mm: optimize put_mems_allowed() usage
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
213static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 214static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 215#else
0c710013
CL
216static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
db265eca 219static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 220
107dab5c 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
81819f0f
CL
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
81819f0f 237 return s->node[node];
81819f0f
CL
238}
239
6446faa2 240/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
241static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243{
244 void *base;
245
a973e9dd 246 if (!object)
02cbc874
CL
247 return 1;
248
a973e9dd 249 base = page_address(page);
39b26464 250 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256}
257
7656c72b
CL
258static inline void *get_freepointer(struct kmem_cache *s, void *object)
259{
260 return *(void **)(object + s->offset);
261}
262
0ad9500e
ED
263static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264{
265 prefetch(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 304 return s->object_size;
d71f606f
MK
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
a0320865
DH
358static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359{
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371}
372
1d07171c
CL
373/* Interrupts must be disabled (for the fallback code to work right) */
374static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378{
379 VM_BUG_ON(!irqs_disabled());
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388#endif
389 {
390 slab_lock(page);
d0e0ac97
CG
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
1d07171c 393 page->freelist = freelist_new;
a0320865 394 set_page_slub_counters(page, counters_new);
1d07171c
CL
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404#ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406#endif
407
408 return 0;
409}
410
b789ef51
CL
411static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415{
2565409f
HC
416#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 418 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 419 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424#endif
425 {
1d07171c
CL
426 unsigned long flags;
427
428 local_irq_save(flags);
881db7fb 429 slab_lock(page);
d0e0ac97
CG
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
b789ef51 432 page->freelist = freelist_new;
a0320865 433 set_page_slub_counters(page, counters_new);
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 return 1;
437 }
881db7fb 438 slab_unlock(page);
1d07171c 439 local_irq_restore(flags);
b789ef51
CL
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445#ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447#endif
448
449 return 0;
450}
451
41ecc55b 452#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
459static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460{
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466}
467
41ecc55b
CL
468/*
469 * Debug settings:
470 */
f0630fff
CL
471#ifdef CONFIG_SLUB_DEBUG_ON
472static int slub_debug = DEBUG_DEFAULT_FLAGS;
473#else
41ecc55b 474static int slub_debug;
f0630fff 475#endif
41ecc55b
CL
476
477static char *slub_debug_slabs;
fa5ec8a1 478static int disable_higher_order_debug;
41ecc55b 479
81819f0f
CL
480/*
481 * Object debugging
482 */
483static void print_section(char *text, u8 *addr, unsigned int length)
484{
ffc79d28
SAS
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
81819f0f
CL
487}
488
81819f0f
CL
489static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491{
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500}
501
502static void set_track(struct kmem_cache *s, void *object,
ce71e27c 503 enum track_item alloc, unsigned long addr)
81819f0f 504{
1a00df4a 505 struct track *p = get_track(s, object, alloc);
81819f0f 506
81819f0f 507 if (addr) {
d6543e39
BG
508#ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525#endif
81819f0f
CL
526 p->addr = addr;
527 p->cpu = smp_processor_id();
88e4ccf2 528 p->pid = current->pid;
81819f0f
CL
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532}
533
81819f0f
CL
534static void init_tracking(struct kmem_cache *s, void *object)
535{
24922684
CL
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
ce71e27c
EGM
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
541}
542
543static void print_track(const char *s, struct track *t)
544{
545 if (!t->addr)
546 return;
547
7daf705f 548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
550#ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559#endif
24922684
CL
560}
561
562static void print_tracking(struct kmem_cache *s, void *object)
563{
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569}
570
571static void print_page_info(struct page *page)
572{
d0e0ac97
CG
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
265d47e7 589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
645df230 592
373d4d09 593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
594}
595
24922684
CL
596static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597{
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605}
606
607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
608{
609 unsigned int off; /* Offset of last byte */
a973e9dd 610 u8 *addr = page_address(page);
24922684
CL
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
ffc79d28 620 print_section("Bytes b4 ", p - 16, 16);
81819f0f 621
3b0efdfa 622 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 623 PAGE_SIZE));
81819f0f 624 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
81819f0f 627
81819f0f
CL
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
24922684 633 if (s->flags & SLAB_STORE_USER)
81819f0f 634 off += 2 * sizeof(struct track);
81819f0f
CL
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
ffc79d28 638 print_section("Padding ", p + off, s->size - off);
24922684
CL
639
640 dump_stack();
81819f0f
CL
641}
642
643static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645{
3dc50637 646 slab_bug(s, "%s", reason);
24922684 647 print_trailer(s, page, object);
81819f0f
CL
648}
649
d0e0ac97
CG
650static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
81819f0f
CL
652{
653 va_list args;
654 char buf[100];
655
24922684
CL
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 658 va_end(args);
3dc50637 659 slab_bug(s, "%s", buf);
24922684 660 print_page_info(page);
81819f0f
CL
661 dump_stack();
662}
663
f7cb1933 664static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
665{
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 674 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
675}
676
24922684
CL
677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679{
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682}
683
684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
06428780 686 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
687{
688 u8 *fault;
689 u8 *end;
690
79824820 691 fault = memchr_inv(start, value, bytes);
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
79824820 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 791 print_section("Padding ", end - remainder, remainder);
24922684 792
8a3d271d 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 794 return 0;
81819f0f
CL
795}
796
797static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 798 void *object, u8 val)
81819f0f
CL
799{
800 u8 *p = object;
3b0efdfa 801 u8 *endobject = object + s->object_size;
81819f0f
CL
802
803 if (s->flags & SLAB_RED_ZONE) {
24922684 804 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 805 endobject, val, s->inuse - s->object_size))
81819f0f 806 return 0;
81819f0f 807 } else {
3b0efdfa 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 809 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
3adbefee 812 }
81819f0f
CL
813 }
814
815 if (s->flags & SLAB_POISON) {
f7cb1933 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 817 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 818 POISON_FREE, s->object_size - 1) ||
24922684 819 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 820 p + s->object_size - 1, POISON_END, 1)))
81819f0f 821 return 0;
81819f0f
CL
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
f7cb1933 828 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
9f6c708e 839 * No choice but to zap it and thus lose the remainder
81819f0f 840 * of the free objects in this slab. May cause
672bba3a 841 * another error because the object count is now wrong.
81819f0f 842 */
a973e9dd 843 set_freepointer(s, p, NULL);
81819f0f
CL
844 return 0;
845 }
846 return 1;
847}
848
849static int check_slab(struct kmem_cache *s, struct page *page)
850{
39b26464
CL
851 int maxobj;
852
81819f0f
CL
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
24922684 856 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
857 return 0;
858 }
39b26464 859
ab9a0f19 860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
24922684 867 slab_err(s, page, "inuse %u > max %u",
39b26464 868 s->name, page->inuse, page->objects);
81819f0f
CL
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874}
875
876/*
672bba3a
CL
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
879 */
880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881{
882 int nr = 0;
881db7fb 883 void *fp;
81819f0f 884 void *object = NULL;
224a88be 885 unsigned long max_objects;
81819f0f 886
881db7fb 887 fp = page->freelist;
39b26464 888 while (fp && nr <= page->objects) {
81819f0f
CL
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
a973e9dd 895 set_freepointer(s, object, NULL);
81819f0f 896 } else {
24922684 897 slab_err(s, page, "Freepointer corrupt");
a973e9dd 898 page->freelist = NULL;
39b26464 899 page->inuse = page->objects;
24922684 900 slab_fix(s, "Freelist cleared");
81819f0f
CL
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
ab9a0f19 910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
39b26464 920 if (page->inuse != page->objects - nr) {
70d71228 921 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
24922684 924 slab_fix(s, "Object count adjusted.");
81819f0f
CL
925 }
926 return search == NULL;
927}
928
0121c619
CL
929static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
3ec09742
CL
931{
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
d0e0ac97
CG
940 print_section("Object ", (void *)object,
941 s->object_size);
3ec09742
CL
942
943 dump_stack();
944 }
945}
946
c016b0bd
CL
947/*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
d56791b3
RB
951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952{
953 kmemleak_alloc(ptr, size, 1, flags);
954}
955
956static inline void kfree_hook(const void *x)
957{
958 kmemleak_free(x);
959}
960
c016b0bd
CL
961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962{
c1d50836 963 flags &= gfp_allowed_mask;
c016b0bd
CL
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
3b0efdfa 967 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
968}
969
d0e0ac97
CG
970static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
c016b0bd 972{
c1d50836 973 flags &= gfp_allowed_mask;
b3d41885 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
976}
977
978static inline void slab_free_hook(struct kmem_cache *s, void *x)
979{
980 kmemleak_free_recursive(x, s->flags);
c016b0bd 981
d3f661d6 982 /*
d1756174 983 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
3b0efdfa
CL
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
994 local_irq_restore(flags);
995 }
996#endif
f9b615de 997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 998 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
999}
1000
643b1138 1001/*
672bba3a 1002 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1003 */
5cc6eee8
CL
1004static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
643b1138 1006{
5cc6eee8
CL
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
255d0884 1010 lockdep_assert_held(&n->list_lock);
643b1138 1011 list_add(&page->lru, &n->full);
643b1138
CL
1012}
1013
c65c1877 1014static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1015{
643b1138
CL
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
255d0884 1019 lockdep_assert_held(&n->list_lock);
643b1138 1020 list_del(&page->lru);
643b1138
CL
1021}
1022
0f389ec6
CL
1023/* Tracking of the number of slabs for debugging purposes */
1024static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025{
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029}
1030
26c02cf0
AB
1031static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032{
1033 return atomic_long_read(&n->nr_slabs);
1034}
1035
205ab99d 1036static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1037{
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
338b2642 1046 if (likely(n)) {
0f389ec6 1047 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1048 atomic_long_add(objects, &n->total_objects);
1049 }
0f389ec6 1050}
205ab99d 1051static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
205ab99d 1056 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1057}
1058
1059/* Object debug checks for alloc/free paths */
3ec09742
CL
1060static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062{
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
f7cb1933 1066 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1067 init_tracking(s, object);
1068}
1069
d0e0ac97
CG
1070static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
ce71e27c 1072 void *object, unsigned long addr)
81819f0f
CL
1073{
1074 if (!check_slab(s, page))
1075 goto bad;
1076
81819f0f
CL
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1079 goto bad;
81819f0f
CL
1080 }
1081
f7cb1933 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1083 goto bad;
81819f0f 1084
3ec09742
CL
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
f7cb1933 1089 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1090 return 1;
3ec09742 1091
81819f0f
CL
1092bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
672bba3a 1097 * as used avoids touching the remaining objects.
81819f0f 1098 */
24922684 1099 slab_fix(s, "Marking all objects used");
39b26464 1100 page->inuse = page->objects;
a973e9dd 1101 page->freelist = NULL;
81819f0f
CL
1102 }
1103 return 0;
1104}
1105
19c7ff9e
CL
1106static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
81819f0f 1109{
19c7ff9e 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1111
19c7ff9e 1112 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1113 slab_lock(page);
1114
81819f0f
CL
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
70d71228 1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
24922684 1124 object_err(s, page, object, "Object already free");
81819f0f
CL
1125 goto fail;
1126 }
1127
f7cb1933 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1129 goto out;
81819f0f 1130
1b4f59e3 1131 if (unlikely(s != page->slab_cache)) {
3adbefee 1132 if (!PageSlab(page)) {
70d71228
CL
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1b4f59e3 1135 } else if (!page->slab_cache) {
81819f0f 1136 printk(KERN_ERR
70d71228 1137 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1138 object);
70d71228 1139 dump_stack();
06428780 1140 } else
24922684
CL
1141 object_err(s, page, object,
1142 "page slab pointer corrupt.");
81819f0f
CL
1143 goto fail;
1144 }
3ec09742 1145
3ec09742
CL
1146 if (s->flags & SLAB_STORE_USER)
1147 set_track(s, object, TRACK_FREE, addr);
1148 trace(s, page, object, 0);
f7cb1933 1149 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1150out:
881db7fb 1151 slab_unlock(page);
19c7ff9e
CL
1152 /*
1153 * Keep node_lock to preserve integrity
1154 * until the object is actually freed
1155 */
1156 return n;
3ec09742 1157
81819f0f 1158fail:
19c7ff9e
CL
1159 slab_unlock(page);
1160 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1161 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1162 return NULL;
81819f0f
CL
1163}
1164
41ecc55b
CL
1165static int __init setup_slub_debug(char *str)
1166{
f0630fff
CL
1167 slub_debug = DEBUG_DEFAULT_FLAGS;
1168 if (*str++ != '=' || !*str)
1169 /*
1170 * No options specified. Switch on full debugging.
1171 */
1172 goto out;
1173
1174 if (*str == ',')
1175 /*
1176 * No options but restriction on slabs. This means full
1177 * debugging for slabs matching a pattern.
1178 */
1179 goto check_slabs;
1180
fa5ec8a1
DR
1181 if (tolower(*str) == 'o') {
1182 /*
1183 * Avoid enabling debugging on caches if its minimum order
1184 * would increase as a result.
1185 */
1186 disable_higher_order_debug = 1;
1187 goto out;
1188 }
1189
f0630fff
CL
1190 slub_debug = 0;
1191 if (*str == '-')
1192 /*
1193 * Switch off all debugging measures.
1194 */
1195 goto out;
1196
1197 /*
1198 * Determine which debug features should be switched on
1199 */
06428780 1200 for (; *str && *str != ','; str++) {
f0630fff
CL
1201 switch (tolower(*str)) {
1202 case 'f':
1203 slub_debug |= SLAB_DEBUG_FREE;
1204 break;
1205 case 'z':
1206 slub_debug |= SLAB_RED_ZONE;
1207 break;
1208 case 'p':
1209 slub_debug |= SLAB_POISON;
1210 break;
1211 case 'u':
1212 slub_debug |= SLAB_STORE_USER;
1213 break;
1214 case 't':
1215 slub_debug |= SLAB_TRACE;
1216 break;
4c13dd3b
DM
1217 case 'a':
1218 slub_debug |= SLAB_FAILSLAB;
1219 break;
f0630fff
CL
1220 default:
1221 printk(KERN_ERR "slub_debug option '%c' "
06428780 1222 "unknown. skipped\n", *str);
f0630fff 1223 }
41ecc55b
CL
1224 }
1225
f0630fff 1226check_slabs:
41ecc55b
CL
1227 if (*str == ',')
1228 slub_debug_slabs = str + 1;
f0630fff 1229out:
41ecc55b
CL
1230 return 1;
1231}
1232
1233__setup("slub_debug", setup_slub_debug);
1234
3b0efdfa 1235static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1236 unsigned long flags, const char *name,
51cc5068 1237 void (*ctor)(void *))
41ecc55b
CL
1238{
1239 /*
e153362a 1240 * Enable debugging if selected on the kernel commandline.
41ecc55b 1241 */
c6f58d9b
CL
1242 if (slub_debug && (!slub_debug_slabs || (name &&
1243 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1244 flags |= slub_debug;
ba0268a8
CL
1245
1246 return flags;
41ecc55b
CL
1247}
1248#else
3ec09742
CL
1249static inline void setup_object_debug(struct kmem_cache *s,
1250 struct page *page, void *object) {}
41ecc55b 1251
3ec09742 1252static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1253 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1254
19c7ff9e
CL
1255static inline struct kmem_cache_node *free_debug_processing(
1256 struct kmem_cache *s, struct page *page, void *object,
1257 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1258
41ecc55b
CL
1259static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1260 { return 1; }
1261static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1262 void *object, u8 val) { return 1; }
5cc6eee8
CL
1263static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1264 struct page *page) {}
c65c1877
PZ
1265static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
3b0efdfa 1267static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1268 unsigned long flags, const char *name,
51cc5068 1269 void (*ctor)(void *))
ba0268a8
CL
1270{
1271 return flags;
1272}
41ecc55b 1273#define slub_debug 0
0f389ec6 1274
fdaa45e9
IM
1275#define disable_higher_order_debug 0
1276
0f389ec6
CL
1277static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1278 { return 0; }
26c02cf0
AB
1279static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1280 { return 0; }
205ab99d
CL
1281static inline void inc_slabs_node(struct kmem_cache *s, int node,
1282 int objects) {}
1283static inline void dec_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
7d550c56 1285
d56791b3
RB
1286static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1287{
1288 kmemleak_alloc(ptr, size, 1, flags);
1289}
1290
1291static inline void kfree_hook(const void *x)
1292{
1293 kmemleak_free(x);
1294}
1295
7d550c56
CL
1296static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1297 { return 0; }
1298
1299static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1300 void *object)
1301{
1302 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1303 flags & gfp_allowed_mask);
1304}
7d550c56 1305
d56791b3
RB
1306static inline void slab_free_hook(struct kmem_cache *s, void *x)
1307{
1308 kmemleak_free_recursive(x, s->flags);
1309}
7d550c56 1310
ab4d5ed5 1311#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1312
81819f0f
CL
1313/*
1314 * Slab allocation and freeing
1315 */
65c3376a
CL
1316static inline struct page *alloc_slab_page(gfp_t flags, int node,
1317 struct kmem_cache_order_objects oo)
1318{
1319 int order = oo_order(oo);
1320
b1eeab67
VN
1321 flags |= __GFP_NOTRACK;
1322
2154a336 1323 if (node == NUMA_NO_NODE)
65c3376a
CL
1324 return alloc_pages(flags, order);
1325 else
6b65aaf3 1326 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1327}
1328
81819f0f
CL
1329static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1330{
06428780 1331 struct page *page;
834f3d11 1332 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1333 gfp_t alloc_gfp;
81819f0f 1334
7e0528da
CL
1335 flags &= gfp_allowed_mask;
1336
1337 if (flags & __GFP_WAIT)
1338 local_irq_enable();
1339
b7a49f0d 1340 flags |= s->allocflags;
e12ba74d 1341
ba52270d
PE
1342 /*
1343 * Let the initial higher-order allocation fail under memory pressure
1344 * so we fall-back to the minimum order allocation.
1345 */
1346 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1347
1348 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1349 if (unlikely(!page)) {
1350 oo = s->min;
1351 /*
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1354 */
1355 page = alloc_slab_page(flags, node, oo);
81819f0f 1356
7e0528da
CL
1357 if (page)
1358 stat(s, ORDER_FALLBACK);
65c3376a 1359 }
5a896d9e 1360
737b719e 1361 if (kmemcheck_enabled && page
5086c389 1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1363 int pages = 1 << oo_order(oo);
1364
1365 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1366
1367 /*
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1370 */
1371 if (s->ctor)
1372 kmemcheck_mark_uninitialized_pages(page, pages);
1373 else
1374 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1375 }
1376
737b719e
DR
1377 if (flags & __GFP_WAIT)
1378 local_irq_disable();
1379 if (!page)
1380 return NULL;
1381
834f3d11 1382 page->objects = oo_objects(oo);
81819f0f
CL
1383 mod_zone_page_state(page_zone(page),
1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1386 1 << oo_order(oo));
81819f0f
CL
1387
1388 return page;
1389}
1390
1391static void setup_object(struct kmem_cache *s, struct page *page,
1392 void *object)
1393{
3ec09742 1394 setup_object_debug(s, page, object);
4f104934 1395 if (unlikely(s->ctor))
51cc5068 1396 s->ctor(object);
81819f0f
CL
1397}
1398
1399static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400{
1401 struct page *page;
81819f0f 1402 void *start;
81819f0f
CL
1403 void *last;
1404 void *p;
1f458cbf 1405 int order;
81819f0f 1406
6cb06229 1407 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1408
6cb06229
CL
1409 page = allocate_slab(s,
1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1411 if (!page)
1412 goto out;
1413
1f458cbf 1414 order = compound_order(page);
205ab99d 1415 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1416 memcg_bind_pages(s, order);
1b4f59e3 1417 page->slab_cache = s;
c03f94cc 1418 __SetPageSlab(page);
072bb0aa
MG
1419 if (page->pfmemalloc)
1420 SetPageSlabPfmemalloc(page);
81819f0f
CL
1421
1422 start = page_address(page);
81819f0f
CL
1423
1424 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1425 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1426
1427 last = start;
224a88be 1428 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1429 setup_object(s, page, last);
1430 set_freepointer(s, last, p);
1431 last = p;
1432 }
1433 setup_object(s, page, last);
a973e9dd 1434 set_freepointer(s, last, NULL);
81819f0f
CL
1435
1436 page->freelist = start;
e6e82ea1 1437 page->inuse = page->objects;
8cb0a506 1438 page->frozen = 1;
81819f0f 1439out:
81819f0f
CL
1440 return page;
1441}
1442
1443static void __free_slab(struct kmem_cache *s, struct page *page)
1444{
834f3d11
CL
1445 int order = compound_order(page);
1446 int pages = 1 << order;
81819f0f 1447
af537b0a 1448 if (kmem_cache_debug(s)) {
81819f0f
CL
1449 void *p;
1450
1451 slab_pad_check(s, page);
224a88be
CL
1452 for_each_object(p, s, page_address(page),
1453 page->objects)
f7cb1933 1454 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1455 }
1456
b1eeab67 1457 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1458
81819f0f
CL
1459 mod_zone_page_state(page_zone(page),
1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1462 -pages);
81819f0f 1463
072bb0aa 1464 __ClearPageSlabPfmemalloc(page);
49bd5221 1465 __ClearPageSlab(page);
1f458cbf
GC
1466
1467 memcg_release_pages(s, order);
22b751c3 1468 page_mapcount_reset(page);
1eb5ac64
NP
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1471 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1472}
1473
da9a638c
LJ
1474#define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476
81819f0f
CL
1477static void rcu_free_slab(struct rcu_head *h)
1478{
1479 struct page *page;
1480
da9a638c
LJ
1481 if (need_reserve_slab_rcu)
1482 page = virt_to_head_page(h);
1483 else
1484 page = container_of((struct list_head *)h, struct page, lru);
1485
1b4f59e3 1486 __free_slab(page->slab_cache, page);
81819f0f
CL
1487}
1488
1489static void free_slab(struct kmem_cache *s, struct page *page)
1490{
1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1492 struct rcu_head *head;
1493
1494 if (need_reserve_slab_rcu) {
1495 int order = compound_order(page);
1496 int offset = (PAGE_SIZE << order) - s->reserved;
1497
1498 VM_BUG_ON(s->reserved != sizeof(*head));
1499 head = page_address(page) + offset;
1500 } else {
1501 /*
1502 * RCU free overloads the RCU head over the LRU
1503 */
1504 head = (void *)&page->lru;
1505 }
81819f0f
CL
1506
1507 call_rcu(head, rcu_free_slab);
1508 } else
1509 __free_slab(s, page);
1510}
1511
1512static void discard_slab(struct kmem_cache *s, struct page *page)
1513{
205ab99d 1514 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1515 free_slab(s, page);
1516}
1517
1518/*
5cc6eee8 1519 * Management of partially allocated slabs.
81819f0f 1520 */
1e4dd946
SR
1521static inline void
1522__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1523{
e95eed57 1524 n->nr_partial++;
136333d1 1525 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1526 list_add_tail(&page->lru, &n->partial);
1527 else
1528 list_add(&page->lru, &n->partial);
81819f0f
CL
1529}
1530
1e4dd946
SR
1531static inline void add_partial(struct kmem_cache_node *n,
1532 struct page *page, int tail)
62e346a8 1533{
c65c1877 1534 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1535 __add_partial(n, page, tail);
1536}
c65c1877 1537
1e4dd946
SR
1538static inline void
1539__remove_partial(struct kmem_cache_node *n, struct page *page)
1540{
62e346a8
CL
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543}
1544
1e4dd946
SR
1545static inline void remove_partial(struct kmem_cache_node *n,
1546 struct page *page)
1547{
1548 lockdep_assert_held(&n->list_lock);
1549 __remove_partial(n, page);
1550}
1551
81819f0f 1552/*
7ced3719
CL
1553 * Remove slab from the partial list, freeze it and
1554 * return the pointer to the freelist.
81819f0f 1555 *
497b66f2 1556 * Returns a list of objects or NULL if it fails.
81819f0f 1557 */
497b66f2 1558static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1559 struct kmem_cache_node *n, struct page *page,
633b0764 1560 int mode, int *objects)
81819f0f 1561{
2cfb7455
CL
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
c65c1877
PZ
1566 lockdep_assert_held(&n->list_lock);
1567
2cfb7455
CL
1568 /*
1569 * Zap the freelist and set the frozen bit.
1570 * The old freelist is the list of objects for the
1571 * per cpu allocation list.
1572 */
7ced3719
CL
1573 freelist = page->freelist;
1574 counters = page->counters;
1575 new.counters = counters;
633b0764 1576 *objects = new.objects - new.inuse;
23910c50 1577 if (mode) {
7ced3719 1578 new.inuse = page->objects;
23910c50
PE
1579 new.freelist = NULL;
1580 } else {
1581 new.freelist = freelist;
1582 }
2cfb7455 1583
a0132ac0 1584 VM_BUG_ON(new.frozen);
7ced3719 1585 new.frozen = 1;
2cfb7455 1586
7ced3719 1587 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1588 freelist, counters,
02d7633f 1589 new.freelist, new.counters,
7ced3719 1590 "acquire_slab"))
7ced3719 1591 return NULL;
2cfb7455
CL
1592
1593 remove_partial(n, page);
7ced3719 1594 WARN_ON(!freelist);
49e22585 1595 return freelist;
81819f0f
CL
1596}
1597
633b0764 1598static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1599static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1600
81819f0f 1601/*
672bba3a 1602 * Try to allocate a partial slab from a specific node.
81819f0f 1603 */
8ba00bb6
JK
1604static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1605 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1606{
49e22585
CL
1607 struct page *page, *page2;
1608 void *object = NULL;
633b0764
JK
1609 int available = 0;
1610 int objects;
81819f0f
CL
1611
1612 /*
1613 * Racy check. If we mistakenly see no partial slabs then we
1614 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1615 * partial slab and there is none available then get_partials()
1616 * will return NULL.
81819f0f
CL
1617 */
1618 if (!n || !n->nr_partial)
1619 return NULL;
1620
1621 spin_lock(&n->list_lock);
49e22585 1622 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1623 void *t;
49e22585 1624
8ba00bb6
JK
1625 if (!pfmemalloc_match(page, flags))
1626 continue;
1627
633b0764 1628 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1629 if (!t)
1630 break;
1631
633b0764 1632 available += objects;
12d79634 1633 if (!object) {
49e22585 1634 c->page = page;
49e22585 1635 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1636 object = t;
49e22585 1637 } else {
633b0764 1638 put_cpu_partial(s, page, 0);
8028dcea 1639 stat(s, CPU_PARTIAL_NODE);
49e22585 1640 }
345c905d
JK
1641 if (!kmem_cache_has_cpu_partial(s)
1642 || available > s->cpu_partial / 2)
49e22585
CL
1643 break;
1644
497b66f2 1645 }
81819f0f 1646 spin_unlock(&n->list_lock);
497b66f2 1647 return object;
81819f0f
CL
1648}
1649
1650/*
672bba3a 1651 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1652 */
de3ec035 1653static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1654 struct kmem_cache_cpu *c)
81819f0f
CL
1655{
1656#ifdef CONFIG_NUMA
1657 struct zonelist *zonelist;
dd1a239f 1658 struct zoneref *z;
54a6eb5c
MG
1659 struct zone *zone;
1660 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1661 void *object;
cc9a6c87 1662 unsigned int cpuset_mems_cookie;
81819f0f
CL
1663
1664 /*
672bba3a
CL
1665 * The defrag ratio allows a configuration of the tradeoffs between
1666 * inter node defragmentation and node local allocations. A lower
1667 * defrag_ratio increases the tendency to do local allocations
1668 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1669 *
672bba3a
CL
1670 * If the defrag_ratio is set to 0 then kmalloc() always
1671 * returns node local objects. If the ratio is higher then kmalloc()
1672 * may return off node objects because partial slabs are obtained
1673 * from other nodes and filled up.
81819f0f 1674 *
6446faa2 1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1676 * defrag_ratio = 1000) then every (well almost) allocation will
1677 * first attempt to defrag slab caches on other nodes. This means
1678 * scanning over all nodes to look for partial slabs which may be
1679 * expensive if we do it every time we are trying to find a slab
1680 * with available objects.
81819f0f 1681 */
9824601e
CL
1682 if (!s->remote_node_defrag_ratio ||
1683 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1684 return NULL;
1685
cc9a6c87 1686 do {
d26914d1 1687 cpuset_mems_cookie = read_mems_allowed_begin();
e7b691b0 1688 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1690 struct kmem_cache_node *n;
1691
1692 n = get_node(s, zone_to_nid(zone));
1693
1694 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1695 n->nr_partial > s->min_partial) {
8ba00bb6 1696 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1697 if (object) {
1698 /*
d26914d1
MG
1699 * Don't check read_mems_allowed_retry()
1700 * here - if mems_allowed was updated in
1701 * parallel, that was a harmless race
1702 * between allocation and the cpuset
1703 * update
cc9a6c87 1704 */
cc9a6c87
MG
1705 return object;
1706 }
c0ff7453 1707 }
81819f0f 1708 }
d26914d1 1709 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1710#endif
1711 return NULL;
1712}
1713
1714/*
1715 * Get a partial page, lock it and return it.
1716 */
497b66f2 1717static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1718 struct kmem_cache_cpu *c)
81819f0f 1719{
497b66f2 1720 void *object;
2154a336 1721 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1722
8ba00bb6 1723 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1724 if (object || node != NUMA_NO_NODE)
1725 return object;
81819f0f 1726
acd19fd1 1727 return get_any_partial(s, flags, c);
81819f0f
CL
1728}
1729
8a5ec0ba
CL
1730#ifdef CONFIG_PREEMPT
1731/*
1732 * Calculate the next globally unique transaction for disambiguiation
1733 * during cmpxchg. The transactions start with the cpu number and are then
1734 * incremented by CONFIG_NR_CPUS.
1735 */
1736#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1737#else
1738/*
1739 * No preemption supported therefore also no need to check for
1740 * different cpus.
1741 */
1742#define TID_STEP 1
1743#endif
1744
1745static inline unsigned long next_tid(unsigned long tid)
1746{
1747 return tid + TID_STEP;
1748}
1749
1750static inline unsigned int tid_to_cpu(unsigned long tid)
1751{
1752 return tid % TID_STEP;
1753}
1754
1755static inline unsigned long tid_to_event(unsigned long tid)
1756{
1757 return tid / TID_STEP;
1758}
1759
1760static inline unsigned int init_tid(int cpu)
1761{
1762 return cpu;
1763}
1764
1765static inline void note_cmpxchg_failure(const char *n,
1766 const struct kmem_cache *s, unsigned long tid)
1767{
1768#ifdef SLUB_DEBUG_CMPXCHG
1769 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1770
1771 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1772
1773#ifdef CONFIG_PREEMPT
1774 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1775 printk("due to cpu change %d -> %d\n",
1776 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1777 else
1778#endif
1779 if (tid_to_event(tid) != tid_to_event(actual_tid))
1780 printk("due to cpu running other code. Event %ld->%ld\n",
1781 tid_to_event(tid), tid_to_event(actual_tid));
1782 else
1783 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1784 actual_tid, tid, next_tid(tid));
1785#endif
4fdccdfb 1786 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1787}
1788
788e1aad 1789static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1790{
8a5ec0ba
CL
1791 int cpu;
1792
1793 for_each_possible_cpu(cpu)
1794 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1795}
2cfb7455 1796
81819f0f
CL
1797/*
1798 * Remove the cpu slab
1799 */
d0e0ac97
CG
1800static void deactivate_slab(struct kmem_cache *s, struct page *page,
1801 void *freelist)
81819f0f 1802{
2cfb7455 1803 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1804 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1805 int lock = 0;
1806 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1807 void *nextfree;
136333d1 1808 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1809 struct page new;
1810 struct page old;
1811
1812 if (page->freelist) {
84e554e6 1813 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1814 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1815 }
1816
894b8788 1817 /*
2cfb7455
CL
1818 * Stage one: Free all available per cpu objects back
1819 * to the page freelist while it is still frozen. Leave the
1820 * last one.
1821 *
1822 * There is no need to take the list->lock because the page
1823 * is still frozen.
1824 */
1825 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1826 void *prior;
1827 unsigned long counters;
1828
1829 do {
1830 prior = page->freelist;
1831 counters = page->counters;
1832 set_freepointer(s, freelist, prior);
1833 new.counters = counters;
1834 new.inuse--;
a0132ac0 1835 VM_BUG_ON(!new.frozen);
2cfb7455 1836
1d07171c 1837 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1838 prior, counters,
1839 freelist, new.counters,
1840 "drain percpu freelist"));
1841
1842 freelist = nextfree;
1843 }
1844
894b8788 1845 /*
2cfb7455
CL
1846 * Stage two: Ensure that the page is unfrozen while the
1847 * list presence reflects the actual number of objects
1848 * during unfreeze.
1849 *
1850 * We setup the list membership and then perform a cmpxchg
1851 * with the count. If there is a mismatch then the page
1852 * is not unfrozen but the page is on the wrong list.
1853 *
1854 * Then we restart the process which may have to remove
1855 * the page from the list that we just put it on again
1856 * because the number of objects in the slab may have
1857 * changed.
894b8788 1858 */
2cfb7455 1859redo:
894b8788 1860
2cfb7455
CL
1861 old.freelist = page->freelist;
1862 old.counters = page->counters;
a0132ac0 1863 VM_BUG_ON(!old.frozen);
7c2e132c 1864
2cfb7455
CL
1865 /* Determine target state of the slab */
1866 new.counters = old.counters;
1867 if (freelist) {
1868 new.inuse--;
1869 set_freepointer(s, freelist, old.freelist);
1870 new.freelist = freelist;
1871 } else
1872 new.freelist = old.freelist;
1873
1874 new.frozen = 0;
1875
81107188 1876 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1877 m = M_FREE;
1878 else if (new.freelist) {
1879 m = M_PARTIAL;
1880 if (!lock) {
1881 lock = 1;
1882 /*
1883 * Taking the spinlock removes the possiblity
1884 * that acquire_slab() will see a slab page that
1885 * is frozen
1886 */
1887 spin_lock(&n->list_lock);
1888 }
1889 } else {
1890 m = M_FULL;
1891 if (kmem_cache_debug(s) && !lock) {
1892 lock = 1;
1893 /*
1894 * This also ensures that the scanning of full
1895 * slabs from diagnostic functions will not see
1896 * any frozen slabs.
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 }
1901
1902 if (l != m) {
1903
1904 if (l == M_PARTIAL)
1905
1906 remove_partial(n, page);
1907
1908 else if (l == M_FULL)
894b8788 1909
c65c1877 1910 remove_full(s, n, page);
2cfb7455
CL
1911
1912 if (m == M_PARTIAL) {
1913
1914 add_partial(n, page, tail);
136333d1 1915 stat(s, tail);
2cfb7455
CL
1916
1917 } else if (m == M_FULL) {
894b8788 1918
2cfb7455
CL
1919 stat(s, DEACTIVATE_FULL);
1920 add_full(s, n, page);
1921
1922 }
1923 }
1924
1925 l = m;
1d07171c 1926 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1927 old.freelist, old.counters,
1928 new.freelist, new.counters,
1929 "unfreezing slab"))
1930 goto redo;
1931
2cfb7455
CL
1932 if (lock)
1933 spin_unlock(&n->list_lock);
1934
1935 if (m == M_FREE) {
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
894b8788 1939 }
81819f0f
CL
1940}
1941
d24ac77f
JK
1942/*
1943 * Unfreeze all the cpu partial slabs.
1944 *
59a09917
CL
1945 * This function must be called with interrupts disabled
1946 * for the cpu using c (or some other guarantee must be there
1947 * to guarantee no concurrent accesses).
d24ac77f 1948 */
59a09917
CL
1949static void unfreeze_partials(struct kmem_cache *s,
1950 struct kmem_cache_cpu *c)
49e22585 1951{
345c905d 1952#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1953 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1954 struct page *page, *discard_page = NULL;
49e22585
CL
1955
1956 while ((page = c->partial)) {
49e22585
CL
1957 struct page new;
1958 struct page old;
1959
1960 c->partial = page->next;
43d77867
JK
1961
1962 n2 = get_node(s, page_to_nid(page));
1963 if (n != n2) {
1964 if (n)
1965 spin_unlock(&n->list_lock);
1966
1967 n = n2;
1968 spin_lock(&n->list_lock);
1969 }
49e22585
CL
1970
1971 do {
1972
1973 old.freelist = page->freelist;
1974 old.counters = page->counters;
a0132ac0 1975 VM_BUG_ON(!old.frozen);
49e22585
CL
1976
1977 new.counters = old.counters;
1978 new.freelist = old.freelist;
1979
1980 new.frozen = 0;
1981
d24ac77f 1982 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1983 old.freelist, old.counters,
1984 new.freelist, new.counters,
1985 "unfreezing slab"));
1986
43d77867 1987 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1988 page->next = discard_page;
1989 discard_page = page;
43d77867
JK
1990 } else {
1991 add_partial(n, page, DEACTIVATE_TO_TAIL);
1992 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1993 }
1994 }
1995
1996 if (n)
1997 spin_unlock(&n->list_lock);
9ada1934
SL
1998
1999 while (discard_page) {
2000 page = discard_page;
2001 discard_page = discard_page->next;
2002
2003 stat(s, DEACTIVATE_EMPTY);
2004 discard_slab(s, page);
2005 stat(s, FREE_SLAB);
2006 }
345c905d 2007#endif
49e22585
CL
2008}
2009
2010/*
2011 * Put a page that was just frozen (in __slab_free) into a partial page
2012 * slot if available. This is done without interrupts disabled and without
2013 * preemption disabled. The cmpxchg is racy and may put the partial page
2014 * onto a random cpus partial slot.
2015 *
2016 * If we did not find a slot then simply move all the partials to the
2017 * per node partial list.
2018 */
633b0764 2019static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2020{
345c905d 2021#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2022 struct page *oldpage;
2023 int pages;
2024 int pobjects;
2025
2026 do {
2027 pages = 0;
2028 pobjects = 0;
2029 oldpage = this_cpu_read(s->cpu_slab->partial);
2030
2031 if (oldpage) {
2032 pobjects = oldpage->pobjects;
2033 pages = oldpage->pages;
2034 if (drain && pobjects > s->cpu_partial) {
2035 unsigned long flags;
2036 /*
2037 * partial array is full. Move the existing
2038 * set to the per node partial list.
2039 */
2040 local_irq_save(flags);
59a09917 2041 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2042 local_irq_restore(flags);
e24fc410 2043 oldpage = NULL;
49e22585
CL
2044 pobjects = 0;
2045 pages = 0;
8028dcea 2046 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2047 }
2048 }
2049
2050 pages++;
2051 pobjects += page->objects - page->inuse;
2052
2053 page->pages = pages;
2054 page->pobjects = pobjects;
2055 page->next = oldpage;
2056
d0e0ac97
CG
2057 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2058 != oldpage);
345c905d 2059#endif
49e22585
CL
2060}
2061
dfb4f096 2062static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2063{
84e554e6 2064 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2065 deactivate_slab(s, c->page, c->freelist);
2066
2067 c->tid = next_tid(c->tid);
2068 c->page = NULL;
2069 c->freelist = NULL;
81819f0f
CL
2070}
2071
2072/*
2073 * Flush cpu slab.
6446faa2 2074 *
81819f0f
CL
2075 * Called from IPI handler with interrupts disabled.
2076 */
0c710013 2077static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2078{
9dfc6e68 2079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2080
49e22585
CL
2081 if (likely(c)) {
2082 if (c->page)
2083 flush_slab(s, c);
2084
59a09917 2085 unfreeze_partials(s, c);
49e22585 2086 }
81819f0f
CL
2087}
2088
2089static void flush_cpu_slab(void *d)
2090{
2091 struct kmem_cache *s = d;
81819f0f 2092
dfb4f096 2093 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2094}
2095
a8364d55
GBY
2096static bool has_cpu_slab(int cpu, void *info)
2097{
2098 struct kmem_cache *s = info;
2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2100
02e1a9cd 2101 return c->page || c->partial;
a8364d55
GBY
2102}
2103
81819f0f
CL
2104static void flush_all(struct kmem_cache *s)
2105{
a8364d55 2106 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2107}
2108
dfb4f096
CL
2109/*
2110 * Check if the objects in a per cpu structure fit numa
2111 * locality expectations.
2112 */
57d437d2 2113static inline int node_match(struct page *page, int node)
dfb4f096
CL
2114{
2115#ifdef CONFIG_NUMA
4d7868e6 2116 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2117 return 0;
2118#endif
2119 return 1;
2120}
2121
781b2ba6
PE
2122static int count_free(struct page *page)
2123{
2124 return page->objects - page->inuse;
2125}
2126
2127static unsigned long count_partial(struct kmem_cache_node *n,
2128 int (*get_count)(struct page *))
2129{
2130 unsigned long flags;
2131 unsigned long x = 0;
2132 struct page *page;
2133
2134 spin_lock_irqsave(&n->list_lock, flags);
2135 list_for_each_entry(page, &n->partial, lru)
2136 x += get_count(page);
2137 spin_unlock_irqrestore(&n->list_lock, flags);
2138 return x;
2139}
2140
26c02cf0
AB
2141static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2142{
2143#ifdef CONFIG_SLUB_DEBUG
2144 return atomic_long_read(&n->total_objects);
2145#else
2146 return 0;
2147#endif
2148}
2149
781b2ba6
PE
2150static noinline void
2151slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2152{
2153 int node;
2154
2155 printk(KERN_WARNING
2156 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2157 nid, gfpflags);
2158 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2159 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2160 s->size, oo_order(s->oo), oo_order(s->min));
2161
3b0efdfa 2162 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2163 printk(KERN_WARNING " %s debugging increased min order, use "
2164 "slub_debug=O to disable.\n", s->name);
2165
781b2ba6
PE
2166 for_each_online_node(node) {
2167 struct kmem_cache_node *n = get_node(s, node);
2168 unsigned long nr_slabs;
2169 unsigned long nr_objs;
2170 unsigned long nr_free;
2171
2172 if (!n)
2173 continue;
2174
26c02cf0
AB
2175 nr_free = count_partial(n, count_free);
2176 nr_slabs = node_nr_slabs(n);
2177 nr_objs = node_nr_objs(n);
781b2ba6
PE
2178
2179 printk(KERN_WARNING
2180 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2181 node, nr_slabs, nr_objs, nr_free);
2182 }
2183}
2184
497b66f2
CL
2185static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2186 int node, struct kmem_cache_cpu **pc)
2187{
6faa6833 2188 void *freelist;
188fd063
CL
2189 struct kmem_cache_cpu *c = *pc;
2190 struct page *page;
497b66f2 2191
188fd063 2192 freelist = get_partial(s, flags, node, c);
497b66f2 2193
188fd063
CL
2194 if (freelist)
2195 return freelist;
2196
2197 page = new_slab(s, flags, node);
497b66f2
CL
2198 if (page) {
2199 c = __this_cpu_ptr(s->cpu_slab);
2200 if (c->page)
2201 flush_slab(s, c);
2202
2203 /*
2204 * No other reference to the page yet so we can
2205 * muck around with it freely without cmpxchg
2206 */
6faa6833 2207 freelist = page->freelist;
497b66f2
CL
2208 page->freelist = NULL;
2209
2210 stat(s, ALLOC_SLAB);
497b66f2
CL
2211 c->page = page;
2212 *pc = c;
2213 } else
6faa6833 2214 freelist = NULL;
497b66f2 2215
6faa6833 2216 return freelist;
497b66f2
CL
2217}
2218
072bb0aa
MG
2219static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2220{
2221 if (unlikely(PageSlabPfmemalloc(page)))
2222 return gfp_pfmemalloc_allowed(gfpflags);
2223
2224 return true;
2225}
2226
213eeb9f 2227/*
d0e0ac97
CG
2228 * Check the page->freelist of a page and either transfer the freelist to the
2229 * per cpu freelist or deactivate the page.
213eeb9f
CL
2230 *
2231 * The page is still frozen if the return value is not NULL.
2232 *
2233 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2234 *
2235 * This function must be called with interrupt disabled.
213eeb9f
CL
2236 */
2237static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2238{
2239 struct page new;
2240 unsigned long counters;
2241 void *freelist;
2242
2243 do {
2244 freelist = page->freelist;
2245 counters = page->counters;
6faa6833 2246
213eeb9f 2247 new.counters = counters;
a0132ac0 2248 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2249
2250 new.inuse = page->objects;
2251 new.frozen = freelist != NULL;
2252
d24ac77f 2253 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2254 freelist, counters,
2255 NULL, new.counters,
2256 "get_freelist"));
2257
2258 return freelist;
2259}
2260
81819f0f 2261/*
894b8788
CL
2262 * Slow path. The lockless freelist is empty or we need to perform
2263 * debugging duties.
2264 *
894b8788
CL
2265 * Processing is still very fast if new objects have been freed to the
2266 * regular freelist. In that case we simply take over the regular freelist
2267 * as the lockless freelist and zap the regular freelist.
81819f0f 2268 *
894b8788
CL
2269 * If that is not working then we fall back to the partial lists. We take the
2270 * first element of the freelist as the object to allocate now and move the
2271 * rest of the freelist to the lockless freelist.
81819f0f 2272 *
894b8788 2273 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2274 * we need to allocate a new slab. This is the slowest path since it involves
2275 * a call to the page allocator and the setup of a new slab.
81819f0f 2276 */
ce71e27c
EGM
2277static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2278 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2279{
6faa6833 2280 void *freelist;
f6e7def7 2281 struct page *page;
8a5ec0ba
CL
2282 unsigned long flags;
2283
2284 local_irq_save(flags);
2285#ifdef CONFIG_PREEMPT
2286 /*
2287 * We may have been preempted and rescheduled on a different
2288 * cpu before disabling interrupts. Need to reload cpu area
2289 * pointer.
2290 */
2291 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2292#endif
81819f0f 2293
f6e7def7
CL
2294 page = c->page;
2295 if (!page)
81819f0f 2296 goto new_slab;
49e22585 2297redo:
6faa6833 2298
57d437d2 2299 if (unlikely(!node_match(page, node))) {
e36a2652 2300 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2301 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2302 c->page = NULL;
2303 c->freelist = NULL;
fc59c053
CL
2304 goto new_slab;
2305 }
6446faa2 2306
072bb0aa
MG
2307 /*
2308 * By rights, we should be searching for a slab page that was
2309 * PFMEMALLOC but right now, we are losing the pfmemalloc
2310 * information when the page leaves the per-cpu allocator
2311 */
2312 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2313 deactivate_slab(s, page, c->freelist);
2314 c->page = NULL;
2315 c->freelist = NULL;
2316 goto new_slab;
2317 }
2318
73736e03 2319 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2320 freelist = c->freelist;
2321 if (freelist)
73736e03 2322 goto load_freelist;
03e404af 2323
2cfb7455 2324 stat(s, ALLOC_SLOWPATH);
03e404af 2325
f6e7def7 2326 freelist = get_freelist(s, page);
6446faa2 2327
6faa6833 2328 if (!freelist) {
03e404af
CL
2329 c->page = NULL;
2330 stat(s, DEACTIVATE_BYPASS);
fc59c053 2331 goto new_slab;
03e404af 2332 }
6446faa2 2333
84e554e6 2334 stat(s, ALLOC_REFILL);
6446faa2 2335
894b8788 2336load_freelist:
507effea
CL
2337 /*
2338 * freelist is pointing to the list of objects to be used.
2339 * page is pointing to the page from which the objects are obtained.
2340 * That page must be frozen for per cpu allocations to work.
2341 */
a0132ac0 2342 VM_BUG_ON(!c->page->frozen);
6faa6833 2343 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2344 c->tid = next_tid(c->tid);
2345 local_irq_restore(flags);
6faa6833 2346 return freelist;
81819f0f 2347
81819f0f 2348new_slab:
2cfb7455 2349
49e22585 2350 if (c->partial) {
f6e7def7
CL
2351 page = c->page = c->partial;
2352 c->partial = page->next;
49e22585
CL
2353 stat(s, CPU_PARTIAL_ALLOC);
2354 c->freelist = NULL;
2355 goto redo;
81819f0f
CL
2356 }
2357
188fd063 2358 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2359
f4697436
CL
2360 if (unlikely(!freelist)) {
2361 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2362 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2363
f4697436
CL
2364 local_irq_restore(flags);
2365 return NULL;
81819f0f 2366 }
2cfb7455 2367
f6e7def7 2368 page = c->page;
5091b74a 2369 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2370 goto load_freelist;
2cfb7455 2371
497b66f2 2372 /* Only entered in the debug case */
d0e0ac97
CG
2373 if (kmem_cache_debug(s) &&
2374 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2375 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2376
f6e7def7 2377 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2378 c->page = NULL;
2379 c->freelist = NULL;
a71ae47a 2380 local_irq_restore(flags);
6faa6833 2381 return freelist;
894b8788
CL
2382}
2383
2384/*
2385 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2386 * have the fastpath folded into their functions. So no function call
2387 * overhead for requests that can be satisfied on the fastpath.
2388 *
2389 * The fastpath works by first checking if the lockless freelist can be used.
2390 * If not then __slab_alloc is called for slow processing.
2391 *
2392 * Otherwise we can simply pick the next object from the lockless free list.
2393 */
2b847c3c 2394static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2395 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2396{
894b8788 2397 void **object;
dfb4f096 2398 struct kmem_cache_cpu *c;
57d437d2 2399 struct page *page;
8a5ec0ba 2400 unsigned long tid;
1f84260c 2401
c016b0bd 2402 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2403 return NULL;
1f84260c 2404
d79923fa 2405 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2406redo:
8a5ec0ba
CL
2407 /*
2408 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2409 * enabled. We may switch back and forth between cpus while
2410 * reading from one cpu area. That does not matter as long
2411 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2412 *
2413 * Preemption is disabled for the retrieval of the tid because that
2414 * must occur from the current processor. We cannot allow rescheduling
2415 * on a different processor between the determination of the pointer
2416 * and the retrieval of the tid.
8a5ec0ba 2417 */
7cccd80b 2418 preempt_disable();
9dfc6e68 2419 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2420
8a5ec0ba
CL
2421 /*
2422 * The transaction ids are globally unique per cpu and per operation on
2423 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2424 * occurs on the right processor and that there was no operation on the
2425 * linked list in between.
2426 */
2427 tid = c->tid;
7cccd80b 2428 preempt_enable();
8a5ec0ba 2429
9dfc6e68 2430 object = c->freelist;
57d437d2 2431 page = c->page;
ac6434e6 2432 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2433 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2434
2435 else {
0ad9500e
ED
2436 void *next_object = get_freepointer_safe(s, object);
2437
8a5ec0ba 2438 /*
25985edc 2439 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2440 * operation and if we are on the right processor.
2441 *
d0e0ac97
CG
2442 * The cmpxchg does the following atomically (without lock
2443 * semantics!)
8a5ec0ba
CL
2444 * 1. Relocate first pointer to the current per cpu area.
2445 * 2. Verify that tid and freelist have not been changed
2446 * 3. If they were not changed replace tid and freelist
2447 *
d0e0ac97
CG
2448 * Since this is without lock semantics the protection is only
2449 * against code executing on this cpu *not* from access by
2450 * other cpus.
8a5ec0ba 2451 */
933393f5 2452 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2453 s->cpu_slab->freelist, s->cpu_slab->tid,
2454 object, tid,
0ad9500e 2455 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2456
2457 note_cmpxchg_failure("slab_alloc", s, tid);
2458 goto redo;
2459 }
0ad9500e 2460 prefetch_freepointer(s, next_object);
84e554e6 2461 stat(s, ALLOC_FASTPATH);
894b8788 2462 }
8a5ec0ba 2463
74e2134f 2464 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2465 memset(object, 0, s->object_size);
d07dbea4 2466
c016b0bd 2467 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2468
894b8788 2469 return object;
81819f0f
CL
2470}
2471
2b847c3c
EG
2472static __always_inline void *slab_alloc(struct kmem_cache *s,
2473 gfp_t gfpflags, unsigned long addr)
2474{
2475 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2476}
2477
81819f0f
CL
2478void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2479{
2b847c3c 2480 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2481
d0e0ac97
CG
2482 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2483 s->size, gfpflags);
5b882be4
EGM
2484
2485 return ret;
81819f0f
CL
2486}
2487EXPORT_SYMBOL(kmem_cache_alloc);
2488
0f24f128 2489#ifdef CONFIG_TRACING
4a92379b
RK
2490void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2491{
2b847c3c 2492 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2493 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2494 return ret;
2495}
2496EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2497#endif
2498
81819f0f
CL
2499#ifdef CONFIG_NUMA
2500void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2501{
2b847c3c 2502 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2503
ca2b84cb 2504 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2505 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2506
2507 return ret;
81819f0f
CL
2508}
2509EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2510
0f24f128 2511#ifdef CONFIG_TRACING
4a92379b 2512void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2513 gfp_t gfpflags,
4a92379b 2514 int node, size_t size)
5b882be4 2515{
2b847c3c 2516 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2517
2518 trace_kmalloc_node(_RET_IP_, ret,
2519 size, s->size, gfpflags, node);
2520 return ret;
5b882be4 2521}
4a92379b 2522EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2523#endif
5d1f57e4 2524#endif
5b882be4 2525
81819f0f 2526/*
894b8788
CL
2527 * Slow patch handling. This may still be called frequently since objects
2528 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2529 *
894b8788
CL
2530 * So we still attempt to reduce cache line usage. Just take the slab
2531 * lock and free the item. If there is no additional partial page
2532 * handling required then we can return immediately.
81819f0f 2533 */
894b8788 2534static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2535 void *x, unsigned long addr)
81819f0f
CL
2536{
2537 void *prior;
2538 void **object = (void *)x;
2cfb7455 2539 int was_frozen;
2cfb7455
CL
2540 struct page new;
2541 unsigned long counters;
2542 struct kmem_cache_node *n = NULL;
61728d1e 2543 unsigned long uninitialized_var(flags);
81819f0f 2544
8a5ec0ba 2545 stat(s, FREE_SLOWPATH);
81819f0f 2546
19c7ff9e
CL
2547 if (kmem_cache_debug(s) &&
2548 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2549 return;
6446faa2 2550
2cfb7455 2551 do {
837d678d
JK
2552 if (unlikely(n)) {
2553 spin_unlock_irqrestore(&n->list_lock, flags);
2554 n = NULL;
2555 }
2cfb7455
CL
2556 prior = page->freelist;
2557 counters = page->counters;
2558 set_freepointer(s, object, prior);
2559 new.counters = counters;
2560 was_frozen = new.frozen;
2561 new.inuse--;
837d678d 2562 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2563
c65c1877 2564 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2565
2566 /*
d0e0ac97
CG
2567 * Slab was on no list before and will be
2568 * partially empty
2569 * We can defer the list move and instead
2570 * freeze it.
49e22585
CL
2571 */
2572 new.frozen = 1;
2573
c65c1877 2574 } else { /* Needs to be taken off a list */
49e22585
CL
2575
2576 n = get_node(s, page_to_nid(page));
2577 /*
2578 * Speculatively acquire the list_lock.
2579 * If the cmpxchg does not succeed then we may
2580 * drop the list_lock without any processing.
2581 *
2582 * Otherwise the list_lock will synchronize with
2583 * other processors updating the list of slabs.
2584 */
2585 spin_lock_irqsave(&n->list_lock, flags);
2586
2587 }
2cfb7455 2588 }
81819f0f 2589
2cfb7455
CL
2590 } while (!cmpxchg_double_slab(s, page,
2591 prior, counters,
2592 object, new.counters,
2593 "__slab_free"));
81819f0f 2594
2cfb7455 2595 if (likely(!n)) {
49e22585
CL
2596
2597 /*
2598 * If we just froze the page then put it onto the
2599 * per cpu partial list.
2600 */
8028dcea 2601 if (new.frozen && !was_frozen) {
49e22585 2602 put_cpu_partial(s, page, 1);
8028dcea
AS
2603 stat(s, CPU_PARTIAL_FREE);
2604 }
49e22585 2605 /*
2cfb7455
CL
2606 * The list lock was not taken therefore no list
2607 * activity can be necessary.
2608 */
2609 if (was_frozen)
2610 stat(s, FREE_FROZEN);
80f08c19 2611 return;
2cfb7455 2612 }
81819f0f 2613
837d678d
JK
2614 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2615 goto slab_empty;
2616
81819f0f 2617 /*
837d678d
JK
2618 * Objects left in the slab. If it was not on the partial list before
2619 * then add it.
81819f0f 2620 */
345c905d
JK
2621 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2622 if (kmem_cache_debug(s))
c65c1877 2623 remove_full(s, n, page);
837d678d
JK
2624 add_partial(n, page, DEACTIVATE_TO_TAIL);
2625 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2626 }
80f08c19 2627 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2628 return;
2629
2630slab_empty:
a973e9dd 2631 if (prior) {
81819f0f 2632 /*
6fbabb20 2633 * Slab on the partial list.
81819f0f 2634 */
5cc6eee8 2635 remove_partial(n, page);
84e554e6 2636 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2637 } else {
6fbabb20 2638 /* Slab must be on the full list */
c65c1877
PZ
2639 remove_full(s, n, page);
2640 }
2cfb7455 2641
80f08c19 2642 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2643 stat(s, FREE_SLAB);
81819f0f 2644 discard_slab(s, page);
81819f0f
CL
2645}
2646
894b8788
CL
2647/*
2648 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2649 * can perform fastpath freeing without additional function calls.
2650 *
2651 * The fastpath is only possible if we are freeing to the current cpu slab
2652 * of this processor. This typically the case if we have just allocated
2653 * the item before.
2654 *
2655 * If fastpath is not possible then fall back to __slab_free where we deal
2656 * with all sorts of special processing.
2657 */
06428780 2658static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2659 struct page *page, void *x, unsigned long addr)
894b8788
CL
2660{
2661 void **object = (void *)x;
dfb4f096 2662 struct kmem_cache_cpu *c;
8a5ec0ba 2663 unsigned long tid;
1f84260c 2664
c016b0bd
CL
2665 slab_free_hook(s, x);
2666
8a5ec0ba
CL
2667redo:
2668 /*
2669 * Determine the currently cpus per cpu slab.
2670 * The cpu may change afterward. However that does not matter since
2671 * data is retrieved via this pointer. If we are on the same cpu
2672 * during the cmpxchg then the free will succedd.
2673 */
7cccd80b 2674 preempt_disable();
9dfc6e68 2675 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2676
8a5ec0ba 2677 tid = c->tid;
7cccd80b 2678 preempt_enable();
c016b0bd 2679
442b06bc 2680 if (likely(page == c->page)) {
ff12059e 2681 set_freepointer(s, object, c->freelist);
8a5ec0ba 2682
933393f5 2683 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2684 s->cpu_slab->freelist, s->cpu_slab->tid,
2685 c->freelist, tid,
2686 object, next_tid(tid)))) {
2687
2688 note_cmpxchg_failure("slab_free", s, tid);
2689 goto redo;
2690 }
84e554e6 2691 stat(s, FREE_FASTPATH);
894b8788 2692 } else
ff12059e 2693 __slab_free(s, page, x, addr);
894b8788 2694
894b8788
CL
2695}
2696
81819f0f
CL
2697void kmem_cache_free(struct kmem_cache *s, void *x)
2698{
b9ce5ef4
GC
2699 s = cache_from_obj(s, x);
2700 if (!s)
79576102 2701 return;
b9ce5ef4 2702 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2703 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2704}
2705EXPORT_SYMBOL(kmem_cache_free);
2706
81819f0f 2707/*
672bba3a
CL
2708 * Object placement in a slab is made very easy because we always start at
2709 * offset 0. If we tune the size of the object to the alignment then we can
2710 * get the required alignment by putting one properly sized object after
2711 * another.
81819f0f
CL
2712 *
2713 * Notice that the allocation order determines the sizes of the per cpu
2714 * caches. Each processor has always one slab available for allocations.
2715 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2716 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2717 * locking overhead.
81819f0f
CL
2718 */
2719
2720/*
2721 * Mininum / Maximum order of slab pages. This influences locking overhead
2722 * and slab fragmentation. A higher order reduces the number of partial slabs
2723 * and increases the number of allocations possible without having to
2724 * take the list_lock.
2725 */
2726static int slub_min_order;
114e9e89 2727static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2728static int slub_min_objects;
81819f0f
CL
2729
2730/*
2731 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2732 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2733 */
2734static int slub_nomerge;
2735
81819f0f
CL
2736/*
2737 * Calculate the order of allocation given an slab object size.
2738 *
672bba3a
CL
2739 * The order of allocation has significant impact on performance and other
2740 * system components. Generally order 0 allocations should be preferred since
2741 * order 0 does not cause fragmentation in the page allocator. Larger objects
2742 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2743 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2744 * would be wasted.
2745 *
2746 * In order to reach satisfactory performance we must ensure that a minimum
2747 * number of objects is in one slab. Otherwise we may generate too much
2748 * activity on the partial lists which requires taking the list_lock. This is
2749 * less a concern for large slabs though which are rarely used.
81819f0f 2750 *
672bba3a
CL
2751 * slub_max_order specifies the order where we begin to stop considering the
2752 * number of objects in a slab as critical. If we reach slub_max_order then
2753 * we try to keep the page order as low as possible. So we accept more waste
2754 * of space in favor of a small page order.
81819f0f 2755 *
672bba3a
CL
2756 * Higher order allocations also allow the placement of more objects in a
2757 * slab and thereby reduce object handling overhead. If the user has
2758 * requested a higher mininum order then we start with that one instead of
2759 * the smallest order which will fit the object.
81819f0f 2760 */
5e6d444e 2761static inline int slab_order(int size, int min_objects,
ab9a0f19 2762 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2763{
2764 int order;
2765 int rem;
6300ea75 2766 int min_order = slub_min_order;
81819f0f 2767
ab9a0f19 2768 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2769 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2770
6300ea75 2771 for (order = max(min_order,
5e6d444e
CL
2772 fls(min_objects * size - 1) - PAGE_SHIFT);
2773 order <= max_order; order++) {
81819f0f 2774
5e6d444e 2775 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2776
ab9a0f19 2777 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2778 continue;
2779
ab9a0f19 2780 rem = (slab_size - reserved) % size;
81819f0f 2781
5e6d444e 2782 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2783 break;
2784
2785 }
672bba3a 2786
81819f0f
CL
2787 return order;
2788}
2789
ab9a0f19 2790static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2791{
2792 int order;
2793 int min_objects;
2794 int fraction;
e8120ff1 2795 int max_objects;
5e6d444e
CL
2796
2797 /*
2798 * Attempt to find best configuration for a slab. This
2799 * works by first attempting to generate a layout with
2800 * the best configuration and backing off gradually.
2801 *
2802 * First we reduce the acceptable waste in a slab. Then
2803 * we reduce the minimum objects required in a slab.
2804 */
2805 min_objects = slub_min_objects;
9b2cd506
CL
2806 if (!min_objects)
2807 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2808 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2809 min_objects = min(min_objects, max_objects);
2810
5e6d444e 2811 while (min_objects > 1) {
c124f5b5 2812 fraction = 16;
5e6d444e
CL
2813 while (fraction >= 4) {
2814 order = slab_order(size, min_objects,
ab9a0f19 2815 slub_max_order, fraction, reserved);
5e6d444e
CL
2816 if (order <= slub_max_order)
2817 return order;
2818 fraction /= 2;
2819 }
5086c389 2820 min_objects--;
5e6d444e
CL
2821 }
2822
2823 /*
2824 * We were unable to place multiple objects in a slab. Now
2825 * lets see if we can place a single object there.
2826 */
ab9a0f19 2827 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2828 if (order <= slub_max_order)
2829 return order;
2830
2831 /*
2832 * Doh this slab cannot be placed using slub_max_order.
2833 */
ab9a0f19 2834 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2835 if (order < MAX_ORDER)
5e6d444e
CL
2836 return order;
2837 return -ENOSYS;
2838}
2839
5595cffc 2840static void
4053497d 2841init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2842{
2843 n->nr_partial = 0;
81819f0f
CL
2844 spin_lock_init(&n->list_lock);
2845 INIT_LIST_HEAD(&n->partial);
8ab1372f 2846#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2847 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2848 atomic_long_set(&n->total_objects, 0);
643b1138 2849 INIT_LIST_HEAD(&n->full);
8ab1372f 2850#endif
81819f0f
CL
2851}
2852
55136592 2853static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2854{
6c182dc0 2855 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2856 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2857
8a5ec0ba 2858 /*
d4d84fef
CM
2859 * Must align to double word boundary for the double cmpxchg
2860 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2861 */
d4d84fef
CM
2862 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2863 2 * sizeof(void *));
8a5ec0ba
CL
2864
2865 if (!s->cpu_slab)
2866 return 0;
2867
2868 init_kmem_cache_cpus(s);
4c93c355 2869
8a5ec0ba 2870 return 1;
4c93c355 2871}
4c93c355 2872
51df1142
CL
2873static struct kmem_cache *kmem_cache_node;
2874
81819f0f
CL
2875/*
2876 * No kmalloc_node yet so do it by hand. We know that this is the first
2877 * slab on the node for this slabcache. There are no concurrent accesses
2878 * possible.
2879 *
721ae22a
ZYW
2880 * Note that this function only works on the kmem_cache_node
2881 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2882 * memory on a fresh node that has no slab structures yet.
81819f0f 2883 */
55136592 2884static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2885{
2886 struct page *page;
2887 struct kmem_cache_node *n;
2888
51df1142 2889 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2890
51df1142 2891 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2892
2893 BUG_ON(!page);
a2f92ee7
CL
2894 if (page_to_nid(page) != node) {
2895 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2896 "node %d\n", node);
2897 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2898 "in order to be able to continue\n");
2899 }
2900
81819f0f
CL
2901 n = page->freelist;
2902 BUG_ON(!n);
51df1142 2903 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2904 page->inuse = 1;
8cb0a506 2905 page->frozen = 0;
51df1142 2906 kmem_cache_node->node[node] = n;
8ab1372f 2907#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2908 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2909 init_tracking(kmem_cache_node, n);
8ab1372f 2910#endif
4053497d 2911 init_kmem_cache_node(n);
51df1142 2912 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2913
67b6c900 2914 /*
1e4dd946
SR
2915 * No locks need to be taken here as it has just been
2916 * initialized and there is no concurrent access.
67b6c900 2917 */
1e4dd946 2918 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2919}
2920
2921static void free_kmem_cache_nodes(struct kmem_cache *s)
2922{
2923 int node;
2924
f64dc58c 2925 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2926 struct kmem_cache_node *n = s->node[node];
51df1142 2927
73367bd8 2928 if (n)
51df1142
CL
2929 kmem_cache_free(kmem_cache_node, n);
2930
81819f0f
CL
2931 s->node[node] = NULL;
2932 }
2933}
2934
55136592 2935static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2936{
2937 int node;
81819f0f 2938
f64dc58c 2939 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2940 struct kmem_cache_node *n;
2941
73367bd8 2942 if (slab_state == DOWN) {
55136592 2943 early_kmem_cache_node_alloc(node);
73367bd8
AD
2944 continue;
2945 }
51df1142 2946 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2947 GFP_KERNEL, node);
81819f0f 2948
73367bd8
AD
2949 if (!n) {
2950 free_kmem_cache_nodes(s);
2951 return 0;
81819f0f 2952 }
73367bd8 2953
81819f0f 2954 s->node[node] = n;
4053497d 2955 init_kmem_cache_node(n);
81819f0f
CL
2956 }
2957 return 1;
2958}
81819f0f 2959
c0bdb232 2960static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2961{
2962 if (min < MIN_PARTIAL)
2963 min = MIN_PARTIAL;
2964 else if (min > MAX_PARTIAL)
2965 min = MAX_PARTIAL;
2966 s->min_partial = min;
2967}
2968
81819f0f
CL
2969/*
2970 * calculate_sizes() determines the order and the distribution of data within
2971 * a slab object.
2972 */
06b285dc 2973static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2974{
2975 unsigned long flags = s->flags;
3b0efdfa 2976 unsigned long size = s->object_size;
834f3d11 2977 int order;
81819f0f 2978
d8b42bf5
CL
2979 /*
2980 * Round up object size to the next word boundary. We can only
2981 * place the free pointer at word boundaries and this determines
2982 * the possible location of the free pointer.
2983 */
2984 size = ALIGN(size, sizeof(void *));
2985
2986#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2987 /*
2988 * Determine if we can poison the object itself. If the user of
2989 * the slab may touch the object after free or before allocation
2990 * then we should never poison the object itself.
2991 */
2992 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2993 !s->ctor)
81819f0f
CL
2994 s->flags |= __OBJECT_POISON;
2995 else
2996 s->flags &= ~__OBJECT_POISON;
2997
81819f0f
CL
2998
2999 /*
672bba3a 3000 * If we are Redzoning then check if there is some space between the
81819f0f 3001 * end of the object and the free pointer. If not then add an
672bba3a 3002 * additional word to have some bytes to store Redzone information.
81819f0f 3003 */
3b0efdfa 3004 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3005 size += sizeof(void *);
41ecc55b 3006#endif
81819f0f
CL
3007
3008 /*
672bba3a
CL
3009 * With that we have determined the number of bytes in actual use
3010 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3011 */
3012 s->inuse = size;
3013
3014 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3015 s->ctor)) {
81819f0f
CL
3016 /*
3017 * Relocate free pointer after the object if it is not
3018 * permitted to overwrite the first word of the object on
3019 * kmem_cache_free.
3020 *
3021 * This is the case if we do RCU, have a constructor or
3022 * destructor or are poisoning the objects.
3023 */
3024 s->offset = size;
3025 size += sizeof(void *);
3026 }
3027
c12b3c62 3028#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3029 if (flags & SLAB_STORE_USER)
3030 /*
3031 * Need to store information about allocs and frees after
3032 * the object.
3033 */
3034 size += 2 * sizeof(struct track);
3035
be7b3fbc 3036 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3037 /*
3038 * Add some empty padding so that we can catch
3039 * overwrites from earlier objects rather than let
3040 * tracking information or the free pointer be
0211a9c8 3041 * corrupted if a user writes before the start
81819f0f
CL
3042 * of the object.
3043 */
3044 size += sizeof(void *);
41ecc55b 3045#endif
672bba3a 3046
81819f0f
CL
3047 /*
3048 * SLUB stores one object immediately after another beginning from
3049 * offset 0. In order to align the objects we have to simply size
3050 * each object to conform to the alignment.
3051 */
45906855 3052 size = ALIGN(size, s->align);
81819f0f 3053 s->size = size;
06b285dc
CL
3054 if (forced_order >= 0)
3055 order = forced_order;
3056 else
ab9a0f19 3057 order = calculate_order(size, s->reserved);
81819f0f 3058
834f3d11 3059 if (order < 0)
81819f0f
CL
3060 return 0;
3061
b7a49f0d 3062 s->allocflags = 0;
834f3d11 3063 if (order)
b7a49f0d
CL
3064 s->allocflags |= __GFP_COMP;
3065
3066 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3067 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3068
3069 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3070 s->allocflags |= __GFP_RECLAIMABLE;
3071
81819f0f
CL
3072 /*
3073 * Determine the number of objects per slab
3074 */
ab9a0f19
LJ
3075 s->oo = oo_make(order, size, s->reserved);
3076 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3077 if (oo_objects(s->oo) > oo_objects(s->max))
3078 s->max = s->oo;
81819f0f 3079
834f3d11 3080 return !!oo_objects(s->oo);
81819f0f
CL
3081}
3082
8a13a4cc 3083static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3084{
8a13a4cc 3085 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3086 s->reserved = 0;
81819f0f 3087
da9a638c
LJ
3088 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3089 s->reserved = sizeof(struct rcu_head);
81819f0f 3090
06b285dc 3091 if (!calculate_sizes(s, -1))
81819f0f 3092 goto error;
3de47213
DR
3093 if (disable_higher_order_debug) {
3094 /*
3095 * Disable debugging flags that store metadata if the min slab
3096 * order increased.
3097 */
3b0efdfa 3098 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3099 s->flags &= ~DEBUG_METADATA_FLAGS;
3100 s->offset = 0;
3101 if (!calculate_sizes(s, -1))
3102 goto error;
3103 }
3104 }
81819f0f 3105
2565409f
HC
3106#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3107 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3108 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3109 /* Enable fast mode */
3110 s->flags |= __CMPXCHG_DOUBLE;
3111#endif
3112
3b89d7d8
DR
3113 /*
3114 * The larger the object size is, the more pages we want on the partial
3115 * list to avoid pounding the page allocator excessively.
3116 */
49e22585
CL
3117 set_min_partial(s, ilog2(s->size) / 2);
3118
3119 /*
3120 * cpu_partial determined the maximum number of objects kept in the
3121 * per cpu partial lists of a processor.
3122 *
3123 * Per cpu partial lists mainly contain slabs that just have one
3124 * object freed. If they are used for allocation then they can be
3125 * filled up again with minimal effort. The slab will never hit the
3126 * per node partial lists and therefore no locking will be required.
3127 *
3128 * This setting also determines
3129 *
3130 * A) The number of objects from per cpu partial slabs dumped to the
3131 * per node list when we reach the limit.
9f264904 3132 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3133 * per node list when we run out of per cpu objects. We only fetch
3134 * 50% to keep some capacity around for frees.
49e22585 3135 */
345c905d 3136 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3137 s->cpu_partial = 0;
3138 else if (s->size >= PAGE_SIZE)
49e22585
CL
3139 s->cpu_partial = 2;
3140 else if (s->size >= 1024)
3141 s->cpu_partial = 6;
3142 else if (s->size >= 256)
3143 s->cpu_partial = 13;
3144 else
3145 s->cpu_partial = 30;
3146
81819f0f 3147#ifdef CONFIG_NUMA
e2cb96b7 3148 s->remote_node_defrag_ratio = 1000;
81819f0f 3149#endif
55136592 3150 if (!init_kmem_cache_nodes(s))
dfb4f096 3151 goto error;
81819f0f 3152
55136592 3153 if (alloc_kmem_cache_cpus(s))
278b1bb1 3154 return 0;
ff12059e 3155
4c93c355 3156 free_kmem_cache_nodes(s);
81819f0f
CL
3157error:
3158 if (flags & SLAB_PANIC)
3159 panic("Cannot create slab %s size=%lu realsize=%u "
3160 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3161 s->name, (unsigned long)s->size, s->size,
3162 oo_order(s->oo), s->offset, flags);
278b1bb1 3163 return -EINVAL;
81819f0f 3164}
81819f0f 3165
33b12c38
CL
3166static void list_slab_objects(struct kmem_cache *s, struct page *page,
3167 const char *text)
3168{
3169#ifdef CONFIG_SLUB_DEBUG
3170 void *addr = page_address(page);
3171 void *p;
a5dd5c11
NK
3172 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3173 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3174 if (!map)
3175 return;
945cf2b6 3176 slab_err(s, page, text, s->name);
33b12c38 3177 slab_lock(page);
33b12c38 3178
5f80b13a 3179 get_map(s, page, map);
33b12c38
CL
3180 for_each_object(p, s, addr, page->objects) {
3181
3182 if (!test_bit(slab_index(p, s, addr), map)) {
3183 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3184 p, p - addr);
3185 print_tracking(s, p);
3186 }
3187 }
3188 slab_unlock(page);
bbd7d57b 3189 kfree(map);
33b12c38
CL
3190#endif
3191}
3192
81819f0f 3193/*
599870b1 3194 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3195 * This is called from kmem_cache_close(). We must be the last thread
3196 * using the cache and therefore we do not need to lock anymore.
81819f0f 3197 */
599870b1 3198static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3199{
81819f0f
CL
3200 struct page *page, *h;
3201
33b12c38 3202 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3203 if (!page->inuse) {
1e4dd946 3204 __remove_partial(n, page);
81819f0f 3205 discard_slab(s, page);
33b12c38
CL
3206 } else {
3207 list_slab_objects(s, page,
945cf2b6 3208 "Objects remaining in %s on kmem_cache_close()");
599870b1 3209 }
33b12c38 3210 }
81819f0f
CL
3211}
3212
3213/*
672bba3a 3214 * Release all resources used by a slab cache.
81819f0f 3215 */
0c710013 3216static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3217{
3218 int node;
3219
3220 flush_all(s);
81819f0f 3221 /* Attempt to free all objects */
f64dc58c 3222 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3223 struct kmem_cache_node *n = get_node(s, node);
3224
599870b1
CL
3225 free_partial(s, n);
3226 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3227 return 1;
3228 }
945cf2b6 3229 free_percpu(s->cpu_slab);
81819f0f
CL
3230 free_kmem_cache_nodes(s);
3231 return 0;
3232}
3233
945cf2b6 3234int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3235{
12c3667f 3236 int rc = kmem_cache_close(s);
945cf2b6 3237
5413dfba
GC
3238 if (!rc) {
3239 /*
3240 * We do the same lock strategy around sysfs_slab_add, see
3241 * __kmem_cache_create. Because this is pretty much the last
3242 * operation we do and the lock will be released shortly after
3243 * that in slab_common.c, we could just move sysfs_slab_remove
3244 * to a later point in common code. We should do that when we
3245 * have a common sysfs framework for all allocators.
3246 */
3247 mutex_unlock(&slab_mutex);
81819f0f 3248 sysfs_slab_remove(s);
5413dfba
GC
3249 mutex_lock(&slab_mutex);
3250 }
12c3667f
CL
3251
3252 return rc;
81819f0f 3253}
81819f0f
CL
3254
3255/********************************************************************
3256 * Kmalloc subsystem
3257 *******************************************************************/
3258
81819f0f
CL
3259static int __init setup_slub_min_order(char *str)
3260{
06428780 3261 get_option(&str, &slub_min_order);
81819f0f
CL
3262
3263 return 1;
3264}
3265
3266__setup("slub_min_order=", setup_slub_min_order);
3267
3268static int __init setup_slub_max_order(char *str)
3269{
06428780 3270 get_option(&str, &slub_max_order);
818cf590 3271 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3272
3273 return 1;
3274}
3275
3276__setup("slub_max_order=", setup_slub_max_order);
3277
3278static int __init setup_slub_min_objects(char *str)
3279{
06428780 3280 get_option(&str, &slub_min_objects);
81819f0f
CL
3281
3282 return 1;
3283}
3284
3285__setup("slub_min_objects=", setup_slub_min_objects);
3286
3287static int __init setup_slub_nomerge(char *str)
3288{
3289 slub_nomerge = 1;
3290 return 1;
3291}
3292
3293__setup("slub_nomerge", setup_slub_nomerge);
3294
81819f0f
CL
3295void *__kmalloc(size_t size, gfp_t flags)
3296{
aadb4bc4 3297 struct kmem_cache *s;
5b882be4 3298 void *ret;
81819f0f 3299
95a05b42 3300 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3301 return kmalloc_large(size, flags);
aadb4bc4 3302
2c59dd65 3303 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3304
3305 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3306 return s;
3307
2b847c3c 3308 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3309
ca2b84cb 3310 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3311
3312 return ret;
81819f0f
CL
3313}
3314EXPORT_SYMBOL(__kmalloc);
3315
5d1f57e4 3316#ifdef CONFIG_NUMA
f619cfe1
CL
3317static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3318{
b1eeab67 3319 struct page *page;
e4f7c0b4 3320 void *ptr = NULL;
f619cfe1 3321
d79923fa 3322 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3323 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3324 if (page)
e4f7c0b4
CM
3325 ptr = page_address(page);
3326
d56791b3 3327 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3328 return ptr;
f619cfe1
CL
3329}
3330
81819f0f
CL
3331void *__kmalloc_node(size_t size, gfp_t flags, int node)
3332{
aadb4bc4 3333 struct kmem_cache *s;
5b882be4 3334 void *ret;
81819f0f 3335
95a05b42 3336 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3337 ret = kmalloc_large_node(size, flags, node);
3338
ca2b84cb
EGM
3339 trace_kmalloc_node(_RET_IP_, ret,
3340 size, PAGE_SIZE << get_order(size),
3341 flags, node);
5b882be4
EGM
3342
3343 return ret;
3344 }
aadb4bc4 3345
2c59dd65 3346 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3347
3348 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3349 return s;
3350
2b847c3c 3351 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3352
ca2b84cb 3353 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3354
3355 return ret;
81819f0f
CL
3356}
3357EXPORT_SYMBOL(__kmalloc_node);
3358#endif
3359
3360size_t ksize(const void *object)
3361{
272c1d21 3362 struct page *page;
81819f0f 3363
ef8b4520 3364 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3365 return 0;
3366
294a80a8 3367 page = virt_to_head_page(object);
294a80a8 3368
76994412
PE
3369 if (unlikely(!PageSlab(page))) {
3370 WARN_ON(!PageCompound(page));
294a80a8 3371 return PAGE_SIZE << compound_order(page);
76994412 3372 }
81819f0f 3373
1b4f59e3 3374 return slab_ksize(page->slab_cache);
81819f0f 3375}
b1aabecd 3376EXPORT_SYMBOL(ksize);
81819f0f
CL
3377
3378void kfree(const void *x)
3379{
81819f0f 3380 struct page *page;
5bb983b0 3381 void *object = (void *)x;
81819f0f 3382
2121db74
PE
3383 trace_kfree(_RET_IP_, x);
3384
2408c550 3385 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3386 return;
3387
b49af68f 3388 page = virt_to_head_page(x);
aadb4bc4 3389 if (unlikely(!PageSlab(page))) {
0937502a 3390 BUG_ON(!PageCompound(page));
d56791b3 3391 kfree_hook(x);
d79923fa 3392 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3393 return;
3394 }
1b4f59e3 3395 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3396}
3397EXPORT_SYMBOL(kfree);
3398
2086d26a 3399/*
672bba3a
CL
3400 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3401 * the remaining slabs by the number of items in use. The slabs with the
3402 * most items in use come first. New allocations will then fill those up
3403 * and thus they can be removed from the partial lists.
3404 *
3405 * The slabs with the least items are placed last. This results in them
3406 * being allocated from last increasing the chance that the last objects
3407 * are freed in them.
2086d26a
CL
3408 */
3409int kmem_cache_shrink(struct kmem_cache *s)
3410{
3411 int node;
3412 int i;
3413 struct kmem_cache_node *n;
3414 struct page *page;
3415 struct page *t;
205ab99d 3416 int objects = oo_objects(s->max);
2086d26a 3417 struct list_head *slabs_by_inuse =
834f3d11 3418 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3419 unsigned long flags;
3420
3421 if (!slabs_by_inuse)
3422 return -ENOMEM;
3423
3424 flush_all(s);
f64dc58c 3425 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3426 n = get_node(s, node);
3427
3428 if (!n->nr_partial)
3429 continue;
3430
834f3d11 3431 for (i = 0; i < objects; i++)
2086d26a
CL
3432 INIT_LIST_HEAD(slabs_by_inuse + i);
3433
3434 spin_lock_irqsave(&n->list_lock, flags);
3435
3436 /*
672bba3a 3437 * Build lists indexed by the items in use in each slab.
2086d26a 3438 *
672bba3a
CL
3439 * Note that concurrent frees may occur while we hold the
3440 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3441 */
3442 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3443 list_move(&page->lru, slabs_by_inuse + page->inuse);
3444 if (!page->inuse)
3445 n->nr_partial--;
2086d26a
CL
3446 }
3447
2086d26a 3448 /*
672bba3a
CL
3449 * Rebuild the partial list with the slabs filled up most
3450 * first and the least used slabs at the end.
2086d26a 3451 */
69cb8e6b 3452 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3453 list_splice(slabs_by_inuse + i, n->partial.prev);
3454
2086d26a 3455 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3456
3457 /* Release empty slabs */
3458 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3459 discard_slab(s, page);
2086d26a
CL
3460 }
3461
3462 kfree(slabs_by_inuse);
3463 return 0;
3464}
3465EXPORT_SYMBOL(kmem_cache_shrink);
3466
b9049e23
YG
3467static int slab_mem_going_offline_callback(void *arg)
3468{
3469 struct kmem_cache *s;
3470
18004c5d 3471 mutex_lock(&slab_mutex);
b9049e23
YG
3472 list_for_each_entry(s, &slab_caches, list)
3473 kmem_cache_shrink(s);
18004c5d 3474 mutex_unlock(&slab_mutex);
b9049e23
YG
3475
3476 return 0;
3477}
3478
3479static void slab_mem_offline_callback(void *arg)
3480{
3481 struct kmem_cache_node *n;
3482 struct kmem_cache *s;
3483 struct memory_notify *marg = arg;
3484 int offline_node;
3485
b9d5ab25 3486 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3487
3488 /*
3489 * If the node still has available memory. we need kmem_cache_node
3490 * for it yet.
3491 */
3492 if (offline_node < 0)
3493 return;
3494
18004c5d 3495 mutex_lock(&slab_mutex);
b9049e23
YG
3496 list_for_each_entry(s, &slab_caches, list) {
3497 n = get_node(s, offline_node);
3498 if (n) {
3499 /*
3500 * if n->nr_slabs > 0, slabs still exist on the node
3501 * that is going down. We were unable to free them,
c9404c9c 3502 * and offline_pages() function shouldn't call this
b9049e23
YG
3503 * callback. So, we must fail.
3504 */
0f389ec6 3505 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3506
3507 s->node[offline_node] = NULL;
8de66a0c 3508 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3509 }
3510 }
18004c5d 3511 mutex_unlock(&slab_mutex);
b9049e23
YG
3512}
3513
3514static int slab_mem_going_online_callback(void *arg)
3515{
3516 struct kmem_cache_node *n;
3517 struct kmem_cache *s;
3518 struct memory_notify *marg = arg;
b9d5ab25 3519 int nid = marg->status_change_nid_normal;
b9049e23
YG
3520 int ret = 0;
3521
3522 /*
3523 * If the node's memory is already available, then kmem_cache_node is
3524 * already created. Nothing to do.
3525 */
3526 if (nid < 0)
3527 return 0;
3528
3529 /*
0121c619 3530 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3531 * allocate a kmem_cache_node structure in order to bring the node
3532 * online.
3533 */
18004c5d 3534 mutex_lock(&slab_mutex);
b9049e23
YG
3535 list_for_each_entry(s, &slab_caches, list) {
3536 /*
3537 * XXX: kmem_cache_alloc_node will fallback to other nodes
3538 * since memory is not yet available from the node that
3539 * is brought up.
3540 */
8de66a0c 3541 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3542 if (!n) {
3543 ret = -ENOMEM;
3544 goto out;
3545 }
4053497d 3546 init_kmem_cache_node(n);
b9049e23
YG
3547 s->node[nid] = n;
3548 }
3549out:
18004c5d 3550 mutex_unlock(&slab_mutex);
b9049e23
YG
3551 return ret;
3552}
3553
3554static int slab_memory_callback(struct notifier_block *self,
3555 unsigned long action, void *arg)
3556{
3557 int ret = 0;
3558
3559 switch (action) {
3560 case MEM_GOING_ONLINE:
3561 ret = slab_mem_going_online_callback(arg);
3562 break;
3563 case MEM_GOING_OFFLINE:
3564 ret = slab_mem_going_offline_callback(arg);
3565 break;
3566 case MEM_OFFLINE:
3567 case MEM_CANCEL_ONLINE:
3568 slab_mem_offline_callback(arg);
3569 break;
3570 case MEM_ONLINE:
3571 case MEM_CANCEL_OFFLINE:
3572 break;
3573 }
dc19f9db
KH
3574 if (ret)
3575 ret = notifier_from_errno(ret);
3576 else
3577 ret = NOTIFY_OK;
b9049e23
YG
3578 return ret;
3579}
3580
3ac38faa
AM
3581static struct notifier_block slab_memory_callback_nb = {
3582 .notifier_call = slab_memory_callback,
3583 .priority = SLAB_CALLBACK_PRI,
3584};
b9049e23 3585
81819f0f
CL
3586/********************************************************************
3587 * Basic setup of slabs
3588 *******************************************************************/
3589
51df1142
CL
3590/*
3591 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3592 * the page allocator. Allocate them properly then fix up the pointers
3593 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3594 */
3595
dffb4d60 3596static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3597{
3598 int node;
dffb4d60 3599 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3600
dffb4d60 3601 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3602
7d557b3c
GC
3603 /*
3604 * This runs very early, and only the boot processor is supposed to be
3605 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3606 * IPIs around.
3607 */
3608 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3609 for_each_node_state(node, N_NORMAL_MEMORY) {
3610 struct kmem_cache_node *n = get_node(s, node);
3611 struct page *p;
3612
3613 if (n) {
3614 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3615 p->slab_cache = s;
51df1142 3616
607bf324 3617#ifdef CONFIG_SLUB_DEBUG
51df1142 3618 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3619 p->slab_cache = s;
51df1142
CL
3620#endif
3621 }
3622 }
dffb4d60
CL
3623 list_add(&s->list, &slab_caches);
3624 return s;
51df1142
CL
3625}
3626
81819f0f
CL
3627void __init kmem_cache_init(void)
3628{
dffb4d60
CL
3629 static __initdata struct kmem_cache boot_kmem_cache,
3630 boot_kmem_cache_node;
51df1142 3631
fc8d8620
SG
3632 if (debug_guardpage_minorder())
3633 slub_max_order = 0;
3634
dffb4d60
CL
3635 kmem_cache_node = &boot_kmem_cache_node;
3636 kmem_cache = &boot_kmem_cache;
51df1142 3637
dffb4d60
CL
3638 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3639 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3640
3ac38faa 3641 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3642
3643 /* Able to allocate the per node structures */
3644 slab_state = PARTIAL;
3645
dffb4d60
CL
3646 create_boot_cache(kmem_cache, "kmem_cache",
3647 offsetof(struct kmem_cache, node) +
3648 nr_node_ids * sizeof(struct kmem_cache_node *),
3649 SLAB_HWCACHE_ALIGN);
8a13a4cc 3650
dffb4d60 3651 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3652
51df1142
CL
3653 /*
3654 * Allocate kmem_cache_node properly from the kmem_cache slab.
3655 * kmem_cache_node is separately allocated so no need to
3656 * update any list pointers.
3657 */
dffb4d60 3658 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3659
3660 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3661 create_kmalloc_caches(0);
81819f0f
CL
3662
3663#ifdef CONFIG_SMP
3664 register_cpu_notifier(&slab_notifier);
9dfc6e68 3665#endif
81819f0f 3666
3adbefee 3667 printk(KERN_INFO
f97d5f63 3668 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3669 " CPUs=%d, Nodes=%d\n",
f97d5f63 3670 cache_line_size(),
81819f0f
CL
3671 slub_min_order, slub_max_order, slub_min_objects,
3672 nr_cpu_ids, nr_node_ids);
3673}
3674
7e85ee0c
PE
3675void __init kmem_cache_init_late(void)
3676{
7e85ee0c
PE
3677}
3678
81819f0f
CL
3679/*
3680 * Find a mergeable slab cache
3681 */
3682static int slab_unmergeable(struct kmem_cache *s)
3683{
3684 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3685 return 1;
3686
c59def9f 3687 if (s->ctor)
81819f0f
CL
3688 return 1;
3689
8ffa6875
CL
3690 /*
3691 * We may have set a slab to be unmergeable during bootstrap.
3692 */
3693 if (s->refcount < 0)
3694 return 1;
3695
81819f0f
CL
3696 return 0;
3697}
3698
2633d7a0 3699static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3700 size_t align, unsigned long flags, const char *name,
51cc5068 3701 void (*ctor)(void *))
81819f0f 3702{
5b95a4ac 3703 struct kmem_cache *s;
81819f0f
CL
3704
3705 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3706 return NULL;
3707
c59def9f 3708 if (ctor)
81819f0f
CL
3709 return NULL;
3710
3711 size = ALIGN(size, sizeof(void *));
3712 align = calculate_alignment(flags, align, size);
3713 size = ALIGN(size, align);
ba0268a8 3714 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3715
5b95a4ac 3716 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3717 if (slab_unmergeable(s))
3718 continue;
3719
3720 if (size > s->size)
3721 continue;
3722
ba0268a8 3723 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3724 continue;
3725 /*
3726 * Check if alignment is compatible.
3727 * Courtesy of Adrian Drzewiecki
3728 */
06428780 3729 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3730 continue;
3731
3732 if (s->size - size >= sizeof(void *))
3733 continue;
3734
2633d7a0
GC
3735 if (!cache_match_memcg(s, memcg))
3736 continue;
3737
81819f0f
CL
3738 return s;
3739 }
3740 return NULL;
3741}
3742
2633d7a0
GC
3743struct kmem_cache *
3744__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3745 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3746{
3747 struct kmem_cache *s;
3748
2633d7a0 3749 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3750 if (s) {
3751 s->refcount++;
3752 /*
3753 * Adjust the object sizes so that we clear
3754 * the complete object on kzalloc.
3755 */
3b0efdfa 3756 s->object_size = max(s->object_size, (int)size);
81819f0f 3757 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3758
7b8f3b66 3759 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3760 s->refcount--;
cbb79694 3761 s = NULL;
7b8f3b66 3762 }
a0e1d1be 3763 }
6446faa2 3764
cbb79694
CL
3765 return s;
3766}
84c1cf62 3767
8a13a4cc 3768int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3769{
aac3a166
PE
3770 int err;
3771
3772 err = kmem_cache_open(s, flags);
3773 if (err)
3774 return err;
20cea968 3775
45530c44
CL
3776 /* Mutex is not taken during early boot */
3777 if (slab_state <= UP)
3778 return 0;
3779
107dab5c 3780 memcg_propagate_slab_attrs(s);
aac3a166
PE
3781 mutex_unlock(&slab_mutex);
3782 err = sysfs_slab_add(s);
3783 mutex_lock(&slab_mutex);
20cea968 3784
aac3a166
PE
3785 if (err)
3786 kmem_cache_close(s);
20cea968 3787
aac3a166 3788 return err;
81819f0f 3789}
81819f0f 3790
81819f0f 3791#ifdef CONFIG_SMP
81819f0f 3792/*
672bba3a
CL
3793 * Use the cpu notifier to insure that the cpu slabs are flushed when
3794 * necessary.
81819f0f 3795 */
0db0628d 3796static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3797 unsigned long action, void *hcpu)
3798{
3799 long cpu = (long)hcpu;
5b95a4ac
CL
3800 struct kmem_cache *s;
3801 unsigned long flags;
81819f0f
CL
3802
3803 switch (action) {
3804 case CPU_UP_CANCELED:
8bb78442 3805 case CPU_UP_CANCELED_FROZEN:
81819f0f 3806 case CPU_DEAD:
8bb78442 3807 case CPU_DEAD_FROZEN:
18004c5d 3808 mutex_lock(&slab_mutex);
5b95a4ac
CL
3809 list_for_each_entry(s, &slab_caches, list) {
3810 local_irq_save(flags);
3811 __flush_cpu_slab(s, cpu);
3812 local_irq_restore(flags);
3813 }
18004c5d 3814 mutex_unlock(&slab_mutex);
81819f0f
CL
3815 break;
3816 default:
3817 break;
3818 }
3819 return NOTIFY_OK;
3820}
3821
0db0628d 3822static struct notifier_block slab_notifier = {
3adbefee 3823 .notifier_call = slab_cpuup_callback
06428780 3824};
81819f0f
CL
3825
3826#endif
3827
ce71e27c 3828void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3829{
aadb4bc4 3830 struct kmem_cache *s;
94b528d0 3831 void *ret;
aadb4bc4 3832
95a05b42 3833 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3834 return kmalloc_large(size, gfpflags);
3835
2c59dd65 3836 s = kmalloc_slab(size, gfpflags);
81819f0f 3837
2408c550 3838 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3839 return s;
81819f0f 3840
2b847c3c 3841 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3842
25985edc 3843 /* Honor the call site pointer we received. */
ca2b84cb 3844 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3845
3846 return ret;
81819f0f
CL
3847}
3848
5d1f57e4 3849#ifdef CONFIG_NUMA
81819f0f 3850void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3851 int node, unsigned long caller)
81819f0f 3852{
aadb4bc4 3853 struct kmem_cache *s;
94b528d0 3854 void *ret;
aadb4bc4 3855
95a05b42 3856 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3857 ret = kmalloc_large_node(size, gfpflags, node);
3858
3859 trace_kmalloc_node(caller, ret,
3860 size, PAGE_SIZE << get_order(size),
3861 gfpflags, node);
3862
3863 return ret;
3864 }
eada35ef 3865
2c59dd65 3866 s = kmalloc_slab(size, gfpflags);
81819f0f 3867
2408c550 3868 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3869 return s;
81819f0f 3870
2b847c3c 3871 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3872
25985edc 3873 /* Honor the call site pointer we received. */
ca2b84cb 3874 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3875
3876 return ret;
81819f0f 3877}
5d1f57e4 3878#endif
81819f0f 3879
ab4d5ed5 3880#ifdef CONFIG_SYSFS
205ab99d
CL
3881static int count_inuse(struct page *page)
3882{
3883 return page->inuse;
3884}
3885
3886static int count_total(struct page *page)
3887{
3888 return page->objects;
3889}
ab4d5ed5 3890#endif
205ab99d 3891
ab4d5ed5 3892#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3893static int validate_slab(struct kmem_cache *s, struct page *page,
3894 unsigned long *map)
53e15af0
CL
3895{
3896 void *p;
a973e9dd 3897 void *addr = page_address(page);
53e15af0
CL
3898
3899 if (!check_slab(s, page) ||
3900 !on_freelist(s, page, NULL))
3901 return 0;
3902
3903 /* Now we know that a valid freelist exists */
39b26464 3904 bitmap_zero(map, page->objects);
53e15af0 3905
5f80b13a
CL
3906 get_map(s, page, map);
3907 for_each_object(p, s, addr, page->objects) {
3908 if (test_bit(slab_index(p, s, addr), map))
3909 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3910 return 0;
53e15af0
CL
3911 }
3912
224a88be 3913 for_each_object(p, s, addr, page->objects)
7656c72b 3914 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3915 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3916 return 0;
3917 return 1;
3918}
3919
434e245d
CL
3920static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3921 unsigned long *map)
53e15af0 3922{
881db7fb
CL
3923 slab_lock(page);
3924 validate_slab(s, page, map);
3925 slab_unlock(page);
53e15af0
CL
3926}
3927
434e245d
CL
3928static int validate_slab_node(struct kmem_cache *s,
3929 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3930{
3931 unsigned long count = 0;
3932 struct page *page;
3933 unsigned long flags;
3934
3935 spin_lock_irqsave(&n->list_lock, flags);
3936
3937 list_for_each_entry(page, &n->partial, lru) {
434e245d 3938 validate_slab_slab(s, page, map);
53e15af0
CL
3939 count++;
3940 }
3941 if (count != n->nr_partial)
3942 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3943 "counter=%ld\n", s->name, count, n->nr_partial);
3944
3945 if (!(s->flags & SLAB_STORE_USER))
3946 goto out;
3947
3948 list_for_each_entry(page, &n->full, lru) {
434e245d 3949 validate_slab_slab(s, page, map);
53e15af0
CL
3950 count++;
3951 }
3952 if (count != atomic_long_read(&n->nr_slabs))
3953 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3954 "counter=%ld\n", s->name, count,
3955 atomic_long_read(&n->nr_slabs));
3956
3957out:
3958 spin_unlock_irqrestore(&n->list_lock, flags);
3959 return count;
3960}
3961
434e245d 3962static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3963{
3964 int node;
3965 unsigned long count = 0;
205ab99d 3966 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3967 sizeof(unsigned long), GFP_KERNEL);
3968
3969 if (!map)
3970 return -ENOMEM;
53e15af0
CL
3971
3972 flush_all(s);
f64dc58c 3973 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3974 struct kmem_cache_node *n = get_node(s, node);
3975
434e245d 3976 count += validate_slab_node(s, n, map);
53e15af0 3977 }
434e245d 3978 kfree(map);
53e15af0
CL
3979 return count;
3980}
88a420e4 3981/*
672bba3a 3982 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3983 * and freed.
3984 */
3985
3986struct location {
3987 unsigned long count;
ce71e27c 3988 unsigned long addr;
45edfa58
CL
3989 long long sum_time;
3990 long min_time;
3991 long max_time;
3992 long min_pid;
3993 long max_pid;
174596a0 3994 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3995 nodemask_t nodes;
88a420e4
CL
3996};
3997
3998struct loc_track {
3999 unsigned long max;
4000 unsigned long count;
4001 struct location *loc;
4002};
4003
4004static void free_loc_track(struct loc_track *t)
4005{
4006 if (t->max)
4007 free_pages((unsigned long)t->loc,
4008 get_order(sizeof(struct location) * t->max));
4009}
4010
68dff6a9 4011static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4012{
4013 struct location *l;
4014 int order;
4015
88a420e4
CL
4016 order = get_order(sizeof(struct location) * max);
4017
68dff6a9 4018 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4019 if (!l)
4020 return 0;
4021
4022 if (t->count) {
4023 memcpy(l, t->loc, sizeof(struct location) * t->count);
4024 free_loc_track(t);
4025 }
4026 t->max = max;
4027 t->loc = l;
4028 return 1;
4029}
4030
4031static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4032 const struct track *track)
88a420e4
CL
4033{
4034 long start, end, pos;
4035 struct location *l;
ce71e27c 4036 unsigned long caddr;
45edfa58 4037 unsigned long age = jiffies - track->when;
88a420e4
CL
4038
4039 start = -1;
4040 end = t->count;
4041
4042 for ( ; ; ) {
4043 pos = start + (end - start + 1) / 2;
4044
4045 /*
4046 * There is nothing at "end". If we end up there
4047 * we need to add something to before end.
4048 */
4049 if (pos == end)
4050 break;
4051
4052 caddr = t->loc[pos].addr;
45edfa58
CL
4053 if (track->addr == caddr) {
4054
4055 l = &t->loc[pos];
4056 l->count++;
4057 if (track->when) {
4058 l->sum_time += age;
4059 if (age < l->min_time)
4060 l->min_time = age;
4061 if (age > l->max_time)
4062 l->max_time = age;
4063
4064 if (track->pid < l->min_pid)
4065 l->min_pid = track->pid;
4066 if (track->pid > l->max_pid)
4067 l->max_pid = track->pid;
4068
174596a0
RR
4069 cpumask_set_cpu(track->cpu,
4070 to_cpumask(l->cpus));
45edfa58
CL
4071 }
4072 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4073 return 1;
4074 }
4075
45edfa58 4076 if (track->addr < caddr)
88a420e4
CL
4077 end = pos;
4078 else
4079 start = pos;
4080 }
4081
4082 /*
672bba3a 4083 * Not found. Insert new tracking element.
88a420e4 4084 */
68dff6a9 4085 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4086 return 0;
4087
4088 l = t->loc + pos;
4089 if (pos < t->count)
4090 memmove(l + 1, l,
4091 (t->count - pos) * sizeof(struct location));
4092 t->count++;
4093 l->count = 1;
45edfa58
CL
4094 l->addr = track->addr;
4095 l->sum_time = age;
4096 l->min_time = age;
4097 l->max_time = age;
4098 l->min_pid = track->pid;
4099 l->max_pid = track->pid;
174596a0
RR
4100 cpumask_clear(to_cpumask(l->cpus));
4101 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4102 nodes_clear(l->nodes);
4103 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4104 return 1;
4105}
4106
4107static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4108 struct page *page, enum track_item alloc,
a5dd5c11 4109 unsigned long *map)
88a420e4 4110{
a973e9dd 4111 void *addr = page_address(page);
88a420e4
CL
4112 void *p;
4113
39b26464 4114 bitmap_zero(map, page->objects);
5f80b13a 4115 get_map(s, page, map);
88a420e4 4116
224a88be 4117 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4118 if (!test_bit(slab_index(p, s, addr), map))
4119 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4120}
4121
4122static int list_locations(struct kmem_cache *s, char *buf,
4123 enum track_item alloc)
4124{
e374d483 4125 int len = 0;
88a420e4 4126 unsigned long i;
68dff6a9 4127 struct loc_track t = { 0, 0, NULL };
88a420e4 4128 int node;
bbd7d57b
ED
4129 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4130 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4131
bbd7d57b
ED
4132 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4133 GFP_TEMPORARY)) {
4134 kfree(map);
68dff6a9 4135 return sprintf(buf, "Out of memory\n");
bbd7d57b 4136 }
88a420e4
CL
4137 /* Push back cpu slabs */
4138 flush_all(s);
4139
f64dc58c 4140 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4141 struct kmem_cache_node *n = get_node(s, node);
4142 unsigned long flags;
4143 struct page *page;
4144
9e86943b 4145 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4146 continue;
4147
4148 spin_lock_irqsave(&n->list_lock, flags);
4149 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4150 process_slab(&t, s, page, alloc, map);
88a420e4 4151 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4152 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4153 spin_unlock_irqrestore(&n->list_lock, flags);
4154 }
4155
4156 for (i = 0; i < t.count; i++) {
45edfa58 4157 struct location *l = &t.loc[i];
88a420e4 4158
9c246247 4159 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4160 break;
e374d483 4161 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4162
4163 if (l->addr)
62c70bce 4164 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4165 else
e374d483 4166 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4167
4168 if (l->sum_time != l->min_time) {
e374d483 4169 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4170 l->min_time,
4171 (long)div_u64(l->sum_time, l->count),
4172 l->max_time);
45edfa58 4173 } else
e374d483 4174 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4175 l->min_time);
4176
4177 if (l->min_pid != l->max_pid)
e374d483 4178 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4179 l->min_pid, l->max_pid);
4180 else
e374d483 4181 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4182 l->min_pid);
4183
174596a0
RR
4184 if (num_online_cpus() > 1 &&
4185 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4186 len < PAGE_SIZE - 60) {
4187 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4188 len += cpulist_scnprintf(buf + len,
4189 PAGE_SIZE - len - 50,
174596a0 4190 to_cpumask(l->cpus));
45edfa58
CL
4191 }
4192
62bc62a8 4193 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4194 len < PAGE_SIZE - 60) {
4195 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4196 len += nodelist_scnprintf(buf + len,
4197 PAGE_SIZE - len - 50,
4198 l->nodes);
45edfa58
CL
4199 }
4200
e374d483 4201 len += sprintf(buf + len, "\n");
88a420e4
CL
4202 }
4203
4204 free_loc_track(&t);
bbd7d57b 4205 kfree(map);
88a420e4 4206 if (!t.count)
e374d483
HH
4207 len += sprintf(buf, "No data\n");
4208 return len;
88a420e4 4209}
ab4d5ed5 4210#endif
88a420e4 4211
a5a84755
CL
4212#ifdef SLUB_RESILIENCY_TEST
4213static void resiliency_test(void)
4214{
4215 u8 *p;
4216
95a05b42 4217 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4218
4219 printk(KERN_ERR "SLUB resiliency testing\n");
4220 printk(KERN_ERR "-----------------------\n");
4221 printk(KERN_ERR "A. Corruption after allocation\n");
4222
4223 p = kzalloc(16, GFP_KERNEL);
4224 p[16] = 0x12;
4225 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4226 " 0x12->0x%p\n\n", p + 16);
4227
4228 validate_slab_cache(kmalloc_caches[4]);
4229
4230 /* Hmmm... The next two are dangerous */
4231 p = kzalloc(32, GFP_KERNEL);
4232 p[32 + sizeof(void *)] = 0x34;
4233 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4234 " 0x34 -> -0x%p\n", p);
4235 printk(KERN_ERR
4236 "If allocated object is overwritten then not detectable\n\n");
4237
4238 validate_slab_cache(kmalloc_caches[5]);
4239 p = kzalloc(64, GFP_KERNEL);
4240 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4241 *p = 0x56;
4242 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4243 p);
4244 printk(KERN_ERR
4245 "If allocated object is overwritten then not detectable\n\n");
4246 validate_slab_cache(kmalloc_caches[6]);
4247
4248 printk(KERN_ERR "\nB. Corruption after free\n");
4249 p = kzalloc(128, GFP_KERNEL);
4250 kfree(p);
4251 *p = 0x78;
4252 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4253 validate_slab_cache(kmalloc_caches[7]);
4254
4255 p = kzalloc(256, GFP_KERNEL);
4256 kfree(p);
4257 p[50] = 0x9a;
4258 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4259 p);
4260 validate_slab_cache(kmalloc_caches[8]);
4261
4262 p = kzalloc(512, GFP_KERNEL);
4263 kfree(p);
4264 p[512] = 0xab;
4265 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4266 validate_slab_cache(kmalloc_caches[9]);
4267}
4268#else
4269#ifdef CONFIG_SYSFS
4270static void resiliency_test(void) {};
4271#endif
4272#endif
4273
ab4d5ed5 4274#ifdef CONFIG_SYSFS
81819f0f 4275enum slab_stat_type {
205ab99d
CL
4276 SL_ALL, /* All slabs */
4277 SL_PARTIAL, /* Only partially allocated slabs */
4278 SL_CPU, /* Only slabs used for cpu caches */
4279 SL_OBJECTS, /* Determine allocated objects not slabs */
4280 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4281};
4282
205ab99d 4283#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4284#define SO_PARTIAL (1 << SL_PARTIAL)
4285#define SO_CPU (1 << SL_CPU)
4286#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4287#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4288
62e5c4b4
CG
4289static ssize_t show_slab_objects(struct kmem_cache *s,
4290 char *buf, unsigned long flags)
81819f0f
CL
4291{
4292 unsigned long total = 0;
81819f0f
CL
4293 int node;
4294 int x;
4295 unsigned long *nodes;
81819f0f 4296
e35e1a97 4297 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4298 if (!nodes)
4299 return -ENOMEM;
81819f0f 4300
205ab99d
CL
4301 if (flags & SO_CPU) {
4302 int cpu;
81819f0f 4303
205ab99d 4304 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4305 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4306 cpu);
ec3ab083 4307 int node;
49e22585 4308 struct page *page;
dfb4f096 4309
bc6697d8 4310 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4311 if (!page)
4312 continue;
205ab99d 4313
ec3ab083
CL
4314 node = page_to_nid(page);
4315 if (flags & SO_TOTAL)
4316 x = page->objects;
4317 else if (flags & SO_OBJECTS)
4318 x = page->inuse;
4319 else
4320 x = 1;
49e22585 4321
ec3ab083
CL
4322 total += x;
4323 nodes[node] += x;
4324
4325 page = ACCESS_ONCE(c->partial);
49e22585 4326 if (page) {
8afb1474
LZ
4327 node = page_to_nid(page);
4328 if (flags & SO_TOTAL)
4329 WARN_ON_ONCE(1);
4330 else if (flags & SO_OBJECTS)
4331 WARN_ON_ONCE(1);
4332 else
4333 x = page->pages;
bc6697d8
ED
4334 total += x;
4335 nodes[node] += x;
49e22585 4336 }
81819f0f
CL
4337 }
4338 }
4339
04d94879 4340 lock_memory_hotplug();
ab4d5ed5 4341#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4342 if (flags & SO_ALL) {
4343 for_each_node_state(node, N_NORMAL_MEMORY) {
4344 struct kmem_cache_node *n = get_node(s, node);
4345
d0e0ac97
CG
4346 if (flags & SO_TOTAL)
4347 x = atomic_long_read(&n->total_objects);
4348 else if (flags & SO_OBJECTS)
4349 x = atomic_long_read(&n->total_objects) -
4350 count_partial(n, count_free);
81819f0f 4351 else
205ab99d 4352 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4353 total += x;
4354 nodes[node] += x;
4355 }
4356
ab4d5ed5
CL
4357 } else
4358#endif
4359 if (flags & SO_PARTIAL) {
205ab99d
CL
4360 for_each_node_state(node, N_NORMAL_MEMORY) {
4361 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4362
205ab99d
CL
4363 if (flags & SO_TOTAL)
4364 x = count_partial(n, count_total);
4365 else if (flags & SO_OBJECTS)
4366 x = count_partial(n, count_inuse);
81819f0f 4367 else
205ab99d 4368 x = n->nr_partial;
81819f0f
CL
4369 total += x;
4370 nodes[node] += x;
4371 }
4372 }
81819f0f
CL
4373 x = sprintf(buf, "%lu", total);
4374#ifdef CONFIG_NUMA
f64dc58c 4375 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4376 if (nodes[node])
4377 x += sprintf(buf + x, " N%d=%lu",
4378 node, nodes[node]);
4379#endif
04d94879 4380 unlock_memory_hotplug();
81819f0f
CL
4381 kfree(nodes);
4382 return x + sprintf(buf + x, "\n");
4383}
4384
ab4d5ed5 4385#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4386static int any_slab_objects(struct kmem_cache *s)
4387{
4388 int node;
81819f0f 4389
dfb4f096 4390 for_each_online_node(node) {
81819f0f
CL
4391 struct kmem_cache_node *n = get_node(s, node);
4392
dfb4f096
CL
4393 if (!n)
4394 continue;
4395
4ea33e2d 4396 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4397 return 1;
4398 }
4399 return 0;
4400}
ab4d5ed5 4401#endif
81819f0f
CL
4402
4403#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4404#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4405
4406struct slab_attribute {
4407 struct attribute attr;
4408 ssize_t (*show)(struct kmem_cache *s, char *buf);
4409 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4410};
4411
4412#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4413 static struct slab_attribute _name##_attr = \
4414 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4415
4416#define SLAB_ATTR(_name) \
4417 static struct slab_attribute _name##_attr = \
ab067e99 4418 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4419
81819f0f
CL
4420static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4421{
4422 return sprintf(buf, "%d\n", s->size);
4423}
4424SLAB_ATTR_RO(slab_size);
4425
4426static ssize_t align_show(struct kmem_cache *s, char *buf)
4427{
4428 return sprintf(buf, "%d\n", s->align);
4429}
4430SLAB_ATTR_RO(align);
4431
4432static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4433{
3b0efdfa 4434 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4435}
4436SLAB_ATTR_RO(object_size);
4437
4438static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4439{
834f3d11 4440 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4441}
4442SLAB_ATTR_RO(objs_per_slab);
4443
06b285dc
CL
4444static ssize_t order_store(struct kmem_cache *s,
4445 const char *buf, size_t length)
4446{
0121c619
CL
4447 unsigned long order;
4448 int err;
4449
3dbb95f7 4450 err = kstrtoul(buf, 10, &order);
0121c619
CL
4451 if (err)
4452 return err;
06b285dc
CL
4453
4454 if (order > slub_max_order || order < slub_min_order)
4455 return -EINVAL;
4456
4457 calculate_sizes(s, order);
4458 return length;
4459}
4460
81819f0f
CL
4461static ssize_t order_show(struct kmem_cache *s, char *buf)
4462{
834f3d11 4463 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4464}
06b285dc 4465SLAB_ATTR(order);
81819f0f 4466
73d342b1
DR
4467static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4468{
4469 return sprintf(buf, "%lu\n", s->min_partial);
4470}
4471
4472static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4473 size_t length)
4474{
4475 unsigned long min;
4476 int err;
4477
3dbb95f7 4478 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4479 if (err)
4480 return err;
4481
c0bdb232 4482 set_min_partial(s, min);
73d342b1
DR
4483 return length;
4484}
4485SLAB_ATTR(min_partial);
4486
49e22585
CL
4487static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4488{
4489 return sprintf(buf, "%u\n", s->cpu_partial);
4490}
4491
4492static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4493 size_t length)
4494{
4495 unsigned long objects;
4496 int err;
4497
3dbb95f7 4498 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4499 if (err)
4500 return err;
345c905d 4501 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4502 return -EINVAL;
49e22585
CL
4503
4504 s->cpu_partial = objects;
4505 flush_all(s);
4506 return length;
4507}
4508SLAB_ATTR(cpu_partial);
4509
81819f0f
CL
4510static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4511{
62c70bce
JP
4512 if (!s->ctor)
4513 return 0;
4514 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4515}
4516SLAB_ATTR_RO(ctor);
4517
81819f0f
CL
4518static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4519{
4520 return sprintf(buf, "%d\n", s->refcount - 1);
4521}
4522SLAB_ATTR_RO(aliases);
4523
81819f0f
CL
4524static ssize_t partial_show(struct kmem_cache *s, char *buf)
4525{
d9acf4b7 4526 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4527}
4528SLAB_ATTR_RO(partial);
4529
4530static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4531{
d9acf4b7 4532 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4533}
4534SLAB_ATTR_RO(cpu_slabs);
4535
4536static ssize_t objects_show(struct kmem_cache *s, char *buf)
4537{
205ab99d 4538 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4539}
4540SLAB_ATTR_RO(objects);
4541
205ab99d
CL
4542static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4543{
4544 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4545}
4546SLAB_ATTR_RO(objects_partial);
4547
49e22585
CL
4548static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4549{
4550 int objects = 0;
4551 int pages = 0;
4552 int cpu;
4553 int len;
4554
4555 for_each_online_cpu(cpu) {
4556 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4557
4558 if (page) {
4559 pages += page->pages;
4560 objects += page->pobjects;
4561 }
4562 }
4563
4564 len = sprintf(buf, "%d(%d)", objects, pages);
4565
4566#ifdef CONFIG_SMP
4567 for_each_online_cpu(cpu) {
4568 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4569
4570 if (page && len < PAGE_SIZE - 20)
4571 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4572 page->pobjects, page->pages);
4573 }
4574#endif
4575 return len + sprintf(buf + len, "\n");
4576}
4577SLAB_ATTR_RO(slabs_cpu_partial);
4578
a5a84755
CL
4579static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4580{
4581 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4582}
4583
4584static ssize_t reclaim_account_store(struct kmem_cache *s,
4585 const char *buf, size_t length)
4586{
4587 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4588 if (buf[0] == '1')
4589 s->flags |= SLAB_RECLAIM_ACCOUNT;
4590 return length;
4591}
4592SLAB_ATTR(reclaim_account);
4593
4594static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4597}
4598SLAB_ATTR_RO(hwcache_align);
4599
4600#ifdef CONFIG_ZONE_DMA
4601static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4604}
4605SLAB_ATTR_RO(cache_dma);
4606#endif
4607
4608static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4609{
4610 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4611}
4612SLAB_ATTR_RO(destroy_by_rcu);
4613
ab9a0f19
LJ
4614static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4615{
4616 return sprintf(buf, "%d\n", s->reserved);
4617}
4618SLAB_ATTR_RO(reserved);
4619
ab4d5ed5 4620#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4621static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4622{
4623 return show_slab_objects(s, buf, SO_ALL);
4624}
4625SLAB_ATTR_RO(slabs);
4626
205ab99d
CL
4627static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4628{
4629 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4630}
4631SLAB_ATTR_RO(total_objects);
4632
81819f0f
CL
4633static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4634{
4635 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4636}
4637
4638static ssize_t sanity_checks_store(struct kmem_cache *s,
4639 const char *buf, size_t length)
4640{
4641 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4642 if (buf[0] == '1') {
4643 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4644 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4645 }
81819f0f
CL
4646 return length;
4647}
4648SLAB_ATTR(sanity_checks);
4649
4650static ssize_t trace_show(struct kmem_cache *s, char *buf)
4651{
4652 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4653}
4654
4655static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4656 size_t length)
4657{
4658 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4659 if (buf[0] == '1') {
4660 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4661 s->flags |= SLAB_TRACE;
b789ef51 4662 }
81819f0f
CL
4663 return length;
4664}
4665SLAB_ATTR(trace);
4666
81819f0f
CL
4667static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4668{
4669 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4670}
4671
4672static ssize_t red_zone_store(struct kmem_cache *s,
4673 const char *buf, size_t length)
4674{
4675 if (any_slab_objects(s))
4676 return -EBUSY;
4677
4678 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4679 if (buf[0] == '1') {
4680 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4681 s->flags |= SLAB_RED_ZONE;
b789ef51 4682 }
06b285dc 4683 calculate_sizes(s, -1);
81819f0f
CL
4684 return length;
4685}
4686SLAB_ATTR(red_zone);
4687
4688static ssize_t poison_show(struct kmem_cache *s, char *buf)
4689{
4690 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4691}
4692
4693static ssize_t poison_store(struct kmem_cache *s,
4694 const char *buf, size_t length)
4695{
4696 if (any_slab_objects(s))
4697 return -EBUSY;
4698
4699 s->flags &= ~SLAB_POISON;
b789ef51
CL
4700 if (buf[0] == '1') {
4701 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4702 s->flags |= SLAB_POISON;
b789ef51 4703 }
06b285dc 4704 calculate_sizes(s, -1);
81819f0f
CL
4705 return length;
4706}
4707SLAB_ATTR(poison);
4708
4709static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4710{
4711 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4712}
4713
4714static ssize_t store_user_store(struct kmem_cache *s,
4715 const char *buf, size_t length)
4716{
4717 if (any_slab_objects(s))
4718 return -EBUSY;
4719
4720 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4721 if (buf[0] == '1') {
4722 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4723 s->flags |= SLAB_STORE_USER;
b789ef51 4724 }
06b285dc 4725 calculate_sizes(s, -1);
81819f0f
CL
4726 return length;
4727}
4728SLAB_ATTR(store_user);
4729
53e15af0
CL
4730static ssize_t validate_show(struct kmem_cache *s, char *buf)
4731{
4732 return 0;
4733}
4734
4735static ssize_t validate_store(struct kmem_cache *s,
4736 const char *buf, size_t length)
4737{
434e245d
CL
4738 int ret = -EINVAL;
4739
4740 if (buf[0] == '1') {
4741 ret = validate_slab_cache(s);
4742 if (ret >= 0)
4743 ret = length;
4744 }
4745 return ret;
53e15af0
CL
4746}
4747SLAB_ATTR(validate);
a5a84755
CL
4748
4749static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4750{
4751 if (!(s->flags & SLAB_STORE_USER))
4752 return -ENOSYS;
4753 return list_locations(s, buf, TRACK_ALLOC);
4754}
4755SLAB_ATTR_RO(alloc_calls);
4756
4757static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4758{
4759 if (!(s->flags & SLAB_STORE_USER))
4760 return -ENOSYS;
4761 return list_locations(s, buf, TRACK_FREE);
4762}
4763SLAB_ATTR_RO(free_calls);
4764#endif /* CONFIG_SLUB_DEBUG */
4765
4766#ifdef CONFIG_FAILSLAB
4767static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4768{
4769 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4770}
4771
4772static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4773 size_t length)
4774{
4775 s->flags &= ~SLAB_FAILSLAB;
4776 if (buf[0] == '1')
4777 s->flags |= SLAB_FAILSLAB;
4778 return length;
4779}
4780SLAB_ATTR(failslab);
ab4d5ed5 4781#endif
53e15af0 4782
2086d26a
CL
4783static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4784{
4785 return 0;
4786}
4787
4788static ssize_t shrink_store(struct kmem_cache *s,
4789 const char *buf, size_t length)
4790{
4791 if (buf[0] == '1') {
4792 int rc = kmem_cache_shrink(s);
4793
4794 if (rc)
4795 return rc;
4796 } else
4797 return -EINVAL;
4798 return length;
4799}
4800SLAB_ATTR(shrink);
4801
81819f0f 4802#ifdef CONFIG_NUMA
9824601e 4803static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4804{
9824601e 4805 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4806}
4807
9824601e 4808static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4809 const char *buf, size_t length)
4810{
0121c619
CL
4811 unsigned long ratio;
4812 int err;
4813
3dbb95f7 4814 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4815 if (err)
4816 return err;
4817
e2cb96b7 4818 if (ratio <= 100)
0121c619 4819 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4820
81819f0f
CL
4821 return length;
4822}
9824601e 4823SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4824#endif
4825
8ff12cfc 4826#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4827static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4828{
4829 unsigned long sum = 0;
4830 int cpu;
4831 int len;
4832 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4833
4834 if (!data)
4835 return -ENOMEM;
4836
4837 for_each_online_cpu(cpu) {
9dfc6e68 4838 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4839
4840 data[cpu] = x;
4841 sum += x;
4842 }
4843
4844 len = sprintf(buf, "%lu", sum);
4845
50ef37b9 4846#ifdef CONFIG_SMP
8ff12cfc
CL
4847 for_each_online_cpu(cpu) {
4848 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4849 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4850 }
50ef37b9 4851#endif
8ff12cfc
CL
4852 kfree(data);
4853 return len + sprintf(buf + len, "\n");
4854}
4855
78eb00cc
DR
4856static void clear_stat(struct kmem_cache *s, enum stat_item si)
4857{
4858 int cpu;
4859
4860 for_each_online_cpu(cpu)
9dfc6e68 4861 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4862}
4863
8ff12cfc
CL
4864#define STAT_ATTR(si, text) \
4865static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4866{ \
4867 return show_stat(s, buf, si); \
4868} \
78eb00cc
DR
4869static ssize_t text##_store(struct kmem_cache *s, \
4870 const char *buf, size_t length) \
4871{ \
4872 if (buf[0] != '0') \
4873 return -EINVAL; \
4874 clear_stat(s, si); \
4875 return length; \
4876} \
4877SLAB_ATTR(text); \
8ff12cfc
CL
4878
4879STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4880STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4881STAT_ATTR(FREE_FASTPATH, free_fastpath);
4882STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4883STAT_ATTR(FREE_FROZEN, free_frozen);
4884STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4885STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4886STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4887STAT_ATTR(ALLOC_SLAB, alloc_slab);
4888STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4889STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4890STAT_ATTR(FREE_SLAB, free_slab);
4891STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4892STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4893STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4894STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4895STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4896STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4897STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4898STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4899STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4900STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4901STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4902STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4903STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4904STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4905#endif
4906
06428780 4907static struct attribute *slab_attrs[] = {
81819f0f
CL
4908 &slab_size_attr.attr,
4909 &object_size_attr.attr,
4910 &objs_per_slab_attr.attr,
4911 &order_attr.attr,
73d342b1 4912 &min_partial_attr.attr,
49e22585 4913 &cpu_partial_attr.attr,
81819f0f 4914 &objects_attr.attr,
205ab99d 4915 &objects_partial_attr.attr,
81819f0f
CL
4916 &partial_attr.attr,
4917 &cpu_slabs_attr.attr,
4918 &ctor_attr.attr,
81819f0f
CL
4919 &aliases_attr.attr,
4920 &align_attr.attr,
81819f0f
CL
4921 &hwcache_align_attr.attr,
4922 &reclaim_account_attr.attr,
4923 &destroy_by_rcu_attr.attr,
a5a84755 4924 &shrink_attr.attr,
ab9a0f19 4925 &reserved_attr.attr,
49e22585 4926 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4927#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4928 &total_objects_attr.attr,
4929 &slabs_attr.attr,
4930 &sanity_checks_attr.attr,
4931 &trace_attr.attr,
81819f0f
CL
4932 &red_zone_attr.attr,
4933 &poison_attr.attr,
4934 &store_user_attr.attr,
53e15af0 4935 &validate_attr.attr,
88a420e4
CL
4936 &alloc_calls_attr.attr,
4937 &free_calls_attr.attr,
ab4d5ed5 4938#endif
81819f0f
CL
4939#ifdef CONFIG_ZONE_DMA
4940 &cache_dma_attr.attr,
4941#endif
4942#ifdef CONFIG_NUMA
9824601e 4943 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4944#endif
4945#ifdef CONFIG_SLUB_STATS
4946 &alloc_fastpath_attr.attr,
4947 &alloc_slowpath_attr.attr,
4948 &free_fastpath_attr.attr,
4949 &free_slowpath_attr.attr,
4950 &free_frozen_attr.attr,
4951 &free_add_partial_attr.attr,
4952 &free_remove_partial_attr.attr,
4953 &alloc_from_partial_attr.attr,
4954 &alloc_slab_attr.attr,
4955 &alloc_refill_attr.attr,
e36a2652 4956 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4957 &free_slab_attr.attr,
4958 &cpuslab_flush_attr.attr,
4959 &deactivate_full_attr.attr,
4960 &deactivate_empty_attr.attr,
4961 &deactivate_to_head_attr.attr,
4962 &deactivate_to_tail_attr.attr,
4963 &deactivate_remote_frees_attr.attr,
03e404af 4964 &deactivate_bypass_attr.attr,
65c3376a 4965 &order_fallback_attr.attr,
b789ef51
CL
4966 &cmpxchg_double_fail_attr.attr,
4967 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4968 &cpu_partial_alloc_attr.attr,
4969 &cpu_partial_free_attr.attr,
8028dcea
AS
4970 &cpu_partial_node_attr.attr,
4971 &cpu_partial_drain_attr.attr,
81819f0f 4972#endif
4c13dd3b
DM
4973#ifdef CONFIG_FAILSLAB
4974 &failslab_attr.attr,
4975#endif
4976
81819f0f
CL
4977 NULL
4978};
4979
4980static struct attribute_group slab_attr_group = {
4981 .attrs = slab_attrs,
4982};
4983
4984static ssize_t slab_attr_show(struct kobject *kobj,
4985 struct attribute *attr,
4986 char *buf)
4987{
4988 struct slab_attribute *attribute;
4989 struct kmem_cache *s;
4990 int err;
4991
4992 attribute = to_slab_attr(attr);
4993 s = to_slab(kobj);
4994
4995 if (!attribute->show)
4996 return -EIO;
4997
4998 err = attribute->show(s, buf);
4999
5000 return err;
5001}
5002
5003static ssize_t slab_attr_store(struct kobject *kobj,
5004 struct attribute *attr,
5005 const char *buf, size_t len)
5006{
5007 struct slab_attribute *attribute;
5008 struct kmem_cache *s;
5009 int err;
5010
5011 attribute = to_slab_attr(attr);
5012 s = to_slab(kobj);
5013
5014 if (!attribute->store)
5015 return -EIO;
5016
5017 err = attribute->store(s, buf, len);
107dab5c
GC
5018#ifdef CONFIG_MEMCG_KMEM
5019 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5020 int i;
81819f0f 5021
107dab5c
GC
5022 mutex_lock(&slab_mutex);
5023 if (s->max_attr_size < len)
5024 s->max_attr_size = len;
5025
ebe945c2
GC
5026 /*
5027 * This is a best effort propagation, so this function's return
5028 * value will be determined by the parent cache only. This is
5029 * basically because not all attributes will have a well
5030 * defined semantics for rollbacks - most of the actions will
5031 * have permanent effects.
5032 *
5033 * Returning the error value of any of the children that fail
5034 * is not 100 % defined, in the sense that users seeing the
5035 * error code won't be able to know anything about the state of
5036 * the cache.
5037 *
5038 * Only returning the error code for the parent cache at least
5039 * has well defined semantics. The cache being written to
5040 * directly either failed or succeeded, in which case we loop
5041 * through the descendants with best-effort propagation.
5042 */
107dab5c 5043 for_each_memcg_cache_index(i) {
2ade4de8 5044 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5045 if (c)
5046 attribute->store(c, buf, len);
5047 }
5048 mutex_unlock(&slab_mutex);
5049 }
5050#endif
81819f0f
CL
5051 return err;
5052}
5053
107dab5c
GC
5054static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5055{
5056#ifdef CONFIG_MEMCG_KMEM
5057 int i;
5058 char *buffer = NULL;
5059
5060 if (!is_root_cache(s))
5061 return;
5062
5063 /*
5064 * This mean this cache had no attribute written. Therefore, no point
5065 * in copying default values around
5066 */
5067 if (!s->max_attr_size)
5068 return;
5069
5070 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5071 char mbuf[64];
5072 char *buf;
5073 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5074
5075 if (!attr || !attr->store || !attr->show)
5076 continue;
5077
5078 /*
5079 * It is really bad that we have to allocate here, so we will
5080 * do it only as a fallback. If we actually allocate, though,
5081 * we can just use the allocated buffer until the end.
5082 *
5083 * Most of the slub attributes will tend to be very small in
5084 * size, but sysfs allows buffers up to a page, so they can
5085 * theoretically happen.
5086 */
5087 if (buffer)
5088 buf = buffer;
5089 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5090 buf = mbuf;
5091 else {
5092 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5093 if (WARN_ON(!buffer))
5094 continue;
5095 buf = buffer;
5096 }
5097
5098 attr->show(s->memcg_params->root_cache, buf);
5099 attr->store(s, buf, strlen(buf));
5100 }
5101
5102 if (buffer)
5103 free_page((unsigned long)buffer);
5104#endif
5105}
5106
52cf25d0 5107static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5108 .show = slab_attr_show,
5109 .store = slab_attr_store,
5110};
5111
5112static struct kobj_type slab_ktype = {
5113 .sysfs_ops = &slab_sysfs_ops,
5114};
5115
5116static int uevent_filter(struct kset *kset, struct kobject *kobj)
5117{
5118 struct kobj_type *ktype = get_ktype(kobj);
5119
5120 if (ktype == &slab_ktype)
5121 return 1;
5122 return 0;
5123}
5124
9cd43611 5125static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5126 .filter = uevent_filter,
5127};
5128
27c3a314 5129static struct kset *slab_kset;
81819f0f
CL
5130
5131#define ID_STR_LENGTH 64
5132
5133/* Create a unique string id for a slab cache:
6446faa2
CL
5134 *
5135 * Format :[flags-]size
81819f0f
CL
5136 */
5137static char *create_unique_id(struct kmem_cache *s)
5138{
5139 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5140 char *p = name;
5141
5142 BUG_ON(!name);
5143
5144 *p++ = ':';
5145 /*
5146 * First flags affecting slabcache operations. We will only
5147 * get here for aliasable slabs so we do not need to support
5148 * too many flags. The flags here must cover all flags that
5149 * are matched during merging to guarantee that the id is
5150 * unique.
5151 */
5152 if (s->flags & SLAB_CACHE_DMA)
5153 *p++ = 'd';
5154 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5155 *p++ = 'a';
5156 if (s->flags & SLAB_DEBUG_FREE)
5157 *p++ = 'F';
5a896d9e
VN
5158 if (!(s->flags & SLAB_NOTRACK))
5159 *p++ = 't';
81819f0f
CL
5160 if (p != name + 1)
5161 *p++ = '-';
5162 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5163
5164#ifdef CONFIG_MEMCG_KMEM
5165 if (!is_root_cache(s))
d0e0ac97
CG
5166 p += sprintf(p, "-%08d",
5167 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5168#endif
5169
81819f0f
CL
5170 BUG_ON(p > name + ID_STR_LENGTH - 1);
5171 return name;
5172}
5173
5174static int sysfs_slab_add(struct kmem_cache *s)
5175{
5176 int err;
5177 const char *name;
45530c44 5178 int unmergeable = slab_unmergeable(s);
81819f0f 5179
81819f0f
CL
5180 if (unmergeable) {
5181 /*
5182 * Slabcache can never be merged so we can use the name proper.
5183 * This is typically the case for debug situations. In that
5184 * case we can catch duplicate names easily.
5185 */
27c3a314 5186 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5187 name = s->name;
5188 } else {
5189 /*
5190 * Create a unique name for the slab as a target
5191 * for the symlinks.
5192 */
5193 name = create_unique_id(s);
5194 }
5195
27c3a314 5196 s->kobj.kset = slab_kset;
26e4f205 5197 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
1eada11c
GKH
5198 if (err) {
5199 kobject_put(&s->kobj);
81819f0f 5200 return err;
1eada11c 5201 }
81819f0f
CL
5202
5203 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5204 if (err) {
5205 kobject_del(&s->kobj);
5206 kobject_put(&s->kobj);
81819f0f 5207 return err;
5788d8ad 5208 }
81819f0f
CL
5209 kobject_uevent(&s->kobj, KOBJ_ADD);
5210 if (!unmergeable) {
5211 /* Setup first alias */
5212 sysfs_slab_alias(s, s->name);
5213 kfree(name);
5214 }
5215 return 0;
5216}
5217
5218static void sysfs_slab_remove(struct kmem_cache *s)
5219{
97d06609 5220 if (slab_state < FULL)
2bce6485
CL
5221 /*
5222 * Sysfs has not been setup yet so no need to remove the
5223 * cache from sysfs.
5224 */
5225 return;
5226
81819f0f
CL
5227 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5228 kobject_del(&s->kobj);
151c602f 5229 kobject_put(&s->kobj);
81819f0f
CL
5230}
5231
5232/*
5233 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5234 * available lest we lose that information.
81819f0f
CL
5235 */
5236struct saved_alias {
5237 struct kmem_cache *s;
5238 const char *name;
5239 struct saved_alias *next;
5240};
5241
5af328a5 5242static struct saved_alias *alias_list;
81819f0f
CL
5243
5244static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5245{
5246 struct saved_alias *al;
5247
97d06609 5248 if (slab_state == FULL) {
81819f0f
CL
5249 /*
5250 * If we have a leftover link then remove it.
5251 */
27c3a314
GKH
5252 sysfs_remove_link(&slab_kset->kobj, name);
5253 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5254 }
5255
5256 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5257 if (!al)
5258 return -ENOMEM;
5259
5260 al->s = s;
5261 al->name = name;
5262 al->next = alias_list;
5263 alias_list = al;
5264 return 0;
5265}
5266
5267static int __init slab_sysfs_init(void)
5268{
5b95a4ac 5269 struct kmem_cache *s;
81819f0f
CL
5270 int err;
5271
18004c5d 5272 mutex_lock(&slab_mutex);
2bce6485 5273
0ff21e46 5274 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5275 if (!slab_kset) {
18004c5d 5276 mutex_unlock(&slab_mutex);
81819f0f
CL
5277 printk(KERN_ERR "Cannot register slab subsystem.\n");
5278 return -ENOSYS;
5279 }
5280
97d06609 5281 slab_state = FULL;
26a7bd03 5282
5b95a4ac 5283 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5284 err = sysfs_slab_add(s);
5d540fb7
CL
5285 if (err)
5286 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5287 " to sysfs\n", s->name);
26a7bd03 5288 }
81819f0f
CL
5289
5290 while (alias_list) {
5291 struct saved_alias *al = alias_list;
5292
5293 alias_list = alias_list->next;
5294 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5295 if (err)
5296 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5297 " %s to sysfs\n", al->name);
81819f0f
CL
5298 kfree(al);
5299 }
5300
18004c5d 5301 mutex_unlock(&slab_mutex);
81819f0f
CL
5302 resiliency_test();
5303 return 0;
5304}
5305
5306__initcall(slab_sysfs_init);
ab4d5ed5 5307#endif /* CONFIG_SYSFS */
57ed3eda
PE
5308
5309/*
5310 * The /proc/slabinfo ABI
5311 */
158a9624 5312#ifdef CONFIG_SLABINFO
0d7561c6 5313void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5314{
57ed3eda 5315 unsigned long nr_slabs = 0;
205ab99d
CL
5316 unsigned long nr_objs = 0;
5317 unsigned long nr_free = 0;
57ed3eda
PE
5318 int node;
5319
57ed3eda
PE
5320 for_each_online_node(node) {
5321 struct kmem_cache_node *n = get_node(s, node);
5322
5323 if (!n)
5324 continue;
5325
c17fd13e
WL
5326 nr_slabs += node_nr_slabs(n);
5327 nr_objs += node_nr_objs(n);
205ab99d 5328 nr_free += count_partial(n, count_free);
57ed3eda
PE
5329 }
5330
0d7561c6
GC
5331 sinfo->active_objs = nr_objs - nr_free;
5332 sinfo->num_objs = nr_objs;
5333 sinfo->active_slabs = nr_slabs;
5334 sinfo->num_slabs = nr_slabs;
5335 sinfo->objects_per_slab = oo_objects(s->oo);
5336 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5337}
5338
0d7561c6 5339void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5340{
7b3c3a50
AD
5341}
5342
b7454ad3
GC
5343ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5344 size_t count, loff_t *ppos)
7b3c3a50 5345{
b7454ad3 5346 return -EIO;
7b3c3a50 5347}
158a9624 5348#endif /* CONFIG_SLABINFO */
This page took 1.566935 seconds and 5 git commands to generate.