slub: fix high order page allocation problem with __GFP_NOFAIL
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
213static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 214static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 215#else
0c710013
CL
216static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
db265eca 219static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 220
107dab5c 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
81819f0f
CL
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
81819f0f 237 return s->node[node];
81819f0f
CL
238}
239
6446faa2 240/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
241static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243{
244 void *base;
245
a973e9dd 246 if (!object)
02cbc874
CL
247 return 1;
248
a973e9dd 249 base = page_address(page);
39b26464 250 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256}
257
7656c72b
CL
258static inline void *get_freepointer(struct kmem_cache *s, void *object)
259{
260 return *(void **)(object + s->offset);
261}
262
0ad9500e
ED
263static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264{
265 prefetch(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 304 return s->object_size;
d71f606f
MK
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
a0320865
DH
358static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359{
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371}
372
1d07171c
CL
373/* Interrupts must be disabled (for the fallback code to work right) */
374static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378{
379 VM_BUG_ON(!irqs_disabled());
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388#endif
389 {
390 slab_lock(page);
d0e0ac97
CG
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
1d07171c 393 page->freelist = freelist_new;
a0320865 394 set_page_slub_counters(page, counters_new);
1d07171c
CL
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404#ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406#endif
407
408 return 0;
409}
410
b789ef51
CL
411static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415{
2565409f
HC
416#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 418 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 419 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424#endif
425 {
1d07171c
CL
426 unsigned long flags;
427
428 local_irq_save(flags);
881db7fb 429 slab_lock(page);
d0e0ac97
CG
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
b789ef51 432 page->freelist = freelist_new;
a0320865 433 set_page_slub_counters(page, counters_new);
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 return 1;
437 }
881db7fb 438 slab_unlock(page);
1d07171c 439 local_irq_restore(flags);
b789ef51
CL
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445#ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447#endif
448
449 return 0;
450}
451
41ecc55b 452#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
459static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460{
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466}
467
41ecc55b
CL
468/*
469 * Debug settings:
470 */
f0630fff
CL
471#ifdef CONFIG_SLUB_DEBUG_ON
472static int slub_debug = DEBUG_DEFAULT_FLAGS;
473#else
41ecc55b 474static int slub_debug;
f0630fff 475#endif
41ecc55b
CL
476
477static char *slub_debug_slabs;
fa5ec8a1 478static int disable_higher_order_debug;
41ecc55b 479
81819f0f
CL
480/*
481 * Object debugging
482 */
483static void print_section(char *text, u8 *addr, unsigned int length)
484{
ffc79d28
SAS
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
81819f0f
CL
487}
488
81819f0f
CL
489static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491{
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500}
501
502static void set_track(struct kmem_cache *s, void *object,
ce71e27c 503 enum track_item alloc, unsigned long addr)
81819f0f 504{
1a00df4a 505 struct track *p = get_track(s, object, alloc);
81819f0f 506
81819f0f 507 if (addr) {
d6543e39
BG
508#ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525#endif
81819f0f
CL
526 p->addr = addr;
527 p->cpu = smp_processor_id();
88e4ccf2 528 p->pid = current->pid;
81819f0f
CL
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532}
533
81819f0f
CL
534static void init_tracking(struct kmem_cache *s, void *object)
535{
24922684
CL
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
ce71e27c
EGM
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
541}
542
543static void print_track(const char *s, struct track *t)
544{
545 if (!t->addr)
546 return;
547
7daf705f 548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
550#ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559#endif
24922684
CL
560}
561
562static void print_tracking(struct kmem_cache *s, void *object)
563{
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569}
570
571static void print_page_info(struct page *page)
572{
d0e0ac97
CG
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
265d47e7 589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
645df230 592
373d4d09 593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
594}
595
24922684
CL
596static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597{
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605}
606
607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
608{
609 unsigned int off; /* Offset of last byte */
a973e9dd 610 u8 *addr = page_address(page);
24922684
CL
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
ffc79d28 620 print_section("Bytes b4 ", p - 16, 16);
81819f0f 621
3b0efdfa 622 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 623 PAGE_SIZE));
81819f0f 624 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
81819f0f 627
81819f0f
CL
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
24922684 633 if (s->flags & SLAB_STORE_USER)
81819f0f 634 off += 2 * sizeof(struct track);
81819f0f
CL
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
ffc79d28 638 print_section("Padding ", p + off, s->size - off);
24922684
CL
639
640 dump_stack();
81819f0f
CL
641}
642
643static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645{
3dc50637 646 slab_bug(s, "%s", reason);
24922684 647 print_trailer(s, page, object);
81819f0f
CL
648}
649
d0e0ac97
CG
650static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
81819f0f
CL
652{
653 va_list args;
654 char buf[100];
655
24922684
CL
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 658 va_end(args);
3dc50637 659 slab_bug(s, "%s", buf);
24922684 660 print_page_info(page);
81819f0f
CL
661 dump_stack();
662}
663
f7cb1933 664static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
665{
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 674 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
675}
676
24922684
CL
677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679{
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682}
683
684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
06428780 686 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
687{
688 u8 *fault;
689 u8 *end;
690
79824820 691 fault = memchr_inv(start, value, bytes);
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
79824820 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 791 print_section("Padding ", end - remainder, remainder);
24922684 792
8a3d271d 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 794 return 0;
81819f0f
CL
795}
796
797static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 798 void *object, u8 val)
81819f0f
CL
799{
800 u8 *p = object;
3b0efdfa 801 u8 *endobject = object + s->object_size;
81819f0f
CL
802
803 if (s->flags & SLAB_RED_ZONE) {
24922684 804 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 805 endobject, val, s->inuse - s->object_size))
81819f0f 806 return 0;
81819f0f 807 } else {
3b0efdfa 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 809 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
3adbefee 812 }
81819f0f
CL
813 }
814
815 if (s->flags & SLAB_POISON) {
f7cb1933 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 817 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 818 POISON_FREE, s->object_size - 1) ||
24922684 819 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 820 p + s->object_size - 1, POISON_END, 1)))
81819f0f 821 return 0;
81819f0f
CL
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
f7cb1933 828 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
9f6c708e 839 * No choice but to zap it and thus lose the remainder
81819f0f 840 * of the free objects in this slab. May cause
672bba3a 841 * another error because the object count is now wrong.
81819f0f 842 */
a973e9dd 843 set_freepointer(s, p, NULL);
81819f0f
CL
844 return 0;
845 }
846 return 1;
847}
848
849static int check_slab(struct kmem_cache *s, struct page *page)
850{
39b26464
CL
851 int maxobj;
852
81819f0f
CL
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
24922684 856 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
857 return 0;
858 }
39b26464 859
ab9a0f19 860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
24922684 867 slab_err(s, page, "inuse %u > max %u",
39b26464 868 s->name, page->inuse, page->objects);
81819f0f
CL
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874}
875
876/*
672bba3a
CL
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
879 */
880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881{
882 int nr = 0;
881db7fb 883 void *fp;
81819f0f 884 void *object = NULL;
224a88be 885 unsigned long max_objects;
81819f0f 886
881db7fb 887 fp = page->freelist;
39b26464 888 while (fp && nr <= page->objects) {
81819f0f
CL
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
a973e9dd 895 set_freepointer(s, object, NULL);
81819f0f 896 } else {
24922684 897 slab_err(s, page, "Freepointer corrupt");
a973e9dd 898 page->freelist = NULL;
39b26464 899 page->inuse = page->objects;
24922684 900 slab_fix(s, "Freelist cleared");
81819f0f
CL
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
ab9a0f19 910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
39b26464 920 if (page->inuse != page->objects - nr) {
70d71228 921 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
24922684 924 slab_fix(s, "Object count adjusted.");
81819f0f
CL
925 }
926 return search == NULL;
927}
928
0121c619
CL
929static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
3ec09742
CL
931{
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
d0e0ac97
CG
940 print_section("Object ", (void *)object,
941 s->object_size);
3ec09742
CL
942
943 dump_stack();
944 }
945}
946
c016b0bd
CL
947/*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
d56791b3
RB
951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952{
953 kmemleak_alloc(ptr, size, 1, flags);
954}
955
956static inline void kfree_hook(const void *x)
957{
958 kmemleak_free(x);
959}
960
c016b0bd
CL
961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962{
c1d50836 963 flags &= gfp_allowed_mask;
c016b0bd
CL
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
3b0efdfa 967 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
968}
969
d0e0ac97
CG
970static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
c016b0bd 972{
c1d50836 973 flags &= gfp_allowed_mask;
b3d41885 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
976}
977
978static inline void slab_free_hook(struct kmem_cache *s, void *x)
979{
980 kmemleak_free_recursive(x, s->flags);
c016b0bd 981
d3f661d6 982 /*
d1756174 983 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
3b0efdfa
CL
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
994 local_irq_restore(flags);
995 }
996#endif
f9b615de 997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 998 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
999}
1000
643b1138 1001/*
672bba3a 1002 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1003 */
5cc6eee8
CL
1004static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
643b1138 1006{
c65c1877
PZ
1007 lockdep_assert_held(&n->list_lock);
1008
5cc6eee8
CL
1009 if (!(s->flags & SLAB_STORE_USER))
1010 return;
1011
643b1138 1012 list_add(&page->lru, &n->full);
643b1138
CL
1013}
1014
c65c1877 1015static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1016{
c65c1877
PZ
1017 lockdep_assert_held(&n->list_lock);
1018
643b1138
CL
1019 if (!(s->flags & SLAB_STORE_USER))
1020 return;
1021
643b1138 1022 list_del(&page->lru);
643b1138
CL
1023}
1024
0f389ec6
CL
1025/* Tracking of the number of slabs for debugging purposes */
1026static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1027{
1028 struct kmem_cache_node *n = get_node(s, node);
1029
1030 return atomic_long_read(&n->nr_slabs);
1031}
1032
26c02cf0
AB
1033static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1034{
1035 return atomic_long_read(&n->nr_slabs);
1036}
1037
205ab99d 1038static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1039{
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 /*
1043 * May be called early in order to allocate a slab for the
1044 * kmem_cache_node structure. Solve the chicken-egg
1045 * dilemma by deferring the increment of the count during
1046 * bootstrap (see early_kmem_cache_node_alloc).
1047 */
338b2642 1048 if (likely(n)) {
0f389ec6 1049 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1050 atomic_long_add(objects, &n->total_objects);
1051 }
0f389ec6 1052}
205ab99d 1053static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1054{
1055 struct kmem_cache_node *n = get_node(s, node);
1056
1057 atomic_long_dec(&n->nr_slabs);
205ab99d 1058 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1059}
1060
1061/* Object debug checks for alloc/free paths */
3ec09742
CL
1062static void setup_object_debug(struct kmem_cache *s, struct page *page,
1063 void *object)
1064{
1065 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1066 return;
1067
f7cb1933 1068 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1069 init_tracking(s, object);
1070}
1071
d0e0ac97
CG
1072static noinline int alloc_debug_processing(struct kmem_cache *s,
1073 struct page *page,
ce71e27c 1074 void *object, unsigned long addr)
81819f0f
CL
1075{
1076 if (!check_slab(s, page))
1077 goto bad;
1078
81819f0f
CL
1079 if (!check_valid_pointer(s, page, object)) {
1080 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1081 goto bad;
81819f0f
CL
1082 }
1083
f7cb1933 1084 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1085 goto bad;
81819f0f 1086
3ec09742
CL
1087 /* Success perform special debug activities for allocs */
1088 if (s->flags & SLAB_STORE_USER)
1089 set_track(s, object, TRACK_ALLOC, addr);
1090 trace(s, page, object, 1);
f7cb1933 1091 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1092 return 1;
3ec09742 1093
81819f0f
CL
1094bad:
1095 if (PageSlab(page)) {
1096 /*
1097 * If this is a slab page then lets do the best we can
1098 * to avoid issues in the future. Marking all objects
672bba3a 1099 * as used avoids touching the remaining objects.
81819f0f 1100 */
24922684 1101 slab_fix(s, "Marking all objects used");
39b26464 1102 page->inuse = page->objects;
a973e9dd 1103 page->freelist = NULL;
81819f0f
CL
1104 }
1105 return 0;
1106}
1107
19c7ff9e
CL
1108static noinline struct kmem_cache_node *free_debug_processing(
1109 struct kmem_cache *s, struct page *page, void *object,
1110 unsigned long addr, unsigned long *flags)
81819f0f 1111{
19c7ff9e 1112 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1113
19c7ff9e 1114 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1115 slab_lock(page);
1116
81819f0f
CL
1117 if (!check_slab(s, page))
1118 goto fail;
1119
1120 if (!check_valid_pointer(s, page, object)) {
70d71228 1121 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1122 goto fail;
1123 }
1124
1125 if (on_freelist(s, page, object)) {
24922684 1126 object_err(s, page, object, "Object already free");
81819f0f
CL
1127 goto fail;
1128 }
1129
f7cb1933 1130 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1131 goto out;
81819f0f 1132
1b4f59e3 1133 if (unlikely(s != page->slab_cache)) {
3adbefee 1134 if (!PageSlab(page)) {
70d71228
CL
1135 slab_err(s, page, "Attempt to free object(0x%p) "
1136 "outside of slab", object);
1b4f59e3 1137 } else if (!page->slab_cache) {
81819f0f 1138 printk(KERN_ERR
70d71228 1139 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1140 object);
70d71228 1141 dump_stack();
06428780 1142 } else
24922684
CL
1143 object_err(s, page, object,
1144 "page slab pointer corrupt.");
81819f0f
CL
1145 goto fail;
1146 }
3ec09742 1147
3ec09742
CL
1148 if (s->flags & SLAB_STORE_USER)
1149 set_track(s, object, TRACK_FREE, addr);
1150 trace(s, page, object, 0);
f7cb1933 1151 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1152out:
881db7fb 1153 slab_unlock(page);
19c7ff9e
CL
1154 /*
1155 * Keep node_lock to preserve integrity
1156 * until the object is actually freed
1157 */
1158 return n;
3ec09742 1159
81819f0f 1160fail:
19c7ff9e
CL
1161 slab_unlock(page);
1162 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1163 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1164 return NULL;
81819f0f
CL
1165}
1166
41ecc55b
CL
1167static int __init setup_slub_debug(char *str)
1168{
f0630fff
CL
1169 slub_debug = DEBUG_DEFAULT_FLAGS;
1170 if (*str++ != '=' || !*str)
1171 /*
1172 * No options specified. Switch on full debugging.
1173 */
1174 goto out;
1175
1176 if (*str == ',')
1177 /*
1178 * No options but restriction on slabs. This means full
1179 * debugging for slabs matching a pattern.
1180 */
1181 goto check_slabs;
1182
fa5ec8a1
DR
1183 if (tolower(*str) == 'o') {
1184 /*
1185 * Avoid enabling debugging on caches if its minimum order
1186 * would increase as a result.
1187 */
1188 disable_higher_order_debug = 1;
1189 goto out;
1190 }
1191
f0630fff
CL
1192 slub_debug = 0;
1193 if (*str == '-')
1194 /*
1195 * Switch off all debugging measures.
1196 */
1197 goto out;
1198
1199 /*
1200 * Determine which debug features should be switched on
1201 */
06428780 1202 for (; *str && *str != ','; str++) {
f0630fff
CL
1203 switch (tolower(*str)) {
1204 case 'f':
1205 slub_debug |= SLAB_DEBUG_FREE;
1206 break;
1207 case 'z':
1208 slub_debug |= SLAB_RED_ZONE;
1209 break;
1210 case 'p':
1211 slub_debug |= SLAB_POISON;
1212 break;
1213 case 'u':
1214 slub_debug |= SLAB_STORE_USER;
1215 break;
1216 case 't':
1217 slub_debug |= SLAB_TRACE;
1218 break;
4c13dd3b
DM
1219 case 'a':
1220 slub_debug |= SLAB_FAILSLAB;
1221 break;
f0630fff
CL
1222 default:
1223 printk(KERN_ERR "slub_debug option '%c' "
06428780 1224 "unknown. skipped\n", *str);
f0630fff 1225 }
41ecc55b
CL
1226 }
1227
f0630fff 1228check_slabs:
41ecc55b
CL
1229 if (*str == ',')
1230 slub_debug_slabs = str + 1;
f0630fff 1231out:
41ecc55b
CL
1232 return 1;
1233}
1234
1235__setup("slub_debug", setup_slub_debug);
1236
3b0efdfa 1237static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1238 unsigned long flags, const char *name,
51cc5068 1239 void (*ctor)(void *))
41ecc55b
CL
1240{
1241 /*
e153362a 1242 * Enable debugging if selected on the kernel commandline.
41ecc55b 1243 */
c6f58d9b
CL
1244 if (slub_debug && (!slub_debug_slabs || (name &&
1245 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1246 flags |= slub_debug;
ba0268a8
CL
1247
1248 return flags;
41ecc55b
CL
1249}
1250#else
3ec09742
CL
1251static inline void setup_object_debug(struct kmem_cache *s,
1252 struct page *page, void *object) {}
41ecc55b 1253
3ec09742 1254static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1255 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1256
19c7ff9e
CL
1257static inline struct kmem_cache_node *free_debug_processing(
1258 struct kmem_cache *s, struct page *page, void *object,
1259 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1260
41ecc55b
CL
1261static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1262 { return 1; }
1263static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1264 void *object, u8 val) { return 1; }
5cc6eee8
CL
1265static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
c65c1877
PZ
1267static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1268 struct page *page) {}
3b0efdfa 1269static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1270 unsigned long flags, const char *name,
51cc5068 1271 void (*ctor)(void *))
ba0268a8
CL
1272{
1273 return flags;
1274}
41ecc55b 1275#define slub_debug 0
0f389ec6 1276
fdaa45e9
IM
1277#define disable_higher_order_debug 0
1278
0f389ec6
CL
1279static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1280 { return 0; }
26c02cf0
AB
1281static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1282 { return 0; }
205ab99d
CL
1283static inline void inc_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
1285static inline void dec_slabs_node(struct kmem_cache *s, int node,
1286 int objects) {}
7d550c56 1287
d56791b3
RB
1288static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1289{
1290 kmemleak_alloc(ptr, size, 1, flags);
1291}
1292
1293static inline void kfree_hook(const void *x)
1294{
1295 kmemleak_free(x);
1296}
1297
7d550c56
CL
1298static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1299 { return 0; }
1300
1301static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1302 void *object)
1303{
1304 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1305 flags & gfp_allowed_mask);
1306}
7d550c56 1307
d56791b3
RB
1308static inline void slab_free_hook(struct kmem_cache *s, void *x)
1309{
1310 kmemleak_free_recursive(x, s->flags);
1311}
7d550c56 1312
ab4d5ed5 1313#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1314
81819f0f
CL
1315/*
1316 * Slab allocation and freeing
1317 */
65c3376a
CL
1318static inline struct page *alloc_slab_page(gfp_t flags, int node,
1319 struct kmem_cache_order_objects oo)
1320{
1321 int order = oo_order(oo);
1322
b1eeab67
VN
1323 flags |= __GFP_NOTRACK;
1324
2154a336 1325 if (node == NUMA_NO_NODE)
65c3376a
CL
1326 return alloc_pages(flags, order);
1327 else
6b65aaf3 1328 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1329}
1330
81819f0f
CL
1331static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1332{
06428780 1333 struct page *page;
834f3d11 1334 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1335 gfp_t alloc_gfp;
81819f0f 1336
7e0528da
CL
1337 flags &= gfp_allowed_mask;
1338
1339 if (flags & __GFP_WAIT)
1340 local_irq_enable();
1341
b7a49f0d 1342 flags |= s->allocflags;
e12ba74d 1343
ba52270d
PE
1344 /*
1345 * Let the initial higher-order allocation fail under memory pressure
1346 * so we fall-back to the minimum order allocation.
1347 */
1348 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1349
1350 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1351 if (unlikely(!page)) {
1352 oo = s->min;
80c3a998 1353 alloc_gfp = flags;
65c3376a
CL
1354 /*
1355 * Allocation may have failed due to fragmentation.
1356 * Try a lower order alloc if possible
1357 */
80c3a998 1358 page = alloc_slab_page(alloc_gfp, node, oo);
81819f0f 1359
7e0528da
CL
1360 if (page)
1361 stat(s, ORDER_FALLBACK);
65c3376a 1362 }
5a896d9e 1363
737b719e 1364 if (kmemcheck_enabled && page
5086c389 1365 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1366 int pages = 1 << oo_order(oo);
1367
80c3a998 1368 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1369
1370 /*
1371 * Objects from caches that have a constructor don't get
1372 * cleared when they're allocated, so we need to do it here.
1373 */
1374 if (s->ctor)
1375 kmemcheck_mark_uninitialized_pages(page, pages);
1376 else
1377 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1378 }
1379
737b719e
DR
1380 if (flags & __GFP_WAIT)
1381 local_irq_disable();
1382 if (!page)
1383 return NULL;
1384
834f3d11 1385 page->objects = oo_objects(oo);
81819f0f
CL
1386 mod_zone_page_state(page_zone(page),
1387 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1388 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1389 1 << oo_order(oo));
81819f0f
CL
1390
1391 return page;
1392}
1393
1394static void setup_object(struct kmem_cache *s, struct page *page,
1395 void *object)
1396{
3ec09742 1397 setup_object_debug(s, page, object);
4f104934 1398 if (unlikely(s->ctor))
51cc5068 1399 s->ctor(object);
81819f0f
CL
1400}
1401
1402static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1403{
1404 struct page *page;
81819f0f 1405 void *start;
81819f0f
CL
1406 void *last;
1407 void *p;
1f458cbf 1408 int order;
81819f0f 1409
6cb06229 1410 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1411
6cb06229
CL
1412 page = allocate_slab(s,
1413 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1414 if (!page)
1415 goto out;
1416
1f458cbf 1417 order = compound_order(page);
205ab99d 1418 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1419 memcg_bind_pages(s, order);
1b4f59e3 1420 page->slab_cache = s;
c03f94cc 1421 __SetPageSlab(page);
072bb0aa
MG
1422 if (page->pfmemalloc)
1423 SetPageSlabPfmemalloc(page);
81819f0f
CL
1424
1425 start = page_address(page);
81819f0f
CL
1426
1427 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1428 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1429
1430 last = start;
224a88be 1431 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1432 setup_object(s, page, last);
1433 set_freepointer(s, last, p);
1434 last = p;
1435 }
1436 setup_object(s, page, last);
a973e9dd 1437 set_freepointer(s, last, NULL);
81819f0f
CL
1438
1439 page->freelist = start;
e6e82ea1 1440 page->inuse = page->objects;
8cb0a506 1441 page->frozen = 1;
81819f0f 1442out:
81819f0f
CL
1443 return page;
1444}
1445
1446static void __free_slab(struct kmem_cache *s, struct page *page)
1447{
834f3d11
CL
1448 int order = compound_order(page);
1449 int pages = 1 << order;
81819f0f 1450
af537b0a 1451 if (kmem_cache_debug(s)) {
81819f0f
CL
1452 void *p;
1453
1454 slab_pad_check(s, page);
224a88be
CL
1455 for_each_object(p, s, page_address(page),
1456 page->objects)
f7cb1933 1457 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1458 }
1459
b1eeab67 1460 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1461
81819f0f
CL
1462 mod_zone_page_state(page_zone(page),
1463 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1464 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1465 -pages);
81819f0f 1466
072bb0aa 1467 __ClearPageSlabPfmemalloc(page);
49bd5221 1468 __ClearPageSlab(page);
1f458cbf
GC
1469
1470 memcg_release_pages(s, order);
22b751c3 1471 page_mapcount_reset(page);
1eb5ac64
NP
1472 if (current->reclaim_state)
1473 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1474 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1475}
1476
da9a638c
LJ
1477#define need_reserve_slab_rcu \
1478 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1479
81819f0f
CL
1480static void rcu_free_slab(struct rcu_head *h)
1481{
1482 struct page *page;
1483
da9a638c
LJ
1484 if (need_reserve_slab_rcu)
1485 page = virt_to_head_page(h);
1486 else
1487 page = container_of((struct list_head *)h, struct page, lru);
1488
1b4f59e3 1489 __free_slab(page->slab_cache, page);
81819f0f
CL
1490}
1491
1492static void free_slab(struct kmem_cache *s, struct page *page)
1493{
1494 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1495 struct rcu_head *head;
1496
1497 if (need_reserve_slab_rcu) {
1498 int order = compound_order(page);
1499 int offset = (PAGE_SIZE << order) - s->reserved;
1500
1501 VM_BUG_ON(s->reserved != sizeof(*head));
1502 head = page_address(page) + offset;
1503 } else {
1504 /*
1505 * RCU free overloads the RCU head over the LRU
1506 */
1507 head = (void *)&page->lru;
1508 }
81819f0f
CL
1509
1510 call_rcu(head, rcu_free_slab);
1511 } else
1512 __free_slab(s, page);
1513}
1514
1515static void discard_slab(struct kmem_cache *s, struct page *page)
1516{
205ab99d 1517 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1518 free_slab(s, page);
1519}
1520
1521/*
5cc6eee8 1522 * Management of partially allocated slabs.
81819f0f 1523 */
5cc6eee8 1524static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1525 struct page *page, int tail)
81819f0f 1526{
c65c1877
PZ
1527 lockdep_assert_held(&n->list_lock);
1528
e95eed57 1529 n->nr_partial++;
136333d1 1530 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1531 list_add_tail(&page->lru, &n->partial);
1532 else
1533 list_add(&page->lru, &n->partial);
81819f0f
CL
1534}
1535
5cc6eee8 1536static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1537 struct page *page)
1538{
c65c1877
PZ
1539 lockdep_assert_held(&n->list_lock);
1540
62e346a8
CL
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543}
1544
81819f0f 1545/*
7ced3719
CL
1546 * Remove slab from the partial list, freeze it and
1547 * return the pointer to the freelist.
81819f0f 1548 *
497b66f2 1549 * Returns a list of objects or NULL if it fails.
81819f0f 1550 */
497b66f2 1551static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1552 struct kmem_cache_node *n, struct page *page,
633b0764 1553 int mode, int *objects)
81819f0f 1554{
2cfb7455
CL
1555 void *freelist;
1556 unsigned long counters;
1557 struct page new;
1558
c65c1877
PZ
1559 lockdep_assert_held(&n->list_lock);
1560
2cfb7455
CL
1561 /*
1562 * Zap the freelist and set the frozen bit.
1563 * The old freelist is the list of objects for the
1564 * per cpu allocation list.
1565 */
7ced3719
CL
1566 freelist = page->freelist;
1567 counters = page->counters;
1568 new.counters = counters;
633b0764 1569 *objects = new.objects - new.inuse;
23910c50 1570 if (mode) {
7ced3719 1571 new.inuse = page->objects;
23910c50
PE
1572 new.freelist = NULL;
1573 } else {
1574 new.freelist = freelist;
1575 }
2cfb7455 1576
a0132ac0 1577 VM_BUG_ON(new.frozen);
7ced3719 1578 new.frozen = 1;
2cfb7455 1579
7ced3719 1580 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1581 freelist, counters,
02d7633f 1582 new.freelist, new.counters,
7ced3719 1583 "acquire_slab"))
7ced3719 1584 return NULL;
2cfb7455
CL
1585
1586 remove_partial(n, page);
7ced3719 1587 WARN_ON(!freelist);
49e22585 1588 return freelist;
81819f0f
CL
1589}
1590
633b0764 1591static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1592static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1593
81819f0f 1594/*
672bba3a 1595 * Try to allocate a partial slab from a specific node.
81819f0f 1596 */
8ba00bb6
JK
1597static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1598 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1599{
49e22585
CL
1600 struct page *page, *page2;
1601 void *object = NULL;
633b0764
JK
1602 int available = 0;
1603 int objects;
81819f0f
CL
1604
1605 /*
1606 * Racy check. If we mistakenly see no partial slabs then we
1607 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1608 * partial slab and there is none available then get_partials()
1609 * will return NULL.
81819f0f
CL
1610 */
1611 if (!n || !n->nr_partial)
1612 return NULL;
1613
1614 spin_lock(&n->list_lock);
49e22585 1615 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1616 void *t;
49e22585 1617
8ba00bb6
JK
1618 if (!pfmemalloc_match(page, flags))
1619 continue;
1620
633b0764 1621 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1622 if (!t)
1623 break;
1624
633b0764 1625 available += objects;
12d79634 1626 if (!object) {
49e22585 1627 c->page = page;
49e22585 1628 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1629 object = t;
49e22585 1630 } else {
633b0764 1631 put_cpu_partial(s, page, 0);
8028dcea 1632 stat(s, CPU_PARTIAL_NODE);
49e22585 1633 }
345c905d
JK
1634 if (!kmem_cache_has_cpu_partial(s)
1635 || available > s->cpu_partial / 2)
49e22585
CL
1636 break;
1637
497b66f2 1638 }
81819f0f 1639 spin_unlock(&n->list_lock);
497b66f2 1640 return object;
81819f0f
CL
1641}
1642
1643/*
672bba3a 1644 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1645 */
de3ec035 1646static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1647 struct kmem_cache_cpu *c)
81819f0f
CL
1648{
1649#ifdef CONFIG_NUMA
1650 struct zonelist *zonelist;
dd1a239f 1651 struct zoneref *z;
54a6eb5c
MG
1652 struct zone *zone;
1653 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1654 void *object;
cc9a6c87 1655 unsigned int cpuset_mems_cookie;
81819f0f
CL
1656
1657 /*
672bba3a
CL
1658 * The defrag ratio allows a configuration of the tradeoffs between
1659 * inter node defragmentation and node local allocations. A lower
1660 * defrag_ratio increases the tendency to do local allocations
1661 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1662 *
672bba3a
CL
1663 * If the defrag_ratio is set to 0 then kmalloc() always
1664 * returns node local objects. If the ratio is higher then kmalloc()
1665 * may return off node objects because partial slabs are obtained
1666 * from other nodes and filled up.
81819f0f 1667 *
6446faa2 1668 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1669 * defrag_ratio = 1000) then every (well almost) allocation will
1670 * first attempt to defrag slab caches on other nodes. This means
1671 * scanning over all nodes to look for partial slabs which may be
1672 * expensive if we do it every time we are trying to find a slab
1673 * with available objects.
81819f0f 1674 */
9824601e
CL
1675 if (!s->remote_node_defrag_ratio ||
1676 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1677 return NULL;
1678
cc9a6c87
MG
1679 do {
1680 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1681 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1682 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1683 struct kmem_cache_node *n;
1684
1685 n = get_node(s, zone_to_nid(zone));
1686
1687 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1688 n->nr_partial > s->min_partial) {
8ba00bb6 1689 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1690 if (object) {
1691 /*
1692 * Return the object even if
1693 * put_mems_allowed indicated that
1694 * the cpuset mems_allowed was
1695 * updated in parallel. It's a
1696 * harmless race between the alloc
1697 * and the cpuset update.
1698 */
1699 put_mems_allowed(cpuset_mems_cookie);
1700 return object;
1701 }
c0ff7453 1702 }
81819f0f 1703 }
cc9a6c87 1704 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1705#endif
1706 return NULL;
1707}
1708
1709/*
1710 * Get a partial page, lock it and return it.
1711 */
497b66f2 1712static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1713 struct kmem_cache_cpu *c)
81819f0f 1714{
497b66f2 1715 void *object;
2154a336 1716 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1717
8ba00bb6 1718 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1719 if (object || node != NUMA_NO_NODE)
1720 return object;
81819f0f 1721
acd19fd1 1722 return get_any_partial(s, flags, c);
81819f0f
CL
1723}
1724
8a5ec0ba
CL
1725#ifdef CONFIG_PREEMPT
1726/*
1727 * Calculate the next globally unique transaction for disambiguiation
1728 * during cmpxchg. The transactions start with the cpu number and are then
1729 * incremented by CONFIG_NR_CPUS.
1730 */
1731#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1732#else
1733/*
1734 * No preemption supported therefore also no need to check for
1735 * different cpus.
1736 */
1737#define TID_STEP 1
1738#endif
1739
1740static inline unsigned long next_tid(unsigned long tid)
1741{
1742 return tid + TID_STEP;
1743}
1744
1745static inline unsigned int tid_to_cpu(unsigned long tid)
1746{
1747 return tid % TID_STEP;
1748}
1749
1750static inline unsigned long tid_to_event(unsigned long tid)
1751{
1752 return tid / TID_STEP;
1753}
1754
1755static inline unsigned int init_tid(int cpu)
1756{
1757 return cpu;
1758}
1759
1760static inline void note_cmpxchg_failure(const char *n,
1761 const struct kmem_cache *s, unsigned long tid)
1762{
1763#ifdef SLUB_DEBUG_CMPXCHG
1764 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1765
1766 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1767
1768#ifdef CONFIG_PREEMPT
1769 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1770 printk("due to cpu change %d -> %d\n",
1771 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1772 else
1773#endif
1774 if (tid_to_event(tid) != tid_to_event(actual_tid))
1775 printk("due to cpu running other code. Event %ld->%ld\n",
1776 tid_to_event(tid), tid_to_event(actual_tid));
1777 else
1778 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1779 actual_tid, tid, next_tid(tid));
1780#endif
4fdccdfb 1781 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1782}
1783
788e1aad 1784static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1785{
8a5ec0ba
CL
1786 int cpu;
1787
1788 for_each_possible_cpu(cpu)
1789 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1790}
2cfb7455 1791
81819f0f
CL
1792/*
1793 * Remove the cpu slab
1794 */
d0e0ac97
CG
1795static void deactivate_slab(struct kmem_cache *s, struct page *page,
1796 void *freelist)
81819f0f 1797{
2cfb7455 1798 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1799 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1800 int lock = 0;
1801 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1802 void *nextfree;
136333d1 1803 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1804 struct page new;
1805 struct page old;
1806
1807 if (page->freelist) {
84e554e6 1808 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1809 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1810 }
1811
894b8788 1812 /*
2cfb7455
CL
1813 * Stage one: Free all available per cpu objects back
1814 * to the page freelist while it is still frozen. Leave the
1815 * last one.
1816 *
1817 * There is no need to take the list->lock because the page
1818 * is still frozen.
1819 */
1820 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1821 void *prior;
1822 unsigned long counters;
1823
1824 do {
1825 prior = page->freelist;
1826 counters = page->counters;
1827 set_freepointer(s, freelist, prior);
1828 new.counters = counters;
1829 new.inuse--;
a0132ac0 1830 VM_BUG_ON(!new.frozen);
2cfb7455 1831
1d07171c 1832 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1833 prior, counters,
1834 freelist, new.counters,
1835 "drain percpu freelist"));
1836
1837 freelist = nextfree;
1838 }
1839
894b8788 1840 /*
2cfb7455
CL
1841 * Stage two: Ensure that the page is unfrozen while the
1842 * list presence reflects the actual number of objects
1843 * during unfreeze.
1844 *
1845 * We setup the list membership and then perform a cmpxchg
1846 * with the count. If there is a mismatch then the page
1847 * is not unfrozen but the page is on the wrong list.
1848 *
1849 * Then we restart the process which may have to remove
1850 * the page from the list that we just put it on again
1851 * because the number of objects in the slab may have
1852 * changed.
894b8788 1853 */
2cfb7455 1854redo:
894b8788 1855
2cfb7455
CL
1856 old.freelist = page->freelist;
1857 old.counters = page->counters;
a0132ac0 1858 VM_BUG_ON(!old.frozen);
7c2e132c 1859
2cfb7455
CL
1860 /* Determine target state of the slab */
1861 new.counters = old.counters;
1862 if (freelist) {
1863 new.inuse--;
1864 set_freepointer(s, freelist, old.freelist);
1865 new.freelist = freelist;
1866 } else
1867 new.freelist = old.freelist;
1868
1869 new.frozen = 0;
1870
81107188 1871 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1872 m = M_FREE;
1873 else if (new.freelist) {
1874 m = M_PARTIAL;
1875 if (!lock) {
1876 lock = 1;
1877 /*
1878 * Taking the spinlock removes the possiblity
1879 * that acquire_slab() will see a slab page that
1880 * is frozen
1881 */
1882 spin_lock(&n->list_lock);
1883 }
1884 } else {
1885 m = M_FULL;
1886 if (kmem_cache_debug(s) && !lock) {
1887 lock = 1;
1888 /*
1889 * This also ensures that the scanning of full
1890 * slabs from diagnostic functions will not see
1891 * any frozen slabs.
1892 */
1893 spin_lock(&n->list_lock);
1894 }
1895 }
1896
1897 if (l != m) {
1898
1899 if (l == M_PARTIAL)
1900
1901 remove_partial(n, page);
1902
1903 else if (l == M_FULL)
894b8788 1904
c65c1877 1905 remove_full(s, n, page);
2cfb7455
CL
1906
1907 if (m == M_PARTIAL) {
1908
1909 add_partial(n, page, tail);
136333d1 1910 stat(s, tail);
2cfb7455
CL
1911
1912 } else if (m == M_FULL) {
894b8788 1913
2cfb7455
CL
1914 stat(s, DEACTIVATE_FULL);
1915 add_full(s, n, page);
1916
1917 }
1918 }
1919
1920 l = m;
1d07171c 1921 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1922 old.freelist, old.counters,
1923 new.freelist, new.counters,
1924 "unfreezing slab"))
1925 goto redo;
1926
2cfb7455
CL
1927 if (lock)
1928 spin_unlock(&n->list_lock);
1929
1930 if (m == M_FREE) {
1931 stat(s, DEACTIVATE_EMPTY);
1932 discard_slab(s, page);
1933 stat(s, FREE_SLAB);
894b8788 1934 }
81819f0f
CL
1935}
1936
d24ac77f
JK
1937/*
1938 * Unfreeze all the cpu partial slabs.
1939 *
59a09917
CL
1940 * This function must be called with interrupts disabled
1941 * for the cpu using c (or some other guarantee must be there
1942 * to guarantee no concurrent accesses).
d24ac77f 1943 */
59a09917
CL
1944static void unfreeze_partials(struct kmem_cache *s,
1945 struct kmem_cache_cpu *c)
49e22585 1946{
345c905d 1947#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1948 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1949 struct page *page, *discard_page = NULL;
49e22585
CL
1950
1951 while ((page = c->partial)) {
49e22585
CL
1952 struct page new;
1953 struct page old;
1954
1955 c->partial = page->next;
43d77867
JK
1956
1957 n2 = get_node(s, page_to_nid(page));
1958 if (n != n2) {
1959 if (n)
1960 spin_unlock(&n->list_lock);
1961
1962 n = n2;
1963 spin_lock(&n->list_lock);
1964 }
49e22585
CL
1965
1966 do {
1967
1968 old.freelist = page->freelist;
1969 old.counters = page->counters;
a0132ac0 1970 VM_BUG_ON(!old.frozen);
49e22585
CL
1971
1972 new.counters = old.counters;
1973 new.freelist = old.freelist;
1974
1975 new.frozen = 0;
1976
d24ac77f 1977 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1978 old.freelist, old.counters,
1979 new.freelist, new.counters,
1980 "unfreezing slab"));
1981
43d77867 1982 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1983 page->next = discard_page;
1984 discard_page = page;
43d77867
JK
1985 } else {
1986 add_partial(n, page, DEACTIVATE_TO_TAIL);
1987 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1988 }
1989 }
1990
1991 if (n)
1992 spin_unlock(&n->list_lock);
9ada1934
SL
1993
1994 while (discard_page) {
1995 page = discard_page;
1996 discard_page = discard_page->next;
1997
1998 stat(s, DEACTIVATE_EMPTY);
1999 discard_slab(s, page);
2000 stat(s, FREE_SLAB);
2001 }
345c905d 2002#endif
49e22585
CL
2003}
2004
2005/*
2006 * Put a page that was just frozen (in __slab_free) into a partial page
2007 * slot if available. This is done without interrupts disabled and without
2008 * preemption disabled. The cmpxchg is racy and may put the partial page
2009 * onto a random cpus partial slot.
2010 *
2011 * If we did not find a slot then simply move all the partials to the
2012 * per node partial list.
2013 */
633b0764 2014static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2015{
345c905d 2016#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2017 struct page *oldpage;
2018 int pages;
2019 int pobjects;
2020
2021 do {
2022 pages = 0;
2023 pobjects = 0;
2024 oldpage = this_cpu_read(s->cpu_slab->partial);
2025
2026 if (oldpage) {
2027 pobjects = oldpage->pobjects;
2028 pages = oldpage->pages;
2029 if (drain && pobjects > s->cpu_partial) {
2030 unsigned long flags;
2031 /*
2032 * partial array is full. Move the existing
2033 * set to the per node partial list.
2034 */
2035 local_irq_save(flags);
59a09917 2036 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2037 local_irq_restore(flags);
e24fc410 2038 oldpage = NULL;
49e22585
CL
2039 pobjects = 0;
2040 pages = 0;
8028dcea 2041 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2042 }
2043 }
2044
2045 pages++;
2046 pobjects += page->objects - page->inuse;
2047
2048 page->pages = pages;
2049 page->pobjects = pobjects;
2050 page->next = oldpage;
2051
d0e0ac97
CG
2052 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2053 != oldpage);
345c905d 2054#endif
49e22585
CL
2055}
2056
dfb4f096 2057static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2058{
84e554e6 2059 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2060 deactivate_slab(s, c->page, c->freelist);
2061
2062 c->tid = next_tid(c->tid);
2063 c->page = NULL;
2064 c->freelist = NULL;
81819f0f
CL
2065}
2066
2067/*
2068 * Flush cpu slab.
6446faa2 2069 *
81819f0f
CL
2070 * Called from IPI handler with interrupts disabled.
2071 */
0c710013 2072static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2073{
9dfc6e68 2074 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2075
49e22585
CL
2076 if (likely(c)) {
2077 if (c->page)
2078 flush_slab(s, c);
2079
59a09917 2080 unfreeze_partials(s, c);
49e22585 2081 }
81819f0f
CL
2082}
2083
2084static void flush_cpu_slab(void *d)
2085{
2086 struct kmem_cache *s = d;
81819f0f 2087
dfb4f096 2088 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2089}
2090
a8364d55
GBY
2091static bool has_cpu_slab(int cpu, void *info)
2092{
2093 struct kmem_cache *s = info;
2094 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2095
02e1a9cd 2096 return c->page || c->partial;
a8364d55
GBY
2097}
2098
81819f0f
CL
2099static void flush_all(struct kmem_cache *s)
2100{
a8364d55 2101 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2102}
2103
dfb4f096
CL
2104/*
2105 * Check if the objects in a per cpu structure fit numa
2106 * locality expectations.
2107 */
57d437d2 2108static inline int node_match(struct page *page, int node)
dfb4f096
CL
2109{
2110#ifdef CONFIG_NUMA
4d7868e6 2111 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2112 return 0;
2113#endif
2114 return 1;
2115}
2116
781b2ba6
PE
2117static int count_free(struct page *page)
2118{
2119 return page->objects - page->inuse;
2120}
2121
2122static unsigned long count_partial(struct kmem_cache_node *n,
2123 int (*get_count)(struct page *))
2124{
2125 unsigned long flags;
2126 unsigned long x = 0;
2127 struct page *page;
2128
2129 spin_lock_irqsave(&n->list_lock, flags);
2130 list_for_each_entry(page, &n->partial, lru)
2131 x += get_count(page);
2132 spin_unlock_irqrestore(&n->list_lock, flags);
2133 return x;
2134}
2135
26c02cf0
AB
2136static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2137{
2138#ifdef CONFIG_SLUB_DEBUG
2139 return atomic_long_read(&n->total_objects);
2140#else
2141 return 0;
2142#endif
2143}
2144
781b2ba6
PE
2145static noinline void
2146slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2147{
2148 int node;
2149
2150 printk(KERN_WARNING
2151 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2152 nid, gfpflags);
2153 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2154 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2155 s->size, oo_order(s->oo), oo_order(s->min));
2156
3b0efdfa 2157 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2158 printk(KERN_WARNING " %s debugging increased min order, use "
2159 "slub_debug=O to disable.\n", s->name);
2160
781b2ba6
PE
2161 for_each_online_node(node) {
2162 struct kmem_cache_node *n = get_node(s, node);
2163 unsigned long nr_slabs;
2164 unsigned long nr_objs;
2165 unsigned long nr_free;
2166
2167 if (!n)
2168 continue;
2169
26c02cf0
AB
2170 nr_free = count_partial(n, count_free);
2171 nr_slabs = node_nr_slabs(n);
2172 nr_objs = node_nr_objs(n);
781b2ba6
PE
2173
2174 printk(KERN_WARNING
2175 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2176 node, nr_slabs, nr_objs, nr_free);
2177 }
2178}
2179
497b66f2
CL
2180static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2181 int node, struct kmem_cache_cpu **pc)
2182{
6faa6833 2183 void *freelist;
188fd063
CL
2184 struct kmem_cache_cpu *c = *pc;
2185 struct page *page;
497b66f2 2186
188fd063 2187 freelist = get_partial(s, flags, node, c);
497b66f2 2188
188fd063
CL
2189 if (freelist)
2190 return freelist;
2191
2192 page = new_slab(s, flags, node);
497b66f2
CL
2193 if (page) {
2194 c = __this_cpu_ptr(s->cpu_slab);
2195 if (c->page)
2196 flush_slab(s, c);
2197
2198 /*
2199 * No other reference to the page yet so we can
2200 * muck around with it freely without cmpxchg
2201 */
6faa6833 2202 freelist = page->freelist;
497b66f2
CL
2203 page->freelist = NULL;
2204
2205 stat(s, ALLOC_SLAB);
497b66f2
CL
2206 c->page = page;
2207 *pc = c;
2208 } else
6faa6833 2209 freelist = NULL;
497b66f2 2210
6faa6833 2211 return freelist;
497b66f2
CL
2212}
2213
072bb0aa
MG
2214static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2215{
2216 if (unlikely(PageSlabPfmemalloc(page)))
2217 return gfp_pfmemalloc_allowed(gfpflags);
2218
2219 return true;
2220}
2221
213eeb9f 2222/*
d0e0ac97
CG
2223 * Check the page->freelist of a page and either transfer the freelist to the
2224 * per cpu freelist or deactivate the page.
213eeb9f
CL
2225 *
2226 * The page is still frozen if the return value is not NULL.
2227 *
2228 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2229 *
2230 * This function must be called with interrupt disabled.
213eeb9f
CL
2231 */
2232static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2233{
2234 struct page new;
2235 unsigned long counters;
2236 void *freelist;
2237
2238 do {
2239 freelist = page->freelist;
2240 counters = page->counters;
6faa6833 2241
213eeb9f 2242 new.counters = counters;
a0132ac0 2243 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2244
2245 new.inuse = page->objects;
2246 new.frozen = freelist != NULL;
2247
d24ac77f 2248 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2249 freelist, counters,
2250 NULL, new.counters,
2251 "get_freelist"));
2252
2253 return freelist;
2254}
2255
81819f0f 2256/*
894b8788
CL
2257 * Slow path. The lockless freelist is empty or we need to perform
2258 * debugging duties.
2259 *
894b8788
CL
2260 * Processing is still very fast if new objects have been freed to the
2261 * regular freelist. In that case we simply take over the regular freelist
2262 * as the lockless freelist and zap the regular freelist.
81819f0f 2263 *
894b8788
CL
2264 * If that is not working then we fall back to the partial lists. We take the
2265 * first element of the freelist as the object to allocate now and move the
2266 * rest of the freelist to the lockless freelist.
81819f0f 2267 *
894b8788 2268 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2269 * we need to allocate a new slab. This is the slowest path since it involves
2270 * a call to the page allocator and the setup of a new slab.
81819f0f 2271 */
ce71e27c
EGM
2272static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2273 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2274{
6faa6833 2275 void *freelist;
f6e7def7 2276 struct page *page;
8a5ec0ba
CL
2277 unsigned long flags;
2278
2279 local_irq_save(flags);
2280#ifdef CONFIG_PREEMPT
2281 /*
2282 * We may have been preempted and rescheduled on a different
2283 * cpu before disabling interrupts. Need to reload cpu area
2284 * pointer.
2285 */
2286 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2287#endif
81819f0f 2288
f6e7def7
CL
2289 page = c->page;
2290 if (!page)
81819f0f 2291 goto new_slab;
49e22585 2292redo:
6faa6833 2293
57d437d2 2294 if (unlikely(!node_match(page, node))) {
e36a2652 2295 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2296 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2297 c->page = NULL;
2298 c->freelist = NULL;
fc59c053
CL
2299 goto new_slab;
2300 }
6446faa2 2301
072bb0aa
MG
2302 /*
2303 * By rights, we should be searching for a slab page that was
2304 * PFMEMALLOC but right now, we are losing the pfmemalloc
2305 * information when the page leaves the per-cpu allocator
2306 */
2307 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2308 deactivate_slab(s, page, c->freelist);
2309 c->page = NULL;
2310 c->freelist = NULL;
2311 goto new_slab;
2312 }
2313
73736e03 2314 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2315 freelist = c->freelist;
2316 if (freelist)
73736e03 2317 goto load_freelist;
03e404af 2318
2cfb7455 2319 stat(s, ALLOC_SLOWPATH);
03e404af 2320
f6e7def7 2321 freelist = get_freelist(s, page);
6446faa2 2322
6faa6833 2323 if (!freelist) {
03e404af
CL
2324 c->page = NULL;
2325 stat(s, DEACTIVATE_BYPASS);
fc59c053 2326 goto new_slab;
03e404af 2327 }
6446faa2 2328
84e554e6 2329 stat(s, ALLOC_REFILL);
6446faa2 2330
894b8788 2331load_freelist:
507effea
CL
2332 /*
2333 * freelist is pointing to the list of objects to be used.
2334 * page is pointing to the page from which the objects are obtained.
2335 * That page must be frozen for per cpu allocations to work.
2336 */
a0132ac0 2337 VM_BUG_ON(!c->page->frozen);
6faa6833 2338 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2339 c->tid = next_tid(c->tid);
2340 local_irq_restore(flags);
6faa6833 2341 return freelist;
81819f0f 2342
81819f0f 2343new_slab:
2cfb7455 2344
49e22585 2345 if (c->partial) {
f6e7def7
CL
2346 page = c->page = c->partial;
2347 c->partial = page->next;
49e22585
CL
2348 stat(s, CPU_PARTIAL_ALLOC);
2349 c->freelist = NULL;
2350 goto redo;
81819f0f
CL
2351 }
2352
188fd063 2353 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2354
f4697436
CL
2355 if (unlikely(!freelist)) {
2356 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2357 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2358
f4697436
CL
2359 local_irq_restore(flags);
2360 return NULL;
81819f0f 2361 }
2cfb7455 2362
f6e7def7 2363 page = c->page;
5091b74a 2364 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2365 goto load_freelist;
2cfb7455 2366
497b66f2 2367 /* Only entered in the debug case */
d0e0ac97
CG
2368 if (kmem_cache_debug(s) &&
2369 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2370 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2371
f6e7def7 2372 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2373 c->page = NULL;
2374 c->freelist = NULL;
a71ae47a 2375 local_irq_restore(flags);
6faa6833 2376 return freelist;
894b8788
CL
2377}
2378
2379/*
2380 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2381 * have the fastpath folded into their functions. So no function call
2382 * overhead for requests that can be satisfied on the fastpath.
2383 *
2384 * The fastpath works by first checking if the lockless freelist can be used.
2385 * If not then __slab_alloc is called for slow processing.
2386 *
2387 * Otherwise we can simply pick the next object from the lockless free list.
2388 */
2b847c3c 2389static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2390 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2391{
894b8788 2392 void **object;
dfb4f096 2393 struct kmem_cache_cpu *c;
57d437d2 2394 struct page *page;
8a5ec0ba 2395 unsigned long tid;
1f84260c 2396
c016b0bd 2397 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2398 return NULL;
1f84260c 2399
d79923fa 2400 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2401redo:
8a5ec0ba
CL
2402 /*
2403 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2404 * enabled. We may switch back and forth between cpus while
2405 * reading from one cpu area. That does not matter as long
2406 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2407 *
2408 * Preemption is disabled for the retrieval of the tid because that
2409 * must occur from the current processor. We cannot allow rescheduling
2410 * on a different processor between the determination of the pointer
2411 * and the retrieval of the tid.
8a5ec0ba 2412 */
7cccd80b 2413 preempt_disable();
9dfc6e68 2414 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2415
8a5ec0ba
CL
2416 /*
2417 * The transaction ids are globally unique per cpu and per operation on
2418 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2419 * occurs on the right processor and that there was no operation on the
2420 * linked list in between.
2421 */
2422 tid = c->tid;
7cccd80b 2423 preempt_enable();
8a5ec0ba 2424
9dfc6e68 2425 object = c->freelist;
57d437d2 2426 page = c->page;
ac6434e6 2427 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2428 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2429
2430 else {
0ad9500e
ED
2431 void *next_object = get_freepointer_safe(s, object);
2432
8a5ec0ba 2433 /*
25985edc 2434 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2435 * operation and if we are on the right processor.
2436 *
d0e0ac97
CG
2437 * The cmpxchg does the following atomically (without lock
2438 * semantics!)
8a5ec0ba
CL
2439 * 1. Relocate first pointer to the current per cpu area.
2440 * 2. Verify that tid and freelist have not been changed
2441 * 3. If they were not changed replace tid and freelist
2442 *
d0e0ac97
CG
2443 * Since this is without lock semantics the protection is only
2444 * against code executing on this cpu *not* from access by
2445 * other cpus.
8a5ec0ba 2446 */
933393f5 2447 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2448 s->cpu_slab->freelist, s->cpu_slab->tid,
2449 object, tid,
0ad9500e 2450 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2451
2452 note_cmpxchg_failure("slab_alloc", s, tid);
2453 goto redo;
2454 }
0ad9500e 2455 prefetch_freepointer(s, next_object);
84e554e6 2456 stat(s, ALLOC_FASTPATH);
894b8788 2457 }
8a5ec0ba 2458
74e2134f 2459 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2460 memset(object, 0, s->object_size);
d07dbea4 2461
c016b0bd 2462 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2463
894b8788 2464 return object;
81819f0f
CL
2465}
2466
2b847c3c
EG
2467static __always_inline void *slab_alloc(struct kmem_cache *s,
2468 gfp_t gfpflags, unsigned long addr)
2469{
2470 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2471}
2472
81819f0f
CL
2473void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2474{
2b847c3c 2475 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2476
d0e0ac97
CG
2477 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2478 s->size, gfpflags);
5b882be4
EGM
2479
2480 return ret;
81819f0f
CL
2481}
2482EXPORT_SYMBOL(kmem_cache_alloc);
2483
0f24f128 2484#ifdef CONFIG_TRACING
4a92379b
RK
2485void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2486{
2b847c3c 2487 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2488 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2489 return ret;
2490}
2491EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2492#endif
2493
81819f0f
CL
2494#ifdef CONFIG_NUMA
2495void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2496{
2b847c3c 2497 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2498
ca2b84cb 2499 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2500 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2501
2502 return ret;
81819f0f
CL
2503}
2504EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2505
0f24f128 2506#ifdef CONFIG_TRACING
4a92379b 2507void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2508 gfp_t gfpflags,
4a92379b 2509 int node, size_t size)
5b882be4 2510{
2b847c3c 2511 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2512
2513 trace_kmalloc_node(_RET_IP_, ret,
2514 size, s->size, gfpflags, node);
2515 return ret;
5b882be4 2516}
4a92379b 2517EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2518#endif
5d1f57e4 2519#endif
5b882be4 2520
81819f0f 2521/*
894b8788
CL
2522 * Slow patch handling. This may still be called frequently since objects
2523 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2524 *
894b8788
CL
2525 * So we still attempt to reduce cache line usage. Just take the slab
2526 * lock and free the item. If there is no additional partial page
2527 * handling required then we can return immediately.
81819f0f 2528 */
894b8788 2529static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2530 void *x, unsigned long addr)
81819f0f
CL
2531{
2532 void *prior;
2533 void **object = (void *)x;
2cfb7455 2534 int was_frozen;
2cfb7455
CL
2535 struct page new;
2536 unsigned long counters;
2537 struct kmem_cache_node *n = NULL;
61728d1e 2538 unsigned long uninitialized_var(flags);
81819f0f 2539
8a5ec0ba 2540 stat(s, FREE_SLOWPATH);
81819f0f 2541
19c7ff9e
CL
2542 if (kmem_cache_debug(s) &&
2543 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2544 return;
6446faa2 2545
2cfb7455 2546 do {
837d678d
JK
2547 if (unlikely(n)) {
2548 spin_unlock_irqrestore(&n->list_lock, flags);
2549 n = NULL;
2550 }
2cfb7455
CL
2551 prior = page->freelist;
2552 counters = page->counters;
2553 set_freepointer(s, object, prior);
2554 new.counters = counters;
2555 was_frozen = new.frozen;
2556 new.inuse--;
837d678d 2557 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2558
c65c1877 2559 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2560
2561 /*
d0e0ac97
CG
2562 * Slab was on no list before and will be
2563 * partially empty
2564 * We can defer the list move and instead
2565 * freeze it.
49e22585
CL
2566 */
2567 new.frozen = 1;
2568
c65c1877 2569 } else { /* Needs to be taken off a list */
49e22585
CL
2570
2571 n = get_node(s, page_to_nid(page));
2572 /*
2573 * Speculatively acquire the list_lock.
2574 * If the cmpxchg does not succeed then we may
2575 * drop the list_lock without any processing.
2576 *
2577 * Otherwise the list_lock will synchronize with
2578 * other processors updating the list of slabs.
2579 */
2580 spin_lock_irqsave(&n->list_lock, flags);
2581
2582 }
2cfb7455 2583 }
81819f0f 2584
2cfb7455
CL
2585 } while (!cmpxchg_double_slab(s, page,
2586 prior, counters,
2587 object, new.counters,
2588 "__slab_free"));
81819f0f 2589
2cfb7455 2590 if (likely(!n)) {
49e22585
CL
2591
2592 /*
2593 * If we just froze the page then put it onto the
2594 * per cpu partial list.
2595 */
8028dcea 2596 if (new.frozen && !was_frozen) {
49e22585 2597 put_cpu_partial(s, page, 1);
8028dcea
AS
2598 stat(s, CPU_PARTIAL_FREE);
2599 }
49e22585 2600 /*
2cfb7455
CL
2601 * The list lock was not taken therefore no list
2602 * activity can be necessary.
2603 */
2604 if (was_frozen)
2605 stat(s, FREE_FROZEN);
80f08c19 2606 return;
2cfb7455 2607 }
81819f0f 2608
837d678d
JK
2609 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2610 goto slab_empty;
2611
81819f0f 2612 /*
837d678d
JK
2613 * Objects left in the slab. If it was not on the partial list before
2614 * then add it.
81819f0f 2615 */
345c905d
JK
2616 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2617 if (kmem_cache_debug(s))
c65c1877 2618 remove_full(s, n, page);
837d678d
JK
2619 add_partial(n, page, DEACTIVATE_TO_TAIL);
2620 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2621 }
80f08c19 2622 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2623 return;
2624
2625slab_empty:
a973e9dd 2626 if (prior) {
81819f0f 2627 /*
6fbabb20 2628 * Slab on the partial list.
81819f0f 2629 */
5cc6eee8 2630 remove_partial(n, page);
84e554e6 2631 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2632 } else {
6fbabb20 2633 /* Slab must be on the full list */
c65c1877
PZ
2634 remove_full(s, n, page);
2635 }
2cfb7455 2636
80f08c19 2637 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2638 stat(s, FREE_SLAB);
81819f0f 2639 discard_slab(s, page);
81819f0f
CL
2640}
2641
894b8788
CL
2642/*
2643 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2644 * can perform fastpath freeing without additional function calls.
2645 *
2646 * The fastpath is only possible if we are freeing to the current cpu slab
2647 * of this processor. This typically the case if we have just allocated
2648 * the item before.
2649 *
2650 * If fastpath is not possible then fall back to __slab_free where we deal
2651 * with all sorts of special processing.
2652 */
06428780 2653static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2654 struct page *page, void *x, unsigned long addr)
894b8788
CL
2655{
2656 void **object = (void *)x;
dfb4f096 2657 struct kmem_cache_cpu *c;
8a5ec0ba 2658 unsigned long tid;
1f84260c 2659
c016b0bd
CL
2660 slab_free_hook(s, x);
2661
8a5ec0ba
CL
2662redo:
2663 /*
2664 * Determine the currently cpus per cpu slab.
2665 * The cpu may change afterward. However that does not matter since
2666 * data is retrieved via this pointer. If we are on the same cpu
2667 * during the cmpxchg then the free will succedd.
2668 */
7cccd80b 2669 preempt_disable();
9dfc6e68 2670 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2671
8a5ec0ba 2672 tid = c->tid;
7cccd80b 2673 preempt_enable();
c016b0bd 2674
442b06bc 2675 if (likely(page == c->page)) {
ff12059e 2676 set_freepointer(s, object, c->freelist);
8a5ec0ba 2677
933393f5 2678 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2679 s->cpu_slab->freelist, s->cpu_slab->tid,
2680 c->freelist, tid,
2681 object, next_tid(tid)))) {
2682
2683 note_cmpxchg_failure("slab_free", s, tid);
2684 goto redo;
2685 }
84e554e6 2686 stat(s, FREE_FASTPATH);
894b8788 2687 } else
ff12059e 2688 __slab_free(s, page, x, addr);
894b8788 2689
894b8788
CL
2690}
2691
81819f0f
CL
2692void kmem_cache_free(struct kmem_cache *s, void *x)
2693{
b9ce5ef4
GC
2694 s = cache_from_obj(s, x);
2695 if (!s)
79576102 2696 return;
b9ce5ef4 2697 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2698 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2699}
2700EXPORT_SYMBOL(kmem_cache_free);
2701
81819f0f 2702/*
672bba3a
CL
2703 * Object placement in a slab is made very easy because we always start at
2704 * offset 0. If we tune the size of the object to the alignment then we can
2705 * get the required alignment by putting one properly sized object after
2706 * another.
81819f0f
CL
2707 *
2708 * Notice that the allocation order determines the sizes of the per cpu
2709 * caches. Each processor has always one slab available for allocations.
2710 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2711 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2712 * locking overhead.
81819f0f
CL
2713 */
2714
2715/*
2716 * Mininum / Maximum order of slab pages. This influences locking overhead
2717 * and slab fragmentation. A higher order reduces the number of partial slabs
2718 * and increases the number of allocations possible without having to
2719 * take the list_lock.
2720 */
2721static int slub_min_order;
114e9e89 2722static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2723static int slub_min_objects;
81819f0f
CL
2724
2725/*
2726 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2727 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2728 */
2729static int slub_nomerge;
2730
81819f0f
CL
2731/*
2732 * Calculate the order of allocation given an slab object size.
2733 *
672bba3a
CL
2734 * The order of allocation has significant impact on performance and other
2735 * system components. Generally order 0 allocations should be preferred since
2736 * order 0 does not cause fragmentation in the page allocator. Larger objects
2737 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2738 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2739 * would be wasted.
2740 *
2741 * In order to reach satisfactory performance we must ensure that a minimum
2742 * number of objects is in one slab. Otherwise we may generate too much
2743 * activity on the partial lists which requires taking the list_lock. This is
2744 * less a concern for large slabs though which are rarely used.
81819f0f 2745 *
672bba3a
CL
2746 * slub_max_order specifies the order where we begin to stop considering the
2747 * number of objects in a slab as critical. If we reach slub_max_order then
2748 * we try to keep the page order as low as possible. So we accept more waste
2749 * of space in favor of a small page order.
81819f0f 2750 *
672bba3a
CL
2751 * Higher order allocations also allow the placement of more objects in a
2752 * slab and thereby reduce object handling overhead. If the user has
2753 * requested a higher mininum order then we start with that one instead of
2754 * the smallest order which will fit the object.
81819f0f 2755 */
5e6d444e 2756static inline int slab_order(int size, int min_objects,
ab9a0f19 2757 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2758{
2759 int order;
2760 int rem;
6300ea75 2761 int min_order = slub_min_order;
81819f0f 2762
ab9a0f19 2763 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2764 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2765
6300ea75 2766 for (order = max(min_order,
5e6d444e
CL
2767 fls(min_objects * size - 1) - PAGE_SHIFT);
2768 order <= max_order; order++) {
81819f0f 2769
5e6d444e 2770 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2771
ab9a0f19 2772 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2773 continue;
2774
ab9a0f19 2775 rem = (slab_size - reserved) % size;
81819f0f 2776
5e6d444e 2777 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2778 break;
2779
2780 }
672bba3a 2781
81819f0f
CL
2782 return order;
2783}
2784
ab9a0f19 2785static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2786{
2787 int order;
2788 int min_objects;
2789 int fraction;
e8120ff1 2790 int max_objects;
5e6d444e
CL
2791
2792 /*
2793 * Attempt to find best configuration for a slab. This
2794 * works by first attempting to generate a layout with
2795 * the best configuration and backing off gradually.
2796 *
2797 * First we reduce the acceptable waste in a slab. Then
2798 * we reduce the minimum objects required in a slab.
2799 */
2800 min_objects = slub_min_objects;
9b2cd506
CL
2801 if (!min_objects)
2802 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2803 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2804 min_objects = min(min_objects, max_objects);
2805
5e6d444e 2806 while (min_objects > 1) {
c124f5b5 2807 fraction = 16;
5e6d444e
CL
2808 while (fraction >= 4) {
2809 order = slab_order(size, min_objects,
ab9a0f19 2810 slub_max_order, fraction, reserved);
5e6d444e
CL
2811 if (order <= slub_max_order)
2812 return order;
2813 fraction /= 2;
2814 }
5086c389 2815 min_objects--;
5e6d444e
CL
2816 }
2817
2818 /*
2819 * We were unable to place multiple objects in a slab. Now
2820 * lets see if we can place a single object there.
2821 */
ab9a0f19 2822 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2823 if (order <= slub_max_order)
2824 return order;
2825
2826 /*
2827 * Doh this slab cannot be placed using slub_max_order.
2828 */
ab9a0f19 2829 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2830 if (order < MAX_ORDER)
5e6d444e
CL
2831 return order;
2832 return -ENOSYS;
2833}
2834
5595cffc 2835static void
4053497d 2836init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2837{
2838 n->nr_partial = 0;
81819f0f
CL
2839 spin_lock_init(&n->list_lock);
2840 INIT_LIST_HEAD(&n->partial);
8ab1372f 2841#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2842 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2843 atomic_long_set(&n->total_objects, 0);
643b1138 2844 INIT_LIST_HEAD(&n->full);
8ab1372f 2845#endif
81819f0f
CL
2846}
2847
55136592 2848static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2849{
6c182dc0 2850 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2851 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2852
8a5ec0ba 2853 /*
d4d84fef
CM
2854 * Must align to double word boundary for the double cmpxchg
2855 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2856 */
d4d84fef
CM
2857 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2858 2 * sizeof(void *));
8a5ec0ba
CL
2859
2860 if (!s->cpu_slab)
2861 return 0;
2862
2863 init_kmem_cache_cpus(s);
4c93c355 2864
8a5ec0ba 2865 return 1;
4c93c355 2866}
4c93c355 2867
51df1142
CL
2868static struct kmem_cache *kmem_cache_node;
2869
81819f0f
CL
2870/*
2871 * No kmalloc_node yet so do it by hand. We know that this is the first
2872 * slab on the node for this slabcache. There are no concurrent accesses
2873 * possible.
2874 *
721ae22a
ZYW
2875 * Note that this function only works on the kmem_cache_node
2876 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2877 * memory on a fresh node that has no slab structures yet.
81819f0f 2878 */
55136592 2879static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2880{
2881 struct page *page;
2882 struct kmem_cache_node *n;
2883
51df1142 2884 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2885
51df1142 2886 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2887
2888 BUG_ON(!page);
a2f92ee7
CL
2889 if (page_to_nid(page) != node) {
2890 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2891 "node %d\n", node);
2892 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2893 "in order to be able to continue\n");
2894 }
2895
81819f0f
CL
2896 n = page->freelist;
2897 BUG_ON(!n);
51df1142 2898 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2899 page->inuse = 1;
8cb0a506 2900 page->frozen = 0;
51df1142 2901 kmem_cache_node->node[node] = n;
8ab1372f 2902#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2903 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2904 init_tracking(kmem_cache_node, n);
8ab1372f 2905#endif
4053497d 2906 init_kmem_cache_node(n);
51df1142 2907 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2908
67b6c900
DH
2909 /*
2910 * the lock is for lockdep's sake, not for any actual
2911 * race protection
2912 */
2913 spin_lock(&n->list_lock);
136333d1 2914 add_partial(n, page, DEACTIVATE_TO_HEAD);
67b6c900 2915 spin_unlock(&n->list_lock);
81819f0f
CL
2916}
2917
2918static void free_kmem_cache_nodes(struct kmem_cache *s)
2919{
2920 int node;
2921
f64dc58c 2922 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2923 struct kmem_cache_node *n = s->node[node];
51df1142 2924
73367bd8 2925 if (n)
51df1142
CL
2926 kmem_cache_free(kmem_cache_node, n);
2927
81819f0f
CL
2928 s->node[node] = NULL;
2929 }
2930}
2931
55136592 2932static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2933{
2934 int node;
81819f0f 2935
f64dc58c 2936 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2937 struct kmem_cache_node *n;
2938
73367bd8 2939 if (slab_state == DOWN) {
55136592 2940 early_kmem_cache_node_alloc(node);
73367bd8
AD
2941 continue;
2942 }
51df1142 2943 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2944 GFP_KERNEL, node);
81819f0f 2945
73367bd8
AD
2946 if (!n) {
2947 free_kmem_cache_nodes(s);
2948 return 0;
81819f0f 2949 }
73367bd8 2950
81819f0f 2951 s->node[node] = n;
4053497d 2952 init_kmem_cache_node(n);
81819f0f
CL
2953 }
2954 return 1;
2955}
81819f0f 2956
c0bdb232 2957static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2958{
2959 if (min < MIN_PARTIAL)
2960 min = MIN_PARTIAL;
2961 else if (min > MAX_PARTIAL)
2962 min = MAX_PARTIAL;
2963 s->min_partial = min;
2964}
2965
81819f0f
CL
2966/*
2967 * calculate_sizes() determines the order and the distribution of data within
2968 * a slab object.
2969 */
06b285dc 2970static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2971{
2972 unsigned long flags = s->flags;
3b0efdfa 2973 unsigned long size = s->object_size;
834f3d11 2974 int order;
81819f0f 2975
d8b42bf5
CL
2976 /*
2977 * Round up object size to the next word boundary. We can only
2978 * place the free pointer at word boundaries and this determines
2979 * the possible location of the free pointer.
2980 */
2981 size = ALIGN(size, sizeof(void *));
2982
2983#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2984 /*
2985 * Determine if we can poison the object itself. If the user of
2986 * the slab may touch the object after free or before allocation
2987 * then we should never poison the object itself.
2988 */
2989 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2990 !s->ctor)
81819f0f
CL
2991 s->flags |= __OBJECT_POISON;
2992 else
2993 s->flags &= ~__OBJECT_POISON;
2994
81819f0f
CL
2995
2996 /*
672bba3a 2997 * If we are Redzoning then check if there is some space between the
81819f0f 2998 * end of the object and the free pointer. If not then add an
672bba3a 2999 * additional word to have some bytes to store Redzone information.
81819f0f 3000 */
3b0efdfa 3001 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3002 size += sizeof(void *);
41ecc55b 3003#endif
81819f0f
CL
3004
3005 /*
672bba3a
CL
3006 * With that we have determined the number of bytes in actual use
3007 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3008 */
3009 s->inuse = size;
3010
3011 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3012 s->ctor)) {
81819f0f
CL
3013 /*
3014 * Relocate free pointer after the object if it is not
3015 * permitted to overwrite the first word of the object on
3016 * kmem_cache_free.
3017 *
3018 * This is the case if we do RCU, have a constructor or
3019 * destructor or are poisoning the objects.
3020 */
3021 s->offset = size;
3022 size += sizeof(void *);
3023 }
3024
c12b3c62 3025#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3026 if (flags & SLAB_STORE_USER)
3027 /*
3028 * Need to store information about allocs and frees after
3029 * the object.
3030 */
3031 size += 2 * sizeof(struct track);
3032
be7b3fbc 3033 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3034 /*
3035 * Add some empty padding so that we can catch
3036 * overwrites from earlier objects rather than let
3037 * tracking information or the free pointer be
0211a9c8 3038 * corrupted if a user writes before the start
81819f0f
CL
3039 * of the object.
3040 */
3041 size += sizeof(void *);
41ecc55b 3042#endif
672bba3a 3043
81819f0f
CL
3044 /*
3045 * SLUB stores one object immediately after another beginning from
3046 * offset 0. In order to align the objects we have to simply size
3047 * each object to conform to the alignment.
3048 */
45906855 3049 size = ALIGN(size, s->align);
81819f0f 3050 s->size = size;
06b285dc
CL
3051 if (forced_order >= 0)
3052 order = forced_order;
3053 else
ab9a0f19 3054 order = calculate_order(size, s->reserved);
81819f0f 3055
834f3d11 3056 if (order < 0)
81819f0f
CL
3057 return 0;
3058
b7a49f0d 3059 s->allocflags = 0;
834f3d11 3060 if (order)
b7a49f0d
CL
3061 s->allocflags |= __GFP_COMP;
3062
3063 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3064 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3065
3066 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3067 s->allocflags |= __GFP_RECLAIMABLE;
3068
81819f0f
CL
3069 /*
3070 * Determine the number of objects per slab
3071 */
ab9a0f19
LJ
3072 s->oo = oo_make(order, size, s->reserved);
3073 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3074 if (oo_objects(s->oo) > oo_objects(s->max))
3075 s->max = s->oo;
81819f0f 3076
834f3d11 3077 return !!oo_objects(s->oo);
81819f0f
CL
3078}
3079
8a13a4cc 3080static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3081{
8a13a4cc 3082 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3083 s->reserved = 0;
81819f0f 3084
da9a638c
LJ
3085 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3086 s->reserved = sizeof(struct rcu_head);
81819f0f 3087
06b285dc 3088 if (!calculate_sizes(s, -1))
81819f0f 3089 goto error;
3de47213
DR
3090 if (disable_higher_order_debug) {
3091 /*
3092 * Disable debugging flags that store metadata if the min slab
3093 * order increased.
3094 */
3b0efdfa 3095 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3096 s->flags &= ~DEBUG_METADATA_FLAGS;
3097 s->offset = 0;
3098 if (!calculate_sizes(s, -1))
3099 goto error;
3100 }
3101 }
81819f0f 3102
2565409f
HC
3103#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3104 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3105 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3106 /* Enable fast mode */
3107 s->flags |= __CMPXCHG_DOUBLE;
3108#endif
3109
3b89d7d8
DR
3110 /*
3111 * The larger the object size is, the more pages we want on the partial
3112 * list to avoid pounding the page allocator excessively.
3113 */
49e22585
CL
3114 set_min_partial(s, ilog2(s->size) / 2);
3115
3116 /*
3117 * cpu_partial determined the maximum number of objects kept in the
3118 * per cpu partial lists of a processor.
3119 *
3120 * Per cpu partial lists mainly contain slabs that just have one
3121 * object freed. If they are used for allocation then they can be
3122 * filled up again with minimal effort. The slab will never hit the
3123 * per node partial lists and therefore no locking will be required.
3124 *
3125 * This setting also determines
3126 *
3127 * A) The number of objects from per cpu partial slabs dumped to the
3128 * per node list when we reach the limit.
9f264904 3129 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3130 * per node list when we run out of per cpu objects. We only fetch
3131 * 50% to keep some capacity around for frees.
49e22585 3132 */
345c905d 3133 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3134 s->cpu_partial = 0;
3135 else if (s->size >= PAGE_SIZE)
49e22585
CL
3136 s->cpu_partial = 2;
3137 else if (s->size >= 1024)
3138 s->cpu_partial = 6;
3139 else if (s->size >= 256)
3140 s->cpu_partial = 13;
3141 else
3142 s->cpu_partial = 30;
3143
81819f0f 3144#ifdef CONFIG_NUMA
e2cb96b7 3145 s->remote_node_defrag_ratio = 1000;
81819f0f 3146#endif
55136592 3147 if (!init_kmem_cache_nodes(s))
dfb4f096 3148 goto error;
81819f0f 3149
55136592 3150 if (alloc_kmem_cache_cpus(s))
278b1bb1 3151 return 0;
ff12059e 3152
4c93c355 3153 free_kmem_cache_nodes(s);
81819f0f
CL
3154error:
3155 if (flags & SLAB_PANIC)
3156 panic("Cannot create slab %s size=%lu realsize=%u "
3157 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3158 s->name, (unsigned long)s->size, s->size,
3159 oo_order(s->oo), s->offset, flags);
278b1bb1 3160 return -EINVAL;
81819f0f 3161}
81819f0f 3162
33b12c38
CL
3163static void list_slab_objects(struct kmem_cache *s, struct page *page,
3164 const char *text)
3165{
3166#ifdef CONFIG_SLUB_DEBUG
3167 void *addr = page_address(page);
3168 void *p;
a5dd5c11
NK
3169 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3170 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3171 if (!map)
3172 return;
945cf2b6 3173 slab_err(s, page, text, s->name);
33b12c38 3174 slab_lock(page);
33b12c38 3175
5f80b13a 3176 get_map(s, page, map);
33b12c38
CL
3177 for_each_object(p, s, addr, page->objects) {
3178
3179 if (!test_bit(slab_index(p, s, addr), map)) {
3180 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3181 p, p - addr);
3182 print_tracking(s, p);
3183 }
3184 }
3185 slab_unlock(page);
bbd7d57b 3186 kfree(map);
33b12c38
CL
3187#endif
3188}
3189
81819f0f 3190/*
599870b1 3191 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3192 * This is called from kmem_cache_close(). We must be the last thread
3193 * using the cache and therefore we do not need to lock anymore.
81819f0f 3194 */
599870b1 3195static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3196{
81819f0f
CL
3197 struct page *page, *h;
3198
33b12c38 3199 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3200 if (!page->inuse) {
5cc6eee8 3201 remove_partial(n, page);
81819f0f 3202 discard_slab(s, page);
33b12c38
CL
3203 } else {
3204 list_slab_objects(s, page,
945cf2b6 3205 "Objects remaining in %s on kmem_cache_close()");
599870b1 3206 }
33b12c38 3207 }
81819f0f
CL
3208}
3209
3210/*
672bba3a 3211 * Release all resources used by a slab cache.
81819f0f 3212 */
0c710013 3213static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3214{
3215 int node;
3216
3217 flush_all(s);
81819f0f 3218 /* Attempt to free all objects */
f64dc58c 3219 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3220 struct kmem_cache_node *n = get_node(s, node);
3221
599870b1
CL
3222 free_partial(s, n);
3223 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3224 return 1;
3225 }
945cf2b6 3226 free_percpu(s->cpu_slab);
81819f0f
CL
3227 free_kmem_cache_nodes(s);
3228 return 0;
3229}
3230
945cf2b6 3231int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3232{
12c3667f 3233 int rc = kmem_cache_close(s);
945cf2b6 3234
5413dfba
GC
3235 if (!rc) {
3236 /*
3237 * We do the same lock strategy around sysfs_slab_add, see
3238 * __kmem_cache_create. Because this is pretty much the last
3239 * operation we do and the lock will be released shortly after
3240 * that in slab_common.c, we could just move sysfs_slab_remove
3241 * to a later point in common code. We should do that when we
3242 * have a common sysfs framework for all allocators.
3243 */
3244 mutex_unlock(&slab_mutex);
81819f0f 3245 sysfs_slab_remove(s);
5413dfba
GC
3246 mutex_lock(&slab_mutex);
3247 }
12c3667f
CL
3248
3249 return rc;
81819f0f 3250}
81819f0f
CL
3251
3252/********************************************************************
3253 * Kmalloc subsystem
3254 *******************************************************************/
3255
81819f0f
CL
3256static int __init setup_slub_min_order(char *str)
3257{
06428780 3258 get_option(&str, &slub_min_order);
81819f0f
CL
3259
3260 return 1;
3261}
3262
3263__setup("slub_min_order=", setup_slub_min_order);
3264
3265static int __init setup_slub_max_order(char *str)
3266{
06428780 3267 get_option(&str, &slub_max_order);
818cf590 3268 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3269
3270 return 1;
3271}
3272
3273__setup("slub_max_order=", setup_slub_max_order);
3274
3275static int __init setup_slub_min_objects(char *str)
3276{
06428780 3277 get_option(&str, &slub_min_objects);
81819f0f
CL
3278
3279 return 1;
3280}
3281
3282__setup("slub_min_objects=", setup_slub_min_objects);
3283
3284static int __init setup_slub_nomerge(char *str)
3285{
3286 slub_nomerge = 1;
3287 return 1;
3288}
3289
3290__setup("slub_nomerge", setup_slub_nomerge);
3291
81819f0f
CL
3292void *__kmalloc(size_t size, gfp_t flags)
3293{
aadb4bc4 3294 struct kmem_cache *s;
5b882be4 3295 void *ret;
81819f0f 3296
95a05b42 3297 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3298 return kmalloc_large(size, flags);
aadb4bc4 3299
2c59dd65 3300 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3301
3302 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3303 return s;
3304
2b847c3c 3305 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3306
ca2b84cb 3307 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3308
3309 return ret;
81819f0f
CL
3310}
3311EXPORT_SYMBOL(__kmalloc);
3312
5d1f57e4 3313#ifdef CONFIG_NUMA
f619cfe1
CL
3314static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3315{
b1eeab67 3316 struct page *page;
e4f7c0b4 3317 void *ptr = NULL;
f619cfe1 3318
d79923fa 3319 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3320 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3321 if (page)
e4f7c0b4
CM
3322 ptr = page_address(page);
3323
d56791b3 3324 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3325 return ptr;
f619cfe1
CL
3326}
3327
81819f0f
CL
3328void *__kmalloc_node(size_t size, gfp_t flags, int node)
3329{
aadb4bc4 3330 struct kmem_cache *s;
5b882be4 3331 void *ret;
81819f0f 3332
95a05b42 3333 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3334 ret = kmalloc_large_node(size, flags, node);
3335
ca2b84cb
EGM
3336 trace_kmalloc_node(_RET_IP_, ret,
3337 size, PAGE_SIZE << get_order(size),
3338 flags, node);
5b882be4
EGM
3339
3340 return ret;
3341 }
aadb4bc4 3342
2c59dd65 3343 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3344
3345 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3346 return s;
3347
2b847c3c 3348 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3349
ca2b84cb 3350 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3351
3352 return ret;
81819f0f
CL
3353}
3354EXPORT_SYMBOL(__kmalloc_node);
3355#endif
3356
3357size_t ksize(const void *object)
3358{
272c1d21 3359 struct page *page;
81819f0f 3360
ef8b4520 3361 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3362 return 0;
3363
294a80a8 3364 page = virt_to_head_page(object);
294a80a8 3365
76994412
PE
3366 if (unlikely(!PageSlab(page))) {
3367 WARN_ON(!PageCompound(page));
294a80a8 3368 return PAGE_SIZE << compound_order(page);
76994412 3369 }
81819f0f 3370
1b4f59e3 3371 return slab_ksize(page->slab_cache);
81819f0f 3372}
b1aabecd 3373EXPORT_SYMBOL(ksize);
81819f0f
CL
3374
3375void kfree(const void *x)
3376{
81819f0f 3377 struct page *page;
5bb983b0 3378 void *object = (void *)x;
81819f0f 3379
2121db74
PE
3380 trace_kfree(_RET_IP_, x);
3381
2408c550 3382 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3383 return;
3384
b49af68f 3385 page = virt_to_head_page(x);
aadb4bc4 3386 if (unlikely(!PageSlab(page))) {
0937502a 3387 BUG_ON(!PageCompound(page));
d56791b3 3388 kfree_hook(x);
d79923fa 3389 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3390 return;
3391 }
1b4f59e3 3392 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3393}
3394EXPORT_SYMBOL(kfree);
3395
2086d26a 3396/*
672bba3a
CL
3397 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3398 * the remaining slabs by the number of items in use. The slabs with the
3399 * most items in use come first. New allocations will then fill those up
3400 * and thus they can be removed from the partial lists.
3401 *
3402 * The slabs with the least items are placed last. This results in them
3403 * being allocated from last increasing the chance that the last objects
3404 * are freed in them.
2086d26a
CL
3405 */
3406int kmem_cache_shrink(struct kmem_cache *s)
3407{
3408 int node;
3409 int i;
3410 struct kmem_cache_node *n;
3411 struct page *page;
3412 struct page *t;
205ab99d 3413 int objects = oo_objects(s->max);
2086d26a 3414 struct list_head *slabs_by_inuse =
834f3d11 3415 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3416 unsigned long flags;
3417
3418 if (!slabs_by_inuse)
3419 return -ENOMEM;
3420
3421 flush_all(s);
f64dc58c 3422 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3423 n = get_node(s, node);
3424
3425 if (!n->nr_partial)
3426 continue;
3427
834f3d11 3428 for (i = 0; i < objects; i++)
2086d26a
CL
3429 INIT_LIST_HEAD(slabs_by_inuse + i);
3430
3431 spin_lock_irqsave(&n->list_lock, flags);
3432
3433 /*
672bba3a 3434 * Build lists indexed by the items in use in each slab.
2086d26a 3435 *
672bba3a
CL
3436 * Note that concurrent frees may occur while we hold the
3437 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3438 */
3439 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3440 list_move(&page->lru, slabs_by_inuse + page->inuse);
3441 if (!page->inuse)
3442 n->nr_partial--;
2086d26a
CL
3443 }
3444
2086d26a 3445 /*
672bba3a
CL
3446 * Rebuild the partial list with the slabs filled up most
3447 * first and the least used slabs at the end.
2086d26a 3448 */
69cb8e6b 3449 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3450 list_splice(slabs_by_inuse + i, n->partial.prev);
3451
2086d26a 3452 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3453
3454 /* Release empty slabs */
3455 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3456 discard_slab(s, page);
2086d26a
CL
3457 }
3458
3459 kfree(slabs_by_inuse);
3460 return 0;
3461}
3462EXPORT_SYMBOL(kmem_cache_shrink);
3463
b9049e23
YG
3464static int slab_mem_going_offline_callback(void *arg)
3465{
3466 struct kmem_cache *s;
3467
18004c5d 3468 mutex_lock(&slab_mutex);
b9049e23
YG
3469 list_for_each_entry(s, &slab_caches, list)
3470 kmem_cache_shrink(s);
18004c5d 3471 mutex_unlock(&slab_mutex);
b9049e23
YG
3472
3473 return 0;
3474}
3475
3476static void slab_mem_offline_callback(void *arg)
3477{
3478 struct kmem_cache_node *n;
3479 struct kmem_cache *s;
3480 struct memory_notify *marg = arg;
3481 int offline_node;
3482
b9d5ab25 3483 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3484
3485 /*
3486 * If the node still has available memory. we need kmem_cache_node
3487 * for it yet.
3488 */
3489 if (offline_node < 0)
3490 return;
3491
18004c5d 3492 mutex_lock(&slab_mutex);
b9049e23
YG
3493 list_for_each_entry(s, &slab_caches, list) {
3494 n = get_node(s, offline_node);
3495 if (n) {
3496 /*
3497 * if n->nr_slabs > 0, slabs still exist on the node
3498 * that is going down. We were unable to free them,
c9404c9c 3499 * and offline_pages() function shouldn't call this
b9049e23
YG
3500 * callback. So, we must fail.
3501 */
0f389ec6 3502 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3503
3504 s->node[offline_node] = NULL;
8de66a0c 3505 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3506 }
3507 }
18004c5d 3508 mutex_unlock(&slab_mutex);
b9049e23
YG
3509}
3510
3511static int slab_mem_going_online_callback(void *arg)
3512{
3513 struct kmem_cache_node *n;
3514 struct kmem_cache *s;
3515 struct memory_notify *marg = arg;
b9d5ab25 3516 int nid = marg->status_change_nid_normal;
b9049e23
YG
3517 int ret = 0;
3518
3519 /*
3520 * If the node's memory is already available, then kmem_cache_node is
3521 * already created. Nothing to do.
3522 */
3523 if (nid < 0)
3524 return 0;
3525
3526 /*
0121c619 3527 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3528 * allocate a kmem_cache_node structure in order to bring the node
3529 * online.
3530 */
18004c5d 3531 mutex_lock(&slab_mutex);
b9049e23
YG
3532 list_for_each_entry(s, &slab_caches, list) {
3533 /*
3534 * XXX: kmem_cache_alloc_node will fallback to other nodes
3535 * since memory is not yet available from the node that
3536 * is brought up.
3537 */
8de66a0c 3538 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3539 if (!n) {
3540 ret = -ENOMEM;
3541 goto out;
3542 }
4053497d 3543 init_kmem_cache_node(n);
b9049e23
YG
3544 s->node[nid] = n;
3545 }
3546out:
18004c5d 3547 mutex_unlock(&slab_mutex);
b9049e23
YG
3548 return ret;
3549}
3550
3551static int slab_memory_callback(struct notifier_block *self,
3552 unsigned long action, void *arg)
3553{
3554 int ret = 0;
3555
3556 switch (action) {
3557 case MEM_GOING_ONLINE:
3558 ret = slab_mem_going_online_callback(arg);
3559 break;
3560 case MEM_GOING_OFFLINE:
3561 ret = slab_mem_going_offline_callback(arg);
3562 break;
3563 case MEM_OFFLINE:
3564 case MEM_CANCEL_ONLINE:
3565 slab_mem_offline_callback(arg);
3566 break;
3567 case MEM_ONLINE:
3568 case MEM_CANCEL_OFFLINE:
3569 break;
3570 }
dc19f9db
KH
3571 if (ret)
3572 ret = notifier_from_errno(ret);
3573 else
3574 ret = NOTIFY_OK;
b9049e23
YG
3575 return ret;
3576}
3577
3ac38faa
AM
3578static struct notifier_block slab_memory_callback_nb = {
3579 .notifier_call = slab_memory_callback,
3580 .priority = SLAB_CALLBACK_PRI,
3581};
b9049e23 3582
81819f0f
CL
3583/********************************************************************
3584 * Basic setup of slabs
3585 *******************************************************************/
3586
51df1142
CL
3587/*
3588 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3589 * the page allocator. Allocate them properly then fix up the pointers
3590 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3591 */
3592
dffb4d60 3593static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3594{
3595 int node;
dffb4d60 3596 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3597
dffb4d60 3598 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3599
7d557b3c
GC
3600 /*
3601 * This runs very early, and only the boot processor is supposed to be
3602 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3603 * IPIs around.
3604 */
3605 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3606 for_each_node_state(node, N_NORMAL_MEMORY) {
3607 struct kmem_cache_node *n = get_node(s, node);
3608 struct page *p;
3609
3610 if (n) {
3611 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3612 p->slab_cache = s;
51df1142 3613
607bf324 3614#ifdef CONFIG_SLUB_DEBUG
51df1142 3615 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3616 p->slab_cache = s;
51df1142
CL
3617#endif
3618 }
3619 }
dffb4d60
CL
3620 list_add(&s->list, &slab_caches);
3621 return s;
51df1142
CL
3622}
3623
81819f0f
CL
3624void __init kmem_cache_init(void)
3625{
dffb4d60
CL
3626 static __initdata struct kmem_cache boot_kmem_cache,
3627 boot_kmem_cache_node;
51df1142 3628
fc8d8620
SG
3629 if (debug_guardpage_minorder())
3630 slub_max_order = 0;
3631
dffb4d60
CL
3632 kmem_cache_node = &boot_kmem_cache_node;
3633 kmem_cache = &boot_kmem_cache;
51df1142 3634
dffb4d60
CL
3635 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3636 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3637
3ac38faa 3638 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3639
3640 /* Able to allocate the per node structures */
3641 slab_state = PARTIAL;
3642
dffb4d60
CL
3643 create_boot_cache(kmem_cache, "kmem_cache",
3644 offsetof(struct kmem_cache, node) +
3645 nr_node_ids * sizeof(struct kmem_cache_node *),
3646 SLAB_HWCACHE_ALIGN);
8a13a4cc 3647
dffb4d60 3648 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3649
51df1142
CL
3650 /*
3651 * Allocate kmem_cache_node properly from the kmem_cache slab.
3652 * kmem_cache_node is separately allocated so no need to
3653 * update any list pointers.
3654 */
dffb4d60 3655 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3656
3657 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3658 create_kmalloc_caches(0);
81819f0f
CL
3659
3660#ifdef CONFIG_SMP
3661 register_cpu_notifier(&slab_notifier);
9dfc6e68 3662#endif
81819f0f 3663
3adbefee 3664 printk(KERN_INFO
f97d5f63 3665 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3666 " CPUs=%d, Nodes=%d\n",
f97d5f63 3667 cache_line_size(),
81819f0f
CL
3668 slub_min_order, slub_max_order, slub_min_objects,
3669 nr_cpu_ids, nr_node_ids);
3670}
3671
7e85ee0c
PE
3672void __init kmem_cache_init_late(void)
3673{
7e85ee0c
PE
3674}
3675
81819f0f
CL
3676/*
3677 * Find a mergeable slab cache
3678 */
3679static int slab_unmergeable(struct kmem_cache *s)
3680{
3681 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3682 return 1;
3683
c59def9f 3684 if (s->ctor)
81819f0f
CL
3685 return 1;
3686
8ffa6875
CL
3687 /*
3688 * We may have set a slab to be unmergeable during bootstrap.
3689 */
3690 if (s->refcount < 0)
3691 return 1;
3692
81819f0f
CL
3693 return 0;
3694}
3695
2633d7a0 3696static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3697 size_t align, unsigned long flags, const char *name,
51cc5068 3698 void (*ctor)(void *))
81819f0f 3699{
5b95a4ac 3700 struct kmem_cache *s;
81819f0f
CL
3701
3702 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3703 return NULL;
3704
c59def9f 3705 if (ctor)
81819f0f
CL
3706 return NULL;
3707
3708 size = ALIGN(size, sizeof(void *));
3709 align = calculate_alignment(flags, align, size);
3710 size = ALIGN(size, align);
ba0268a8 3711 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3712
5b95a4ac 3713 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3714 if (slab_unmergeable(s))
3715 continue;
3716
3717 if (size > s->size)
3718 continue;
3719
ba0268a8 3720 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3721 continue;
3722 /*
3723 * Check if alignment is compatible.
3724 * Courtesy of Adrian Drzewiecki
3725 */
06428780 3726 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3727 continue;
3728
3729 if (s->size - size >= sizeof(void *))
3730 continue;
3731
2633d7a0
GC
3732 if (!cache_match_memcg(s, memcg))
3733 continue;
3734
81819f0f
CL
3735 return s;
3736 }
3737 return NULL;
3738}
3739
2633d7a0
GC
3740struct kmem_cache *
3741__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3742 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3743{
3744 struct kmem_cache *s;
3745
2633d7a0 3746 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3747 if (s) {
3748 s->refcount++;
3749 /*
3750 * Adjust the object sizes so that we clear
3751 * the complete object on kzalloc.
3752 */
3b0efdfa 3753 s->object_size = max(s->object_size, (int)size);
81819f0f 3754 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3755
7b8f3b66 3756 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3757 s->refcount--;
cbb79694 3758 s = NULL;
7b8f3b66 3759 }
a0e1d1be 3760 }
6446faa2 3761
cbb79694
CL
3762 return s;
3763}
84c1cf62 3764
8a13a4cc 3765int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3766{
aac3a166
PE
3767 int err;
3768
3769 err = kmem_cache_open(s, flags);
3770 if (err)
3771 return err;
20cea968 3772
45530c44
CL
3773 /* Mutex is not taken during early boot */
3774 if (slab_state <= UP)
3775 return 0;
3776
107dab5c 3777 memcg_propagate_slab_attrs(s);
aac3a166
PE
3778 mutex_unlock(&slab_mutex);
3779 err = sysfs_slab_add(s);
3780 mutex_lock(&slab_mutex);
20cea968 3781
aac3a166
PE
3782 if (err)
3783 kmem_cache_close(s);
20cea968 3784
aac3a166 3785 return err;
81819f0f 3786}
81819f0f 3787
81819f0f 3788#ifdef CONFIG_SMP
81819f0f 3789/*
672bba3a
CL
3790 * Use the cpu notifier to insure that the cpu slabs are flushed when
3791 * necessary.
81819f0f 3792 */
0db0628d 3793static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3794 unsigned long action, void *hcpu)
3795{
3796 long cpu = (long)hcpu;
5b95a4ac
CL
3797 struct kmem_cache *s;
3798 unsigned long flags;
81819f0f
CL
3799
3800 switch (action) {
3801 case CPU_UP_CANCELED:
8bb78442 3802 case CPU_UP_CANCELED_FROZEN:
81819f0f 3803 case CPU_DEAD:
8bb78442 3804 case CPU_DEAD_FROZEN:
18004c5d 3805 mutex_lock(&slab_mutex);
5b95a4ac
CL
3806 list_for_each_entry(s, &slab_caches, list) {
3807 local_irq_save(flags);
3808 __flush_cpu_slab(s, cpu);
3809 local_irq_restore(flags);
3810 }
18004c5d 3811 mutex_unlock(&slab_mutex);
81819f0f
CL
3812 break;
3813 default:
3814 break;
3815 }
3816 return NOTIFY_OK;
3817}
3818
0db0628d 3819static struct notifier_block slab_notifier = {
3adbefee 3820 .notifier_call = slab_cpuup_callback
06428780 3821};
81819f0f
CL
3822
3823#endif
3824
ce71e27c 3825void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3826{
aadb4bc4 3827 struct kmem_cache *s;
94b528d0 3828 void *ret;
aadb4bc4 3829
95a05b42 3830 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3831 return kmalloc_large(size, gfpflags);
3832
2c59dd65 3833 s = kmalloc_slab(size, gfpflags);
81819f0f 3834
2408c550 3835 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3836 return s;
81819f0f 3837
2b847c3c 3838 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3839
25985edc 3840 /* Honor the call site pointer we received. */
ca2b84cb 3841 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3842
3843 return ret;
81819f0f
CL
3844}
3845
5d1f57e4 3846#ifdef CONFIG_NUMA
81819f0f 3847void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3848 int node, unsigned long caller)
81819f0f 3849{
aadb4bc4 3850 struct kmem_cache *s;
94b528d0 3851 void *ret;
aadb4bc4 3852
95a05b42 3853 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3854 ret = kmalloc_large_node(size, gfpflags, node);
3855
3856 trace_kmalloc_node(caller, ret,
3857 size, PAGE_SIZE << get_order(size),
3858 gfpflags, node);
3859
3860 return ret;
3861 }
eada35ef 3862
2c59dd65 3863 s = kmalloc_slab(size, gfpflags);
81819f0f 3864
2408c550 3865 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3866 return s;
81819f0f 3867
2b847c3c 3868 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3869
25985edc 3870 /* Honor the call site pointer we received. */
ca2b84cb 3871 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3872
3873 return ret;
81819f0f 3874}
5d1f57e4 3875#endif
81819f0f 3876
ab4d5ed5 3877#ifdef CONFIG_SYSFS
205ab99d
CL
3878static int count_inuse(struct page *page)
3879{
3880 return page->inuse;
3881}
3882
3883static int count_total(struct page *page)
3884{
3885 return page->objects;
3886}
ab4d5ed5 3887#endif
205ab99d 3888
ab4d5ed5 3889#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3890static int validate_slab(struct kmem_cache *s, struct page *page,
3891 unsigned long *map)
53e15af0
CL
3892{
3893 void *p;
a973e9dd 3894 void *addr = page_address(page);
53e15af0
CL
3895
3896 if (!check_slab(s, page) ||
3897 !on_freelist(s, page, NULL))
3898 return 0;
3899
3900 /* Now we know that a valid freelist exists */
39b26464 3901 bitmap_zero(map, page->objects);
53e15af0 3902
5f80b13a
CL
3903 get_map(s, page, map);
3904 for_each_object(p, s, addr, page->objects) {
3905 if (test_bit(slab_index(p, s, addr), map))
3906 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3907 return 0;
53e15af0
CL
3908 }
3909
224a88be 3910 for_each_object(p, s, addr, page->objects)
7656c72b 3911 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3912 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3913 return 0;
3914 return 1;
3915}
3916
434e245d
CL
3917static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3918 unsigned long *map)
53e15af0 3919{
881db7fb
CL
3920 slab_lock(page);
3921 validate_slab(s, page, map);
3922 slab_unlock(page);
53e15af0
CL
3923}
3924
434e245d
CL
3925static int validate_slab_node(struct kmem_cache *s,
3926 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3927{
3928 unsigned long count = 0;
3929 struct page *page;
3930 unsigned long flags;
3931
3932 spin_lock_irqsave(&n->list_lock, flags);
3933
3934 list_for_each_entry(page, &n->partial, lru) {
434e245d 3935 validate_slab_slab(s, page, map);
53e15af0
CL
3936 count++;
3937 }
3938 if (count != n->nr_partial)
3939 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3940 "counter=%ld\n", s->name, count, n->nr_partial);
3941
3942 if (!(s->flags & SLAB_STORE_USER))
3943 goto out;
3944
3945 list_for_each_entry(page, &n->full, lru) {
434e245d 3946 validate_slab_slab(s, page, map);
53e15af0
CL
3947 count++;
3948 }
3949 if (count != atomic_long_read(&n->nr_slabs))
3950 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3951 "counter=%ld\n", s->name, count,
3952 atomic_long_read(&n->nr_slabs));
3953
3954out:
3955 spin_unlock_irqrestore(&n->list_lock, flags);
3956 return count;
3957}
3958
434e245d 3959static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3960{
3961 int node;
3962 unsigned long count = 0;
205ab99d 3963 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3964 sizeof(unsigned long), GFP_KERNEL);
3965
3966 if (!map)
3967 return -ENOMEM;
53e15af0
CL
3968
3969 flush_all(s);
f64dc58c 3970 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3971 struct kmem_cache_node *n = get_node(s, node);
3972
434e245d 3973 count += validate_slab_node(s, n, map);
53e15af0 3974 }
434e245d 3975 kfree(map);
53e15af0
CL
3976 return count;
3977}
88a420e4 3978/*
672bba3a 3979 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3980 * and freed.
3981 */
3982
3983struct location {
3984 unsigned long count;
ce71e27c 3985 unsigned long addr;
45edfa58
CL
3986 long long sum_time;
3987 long min_time;
3988 long max_time;
3989 long min_pid;
3990 long max_pid;
174596a0 3991 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3992 nodemask_t nodes;
88a420e4
CL
3993};
3994
3995struct loc_track {
3996 unsigned long max;
3997 unsigned long count;
3998 struct location *loc;
3999};
4000
4001static void free_loc_track(struct loc_track *t)
4002{
4003 if (t->max)
4004 free_pages((unsigned long)t->loc,
4005 get_order(sizeof(struct location) * t->max));
4006}
4007
68dff6a9 4008static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4009{
4010 struct location *l;
4011 int order;
4012
88a420e4
CL
4013 order = get_order(sizeof(struct location) * max);
4014
68dff6a9 4015 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4016 if (!l)
4017 return 0;
4018
4019 if (t->count) {
4020 memcpy(l, t->loc, sizeof(struct location) * t->count);
4021 free_loc_track(t);
4022 }
4023 t->max = max;
4024 t->loc = l;
4025 return 1;
4026}
4027
4028static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4029 const struct track *track)
88a420e4
CL
4030{
4031 long start, end, pos;
4032 struct location *l;
ce71e27c 4033 unsigned long caddr;
45edfa58 4034 unsigned long age = jiffies - track->when;
88a420e4
CL
4035
4036 start = -1;
4037 end = t->count;
4038
4039 for ( ; ; ) {
4040 pos = start + (end - start + 1) / 2;
4041
4042 /*
4043 * There is nothing at "end". If we end up there
4044 * we need to add something to before end.
4045 */
4046 if (pos == end)
4047 break;
4048
4049 caddr = t->loc[pos].addr;
45edfa58
CL
4050 if (track->addr == caddr) {
4051
4052 l = &t->loc[pos];
4053 l->count++;
4054 if (track->when) {
4055 l->sum_time += age;
4056 if (age < l->min_time)
4057 l->min_time = age;
4058 if (age > l->max_time)
4059 l->max_time = age;
4060
4061 if (track->pid < l->min_pid)
4062 l->min_pid = track->pid;
4063 if (track->pid > l->max_pid)
4064 l->max_pid = track->pid;
4065
174596a0
RR
4066 cpumask_set_cpu(track->cpu,
4067 to_cpumask(l->cpus));
45edfa58
CL
4068 }
4069 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4070 return 1;
4071 }
4072
45edfa58 4073 if (track->addr < caddr)
88a420e4
CL
4074 end = pos;
4075 else
4076 start = pos;
4077 }
4078
4079 /*
672bba3a 4080 * Not found. Insert new tracking element.
88a420e4 4081 */
68dff6a9 4082 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4083 return 0;
4084
4085 l = t->loc + pos;
4086 if (pos < t->count)
4087 memmove(l + 1, l,
4088 (t->count - pos) * sizeof(struct location));
4089 t->count++;
4090 l->count = 1;
45edfa58
CL
4091 l->addr = track->addr;
4092 l->sum_time = age;
4093 l->min_time = age;
4094 l->max_time = age;
4095 l->min_pid = track->pid;
4096 l->max_pid = track->pid;
174596a0
RR
4097 cpumask_clear(to_cpumask(l->cpus));
4098 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4099 nodes_clear(l->nodes);
4100 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4101 return 1;
4102}
4103
4104static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4105 struct page *page, enum track_item alloc,
a5dd5c11 4106 unsigned long *map)
88a420e4 4107{
a973e9dd 4108 void *addr = page_address(page);
88a420e4
CL
4109 void *p;
4110
39b26464 4111 bitmap_zero(map, page->objects);
5f80b13a 4112 get_map(s, page, map);
88a420e4 4113
224a88be 4114 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4115 if (!test_bit(slab_index(p, s, addr), map))
4116 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4117}
4118
4119static int list_locations(struct kmem_cache *s, char *buf,
4120 enum track_item alloc)
4121{
e374d483 4122 int len = 0;
88a420e4 4123 unsigned long i;
68dff6a9 4124 struct loc_track t = { 0, 0, NULL };
88a420e4 4125 int node;
bbd7d57b
ED
4126 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4127 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4128
bbd7d57b
ED
4129 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4130 GFP_TEMPORARY)) {
4131 kfree(map);
68dff6a9 4132 return sprintf(buf, "Out of memory\n");
bbd7d57b 4133 }
88a420e4
CL
4134 /* Push back cpu slabs */
4135 flush_all(s);
4136
f64dc58c 4137 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4138 struct kmem_cache_node *n = get_node(s, node);
4139 unsigned long flags;
4140 struct page *page;
4141
9e86943b 4142 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4143 continue;
4144
4145 spin_lock_irqsave(&n->list_lock, flags);
4146 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4147 process_slab(&t, s, page, alloc, map);
88a420e4 4148 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4149 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4150 spin_unlock_irqrestore(&n->list_lock, flags);
4151 }
4152
4153 for (i = 0; i < t.count; i++) {
45edfa58 4154 struct location *l = &t.loc[i];
88a420e4 4155
9c246247 4156 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4157 break;
e374d483 4158 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4159
4160 if (l->addr)
62c70bce 4161 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4162 else
e374d483 4163 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4164
4165 if (l->sum_time != l->min_time) {
e374d483 4166 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4167 l->min_time,
4168 (long)div_u64(l->sum_time, l->count),
4169 l->max_time);
45edfa58 4170 } else
e374d483 4171 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4172 l->min_time);
4173
4174 if (l->min_pid != l->max_pid)
e374d483 4175 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4176 l->min_pid, l->max_pid);
4177 else
e374d483 4178 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4179 l->min_pid);
4180
174596a0
RR
4181 if (num_online_cpus() > 1 &&
4182 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4183 len < PAGE_SIZE - 60) {
4184 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4185 len += cpulist_scnprintf(buf + len,
4186 PAGE_SIZE - len - 50,
174596a0 4187 to_cpumask(l->cpus));
45edfa58
CL
4188 }
4189
62bc62a8 4190 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4191 len < PAGE_SIZE - 60) {
4192 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4193 len += nodelist_scnprintf(buf + len,
4194 PAGE_SIZE - len - 50,
4195 l->nodes);
45edfa58
CL
4196 }
4197
e374d483 4198 len += sprintf(buf + len, "\n");
88a420e4
CL
4199 }
4200
4201 free_loc_track(&t);
bbd7d57b 4202 kfree(map);
88a420e4 4203 if (!t.count)
e374d483
HH
4204 len += sprintf(buf, "No data\n");
4205 return len;
88a420e4 4206}
ab4d5ed5 4207#endif
88a420e4 4208
a5a84755
CL
4209#ifdef SLUB_RESILIENCY_TEST
4210static void resiliency_test(void)
4211{
4212 u8 *p;
4213
95a05b42 4214 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4215
4216 printk(KERN_ERR "SLUB resiliency testing\n");
4217 printk(KERN_ERR "-----------------------\n");
4218 printk(KERN_ERR "A. Corruption after allocation\n");
4219
4220 p = kzalloc(16, GFP_KERNEL);
4221 p[16] = 0x12;
4222 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4223 " 0x12->0x%p\n\n", p + 16);
4224
4225 validate_slab_cache(kmalloc_caches[4]);
4226
4227 /* Hmmm... The next two are dangerous */
4228 p = kzalloc(32, GFP_KERNEL);
4229 p[32 + sizeof(void *)] = 0x34;
4230 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4231 " 0x34 -> -0x%p\n", p);
4232 printk(KERN_ERR
4233 "If allocated object is overwritten then not detectable\n\n");
4234
4235 validate_slab_cache(kmalloc_caches[5]);
4236 p = kzalloc(64, GFP_KERNEL);
4237 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4238 *p = 0x56;
4239 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4240 p);
4241 printk(KERN_ERR
4242 "If allocated object is overwritten then not detectable\n\n");
4243 validate_slab_cache(kmalloc_caches[6]);
4244
4245 printk(KERN_ERR "\nB. Corruption after free\n");
4246 p = kzalloc(128, GFP_KERNEL);
4247 kfree(p);
4248 *p = 0x78;
4249 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4250 validate_slab_cache(kmalloc_caches[7]);
4251
4252 p = kzalloc(256, GFP_KERNEL);
4253 kfree(p);
4254 p[50] = 0x9a;
4255 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4256 p);
4257 validate_slab_cache(kmalloc_caches[8]);
4258
4259 p = kzalloc(512, GFP_KERNEL);
4260 kfree(p);
4261 p[512] = 0xab;
4262 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4263 validate_slab_cache(kmalloc_caches[9]);
4264}
4265#else
4266#ifdef CONFIG_SYSFS
4267static void resiliency_test(void) {};
4268#endif
4269#endif
4270
ab4d5ed5 4271#ifdef CONFIG_SYSFS
81819f0f 4272enum slab_stat_type {
205ab99d
CL
4273 SL_ALL, /* All slabs */
4274 SL_PARTIAL, /* Only partially allocated slabs */
4275 SL_CPU, /* Only slabs used for cpu caches */
4276 SL_OBJECTS, /* Determine allocated objects not slabs */
4277 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4278};
4279
205ab99d 4280#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4281#define SO_PARTIAL (1 << SL_PARTIAL)
4282#define SO_CPU (1 << SL_CPU)
4283#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4284#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4285
62e5c4b4
CG
4286static ssize_t show_slab_objects(struct kmem_cache *s,
4287 char *buf, unsigned long flags)
81819f0f
CL
4288{
4289 unsigned long total = 0;
81819f0f
CL
4290 int node;
4291 int x;
4292 unsigned long *nodes;
81819f0f 4293
e35e1a97 4294 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4295 if (!nodes)
4296 return -ENOMEM;
81819f0f 4297
205ab99d
CL
4298 if (flags & SO_CPU) {
4299 int cpu;
81819f0f 4300
205ab99d 4301 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4302 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4303 cpu);
ec3ab083 4304 int node;
49e22585 4305 struct page *page;
dfb4f096 4306
bc6697d8 4307 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4308 if (!page)
4309 continue;
205ab99d 4310
ec3ab083
CL
4311 node = page_to_nid(page);
4312 if (flags & SO_TOTAL)
4313 x = page->objects;
4314 else if (flags & SO_OBJECTS)
4315 x = page->inuse;
4316 else
4317 x = 1;
49e22585 4318
ec3ab083
CL
4319 total += x;
4320 nodes[node] += x;
4321
4322 page = ACCESS_ONCE(c->partial);
49e22585 4323 if (page) {
8afb1474
LZ
4324 node = page_to_nid(page);
4325 if (flags & SO_TOTAL)
4326 WARN_ON_ONCE(1);
4327 else if (flags & SO_OBJECTS)
4328 WARN_ON_ONCE(1);
4329 else
4330 x = page->pages;
bc6697d8
ED
4331 total += x;
4332 nodes[node] += x;
49e22585 4333 }
81819f0f
CL
4334 }
4335 }
4336
04d94879 4337 lock_memory_hotplug();
ab4d5ed5 4338#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4339 if (flags & SO_ALL) {
4340 for_each_node_state(node, N_NORMAL_MEMORY) {
4341 struct kmem_cache_node *n = get_node(s, node);
4342
d0e0ac97
CG
4343 if (flags & SO_TOTAL)
4344 x = atomic_long_read(&n->total_objects);
4345 else if (flags & SO_OBJECTS)
4346 x = atomic_long_read(&n->total_objects) -
4347 count_partial(n, count_free);
81819f0f 4348 else
205ab99d 4349 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4350 total += x;
4351 nodes[node] += x;
4352 }
4353
ab4d5ed5
CL
4354 } else
4355#endif
4356 if (flags & SO_PARTIAL) {
205ab99d
CL
4357 for_each_node_state(node, N_NORMAL_MEMORY) {
4358 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4359
205ab99d
CL
4360 if (flags & SO_TOTAL)
4361 x = count_partial(n, count_total);
4362 else if (flags & SO_OBJECTS)
4363 x = count_partial(n, count_inuse);
81819f0f 4364 else
205ab99d 4365 x = n->nr_partial;
81819f0f
CL
4366 total += x;
4367 nodes[node] += x;
4368 }
4369 }
81819f0f
CL
4370 x = sprintf(buf, "%lu", total);
4371#ifdef CONFIG_NUMA
f64dc58c 4372 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4373 if (nodes[node])
4374 x += sprintf(buf + x, " N%d=%lu",
4375 node, nodes[node]);
4376#endif
04d94879 4377 unlock_memory_hotplug();
81819f0f
CL
4378 kfree(nodes);
4379 return x + sprintf(buf + x, "\n");
4380}
4381
ab4d5ed5 4382#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4383static int any_slab_objects(struct kmem_cache *s)
4384{
4385 int node;
81819f0f 4386
dfb4f096 4387 for_each_online_node(node) {
81819f0f
CL
4388 struct kmem_cache_node *n = get_node(s, node);
4389
dfb4f096
CL
4390 if (!n)
4391 continue;
4392
4ea33e2d 4393 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4394 return 1;
4395 }
4396 return 0;
4397}
ab4d5ed5 4398#endif
81819f0f
CL
4399
4400#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4401#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4402
4403struct slab_attribute {
4404 struct attribute attr;
4405 ssize_t (*show)(struct kmem_cache *s, char *buf);
4406 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4407};
4408
4409#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4410 static struct slab_attribute _name##_attr = \
4411 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4412
4413#define SLAB_ATTR(_name) \
4414 static struct slab_attribute _name##_attr = \
ab067e99 4415 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4416
81819f0f
CL
4417static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4418{
4419 return sprintf(buf, "%d\n", s->size);
4420}
4421SLAB_ATTR_RO(slab_size);
4422
4423static ssize_t align_show(struct kmem_cache *s, char *buf)
4424{
4425 return sprintf(buf, "%d\n", s->align);
4426}
4427SLAB_ATTR_RO(align);
4428
4429static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4430{
3b0efdfa 4431 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4432}
4433SLAB_ATTR_RO(object_size);
4434
4435static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4436{
834f3d11 4437 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4438}
4439SLAB_ATTR_RO(objs_per_slab);
4440
06b285dc
CL
4441static ssize_t order_store(struct kmem_cache *s,
4442 const char *buf, size_t length)
4443{
0121c619
CL
4444 unsigned long order;
4445 int err;
4446
3dbb95f7 4447 err = kstrtoul(buf, 10, &order);
0121c619
CL
4448 if (err)
4449 return err;
06b285dc
CL
4450
4451 if (order > slub_max_order || order < slub_min_order)
4452 return -EINVAL;
4453
4454 calculate_sizes(s, order);
4455 return length;
4456}
4457
81819f0f
CL
4458static ssize_t order_show(struct kmem_cache *s, char *buf)
4459{
834f3d11 4460 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4461}
06b285dc 4462SLAB_ATTR(order);
81819f0f 4463
73d342b1
DR
4464static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4465{
4466 return sprintf(buf, "%lu\n", s->min_partial);
4467}
4468
4469static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4470 size_t length)
4471{
4472 unsigned long min;
4473 int err;
4474
3dbb95f7 4475 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4476 if (err)
4477 return err;
4478
c0bdb232 4479 set_min_partial(s, min);
73d342b1
DR
4480 return length;
4481}
4482SLAB_ATTR(min_partial);
4483
49e22585
CL
4484static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4485{
4486 return sprintf(buf, "%u\n", s->cpu_partial);
4487}
4488
4489static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4490 size_t length)
4491{
4492 unsigned long objects;
4493 int err;
4494
3dbb95f7 4495 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4496 if (err)
4497 return err;
345c905d 4498 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4499 return -EINVAL;
49e22585
CL
4500
4501 s->cpu_partial = objects;
4502 flush_all(s);
4503 return length;
4504}
4505SLAB_ATTR(cpu_partial);
4506
81819f0f
CL
4507static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4508{
62c70bce
JP
4509 if (!s->ctor)
4510 return 0;
4511 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4512}
4513SLAB_ATTR_RO(ctor);
4514
81819f0f
CL
4515static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4516{
4517 return sprintf(buf, "%d\n", s->refcount - 1);
4518}
4519SLAB_ATTR_RO(aliases);
4520
81819f0f
CL
4521static ssize_t partial_show(struct kmem_cache *s, char *buf)
4522{
d9acf4b7 4523 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4524}
4525SLAB_ATTR_RO(partial);
4526
4527static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4528{
d9acf4b7 4529 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4530}
4531SLAB_ATTR_RO(cpu_slabs);
4532
4533static ssize_t objects_show(struct kmem_cache *s, char *buf)
4534{
205ab99d 4535 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4536}
4537SLAB_ATTR_RO(objects);
4538
205ab99d
CL
4539static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4540{
4541 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4542}
4543SLAB_ATTR_RO(objects_partial);
4544
49e22585
CL
4545static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4546{
4547 int objects = 0;
4548 int pages = 0;
4549 int cpu;
4550 int len;
4551
4552 for_each_online_cpu(cpu) {
4553 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4554
4555 if (page) {
4556 pages += page->pages;
4557 objects += page->pobjects;
4558 }
4559 }
4560
4561 len = sprintf(buf, "%d(%d)", objects, pages);
4562
4563#ifdef CONFIG_SMP
4564 for_each_online_cpu(cpu) {
4565 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4566
4567 if (page && len < PAGE_SIZE - 20)
4568 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4569 page->pobjects, page->pages);
4570 }
4571#endif
4572 return len + sprintf(buf + len, "\n");
4573}
4574SLAB_ATTR_RO(slabs_cpu_partial);
4575
a5a84755
CL
4576static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4577{
4578 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4579}
4580
4581static ssize_t reclaim_account_store(struct kmem_cache *s,
4582 const char *buf, size_t length)
4583{
4584 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4585 if (buf[0] == '1')
4586 s->flags |= SLAB_RECLAIM_ACCOUNT;
4587 return length;
4588}
4589SLAB_ATTR(reclaim_account);
4590
4591static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4592{
4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4594}
4595SLAB_ATTR_RO(hwcache_align);
4596
4597#ifdef CONFIG_ZONE_DMA
4598static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4599{
4600 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4601}
4602SLAB_ATTR_RO(cache_dma);
4603#endif
4604
4605static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4606{
4607 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4608}
4609SLAB_ATTR_RO(destroy_by_rcu);
4610
ab9a0f19
LJ
4611static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4612{
4613 return sprintf(buf, "%d\n", s->reserved);
4614}
4615SLAB_ATTR_RO(reserved);
4616
ab4d5ed5 4617#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4618static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4619{
4620 return show_slab_objects(s, buf, SO_ALL);
4621}
4622SLAB_ATTR_RO(slabs);
4623
205ab99d
CL
4624static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4625{
4626 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4627}
4628SLAB_ATTR_RO(total_objects);
4629
81819f0f
CL
4630static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4633}
4634
4635static ssize_t sanity_checks_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637{
4638 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4639 if (buf[0] == '1') {
4640 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4641 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4642 }
81819f0f
CL
4643 return length;
4644}
4645SLAB_ATTR(sanity_checks);
4646
4647static ssize_t trace_show(struct kmem_cache *s, char *buf)
4648{
4649 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4650}
4651
4652static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4653 size_t length)
4654{
4655 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4656 if (buf[0] == '1') {
4657 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4658 s->flags |= SLAB_TRACE;
b789ef51 4659 }
81819f0f
CL
4660 return length;
4661}
4662SLAB_ATTR(trace);
4663
81819f0f
CL
4664static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4665{
4666 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4667}
4668
4669static ssize_t red_zone_store(struct kmem_cache *s,
4670 const char *buf, size_t length)
4671{
4672 if (any_slab_objects(s))
4673 return -EBUSY;
4674
4675 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4676 if (buf[0] == '1') {
4677 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4678 s->flags |= SLAB_RED_ZONE;
b789ef51 4679 }
06b285dc 4680 calculate_sizes(s, -1);
81819f0f
CL
4681 return length;
4682}
4683SLAB_ATTR(red_zone);
4684
4685static ssize_t poison_show(struct kmem_cache *s, char *buf)
4686{
4687 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4688}
4689
4690static ssize_t poison_store(struct kmem_cache *s,
4691 const char *buf, size_t length)
4692{
4693 if (any_slab_objects(s))
4694 return -EBUSY;
4695
4696 s->flags &= ~SLAB_POISON;
b789ef51
CL
4697 if (buf[0] == '1') {
4698 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4699 s->flags |= SLAB_POISON;
b789ef51 4700 }
06b285dc 4701 calculate_sizes(s, -1);
81819f0f
CL
4702 return length;
4703}
4704SLAB_ATTR(poison);
4705
4706static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4707{
4708 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4709}
4710
4711static ssize_t store_user_store(struct kmem_cache *s,
4712 const char *buf, size_t length)
4713{
4714 if (any_slab_objects(s))
4715 return -EBUSY;
4716
4717 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4718 if (buf[0] == '1') {
4719 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4720 s->flags |= SLAB_STORE_USER;
b789ef51 4721 }
06b285dc 4722 calculate_sizes(s, -1);
81819f0f
CL
4723 return length;
4724}
4725SLAB_ATTR(store_user);
4726
53e15af0
CL
4727static ssize_t validate_show(struct kmem_cache *s, char *buf)
4728{
4729 return 0;
4730}
4731
4732static ssize_t validate_store(struct kmem_cache *s,
4733 const char *buf, size_t length)
4734{
434e245d
CL
4735 int ret = -EINVAL;
4736
4737 if (buf[0] == '1') {
4738 ret = validate_slab_cache(s);
4739 if (ret >= 0)
4740 ret = length;
4741 }
4742 return ret;
53e15af0
CL
4743}
4744SLAB_ATTR(validate);
a5a84755
CL
4745
4746static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4747{
4748 if (!(s->flags & SLAB_STORE_USER))
4749 return -ENOSYS;
4750 return list_locations(s, buf, TRACK_ALLOC);
4751}
4752SLAB_ATTR_RO(alloc_calls);
4753
4754static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4755{
4756 if (!(s->flags & SLAB_STORE_USER))
4757 return -ENOSYS;
4758 return list_locations(s, buf, TRACK_FREE);
4759}
4760SLAB_ATTR_RO(free_calls);
4761#endif /* CONFIG_SLUB_DEBUG */
4762
4763#ifdef CONFIG_FAILSLAB
4764static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4765{
4766 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4767}
4768
4769static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4770 size_t length)
4771{
4772 s->flags &= ~SLAB_FAILSLAB;
4773 if (buf[0] == '1')
4774 s->flags |= SLAB_FAILSLAB;
4775 return length;
4776}
4777SLAB_ATTR(failslab);
ab4d5ed5 4778#endif
53e15af0 4779
2086d26a
CL
4780static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4781{
4782 return 0;
4783}
4784
4785static ssize_t shrink_store(struct kmem_cache *s,
4786 const char *buf, size_t length)
4787{
4788 if (buf[0] == '1') {
4789 int rc = kmem_cache_shrink(s);
4790
4791 if (rc)
4792 return rc;
4793 } else
4794 return -EINVAL;
4795 return length;
4796}
4797SLAB_ATTR(shrink);
4798
81819f0f 4799#ifdef CONFIG_NUMA
9824601e 4800static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4801{
9824601e 4802 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4803}
4804
9824601e 4805static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4806 const char *buf, size_t length)
4807{
0121c619
CL
4808 unsigned long ratio;
4809 int err;
4810
3dbb95f7 4811 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4812 if (err)
4813 return err;
4814
e2cb96b7 4815 if (ratio <= 100)
0121c619 4816 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4817
81819f0f
CL
4818 return length;
4819}
9824601e 4820SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4821#endif
4822
8ff12cfc 4823#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4824static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4825{
4826 unsigned long sum = 0;
4827 int cpu;
4828 int len;
4829 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4830
4831 if (!data)
4832 return -ENOMEM;
4833
4834 for_each_online_cpu(cpu) {
9dfc6e68 4835 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4836
4837 data[cpu] = x;
4838 sum += x;
4839 }
4840
4841 len = sprintf(buf, "%lu", sum);
4842
50ef37b9 4843#ifdef CONFIG_SMP
8ff12cfc
CL
4844 for_each_online_cpu(cpu) {
4845 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4846 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4847 }
50ef37b9 4848#endif
8ff12cfc
CL
4849 kfree(data);
4850 return len + sprintf(buf + len, "\n");
4851}
4852
78eb00cc
DR
4853static void clear_stat(struct kmem_cache *s, enum stat_item si)
4854{
4855 int cpu;
4856
4857 for_each_online_cpu(cpu)
9dfc6e68 4858 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4859}
4860
8ff12cfc
CL
4861#define STAT_ATTR(si, text) \
4862static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4863{ \
4864 return show_stat(s, buf, si); \
4865} \
78eb00cc
DR
4866static ssize_t text##_store(struct kmem_cache *s, \
4867 const char *buf, size_t length) \
4868{ \
4869 if (buf[0] != '0') \
4870 return -EINVAL; \
4871 clear_stat(s, si); \
4872 return length; \
4873} \
4874SLAB_ATTR(text); \
8ff12cfc
CL
4875
4876STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4877STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4878STAT_ATTR(FREE_FASTPATH, free_fastpath);
4879STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4880STAT_ATTR(FREE_FROZEN, free_frozen);
4881STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4882STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4883STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4884STAT_ATTR(ALLOC_SLAB, alloc_slab);
4885STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4886STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4887STAT_ATTR(FREE_SLAB, free_slab);
4888STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4889STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4890STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4891STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4892STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4893STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4894STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4895STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4896STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4897STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4898STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4899STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4900STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4901STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4902#endif
4903
06428780 4904static struct attribute *slab_attrs[] = {
81819f0f
CL
4905 &slab_size_attr.attr,
4906 &object_size_attr.attr,
4907 &objs_per_slab_attr.attr,
4908 &order_attr.attr,
73d342b1 4909 &min_partial_attr.attr,
49e22585 4910 &cpu_partial_attr.attr,
81819f0f 4911 &objects_attr.attr,
205ab99d 4912 &objects_partial_attr.attr,
81819f0f
CL
4913 &partial_attr.attr,
4914 &cpu_slabs_attr.attr,
4915 &ctor_attr.attr,
81819f0f
CL
4916 &aliases_attr.attr,
4917 &align_attr.attr,
81819f0f
CL
4918 &hwcache_align_attr.attr,
4919 &reclaim_account_attr.attr,
4920 &destroy_by_rcu_attr.attr,
a5a84755 4921 &shrink_attr.attr,
ab9a0f19 4922 &reserved_attr.attr,
49e22585 4923 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4924#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4925 &total_objects_attr.attr,
4926 &slabs_attr.attr,
4927 &sanity_checks_attr.attr,
4928 &trace_attr.attr,
81819f0f
CL
4929 &red_zone_attr.attr,
4930 &poison_attr.attr,
4931 &store_user_attr.attr,
53e15af0 4932 &validate_attr.attr,
88a420e4
CL
4933 &alloc_calls_attr.attr,
4934 &free_calls_attr.attr,
ab4d5ed5 4935#endif
81819f0f
CL
4936#ifdef CONFIG_ZONE_DMA
4937 &cache_dma_attr.attr,
4938#endif
4939#ifdef CONFIG_NUMA
9824601e 4940 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4941#endif
4942#ifdef CONFIG_SLUB_STATS
4943 &alloc_fastpath_attr.attr,
4944 &alloc_slowpath_attr.attr,
4945 &free_fastpath_attr.attr,
4946 &free_slowpath_attr.attr,
4947 &free_frozen_attr.attr,
4948 &free_add_partial_attr.attr,
4949 &free_remove_partial_attr.attr,
4950 &alloc_from_partial_attr.attr,
4951 &alloc_slab_attr.attr,
4952 &alloc_refill_attr.attr,
e36a2652 4953 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4954 &free_slab_attr.attr,
4955 &cpuslab_flush_attr.attr,
4956 &deactivate_full_attr.attr,
4957 &deactivate_empty_attr.attr,
4958 &deactivate_to_head_attr.attr,
4959 &deactivate_to_tail_attr.attr,
4960 &deactivate_remote_frees_attr.attr,
03e404af 4961 &deactivate_bypass_attr.attr,
65c3376a 4962 &order_fallback_attr.attr,
b789ef51
CL
4963 &cmpxchg_double_fail_attr.attr,
4964 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4965 &cpu_partial_alloc_attr.attr,
4966 &cpu_partial_free_attr.attr,
8028dcea
AS
4967 &cpu_partial_node_attr.attr,
4968 &cpu_partial_drain_attr.attr,
81819f0f 4969#endif
4c13dd3b
DM
4970#ifdef CONFIG_FAILSLAB
4971 &failslab_attr.attr,
4972#endif
4973
81819f0f
CL
4974 NULL
4975};
4976
4977static struct attribute_group slab_attr_group = {
4978 .attrs = slab_attrs,
4979};
4980
4981static ssize_t slab_attr_show(struct kobject *kobj,
4982 struct attribute *attr,
4983 char *buf)
4984{
4985 struct slab_attribute *attribute;
4986 struct kmem_cache *s;
4987 int err;
4988
4989 attribute = to_slab_attr(attr);
4990 s = to_slab(kobj);
4991
4992 if (!attribute->show)
4993 return -EIO;
4994
4995 err = attribute->show(s, buf);
4996
4997 return err;
4998}
4999
5000static ssize_t slab_attr_store(struct kobject *kobj,
5001 struct attribute *attr,
5002 const char *buf, size_t len)
5003{
5004 struct slab_attribute *attribute;
5005 struct kmem_cache *s;
5006 int err;
5007
5008 attribute = to_slab_attr(attr);
5009 s = to_slab(kobj);
5010
5011 if (!attribute->store)
5012 return -EIO;
5013
5014 err = attribute->store(s, buf, len);
107dab5c
GC
5015#ifdef CONFIG_MEMCG_KMEM
5016 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5017 int i;
81819f0f 5018
107dab5c
GC
5019 mutex_lock(&slab_mutex);
5020 if (s->max_attr_size < len)
5021 s->max_attr_size = len;
5022
ebe945c2
GC
5023 /*
5024 * This is a best effort propagation, so this function's return
5025 * value will be determined by the parent cache only. This is
5026 * basically because not all attributes will have a well
5027 * defined semantics for rollbacks - most of the actions will
5028 * have permanent effects.
5029 *
5030 * Returning the error value of any of the children that fail
5031 * is not 100 % defined, in the sense that users seeing the
5032 * error code won't be able to know anything about the state of
5033 * the cache.
5034 *
5035 * Only returning the error code for the parent cache at least
5036 * has well defined semantics. The cache being written to
5037 * directly either failed or succeeded, in which case we loop
5038 * through the descendants with best-effort propagation.
5039 */
107dab5c 5040 for_each_memcg_cache_index(i) {
2ade4de8 5041 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5042 if (c)
5043 attribute->store(c, buf, len);
5044 }
5045 mutex_unlock(&slab_mutex);
5046 }
5047#endif
81819f0f
CL
5048 return err;
5049}
5050
107dab5c
GC
5051static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5052{
5053#ifdef CONFIG_MEMCG_KMEM
5054 int i;
5055 char *buffer = NULL;
5056
5057 if (!is_root_cache(s))
5058 return;
5059
5060 /*
5061 * This mean this cache had no attribute written. Therefore, no point
5062 * in copying default values around
5063 */
5064 if (!s->max_attr_size)
5065 return;
5066
5067 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5068 char mbuf[64];
5069 char *buf;
5070 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5071
5072 if (!attr || !attr->store || !attr->show)
5073 continue;
5074
5075 /*
5076 * It is really bad that we have to allocate here, so we will
5077 * do it only as a fallback. If we actually allocate, though,
5078 * we can just use the allocated buffer until the end.
5079 *
5080 * Most of the slub attributes will tend to be very small in
5081 * size, but sysfs allows buffers up to a page, so they can
5082 * theoretically happen.
5083 */
5084 if (buffer)
5085 buf = buffer;
5086 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5087 buf = mbuf;
5088 else {
5089 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5090 if (WARN_ON(!buffer))
5091 continue;
5092 buf = buffer;
5093 }
5094
5095 attr->show(s->memcg_params->root_cache, buf);
5096 attr->store(s, buf, strlen(buf));
5097 }
5098
5099 if (buffer)
5100 free_page((unsigned long)buffer);
5101#endif
5102}
5103
52cf25d0 5104static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5105 .show = slab_attr_show,
5106 .store = slab_attr_store,
5107};
5108
5109static struct kobj_type slab_ktype = {
5110 .sysfs_ops = &slab_sysfs_ops,
5111};
5112
5113static int uevent_filter(struct kset *kset, struct kobject *kobj)
5114{
5115 struct kobj_type *ktype = get_ktype(kobj);
5116
5117 if (ktype == &slab_ktype)
5118 return 1;
5119 return 0;
5120}
5121
9cd43611 5122static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5123 .filter = uevent_filter,
5124};
5125
27c3a314 5126static struct kset *slab_kset;
81819f0f
CL
5127
5128#define ID_STR_LENGTH 64
5129
5130/* Create a unique string id for a slab cache:
6446faa2
CL
5131 *
5132 * Format :[flags-]size
81819f0f
CL
5133 */
5134static char *create_unique_id(struct kmem_cache *s)
5135{
5136 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5137 char *p = name;
5138
5139 BUG_ON(!name);
5140
5141 *p++ = ':';
5142 /*
5143 * First flags affecting slabcache operations. We will only
5144 * get here for aliasable slabs so we do not need to support
5145 * too many flags. The flags here must cover all flags that
5146 * are matched during merging to guarantee that the id is
5147 * unique.
5148 */
5149 if (s->flags & SLAB_CACHE_DMA)
5150 *p++ = 'd';
5151 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5152 *p++ = 'a';
5153 if (s->flags & SLAB_DEBUG_FREE)
5154 *p++ = 'F';
5a896d9e
VN
5155 if (!(s->flags & SLAB_NOTRACK))
5156 *p++ = 't';
81819f0f
CL
5157 if (p != name + 1)
5158 *p++ = '-';
5159 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5160
5161#ifdef CONFIG_MEMCG_KMEM
5162 if (!is_root_cache(s))
d0e0ac97
CG
5163 p += sprintf(p, "-%08d",
5164 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5165#endif
5166
81819f0f
CL
5167 BUG_ON(p > name + ID_STR_LENGTH - 1);
5168 return name;
5169}
5170
5171static int sysfs_slab_add(struct kmem_cache *s)
5172{
5173 int err;
5174 const char *name;
45530c44 5175 int unmergeable = slab_unmergeable(s);
81819f0f 5176
81819f0f
CL
5177 if (unmergeable) {
5178 /*
5179 * Slabcache can never be merged so we can use the name proper.
5180 * This is typically the case for debug situations. In that
5181 * case we can catch duplicate names easily.
5182 */
27c3a314 5183 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5184 name = s->name;
5185 } else {
5186 /*
5187 * Create a unique name for the slab as a target
5188 * for the symlinks.
5189 */
5190 name = create_unique_id(s);
5191 }
5192
27c3a314 5193 s->kobj.kset = slab_kset;
26e4f205 5194 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
1eada11c
GKH
5195 if (err) {
5196 kobject_put(&s->kobj);
81819f0f 5197 return err;
1eada11c 5198 }
81819f0f
CL
5199
5200 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5201 if (err) {
5202 kobject_del(&s->kobj);
5203 kobject_put(&s->kobj);
81819f0f 5204 return err;
5788d8ad 5205 }
81819f0f
CL
5206 kobject_uevent(&s->kobj, KOBJ_ADD);
5207 if (!unmergeable) {
5208 /* Setup first alias */
5209 sysfs_slab_alias(s, s->name);
5210 kfree(name);
5211 }
5212 return 0;
5213}
5214
5215static void sysfs_slab_remove(struct kmem_cache *s)
5216{
97d06609 5217 if (slab_state < FULL)
2bce6485
CL
5218 /*
5219 * Sysfs has not been setup yet so no need to remove the
5220 * cache from sysfs.
5221 */
5222 return;
5223
81819f0f
CL
5224 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5225 kobject_del(&s->kobj);
151c602f 5226 kobject_put(&s->kobj);
81819f0f
CL
5227}
5228
5229/*
5230 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5231 * available lest we lose that information.
81819f0f
CL
5232 */
5233struct saved_alias {
5234 struct kmem_cache *s;
5235 const char *name;
5236 struct saved_alias *next;
5237};
5238
5af328a5 5239static struct saved_alias *alias_list;
81819f0f
CL
5240
5241static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5242{
5243 struct saved_alias *al;
5244
97d06609 5245 if (slab_state == FULL) {
81819f0f
CL
5246 /*
5247 * If we have a leftover link then remove it.
5248 */
27c3a314
GKH
5249 sysfs_remove_link(&slab_kset->kobj, name);
5250 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5251 }
5252
5253 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5254 if (!al)
5255 return -ENOMEM;
5256
5257 al->s = s;
5258 al->name = name;
5259 al->next = alias_list;
5260 alias_list = al;
5261 return 0;
5262}
5263
5264static int __init slab_sysfs_init(void)
5265{
5b95a4ac 5266 struct kmem_cache *s;
81819f0f
CL
5267 int err;
5268
18004c5d 5269 mutex_lock(&slab_mutex);
2bce6485 5270
0ff21e46 5271 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5272 if (!slab_kset) {
18004c5d 5273 mutex_unlock(&slab_mutex);
81819f0f
CL
5274 printk(KERN_ERR "Cannot register slab subsystem.\n");
5275 return -ENOSYS;
5276 }
5277
97d06609 5278 slab_state = FULL;
26a7bd03 5279
5b95a4ac 5280 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5281 err = sysfs_slab_add(s);
5d540fb7
CL
5282 if (err)
5283 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5284 " to sysfs\n", s->name);
26a7bd03 5285 }
81819f0f
CL
5286
5287 while (alias_list) {
5288 struct saved_alias *al = alias_list;
5289
5290 alias_list = alias_list->next;
5291 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5292 if (err)
5293 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5294 " %s to sysfs\n", al->name);
81819f0f
CL
5295 kfree(al);
5296 }
5297
18004c5d 5298 mutex_unlock(&slab_mutex);
81819f0f
CL
5299 resiliency_test();
5300 return 0;
5301}
5302
5303__initcall(slab_sysfs_init);
ab4d5ed5 5304#endif /* CONFIG_SYSFS */
57ed3eda
PE
5305
5306/*
5307 * The /proc/slabinfo ABI
5308 */
158a9624 5309#ifdef CONFIG_SLABINFO
0d7561c6 5310void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5311{
57ed3eda 5312 unsigned long nr_slabs = 0;
205ab99d
CL
5313 unsigned long nr_objs = 0;
5314 unsigned long nr_free = 0;
57ed3eda
PE
5315 int node;
5316
57ed3eda
PE
5317 for_each_online_node(node) {
5318 struct kmem_cache_node *n = get_node(s, node);
5319
5320 if (!n)
5321 continue;
5322
c17fd13e
WL
5323 nr_slabs += node_nr_slabs(n);
5324 nr_objs += node_nr_objs(n);
205ab99d 5325 nr_free += count_partial(n, count_free);
57ed3eda
PE
5326 }
5327
0d7561c6
GC
5328 sinfo->active_objs = nr_objs - nr_free;
5329 sinfo->num_objs = nr_objs;
5330 sinfo->active_slabs = nr_slabs;
5331 sinfo->num_slabs = nr_slabs;
5332 sinfo->objects_per_slab = oo_objects(s->oo);
5333 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5334}
5335
0d7561c6 5336void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5337{
7b3c3a50
AD
5338}
5339
b7454ad3
GC
5340ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5341 size_t count, loff_t *ppos)
7b3c3a50 5342{
b7454ad3 5343 return -EIO;
7b3c3a50 5344}
158a9624 5345#endif /* CONFIG_SLABINFO */
This page took 1.077683 seconds and 5 git commands to generate.