOL(kmem_cache_create);
3246
81819f0f 3247#ifdef CONFIG_SMP
81819f0f 3248/*
672bba3a
CL
3249 * Use the cpu notifier to insure that the cpu slabs are flushed when
3250 * necessary.
81819f0f
CL
3251 */
3252static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3253 unsigned long action, void *hcpu)
3254{
3255 long cpu = (long)hcpu;
5b95a4ac
CL
3256 struct kmem_cache *s;
3257 unsigned long flags;
81819f0f
CL
3258
3259 switch (action) {
3260 case CPU_UP_CANCELED:
8bb78442 3261 case CPU_UP_CANCELED_FROZEN:
81819f0f 3262 case CPU_DEAD:
8bb78442 3263 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3264 down_read(&slub_lock);
3265 list_for_each_entry(s, &slab_caches, list) {
3266 local_irq_save(flags);
3267 __flush_cpu_slab(s, cpu);
3268 local_irq_restore(flags);
3269 }
3270 up_read(&slub_lock);
81819f0f
CL
3271 break;
3272 default:
3273 break;
3274 }
3275 return NOTIFY_OK;
3276}
3277
06428780 3278static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3279 .notifier_call = slab_cpuup_callback
06428780 3280};
81819f0f
CL
3281
3282#endif
3283
ce71e27c 3284void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3285{
aadb4bc4 3286 struct kmem_cache *s;
94b528d0 3287 void *ret;
aadb4bc4 3288
ffadd4d0 3289 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3290 return kmalloc_large(size, gfpflags);
3291
aadb4bc4 3292 s = get_slab(size, gfpflags);
81819f0f 3293
2408c550 3294 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3295 return s;
81819f0f 3296
2154a336 3297 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3298
3299 /* Honor the call site pointer we recieved. */
ca2b84cb 3300 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3301
3302 return ret;
81819f0f
CL
3303}
3304
5d1f57e4 3305#ifdef CONFIG_NUMA
81819f0f 3306void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3307 int node, unsigned long caller)
81819f0f 3308{
aadb4bc4 3309 struct kmem_cache *s;
94b528d0 3310 void *ret;
aadb4bc4 3311
d3e14aa3
XF
3312 if (unlikely(size > SLUB_MAX_SIZE)) {
3313 ret = kmalloc_large_node(size, gfpflags, node);
3314
3315 trace_kmalloc_node(caller, ret,
3316 size, PAGE_SIZE << get_order(size),
3317 gfpflags, node);
3318
3319 return ret;
3320 }
eada35ef 3321
aadb4bc4 3322 s = get_slab(size, gfpflags);
81819f0f 3323
2408c550 3324 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3325 return s;
81819f0f 3326
94b528d0
EGM
3327 ret = slab_alloc(s, gfpflags, node, caller);
3328
3329 /* Honor the call site pointer we recieved. */
ca2b84cb 3330 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3331
3332 return ret;
81819f0f 3333}
5d1f57e4 3334#endif
81819f0f 3335
ab4d5ed5 3336#ifdef CONFIG_SYSFS
205ab99d
CL
3337static int count_inuse(struct page *page)
3338{
3339 return page->inuse;
3340}
3341
3342static int count_total(struct page *page)
3343{
3344 return page->objects;
3345}
ab4d5ed5 3346#endif
205ab99d 3347
ab4d5ed5 3348#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3349static int validate_slab(struct kmem_cache *s, struct page *page,
3350 unsigned long *map)
53e15af0
CL
3351{
3352 void *p;
a973e9dd 3353 void *addr = page_address(page);
53e15af0
CL
3354
3355 if (!check_slab(s, page) ||
3356 !on_freelist(s, page, NULL))
3357 return 0;
3358
3359 /* Now we know that a valid freelist exists */
39b26464 3360 bitmap_zero(map, page->objects);
53e15af0 3361
7656c72b
CL
3362 for_each_free_object(p, s, page->freelist) {
3363 set_bit(slab_index(p, s, addr), map);
37d57443 3364 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
53e15af0
CL
3365 return 0;
3366 }
3367
224a88be 3368 for_each_object(p, s, addr, page->objects)
7656c72b 3369 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3370 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3371 return 0;
3372 return 1;
3373}
3374
434e245d
CL
3375static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3376 unsigned long *map)
53e15af0
CL
3377{
3378 if (slab_trylock(page)) {
434e245d 3379 validate_slab(s, page, map);
53e15af0
CL
3380 slab_unlock(page);
3381 } else
3382 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3383 s->name, page);
53e15af0
CL
3384}
3385
434e245d
CL
3386static int validate_slab_node(struct kmem_cache *s,
3387 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3388{
3389 unsigned long count = 0;
3390 struct page *page;
3391 unsigned long flags;
3392
3393 spin_lock_irqsave(&n->list_lock, flags);
3394
3395 list_for_each_entry(page, &n->partial, lru) {
434e245d 3396 validate_slab_slab(s, page, map);
53e15af0
CL
3397 count++;
3398 }
3399 if (count != n->nr_partial)
3400 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3401 "counter=%ld\n", s->name, count, n->nr_partial);
3402
3403 if (!(s->flags & SLAB_STORE_USER))
3404 goto out;
3405
3406 list_for_each_entry(page, &n->full, lru) {
434e245d 3407 validate_slab_slab(s, page, map);
53e15af0
CL
3408 count++;
3409 }
3410 if (count != atomic_long_read(&n->nr_slabs))
3411 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3412 "counter=%ld\n", s->name, count,
3413 atomic_long_read(&n->nr_slabs));
3414
3415out:
3416 spin_unlock_irqrestore(&n->list_lock, flags);
3417 return count;
3418}
3419
434e245d 3420static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3421{
3422 int node;
3423 unsigned long count = 0;
205ab99d 3424 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3425 sizeof(unsigned long), GFP_KERNEL);
3426
3427 if (!map)
3428 return -ENOMEM;
53e15af0
CL
3429
3430 flush_all(s);
f64dc58c 3431 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3432 struct kmem_cache_node *n = get_node(s, node);
3433
434e245d 3434 count += validate_slab_node(s, n, map);
53e15af0 3435 }
434e245d 3436 kfree(map);
53e15af0
CL
3437 return count;
3438}
88a420e4 3439/*
672bba3a 3440 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3441 * and freed.
3442 */
3443
3444struct location {
3445 unsigned long count;
ce71e27c 3446 unsigned long addr;
45edfa58
CL
3447 long long sum_time;
3448 long min_time;
3449 long max_time;
3450 long min_pid;
3451 long max_pid;
174596a0 3452 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3453 nodemask_t nodes;
88a420e4
CL
3454};
3455
3456struct loc_track {
3457 unsigned long max;
3458 unsigned long count;
3459 struct location *loc;
3460};
3461
3462static void free_loc_track(struct loc_track *t)
3463{
3464 if (t->max)
3465 free_pages((unsigned long)t->loc,
3466 get_order(sizeof(struct location) * t->max));
3467}
3468
68dff6a9 3469static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3470{
3471 struct location *l;
3472 int order;
3473
88a420e4
CL
3474 order = get_order(sizeof(struct location) * max);
3475
68dff6a9 3476 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3477 if (!l)
3478 return 0;
3479
3480 if (t->count) {
3481 memcpy(l, t->loc, sizeof(struct location) * t->count);
3482 free_loc_track(t);
3483 }
3484 t->max = max;
3485 t->loc = l;
3486 return 1;
3487}
3488
3489static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3490 const struct track *track)
88a420e4
CL
3491{
3492 long start, end, pos;
3493 struct location *l;
ce71e27c 3494 unsigned long caddr;
45edfa58 3495 unsigned long age = jiffies - track->when;
88a420e4
CL
3496
3497 start = -1;
3498 end = t->count;
3499
3500 for ( ; ; ) {
3501 pos = start + (end - start + 1) / 2;
3502
3503 /*
3504 * There is nothing at "end". If we end up there
3505 * we need to add something to before end.
3506 */
3507 if (pos == end)
3508 break;
3509
3510 caddr = t->loc[pos].addr;
45edfa58
CL
3511 if (track->addr == caddr) {
3512
3513 l = &t->loc[pos];
3514 l->count++;
3515 if (track->when) {
3516 l->sum_time += age;
3517 if (age < l->min_time)
3518 l->min_time = age;
3519 if (age > l->max_time)
3520 l->max_time = age;
3521
3522 if (track->pid < l->min_pid)
3523 l->min_pid = track->pid;
3524 if (track->pid > l->max_pid)
3525 l->max_pid = track->pid;
3526
174596a0
RR
3527 cpumask_set_cpu(track->cpu,
3528 to_cpumask(l->cpus));
45edfa58
CL
3529 }
3530 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3531 return 1;
3532 }
3533
45edfa58 3534 if (track->addr < caddr)
88a420e4
CL
3535 end = pos;
3536 else
3537 start = pos;
3538 }
3539
3540 /*
672bba3a 3541 * Not found. Insert new tracking element.
88a420e4 3542 */
68dff6a9 3543 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3544 return 0;
3545
3546 l = t->loc + pos;
3547 if (pos < t->count)
3548 memmove(l + 1, l,
3549 (t->count - pos) * sizeof(struct location));
3550 t->count++;
3551 l->count = 1;
45edfa58
CL
3552 l->addr = track->addr;
3553 l->sum_time = age;
3554 l->min_time = age;
3555 l->max_time = age;
3556 l->min_pid = track->pid;
3557 l->max_pid = track->pid;
174596a0
RR
3558 cpumask_clear(to_cpumask(l->cpus));
3559 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3560 nodes_clear(l->nodes);
3561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3562 return 1;
3563}
3564
3565static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3566 struct page *page, enum track_item alloc,
a5dd5c11 3567 unsigned long *map)
88a420e4 3568{
a973e9dd 3569 void *addr = page_address(page);
88a420e4
CL
3570 void *p;
3571
39b26464 3572 bitmap_zero(map, page->objects);
7656c72b
CL
3573 for_each_free_object(p, s, page->freelist)
3574 set_bit(slab_index(p, s, addr), map);
88a420e4 3575
224a88be 3576 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3577 if (!test_bit(slab_index(p, s, addr), map))
3578 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3579}
3580
3581static int list_locations(struct kmem_cache *s, char *buf,
3582 enum track_item alloc)
3583{
e374d483 3584 int len = 0;
88a420e4 3585 unsigned long i;
68dff6a9 3586 struct loc_track t = { 0, 0, NULL };
88a420e4 3587 int node;
bbd7d57b
ED
3588 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3589 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3590
bbd7d57b
ED
3591 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3592 GFP_TEMPORARY)) {
3593 kfree(map);
68dff6a9 3594 return sprintf(buf, "Out of memory\n");
bbd7d57b 3595 }
88a420e4
CL
3596 /* Push back cpu slabs */
3597 flush_all(s);
3598
f64dc58c 3599 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3600 struct kmem_cache_node *n = get_node(s, node);
3601 unsigned long flags;
3602 struct page *page;
3603
9e86943b 3604 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3605 continue;
3606
3607 spin_lock_irqsave(&n->list_lock, flags);
3608 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3609 process_slab(&t, s, page, alloc, map);
88a420e4 3610 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3611 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3612 spin_unlock_irqrestore(&n->list_lock, flags);
3613 }
3614
3615 for (i = 0; i < t.count; i++) {
45edfa58 3616 struct location *l = &t.loc[i];
88a420e4 3617
9c246247 3618 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3619 break;
e374d483 3620 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3621
3622 if (l->addr)
e374d483 3623 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3624 else
e374d483 3625 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3626
3627 if (l->sum_time != l->min_time) {
e374d483 3628 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3629 l->min_time,
3630 (long)div_u64(l->sum_time, l->count),
3631 l->max_time);
45edfa58 3632 } else
e374d483 3633 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3634 l->min_time);
3635
3636 if (l->min_pid != l->max_pid)
e374d483 3637 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3638 l->min_pid, l->max_pid);
3639 else
e374d483 3640 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3641 l->min_pid);
3642
174596a0
RR
3643 if (num_online_cpus() > 1 &&
3644 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3645 len < PAGE_SIZE - 60) {
3646 len += sprintf(buf + len, " cpus=");
3647 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3648 to_cpumask(l->cpus));
45edfa58
CL
3649 }
3650
62bc62a8 3651 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3652 len < PAGE_SIZE - 60) {
3653 len += sprintf(buf + len, " nodes=");
3654 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3655 l->nodes);
3656 }
3657
e374d483 3658 len += sprintf(buf + len, "\n");
88a420e4
CL
3659 }
3660
3661 free_loc_track(&t);
bbd7d57b 3662 kfree(map);
88a420e4 3663 if (!t.count)
e374d483
HH
3664 len += sprintf(buf, "No data\n");
3665 return len;
88a420e4 3666}
ab4d5ed5 3667#endif
88a420e4 3668
a5a84755
CL
3669#ifdef SLUB_RESILIENCY_TEST
3670static void resiliency_test(void)
3671{
3672 u8 *p;
3673
3674 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3675
3676 printk(KERN_ERR "SLUB resiliency testing\n");
3677 printk(KERN_ERR "-----------------------\n");
3678 printk(KERN_ERR "A. Corruption after allocation\n");
3679
3680 p = kzalloc(16, GFP_KERNEL);
3681 p[16] = 0x12;
3682 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3683 " 0x12->0x%p\n\n", p + 16);
3684
3685 validate_slab_cache(kmalloc_caches[4]);
3686
3687 /* Hmmm... The next two are dangerous */
3688 p = kzalloc(32, GFP_KERNEL);
3689 p[32 + sizeof(void *)] = 0x34;
3690 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3691 " 0x34 -> -0x%p\n", p);
3692 printk(KERN_ERR
3693 "If allocated object is overwritten then not detectable\n\n");
3694
3695 validate_slab_cache(kmalloc_caches[5]);
3696 p = kzalloc(64, GFP_KERNEL);
3697 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3698 *p = 0x56;
3699 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3700 p);
3701 printk(KERN_ERR
3702 "If allocated object is overwritten then not detectable\n\n");
3703 validate_slab_cache(kmalloc_caches[6]);
3704
3705 printk(KERN_ERR "\nB. Corruption after free\n");
3706 p = kzalloc(128, GFP_KERNEL);
3707 kfree(p);
3708 *p = 0x78;
3709 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3710 validate_slab_cache(kmalloc_caches[7]);
3711
3712 p = kzalloc(256, GFP_KERNEL);
3713 kfree(p);
3714 p[50] = 0x9a;
3715 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3716 p);
3717 validate_slab_cache(kmalloc_caches[8]);
3718
3719 p = kzalloc(512, GFP_KERNEL);
3720 kfree(p);
3721 p[512] = 0xab;
3722 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3723 validate_slab_cache(kmalloc_caches[9]);
3724}
3725#else
3726#ifdef CONFIG_SYSFS
3727static void resiliency_test(void) {};
3728#endif
3729#endif
3730
ab4d5ed5 3731#ifdef CONFIG_SYSFS
81819f0f 3732enum slab_stat_type {
205ab99d
CL
3733 SL_ALL, /* All slabs */
3734 SL_PARTIAL, /* Only partially allocated slabs */
3735 SL_CPU, /* Only slabs used for cpu caches */
3736 SL_OBJECTS, /* Determine allocated objects not slabs */
3737 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3738};
3739
205ab99d 3740#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3741#define SO_PARTIAL (1 << SL_PARTIAL)
3742#define SO_CPU (1 << SL_CPU)
3743#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3744#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3745
62e5c4b4
CG
3746static ssize_t show_slab_objects(struct kmem_cache *s,
3747 char *buf, unsigned long flags)
81819f0f
CL
3748{
3749 unsigned long total = 0;
81819f0f
CL
3750 int node;
3751 int x;
3752 unsigned long *nodes;
3753 unsigned long *per_cpu;
3754
3755 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3756 if (!nodes)
3757 return -ENOMEM;
81819f0f
CL
3758 per_cpu = nodes + nr_node_ids;
3759
205ab99d
CL
3760 if (flags & SO_CPU) {
3761 int cpu;
81819f0f 3762
205ab99d 3763 for_each_possible_cpu(cpu) {
9dfc6e68 3764 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3765
205ab99d
CL
3766 if (!c || c->node < 0)
3767 continue;
3768
3769 if (c->page) {
3770 if (flags & SO_TOTAL)
3771 x = c->page->objects;
3772 else if (flags & SO_OBJECTS)
3773 x = c->page->inuse;
81819f0f
CL
3774 else
3775 x = 1;
205ab99d 3776
81819f0f 3777 total += x;
205ab99d 3778 nodes[c->node] += x;
81819f0f 3779 }
205ab99d 3780 per_cpu[c->node]++;
81819f0f
CL
3781 }
3782 }
3783
ab4d5ed5
CL
3784 down_read(&slub_lock);
3785#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3786 if (flags & SO_ALL) {
3787 for_each_node_state(node, N_NORMAL_MEMORY) {
3788 struct kmem_cache_node *n = get_node(s, node);
3789
3790 if (flags & SO_TOTAL)
3791 x = atomic_long_read(&n->total_objects);
3792 else if (flags & SO_OBJECTS)
3793 x = atomic_long_read(&n->total_objects) -
3794 count_partial(n, count_free);
81819f0f 3795
81819f0f 3796 else
205ab99d 3797 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3798 total += x;
3799 nodes[node] += x;
3800 }
3801
ab4d5ed5
CL
3802 } else
3803#endif
3804 if (flags & SO_PARTIAL) {
205ab99d
CL
3805 for_each_node_state(node, N_NORMAL_MEMORY) {
3806 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3807
205ab99d
CL
3808 if (flags & SO_TOTAL)
3809 x = count_partial(n, count_total);
3810 else if (flags & SO_OBJECTS)
3811 x = count_partial(n, count_inuse);
81819f0f 3812 else
205ab99d 3813 x = n->nr_partial;
81819f0f
CL
3814 total += x;
3815 nodes[node] += x;
3816 }
3817 }
81819f0f
CL
3818 x = sprintf(buf, "%lu", total);
3819#ifdef CONFIG_NUMA
f64dc58c 3820 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3821 if (nodes[node])
3822 x += sprintf(buf + x, " N%d=%lu",
3823 node, nodes[node]);
3824#endif
68cee4f1 3825 up_read(&slub_lock);
81819f0f
CL
3826 kfree(nodes);
3827 return x + sprintf(buf + x, "\n");
3828}
3829
ab4d5ed5 3830#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3831static int any_slab_objects(struct kmem_cache *s)
3832{
3833 int node;
81819f0f 3834
dfb4f096 3835 for_each_online_node(node) {
81819f0f
CL
3836 struct kmem_cache_node *n = get_node(s, node);
3837
dfb4f096
CL
3838 if (!n)
3839 continue;
3840
4ea33e2d 3841 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3842 return 1;
3843 }
3844 return 0;
3845}
ab4d5ed5 3846#endif
81819f0f
CL
3847
3848#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3849#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3850
3851struct slab_attribute {
3852 struct attribute attr;
3853 ssize_t (*show)(struct kmem_cache *s, char *buf);
3854 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3855};
3856
3857#define SLAB_ATTR_RO(_name) \
3858 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3859
3860#define SLAB_ATTR(_name) \
3861 static struct slab_attribute _name##_attr = \
3862 __ATTR(_name, 0644, _name##_show, _name##_store)
3863
81819f0f
CL
3864static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3865{
3866 return sprintf(buf, "%d\n", s->size);
3867}
3868SLAB_ATTR_RO(slab_size);
3869
3870static ssize_t align_show(struct kmem_cache *s, char *buf)
3871{
3872 return sprintf(buf, "%d\n", s->align);
3873}
3874SLAB_ATTR_RO(align);
3875
3876static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3877{
3878 return sprintf(buf, "%d\n", s->objsize);
3879}
3880SLAB_ATTR_RO(object_size);
3881
3882static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3883{
834f3d11 3884 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3885}
3886SLAB_ATTR_RO(objs_per_slab);
3887
06b285dc
CL
3888static ssize_t order_store(struct kmem_cache *s,
3889 const char *buf, size_t length)
3890{
0121c619
CL
3891 unsigned long order;
3892 int err;
3893
3894 err = strict_strtoul(buf, 10, &order);
3895 if (err)
3896 return err;
06b285dc
CL
3897
3898 if (order > slub_max_order || order < slub_min_order)
3899 return -EINVAL;
3900
3901 calculate_sizes(s, order);
3902 return length;
3903}
3904
81819f0f
CL
3905static ssize_t order_show(struct kmem_cache *s, char *buf)
3906{
834f3d11 3907 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3908}
06b285dc 3909SLAB_ATTR(order);
81819f0f 3910
73d342b1
DR
3911static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3912{
3913 return sprintf(buf, "%lu\n", s->min_partial);
3914}
3915
3916static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3917 size_t length)
3918{
3919 unsigned long min;
3920 int err;
3921
3922 err = strict_strtoul(buf, 10, &min);
3923 if (err)
3924 return err;
3925
c0bdb232 3926 set_min_partial(s, min);
73d342b1
DR
3927 return length;
3928}
3929SLAB_ATTR(min_partial);
3930
81819f0f
CL
3931static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3932{
3933 if (s->ctor) {
3934 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3935
3936 return n + sprintf(buf + n, "\n");
3937 }
3938 return 0;
3939}
3940SLAB_ATTR_RO(ctor);
3941
81819f0f
CL
3942static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3943{
3944 return sprintf(buf, "%d\n", s->refcount - 1);
3945}
3946SLAB_ATTR_RO(aliases);
3947
81819f0f
CL
3948static ssize_t partial_show(struct kmem_cache *s, char *buf)
3949{
d9acf4b7 3950 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3951}
3952SLAB_ATTR_RO(partial);
3953
3954static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3955{
d9acf4b7 3956 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3957}
3958SLAB_ATTR_RO(cpu_slabs);
3959
3960static ssize_t objects_show(struct kmem_cache *s, char *buf)
3961{
205ab99d 3962 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3963}
3964SLAB_ATTR_RO(objects);
3965
205ab99d
CL
3966static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3967{
3968 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3969}
3970SLAB_ATTR_RO(objects_partial);
3971
a5a84755
CL
3972static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3973{
3974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3975}
3976
3977static ssize_t reclaim_account_store(struct kmem_cache *s,
3978 const char *buf, size_t length)
3979{
3980 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3981 if (buf[0] == '1')
3982 s->flags |= SLAB_RECLAIM_ACCOUNT;
3983 return length;
3984}
3985SLAB_ATTR(reclaim_account);
3986
3987static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3988{
3989 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3990}
3991SLAB_ATTR_RO(hwcache_align);
3992
3993#ifdef CONFIG_ZONE_DMA
3994static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3995{
3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3997}
3998SLAB_ATTR_RO(cache_dma);
3999#endif
4000
4001static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4002{
4003 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4004}
4005SLAB_ATTR_RO(destroy_by_rcu);
4006
ab4d5ed5 4007#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4008static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4009{
4010 return show_slab_objects(s, buf, SO_ALL);
4011}
4012SLAB_ATTR_RO(slabs);
4013
205ab99d
CL
4014static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4015{
4016 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4017}
4018SLAB_ATTR_RO(total_objects);
4019
81819f0f
CL
4020static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4021{
4022 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4023}
4024
4025static ssize_t sanity_checks_store(struct kmem_cache *s,
4026 const char *buf, size_t length)
4027{
4028 s->flags &= ~SLAB_DEBUG_FREE;
4029 if (buf[0] == '1')
4030 s->flags |= SLAB_DEBUG_FREE;
4031 return length;
4032}
4033SLAB_ATTR(sanity_checks);
4034
4035static ssize_t trace_show(struct kmem_cache *s, char *buf)
4036{
4037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4038}
4039
4040static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4041 size_t length)
4042{
4043 s->flags &= ~SLAB_TRACE;
4044 if (buf[0] == '1')
4045 s->flags |= SLAB_TRACE;
4046 return length;
4047}
4048SLAB_ATTR(trace);
4049
81819f0f
CL
4050static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4051{
4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4053}
4054
4055static ssize_t red_zone_store(struct kmem_cache *s,
4056 const char *buf, size_t length)
4057{
4058 if (any_slab_objects(s))
4059 return -EBUSY;
4060
4061 s->flags &= ~SLAB_RED_ZONE;
4062 if (buf[0] == '1')
4063 s->flags |= SLAB_RED_ZONE;
06b285dc 4064 calculate_sizes(s, -1);
81819f0f
CL
4065 return length;
4066}
4067SLAB_ATTR(red_zone);
4068
4069static ssize_t poison_show(struct kmem_cache *s, char *buf)
4070{
4071 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4072}
4073
4074static ssize_t poison_store(struct kmem_cache *s,
4075 const char *buf, size_t length)
4076{
4077 if (any_slab_objects(s))
4078 return -EBUSY;
4079
4080 s->flags &= ~SLAB_POISON;
4081 if (buf[0] == '1')
4082 s->flags |= SLAB_POISON;
06b285dc 4083 calculate_sizes(s, -1);
81819f0f
CL
4084 return length;
4085}
4086SLAB_ATTR(poison);
4087
4088static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4089{
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4091}
4092
4093static ssize_t store_user_store(struct kmem_cache *s,
4094 const char *buf, size_t length)
4095{
4096 if (any_slab_objects(s))
4097 return -EBUSY;
4098
4099 s->flags &= ~SLAB_STORE_USER;
4100 if (buf[0] == '1')
4101 s->flags |= SLAB_STORE_USER;
06b285dc 4102 calculate_sizes(s, -1);
81819f0f
CL
4103 return length;
4104}
4105SLAB_ATTR(store_user);
4106
53e15af0
CL
4107static ssize_t validate_show(struct kmem_cache *s, char *buf)
4108{
4109 return 0;
4110}
4111
4112static ssize_t validate_store(struct kmem_cache *s,
4113 const char *buf, size_t length)
4114{
434e245d
CL
4115 int ret = -EINVAL;
4116
4117 if (buf[0] == '1') {
4118 ret = validate_slab_cache(s);
4119 if (ret >= 0)
4120 ret = length;
4121 }
4122 return ret;
53e15af0
CL
4123}
4124SLAB_ATTR(validate);
a5a84755
CL
4125
4126static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4127{
4128 if (!(s->flags & SLAB_STORE_USER))
4129 return -ENOSYS;
4130 return list_locations(s, buf, TRACK_ALLOC);
4131}
4132SLAB_ATTR_RO(alloc_calls);
4133
4134static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4135{
4136 if (!(s->flags & SLAB_STORE_USER))
4137 return -ENOSYS;
4138 return list_locations(s, buf, TRACK_FREE);
4139}
4140SLAB_ATTR_RO(free_calls);
4141#endif /* CONFIG_SLUB_DEBUG */
4142
4143#ifdef CONFIG_FAILSLAB
4144static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4145{
4146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4147}
4148
4149static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4150 size_t length)
4151{
4152 s->flags &= ~SLAB_FAILSLAB;
4153 if (buf[0] == '1')
4154 s->flags |= SLAB_FAILSLAB;
4155 return length;
4156}
4157SLAB_ATTR(failslab);
ab4d5ed5 4158#endif
53e15af0 4159
2086d26a
CL
4160static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4161{
4162 return 0;
4163}
4164
4165static ssize_t shrink_store(struct kmem_cache *s,
4166 const char *buf, size_t length)
4167{
4168 if (buf[0] == '1') {
4169 int rc = kmem_cache_shrink(s);
4170
4171 if (rc)
4172 return rc;
4173 } else
4174 return -EINVAL;
4175 return length;
4176}
4177SLAB_ATTR(shrink);
4178
81819f0f 4179#ifdef CONFIG_NUMA
9824601e 4180static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4181{
9824601e 4182 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4183}
4184
9824601e 4185static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4186 const char *buf, size_t length)
4187{
0121c619
CL
4188 unsigned long ratio;
4189 int err;
4190
4191 err = strict_strtoul(buf, 10, &ratio);
4192 if (err)
4193 return err;
4194
e2cb96b7 4195 if (ratio <= 100)
0121c619 4196 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4197
81819f0f
CL
4198 return length;
4199}
9824601e 4200SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4201#endif
4202
8ff12cfc 4203#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4204static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4205{
4206 unsigned long sum = 0;
4207 int cpu;
4208 int len;
4209 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4210
4211 if (!data)
4212 return -ENOMEM;
4213
4214 for_each_online_cpu(cpu) {
9dfc6e68 4215 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4216
4217 data[cpu] = x;
4218 sum += x;
4219 }
4220
4221 len = sprintf(buf, "%lu", sum);
4222
50ef37b9 4223#ifdef CONFIG_SMP
8ff12cfc
CL
4224 for_each_online_cpu(cpu) {
4225 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4226 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4227 }
50ef37b9 4228#endif
8ff12cfc
CL
4229 kfree(data);
4230 return len + sprintf(buf + len, "\n");
4231}
4232
78eb00cc
DR
4233static void clear_stat(struct kmem_cache *s, enum stat_item si)
4234{
4235 int cpu;
4236
4237 for_each_online_cpu(cpu)
9dfc6e68 4238 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4239}
4240
8ff12cfc
CL
4241#define STAT_ATTR(si, text) \
4242static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4243{ \
4244 return show_stat(s, buf, si); \
4245} \
78eb00cc
DR
4246static ssize_t text##_store(struct kmem_cache *s, \
4247 const char *buf, size_t length) \
4248{ \
4249 if (buf[0] != '0') \
4250 return -EINVAL; \
4251 clear_stat(s, si); \
4252 return length; \
4253} \
4254SLAB_ATTR(text); \
8ff12cfc
CL
4255
4256STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4257STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4258STAT_ATTR(FREE_FASTPATH, free_fastpath);
4259STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4260STAT_ATTR(FREE_FROZEN, free_frozen);
4261STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4262STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4263STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4264STAT_ATTR(ALLOC_SLAB, alloc_slab);
4265STAT_ATTR(ALLOC_REFILL, alloc_refill);
4266STAT_ATTR(FREE_SLAB, free_slab);
4267STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4268STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4269STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4270STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4271STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4272STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4273STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4274#endif
4275
06428780 4276static struct attribute *slab_attrs[] = {
81819f0f
CL
4277 &slab_size_attr.attr,
4278 &object_size_attr.attr,
4279 &objs_per_slab_attr.attr,
4280 &order_attr.attr,
73d342b1 4281 &min_partial_attr.attr,
81819f0f 4282 &objects_attr.attr,
205ab99d 4283 &objects_partial_attr.attr,
81819f0f
CL
4284 &partial_attr.attr,
4285 &cpu_slabs_attr.attr,
4286 &ctor_attr.attr,
81819f0f
CL
4287 &aliases_attr.attr,
4288 &align_attr.attr,
81819f0f
CL
4289 &hwcache_align_attr.attr,
4290 &reclaim_account_attr.attr,
4291 &destroy_by_rcu_attr.attr,
a5a84755 4292 &shrink_attr.attr,
ab4d5ed5 4293#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4294 &total_objects_attr.attr,
4295 &slabs_attr.attr,
4296 &sanity_checks_attr.attr,
4297 &trace_attr.attr,
81819f0f
CL
4298 &red_zone_attr.attr,
4299 &poison_attr.attr,
4300 &store_user_attr.attr,
53e15af0 4301 &validate_attr.attr,
88a420e4
CL
4302 &alloc_calls_attr.attr,
4303 &free_calls_attr.attr,
ab4d5ed5 4304#endif
81819f0f
CL
4305#ifdef CONFIG_ZONE_DMA
4306 &cache_dma_attr.attr,
4307#endif
4308#ifdef CONFIG_NUMA
9824601e 4309 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4310#endif
4311#ifdef CONFIG_SLUB_STATS
4312 &alloc_fastpath_attr.attr,
4313 &alloc_slowpath_attr.attr,
4314 &free_fastpath_attr.attr,
4315 &free_slowpath_attr.attr,
4316 &free_frozen_attr.attr,
4317 &free_add_partial_attr.attr,
4318 &free_remove_partial_attr.attr,
4319 &alloc_from_partial_attr.attr,
4320 &alloc_slab_attr.attr,
4321 &alloc_refill_attr.attr,
4322 &free_slab_attr.attr,
4323 &cpuslab_flush_attr.attr,
4324 &deactivate_full_attr.attr,
4325 &deactivate_empty_attr.attr,
4326 &deactivate_to_head_attr.attr,
4327 &deactivate_to_tail_attr.attr,
4328 &deactivate_remote_frees_attr.attr,
65c3376a 4329 &order_fallback_attr.attr,
81819f0f 4330#endif
4c13dd3b
DM
4331#ifdef CONFIG_FAILSLAB
4332 &failslab_attr.attr,
4333#endif
4334
81819f0f
CL
4335 NULL
4336};
4337
4338static struct attribute_group slab_attr_group = {
4339 .attrs = slab_attrs,
4340};
4341
4342static ssize_t slab_attr_show(struct kobject *kobj,
4343 struct attribute *attr,
4344 char *buf)
4345{
4346 struct slab_attribute *attribute;
4347 struct kmem_cache *s;
4348 int err;
4349
4350 attribute = to_slab_attr(attr);
4351 s = to_slab(kobj);
4352
4353 if (!attribute->show)
4354 return -EIO;
4355
4356 err = attribute->show(s, buf);
4357
4358 return err;
4359}
4360
4361static ssize_t slab_attr_store(struct kobject *kobj,
4362 struct attribute *attr,
4363 const char *buf, size_t len)
4364{
4365 struct slab_attribute *attribute;
4366 struct kmem_cache *s;
4367 int err;
4368
4369 attribute = to_slab_attr(attr);
4370 s = to_slab(kobj);
4371
4372 if (!attribute->store)
4373 return -EIO;
4374
4375 err = attribute->store(s, buf, len);
4376
4377 return err;
4378}
4379
151c602f
CL
4380static void kmem_cache_release(struct kobject *kobj)
4381{
4382 struct kmem_cache *s = to_slab(kobj);
4383
84c1cf62 4384 kfree(s->name);
151c602f
CL
4385 kfree(s);
4386}
4387
52cf25d0 4388static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4389 .show = slab_attr_show,
4390 .store = slab_attr_store,
4391};
4392
4393static struct kobj_type slab_ktype = {
4394 .sysfs_ops = &slab_sysfs_ops,
151c602f 4395 .release = kmem_cache_release
81819f0f
CL
4396};
4397
4398static int uevent_filter(struct kset *kset, struct kobject *kobj)
4399{
4400 struct kobj_type *ktype = get_ktype(kobj);
4401
4402 if (ktype == &slab_ktype)
4403 return 1;
4404 return 0;
4405}
4406
9cd43611 4407static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4408 .filter = uevent_filter,
4409};
4410
27c3a314 4411static struct kset *slab_kset;
81819f0f
CL
4412
4413#define ID_STR_LENGTH 64
4414
4415/* Create a unique string id for a slab cache:
6446faa2
CL
4416 *
4417 * Format :[flags-]size
81819f0f
CL
4418 */
4419static char *create_unique_id(struct kmem_cache *s)
4420{
4421 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4422 char *p = name;
4423
4424 BUG_ON(!name);
4425
4426 *p++ = ':';
4427 /*
4428 * First flags affecting slabcache operations. We will only
4429 * get here for aliasable slabs so we do not need to support
4430 * too many flags. The flags here must cover all flags that
4431 * are matched during merging to guarantee that the id is
4432 * unique.
4433 */
4434 if (s->flags & SLAB_CACHE_DMA)
4435 *p++ = 'd';
4436 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4437 *p++ = 'a';
4438 if (s->flags & SLAB_DEBUG_FREE)
4439 *p++ = 'F';
5a896d9e
VN
4440 if (!(s->flags & SLAB_NOTRACK))
4441 *p++ = 't';
81819f0f
CL
4442 if (p != name + 1)
4443 *p++ = '-';
4444 p += sprintf(p, "%07d", s->size);
4445 BUG_ON(p > name + ID_STR_LENGTH - 1);
4446 return name;
4447}
4448
4449static int sysfs_slab_add(struct kmem_cache *s)
4450{
4451 int err;
4452 const char *name;
4453 int unmergeable;
4454
4455 if (slab_state < SYSFS)
4456 /* Defer until later */
4457 return 0;
4458
4459 unmergeable = slab_unmergeable(s);
4460 if (unmergeable) {
4461 /*
4462 * Slabcache can never be merged so we can use the name proper.
4463 * This is typically the case for debug situations. In that
4464 * case we can catch duplicate names easily.
4465 */
27c3a314 4466 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4467 name = s->name;
4468 } else {
4469 /*
4470 * Create a unique name for the slab as a target
4471 * for the symlinks.
4472 */
4473 name = create_unique_id(s);
4474 }
4475
27c3a314 4476 s->kobj.kset = slab_kset;
1eada11c
GKH
4477 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4478 if (err) {
4479 kobject_put(&s->kobj);
81819f0f 4480 return err;
1eada11c 4481 }
81819f0f
CL
4482
4483 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4484 if (err) {
4485 kobject_del(&s->kobj);
4486 kobject_put(&s->kobj);
81819f0f 4487 return err;
5788d8ad 4488 }
81819f0f
CL
4489 kobject_uevent(&s->kobj, KOBJ_ADD);
4490 if (!unmergeable) {
4491 /* Setup first alias */
4492 sysfs_slab_alias(s, s->name);
4493 kfree(name);
4494 }
4495 return 0;
4496}
4497
4498static void sysfs_slab_remove(struct kmem_cache *s)
4499{
2bce6485
CL
4500 if (slab_state < SYSFS)
4501 /*
4502 * Sysfs has not been setup yet so no need to remove the
4503 * cache from sysfs.
4504 */
4505 return;
4506
81819f0f
CL
4507 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4508 kobject_del(&s->kobj);
151c602f 4509 kobject_put(&s->kobj);
81819f0f
CL
4510}
4511
4512/*
4513 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4514 * available lest we lose that information.
81819f0f
CL
4515 */
4516struct saved_alias {
4517 struct kmem_cache *s;
4518 const char *name;
4519 struct saved_alias *next;
4520};
4521
5af328a5 4522static struct saved_alias *alias_list;
81819f0f
CL
4523
4524static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4525{
4526 struct saved_alias *al;
4527
4528 if (slab_state == SYSFS) {
4529 /*
4530 * If we have a leftover link then remove it.
4531 */
27c3a314
GKH
4532 sysfs_remove_link(&slab_kset->kobj, name);
4533 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4534 }
4535
4536 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4537 if (!al)
4538 return -ENOMEM;
4539
4540 al->s = s;
4541 al->name = name;
4542 al->next = alias_list;
4543 alias_list = al;
4544 return 0;
4545}
4546
4547static int __init slab_sysfs_init(void)
4548{
5b95a4ac 4549 struct kmem_cache *s;
81819f0f
CL
4550 int err;
4551
2bce6485
CL
4552 down_write(&slub_lock);
4553
0ff21e46 4554 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4555 if (!slab_kset) {
2bce6485 4556 up_write(&slub_lock);
81819f0f
CL
4557 printk(KERN_ERR "Cannot register slab subsystem.\n");
4558 return -ENOSYS;
4559 }
4560
26a7bd03
CL
4561 slab_state = SYSFS;
4562
5b95a4ac 4563 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4564 err = sysfs_slab_add(s);
5d540fb7
CL
4565 if (err)
4566 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4567 " to sysfs\n", s->name);
26a7bd03 4568 }
81819f0f
CL
4569
4570 while (alias_list) {
4571 struct saved_alias *al = alias_list;
4572
4573 alias_list = alias_list->next;
4574 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4575 if (err)
4576 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4577 " %s to sysfs\n", s->name);
81819f0f
CL
4578 kfree(al);
4579 }
4580
2bce6485 4581 up_write(&slub_lock);
81819f0f
CL
4582 resiliency_test();
4583 return 0;
4584}
4585
4586__initcall(slab_sysfs_init);
ab4d5ed5 4587#endif /* CONFIG_SYSFS */
57ed3eda
PE
4588
4589/*
4590 * The /proc/slabinfo ABI
4591 */
158a9624 4592#ifdef CONFIG_SLABINFO
57ed3eda
PE
4593static void print_slabinfo_header(struct seq_file *m)
4594{
4595 seq_puts(m, "slabinfo - version: 2.1\n");
4596 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4597 "<objperslab> <pagesperslab>");
4598 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4599 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4600 seq_putc(m, '\n');
4601}
4602
4603static void *s_start(struct seq_file *m, loff_t *pos)
4604{
4605 loff_t n = *pos;
4606
4607 down_read(&slub_lock);
4608 if (!n)
4609 print_slabinfo_header(m);
4610
4611 return seq_list_start(&slab_caches, *pos);
4612}
4613
4614static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4615{
4616 return seq_list_next(p, &slab_caches, pos);
4617}
4618
4619static void s_stop(struct seq_file *m, void *p)
4620{
4621 up_read(&slub_lock);
4622}
4623
4624static int s_show(struct seq_file *m, void *p)
4625{
4626 unsigned long nr_partials = 0;
4627 unsigned long nr_slabs = 0;
4628 unsigned long nr_inuse = 0;
205ab99d
CL
4629 unsigned long nr_objs = 0;
4630 unsigned long nr_free = 0;
57ed3eda
PE
4631 struct kmem_cache *s;
4632 int node;
4633
4634 s = list_entry(p, struct kmem_cache, list);
4635
4636 for_each_online_node(node) {
4637 struct kmem_cache_node *n = get_node(s, node);
4638
4639 if (!n)
4640 continue;
4641
4642 nr_partials += n->nr_partial;
4643 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4644 nr_objs += atomic_long_read(&n->total_objects);
4645 nr_free += count_partial(n, count_free);
57ed3eda
PE
4646 }
4647
205ab99d 4648 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4649
4650 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4651 nr_objs, s->size, oo_objects(s->oo),
4652 (1 << oo_order(s->oo)));
57ed3eda
PE
4653 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4654 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4655 0UL);
4656 seq_putc(m, '\n');
4657 return 0;
4658}
4659
7b3c3a50 4660static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4661 .start = s_start,
4662 .next = s_next,
4663 .stop = s_stop,
4664 .show = s_show,
4665};
4666
7b3c3a50
AD
4667static int slabinfo_open(struct inode *inode, struct file *file)
4668{
4669 return seq_open(file, &slabinfo_op);
4670}
4671
4672static const struct file_operations proc_slabinfo_operations = {
4673 .open = slabinfo_open,
4674 .read = seq_read,
4675 .llseek = seq_lseek,
4676 .release = seq_release,
4677};
4678
4679static int __init slab_proc_init(void)
4680{
cf5d1131 4681 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4682 return 0;
4683}
4684module_init(slab_proc_init);
158a9624 4685#endif /* CONFIG_SLABINFO */
This page took 0.796626 seconds and 5 git commands to generate.