slub: Initialize per-cpu stats
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
71c7a06f
CL
207#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
81819f0f 209
65c02d4c
CL
210/* Not all arches define cache_line_size */
211#ifndef cache_line_size
212#define cache_line_size() L1_CACHE_BYTES
213#endif
214
81819f0f
CL
215static int kmem_size = sizeof(struct kmem_cache);
216
217#ifdef CONFIG_SMP
218static struct notifier_block slab_notifier;
219#endif
220
221static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 224 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
225 SYSFS /* Sysfs up */
226} slab_state = DOWN;
227
228/* A list of all slab caches on the system */
229static DECLARE_RWSEM(slub_lock);
5af328a5 230static LIST_HEAD(slab_caches);
81819f0f 231
02cbc874
CL
232/*
233 * Tracking user of a slab.
234 */
235struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240};
241
242enum track_item { TRACK_ALLOC, TRACK_FREE };
243
41ecc55b 244#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
245static int sysfs_slab_add(struct kmem_cache *);
246static int sysfs_slab_alias(struct kmem_cache *, const char *);
247static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 248
81819f0f 249#else
0c710013
CL
250static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
151c602f
CL
253static inline void sysfs_slab_remove(struct kmem_cache *s)
254{
255 kfree(s);
256}
8ff12cfc 257
81819f0f
CL
258#endif
259
8ff12cfc
CL
260static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261{
262#ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264#endif
265}
266
81819f0f
CL
267/********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271int slab_is_available(void)
272{
273 return slab_state >= UP;
274}
275
276static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277{
278#ifdef CONFIG_NUMA
279 return s->node[node];
280#else
281 return &s->local_node;
282#endif
283}
284
dfb4f096
CL
285static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286{
4c93c355
CL
287#ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289#else
290 return &s->cpu_slab;
291#endif
dfb4f096
CL
292}
293
6446faa2 294/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
295static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297{
298 void *base;
299
a973e9dd 300 if (!object)
02cbc874
CL
301 return 1;
302
a973e9dd 303 base = page_address(page);
02cbc874
CL
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310}
311
7656c72b
CL
312/*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319static inline void *get_freepointer(struct kmem_cache *s, void *object)
320{
321 return *(void **)(object + s->offset);
322}
323
324static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325{
326 *(void **)(object + s->offset) = fp;
327}
328
329/* Loop over all objects in a slab */
330#define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
333
334/* Scan freelist */
335#define for_each_free_object(__p, __s, __free) \
a973e9dd 336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
337
338/* Determine object index from a given position */
339static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340{
341 return (p - addr) / s->size;
342}
343
41ecc55b
CL
344#ifdef CONFIG_SLUB_DEBUG
345/*
346 * Debug settings:
347 */
f0630fff
CL
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
41ecc55b 351static int slub_debug;
f0630fff 352#endif
41ecc55b
CL
353
354static char *slub_debug_slabs;
355
81819f0f
CL
356/*
357 * Object debugging
358 */
359static void print_section(char *text, u8 *addr, unsigned int length)
360{
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
364
365 ascii[16] = 0;
366
367 for (i = 0; i < length; i++) {
368 if (newline) {
24922684 369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
370 newline = 0;
371 }
06428780 372 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
06428780 376 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
377 newline = 1;
378 }
379 }
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
06428780 383 printk(KERN_CONT " ");
81819f0f
CL
384 ascii[i] = ' ';
385 i++;
386 }
06428780 387 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
388 }
389}
390
81819f0f
CL
391static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
393{
394 struct track *p;
395
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
400
401 return p + alloc;
402}
403
404static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
406{
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
422}
423
81819f0f
CL
424static void init_tracking(struct kmem_cache *s, void *object)
425{
24922684
CL
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
428
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
431}
432
433static void print_track(const char *s, struct track *t)
434{
435 if (!t->addr)
436 return;
437
24922684 438 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 439 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
441}
442
443static void print_tracking(struct kmem_cache *s, void *object)
444{
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
447
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
450}
451
452static void print_page_info(struct page *page)
453{
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
456
457}
458
459static void slab_bug(struct kmem_cache *s, char *fmt, ...)
460{
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
81819f0f
CL
472}
473
24922684
CL
474static void slab_fix(struct kmem_cache *s, char *fmt, ...)
475{
476 va_list args;
477 char buf[100];
478
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
483}
484
485static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
486{
487 unsigned int off; /* Offset of last byte */
a973e9dd 488 u8 *addr = page_address(page);
24922684
CL
489
490 print_tracking(s, p);
491
492 print_page_info(page);
493
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
496
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
499
500 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
501
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
505
81819f0f
CL
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
510
24922684 511 if (s->flags & SLAB_STORE_USER)
81819f0f 512 off += 2 * sizeof(struct track);
81819f0f
CL
513
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
24922684
CL
516 print_section("Padding", p + off, s->size - off);
517
518 dump_stack();
81819f0f
CL
519}
520
521static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
523{
24922684
CL
524 slab_bug(s, reason);
525 print_trailer(s, page, object);
81819f0f
CL
526}
527
24922684 528static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
529{
530 va_list args;
531 char buf[100];
532
24922684
CL
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 535 va_end(args);
24922684
CL
536 slab_bug(s, fmt);
537 print_page_info(page);
81819f0f
CL
538 dump_stack();
539}
540
541static void init_object(struct kmem_cache *s, void *object, int active)
542{
543 u8 *p = object;
544
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
06428780 547 p[s->objsize - 1] = POISON_END;
81819f0f
CL
548 }
549
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
554}
555
24922684 556static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
557{
558 while (bytes) {
559 if (*start != (u8)value)
24922684 560 return start;
81819f0f
CL
561 start++;
562 bytes--;
563 }
24922684
CL
564 return NULL;
565}
566
567static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
569{
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
572}
573
574static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
06428780 576 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
577{
578 u8 *fault;
579 u8 *end;
580
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
584
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
588
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
593
594 restore_bytes(s, what, value, fault, end);
595 return 0;
81819f0f
CL
596}
597
81819f0f
CL
598/*
599 * Object layout:
600 *
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
672bba3a 605 *
81819f0f
CL
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
608 *
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
613 *
81819f0f
CL
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
616 *
617 * object + s->inuse
672bba3a
CL
618 * Meta data starts here.
619 *
81819f0f
CL
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
672bba3a 622 * C. Padding to reach required alignment boundary or at mininum
6446faa2 623 * one word if debugging is on to be able to detect writes
672bba3a
CL
624 * before the word boundary.
625 *
626 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
627 *
628 * object + s->size
672bba3a 629 * Nothing is used beyond s->size.
81819f0f 630 *
672bba3a
CL
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
633 * may be used with merged slabcaches.
634 */
635
81819f0f
CL
636static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637{
638 unsigned long off = s->inuse; /* The end of info */
639
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
643
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
647
648 if (s->size == off)
649 return 1;
650
24922684
CL
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
653}
654
655static int slab_pad_check(struct kmem_cache *s, struct page *page)
656{
24922684
CL
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
81819f0f
CL
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
a973e9dd 666 start = page_address(page);
24922684 667 end = start + (PAGE_SIZE << s->order);
81819f0f 668 length = s->objects * s->size;
24922684 669 remainder = end - (start + length);
81819f0f
CL
670 if (!remainder)
671 return 1;
672
24922684
CL
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
81819f0f
CL
684}
685
686static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688{
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
24922684
CL
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
81819f0f 698 return 0;
81819f0f 699 } else {
3adbefee
IM
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
81819f0f
CL
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
06428780 711 p + s->objsize - 1, POISON_END, 1)))
81819f0f 712 return 0;
81819f0f
CL
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
672bba3a 732 * another error because the object count is now wrong.
81819f0f 733 */
a973e9dd 734 set_freepointer(s, p, NULL);
81819f0f
CL
735 return 0;
736 }
737 return 1;
738}
739
740static int check_slab(struct kmem_cache *s, struct page *page)
741{
742 VM_BUG_ON(!irqs_disabled());
743
744 if (!PageSlab(page)) {
24922684 745 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
746 return 0;
747 }
81819f0f 748 if (page->inuse > s->objects) {
24922684
CL
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
81819f0f
CL
751 return 0;
752 }
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
755 return 1;
756}
757
758/*
672bba3a
CL
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
761 */
762static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
763{
764 int nr = 0;
765 void *fp = page->freelist;
766 void *object = NULL;
767
a973e9dd 768 while (fp && nr <= s->objects) {
81819f0f
CL
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
a973e9dd 775 set_freepointer(s, object, NULL);
81819f0f
CL
776 break;
777 } else {
24922684 778 slab_err(s, page, "Freepointer corrupt");
a973e9dd 779 page->freelist = NULL;
81819f0f 780 page->inuse = s->objects;
24922684 781 slab_fix(s, "Freelist cleared");
81819f0f
CL
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
791 if (page->inuse != s->objects - nr) {
70d71228 792 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 793 "counted were %d", page->inuse, s->objects - nr);
81819f0f 794 page->inuse = s->objects - nr;
24922684 795 slab_fix(s, "Object count adjusted.");
81819f0f
CL
796 }
797 return search == NULL;
798}
799
3ec09742
CL
800static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
801{
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814}
815
643b1138 816/*
672bba3a 817 * Tracking of fully allocated slabs for debugging purposes.
643b1138 818 */
e95eed57 819static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 820{
643b1138
CL
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
824}
825
826static void remove_full(struct kmem_cache *s, struct page *page)
827{
828 struct kmem_cache_node *n;
829
830 if (!(s->flags & SLAB_STORE_USER))
831 return;
832
833 n = get_node(s, page_to_nid(page));
834
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
838}
839
3ec09742
CL
840static void setup_object_debug(struct kmem_cache *s, struct page *page,
841 void *object)
842{
843 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
844 return;
845
846 init_object(s, object, 0);
847 init_tracking(s, object);
848}
849
850static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
851 void *object, void *addr)
81819f0f
CL
852{
853 if (!check_slab(s, page))
854 goto bad;
855
d692ef6d 856 if (!on_freelist(s, page, object)) {
24922684 857 object_err(s, page, object, "Object already allocated");
70d71228 858 goto bad;
81819f0f
CL
859 }
860
861 if (!check_valid_pointer(s, page, object)) {
862 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 863 goto bad;
81819f0f
CL
864 }
865
d692ef6d 866 if (!check_object(s, page, object, 0))
81819f0f 867 goto bad;
81819f0f 868
3ec09742
CL
869 /* Success perform special debug activities for allocs */
870 if (s->flags & SLAB_STORE_USER)
871 set_track(s, object, TRACK_ALLOC, addr);
872 trace(s, page, object, 1);
873 init_object(s, object, 1);
81819f0f 874 return 1;
3ec09742 875
81819f0f
CL
876bad:
877 if (PageSlab(page)) {
878 /*
879 * If this is a slab page then lets do the best we can
880 * to avoid issues in the future. Marking all objects
672bba3a 881 * as used avoids touching the remaining objects.
81819f0f 882 */
24922684 883 slab_fix(s, "Marking all objects used");
81819f0f 884 page->inuse = s->objects;
a973e9dd 885 page->freelist = NULL;
81819f0f
CL
886 }
887 return 0;
888}
889
3ec09742
CL
890static int free_debug_processing(struct kmem_cache *s, struct page *page,
891 void *object, void *addr)
81819f0f
CL
892{
893 if (!check_slab(s, page))
894 goto fail;
895
896 if (!check_valid_pointer(s, page, object)) {
70d71228 897 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
898 goto fail;
899 }
900
901 if (on_freelist(s, page, object)) {
24922684 902 object_err(s, page, object, "Object already free");
81819f0f
CL
903 goto fail;
904 }
905
906 if (!check_object(s, page, object, 1))
907 return 0;
908
909 if (unlikely(s != page->slab)) {
3adbefee 910 if (!PageSlab(page)) {
70d71228
CL
911 slab_err(s, page, "Attempt to free object(0x%p) "
912 "outside of slab", object);
3adbefee 913 } else if (!page->slab) {
81819f0f 914 printk(KERN_ERR
70d71228 915 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 916 object);
70d71228 917 dump_stack();
06428780 918 } else
24922684
CL
919 object_err(s, page, object,
920 "page slab pointer corrupt.");
81819f0f
CL
921 goto fail;
922 }
3ec09742
CL
923
924 /* Special debug activities for freeing objects */
a973e9dd 925 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
926 remove_full(s, page);
927 if (s->flags & SLAB_STORE_USER)
928 set_track(s, object, TRACK_FREE, addr);
929 trace(s, page, object, 0);
930 init_object(s, object, 0);
81819f0f 931 return 1;
3ec09742 932
81819f0f 933fail:
24922684 934 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
935 return 0;
936}
937
41ecc55b
CL
938static int __init setup_slub_debug(char *str)
939{
f0630fff
CL
940 slub_debug = DEBUG_DEFAULT_FLAGS;
941 if (*str++ != '=' || !*str)
942 /*
943 * No options specified. Switch on full debugging.
944 */
945 goto out;
946
947 if (*str == ',')
948 /*
949 * No options but restriction on slabs. This means full
950 * debugging for slabs matching a pattern.
951 */
952 goto check_slabs;
953
954 slub_debug = 0;
955 if (*str == '-')
956 /*
957 * Switch off all debugging measures.
958 */
959 goto out;
960
961 /*
962 * Determine which debug features should be switched on
963 */
06428780 964 for (; *str && *str != ','; str++) {
f0630fff
CL
965 switch (tolower(*str)) {
966 case 'f':
967 slub_debug |= SLAB_DEBUG_FREE;
968 break;
969 case 'z':
970 slub_debug |= SLAB_RED_ZONE;
971 break;
972 case 'p':
973 slub_debug |= SLAB_POISON;
974 break;
975 case 'u':
976 slub_debug |= SLAB_STORE_USER;
977 break;
978 case 't':
979 slub_debug |= SLAB_TRACE;
980 break;
981 default:
982 printk(KERN_ERR "slub_debug option '%c' "
06428780 983 "unknown. skipped\n", *str);
f0630fff 984 }
41ecc55b
CL
985 }
986
f0630fff 987check_slabs:
41ecc55b
CL
988 if (*str == ',')
989 slub_debug_slabs = str + 1;
f0630fff 990out:
41ecc55b
CL
991 return 1;
992}
993
994__setup("slub_debug", setup_slub_debug);
995
ba0268a8
CL
996static unsigned long kmem_cache_flags(unsigned long objsize,
997 unsigned long flags, const char *name,
4ba9b9d0 998 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
999{
1000 /*
e153362a 1001 * Enable debugging if selected on the kernel commandline.
41ecc55b 1002 */
e153362a
CL
1003 if (slub_debug && (!slub_debug_slabs ||
1004 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1005 flags |= slub_debug;
ba0268a8
CL
1006
1007 return flags;
41ecc55b
CL
1008}
1009#else
3ec09742
CL
1010static inline void setup_object_debug(struct kmem_cache *s,
1011 struct page *page, void *object) {}
41ecc55b 1012
3ec09742
CL
1013static inline int alloc_debug_processing(struct kmem_cache *s,
1014 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1015
3ec09742
CL
1016static inline int free_debug_processing(struct kmem_cache *s,
1017 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1018
41ecc55b
CL
1019static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 { return 1; }
1021static inline int check_object(struct kmem_cache *s, struct page *page,
1022 void *object, int active) { return 1; }
3ec09742 1023static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1024static inline unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
4ba9b9d0 1026 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1027{
1028 return flags;
1029}
41ecc55b
CL
1030#define slub_debug 0
1031#endif
81819f0f
CL
1032/*
1033 * Slab allocation and freeing
1034 */
1035static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1036{
06428780 1037 struct page *page;
81819f0f
CL
1038 int pages = 1 << s->order;
1039
b7a49f0d 1040 flags |= s->allocflags;
e12ba74d 1041
81819f0f
CL
1042 if (node == -1)
1043 page = alloc_pages(flags, s->order);
1044 else
1045 page = alloc_pages_node(node, flags, s->order);
1046
1047 if (!page)
1048 return NULL;
1049
1050 mod_zone_page_state(page_zone(page),
1051 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1052 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1053 pages);
1054
1055 return page;
1056}
1057
1058static void setup_object(struct kmem_cache *s, struct page *page,
1059 void *object)
1060{
3ec09742 1061 setup_object_debug(s, page, object);
4f104934 1062 if (unlikely(s->ctor))
4ba9b9d0 1063 s->ctor(s, object);
81819f0f
CL
1064}
1065
1066static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1067{
1068 struct page *page;
1069 struct kmem_cache_node *n;
1070 void *start;
81819f0f
CL
1071 void *last;
1072 void *p;
1073
6cb06229 1074 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1075
6cb06229
CL
1076 page = allocate_slab(s,
1077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1078 if (!page)
1079 goto out;
1080
1081 n = get_node(s, page_to_nid(page));
1082 if (n)
1083 atomic_long_inc(&n->nr_slabs);
81819f0f
CL
1084 page->slab = s;
1085 page->flags |= 1 << PG_slab;
1086 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1087 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1088 SetSlabDebug(page);
81819f0f
CL
1089
1090 start = page_address(page);
81819f0f
CL
1091
1092 if (unlikely(s->flags & SLAB_POISON))
1093 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1094
1095 last = start;
7656c72b 1096 for_each_object(p, s, start) {
81819f0f
CL
1097 setup_object(s, page, last);
1098 set_freepointer(s, last, p);
1099 last = p;
1100 }
1101 setup_object(s, page, last);
a973e9dd 1102 set_freepointer(s, last, NULL);
81819f0f
CL
1103
1104 page->freelist = start;
1105 page->inuse = 0;
1106out:
81819f0f
CL
1107 return page;
1108}
1109
1110static void __free_slab(struct kmem_cache *s, struct page *page)
1111{
1112 int pages = 1 << s->order;
1113
c59def9f 1114 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1115 void *p;
1116
1117 slab_pad_check(s, page);
a973e9dd 1118 for_each_object(p, s, page_address(page))
81819f0f 1119 check_object(s, page, p, 0);
2208b764 1120 ClearSlabDebug(page);
81819f0f
CL
1121 }
1122
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1126 -pages);
81819f0f 1127
81819f0f
CL
1128 __free_pages(page, s->order);
1129}
1130
1131static void rcu_free_slab(struct rcu_head *h)
1132{
1133 struct page *page;
1134
1135 page = container_of((struct list_head *)h, struct page, lru);
1136 __free_slab(page->slab, page);
1137}
1138
1139static void free_slab(struct kmem_cache *s, struct page *page)
1140{
1141 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1142 /*
1143 * RCU free overloads the RCU head over the LRU
1144 */
1145 struct rcu_head *head = (void *)&page->lru;
1146
1147 call_rcu(head, rcu_free_slab);
1148 } else
1149 __free_slab(s, page);
1150}
1151
1152static void discard_slab(struct kmem_cache *s, struct page *page)
1153{
1154 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1155
1156 atomic_long_dec(&n->nr_slabs);
1157 reset_page_mapcount(page);
35e5d7ee 1158 __ClearPageSlab(page);
81819f0f
CL
1159 free_slab(s, page);
1160}
1161
1162/*
1163 * Per slab locking using the pagelock
1164 */
1165static __always_inline void slab_lock(struct page *page)
1166{
1167 bit_spin_lock(PG_locked, &page->flags);
1168}
1169
1170static __always_inline void slab_unlock(struct page *page)
1171{
a76d3546 1172 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1173}
1174
1175static __always_inline int slab_trylock(struct page *page)
1176{
1177 int rc = 1;
1178
1179 rc = bit_spin_trylock(PG_locked, &page->flags);
1180 return rc;
1181}
1182
1183/*
1184 * Management of partially allocated slabs
1185 */
7c2e132c
CL
1186static void add_partial(struct kmem_cache_node *n,
1187 struct page *page, int tail)
81819f0f 1188{
e95eed57
CL
1189 spin_lock(&n->list_lock);
1190 n->nr_partial++;
7c2e132c
CL
1191 if (tail)
1192 list_add_tail(&page->lru, &n->partial);
1193 else
1194 list_add(&page->lru, &n->partial);
81819f0f
CL
1195 spin_unlock(&n->list_lock);
1196}
1197
1198static void remove_partial(struct kmem_cache *s,
1199 struct page *page)
1200{
1201 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1202
1203 spin_lock(&n->list_lock);
1204 list_del(&page->lru);
1205 n->nr_partial--;
1206 spin_unlock(&n->list_lock);
1207}
1208
1209/*
672bba3a 1210 * Lock slab and remove from the partial list.
81819f0f 1211 *
672bba3a 1212 * Must hold list_lock.
81819f0f 1213 */
4b6f0750 1214static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1215{
1216 if (slab_trylock(page)) {
1217 list_del(&page->lru);
1218 n->nr_partial--;
4b6f0750 1219 SetSlabFrozen(page);
81819f0f
CL
1220 return 1;
1221 }
1222 return 0;
1223}
1224
1225/*
672bba3a 1226 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1227 */
1228static struct page *get_partial_node(struct kmem_cache_node *n)
1229{
1230 struct page *page;
1231
1232 /*
1233 * Racy check. If we mistakenly see no partial slabs then we
1234 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1235 * partial slab and there is none available then get_partials()
1236 * will return NULL.
81819f0f
CL
1237 */
1238 if (!n || !n->nr_partial)
1239 return NULL;
1240
1241 spin_lock(&n->list_lock);
1242 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1243 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1244 goto out;
1245 page = NULL;
1246out:
1247 spin_unlock(&n->list_lock);
1248 return page;
1249}
1250
1251/*
672bba3a 1252 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1253 */
1254static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1255{
1256#ifdef CONFIG_NUMA
1257 struct zonelist *zonelist;
1258 struct zone **z;
1259 struct page *page;
1260
1261 /*
672bba3a
CL
1262 * The defrag ratio allows a configuration of the tradeoffs between
1263 * inter node defragmentation and node local allocations. A lower
1264 * defrag_ratio increases the tendency to do local allocations
1265 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1266 *
672bba3a
CL
1267 * If the defrag_ratio is set to 0 then kmalloc() always
1268 * returns node local objects. If the ratio is higher then kmalloc()
1269 * may return off node objects because partial slabs are obtained
1270 * from other nodes and filled up.
81819f0f 1271 *
6446faa2 1272 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1273 * defrag_ratio = 1000) then every (well almost) allocation will
1274 * first attempt to defrag slab caches on other nodes. This means
1275 * scanning over all nodes to look for partial slabs which may be
1276 * expensive if we do it every time we are trying to find a slab
1277 * with available objects.
81819f0f 1278 */
9824601e
CL
1279 if (!s->remote_node_defrag_ratio ||
1280 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1281 return NULL;
1282
3adbefee
IM
1283 zonelist = &NODE_DATA(
1284 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1285 for (z = zonelist->zones; *z; z++) {
1286 struct kmem_cache_node *n;
1287
1288 n = get_node(s, zone_to_nid(*z));
1289
1290 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1291 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1292 page = get_partial_node(n);
1293 if (page)
1294 return page;
1295 }
1296 }
1297#endif
1298 return NULL;
1299}
1300
1301/*
1302 * Get a partial page, lock it and return it.
1303 */
1304static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1305{
1306 struct page *page;
1307 int searchnode = (node == -1) ? numa_node_id() : node;
1308
1309 page = get_partial_node(get_node(s, searchnode));
1310 if (page || (flags & __GFP_THISNODE))
1311 return page;
1312
1313 return get_any_partial(s, flags);
1314}
1315
1316/*
1317 * Move a page back to the lists.
1318 *
1319 * Must be called with the slab lock held.
1320 *
1321 * On exit the slab lock will have been dropped.
1322 */
7c2e132c 1323static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1324{
e95eed57 1325 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1326 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1327
4b6f0750 1328 ClearSlabFrozen(page);
81819f0f 1329 if (page->inuse) {
e95eed57 1330
a973e9dd 1331 if (page->freelist) {
7c2e132c 1332 add_partial(n, page, tail);
8ff12cfc
CL
1333 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1334 } else {
1335 stat(c, DEACTIVATE_FULL);
1336 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1337 add_full(n, page);
1338 }
81819f0f
CL
1339 slab_unlock(page);
1340 } else {
8ff12cfc 1341 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1342 if (n->nr_partial < MIN_PARTIAL) {
1343 /*
672bba3a
CL
1344 * Adding an empty slab to the partial slabs in order
1345 * to avoid page allocator overhead. This slab needs
1346 * to come after the other slabs with objects in
6446faa2
CL
1347 * so that the others get filled first. That way the
1348 * size of the partial list stays small.
1349 *
1350 * kmem_cache_shrink can reclaim any empty slabs from the
1351 * partial list.
e95eed57 1352 */
7c2e132c 1353 add_partial(n, page, 1);
e95eed57
CL
1354 slab_unlock(page);
1355 } else {
1356 slab_unlock(page);
8ff12cfc 1357 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1358 discard_slab(s, page);
1359 }
81819f0f
CL
1360 }
1361}
1362
1363/*
1364 * Remove the cpu slab
1365 */
dfb4f096 1366static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1367{
dfb4f096 1368 struct page *page = c->page;
7c2e132c 1369 int tail = 1;
8ff12cfc 1370
b773ad73 1371 if (page->freelist)
8ff12cfc 1372 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1373 /*
6446faa2 1374 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1375 * because both freelists are empty. So this is unlikely
1376 * to occur.
1377 */
a973e9dd 1378 while (unlikely(c->freelist)) {
894b8788
CL
1379 void **object;
1380
7c2e132c
CL
1381 tail = 0; /* Hot objects. Put the slab first */
1382
894b8788 1383 /* Retrieve object from cpu_freelist */
dfb4f096 1384 object = c->freelist;
b3fba8da 1385 c->freelist = c->freelist[c->offset];
894b8788
CL
1386
1387 /* And put onto the regular freelist */
b3fba8da 1388 object[c->offset] = page->freelist;
894b8788
CL
1389 page->freelist = object;
1390 page->inuse--;
1391 }
dfb4f096 1392 c->page = NULL;
7c2e132c 1393 unfreeze_slab(s, page, tail);
81819f0f
CL
1394}
1395
dfb4f096 1396static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1397{
8ff12cfc 1398 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1399 slab_lock(c->page);
1400 deactivate_slab(s, c);
81819f0f
CL
1401}
1402
1403/*
1404 * Flush cpu slab.
6446faa2 1405 *
81819f0f
CL
1406 * Called from IPI handler with interrupts disabled.
1407 */
0c710013 1408static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1409{
dfb4f096 1410 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1411
dfb4f096
CL
1412 if (likely(c && c->page))
1413 flush_slab(s, c);
81819f0f
CL
1414}
1415
1416static void flush_cpu_slab(void *d)
1417{
1418 struct kmem_cache *s = d;
81819f0f 1419
dfb4f096 1420 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1421}
1422
1423static void flush_all(struct kmem_cache *s)
1424{
1425#ifdef CONFIG_SMP
1426 on_each_cpu(flush_cpu_slab, s, 1, 1);
1427#else
1428 unsigned long flags;
1429
1430 local_irq_save(flags);
1431 flush_cpu_slab(s);
1432 local_irq_restore(flags);
1433#endif
1434}
1435
dfb4f096
CL
1436/*
1437 * Check if the objects in a per cpu structure fit numa
1438 * locality expectations.
1439 */
1440static inline int node_match(struct kmem_cache_cpu *c, int node)
1441{
1442#ifdef CONFIG_NUMA
1443 if (node != -1 && c->node != node)
1444 return 0;
1445#endif
1446 return 1;
1447}
1448
81819f0f 1449/*
894b8788
CL
1450 * Slow path. The lockless freelist is empty or we need to perform
1451 * debugging duties.
1452 *
1453 * Interrupts are disabled.
81819f0f 1454 *
894b8788
CL
1455 * Processing is still very fast if new objects have been freed to the
1456 * regular freelist. In that case we simply take over the regular freelist
1457 * as the lockless freelist and zap the regular freelist.
81819f0f 1458 *
894b8788
CL
1459 * If that is not working then we fall back to the partial lists. We take the
1460 * first element of the freelist as the object to allocate now and move the
1461 * rest of the freelist to the lockless freelist.
81819f0f 1462 *
894b8788 1463 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1464 * we need to allocate a new slab. This is the slowest path since it involves
1465 * a call to the page allocator and the setup of a new slab.
81819f0f 1466 */
894b8788 1467static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1469{
81819f0f 1470 void **object;
dfb4f096 1471 struct page *new;
81819f0f 1472
e72e9c23
LT
1473 /* We handle __GFP_ZERO in the caller */
1474 gfpflags &= ~__GFP_ZERO;
1475
dfb4f096 1476 if (!c->page)
81819f0f
CL
1477 goto new_slab;
1478
dfb4f096
CL
1479 slab_lock(c->page);
1480 if (unlikely(!node_match(c, node)))
81819f0f 1481 goto another_slab;
6446faa2 1482
8ff12cfc 1483 stat(c, ALLOC_REFILL);
6446faa2 1484
894b8788 1485load_freelist:
dfb4f096 1486 object = c->page->freelist;
a973e9dd 1487 if (unlikely(!object))
81819f0f 1488 goto another_slab;
dfb4f096 1489 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1490 goto debug;
1491
b3fba8da 1492 c->freelist = object[c->offset];
dfb4f096 1493 c->page->inuse = s->objects;
a973e9dd 1494 c->page->freelist = NULL;
dfb4f096 1495 c->node = page_to_nid(c->page);
1f84260c 1496unlock_out:
dfb4f096 1497 slab_unlock(c->page);
8ff12cfc 1498 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1499 return object;
1500
1501another_slab:
dfb4f096 1502 deactivate_slab(s, c);
81819f0f
CL
1503
1504new_slab:
dfb4f096
CL
1505 new = get_partial(s, gfpflags, node);
1506 if (new) {
1507 c->page = new;
8ff12cfc 1508 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1509 goto load_freelist;
81819f0f
CL
1510 }
1511
b811c202
CL
1512 if (gfpflags & __GFP_WAIT)
1513 local_irq_enable();
1514
dfb4f096 1515 new = new_slab(s, gfpflags, node);
b811c202
CL
1516
1517 if (gfpflags & __GFP_WAIT)
1518 local_irq_disable();
1519
dfb4f096
CL
1520 if (new) {
1521 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1522 stat(c, ALLOC_SLAB);
05aa3450 1523 if (c->page)
dfb4f096 1524 flush_slab(s, c);
dfb4f096
CL
1525 slab_lock(new);
1526 SetSlabFrozen(new);
1527 c->page = new;
4b6f0750 1528 goto load_freelist;
81819f0f 1529 }
00e962c5 1530
71c7a06f
CL
1531 /*
1532 * No memory available.
1533 *
1534 * If the slab uses higher order allocs but the object is
1535 * smaller than a page size then we can fallback in emergencies
1536 * to the page allocator via kmalloc_large. The page allocator may
1537 * have failed to obtain a higher order page and we can try to
1538 * allocate a single page if the object fits into a single page.
1539 * That is only possible if certain conditions are met that are being
1540 * checked when a slab is created.
1541 */
caeab084
CL
1542 if (!(gfpflags & __GFP_NORETRY) &&
1543 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1544 if (gfpflags & __GFP_WAIT)
1545 local_irq_enable();
1546 object = kmalloc_large(s->objsize, gfpflags);
1547 if (gfpflags & __GFP_WAIT)
1548 local_irq_disable();
1549 return object;
1550 }
71c7a06f 1551 return NULL;
81819f0f 1552debug:
dfb4f096 1553 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1554 goto another_slab;
894b8788 1555
dfb4f096 1556 c->page->inuse++;
b3fba8da 1557 c->page->freelist = object[c->offset];
ee3c72a1 1558 c->node = -1;
1f84260c 1559 goto unlock_out;
894b8788
CL
1560}
1561
1562/*
1563 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1564 * have the fastpath folded into their functions. So no function call
1565 * overhead for requests that can be satisfied on the fastpath.
1566 *
1567 * The fastpath works by first checking if the lockless freelist can be used.
1568 * If not then __slab_alloc is called for slow processing.
1569 *
1570 * Otherwise we can simply pick the next object from the lockless free list.
1571 */
06428780 1572static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1573 gfp_t gfpflags, int node, void *addr)
894b8788 1574{
894b8788 1575 void **object;
dfb4f096 1576 struct kmem_cache_cpu *c;
1f84260c
CL
1577 unsigned long flags;
1578
894b8788 1579 local_irq_save(flags);
dfb4f096 1580 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1581 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1582
dfb4f096 1583 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1584
1585 else {
dfb4f096 1586 object = c->freelist;
b3fba8da 1587 c->freelist = object[c->offset];
8ff12cfc 1588 stat(c, ALLOC_FASTPATH);
894b8788
CL
1589 }
1590 local_irq_restore(flags);
d07dbea4
CL
1591
1592 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1593 memset(object, 0, c->objsize);
d07dbea4 1594
894b8788 1595 return object;
81819f0f
CL
1596}
1597
1598void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1599{
ce15fea8 1600 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1601}
1602EXPORT_SYMBOL(kmem_cache_alloc);
1603
1604#ifdef CONFIG_NUMA
1605void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1606{
ce15fea8 1607 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1608}
1609EXPORT_SYMBOL(kmem_cache_alloc_node);
1610#endif
1611
1612/*
894b8788
CL
1613 * Slow patch handling. This may still be called frequently since objects
1614 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1615 *
894b8788
CL
1616 * So we still attempt to reduce cache line usage. Just take the slab
1617 * lock and free the item. If there is no additional partial page
1618 * handling required then we can return immediately.
81819f0f 1619 */
894b8788 1620static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1621 void *x, void *addr, unsigned int offset)
81819f0f
CL
1622{
1623 void *prior;
1624 void **object = (void *)x;
8ff12cfc 1625 struct kmem_cache_cpu *c;
81819f0f 1626
8ff12cfc
CL
1627 c = get_cpu_slab(s, raw_smp_processor_id());
1628 stat(c, FREE_SLOWPATH);
81819f0f
CL
1629 slab_lock(page);
1630
35e5d7ee 1631 if (unlikely(SlabDebug(page)))
81819f0f 1632 goto debug;
6446faa2 1633
81819f0f 1634checks_ok:
b3fba8da 1635 prior = object[offset] = page->freelist;
81819f0f
CL
1636 page->freelist = object;
1637 page->inuse--;
1638
8ff12cfc
CL
1639 if (unlikely(SlabFrozen(page))) {
1640 stat(c, FREE_FROZEN);
81819f0f 1641 goto out_unlock;
8ff12cfc 1642 }
81819f0f
CL
1643
1644 if (unlikely(!page->inuse))
1645 goto slab_empty;
1646
1647 /*
6446faa2 1648 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1649 * then add it.
1650 */
a973e9dd 1651 if (unlikely(!prior)) {
7c2e132c 1652 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1653 stat(c, FREE_ADD_PARTIAL);
1654 }
81819f0f
CL
1655
1656out_unlock:
1657 slab_unlock(page);
81819f0f
CL
1658 return;
1659
1660slab_empty:
a973e9dd 1661 if (prior) {
81819f0f 1662 /*
672bba3a 1663 * Slab still on the partial list.
81819f0f
CL
1664 */
1665 remove_partial(s, page);
8ff12cfc
CL
1666 stat(c, FREE_REMOVE_PARTIAL);
1667 }
81819f0f 1668 slab_unlock(page);
8ff12cfc 1669 stat(c, FREE_SLAB);
81819f0f 1670 discard_slab(s, page);
81819f0f
CL
1671 return;
1672
1673debug:
3ec09742 1674 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1675 goto out_unlock;
77c5e2d0 1676 goto checks_ok;
81819f0f
CL
1677}
1678
894b8788
CL
1679/*
1680 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1681 * can perform fastpath freeing without additional function calls.
1682 *
1683 * The fastpath is only possible if we are freeing to the current cpu slab
1684 * of this processor. This typically the case if we have just allocated
1685 * the item before.
1686 *
1687 * If fastpath is not possible then fall back to __slab_free where we deal
1688 * with all sorts of special processing.
1689 */
06428780 1690static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1691 struct page *page, void *x, void *addr)
1692{
1693 void **object = (void *)x;
dfb4f096 1694 struct kmem_cache_cpu *c;
1f84260c
CL
1695 unsigned long flags;
1696
894b8788 1697 local_irq_save(flags);
dfb4f096 1698 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1699 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1700 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1701 object[c->offset] = c->freelist;
dfb4f096 1702 c->freelist = object;
8ff12cfc 1703 stat(c, FREE_FASTPATH);
894b8788 1704 } else
b3fba8da 1705 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1706
1707 local_irq_restore(flags);
1708}
1709
81819f0f
CL
1710void kmem_cache_free(struct kmem_cache *s, void *x)
1711{
77c5e2d0 1712 struct page *page;
81819f0f 1713
b49af68f 1714 page = virt_to_head_page(x);
81819f0f 1715
77c5e2d0 1716 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1717}
1718EXPORT_SYMBOL(kmem_cache_free);
1719
1720/* Figure out on which slab object the object resides */
1721static struct page *get_object_page(const void *x)
1722{
b49af68f 1723 struct page *page = virt_to_head_page(x);
81819f0f
CL
1724
1725 if (!PageSlab(page))
1726 return NULL;
1727
1728 return page;
1729}
1730
1731/*
672bba3a
CL
1732 * Object placement in a slab is made very easy because we always start at
1733 * offset 0. If we tune the size of the object to the alignment then we can
1734 * get the required alignment by putting one properly sized object after
1735 * another.
81819f0f
CL
1736 *
1737 * Notice that the allocation order determines the sizes of the per cpu
1738 * caches. Each processor has always one slab available for allocations.
1739 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1740 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1741 * locking overhead.
81819f0f
CL
1742 */
1743
1744/*
1745 * Mininum / Maximum order of slab pages. This influences locking overhead
1746 * and slab fragmentation. A higher order reduces the number of partial slabs
1747 * and increases the number of allocations possible without having to
1748 * take the list_lock.
1749 */
1750static int slub_min_order;
1751static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1752static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1753
1754/*
1755 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1756 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1757 */
1758static int slub_nomerge;
1759
81819f0f
CL
1760/*
1761 * Calculate the order of allocation given an slab object size.
1762 *
672bba3a
CL
1763 * The order of allocation has significant impact on performance and other
1764 * system components. Generally order 0 allocations should be preferred since
1765 * order 0 does not cause fragmentation in the page allocator. Larger objects
1766 * be problematic to put into order 0 slabs because there may be too much
1767 * unused space left. We go to a higher order if more than 1/8th of the slab
1768 * would be wasted.
1769 *
1770 * In order to reach satisfactory performance we must ensure that a minimum
1771 * number of objects is in one slab. Otherwise we may generate too much
1772 * activity on the partial lists which requires taking the list_lock. This is
1773 * less a concern for large slabs though which are rarely used.
81819f0f 1774 *
672bba3a
CL
1775 * slub_max_order specifies the order where we begin to stop considering the
1776 * number of objects in a slab as critical. If we reach slub_max_order then
1777 * we try to keep the page order as low as possible. So we accept more waste
1778 * of space in favor of a small page order.
81819f0f 1779 *
672bba3a
CL
1780 * Higher order allocations also allow the placement of more objects in a
1781 * slab and thereby reduce object handling overhead. If the user has
1782 * requested a higher mininum order then we start with that one instead of
1783 * the smallest order which will fit the object.
81819f0f 1784 */
5e6d444e
CL
1785static inline int slab_order(int size, int min_objects,
1786 int max_order, int fract_leftover)
81819f0f
CL
1787{
1788 int order;
1789 int rem;
6300ea75 1790 int min_order = slub_min_order;
81819f0f 1791
6300ea75 1792 for (order = max(min_order,
5e6d444e
CL
1793 fls(min_objects * size - 1) - PAGE_SHIFT);
1794 order <= max_order; order++) {
81819f0f 1795
5e6d444e 1796 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1797
5e6d444e 1798 if (slab_size < min_objects * size)
81819f0f
CL
1799 continue;
1800
1801 rem = slab_size % size;
1802
5e6d444e 1803 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1804 break;
1805
1806 }
672bba3a 1807
81819f0f
CL
1808 return order;
1809}
1810
5e6d444e
CL
1811static inline int calculate_order(int size)
1812{
1813 int order;
1814 int min_objects;
1815 int fraction;
1816
1817 /*
1818 * Attempt to find best configuration for a slab. This
1819 * works by first attempting to generate a layout with
1820 * the best configuration and backing off gradually.
1821 *
1822 * First we reduce the acceptable waste in a slab. Then
1823 * we reduce the minimum objects required in a slab.
1824 */
1825 min_objects = slub_min_objects;
1826 while (min_objects > 1) {
1827 fraction = 8;
1828 while (fraction >= 4) {
1829 order = slab_order(size, min_objects,
1830 slub_max_order, fraction);
1831 if (order <= slub_max_order)
1832 return order;
1833 fraction /= 2;
1834 }
1835 min_objects /= 2;
1836 }
1837
1838 /*
1839 * We were unable to place multiple objects in a slab. Now
1840 * lets see if we can place a single object there.
1841 */
1842 order = slab_order(size, 1, slub_max_order, 1);
1843 if (order <= slub_max_order)
1844 return order;
1845
1846 /*
1847 * Doh this slab cannot be placed using slub_max_order.
1848 */
1849 order = slab_order(size, 1, MAX_ORDER, 1);
1850 if (order <= MAX_ORDER)
1851 return order;
1852 return -ENOSYS;
1853}
1854
81819f0f 1855/*
672bba3a 1856 * Figure out what the alignment of the objects will be.
81819f0f
CL
1857 */
1858static unsigned long calculate_alignment(unsigned long flags,
1859 unsigned long align, unsigned long size)
1860{
1861 /*
6446faa2
CL
1862 * If the user wants hardware cache aligned objects then follow that
1863 * suggestion if the object is sufficiently large.
81819f0f 1864 *
6446faa2
CL
1865 * The hardware cache alignment cannot override the specified
1866 * alignment though. If that is greater then use it.
81819f0f 1867 */
b6210386
NP
1868 if (flags & SLAB_HWCACHE_ALIGN) {
1869 unsigned long ralign = cache_line_size();
1870 while (size <= ralign / 2)
1871 ralign /= 2;
1872 align = max(align, ralign);
1873 }
81819f0f
CL
1874
1875 if (align < ARCH_SLAB_MINALIGN)
b6210386 1876 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1877
1878 return ALIGN(align, sizeof(void *));
1879}
1880
dfb4f096
CL
1881static void init_kmem_cache_cpu(struct kmem_cache *s,
1882 struct kmem_cache_cpu *c)
1883{
1884 c->page = NULL;
a973e9dd 1885 c->freelist = NULL;
dfb4f096 1886 c->node = 0;
42a9fdbb
CL
1887 c->offset = s->offset / sizeof(void *);
1888 c->objsize = s->objsize;
62f75532
PE
1889#ifdef CONFIG_SLUB_STATS
1890 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1891#endif
dfb4f096
CL
1892}
1893
81819f0f
CL
1894static void init_kmem_cache_node(struct kmem_cache_node *n)
1895{
1896 n->nr_partial = 0;
1897 atomic_long_set(&n->nr_slabs, 0);
1898 spin_lock_init(&n->list_lock);
1899 INIT_LIST_HEAD(&n->partial);
8ab1372f 1900#ifdef CONFIG_SLUB_DEBUG
643b1138 1901 INIT_LIST_HEAD(&n->full);
8ab1372f 1902#endif
81819f0f
CL
1903}
1904
4c93c355
CL
1905#ifdef CONFIG_SMP
1906/*
1907 * Per cpu array for per cpu structures.
1908 *
1909 * The per cpu array places all kmem_cache_cpu structures from one processor
1910 * close together meaning that it becomes possible that multiple per cpu
1911 * structures are contained in one cacheline. This may be particularly
1912 * beneficial for the kmalloc caches.
1913 *
1914 * A desktop system typically has around 60-80 slabs. With 100 here we are
1915 * likely able to get per cpu structures for all caches from the array defined
1916 * here. We must be able to cover all kmalloc caches during bootstrap.
1917 *
1918 * If the per cpu array is exhausted then fall back to kmalloc
1919 * of individual cachelines. No sharing is possible then.
1920 */
1921#define NR_KMEM_CACHE_CPU 100
1922
1923static DEFINE_PER_CPU(struct kmem_cache_cpu,
1924 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1925
1926static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1927static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1928
1929static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1930 int cpu, gfp_t flags)
1931{
1932 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1933
1934 if (c)
1935 per_cpu(kmem_cache_cpu_free, cpu) =
1936 (void *)c->freelist;
1937 else {
1938 /* Table overflow: So allocate ourselves */
1939 c = kmalloc_node(
1940 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1941 flags, cpu_to_node(cpu));
1942 if (!c)
1943 return NULL;
1944 }
1945
1946 init_kmem_cache_cpu(s, c);
1947 return c;
1948}
1949
1950static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1951{
1952 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1953 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1954 kfree(c);
1955 return;
1956 }
1957 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1958 per_cpu(kmem_cache_cpu_free, cpu) = c;
1959}
1960
1961static void free_kmem_cache_cpus(struct kmem_cache *s)
1962{
1963 int cpu;
1964
1965 for_each_online_cpu(cpu) {
1966 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1967
1968 if (c) {
1969 s->cpu_slab[cpu] = NULL;
1970 free_kmem_cache_cpu(c, cpu);
1971 }
1972 }
1973}
1974
1975static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1976{
1977 int cpu;
1978
1979 for_each_online_cpu(cpu) {
1980 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1981
1982 if (c)
1983 continue;
1984
1985 c = alloc_kmem_cache_cpu(s, cpu, flags);
1986 if (!c) {
1987 free_kmem_cache_cpus(s);
1988 return 0;
1989 }
1990 s->cpu_slab[cpu] = c;
1991 }
1992 return 1;
1993}
1994
1995/*
1996 * Initialize the per cpu array.
1997 */
1998static void init_alloc_cpu_cpu(int cpu)
1999{
2000 int i;
2001
2002 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2003 return;
2004
2005 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2006 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2007
2008 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2009}
2010
2011static void __init init_alloc_cpu(void)
2012{
2013 int cpu;
2014
2015 for_each_online_cpu(cpu)
2016 init_alloc_cpu_cpu(cpu);
2017 }
2018
2019#else
2020static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2021static inline void init_alloc_cpu(void) {}
2022
2023static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2024{
2025 init_kmem_cache_cpu(s, &s->cpu_slab);
2026 return 1;
2027}
2028#endif
2029
81819f0f
CL
2030#ifdef CONFIG_NUMA
2031/*
2032 * No kmalloc_node yet so do it by hand. We know that this is the first
2033 * slab on the node for this slabcache. There are no concurrent accesses
2034 * possible.
2035 *
2036 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2037 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2038 * memory on a fresh node that has no slab structures yet.
81819f0f 2039 */
1cd7daa5
AB
2040static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2041 int node)
81819f0f
CL
2042{
2043 struct page *page;
2044 struct kmem_cache_node *n;
ba84c73c 2045 unsigned long flags;
81819f0f
CL
2046
2047 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2048
a2f92ee7 2049 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2050
2051 BUG_ON(!page);
a2f92ee7
CL
2052 if (page_to_nid(page) != node) {
2053 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2054 "node %d\n", node);
2055 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2056 "in order to be able to continue\n");
2057 }
2058
81819f0f
CL
2059 n = page->freelist;
2060 BUG_ON(!n);
2061 page->freelist = get_freepointer(kmalloc_caches, n);
2062 page->inuse++;
2063 kmalloc_caches->node[node] = n;
8ab1372f 2064#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2065 init_object(kmalloc_caches, n, 1);
2066 init_tracking(kmalloc_caches, n);
8ab1372f 2067#endif
81819f0f
CL
2068 init_kmem_cache_node(n);
2069 atomic_long_inc(&n->nr_slabs);
6446faa2 2070
ba84c73c 2071 /*
2072 * lockdep requires consistent irq usage for each lock
2073 * so even though there cannot be a race this early in
2074 * the boot sequence, we still disable irqs.
2075 */
2076 local_irq_save(flags);
7c2e132c 2077 add_partial(n, page, 0);
ba84c73c 2078 local_irq_restore(flags);
81819f0f
CL
2079 return n;
2080}
2081
2082static void free_kmem_cache_nodes(struct kmem_cache *s)
2083{
2084 int node;
2085
f64dc58c 2086 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2087 struct kmem_cache_node *n = s->node[node];
2088 if (n && n != &s->local_node)
2089 kmem_cache_free(kmalloc_caches, n);
2090 s->node[node] = NULL;
2091 }
2092}
2093
2094static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2095{
2096 int node;
2097 int local_node;
2098
2099 if (slab_state >= UP)
2100 local_node = page_to_nid(virt_to_page(s));
2101 else
2102 local_node = 0;
2103
f64dc58c 2104 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2105 struct kmem_cache_node *n;
2106
2107 if (local_node == node)
2108 n = &s->local_node;
2109 else {
2110 if (slab_state == DOWN) {
2111 n = early_kmem_cache_node_alloc(gfpflags,
2112 node);
2113 continue;
2114 }
2115 n = kmem_cache_alloc_node(kmalloc_caches,
2116 gfpflags, node);
2117
2118 if (!n) {
2119 free_kmem_cache_nodes(s);
2120 return 0;
2121 }
2122
2123 }
2124 s->node[node] = n;
2125 init_kmem_cache_node(n);
2126 }
2127 return 1;
2128}
2129#else
2130static void free_kmem_cache_nodes(struct kmem_cache *s)
2131{
2132}
2133
2134static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2135{
2136 init_kmem_cache_node(&s->local_node);
2137 return 1;
2138}
2139#endif
2140
2141/*
2142 * calculate_sizes() determines the order and the distribution of data within
2143 * a slab object.
2144 */
2145static int calculate_sizes(struct kmem_cache *s)
2146{
2147 unsigned long flags = s->flags;
2148 unsigned long size = s->objsize;
2149 unsigned long align = s->align;
2150
d8b42bf5
CL
2151 /*
2152 * Round up object size to the next word boundary. We can only
2153 * place the free pointer at word boundaries and this determines
2154 * the possible location of the free pointer.
2155 */
2156 size = ALIGN(size, sizeof(void *));
2157
2158#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2159 /*
2160 * Determine if we can poison the object itself. If the user of
2161 * the slab may touch the object after free or before allocation
2162 * then we should never poison the object itself.
2163 */
2164 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2165 !s->ctor)
81819f0f
CL
2166 s->flags |= __OBJECT_POISON;
2167 else
2168 s->flags &= ~__OBJECT_POISON;
2169
81819f0f
CL
2170
2171 /*
672bba3a 2172 * If we are Redzoning then check if there is some space between the
81819f0f 2173 * end of the object and the free pointer. If not then add an
672bba3a 2174 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2175 */
2176 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2177 size += sizeof(void *);
41ecc55b 2178#endif
81819f0f
CL
2179
2180 /*
672bba3a
CL
2181 * With that we have determined the number of bytes in actual use
2182 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2183 */
2184 s->inuse = size;
2185
2186 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2187 s->ctor)) {
81819f0f
CL
2188 /*
2189 * Relocate free pointer after the object if it is not
2190 * permitted to overwrite the first word of the object on
2191 * kmem_cache_free.
2192 *
2193 * This is the case if we do RCU, have a constructor or
2194 * destructor or are poisoning the objects.
2195 */
2196 s->offset = size;
2197 size += sizeof(void *);
2198 }
2199
c12b3c62 2200#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2201 if (flags & SLAB_STORE_USER)
2202 /*
2203 * Need to store information about allocs and frees after
2204 * the object.
2205 */
2206 size += 2 * sizeof(struct track);
2207
be7b3fbc 2208 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2209 /*
2210 * Add some empty padding so that we can catch
2211 * overwrites from earlier objects rather than let
2212 * tracking information or the free pointer be
2213 * corrupted if an user writes before the start
2214 * of the object.
2215 */
2216 size += sizeof(void *);
41ecc55b 2217#endif
672bba3a 2218
81819f0f
CL
2219 /*
2220 * Determine the alignment based on various parameters that the
65c02d4c
CL
2221 * user specified and the dynamic determination of cache line size
2222 * on bootup.
81819f0f
CL
2223 */
2224 align = calculate_alignment(flags, align, s->objsize);
2225
2226 /*
2227 * SLUB stores one object immediately after another beginning from
2228 * offset 0. In order to align the objects we have to simply size
2229 * each object to conform to the alignment.
2230 */
2231 size = ALIGN(size, align);
2232 s->size = size;
2233
71c7a06f
CL
2234 if ((flags & __KMALLOC_CACHE) &&
2235 PAGE_SIZE / size < slub_min_objects) {
2236 /*
2237 * Kmalloc cache that would not have enough objects in
2238 * an order 0 page. Kmalloc slabs can fallback to
2239 * page allocator order 0 allocs so take a reasonably large
2240 * order that will allows us a good number of objects.
2241 */
2242 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2243 s->flags |= __PAGE_ALLOC_FALLBACK;
2244 s->allocflags |= __GFP_NOWARN;
2245 } else
2246 s->order = calculate_order(size);
2247
81819f0f
CL
2248 if (s->order < 0)
2249 return 0;
2250
b7a49f0d
CL
2251 s->allocflags = 0;
2252 if (s->order)
2253 s->allocflags |= __GFP_COMP;
2254
2255 if (s->flags & SLAB_CACHE_DMA)
2256 s->allocflags |= SLUB_DMA;
2257
2258 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2259 s->allocflags |= __GFP_RECLAIMABLE;
2260
81819f0f
CL
2261 /*
2262 * Determine the number of objects per slab
2263 */
2264 s->objects = (PAGE_SIZE << s->order) / size;
2265
b3fba8da 2266 return !!s->objects;
81819f0f
CL
2267
2268}
2269
81819f0f
CL
2270static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2271 const char *name, size_t size,
2272 size_t align, unsigned long flags,
4ba9b9d0 2273 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2274{
2275 memset(s, 0, kmem_size);
2276 s->name = name;
2277 s->ctor = ctor;
81819f0f 2278 s->objsize = size;
81819f0f 2279 s->align = align;
ba0268a8 2280 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2281
2282 if (!calculate_sizes(s))
2283 goto error;
2284
2285 s->refcount = 1;
2286#ifdef CONFIG_NUMA
9824601e 2287 s->remote_node_defrag_ratio = 100;
81819f0f 2288#endif
dfb4f096
CL
2289 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2290 goto error;
81819f0f 2291
dfb4f096 2292 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2293 return 1;
4c93c355 2294 free_kmem_cache_nodes(s);
81819f0f
CL
2295error:
2296 if (flags & SLAB_PANIC)
2297 panic("Cannot create slab %s size=%lu realsize=%u "
2298 "order=%u offset=%u flags=%lx\n",
2299 s->name, (unsigned long)size, s->size, s->order,
2300 s->offset, flags);
2301 return 0;
2302}
81819f0f
CL
2303
2304/*
2305 * Check if a given pointer is valid
2306 */
2307int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2308{
06428780 2309 struct page *page;
81819f0f
CL
2310
2311 page = get_object_page(object);
2312
2313 if (!page || s != page->slab)
2314 /* No slab or wrong slab */
2315 return 0;
2316
abcd08a6 2317 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2318 return 0;
2319
2320 /*
2321 * We could also check if the object is on the slabs freelist.
2322 * But this would be too expensive and it seems that the main
6446faa2 2323 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2324 * to a certain slab.
2325 */
2326 return 1;
2327}
2328EXPORT_SYMBOL(kmem_ptr_validate);
2329
2330/*
2331 * Determine the size of a slab object
2332 */
2333unsigned int kmem_cache_size(struct kmem_cache *s)
2334{
2335 return s->objsize;
2336}
2337EXPORT_SYMBOL(kmem_cache_size);
2338
2339const char *kmem_cache_name(struct kmem_cache *s)
2340{
2341 return s->name;
2342}
2343EXPORT_SYMBOL(kmem_cache_name);
2344
2345/*
672bba3a
CL
2346 * Attempt to free all slabs on a node. Return the number of slabs we
2347 * were unable to free.
81819f0f
CL
2348 */
2349static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2350 struct list_head *list)
2351{
2352 int slabs_inuse = 0;
2353 unsigned long flags;
2354 struct page *page, *h;
2355
2356 spin_lock_irqsave(&n->list_lock, flags);
2357 list_for_each_entry_safe(page, h, list, lru)
2358 if (!page->inuse) {
2359 list_del(&page->lru);
2360 discard_slab(s, page);
2361 } else
2362 slabs_inuse++;
2363 spin_unlock_irqrestore(&n->list_lock, flags);
2364 return slabs_inuse;
2365}
2366
2367/*
672bba3a 2368 * Release all resources used by a slab cache.
81819f0f 2369 */
0c710013 2370static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2371{
2372 int node;
2373
2374 flush_all(s);
2375
2376 /* Attempt to free all objects */
4c93c355 2377 free_kmem_cache_cpus(s);
f64dc58c 2378 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2379 struct kmem_cache_node *n = get_node(s, node);
2380
2086d26a 2381 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2382 if (atomic_long_read(&n->nr_slabs))
2383 return 1;
2384 }
2385 free_kmem_cache_nodes(s);
2386 return 0;
2387}
2388
2389/*
2390 * Close a cache and release the kmem_cache structure
2391 * (must be used for caches created using kmem_cache_create)
2392 */
2393void kmem_cache_destroy(struct kmem_cache *s)
2394{
2395 down_write(&slub_lock);
2396 s->refcount--;
2397 if (!s->refcount) {
2398 list_del(&s->list);
a0e1d1be 2399 up_write(&slub_lock);
81819f0f
CL
2400 if (kmem_cache_close(s))
2401 WARN_ON(1);
2402 sysfs_slab_remove(s);
a0e1d1be
CL
2403 } else
2404 up_write(&slub_lock);
81819f0f
CL
2405}
2406EXPORT_SYMBOL(kmem_cache_destroy);
2407
2408/********************************************************************
2409 * Kmalloc subsystem
2410 *******************************************************************/
2411
331dc558 2412struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2413EXPORT_SYMBOL(kmalloc_caches);
2414
2415#ifdef CONFIG_ZONE_DMA
331dc558 2416static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
81819f0f
CL
2417#endif
2418
2419static int __init setup_slub_min_order(char *str)
2420{
06428780 2421 get_option(&str, &slub_min_order);
81819f0f
CL
2422
2423 return 1;
2424}
2425
2426__setup("slub_min_order=", setup_slub_min_order);
2427
2428static int __init setup_slub_max_order(char *str)
2429{
06428780 2430 get_option(&str, &slub_max_order);
81819f0f
CL
2431
2432 return 1;
2433}
2434
2435__setup("slub_max_order=", setup_slub_max_order);
2436
2437static int __init setup_slub_min_objects(char *str)
2438{
06428780 2439 get_option(&str, &slub_min_objects);
81819f0f
CL
2440
2441 return 1;
2442}
2443
2444__setup("slub_min_objects=", setup_slub_min_objects);
2445
2446static int __init setup_slub_nomerge(char *str)
2447{
2448 slub_nomerge = 1;
2449 return 1;
2450}
2451
2452__setup("slub_nomerge", setup_slub_nomerge);
2453
81819f0f
CL
2454static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2455 const char *name, int size, gfp_t gfp_flags)
2456{
2457 unsigned int flags = 0;
2458
2459 if (gfp_flags & SLUB_DMA)
2460 flags = SLAB_CACHE_DMA;
2461
2462 down_write(&slub_lock);
2463 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
71c7a06f 2464 flags | __KMALLOC_CACHE, NULL))
81819f0f
CL
2465 goto panic;
2466
2467 list_add(&s->list, &slab_caches);
2468 up_write(&slub_lock);
2469 if (sysfs_slab_add(s))
2470 goto panic;
2471 return s;
2472
2473panic:
2474 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2475}
2476
2e443fd0 2477#ifdef CONFIG_ZONE_DMA
1ceef402
CL
2478
2479static void sysfs_add_func(struct work_struct *w)
2480{
2481 struct kmem_cache *s;
2482
2483 down_write(&slub_lock);
2484 list_for_each_entry(s, &slab_caches, list) {
2485 if (s->flags & __SYSFS_ADD_DEFERRED) {
2486 s->flags &= ~__SYSFS_ADD_DEFERRED;
2487 sysfs_slab_add(s);
2488 }
2489 }
2490 up_write(&slub_lock);
2491}
2492
2493static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2494
2e443fd0
CL
2495static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2496{
2497 struct kmem_cache *s;
2e443fd0
CL
2498 char *text;
2499 size_t realsize;
2500
2501 s = kmalloc_caches_dma[index];
2502 if (s)
2503 return s;
2504
2505 /* Dynamically create dma cache */
1ceef402
CL
2506 if (flags & __GFP_WAIT)
2507 down_write(&slub_lock);
2508 else {
2509 if (!down_write_trylock(&slub_lock))
2510 goto out;
2511 }
2512
2513 if (kmalloc_caches_dma[index])
2514 goto unlock_out;
2e443fd0 2515
7b55f620 2516 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2517 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2518 (unsigned int)realsize);
1ceef402
CL
2519 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2520
2521 if (!s || !text || !kmem_cache_open(s, flags, text,
2522 realsize, ARCH_KMALLOC_MINALIGN,
2523 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2524 kfree(s);
2525 kfree(text);
2526 goto unlock_out;
dfce8648 2527 }
1ceef402
CL
2528
2529 list_add(&s->list, &slab_caches);
2530 kmalloc_caches_dma[index] = s;
2531
2532 schedule_work(&sysfs_add_work);
2533
2534unlock_out:
dfce8648 2535 up_write(&slub_lock);
1ceef402 2536out:
dfce8648 2537 return kmalloc_caches_dma[index];
2e443fd0
CL
2538}
2539#endif
2540
f1b26339
CL
2541/*
2542 * Conversion table for small slabs sizes / 8 to the index in the
2543 * kmalloc array. This is necessary for slabs < 192 since we have non power
2544 * of two cache sizes there. The size of larger slabs can be determined using
2545 * fls.
2546 */
2547static s8 size_index[24] = {
2548 3, /* 8 */
2549 4, /* 16 */
2550 5, /* 24 */
2551 5, /* 32 */
2552 6, /* 40 */
2553 6, /* 48 */
2554 6, /* 56 */
2555 6, /* 64 */
2556 1, /* 72 */
2557 1, /* 80 */
2558 1, /* 88 */
2559 1, /* 96 */
2560 7, /* 104 */
2561 7, /* 112 */
2562 7, /* 120 */
2563 7, /* 128 */
2564 2, /* 136 */
2565 2, /* 144 */
2566 2, /* 152 */
2567 2, /* 160 */
2568 2, /* 168 */
2569 2, /* 176 */
2570 2, /* 184 */
2571 2 /* 192 */
2572};
2573
81819f0f
CL
2574static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2575{
f1b26339 2576 int index;
81819f0f 2577
f1b26339
CL
2578 if (size <= 192) {
2579 if (!size)
2580 return ZERO_SIZE_PTR;
81819f0f 2581
f1b26339 2582 index = size_index[(size - 1) / 8];
aadb4bc4 2583 } else
f1b26339 2584 index = fls(size - 1);
81819f0f
CL
2585
2586#ifdef CONFIG_ZONE_DMA
f1b26339 2587 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2588 return dma_kmalloc_cache(index, flags);
f1b26339 2589
81819f0f
CL
2590#endif
2591 return &kmalloc_caches[index];
2592}
2593
2594void *__kmalloc(size_t size, gfp_t flags)
2595{
aadb4bc4 2596 struct kmem_cache *s;
81819f0f 2597
331dc558 2598 if (unlikely(size > PAGE_SIZE))
eada35ef 2599 return kmalloc_large(size, flags);
aadb4bc4
CL
2600
2601 s = get_slab(size, flags);
2602
2603 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2604 return s;
2605
ce15fea8 2606 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2607}
2608EXPORT_SYMBOL(__kmalloc);
2609
f619cfe1
CL
2610static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2611{
2612 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2613 get_order(size));
2614
2615 if (page)
2616 return page_address(page);
2617 else
2618 return NULL;
2619}
2620
81819f0f
CL
2621#ifdef CONFIG_NUMA
2622void *__kmalloc_node(size_t size, gfp_t flags, int node)
2623{
aadb4bc4 2624 struct kmem_cache *s;
81819f0f 2625
331dc558 2626 if (unlikely(size > PAGE_SIZE))
f619cfe1 2627 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2628
2629 s = get_slab(size, flags);
2630
2631 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2632 return s;
2633
ce15fea8 2634 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2635}
2636EXPORT_SYMBOL(__kmalloc_node);
2637#endif
2638
2639size_t ksize(const void *object)
2640{
272c1d21 2641 struct page *page;
81819f0f
CL
2642 struct kmem_cache *s;
2643
ef8b4520 2644 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2645 return 0;
2646
294a80a8 2647 page = virt_to_head_page(object);
294a80a8
VN
2648
2649 if (unlikely(!PageSlab(page)))
2650 return PAGE_SIZE << compound_order(page);
2651
81819f0f 2652 s = page->slab;
81819f0f 2653
ae20bfda 2654#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2655 /*
2656 * Debugging requires use of the padding between object
2657 * and whatever may come after it.
2658 */
2659 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2660 return s->objsize;
2661
ae20bfda 2662#endif
81819f0f
CL
2663 /*
2664 * If we have the need to store the freelist pointer
2665 * back there or track user information then we can
2666 * only use the space before that information.
2667 */
2668 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2669 return s->inuse;
81819f0f
CL
2670 /*
2671 * Else we can use all the padding etc for the allocation
2672 */
2673 return s->size;
2674}
2675EXPORT_SYMBOL(ksize);
2676
2677void kfree(const void *x)
2678{
81819f0f 2679 struct page *page;
5bb983b0 2680 void *object = (void *)x;
81819f0f 2681
2408c550 2682 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2683 return;
2684
b49af68f 2685 page = virt_to_head_page(x);
aadb4bc4
CL
2686 if (unlikely(!PageSlab(page))) {
2687 put_page(page);
2688 return;
2689 }
5bb983b0 2690 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2691}
2692EXPORT_SYMBOL(kfree);
2693
00460dd5 2694#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SLABINFO)
f61396ae
CL
2695static unsigned long count_partial(struct kmem_cache_node *n)
2696{
2697 unsigned long flags;
2698 unsigned long x = 0;
2699 struct page *page;
2700
2701 spin_lock_irqsave(&n->list_lock, flags);
2702 list_for_each_entry(page, &n->partial, lru)
2703 x += page->inuse;
2704 spin_unlock_irqrestore(&n->list_lock, flags);
2705 return x;
2706}
53625b42 2707#endif
f61396ae 2708
2086d26a 2709/*
672bba3a
CL
2710 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2711 * the remaining slabs by the number of items in use. The slabs with the
2712 * most items in use come first. New allocations will then fill those up
2713 * and thus they can be removed from the partial lists.
2714 *
2715 * The slabs with the least items are placed last. This results in them
2716 * being allocated from last increasing the chance that the last objects
2717 * are freed in them.
2086d26a
CL
2718 */
2719int kmem_cache_shrink(struct kmem_cache *s)
2720{
2721 int node;
2722 int i;
2723 struct kmem_cache_node *n;
2724 struct page *page;
2725 struct page *t;
2726 struct list_head *slabs_by_inuse =
2727 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2728 unsigned long flags;
2729
2730 if (!slabs_by_inuse)
2731 return -ENOMEM;
2732
2733 flush_all(s);
f64dc58c 2734 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2735 n = get_node(s, node);
2736
2737 if (!n->nr_partial)
2738 continue;
2739
2740 for (i = 0; i < s->objects; i++)
2741 INIT_LIST_HEAD(slabs_by_inuse + i);
2742
2743 spin_lock_irqsave(&n->list_lock, flags);
2744
2745 /*
672bba3a 2746 * Build lists indexed by the items in use in each slab.
2086d26a 2747 *
672bba3a
CL
2748 * Note that concurrent frees may occur while we hold the
2749 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2750 */
2751 list_for_each_entry_safe(page, t, &n->partial, lru) {
2752 if (!page->inuse && slab_trylock(page)) {
2753 /*
2754 * Must hold slab lock here because slab_free
2755 * may have freed the last object and be
2756 * waiting to release the slab.
2757 */
2758 list_del(&page->lru);
2759 n->nr_partial--;
2760 slab_unlock(page);
2761 discard_slab(s, page);
2762 } else {
fcda3d89
CL
2763 list_move(&page->lru,
2764 slabs_by_inuse + page->inuse);
2086d26a
CL
2765 }
2766 }
2767
2086d26a 2768 /*
672bba3a
CL
2769 * Rebuild the partial list with the slabs filled up most
2770 * first and the least used slabs at the end.
2086d26a
CL
2771 */
2772 for (i = s->objects - 1; i >= 0; i--)
2773 list_splice(slabs_by_inuse + i, n->partial.prev);
2774
2086d26a
CL
2775 spin_unlock_irqrestore(&n->list_lock, flags);
2776 }
2777
2778 kfree(slabs_by_inuse);
2779 return 0;
2780}
2781EXPORT_SYMBOL(kmem_cache_shrink);
2782
b9049e23
YG
2783#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2784static int slab_mem_going_offline_callback(void *arg)
2785{
2786 struct kmem_cache *s;
2787
2788 down_read(&slub_lock);
2789 list_for_each_entry(s, &slab_caches, list)
2790 kmem_cache_shrink(s);
2791 up_read(&slub_lock);
2792
2793 return 0;
2794}
2795
2796static void slab_mem_offline_callback(void *arg)
2797{
2798 struct kmem_cache_node *n;
2799 struct kmem_cache *s;
2800 struct memory_notify *marg = arg;
2801 int offline_node;
2802
2803 offline_node = marg->status_change_nid;
2804
2805 /*
2806 * If the node still has available memory. we need kmem_cache_node
2807 * for it yet.
2808 */
2809 if (offline_node < 0)
2810 return;
2811
2812 down_read(&slub_lock);
2813 list_for_each_entry(s, &slab_caches, list) {
2814 n = get_node(s, offline_node);
2815 if (n) {
2816 /*
2817 * if n->nr_slabs > 0, slabs still exist on the node
2818 * that is going down. We were unable to free them,
2819 * and offline_pages() function shoudn't call this
2820 * callback. So, we must fail.
2821 */
27bb628a 2822 BUG_ON(atomic_long_read(&n->nr_slabs));
b9049e23
YG
2823
2824 s->node[offline_node] = NULL;
2825 kmem_cache_free(kmalloc_caches, n);
2826 }
2827 }
2828 up_read(&slub_lock);
2829}
2830
2831static int slab_mem_going_online_callback(void *arg)
2832{
2833 struct kmem_cache_node *n;
2834 struct kmem_cache *s;
2835 struct memory_notify *marg = arg;
2836 int nid = marg->status_change_nid;
2837 int ret = 0;
2838
2839 /*
2840 * If the node's memory is already available, then kmem_cache_node is
2841 * already created. Nothing to do.
2842 */
2843 if (nid < 0)
2844 return 0;
2845
2846 /*
2847 * We are bringing a node online. No memory is availabe yet. We must
2848 * allocate a kmem_cache_node structure in order to bring the node
2849 * online.
2850 */
2851 down_read(&slub_lock);
2852 list_for_each_entry(s, &slab_caches, list) {
2853 /*
2854 * XXX: kmem_cache_alloc_node will fallback to other nodes
2855 * since memory is not yet available from the node that
2856 * is brought up.
2857 */
2858 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2859 if (!n) {
2860 ret = -ENOMEM;
2861 goto out;
2862 }
2863 init_kmem_cache_node(n);
2864 s->node[nid] = n;
2865 }
2866out:
2867 up_read(&slub_lock);
2868 return ret;
2869}
2870
2871static int slab_memory_callback(struct notifier_block *self,
2872 unsigned long action, void *arg)
2873{
2874 int ret = 0;
2875
2876 switch (action) {
2877 case MEM_GOING_ONLINE:
2878 ret = slab_mem_going_online_callback(arg);
2879 break;
2880 case MEM_GOING_OFFLINE:
2881 ret = slab_mem_going_offline_callback(arg);
2882 break;
2883 case MEM_OFFLINE:
2884 case MEM_CANCEL_ONLINE:
2885 slab_mem_offline_callback(arg);
2886 break;
2887 case MEM_ONLINE:
2888 case MEM_CANCEL_OFFLINE:
2889 break;
2890 }
2891
2892 ret = notifier_from_errno(ret);
2893 return ret;
2894}
2895
2896#endif /* CONFIG_MEMORY_HOTPLUG */
2897
81819f0f
CL
2898/********************************************************************
2899 * Basic setup of slabs
2900 *******************************************************************/
2901
2902void __init kmem_cache_init(void)
2903{
2904 int i;
4b356be0 2905 int caches = 0;
81819f0f 2906
4c93c355
CL
2907 init_alloc_cpu();
2908
81819f0f
CL
2909#ifdef CONFIG_NUMA
2910 /*
2911 * Must first have the slab cache available for the allocations of the
672bba3a 2912 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2913 * kmem_cache_open for slab_state == DOWN.
2914 */
2915 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2916 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2917 kmalloc_caches[0].refcount = -1;
4b356be0 2918 caches++;
b9049e23
YG
2919
2920 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2921#endif
2922
2923 /* Able to allocate the per node structures */
2924 slab_state = PARTIAL;
2925
2926 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2927 if (KMALLOC_MIN_SIZE <= 64) {
2928 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2929 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2930 caches++;
2931 }
2932 if (KMALLOC_MIN_SIZE <= 128) {
2933 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2934 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2935 caches++;
2936 }
81819f0f 2937
331dc558 2938 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2939 create_kmalloc_cache(&kmalloc_caches[i],
2940 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2941 caches++;
2942 }
81819f0f 2943
f1b26339
CL
2944
2945 /*
2946 * Patch up the size_index table if we have strange large alignment
2947 * requirements for the kmalloc array. This is only the case for
6446faa2 2948 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
2949 *
2950 * Largest permitted alignment is 256 bytes due to the way we
2951 * handle the index determination for the smaller caches.
2952 *
2953 * Make sure that nothing crazy happens if someone starts tinkering
2954 * around with ARCH_KMALLOC_MINALIGN
2955 */
2956 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2957 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2958
12ad6843 2959 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
2960 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2961
81819f0f
CL
2962 slab_state = UP;
2963
2964 /* Provide the correct kmalloc names now that the caches are up */
331dc558 2965 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
2966 kmalloc_caches[i]. name =
2967 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2968
2969#ifdef CONFIG_SMP
2970 register_cpu_notifier(&slab_notifier);
4c93c355
CL
2971 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2972 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2973#else
2974 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
2975#endif
2976
3adbefee
IM
2977 printk(KERN_INFO
2978 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2979 " CPUs=%d, Nodes=%d\n",
2980 caches, cache_line_size(),
81819f0f
CL
2981 slub_min_order, slub_max_order, slub_min_objects,
2982 nr_cpu_ids, nr_node_ids);
2983}
2984
2985/*
2986 * Find a mergeable slab cache
2987 */
2988static int slab_unmergeable(struct kmem_cache *s)
2989{
2990 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2991 return 1;
2992
331dc558 2993 if ((s->flags & __PAGE_ALLOC_FALLBACK))
71c7a06f
CL
2994 return 1;
2995
c59def9f 2996 if (s->ctor)
81819f0f
CL
2997 return 1;
2998
8ffa6875
CL
2999 /*
3000 * We may have set a slab to be unmergeable during bootstrap.
3001 */
3002 if (s->refcount < 0)
3003 return 1;
3004
81819f0f
CL
3005 return 0;
3006}
3007
3008static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3009 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3010 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3011{
5b95a4ac 3012 struct kmem_cache *s;
81819f0f
CL
3013
3014 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3015 return NULL;
3016
c59def9f 3017 if (ctor)
81819f0f
CL
3018 return NULL;
3019
3020 size = ALIGN(size, sizeof(void *));
3021 align = calculate_alignment(flags, align, size);
3022 size = ALIGN(size, align);
ba0268a8 3023 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3024
5b95a4ac 3025 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3026 if (slab_unmergeable(s))
3027 continue;
3028
3029 if (size > s->size)
3030 continue;
3031
ba0268a8 3032 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3033 continue;
3034 /*
3035 * Check if alignment is compatible.
3036 * Courtesy of Adrian Drzewiecki
3037 */
06428780 3038 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3039 continue;
3040
3041 if (s->size - size >= sizeof(void *))
3042 continue;
3043
3044 return s;
3045 }
3046 return NULL;
3047}
3048
3049struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3050 size_t align, unsigned long flags,
4ba9b9d0 3051 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3052{
3053 struct kmem_cache *s;
3054
3055 down_write(&slub_lock);
ba0268a8 3056 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3057 if (s) {
42a9fdbb
CL
3058 int cpu;
3059
81819f0f
CL
3060 s->refcount++;
3061 /*
3062 * Adjust the object sizes so that we clear
3063 * the complete object on kzalloc.
3064 */
3065 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3066
3067 /*
3068 * And then we need to update the object size in the
3069 * per cpu structures
3070 */
3071 for_each_online_cpu(cpu)
3072 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3073
81819f0f 3074 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3075 up_write(&slub_lock);
6446faa2 3076
81819f0f
CL
3077 if (sysfs_slab_alias(s, name))
3078 goto err;
a0e1d1be
CL
3079 return s;
3080 }
6446faa2 3081
a0e1d1be
CL
3082 s = kmalloc(kmem_size, GFP_KERNEL);
3083 if (s) {
3084 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3085 size, align, flags, ctor)) {
81819f0f 3086 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3087 up_write(&slub_lock);
3088 if (sysfs_slab_add(s))
3089 goto err;
3090 return s;
3091 }
3092 kfree(s);
81819f0f
CL
3093 }
3094 up_write(&slub_lock);
81819f0f
CL
3095
3096err:
81819f0f
CL
3097 if (flags & SLAB_PANIC)
3098 panic("Cannot create slabcache %s\n", name);
3099 else
3100 s = NULL;
3101 return s;
3102}
3103EXPORT_SYMBOL(kmem_cache_create);
3104
81819f0f 3105#ifdef CONFIG_SMP
81819f0f 3106/*
672bba3a
CL
3107 * Use the cpu notifier to insure that the cpu slabs are flushed when
3108 * necessary.
81819f0f
CL
3109 */
3110static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3111 unsigned long action, void *hcpu)
3112{
3113 long cpu = (long)hcpu;
5b95a4ac
CL
3114 struct kmem_cache *s;
3115 unsigned long flags;
81819f0f
CL
3116
3117 switch (action) {
4c93c355
CL
3118 case CPU_UP_PREPARE:
3119 case CPU_UP_PREPARE_FROZEN:
3120 init_alloc_cpu_cpu(cpu);
3121 down_read(&slub_lock);
3122 list_for_each_entry(s, &slab_caches, list)
3123 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3124 GFP_KERNEL);
3125 up_read(&slub_lock);
3126 break;
3127
81819f0f 3128 case CPU_UP_CANCELED:
8bb78442 3129 case CPU_UP_CANCELED_FROZEN:
81819f0f 3130 case CPU_DEAD:
8bb78442 3131 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3132 down_read(&slub_lock);
3133 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3134 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3135
5b95a4ac
CL
3136 local_irq_save(flags);
3137 __flush_cpu_slab(s, cpu);
3138 local_irq_restore(flags);
4c93c355
CL
3139 free_kmem_cache_cpu(c, cpu);
3140 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3141 }
3142 up_read(&slub_lock);
81819f0f
CL
3143 break;
3144 default:
3145 break;
3146 }
3147 return NOTIFY_OK;
3148}
3149
06428780 3150static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3151 .notifier_call = slab_cpuup_callback
06428780 3152};
81819f0f
CL
3153
3154#endif
3155
81819f0f
CL
3156void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3157{
aadb4bc4
CL
3158 struct kmem_cache *s;
3159
331dc558 3160 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3161 return kmalloc_large(size, gfpflags);
3162
aadb4bc4 3163 s = get_slab(size, gfpflags);
81819f0f 3164
2408c550 3165 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3166 return s;
81819f0f 3167
ce15fea8 3168 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3169}
3170
3171void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3172 int node, void *caller)
3173{
aadb4bc4
CL
3174 struct kmem_cache *s;
3175
331dc558 3176 if (unlikely(size > PAGE_SIZE))
f619cfe1 3177 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3178
aadb4bc4 3179 s = get_slab(size, gfpflags);
81819f0f 3180
2408c550 3181 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3182 return s;
81819f0f 3183
ce15fea8 3184 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3185}
3186
41ecc55b 3187#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3188static int validate_slab(struct kmem_cache *s, struct page *page,
3189 unsigned long *map)
53e15af0
CL
3190{
3191 void *p;
a973e9dd 3192 void *addr = page_address(page);
53e15af0
CL
3193
3194 if (!check_slab(s, page) ||
3195 !on_freelist(s, page, NULL))
3196 return 0;
3197
3198 /* Now we know that a valid freelist exists */
3199 bitmap_zero(map, s->objects);
3200
7656c72b
CL
3201 for_each_free_object(p, s, page->freelist) {
3202 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3203 if (!check_object(s, page, p, 0))
3204 return 0;
3205 }
3206
7656c72b
CL
3207 for_each_object(p, s, addr)
3208 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3209 if (!check_object(s, page, p, 1))
3210 return 0;
3211 return 1;
3212}
3213
434e245d
CL
3214static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3215 unsigned long *map)
53e15af0
CL
3216{
3217 if (slab_trylock(page)) {
434e245d 3218 validate_slab(s, page, map);
53e15af0
CL
3219 slab_unlock(page);
3220 } else
3221 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3222 s->name, page);
3223
3224 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3225 if (!SlabDebug(page))
3226 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3227 "on slab 0x%p\n", s->name, page);
3228 } else {
35e5d7ee
CL
3229 if (SlabDebug(page))
3230 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3231 "slab 0x%p\n", s->name, page);
3232 }
3233}
3234
434e245d
CL
3235static int validate_slab_node(struct kmem_cache *s,
3236 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3237{
3238 unsigned long count = 0;
3239 struct page *page;
3240 unsigned long flags;
3241
3242 spin_lock_irqsave(&n->list_lock, flags);
3243
3244 list_for_each_entry(page, &n->partial, lru) {
434e245d 3245 validate_slab_slab(s, page, map);
53e15af0
CL
3246 count++;
3247 }
3248 if (count != n->nr_partial)
3249 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3250 "counter=%ld\n", s->name, count, n->nr_partial);
3251
3252 if (!(s->flags & SLAB_STORE_USER))
3253 goto out;
3254
3255 list_for_each_entry(page, &n->full, lru) {
434e245d 3256 validate_slab_slab(s, page, map);
53e15af0
CL
3257 count++;
3258 }
3259 if (count != atomic_long_read(&n->nr_slabs))
3260 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3261 "counter=%ld\n", s->name, count,
3262 atomic_long_read(&n->nr_slabs));
3263
3264out:
3265 spin_unlock_irqrestore(&n->list_lock, flags);
3266 return count;
3267}
3268
434e245d 3269static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3270{
3271 int node;
3272 unsigned long count = 0;
434e245d
CL
3273 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3274 sizeof(unsigned long), GFP_KERNEL);
3275
3276 if (!map)
3277 return -ENOMEM;
53e15af0
CL
3278
3279 flush_all(s);
f64dc58c 3280 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3281 struct kmem_cache_node *n = get_node(s, node);
3282
434e245d 3283 count += validate_slab_node(s, n, map);
53e15af0 3284 }
434e245d 3285 kfree(map);
53e15af0
CL
3286 return count;
3287}
3288
b3459709
CL
3289#ifdef SLUB_RESILIENCY_TEST
3290static void resiliency_test(void)
3291{
3292 u8 *p;
3293
3294 printk(KERN_ERR "SLUB resiliency testing\n");
3295 printk(KERN_ERR "-----------------------\n");
3296 printk(KERN_ERR "A. Corruption after allocation\n");
3297
3298 p = kzalloc(16, GFP_KERNEL);
3299 p[16] = 0x12;
3300 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3301 " 0x12->0x%p\n\n", p + 16);
3302
3303 validate_slab_cache(kmalloc_caches + 4);
3304
3305 /* Hmmm... The next two are dangerous */
3306 p = kzalloc(32, GFP_KERNEL);
3307 p[32 + sizeof(void *)] = 0x34;
3308 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3309 " 0x34 -> -0x%p\n", p);
3310 printk(KERN_ERR
3311 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3312
3313 validate_slab_cache(kmalloc_caches + 5);
3314 p = kzalloc(64, GFP_KERNEL);
3315 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3316 *p = 0x56;
3317 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3318 p);
3adbefee
IM
3319 printk(KERN_ERR
3320 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3321 validate_slab_cache(kmalloc_caches + 6);
3322
3323 printk(KERN_ERR "\nB. Corruption after free\n");
3324 p = kzalloc(128, GFP_KERNEL);
3325 kfree(p);
3326 *p = 0x78;
3327 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3328 validate_slab_cache(kmalloc_caches + 7);
3329
3330 p = kzalloc(256, GFP_KERNEL);
3331 kfree(p);
3332 p[50] = 0x9a;
3adbefee
IM
3333 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3334 p);
b3459709
CL
3335 validate_slab_cache(kmalloc_caches + 8);
3336
3337 p = kzalloc(512, GFP_KERNEL);
3338 kfree(p);
3339 p[512] = 0xab;
3340 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3341 validate_slab_cache(kmalloc_caches + 9);
3342}
3343#else
3344static void resiliency_test(void) {};
3345#endif
3346
88a420e4 3347/*
672bba3a 3348 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3349 * and freed.
3350 */
3351
3352struct location {
3353 unsigned long count;
3354 void *addr;
45edfa58
CL
3355 long long sum_time;
3356 long min_time;
3357 long max_time;
3358 long min_pid;
3359 long max_pid;
3360 cpumask_t cpus;
3361 nodemask_t nodes;
88a420e4
CL
3362};
3363
3364struct loc_track {
3365 unsigned long max;
3366 unsigned long count;
3367 struct location *loc;
3368};
3369
3370static void free_loc_track(struct loc_track *t)
3371{
3372 if (t->max)
3373 free_pages((unsigned long)t->loc,
3374 get_order(sizeof(struct location) * t->max));
3375}
3376
68dff6a9 3377static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3378{
3379 struct location *l;
3380 int order;
3381
88a420e4
CL
3382 order = get_order(sizeof(struct location) * max);
3383
68dff6a9 3384 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3385 if (!l)
3386 return 0;
3387
3388 if (t->count) {
3389 memcpy(l, t->loc, sizeof(struct location) * t->count);
3390 free_loc_track(t);
3391 }
3392 t->max = max;
3393 t->loc = l;
3394 return 1;
3395}
3396
3397static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3398 const struct track *track)
88a420e4
CL
3399{
3400 long start, end, pos;
3401 struct location *l;
3402 void *caddr;
45edfa58 3403 unsigned long age = jiffies - track->when;
88a420e4
CL
3404
3405 start = -1;
3406 end = t->count;
3407
3408 for ( ; ; ) {
3409 pos = start + (end - start + 1) / 2;
3410
3411 /*
3412 * There is nothing at "end". If we end up there
3413 * we need to add something to before end.
3414 */
3415 if (pos == end)
3416 break;
3417
3418 caddr = t->loc[pos].addr;
45edfa58
CL
3419 if (track->addr == caddr) {
3420
3421 l = &t->loc[pos];
3422 l->count++;
3423 if (track->when) {
3424 l->sum_time += age;
3425 if (age < l->min_time)
3426 l->min_time = age;
3427 if (age > l->max_time)
3428 l->max_time = age;
3429
3430 if (track->pid < l->min_pid)
3431 l->min_pid = track->pid;
3432 if (track->pid > l->max_pid)
3433 l->max_pid = track->pid;
3434
3435 cpu_set(track->cpu, l->cpus);
3436 }
3437 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3438 return 1;
3439 }
3440
45edfa58 3441 if (track->addr < caddr)
88a420e4
CL
3442 end = pos;
3443 else
3444 start = pos;
3445 }
3446
3447 /*
672bba3a 3448 * Not found. Insert new tracking element.
88a420e4 3449 */
68dff6a9 3450 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3451 return 0;
3452
3453 l = t->loc + pos;
3454 if (pos < t->count)
3455 memmove(l + 1, l,
3456 (t->count - pos) * sizeof(struct location));
3457 t->count++;
3458 l->count = 1;
45edfa58
CL
3459 l->addr = track->addr;
3460 l->sum_time = age;
3461 l->min_time = age;
3462 l->max_time = age;
3463 l->min_pid = track->pid;
3464 l->max_pid = track->pid;
3465 cpus_clear(l->cpus);
3466 cpu_set(track->cpu, l->cpus);
3467 nodes_clear(l->nodes);
3468 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3469 return 1;
3470}
3471
3472static void process_slab(struct loc_track *t, struct kmem_cache *s,
3473 struct page *page, enum track_item alloc)
3474{
a973e9dd 3475 void *addr = page_address(page);
7656c72b 3476 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3477 void *p;
3478
3479 bitmap_zero(map, s->objects);
7656c72b
CL
3480 for_each_free_object(p, s, page->freelist)
3481 set_bit(slab_index(p, s, addr), map);
88a420e4 3482
7656c72b 3483 for_each_object(p, s, addr)
45edfa58
CL
3484 if (!test_bit(slab_index(p, s, addr), map))
3485 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3486}
3487
3488static int list_locations(struct kmem_cache *s, char *buf,
3489 enum track_item alloc)
3490{
e374d483 3491 int len = 0;
88a420e4 3492 unsigned long i;
68dff6a9 3493 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3494 int node;
3495
68dff6a9 3496 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3497 GFP_TEMPORARY))
68dff6a9 3498 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3499
3500 /* Push back cpu slabs */
3501 flush_all(s);
3502
f64dc58c 3503 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3504 struct kmem_cache_node *n = get_node(s, node);
3505 unsigned long flags;
3506 struct page *page;
3507
9e86943b 3508 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3509 continue;
3510
3511 spin_lock_irqsave(&n->list_lock, flags);
3512 list_for_each_entry(page, &n->partial, lru)
3513 process_slab(&t, s, page, alloc);
3514 list_for_each_entry(page, &n->full, lru)
3515 process_slab(&t, s, page, alloc);
3516 spin_unlock_irqrestore(&n->list_lock, flags);
3517 }
3518
3519 for (i = 0; i < t.count; i++) {
45edfa58 3520 struct location *l = &t.loc[i];
88a420e4 3521
e374d483 3522 if (len > PAGE_SIZE - 100)
88a420e4 3523 break;
e374d483 3524 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3525
3526 if (l->addr)
e374d483 3527 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3528 else
e374d483 3529 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3530
3531 if (l->sum_time != l->min_time) {
3532 unsigned long remainder;
3533
e374d483 3534 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3535 l->min_time,
3536 div_long_long_rem(l->sum_time, l->count, &remainder),
3537 l->max_time);
3538 } else
e374d483 3539 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3540 l->min_time);
3541
3542 if (l->min_pid != l->max_pid)
e374d483 3543 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3544 l->min_pid, l->max_pid);
3545 else
e374d483 3546 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3547 l->min_pid);
3548
84966343 3549 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3550 len < PAGE_SIZE - 60) {
3551 len += sprintf(buf + len, " cpus=");
3552 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3553 l->cpus);
3554 }
3555
84966343 3556 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3557 len < PAGE_SIZE - 60) {
3558 len += sprintf(buf + len, " nodes=");
3559 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3560 l->nodes);
3561 }
3562
e374d483 3563 len += sprintf(buf + len, "\n");
88a420e4
CL
3564 }
3565
3566 free_loc_track(&t);
3567 if (!t.count)
e374d483
HH
3568 len += sprintf(buf, "No data\n");
3569 return len;
88a420e4
CL
3570}
3571
81819f0f
CL
3572enum slab_stat_type {
3573 SL_FULL,
3574 SL_PARTIAL,
3575 SL_CPU,
3576 SL_OBJECTS
3577};
3578
3579#define SO_FULL (1 << SL_FULL)
3580#define SO_PARTIAL (1 << SL_PARTIAL)
3581#define SO_CPU (1 << SL_CPU)
3582#define SO_OBJECTS (1 << SL_OBJECTS)
3583
62e5c4b4
CG
3584static ssize_t show_slab_objects(struct kmem_cache *s,
3585 char *buf, unsigned long flags)
81819f0f
CL
3586{
3587 unsigned long total = 0;
3588 int cpu;
3589 int node;
3590 int x;
3591 unsigned long *nodes;
3592 unsigned long *per_cpu;
3593
3594 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3595 if (!nodes)
3596 return -ENOMEM;
81819f0f
CL
3597 per_cpu = nodes + nr_node_ids;
3598
3599 for_each_possible_cpu(cpu) {
dfb4f096
CL
3600 struct page *page;
3601 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 3602
dfb4f096
CL
3603 if (!c)
3604 continue;
3605
3606 page = c->page;
ee3c72a1
CL
3607 node = c->node;
3608 if (node < 0)
3609 continue;
81819f0f 3610 if (page) {
81819f0f 3611 if (flags & SO_CPU) {
81819f0f
CL
3612 if (flags & SO_OBJECTS)
3613 x = page->inuse;
3614 else
3615 x = 1;
3616 total += x;
ee3c72a1 3617 nodes[node] += x;
81819f0f 3618 }
ee3c72a1 3619 per_cpu[node]++;
81819f0f
CL
3620 }
3621 }
3622
f64dc58c 3623 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3624 struct kmem_cache_node *n = get_node(s, node);
3625
3626 if (flags & SO_PARTIAL) {
3627 if (flags & SO_OBJECTS)
3628 x = count_partial(n);
3629 else
3630 x = n->nr_partial;
3631 total += x;
3632 nodes[node] += x;
3633 }
3634
3635 if (flags & SO_FULL) {
9e86943b 3636 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3637 - per_cpu[node]
3638 - n->nr_partial;
3639
3640 if (flags & SO_OBJECTS)
3641 x = full_slabs * s->objects;
3642 else
3643 x = full_slabs;
3644 total += x;
3645 nodes[node] += x;
3646 }
3647 }
3648
3649 x = sprintf(buf, "%lu", total);
3650#ifdef CONFIG_NUMA
f64dc58c 3651 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3652 if (nodes[node])
3653 x += sprintf(buf + x, " N%d=%lu",
3654 node, nodes[node]);
3655#endif
3656 kfree(nodes);
3657 return x + sprintf(buf + x, "\n");
3658}
3659
3660static int any_slab_objects(struct kmem_cache *s)
3661{
3662 int node;
3663 int cpu;
3664
dfb4f096
CL
3665 for_each_possible_cpu(cpu) {
3666 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3667
3668 if (c && c->page)
81819f0f 3669 return 1;
dfb4f096 3670 }
81819f0f 3671
dfb4f096 3672 for_each_online_node(node) {
81819f0f
CL
3673 struct kmem_cache_node *n = get_node(s, node);
3674
dfb4f096
CL
3675 if (!n)
3676 continue;
3677
9e86943b 3678 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3679 return 1;
3680 }
3681 return 0;
3682}
3683
3684#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3685#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3686
3687struct slab_attribute {
3688 struct attribute attr;
3689 ssize_t (*show)(struct kmem_cache *s, char *buf);
3690 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3691};
3692
3693#define SLAB_ATTR_RO(_name) \
3694 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3695
3696#define SLAB_ATTR(_name) \
3697 static struct slab_attribute _name##_attr = \
3698 __ATTR(_name, 0644, _name##_show, _name##_store)
3699
81819f0f
CL
3700static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3701{
3702 return sprintf(buf, "%d\n", s->size);
3703}
3704SLAB_ATTR_RO(slab_size);
3705
3706static ssize_t align_show(struct kmem_cache *s, char *buf)
3707{
3708 return sprintf(buf, "%d\n", s->align);
3709}
3710SLAB_ATTR_RO(align);
3711
3712static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3713{
3714 return sprintf(buf, "%d\n", s->objsize);
3715}
3716SLAB_ATTR_RO(object_size);
3717
3718static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3719{
3720 return sprintf(buf, "%d\n", s->objects);
3721}
3722SLAB_ATTR_RO(objs_per_slab);
3723
3724static ssize_t order_show(struct kmem_cache *s, char *buf)
3725{
3726 return sprintf(buf, "%d\n", s->order);
3727}
3728SLAB_ATTR_RO(order);
3729
3730static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3731{
3732 if (s->ctor) {
3733 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3734
3735 return n + sprintf(buf + n, "\n");
3736 }
3737 return 0;
3738}
3739SLAB_ATTR_RO(ctor);
3740
81819f0f
CL
3741static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3742{
3743 return sprintf(buf, "%d\n", s->refcount - 1);
3744}
3745SLAB_ATTR_RO(aliases);
3746
3747static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3748{
d9acf4b7 3749 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
81819f0f
CL
3750}
3751SLAB_ATTR_RO(slabs);
3752
3753static ssize_t partial_show(struct kmem_cache *s, char *buf)
3754{
d9acf4b7 3755 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3756}
3757SLAB_ATTR_RO(partial);
3758
3759static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3760{
d9acf4b7 3761 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3762}
3763SLAB_ATTR_RO(cpu_slabs);
3764
3765static ssize_t objects_show(struct kmem_cache *s, char *buf)
3766{
d9acf4b7 3767 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
81819f0f
CL
3768}
3769SLAB_ATTR_RO(objects);
3770
3771static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3772{
3773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3774}
3775
3776static ssize_t sanity_checks_store(struct kmem_cache *s,
3777 const char *buf, size_t length)
3778{
3779 s->flags &= ~SLAB_DEBUG_FREE;
3780 if (buf[0] == '1')
3781 s->flags |= SLAB_DEBUG_FREE;
3782 return length;
3783}
3784SLAB_ATTR(sanity_checks);
3785
3786static ssize_t trace_show(struct kmem_cache *s, char *buf)
3787{
3788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3789}
3790
3791static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3792 size_t length)
3793{
3794 s->flags &= ~SLAB_TRACE;
3795 if (buf[0] == '1')
3796 s->flags |= SLAB_TRACE;
3797 return length;
3798}
3799SLAB_ATTR(trace);
3800
3801static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3802{
3803 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3804}
3805
3806static ssize_t reclaim_account_store(struct kmem_cache *s,
3807 const char *buf, size_t length)
3808{
3809 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3810 if (buf[0] == '1')
3811 s->flags |= SLAB_RECLAIM_ACCOUNT;
3812 return length;
3813}
3814SLAB_ATTR(reclaim_account);
3815
3816static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3817{
5af60839 3818 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3819}
3820SLAB_ATTR_RO(hwcache_align);
3821
3822#ifdef CONFIG_ZONE_DMA
3823static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3824{
3825 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3826}
3827SLAB_ATTR_RO(cache_dma);
3828#endif
3829
3830static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3831{
3832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3833}
3834SLAB_ATTR_RO(destroy_by_rcu);
3835
3836static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3837{
3838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3839}
3840
3841static ssize_t red_zone_store(struct kmem_cache *s,
3842 const char *buf, size_t length)
3843{
3844 if (any_slab_objects(s))
3845 return -EBUSY;
3846
3847 s->flags &= ~SLAB_RED_ZONE;
3848 if (buf[0] == '1')
3849 s->flags |= SLAB_RED_ZONE;
3850 calculate_sizes(s);
3851 return length;
3852}
3853SLAB_ATTR(red_zone);
3854
3855static ssize_t poison_show(struct kmem_cache *s, char *buf)
3856{
3857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3858}
3859
3860static ssize_t poison_store(struct kmem_cache *s,
3861 const char *buf, size_t length)
3862{
3863 if (any_slab_objects(s))
3864 return -EBUSY;
3865
3866 s->flags &= ~SLAB_POISON;
3867 if (buf[0] == '1')
3868 s->flags |= SLAB_POISON;
3869 calculate_sizes(s);
3870 return length;
3871}
3872SLAB_ATTR(poison);
3873
3874static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3875{
3876 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3877}
3878
3879static ssize_t store_user_store(struct kmem_cache *s,
3880 const char *buf, size_t length)
3881{
3882 if (any_slab_objects(s))
3883 return -EBUSY;
3884
3885 s->flags &= ~SLAB_STORE_USER;
3886 if (buf[0] == '1')
3887 s->flags |= SLAB_STORE_USER;
3888 calculate_sizes(s);
3889 return length;
3890}
3891SLAB_ATTR(store_user);
3892
53e15af0
CL
3893static ssize_t validate_show(struct kmem_cache *s, char *buf)
3894{
3895 return 0;
3896}
3897
3898static ssize_t validate_store(struct kmem_cache *s,
3899 const char *buf, size_t length)
3900{
434e245d
CL
3901 int ret = -EINVAL;
3902
3903 if (buf[0] == '1') {
3904 ret = validate_slab_cache(s);
3905 if (ret >= 0)
3906 ret = length;
3907 }
3908 return ret;
53e15af0
CL
3909}
3910SLAB_ATTR(validate);
3911
2086d26a
CL
3912static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3913{
3914 return 0;
3915}
3916
3917static ssize_t shrink_store(struct kmem_cache *s,
3918 const char *buf, size_t length)
3919{
3920 if (buf[0] == '1') {
3921 int rc = kmem_cache_shrink(s);
3922
3923 if (rc)
3924 return rc;
3925 } else
3926 return -EINVAL;
3927 return length;
3928}
3929SLAB_ATTR(shrink);
3930
88a420e4
CL
3931static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3932{
3933 if (!(s->flags & SLAB_STORE_USER))
3934 return -ENOSYS;
3935 return list_locations(s, buf, TRACK_ALLOC);
3936}
3937SLAB_ATTR_RO(alloc_calls);
3938
3939static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3940{
3941 if (!(s->flags & SLAB_STORE_USER))
3942 return -ENOSYS;
3943 return list_locations(s, buf, TRACK_FREE);
3944}
3945SLAB_ATTR_RO(free_calls);
3946
81819f0f 3947#ifdef CONFIG_NUMA
9824601e 3948static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 3949{
9824601e 3950 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
3951}
3952
9824601e 3953static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
3954 const char *buf, size_t length)
3955{
3956 int n = simple_strtoul(buf, NULL, 10);
3957
3958 if (n < 100)
9824601e 3959 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
3960 return length;
3961}
9824601e 3962SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
3963#endif
3964
8ff12cfc 3965#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
3966static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3967{
3968 unsigned long sum = 0;
3969 int cpu;
3970 int len;
3971 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3972
3973 if (!data)
3974 return -ENOMEM;
3975
3976 for_each_online_cpu(cpu) {
3977 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3978
3979 data[cpu] = x;
3980 sum += x;
3981 }
3982
3983 len = sprintf(buf, "%lu", sum);
3984
3985 for_each_online_cpu(cpu) {
3986 if (data[cpu] && len < PAGE_SIZE - 20)
3987 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3988 }
3989 kfree(data);
3990 return len + sprintf(buf + len, "\n");
3991}
3992
3993#define STAT_ATTR(si, text) \
3994static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3995{ \
3996 return show_stat(s, buf, si); \
3997} \
3998SLAB_ATTR_RO(text); \
3999
4000STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4001STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4002STAT_ATTR(FREE_FASTPATH, free_fastpath);
4003STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4004STAT_ATTR(FREE_FROZEN, free_frozen);
4005STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4006STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4007STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4008STAT_ATTR(ALLOC_SLAB, alloc_slab);
4009STAT_ATTR(ALLOC_REFILL, alloc_refill);
4010STAT_ATTR(FREE_SLAB, free_slab);
4011STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4012STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4013STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4014STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4015STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4016STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4017
4018#endif
4019
06428780 4020static struct attribute *slab_attrs[] = {
81819f0f
CL
4021 &slab_size_attr.attr,
4022 &object_size_attr.attr,
4023 &objs_per_slab_attr.attr,
4024 &order_attr.attr,
4025 &objects_attr.attr,
4026 &slabs_attr.attr,
4027 &partial_attr.attr,
4028 &cpu_slabs_attr.attr,
4029 &ctor_attr.attr,
81819f0f
CL
4030 &aliases_attr.attr,
4031 &align_attr.attr,
4032 &sanity_checks_attr.attr,
4033 &trace_attr.attr,
4034 &hwcache_align_attr.attr,
4035 &reclaim_account_attr.attr,
4036 &destroy_by_rcu_attr.attr,
4037 &red_zone_attr.attr,
4038 &poison_attr.attr,
4039 &store_user_attr.attr,
53e15af0 4040 &validate_attr.attr,
2086d26a 4041 &shrink_attr.attr,
88a420e4
CL
4042 &alloc_calls_attr.attr,
4043 &free_calls_attr.attr,
81819f0f
CL
4044#ifdef CONFIG_ZONE_DMA
4045 &cache_dma_attr.attr,
4046#endif
4047#ifdef CONFIG_NUMA
9824601e 4048 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4049#endif
4050#ifdef CONFIG_SLUB_STATS
4051 &alloc_fastpath_attr.attr,
4052 &alloc_slowpath_attr.attr,
4053 &free_fastpath_attr.attr,
4054 &free_slowpath_attr.attr,
4055 &free_frozen_attr.attr,
4056 &free_add_partial_attr.attr,
4057 &free_remove_partial_attr.attr,
4058 &alloc_from_partial_attr.attr,
4059 &alloc_slab_attr.attr,
4060 &alloc_refill_attr.attr,
4061 &free_slab_attr.attr,
4062 &cpuslab_flush_attr.attr,
4063 &deactivate_full_attr.attr,
4064 &deactivate_empty_attr.attr,
4065 &deactivate_to_head_attr.attr,
4066 &deactivate_to_tail_attr.attr,
4067 &deactivate_remote_frees_attr.attr,
81819f0f
CL
4068#endif
4069 NULL
4070};
4071
4072static struct attribute_group slab_attr_group = {
4073 .attrs = slab_attrs,
4074};
4075
4076static ssize_t slab_attr_show(struct kobject *kobj,
4077 struct attribute *attr,
4078 char *buf)
4079{
4080 struct slab_attribute *attribute;
4081 struct kmem_cache *s;
4082 int err;
4083
4084 attribute = to_slab_attr(attr);
4085 s = to_slab(kobj);
4086
4087 if (!attribute->show)
4088 return -EIO;
4089
4090 err = attribute->show(s, buf);
4091
4092 return err;
4093}
4094
4095static ssize_t slab_attr_store(struct kobject *kobj,
4096 struct attribute *attr,
4097 const char *buf, size_t len)
4098{
4099 struct slab_attribute *attribute;
4100 struct kmem_cache *s;
4101 int err;
4102
4103 attribute = to_slab_attr(attr);
4104 s = to_slab(kobj);
4105
4106 if (!attribute->store)
4107 return -EIO;
4108
4109 err = attribute->store(s, buf, len);
4110
4111 return err;
4112}
4113
151c602f
CL
4114static void kmem_cache_release(struct kobject *kobj)
4115{
4116 struct kmem_cache *s = to_slab(kobj);
4117
4118 kfree(s);
4119}
4120
81819f0f
CL
4121static struct sysfs_ops slab_sysfs_ops = {
4122 .show = slab_attr_show,
4123 .store = slab_attr_store,
4124};
4125
4126static struct kobj_type slab_ktype = {
4127 .sysfs_ops = &slab_sysfs_ops,
151c602f 4128 .release = kmem_cache_release
81819f0f
CL
4129};
4130
4131static int uevent_filter(struct kset *kset, struct kobject *kobj)
4132{
4133 struct kobj_type *ktype = get_ktype(kobj);
4134
4135 if (ktype == &slab_ktype)
4136 return 1;
4137 return 0;
4138}
4139
4140static struct kset_uevent_ops slab_uevent_ops = {
4141 .filter = uevent_filter,
4142};
4143
27c3a314 4144static struct kset *slab_kset;
81819f0f
CL
4145
4146#define ID_STR_LENGTH 64
4147
4148/* Create a unique string id for a slab cache:
6446faa2
CL
4149 *
4150 * Format :[flags-]size
81819f0f
CL
4151 */
4152static char *create_unique_id(struct kmem_cache *s)
4153{
4154 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4155 char *p = name;
4156
4157 BUG_ON(!name);
4158
4159 *p++ = ':';
4160 /*
4161 * First flags affecting slabcache operations. We will only
4162 * get here for aliasable slabs so we do not need to support
4163 * too many flags. The flags here must cover all flags that
4164 * are matched during merging to guarantee that the id is
4165 * unique.
4166 */
4167 if (s->flags & SLAB_CACHE_DMA)
4168 *p++ = 'd';
4169 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4170 *p++ = 'a';
4171 if (s->flags & SLAB_DEBUG_FREE)
4172 *p++ = 'F';
4173 if (p != name + 1)
4174 *p++ = '-';
4175 p += sprintf(p, "%07d", s->size);
4176 BUG_ON(p > name + ID_STR_LENGTH - 1);
4177 return name;
4178}
4179
4180static int sysfs_slab_add(struct kmem_cache *s)
4181{
4182 int err;
4183 const char *name;
4184 int unmergeable;
4185
4186 if (slab_state < SYSFS)
4187 /* Defer until later */
4188 return 0;
4189
4190 unmergeable = slab_unmergeable(s);
4191 if (unmergeable) {
4192 /*
4193 * Slabcache can never be merged so we can use the name proper.
4194 * This is typically the case for debug situations. In that
4195 * case we can catch duplicate names easily.
4196 */
27c3a314 4197 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4198 name = s->name;
4199 } else {
4200 /*
4201 * Create a unique name for the slab as a target
4202 * for the symlinks.
4203 */
4204 name = create_unique_id(s);
4205 }
4206
27c3a314 4207 s->kobj.kset = slab_kset;
1eada11c
GKH
4208 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4209 if (err) {
4210 kobject_put(&s->kobj);
81819f0f 4211 return err;
1eada11c 4212 }
81819f0f
CL
4213
4214 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4215 if (err)
4216 return err;
4217 kobject_uevent(&s->kobj, KOBJ_ADD);
4218 if (!unmergeable) {
4219 /* Setup first alias */
4220 sysfs_slab_alias(s, s->name);
4221 kfree(name);
4222 }
4223 return 0;
4224}
4225
4226static void sysfs_slab_remove(struct kmem_cache *s)
4227{
4228 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4229 kobject_del(&s->kobj);
151c602f 4230 kobject_put(&s->kobj);
81819f0f
CL
4231}
4232
4233/*
4234 * Need to buffer aliases during bootup until sysfs becomes
4235 * available lest we loose that information.
4236 */
4237struct saved_alias {
4238 struct kmem_cache *s;
4239 const char *name;
4240 struct saved_alias *next;
4241};
4242
5af328a5 4243static struct saved_alias *alias_list;
81819f0f
CL
4244
4245static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4246{
4247 struct saved_alias *al;
4248
4249 if (slab_state == SYSFS) {
4250 /*
4251 * If we have a leftover link then remove it.
4252 */
27c3a314
GKH
4253 sysfs_remove_link(&slab_kset->kobj, name);
4254 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4255 }
4256
4257 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4258 if (!al)
4259 return -ENOMEM;
4260
4261 al->s = s;
4262 al->name = name;
4263 al->next = alias_list;
4264 alias_list = al;
4265 return 0;
4266}
4267
4268static int __init slab_sysfs_init(void)
4269{
5b95a4ac 4270 struct kmem_cache *s;
81819f0f
CL
4271 int err;
4272
0ff21e46 4273 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4274 if (!slab_kset) {
81819f0f
CL
4275 printk(KERN_ERR "Cannot register slab subsystem.\n");
4276 return -ENOSYS;
4277 }
4278
26a7bd03
CL
4279 slab_state = SYSFS;
4280
5b95a4ac 4281 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4282 err = sysfs_slab_add(s);
5d540fb7
CL
4283 if (err)
4284 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4285 " to sysfs\n", s->name);
26a7bd03 4286 }
81819f0f
CL
4287
4288 while (alias_list) {
4289 struct saved_alias *al = alias_list;
4290
4291 alias_list = alias_list->next;
4292 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4293 if (err)
4294 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4295 " %s to sysfs\n", s->name);
81819f0f
CL
4296 kfree(al);
4297 }
4298
4299 resiliency_test();
4300 return 0;
4301}
4302
4303__initcall(slab_sysfs_init);
81819f0f 4304#endif
57ed3eda
PE
4305
4306/*
4307 * The /proc/slabinfo ABI
4308 */
158a9624
LT
4309#ifdef CONFIG_SLABINFO
4310
4311ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4312 size_t count, loff_t *ppos)
4313{
4314 return -EINVAL;
4315}
4316
57ed3eda
PE
4317
4318static void print_slabinfo_header(struct seq_file *m)
4319{
4320 seq_puts(m, "slabinfo - version: 2.1\n");
4321 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4322 "<objperslab> <pagesperslab>");
4323 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4324 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4325 seq_putc(m, '\n');
4326}
4327
4328static void *s_start(struct seq_file *m, loff_t *pos)
4329{
4330 loff_t n = *pos;
4331
4332 down_read(&slub_lock);
4333 if (!n)
4334 print_slabinfo_header(m);
4335
4336 return seq_list_start(&slab_caches, *pos);
4337}
4338
4339static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4340{
4341 return seq_list_next(p, &slab_caches, pos);
4342}
4343
4344static void s_stop(struct seq_file *m, void *p)
4345{
4346 up_read(&slub_lock);
4347}
4348
4349static int s_show(struct seq_file *m, void *p)
4350{
4351 unsigned long nr_partials = 0;
4352 unsigned long nr_slabs = 0;
4353 unsigned long nr_inuse = 0;
4354 unsigned long nr_objs;
4355 struct kmem_cache *s;
4356 int node;
4357
4358 s = list_entry(p, struct kmem_cache, list);
4359
4360 for_each_online_node(node) {
4361 struct kmem_cache_node *n = get_node(s, node);
4362
4363 if (!n)
4364 continue;
4365
4366 nr_partials += n->nr_partial;
4367 nr_slabs += atomic_long_read(&n->nr_slabs);
4368 nr_inuse += count_partial(n);
4369 }
4370
4371 nr_objs = nr_slabs * s->objects;
4372 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4373
4374 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4375 nr_objs, s->size, s->objects, (1 << s->order));
4376 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4377 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4378 0UL);
4379 seq_putc(m, '\n');
4380 return 0;
4381}
4382
4383const struct seq_operations slabinfo_op = {
4384 .start = s_start,
4385 .next = s_next,
4386 .stop = s_stop,
4387 .show = s_show,
4388};
4389
158a9624 4390#endif /* CONFIG_SLABINFO */
This page took 0.372888 seconds and 5 git commands to generate.