drm/i915/guc: Expose (intel)_lr_context_size()
[deliverable/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20 50atomic_long_t nr_swap_pages;
fb0fec50
CW
51/*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 58long total_swap_pages;
78ecba08 59static int least_priority;
1da177e4 60
1da177e4
LT
61static const char Bad_file[] = "Bad swap file entry ";
62static const char Unused_file[] = "Unused swap file entry ";
63static const char Bad_offset[] = "Bad swap offset entry ";
64static const char Unused_offset[] = "Unused swap offset entry ";
65
adfab836
DS
66/*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
18ab4d4c
DS
70PLIST_HEAD(swap_active_head);
71
72/*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84static PLIST_HEAD(swap_avail_head);
85static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 86
38b5faf4 87struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 88
fc0abb14 89static DEFINE_MUTEX(swapon_mutex);
1da177e4 90
66d7dd51
KS
91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92/* Activity counter to indicate that a swapon or swapoff has occurred */
93static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
8d69aaee 95static inline unsigned char swap_count(unsigned char ent)
355cfa73 96{
570a335b 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
98}
99
efa90a98 100/* returns 1 if swap entry is freed */
c9e44410
KH
101static int
102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103{
efa90a98 104 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
105 struct page *page;
106 int ret = 0;
107
33806f06 108 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
122 page_cache_release(page);
123 return ret;
124}
355cfa73 125
6a6ba831
HD
126/*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130static int discard_swap(struct swap_info_struct *si)
131{
132 struct swap_extent *se;
9625a5f2
HD
133 sector_t start_block;
134 sector_t nr_blocks;
6a6ba831
HD
135 int err = 0;
136
9625a5f2
HD
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 143 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 154 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161}
162
7992fde7
HD
163/*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169{
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
174 struct list_head *lh;
175
176 if (se->start_page <= start_page &&
177 start_page < se->start_page + se->nr_pages) {
178 pgoff_t offset = start_page - se->start_page;
179 sector_t start_block = se->start_block + offset;
858a2990 180 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
181
182 if (nr_blocks > nr_pages)
183 nr_blocks = nr_pages;
184 start_page += nr_blocks;
185 nr_pages -= nr_blocks;
186
187 if (!found_extent++)
188 si->curr_swap_extent = se;
189
190 start_block <<= PAGE_SHIFT - 9;
191 nr_blocks <<= PAGE_SHIFT - 9;
192 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 193 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
194 break;
195 }
196
197 lh = se->list.next;
7992fde7
HD
198 se = list_entry(lh, struct swap_extent, list);
199 }
200}
201
048c27fd
HD
202#define SWAPFILE_CLUSTER 256
203#define LATENCY_LIMIT 256
204
2a8f9449
SL
205static inline void cluster_set_flag(struct swap_cluster_info *info,
206 unsigned int flag)
207{
208 info->flags = flag;
209}
210
211static inline unsigned int cluster_count(struct swap_cluster_info *info)
212{
213 return info->data;
214}
215
216static inline void cluster_set_count(struct swap_cluster_info *info,
217 unsigned int c)
218{
219 info->data = c;
220}
221
222static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223 unsigned int c, unsigned int f)
224{
225 info->flags = f;
226 info->data = c;
227}
228
229static inline unsigned int cluster_next(struct swap_cluster_info *info)
230{
231 return info->data;
232}
233
234static inline void cluster_set_next(struct swap_cluster_info *info,
235 unsigned int n)
236{
237 info->data = n;
238}
239
240static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241 unsigned int n, unsigned int f)
242{
243 info->flags = f;
244 info->data = n;
245}
246
247static inline bool cluster_is_free(struct swap_cluster_info *info)
248{
249 return info->flags & CLUSTER_FLAG_FREE;
250}
251
252static inline bool cluster_is_null(struct swap_cluster_info *info)
253{
254 return info->flags & CLUSTER_FLAG_NEXT_NULL;
255}
256
257static inline void cluster_set_null(struct swap_cluster_info *info)
258{
259 info->flags = CLUSTER_FLAG_NEXT_NULL;
260 info->data = 0;
261}
262
815c2c54
SL
263/* Add a cluster to discard list and schedule it to do discard */
264static void swap_cluster_schedule_discard(struct swap_info_struct *si,
265 unsigned int idx)
266{
267 /*
268 * If scan_swap_map() can't find a free cluster, it will check
269 * si->swap_map directly. To make sure the discarding cluster isn't
270 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
271 * will be cleared after discard
272 */
273 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
274 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
275
276 if (cluster_is_null(&si->discard_cluster_head)) {
277 cluster_set_next_flag(&si->discard_cluster_head,
278 idx, 0);
279 cluster_set_next_flag(&si->discard_cluster_tail,
280 idx, 0);
281 } else {
282 unsigned int tail = cluster_next(&si->discard_cluster_tail);
283 cluster_set_next(&si->cluster_info[tail], idx);
284 cluster_set_next_flag(&si->discard_cluster_tail,
285 idx, 0);
286 }
287
288 schedule_work(&si->discard_work);
289}
290
291/*
292 * Doing discard actually. After a cluster discard is finished, the cluster
293 * will be added to free cluster list. caller should hold si->lock.
294*/
295static void swap_do_scheduled_discard(struct swap_info_struct *si)
296{
297 struct swap_cluster_info *info;
298 unsigned int idx;
299
300 info = si->cluster_info;
301
302 while (!cluster_is_null(&si->discard_cluster_head)) {
303 idx = cluster_next(&si->discard_cluster_head);
304
305 cluster_set_next_flag(&si->discard_cluster_head,
306 cluster_next(&info[idx]), 0);
307 if (cluster_next(&si->discard_cluster_tail) == idx) {
308 cluster_set_null(&si->discard_cluster_head);
309 cluster_set_null(&si->discard_cluster_tail);
310 }
311 spin_unlock(&si->lock);
312
313 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
314 SWAPFILE_CLUSTER);
315
316 spin_lock(&si->lock);
317 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
318 if (cluster_is_null(&si->free_cluster_head)) {
319 cluster_set_next_flag(&si->free_cluster_head,
320 idx, 0);
321 cluster_set_next_flag(&si->free_cluster_tail,
322 idx, 0);
323 } else {
324 unsigned int tail;
325
326 tail = cluster_next(&si->free_cluster_tail);
327 cluster_set_next(&info[tail], idx);
328 cluster_set_next_flag(&si->free_cluster_tail,
329 idx, 0);
330 }
331 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
332 0, SWAPFILE_CLUSTER);
333 }
334}
335
336static void swap_discard_work(struct work_struct *work)
337{
338 struct swap_info_struct *si;
339
340 si = container_of(work, struct swap_info_struct, discard_work);
341
342 spin_lock(&si->lock);
343 swap_do_scheduled_discard(si);
344 spin_unlock(&si->lock);
345}
346
2a8f9449
SL
347/*
348 * The cluster corresponding to page_nr will be used. The cluster will be
349 * removed from free cluster list and its usage counter will be increased.
350 */
351static void inc_cluster_info_page(struct swap_info_struct *p,
352 struct swap_cluster_info *cluster_info, unsigned long page_nr)
353{
354 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
355
356 if (!cluster_info)
357 return;
358 if (cluster_is_free(&cluster_info[idx])) {
359 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
360 cluster_set_next_flag(&p->free_cluster_head,
361 cluster_next(&cluster_info[idx]), 0);
362 if (cluster_next(&p->free_cluster_tail) == idx) {
363 cluster_set_null(&p->free_cluster_tail);
364 cluster_set_null(&p->free_cluster_head);
365 }
366 cluster_set_count_flag(&cluster_info[idx], 0, 0);
367 }
368
369 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
370 cluster_set_count(&cluster_info[idx],
371 cluster_count(&cluster_info[idx]) + 1);
372}
373
374/*
375 * The cluster corresponding to page_nr decreases one usage. If the usage
376 * counter becomes 0, which means no page in the cluster is in using, we can
377 * optionally discard the cluster and add it to free cluster list.
378 */
379static void dec_cluster_info_page(struct swap_info_struct *p,
380 struct swap_cluster_info *cluster_info, unsigned long page_nr)
381{
382 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
383
384 if (!cluster_info)
385 return;
386
387 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
388 cluster_set_count(&cluster_info[idx],
389 cluster_count(&cluster_info[idx]) - 1);
390
391 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
392 /*
393 * If the swap is discardable, prepare discard the cluster
394 * instead of free it immediately. The cluster will be freed
395 * after discard.
396 */
edfe23da
SL
397 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
398 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
399 swap_cluster_schedule_discard(p, idx);
400 return;
401 }
402
2a8f9449
SL
403 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
404 if (cluster_is_null(&p->free_cluster_head)) {
405 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
406 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
407 } else {
408 unsigned int tail = cluster_next(&p->free_cluster_tail);
409 cluster_set_next(&cluster_info[tail], idx);
410 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
411 }
412 }
413}
414
415/*
416 * It's possible scan_swap_map() uses a free cluster in the middle of free
417 * cluster list. Avoiding such abuse to avoid list corruption.
418 */
ebc2a1a6
SL
419static bool
420scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
421 unsigned long offset)
422{
ebc2a1a6
SL
423 struct percpu_cluster *percpu_cluster;
424 bool conflict;
425
2a8f9449 426 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 427 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
428 offset != cluster_next(&si->free_cluster_head) &&
429 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
430
431 if (!conflict)
432 return false;
433
434 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
435 cluster_set_null(&percpu_cluster->index);
436 return true;
437}
438
439/*
440 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
441 * might involve allocating a new cluster for current CPU too.
442 */
443static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
444 unsigned long *offset, unsigned long *scan_base)
445{
446 struct percpu_cluster *cluster;
447 bool found_free;
448 unsigned long tmp;
449
450new_cluster:
451 cluster = this_cpu_ptr(si->percpu_cluster);
452 if (cluster_is_null(&cluster->index)) {
453 if (!cluster_is_null(&si->free_cluster_head)) {
454 cluster->index = si->free_cluster_head;
455 cluster->next = cluster_next(&cluster->index) *
456 SWAPFILE_CLUSTER;
457 } else if (!cluster_is_null(&si->discard_cluster_head)) {
458 /*
459 * we don't have free cluster but have some clusters in
460 * discarding, do discard now and reclaim them
461 */
462 swap_do_scheduled_discard(si);
463 *scan_base = *offset = si->cluster_next;
464 goto new_cluster;
465 } else
466 return;
467 }
468
469 found_free = false;
470
471 /*
472 * Other CPUs can use our cluster if they can't find a free cluster,
473 * check if there is still free entry in the cluster
474 */
475 tmp = cluster->next;
476 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
477 SWAPFILE_CLUSTER) {
478 if (!si->swap_map[tmp]) {
479 found_free = true;
480 break;
481 }
482 tmp++;
483 }
484 if (!found_free) {
485 cluster_set_null(&cluster->index);
486 goto new_cluster;
487 }
488 cluster->next = tmp + 1;
489 *offset = tmp;
490 *scan_base = tmp;
2a8f9449
SL
491}
492
24b8ff7c
CEB
493static unsigned long scan_swap_map(struct swap_info_struct *si,
494 unsigned char usage)
1da177e4 495{
ebebbbe9 496 unsigned long offset;
c60aa176 497 unsigned long scan_base;
7992fde7 498 unsigned long last_in_cluster = 0;
048c27fd 499 int latency_ration = LATENCY_LIMIT;
7dfad418 500
886bb7e9 501 /*
7dfad418
HD
502 * We try to cluster swap pages by allocating them sequentially
503 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
504 * way, however, we resort to first-free allocation, starting
505 * a new cluster. This prevents us from scattering swap pages
506 * all over the entire swap partition, so that we reduce
507 * overall disk seek times between swap pages. -- sct
508 * But we do now try to find an empty cluster. -Andrea
c60aa176 509 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
510 */
511
52b7efdb 512 si->flags += SWP_SCANNING;
c60aa176 513 scan_base = offset = si->cluster_next;
ebebbbe9 514
ebc2a1a6
SL
515 /* SSD algorithm */
516 if (si->cluster_info) {
517 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
518 goto checks;
519 }
520
ebebbbe9
HD
521 if (unlikely(!si->cluster_nr--)) {
522 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
523 si->cluster_nr = SWAPFILE_CLUSTER - 1;
524 goto checks;
525 }
2a8f9449 526
ec8acf20 527 spin_unlock(&si->lock);
7dfad418 528
c60aa176
HD
529 /*
530 * If seek is expensive, start searching for new cluster from
531 * start of partition, to minimize the span of allocated swap.
50088c44
CY
532 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
533 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 534 */
50088c44 535 scan_base = offset = si->lowest_bit;
7dfad418
HD
536 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
537
538 /* Locate the first empty (unaligned) cluster */
539 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 540 if (si->swap_map[offset])
7dfad418
HD
541 last_in_cluster = offset + SWAPFILE_CLUSTER;
542 else if (offset == last_in_cluster) {
ec8acf20 543 spin_lock(&si->lock);
ebebbbe9
HD
544 offset -= SWAPFILE_CLUSTER - 1;
545 si->cluster_next = offset;
546 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
547 goto checks;
548 }
549 if (unlikely(--latency_ration < 0)) {
550 cond_resched();
551 latency_ration = LATENCY_LIMIT;
552 }
553 }
554
555 offset = scan_base;
ec8acf20 556 spin_lock(&si->lock);
ebebbbe9 557 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 558 }
7dfad418 559
ebebbbe9 560checks:
ebc2a1a6
SL
561 if (si->cluster_info) {
562 while (scan_swap_map_ssd_cluster_conflict(si, offset))
563 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
564 }
ebebbbe9 565 if (!(si->flags & SWP_WRITEOK))
52b7efdb 566 goto no_page;
7dfad418
HD
567 if (!si->highest_bit)
568 goto no_page;
ebebbbe9 569 if (offset > si->highest_bit)
c60aa176 570 scan_base = offset = si->lowest_bit;
c9e44410 571
b73d7fce
HD
572 /* reuse swap entry of cache-only swap if not busy. */
573 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 574 int swap_was_freed;
ec8acf20 575 spin_unlock(&si->lock);
c9e44410 576 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 577 spin_lock(&si->lock);
c9e44410
KH
578 /* entry was freed successfully, try to use this again */
579 if (swap_was_freed)
580 goto checks;
581 goto scan; /* check next one */
582 }
583
ebebbbe9
HD
584 if (si->swap_map[offset])
585 goto scan;
586
587 if (offset == si->lowest_bit)
588 si->lowest_bit++;
589 if (offset == si->highest_bit)
590 si->highest_bit--;
591 si->inuse_pages++;
592 if (si->inuse_pages == si->pages) {
593 si->lowest_bit = si->max;
594 si->highest_bit = 0;
18ab4d4c
DS
595 spin_lock(&swap_avail_lock);
596 plist_del(&si->avail_list, &swap_avail_head);
597 spin_unlock(&swap_avail_lock);
1da177e4 598 }
253d553b 599 si->swap_map[offset] = usage;
2a8f9449 600 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
601 si->cluster_next = offset + 1;
602 si->flags -= SWP_SCANNING;
7992fde7 603
ebebbbe9 604 return offset;
7dfad418 605
ebebbbe9 606scan:
ec8acf20 607 spin_unlock(&si->lock);
7dfad418 608 while (++offset <= si->highest_bit) {
52b7efdb 609 if (!si->swap_map[offset]) {
ec8acf20 610 spin_lock(&si->lock);
52b7efdb
HD
611 goto checks;
612 }
c9e44410 613 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 614 spin_lock(&si->lock);
c9e44410
KH
615 goto checks;
616 }
048c27fd
HD
617 if (unlikely(--latency_ration < 0)) {
618 cond_resched();
619 latency_ration = LATENCY_LIMIT;
620 }
7dfad418 621 }
c60aa176 622 offset = si->lowest_bit;
a5998061 623 while (offset < scan_base) {
c60aa176 624 if (!si->swap_map[offset]) {
ec8acf20 625 spin_lock(&si->lock);
c60aa176
HD
626 goto checks;
627 }
c9e44410 628 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 629 spin_lock(&si->lock);
c9e44410
KH
630 goto checks;
631 }
c60aa176
HD
632 if (unlikely(--latency_ration < 0)) {
633 cond_resched();
634 latency_ration = LATENCY_LIMIT;
635 }
a5998061 636 offset++;
c60aa176 637 }
ec8acf20 638 spin_lock(&si->lock);
7dfad418
HD
639
640no_page:
52b7efdb 641 si->flags -= SWP_SCANNING;
1da177e4
LT
642 return 0;
643}
644
645swp_entry_t get_swap_page(void)
646{
adfab836 647 struct swap_info_struct *si, *next;
fb4f88dc 648 pgoff_t offset;
1da177e4 649
ec8acf20 650 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 651 goto noswap;
ec8acf20 652 atomic_long_dec(&nr_swap_pages);
fb4f88dc 653
18ab4d4c
DS
654 spin_lock(&swap_avail_lock);
655
656start_over:
657 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
658 /* requeue si to after same-priority siblings */
659 plist_requeue(&si->avail_list, &swap_avail_head);
660 spin_unlock(&swap_avail_lock);
ec8acf20 661 spin_lock(&si->lock);
adfab836 662 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
663 spin_lock(&swap_avail_lock);
664 if (plist_node_empty(&si->avail_list)) {
665 spin_unlock(&si->lock);
666 goto nextsi;
667 }
668 WARN(!si->highest_bit,
669 "swap_info %d in list but !highest_bit\n",
670 si->type);
671 WARN(!(si->flags & SWP_WRITEOK),
672 "swap_info %d in list but !SWP_WRITEOK\n",
673 si->type);
674 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 675 spin_unlock(&si->lock);
18ab4d4c 676 goto nextsi;
ec8acf20 677 }
fb4f88dc 678
355cfa73 679 /* This is called for allocating swap entry for cache */
253d553b 680 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
681 spin_unlock(&si->lock);
682 if (offset)
adfab836 683 return swp_entry(si->type, offset);
18ab4d4c
DS
684 pr_debug("scan_swap_map of si %d failed to find offset\n",
685 si->type);
686 spin_lock(&swap_avail_lock);
687nextsi:
adfab836
DS
688 /*
689 * if we got here, it's likely that si was almost full before,
690 * and since scan_swap_map() can drop the si->lock, multiple
691 * callers probably all tried to get a page from the same si
18ab4d4c
DS
692 * and it filled up before we could get one; or, the si filled
693 * up between us dropping swap_avail_lock and taking si->lock.
694 * Since we dropped the swap_avail_lock, the swap_avail_head
695 * list may have been modified; so if next is still in the
696 * swap_avail_head list then try it, otherwise start over.
adfab836 697 */
18ab4d4c
DS
698 if (plist_node_empty(&next->avail_list))
699 goto start_over;
1da177e4 700 }
fb4f88dc 701
18ab4d4c
DS
702 spin_unlock(&swap_avail_lock);
703
ec8acf20 704 atomic_long_inc(&nr_swap_pages);
fb4f88dc 705noswap:
fb4f88dc 706 return (swp_entry_t) {0};
1da177e4
LT
707}
708
2de1a7e4 709/* The only caller of this function is now suspend routine */
910321ea
HD
710swp_entry_t get_swap_page_of_type(int type)
711{
712 struct swap_info_struct *si;
713 pgoff_t offset;
714
910321ea 715 si = swap_info[type];
ec8acf20 716 spin_lock(&si->lock);
910321ea 717 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 718 atomic_long_dec(&nr_swap_pages);
910321ea
HD
719 /* This is called for allocating swap entry, not cache */
720 offset = scan_swap_map(si, 1);
721 if (offset) {
ec8acf20 722 spin_unlock(&si->lock);
910321ea
HD
723 return swp_entry(type, offset);
724 }
ec8acf20 725 atomic_long_inc(&nr_swap_pages);
910321ea 726 }
ec8acf20 727 spin_unlock(&si->lock);
910321ea
HD
728 return (swp_entry_t) {0};
729}
730
73c34b6a 731static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 732{
73c34b6a 733 struct swap_info_struct *p;
1da177e4
LT
734 unsigned long offset, type;
735
736 if (!entry.val)
737 goto out;
738 type = swp_type(entry);
739 if (type >= nr_swapfiles)
740 goto bad_nofile;
efa90a98 741 p = swap_info[type];
1da177e4
LT
742 if (!(p->flags & SWP_USED))
743 goto bad_device;
744 offset = swp_offset(entry);
745 if (offset >= p->max)
746 goto bad_offset;
747 if (!p->swap_map[offset])
748 goto bad_free;
ec8acf20 749 spin_lock(&p->lock);
1da177e4
LT
750 return p;
751
752bad_free:
465c47fd 753 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
754 goto out;
755bad_offset:
465c47fd 756 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
757 goto out;
758bad_device:
465c47fd 759 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
760 goto out;
761bad_nofile:
465c47fd 762 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
763out:
764 return NULL;
886bb7e9 765}
1da177e4 766
8d69aaee
HD
767static unsigned char swap_entry_free(struct swap_info_struct *p,
768 swp_entry_t entry, unsigned char usage)
1da177e4 769{
253d553b 770 unsigned long offset = swp_offset(entry);
8d69aaee
HD
771 unsigned char count;
772 unsigned char has_cache;
355cfa73 773
253d553b
HD
774 count = p->swap_map[offset];
775 has_cache = count & SWAP_HAS_CACHE;
776 count &= ~SWAP_HAS_CACHE;
355cfa73 777
253d553b 778 if (usage == SWAP_HAS_CACHE) {
355cfa73 779 VM_BUG_ON(!has_cache);
253d553b 780 has_cache = 0;
aaa46865
HD
781 } else if (count == SWAP_MAP_SHMEM) {
782 /*
783 * Or we could insist on shmem.c using a special
784 * swap_shmem_free() and free_shmem_swap_and_cache()...
785 */
786 count = 0;
570a335b
HD
787 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
788 if (count == COUNT_CONTINUED) {
789 if (swap_count_continued(p, offset, count))
790 count = SWAP_MAP_MAX | COUNT_CONTINUED;
791 else
792 count = SWAP_MAP_MAX;
793 } else
794 count--;
795 }
253d553b
HD
796
797 if (!count)
798 mem_cgroup_uncharge_swap(entry);
799
800 usage = count | has_cache;
801 p->swap_map[offset] = usage;
355cfa73 802
355cfa73 803 /* free if no reference */
253d553b 804 if (!usage) {
2a8f9449 805 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
806 if (offset < p->lowest_bit)
807 p->lowest_bit = offset;
18ab4d4c
DS
808 if (offset > p->highest_bit) {
809 bool was_full = !p->highest_bit;
355cfa73 810 p->highest_bit = offset;
18ab4d4c
DS
811 if (was_full && (p->flags & SWP_WRITEOK)) {
812 spin_lock(&swap_avail_lock);
813 WARN_ON(!plist_node_empty(&p->avail_list));
814 if (plist_node_empty(&p->avail_list))
815 plist_add(&p->avail_list,
816 &swap_avail_head);
817 spin_unlock(&swap_avail_lock);
818 }
819 }
ec8acf20 820 atomic_long_inc(&nr_swap_pages);
355cfa73 821 p->inuse_pages--;
38b5faf4 822 frontswap_invalidate_page(p->type, offset);
73744923
MG
823 if (p->flags & SWP_BLKDEV) {
824 struct gendisk *disk = p->bdev->bd_disk;
825 if (disk->fops->swap_slot_free_notify)
826 disk->fops->swap_slot_free_notify(p->bdev,
827 offset);
828 }
1da177e4 829 }
253d553b
HD
830
831 return usage;
1da177e4
LT
832}
833
834/*
2de1a7e4 835 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
836 * is still around or has not been recycled.
837 */
838void swap_free(swp_entry_t entry)
839{
73c34b6a 840 struct swap_info_struct *p;
1da177e4
LT
841
842 p = swap_info_get(entry);
843 if (p) {
253d553b 844 swap_entry_free(p, entry, 1);
ec8acf20 845 spin_unlock(&p->lock);
1da177e4
LT
846 }
847}
848
cb4b86ba
KH
849/*
850 * Called after dropping swapcache to decrease refcnt to swap entries.
851 */
0a31bc97 852void swapcache_free(swp_entry_t entry)
cb4b86ba 853{
355cfa73
KH
854 struct swap_info_struct *p;
855
355cfa73
KH
856 p = swap_info_get(entry);
857 if (p) {
0a31bc97 858 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 859 spin_unlock(&p->lock);
355cfa73 860 }
cb4b86ba
KH
861}
862
1da177e4 863/*
c475a8ab 864 * How many references to page are currently swapped out?
570a335b
HD
865 * This does not give an exact answer when swap count is continued,
866 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 867 */
bde05d1c 868int page_swapcount(struct page *page)
1da177e4 869{
c475a8ab
HD
870 int count = 0;
871 struct swap_info_struct *p;
1da177e4
LT
872 swp_entry_t entry;
873
4c21e2f2 874 entry.val = page_private(page);
1da177e4
LT
875 p = swap_info_get(entry);
876 if (p) {
355cfa73 877 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 878 spin_unlock(&p->lock);
1da177e4 879 }
c475a8ab 880 return count;
1da177e4
LT
881}
882
8334b962
MK
883/*
884 * How many references to @entry are currently swapped out?
885 * This considers COUNT_CONTINUED so it returns exact answer.
886 */
887int swp_swapcount(swp_entry_t entry)
888{
889 int count, tmp_count, n;
890 struct swap_info_struct *p;
891 struct page *page;
892 pgoff_t offset;
893 unsigned char *map;
894
895 p = swap_info_get(entry);
896 if (!p)
897 return 0;
898
899 count = swap_count(p->swap_map[swp_offset(entry)]);
900 if (!(count & COUNT_CONTINUED))
901 goto out;
902
903 count &= ~COUNT_CONTINUED;
904 n = SWAP_MAP_MAX + 1;
905
906 offset = swp_offset(entry);
907 page = vmalloc_to_page(p->swap_map + offset);
908 offset &= ~PAGE_MASK;
909 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
910
911 do {
912 page = list_entry(page->lru.next, struct page, lru);
913 map = kmap_atomic(page);
914 tmp_count = map[offset];
915 kunmap_atomic(map);
916
917 count += (tmp_count & ~COUNT_CONTINUED) * n;
918 n *= (SWAP_CONT_MAX + 1);
919 } while (tmp_count & COUNT_CONTINUED);
920out:
921 spin_unlock(&p->lock);
922 return count;
923}
924
1da177e4 925/*
7b1fe597
HD
926 * We can write to an anon page without COW if there are no other references
927 * to it. And as a side-effect, free up its swap: because the old content
928 * on disk will never be read, and seeking back there to write new content
929 * later would only waste time away from clustering.
1da177e4 930 */
7b1fe597 931int reuse_swap_page(struct page *page)
1da177e4 932{
c475a8ab
HD
933 int count;
934
309381fe 935 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
936 if (unlikely(PageKsm(page)))
937 return 0;
c475a8ab 938 count = page_mapcount(page);
7b1fe597 939 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 940 count += page_swapcount(page);
7b1fe597
HD
941 if (count == 1 && !PageWriteback(page)) {
942 delete_from_swap_cache(page);
943 SetPageDirty(page);
944 }
945 }
5ad64688 946 return count <= 1;
1da177e4
LT
947}
948
949/*
a2c43eed
HD
950 * If swap is getting full, or if there are no more mappings of this page,
951 * then try_to_free_swap is called to free its swap space.
1da177e4 952 */
a2c43eed 953int try_to_free_swap(struct page *page)
1da177e4 954{
309381fe 955 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
956
957 if (!PageSwapCache(page))
958 return 0;
959 if (PageWriteback(page))
960 return 0;
a2c43eed 961 if (page_swapcount(page))
1da177e4
LT
962 return 0;
963
b73d7fce
HD
964 /*
965 * Once hibernation has begun to create its image of memory,
966 * there's a danger that one of the calls to try_to_free_swap()
967 * - most probably a call from __try_to_reclaim_swap() while
968 * hibernation is allocating its own swap pages for the image,
969 * but conceivably even a call from memory reclaim - will free
970 * the swap from a page which has already been recorded in the
971 * image as a clean swapcache page, and then reuse its swap for
972 * another page of the image. On waking from hibernation, the
973 * original page might be freed under memory pressure, then
974 * later read back in from swap, now with the wrong data.
975 *
2de1a7e4 976 * Hibernation suspends storage while it is writing the image
f90ac398 977 * to disk so check that here.
b73d7fce 978 */
f90ac398 979 if (pm_suspended_storage())
b73d7fce
HD
980 return 0;
981
a2c43eed
HD
982 delete_from_swap_cache(page);
983 SetPageDirty(page);
984 return 1;
68a22394
RR
985}
986
1da177e4
LT
987/*
988 * Free the swap entry like above, but also try to
989 * free the page cache entry if it is the last user.
990 */
2509ef26 991int free_swap_and_cache(swp_entry_t entry)
1da177e4 992{
2509ef26 993 struct swap_info_struct *p;
1da177e4
LT
994 struct page *page = NULL;
995
a7420aa5 996 if (non_swap_entry(entry))
2509ef26 997 return 1;
0697212a 998
1da177e4
LT
999 p = swap_info_get(entry);
1000 if (p) {
253d553b 1001 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
1002 page = find_get_page(swap_address_space(entry),
1003 entry.val);
8413ac9d 1004 if (page && !trylock_page(page)) {
93fac704
NP
1005 page_cache_release(page);
1006 page = NULL;
1007 }
1008 }
ec8acf20 1009 spin_unlock(&p->lock);
1da177e4
LT
1010 }
1011 if (page) {
a2c43eed
HD
1012 /*
1013 * Not mapped elsewhere, or swap space full? Free it!
1014 * Also recheck PageSwapCache now page is locked (above).
1015 */
93fac704 1016 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 1017 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
1018 delete_from_swap_cache(page);
1019 SetPageDirty(page);
1020 }
1021 unlock_page(page);
1022 page_cache_release(page);
1023 }
2509ef26 1024 return p != NULL;
1da177e4
LT
1025}
1026
b0cb1a19 1027#ifdef CONFIG_HIBERNATION
f577eb30 1028/*
915bae9e 1029 * Find the swap type that corresponds to given device (if any).
f577eb30 1030 *
915bae9e
RW
1031 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1032 * from 0, in which the swap header is expected to be located.
1033 *
1034 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1035 */
7bf23687 1036int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1037{
915bae9e 1038 struct block_device *bdev = NULL;
efa90a98 1039 int type;
f577eb30 1040
915bae9e
RW
1041 if (device)
1042 bdev = bdget(device);
1043
f577eb30 1044 spin_lock(&swap_lock);
efa90a98
HD
1045 for (type = 0; type < nr_swapfiles; type++) {
1046 struct swap_info_struct *sis = swap_info[type];
f577eb30 1047
915bae9e 1048 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1049 continue;
b6b5bce3 1050
915bae9e 1051 if (!bdev) {
7bf23687 1052 if (bdev_p)
dddac6a7 1053 *bdev_p = bdgrab(sis->bdev);
7bf23687 1054
6e1819d6 1055 spin_unlock(&swap_lock);
efa90a98 1056 return type;
6e1819d6 1057 }
915bae9e 1058 if (bdev == sis->bdev) {
9625a5f2 1059 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1060
915bae9e 1061 if (se->start_block == offset) {
7bf23687 1062 if (bdev_p)
dddac6a7 1063 *bdev_p = bdgrab(sis->bdev);
7bf23687 1064
915bae9e
RW
1065 spin_unlock(&swap_lock);
1066 bdput(bdev);
efa90a98 1067 return type;
915bae9e 1068 }
f577eb30
RW
1069 }
1070 }
1071 spin_unlock(&swap_lock);
915bae9e
RW
1072 if (bdev)
1073 bdput(bdev);
1074
f577eb30
RW
1075 return -ENODEV;
1076}
1077
73c34b6a
HD
1078/*
1079 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1080 * corresponding to given index in swap_info (swap type).
1081 */
1082sector_t swapdev_block(int type, pgoff_t offset)
1083{
1084 struct block_device *bdev;
1085
1086 if ((unsigned int)type >= nr_swapfiles)
1087 return 0;
1088 if (!(swap_info[type]->flags & SWP_WRITEOK))
1089 return 0;
d4906e1a 1090 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1091}
1092
f577eb30
RW
1093/*
1094 * Return either the total number of swap pages of given type, or the number
1095 * of free pages of that type (depending on @free)
1096 *
1097 * This is needed for software suspend
1098 */
1099unsigned int count_swap_pages(int type, int free)
1100{
1101 unsigned int n = 0;
1102
efa90a98
HD
1103 spin_lock(&swap_lock);
1104 if ((unsigned int)type < nr_swapfiles) {
1105 struct swap_info_struct *sis = swap_info[type];
1106
ec8acf20 1107 spin_lock(&sis->lock);
efa90a98
HD
1108 if (sis->flags & SWP_WRITEOK) {
1109 n = sis->pages;
f577eb30 1110 if (free)
efa90a98 1111 n -= sis->inuse_pages;
f577eb30 1112 }
ec8acf20 1113 spin_unlock(&sis->lock);
f577eb30 1114 }
efa90a98 1115 spin_unlock(&swap_lock);
f577eb30
RW
1116 return n;
1117}
73c34b6a 1118#endif /* CONFIG_HIBERNATION */
f577eb30 1119
179ef71c
CG
1120static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1121{
1122#ifdef CONFIG_MEM_SOFT_DIRTY
1123 /*
1124 * When pte keeps soft dirty bit the pte generated
1125 * from swap entry does not has it, still it's same
1126 * pte from logical point of view.
1127 */
1128 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1129 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1130#else
1131 return pte_same(pte, swp_pte);
1132#endif
1133}
1134
1da177e4 1135/*
72866f6f
HD
1136 * No need to decide whether this PTE shares the swap entry with others,
1137 * just let do_wp_page work it out if a write is requested later - to
1138 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1139 */
044d66c1 1140static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1141 unsigned long addr, swp_entry_t entry, struct page *page)
1142{
9e16b7fb 1143 struct page *swapcache;
72835c86 1144 struct mem_cgroup *memcg;
044d66c1
HD
1145 spinlock_t *ptl;
1146 pte_t *pte;
1147 int ret = 1;
1148
9e16b7fb
HD
1149 swapcache = page;
1150 page = ksm_might_need_to_copy(page, vma, addr);
1151 if (unlikely(!page))
1152 return -ENOMEM;
1153
00501b53 1154 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
044d66c1 1155 ret = -ENOMEM;
85d9fc89
KH
1156 goto out_nolock;
1157 }
044d66c1
HD
1158
1159 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1160 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
00501b53 1161 mem_cgroup_cancel_charge(page, memcg);
044d66c1
HD
1162 ret = 0;
1163 goto out;
1164 }
8a9f3ccd 1165
b084d435 1166 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1167 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1168 get_page(page);
1169 set_pte_at(vma->vm_mm, addr, pte,
1170 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1171 if (page == swapcache) {
9e16b7fb 1172 page_add_anon_rmap(page, vma, addr);
00501b53
JW
1173 mem_cgroup_commit_charge(page, memcg, true);
1174 } else { /* ksm created a completely new copy */
9e16b7fb 1175 page_add_new_anon_rmap(page, vma, addr);
00501b53
JW
1176 mem_cgroup_commit_charge(page, memcg, false);
1177 lru_cache_add_active_or_unevictable(page, vma);
1178 }
1da177e4
LT
1179 swap_free(entry);
1180 /*
1181 * Move the page to the active list so it is not
1182 * immediately swapped out again after swapon.
1183 */
1184 activate_page(page);
044d66c1
HD
1185out:
1186 pte_unmap_unlock(pte, ptl);
85d9fc89 1187out_nolock:
9e16b7fb
HD
1188 if (page != swapcache) {
1189 unlock_page(page);
1190 put_page(page);
1191 }
044d66c1 1192 return ret;
1da177e4
LT
1193}
1194
1195static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1196 unsigned long addr, unsigned long end,
1197 swp_entry_t entry, struct page *page)
1198{
1da177e4 1199 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1200 pte_t *pte;
8a9f3ccd 1201 int ret = 0;
1da177e4 1202
044d66c1
HD
1203 /*
1204 * We don't actually need pte lock while scanning for swp_pte: since
1205 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1206 * page table while we're scanning; though it could get zapped, and on
1207 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1208 * of unmatched parts which look like swp_pte, so unuse_pte must
1209 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1210 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1211 */
1212 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1213 do {
1214 /*
1215 * swapoff spends a _lot_ of time in this loop!
1216 * Test inline before going to call unuse_pte.
1217 */
179ef71c 1218 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1219 pte_unmap(pte);
1220 ret = unuse_pte(vma, pmd, addr, entry, page);
1221 if (ret)
1222 goto out;
1223 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1224 }
1225 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1226 pte_unmap(pte - 1);
1227out:
8a9f3ccd 1228 return ret;
1da177e4
LT
1229}
1230
1231static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1232 unsigned long addr, unsigned long end,
1233 swp_entry_t entry, struct page *page)
1234{
1235 pmd_t *pmd;
1236 unsigned long next;
8a9f3ccd 1237 int ret;
1da177e4
LT
1238
1239 pmd = pmd_offset(pud, addr);
1240 do {
1241 next = pmd_addr_end(addr, end);
1a5a9906 1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1243 continue;
8a9f3ccd
BS
1244 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1245 if (ret)
1246 return ret;
1da177e4
LT
1247 } while (pmd++, addr = next, addr != end);
1248 return 0;
1249}
1250
1251static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1252 unsigned long addr, unsigned long end,
1253 swp_entry_t entry, struct page *page)
1254{
1255 pud_t *pud;
1256 unsigned long next;
8a9f3ccd 1257 int ret;
1da177e4
LT
1258
1259 pud = pud_offset(pgd, addr);
1260 do {
1261 next = pud_addr_end(addr, end);
1262 if (pud_none_or_clear_bad(pud))
1263 continue;
8a9f3ccd
BS
1264 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1265 if (ret)
1266 return ret;
1da177e4
LT
1267 } while (pud++, addr = next, addr != end);
1268 return 0;
1269}
1270
1271static int unuse_vma(struct vm_area_struct *vma,
1272 swp_entry_t entry, struct page *page)
1273{
1274 pgd_t *pgd;
1275 unsigned long addr, end, next;
8a9f3ccd 1276 int ret;
1da177e4 1277
3ca7b3c5 1278 if (page_anon_vma(page)) {
1da177e4
LT
1279 addr = page_address_in_vma(page, vma);
1280 if (addr == -EFAULT)
1281 return 0;
1282 else
1283 end = addr + PAGE_SIZE;
1284 } else {
1285 addr = vma->vm_start;
1286 end = vma->vm_end;
1287 }
1288
1289 pgd = pgd_offset(vma->vm_mm, addr);
1290 do {
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(pgd))
1293 continue;
8a9f3ccd
BS
1294 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1295 if (ret)
1296 return ret;
1da177e4
LT
1297 } while (pgd++, addr = next, addr != end);
1298 return 0;
1299}
1300
1301static int unuse_mm(struct mm_struct *mm,
1302 swp_entry_t entry, struct page *page)
1303{
1304 struct vm_area_struct *vma;
8a9f3ccd 1305 int ret = 0;
1da177e4
LT
1306
1307 if (!down_read_trylock(&mm->mmap_sem)) {
1308 /*
7d03431c
FLVC
1309 * Activate page so shrink_inactive_list is unlikely to unmap
1310 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1311 */
c475a8ab 1312 activate_page(page);
1da177e4
LT
1313 unlock_page(page);
1314 down_read(&mm->mmap_sem);
1315 lock_page(page);
1316 }
1da177e4 1317 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1318 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1319 break;
1320 }
1da177e4 1321 up_read(&mm->mmap_sem);
8a9f3ccd 1322 return (ret < 0)? ret: 0;
1da177e4
LT
1323}
1324
1325/*
38b5faf4
DM
1326 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1327 * from current position to next entry still in use.
1da177e4
LT
1328 * Recycle to start on reaching the end, returning 0 when empty.
1329 */
6eb396dc 1330static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1331 unsigned int prev, bool frontswap)
1da177e4 1332{
6eb396dc
HD
1333 unsigned int max = si->max;
1334 unsigned int i = prev;
8d69aaee 1335 unsigned char count;
1da177e4
LT
1336
1337 /*
5d337b91 1338 * No need for swap_lock here: we're just looking
1da177e4
LT
1339 * for whether an entry is in use, not modifying it; false
1340 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1341 * allocations from this area (while holding swap_lock).
1da177e4
LT
1342 */
1343 for (;;) {
1344 if (++i >= max) {
1345 if (!prev) {
1346 i = 0;
1347 break;
1348 }
1349 /*
1350 * No entries in use at top of swap_map,
1351 * loop back to start and recheck there.
1352 */
1353 max = prev + 1;
1354 prev = 0;
1355 i = 1;
1356 }
38b5faf4
DM
1357 if (frontswap) {
1358 if (frontswap_test(si, i))
1359 break;
1360 else
1361 continue;
1362 }
4db0c3c2 1363 count = READ_ONCE(si->swap_map[i]);
355cfa73 1364 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1365 break;
1366 }
1367 return i;
1368}
1369
1370/*
1371 * We completely avoid races by reading each swap page in advance,
1372 * and then search for the process using it. All the necessary
1373 * page table adjustments can then be made atomically.
38b5faf4
DM
1374 *
1375 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1376 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1377 */
38b5faf4
DM
1378int try_to_unuse(unsigned int type, bool frontswap,
1379 unsigned long pages_to_unuse)
1da177e4 1380{
efa90a98 1381 struct swap_info_struct *si = swap_info[type];
1da177e4 1382 struct mm_struct *start_mm;
edfe23da
SL
1383 volatile unsigned char *swap_map; /* swap_map is accessed without
1384 * locking. Mark it as volatile
1385 * to prevent compiler doing
1386 * something odd.
1387 */
8d69aaee 1388 unsigned char swcount;
1da177e4
LT
1389 struct page *page;
1390 swp_entry_t entry;
6eb396dc 1391 unsigned int i = 0;
1da177e4 1392 int retval = 0;
1da177e4
LT
1393
1394 /*
1395 * When searching mms for an entry, a good strategy is to
1396 * start at the first mm we freed the previous entry from
1397 * (though actually we don't notice whether we or coincidence
1398 * freed the entry). Initialize this start_mm with a hold.
1399 *
1400 * A simpler strategy would be to start at the last mm we
1401 * freed the previous entry from; but that would take less
1402 * advantage of mmlist ordering, which clusters forked mms
1403 * together, child after parent. If we race with dup_mmap(), we
1404 * prefer to resolve parent before child, lest we miss entries
1405 * duplicated after we scanned child: using last mm would invert
570a335b 1406 * that.
1da177e4
LT
1407 */
1408 start_mm = &init_mm;
1409 atomic_inc(&init_mm.mm_users);
1410
1411 /*
1412 * Keep on scanning until all entries have gone. Usually,
1413 * one pass through swap_map is enough, but not necessarily:
1414 * there are races when an instance of an entry might be missed.
1415 */
38b5faf4 1416 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1417 if (signal_pending(current)) {
1418 retval = -EINTR;
1419 break;
1420 }
1421
886bb7e9 1422 /*
1da177e4
LT
1423 * Get a page for the entry, using the existing swap
1424 * cache page if there is one. Otherwise, get a clean
886bb7e9 1425 * page and read the swap into it.
1da177e4
LT
1426 */
1427 swap_map = &si->swap_map[i];
1428 entry = swp_entry(type, i);
02098fea
HD
1429 page = read_swap_cache_async(entry,
1430 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1431 if (!page) {
1432 /*
1433 * Either swap_duplicate() failed because entry
1434 * has been freed independently, and will not be
1435 * reused since sys_swapoff() already disabled
1436 * allocation from here, or alloc_page() failed.
1437 */
edfe23da
SL
1438 swcount = *swap_map;
1439 /*
1440 * We don't hold lock here, so the swap entry could be
1441 * SWAP_MAP_BAD (when the cluster is discarding).
1442 * Instead of fail out, We can just skip the swap
1443 * entry because swapoff will wait for discarding
1444 * finish anyway.
1445 */
1446 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1447 continue;
1448 retval = -ENOMEM;
1449 break;
1450 }
1451
1452 /*
1453 * Don't hold on to start_mm if it looks like exiting.
1454 */
1455 if (atomic_read(&start_mm->mm_users) == 1) {
1456 mmput(start_mm);
1457 start_mm = &init_mm;
1458 atomic_inc(&init_mm.mm_users);
1459 }
1460
1461 /*
1462 * Wait for and lock page. When do_swap_page races with
1463 * try_to_unuse, do_swap_page can handle the fault much
1464 * faster than try_to_unuse can locate the entry. This
1465 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1466 * defer to do_swap_page in such a case - in some tests,
1467 * do_swap_page and try_to_unuse repeatedly compete.
1468 */
1469 wait_on_page_locked(page);
1470 wait_on_page_writeback(page);
1471 lock_page(page);
1472 wait_on_page_writeback(page);
1473
1474 /*
1475 * Remove all references to entry.
1da177e4 1476 */
1da177e4 1477 swcount = *swap_map;
aaa46865
HD
1478 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1479 retval = shmem_unuse(entry, page);
1480 /* page has already been unlocked and released */
1481 if (retval < 0)
1482 break;
1483 continue;
1da177e4 1484 }
aaa46865
HD
1485 if (swap_count(swcount) && start_mm != &init_mm)
1486 retval = unuse_mm(start_mm, entry, page);
1487
355cfa73 1488 if (swap_count(*swap_map)) {
1da177e4
LT
1489 int set_start_mm = (*swap_map >= swcount);
1490 struct list_head *p = &start_mm->mmlist;
1491 struct mm_struct *new_start_mm = start_mm;
1492 struct mm_struct *prev_mm = start_mm;
1493 struct mm_struct *mm;
1494
1495 atomic_inc(&new_start_mm->mm_users);
1496 atomic_inc(&prev_mm->mm_users);
1497 spin_lock(&mmlist_lock);
aaa46865 1498 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1499 (p = p->next) != &start_mm->mmlist) {
1500 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1501 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1502 continue;
1da177e4
LT
1503 spin_unlock(&mmlist_lock);
1504 mmput(prev_mm);
1505 prev_mm = mm;
1506
1507 cond_resched();
1508
1509 swcount = *swap_map;
355cfa73 1510 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1511 ;
aaa46865 1512 else if (mm == &init_mm)
1da177e4 1513 set_start_mm = 1;
aaa46865 1514 else
1da177e4 1515 retval = unuse_mm(mm, entry, page);
355cfa73 1516
32c5fc10 1517 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1518 mmput(new_start_mm);
1519 atomic_inc(&mm->mm_users);
1520 new_start_mm = mm;
1521 set_start_mm = 0;
1522 }
1523 spin_lock(&mmlist_lock);
1524 }
1525 spin_unlock(&mmlist_lock);
1526 mmput(prev_mm);
1527 mmput(start_mm);
1528 start_mm = new_start_mm;
1529 }
1530 if (retval) {
1531 unlock_page(page);
1532 page_cache_release(page);
1533 break;
1534 }
1535
1da177e4
LT
1536 /*
1537 * If a reference remains (rare), we would like to leave
1538 * the page in the swap cache; but try_to_unmap could
1539 * then re-duplicate the entry once we drop page lock,
1540 * so we might loop indefinitely; also, that page could
1541 * not be swapped out to other storage meanwhile. So:
1542 * delete from cache even if there's another reference,
1543 * after ensuring that the data has been saved to disk -
1544 * since if the reference remains (rarer), it will be
1545 * read from disk into another page. Splitting into two
1546 * pages would be incorrect if swap supported "shared
1547 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1548 *
1549 * Given how unuse_vma() targets one particular offset
1550 * in an anon_vma, once the anon_vma has been determined,
1551 * this splitting happens to be just what is needed to
1552 * handle where KSM pages have been swapped out: re-reading
1553 * is unnecessarily slow, but we can fix that later on.
1da177e4 1554 */
355cfa73
KH
1555 if (swap_count(*swap_map) &&
1556 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1557 struct writeback_control wbc = {
1558 .sync_mode = WB_SYNC_NONE,
1559 };
1560
1561 swap_writepage(page, &wbc);
1562 lock_page(page);
1563 wait_on_page_writeback(page);
1564 }
68bdc8d6
HD
1565
1566 /*
1567 * It is conceivable that a racing task removed this page from
1568 * swap cache just before we acquired the page lock at the top,
1569 * or while we dropped it in unuse_mm(). The page might even
1570 * be back in swap cache on another swap area: that we must not
1571 * delete, since it may not have been written out to swap yet.
1572 */
1573 if (PageSwapCache(page) &&
1574 likely(page_private(page) == entry.val))
2e0e26c7 1575 delete_from_swap_cache(page);
1da177e4
LT
1576
1577 /*
1578 * So we could skip searching mms once swap count went
1579 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1580 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1581 */
1582 SetPageDirty(page);
1583 unlock_page(page);
1584 page_cache_release(page);
1585
1586 /*
1587 * Make sure that we aren't completely killing
1588 * interactive performance.
1589 */
1590 cond_resched();
38b5faf4
DM
1591 if (frontswap && pages_to_unuse > 0) {
1592 if (!--pages_to_unuse)
1593 break;
1594 }
1da177e4
LT
1595 }
1596
1597 mmput(start_mm);
1da177e4
LT
1598 return retval;
1599}
1600
1601/*
5d337b91
HD
1602 * After a successful try_to_unuse, if no swap is now in use, we know
1603 * we can empty the mmlist. swap_lock must be held on entry and exit.
1604 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1605 * added to the mmlist just after page_duplicate - before would be racy.
1606 */
1607static void drain_mmlist(void)
1608{
1609 struct list_head *p, *next;
efa90a98 1610 unsigned int type;
1da177e4 1611
efa90a98
HD
1612 for (type = 0; type < nr_swapfiles; type++)
1613 if (swap_info[type]->inuse_pages)
1da177e4
LT
1614 return;
1615 spin_lock(&mmlist_lock);
1616 list_for_each_safe(p, next, &init_mm.mmlist)
1617 list_del_init(p);
1618 spin_unlock(&mmlist_lock);
1619}
1620
1621/*
1622 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1623 * corresponds to page offset for the specified swap entry.
1624 * Note that the type of this function is sector_t, but it returns page offset
1625 * into the bdev, not sector offset.
1da177e4 1626 */
d4906e1a 1627static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1628{
f29ad6a9
HD
1629 struct swap_info_struct *sis;
1630 struct swap_extent *start_se;
1631 struct swap_extent *se;
1632 pgoff_t offset;
1633
efa90a98 1634 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1635 *bdev = sis->bdev;
1636
1637 offset = swp_offset(entry);
1638 start_se = sis->curr_swap_extent;
1639 se = start_se;
1da177e4
LT
1640
1641 for ( ; ; ) {
1642 struct list_head *lh;
1643
1644 if (se->start_page <= offset &&
1645 offset < (se->start_page + se->nr_pages)) {
1646 return se->start_block + (offset - se->start_page);
1647 }
11d31886 1648 lh = se->list.next;
1da177e4
LT
1649 se = list_entry(lh, struct swap_extent, list);
1650 sis->curr_swap_extent = se;
1651 BUG_ON(se == start_se); /* It *must* be present */
1652 }
1653}
1654
d4906e1a
LS
1655/*
1656 * Returns the page offset into bdev for the specified page's swap entry.
1657 */
1658sector_t map_swap_page(struct page *page, struct block_device **bdev)
1659{
1660 swp_entry_t entry;
1661 entry.val = page_private(page);
1662 return map_swap_entry(entry, bdev);
1663}
1664
1da177e4
LT
1665/*
1666 * Free all of a swapdev's extent information
1667 */
1668static void destroy_swap_extents(struct swap_info_struct *sis)
1669{
9625a5f2 1670 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1671 struct swap_extent *se;
1672
9625a5f2 1673 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1674 struct swap_extent, list);
1675 list_del(&se->list);
1676 kfree(se);
1677 }
62c230bc
MG
1678
1679 if (sis->flags & SWP_FILE) {
1680 struct file *swap_file = sis->swap_file;
1681 struct address_space *mapping = swap_file->f_mapping;
1682
1683 sis->flags &= ~SWP_FILE;
1684 mapping->a_ops->swap_deactivate(swap_file);
1685 }
1da177e4
LT
1686}
1687
1688/*
1689 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1690 * extent list. The extent list is kept sorted in page order.
1da177e4 1691 *
11d31886 1692 * This function rather assumes that it is called in ascending page order.
1da177e4 1693 */
a509bc1a 1694int
1da177e4
LT
1695add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1696 unsigned long nr_pages, sector_t start_block)
1697{
1698 struct swap_extent *se;
1699 struct swap_extent *new_se;
1700 struct list_head *lh;
1701
9625a5f2
HD
1702 if (start_page == 0) {
1703 se = &sis->first_swap_extent;
1704 sis->curr_swap_extent = se;
1705 se->start_page = 0;
1706 se->nr_pages = nr_pages;
1707 se->start_block = start_block;
1708 return 1;
1709 } else {
1710 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1711 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1712 BUG_ON(se->start_page + se->nr_pages != start_page);
1713 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1714 /* Merge it */
1715 se->nr_pages += nr_pages;
1716 return 0;
1717 }
1da177e4
LT
1718 }
1719
1720 /*
1721 * No merge. Insert a new extent, preserving ordering.
1722 */
1723 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1724 if (new_se == NULL)
1725 return -ENOMEM;
1726 new_se->start_page = start_page;
1727 new_se->nr_pages = nr_pages;
1728 new_se->start_block = start_block;
1729
9625a5f2 1730 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1731 return 1;
1da177e4
LT
1732}
1733
1734/*
1735 * A `swap extent' is a simple thing which maps a contiguous range of pages
1736 * onto a contiguous range of disk blocks. An ordered list of swap extents
1737 * is built at swapon time and is then used at swap_writepage/swap_readpage
1738 * time for locating where on disk a page belongs.
1739 *
1740 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1741 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1742 * swap files identically.
1743 *
1744 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1745 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1746 * swapfiles are handled *identically* after swapon time.
1747 *
1748 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1749 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1750 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1751 * requirements, they are simply tossed out - we will never use those blocks
1752 * for swapping.
1753 *
b0d9bcd4 1754 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1755 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1756 * which will scribble on the fs.
1757 *
1758 * The amount of disk space which a single swap extent represents varies.
1759 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1760 * extents in the list. To avoid much list walking, we cache the previous
1761 * search location in `curr_swap_extent', and start new searches from there.
1762 * This is extremely effective. The average number of iterations in
1763 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1764 */
53092a74 1765static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1766{
62c230bc
MG
1767 struct file *swap_file = sis->swap_file;
1768 struct address_space *mapping = swap_file->f_mapping;
1769 struct inode *inode = mapping->host;
1da177e4
LT
1770 int ret;
1771
1da177e4
LT
1772 if (S_ISBLK(inode->i_mode)) {
1773 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1774 *span = sis->pages;
a509bc1a 1775 return ret;
1da177e4
LT
1776 }
1777
62c230bc 1778 if (mapping->a_ops->swap_activate) {
a509bc1a 1779 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1780 if (!ret) {
1781 sis->flags |= SWP_FILE;
1782 ret = add_swap_extent(sis, 0, sis->max, 0);
1783 *span = sis->pages;
1784 }
a509bc1a 1785 return ret;
62c230bc
MG
1786 }
1787
a509bc1a 1788 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1789}
1790
cf0cac0a 1791static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1792 unsigned char *swap_map,
1793 struct swap_cluster_info *cluster_info)
40531542 1794{
40531542
CEB
1795 if (prio >= 0)
1796 p->prio = prio;
1797 else
1798 p->prio = --least_priority;
18ab4d4c
DS
1799 /*
1800 * the plist prio is negated because plist ordering is
1801 * low-to-high, while swap ordering is high-to-low
1802 */
1803 p->list.prio = -p->prio;
1804 p->avail_list.prio = -p->prio;
40531542 1805 p->swap_map = swap_map;
2a8f9449 1806 p->cluster_info = cluster_info;
40531542 1807 p->flags |= SWP_WRITEOK;
ec8acf20 1808 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1809 total_swap_pages += p->pages;
1810
adfab836 1811 assert_spin_locked(&swap_lock);
adfab836 1812 /*
18ab4d4c
DS
1813 * both lists are plists, and thus priority ordered.
1814 * swap_active_head needs to be priority ordered for swapoff(),
1815 * which on removal of any swap_info_struct with an auto-assigned
1816 * (i.e. negative) priority increments the auto-assigned priority
1817 * of any lower-priority swap_info_structs.
1818 * swap_avail_head needs to be priority ordered for get_swap_page(),
1819 * which allocates swap pages from the highest available priority
1820 * swap_info_struct.
adfab836 1821 */
18ab4d4c
DS
1822 plist_add(&p->list, &swap_active_head);
1823 spin_lock(&swap_avail_lock);
1824 plist_add(&p->avail_list, &swap_avail_head);
1825 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1826}
1827
1828static void enable_swap_info(struct swap_info_struct *p, int prio,
1829 unsigned char *swap_map,
2a8f9449 1830 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1831 unsigned long *frontswap_map)
1832{
4f89849d 1833 frontswap_init(p->type, frontswap_map);
cf0cac0a 1834 spin_lock(&swap_lock);
ec8acf20 1835 spin_lock(&p->lock);
2a8f9449 1836 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1837 spin_unlock(&p->lock);
cf0cac0a
CEB
1838 spin_unlock(&swap_lock);
1839}
1840
1841static void reinsert_swap_info(struct swap_info_struct *p)
1842{
1843 spin_lock(&swap_lock);
ec8acf20 1844 spin_lock(&p->lock);
2a8f9449 1845 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1846 spin_unlock(&p->lock);
40531542
CEB
1847 spin_unlock(&swap_lock);
1848}
1849
c4ea37c2 1850SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1851{
73c34b6a 1852 struct swap_info_struct *p = NULL;
8d69aaee 1853 unsigned char *swap_map;
2a8f9449 1854 struct swap_cluster_info *cluster_info;
4f89849d 1855 unsigned long *frontswap_map;
1da177e4
LT
1856 struct file *swap_file, *victim;
1857 struct address_space *mapping;
1858 struct inode *inode;
91a27b2a 1859 struct filename *pathname;
adfab836 1860 int err, found = 0;
5b808a23 1861 unsigned int old_block_size;
886bb7e9 1862
1da177e4
LT
1863 if (!capable(CAP_SYS_ADMIN))
1864 return -EPERM;
1865
191c5424
AV
1866 BUG_ON(!current->mm);
1867
1da177e4 1868 pathname = getname(specialfile);
1da177e4 1869 if (IS_ERR(pathname))
f58b59c1 1870 return PTR_ERR(pathname);
1da177e4 1871
669abf4e 1872 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1873 err = PTR_ERR(victim);
1874 if (IS_ERR(victim))
1875 goto out;
1876
1877 mapping = victim->f_mapping;
5d337b91 1878 spin_lock(&swap_lock);
18ab4d4c 1879 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1880 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1881 if (p->swap_file->f_mapping == mapping) {
1882 found = 1;
1da177e4 1883 break;
adfab836 1884 }
1da177e4 1885 }
1da177e4 1886 }
adfab836 1887 if (!found) {
1da177e4 1888 err = -EINVAL;
5d337b91 1889 spin_unlock(&swap_lock);
1da177e4
LT
1890 goto out_dput;
1891 }
191c5424 1892 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1893 vm_unacct_memory(p->pages);
1894 else {
1895 err = -ENOMEM;
5d337b91 1896 spin_unlock(&swap_lock);
1da177e4
LT
1897 goto out_dput;
1898 }
18ab4d4c
DS
1899 spin_lock(&swap_avail_lock);
1900 plist_del(&p->avail_list, &swap_avail_head);
1901 spin_unlock(&swap_avail_lock);
ec8acf20 1902 spin_lock(&p->lock);
78ecba08 1903 if (p->prio < 0) {
adfab836
DS
1904 struct swap_info_struct *si = p;
1905
18ab4d4c 1906 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1907 si->prio++;
18ab4d4c
DS
1908 si->list.prio--;
1909 si->avail_list.prio--;
adfab836 1910 }
78ecba08
HD
1911 least_priority++;
1912 }
18ab4d4c 1913 plist_del(&p->list, &swap_active_head);
ec8acf20 1914 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1915 total_swap_pages -= p->pages;
1916 p->flags &= ~SWP_WRITEOK;
ec8acf20 1917 spin_unlock(&p->lock);
5d337b91 1918 spin_unlock(&swap_lock);
fb4f88dc 1919
e1e12d2f 1920 set_current_oom_origin();
adfab836 1921 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1922 clear_current_oom_origin();
1da177e4 1923
1da177e4
LT
1924 if (err) {
1925 /* re-insert swap space back into swap_list */
cf0cac0a 1926 reinsert_swap_info(p);
1da177e4
LT
1927 goto out_dput;
1928 }
52b7efdb 1929
815c2c54
SL
1930 flush_work(&p->discard_work);
1931
5d337b91 1932 destroy_swap_extents(p);
570a335b
HD
1933 if (p->flags & SWP_CONTINUED)
1934 free_swap_count_continuations(p);
1935
fc0abb14 1936 mutex_lock(&swapon_mutex);
5d337b91 1937 spin_lock(&swap_lock);
ec8acf20 1938 spin_lock(&p->lock);
5d337b91
HD
1939 drain_mmlist();
1940
52b7efdb 1941 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1942 p->highest_bit = 0; /* cuts scans short */
1943 while (p->flags >= SWP_SCANNING) {
ec8acf20 1944 spin_unlock(&p->lock);
5d337b91 1945 spin_unlock(&swap_lock);
13e4b57f 1946 schedule_timeout_uninterruptible(1);
5d337b91 1947 spin_lock(&swap_lock);
ec8acf20 1948 spin_lock(&p->lock);
52b7efdb 1949 }
52b7efdb 1950
1da177e4 1951 swap_file = p->swap_file;
5b808a23 1952 old_block_size = p->old_block_size;
1da177e4
LT
1953 p->swap_file = NULL;
1954 p->max = 0;
1955 swap_map = p->swap_map;
1956 p->swap_map = NULL;
2a8f9449
SL
1957 cluster_info = p->cluster_info;
1958 p->cluster_info = NULL;
4f89849d 1959 frontswap_map = frontswap_map_get(p);
ec8acf20 1960 spin_unlock(&p->lock);
5d337b91 1961 spin_unlock(&swap_lock);
adfab836 1962 frontswap_invalidate_area(p->type);
58e97ba6 1963 frontswap_map_set(p, NULL);
fc0abb14 1964 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1965 free_percpu(p->percpu_cluster);
1966 p->percpu_cluster = NULL;
1da177e4 1967 vfree(swap_map);
2a8f9449 1968 vfree(cluster_info);
4f89849d 1969 vfree(frontswap_map);
2de1a7e4 1970 /* Destroy swap account information */
adfab836 1971 swap_cgroup_swapoff(p->type);
27a7faa0 1972
1da177e4
LT
1973 inode = mapping->host;
1974 if (S_ISBLK(inode->i_mode)) {
1975 struct block_device *bdev = I_BDEV(inode);
5b808a23 1976 set_blocksize(bdev, old_block_size);
e525fd89 1977 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1978 } else {
1b1dcc1b 1979 mutex_lock(&inode->i_mutex);
1da177e4 1980 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1981 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1982 }
1983 filp_close(swap_file, NULL);
f893ab41
WY
1984
1985 /*
1986 * Clear the SWP_USED flag after all resources are freed so that swapon
1987 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1988 * not hold p->lock after we cleared its SWP_WRITEOK.
1989 */
1990 spin_lock(&swap_lock);
1991 p->flags = 0;
1992 spin_unlock(&swap_lock);
1993
1da177e4 1994 err = 0;
66d7dd51
KS
1995 atomic_inc(&proc_poll_event);
1996 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1997
1998out_dput:
1999 filp_close(victim, NULL);
2000out:
f58b59c1 2001 putname(pathname);
1da177e4
LT
2002 return err;
2003}
2004
2005#ifdef CONFIG_PROC_FS
66d7dd51
KS
2006static unsigned swaps_poll(struct file *file, poll_table *wait)
2007{
f1514638 2008 struct seq_file *seq = file->private_data;
66d7dd51
KS
2009
2010 poll_wait(file, &proc_poll_wait, wait);
2011
f1514638
KS
2012 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2013 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2014 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2015 }
2016
2017 return POLLIN | POLLRDNORM;
2018}
2019
1da177e4
LT
2020/* iterator */
2021static void *swap_start(struct seq_file *swap, loff_t *pos)
2022{
efa90a98
HD
2023 struct swap_info_struct *si;
2024 int type;
1da177e4
LT
2025 loff_t l = *pos;
2026
fc0abb14 2027 mutex_lock(&swapon_mutex);
1da177e4 2028
881e4aab
SS
2029 if (!l)
2030 return SEQ_START_TOKEN;
2031
efa90a98
HD
2032 for (type = 0; type < nr_swapfiles; type++) {
2033 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2034 si = swap_info[type];
2035 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2036 continue;
881e4aab 2037 if (!--l)
efa90a98 2038 return si;
1da177e4
LT
2039 }
2040
2041 return NULL;
2042}
2043
2044static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2045{
efa90a98
HD
2046 struct swap_info_struct *si = v;
2047 int type;
1da177e4 2048
881e4aab 2049 if (v == SEQ_START_TOKEN)
efa90a98
HD
2050 type = 0;
2051 else
2052 type = si->type + 1;
881e4aab 2053
efa90a98
HD
2054 for (; type < nr_swapfiles; type++) {
2055 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2056 si = swap_info[type];
2057 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2058 continue;
2059 ++*pos;
efa90a98 2060 return si;
1da177e4
LT
2061 }
2062
2063 return NULL;
2064}
2065
2066static void swap_stop(struct seq_file *swap, void *v)
2067{
fc0abb14 2068 mutex_unlock(&swapon_mutex);
1da177e4
LT
2069}
2070
2071static int swap_show(struct seq_file *swap, void *v)
2072{
efa90a98 2073 struct swap_info_struct *si = v;
1da177e4
LT
2074 struct file *file;
2075 int len;
2076
efa90a98 2077 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2078 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2079 return 0;
2080 }
1da177e4 2081
efa90a98 2082 file = si->swap_file;
2726d566 2083 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2084 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2085 len < 40 ? 40 - len : 1, " ",
496ad9aa 2086 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2087 "partition" : "file\t",
efa90a98
HD
2088 si->pages << (PAGE_SHIFT - 10),
2089 si->inuse_pages << (PAGE_SHIFT - 10),
2090 si->prio);
1da177e4
LT
2091 return 0;
2092}
2093
15ad7cdc 2094static const struct seq_operations swaps_op = {
1da177e4
LT
2095 .start = swap_start,
2096 .next = swap_next,
2097 .stop = swap_stop,
2098 .show = swap_show
2099};
2100
2101static int swaps_open(struct inode *inode, struct file *file)
2102{
f1514638 2103 struct seq_file *seq;
66d7dd51
KS
2104 int ret;
2105
66d7dd51 2106 ret = seq_open(file, &swaps_op);
f1514638 2107 if (ret)
66d7dd51 2108 return ret;
66d7dd51 2109
f1514638
KS
2110 seq = file->private_data;
2111 seq->poll_event = atomic_read(&proc_poll_event);
2112 return 0;
1da177e4
LT
2113}
2114
15ad7cdc 2115static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2116 .open = swaps_open,
2117 .read = seq_read,
2118 .llseek = seq_lseek,
2119 .release = seq_release,
66d7dd51 2120 .poll = swaps_poll,
1da177e4
LT
2121};
2122
2123static int __init procswaps_init(void)
2124{
3d71f86f 2125 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2126 return 0;
2127}
2128__initcall(procswaps_init);
2129#endif /* CONFIG_PROC_FS */
2130
1796316a
JB
2131#ifdef MAX_SWAPFILES_CHECK
2132static int __init max_swapfiles_check(void)
2133{
2134 MAX_SWAPFILES_CHECK();
2135 return 0;
2136}
2137late_initcall(max_swapfiles_check);
2138#endif
2139
53cbb243 2140static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2141{
73c34b6a 2142 struct swap_info_struct *p;
1da177e4 2143 unsigned int type;
efa90a98
HD
2144
2145 p = kzalloc(sizeof(*p), GFP_KERNEL);
2146 if (!p)
53cbb243 2147 return ERR_PTR(-ENOMEM);
efa90a98 2148
5d337b91 2149 spin_lock(&swap_lock);
efa90a98
HD
2150 for (type = 0; type < nr_swapfiles; type++) {
2151 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2152 break;
efa90a98 2153 }
0697212a 2154 if (type >= MAX_SWAPFILES) {
5d337b91 2155 spin_unlock(&swap_lock);
efa90a98 2156 kfree(p);
730c0581 2157 return ERR_PTR(-EPERM);
1da177e4 2158 }
efa90a98
HD
2159 if (type >= nr_swapfiles) {
2160 p->type = type;
2161 swap_info[type] = p;
2162 /*
2163 * Write swap_info[type] before nr_swapfiles, in case a
2164 * racing procfs swap_start() or swap_next() is reading them.
2165 * (We never shrink nr_swapfiles, we never free this entry.)
2166 */
2167 smp_wmb();
2168 nr_swapfiles++;
2169 } else {
2170 kfree(p);
2171 p = swap_info[type];
2172 /*
2173 * Do not memset this entry: a racing procfs swap_next()
2174 * would be relying on p->type to remain valid.
2175 */
2176 }
9625a5f2 2177 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2178 plist_node_init(&p->list, 0);
2179 plist_node_init(&p->avail_list, 0);
1da177e4 2180 p->flags = SWP_USED;
5d337b91 2181 spin_unlock(&swap_lock);
ec8acf20 2182 spin_lock_init(&p->lock);
efa90a98 2183
53cbb243 2184 return p;
53cbb243
CEB
2185}
2186
4d0e1e10
CEB
2187static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2188{
2189 int error;
2190
2191 if (S_ISBLK(inode->i_mode)) {
2192 p->bdev = bdgrab(I_BDEV(inode));
2193 error = blkdev_get(p->bdev,
6f179af8 2194 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2195 if (error < 0) {
2196 p->bdev = NULL;
6f179af8 2197 return error;
4d0e1e10
CEB
2198 }
2199 p->old_block_size = block_size(p->bdev);
2200 error = set_blocksize(p->bdev, PAGE_SIZE);
2201 if (error < 0)
87ade72a 2202 return error;
4d0e1e10
CEB
2203 p->flags |= SWP_BLKDEV;
2204 } else if (S_ISREG(inode->i_mode)) {
2205 p->bdev = inode->i_sb->s_bdev;
2206 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2207 if (IS_SWAPFILE(inode))
2208 return -EBUSY;
2209 } else
2210 return -EINVAL;
4d0e1e10
CEB
2211
2212 return 0;
4d0e1e10
CEB
2213}
2214
ca8bd38b
CEB
2215static unsigned long read_swap_header(struct swap_info_struct *p,
2216 union swap_header *swap_header,
2217 struct inode *inode)
2218{
2219 int i;
2220 unsigned long maxpages;
2221 unsigned long swapfilepages;
d6bbbd29 2222 unsigned long last_page;
ca8bd38b
CEB
2223
2224 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2225 pr_err("Unable to find swap-space signature\n");
38719025 2226 return 0;
ca8bd38b
CEB
2227 }
2228
2229 /* swap partition endianess hack... */
2230 if (swab32(swap_header->info.version) == 1) {
2231 swab32s(&swap_header->info.version);
2232 swab32s(&swap_header->info.last_page);
2233 swab32s(&swap_header->info.nr_badpages);
2234 for (i = 0; i < swap_header->info.nr_badpages; i++)
2235 swab32s(&swap_header->info.badpages[i]);
2236 }
2237 /* Check the swap header's sub-version */
2238 if (swap_header->info.version != 1) {
465c47fd
AM
2239 pr_warn("Unable to handle swap header version %d\n",
2240 swap_header->info.version);
38719025 2241 return 0;
ca8bd38b
CEB
2242 }
2243
2244 p->lowest_bit = 1;
2245 p->cluster_next = 1;
2246 p->cluster_nr = 0;
2247
2248 /*
2249 * Find out how many pages are allowed for a single swap
9b15b817 2250 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2251 * of bits for the swap offset in the swp_entry_t type, and
2252 * 2) the number of bits in the swap pte as defined by the
9b15b817 2253 * different architectures. In order to find the
a2c16d6c 2254 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2255 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2256 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2257 * offset is extracted. This will mask all the bits from
2258 * the initial ~0UL mask that can't be encoded in either
2259 * the swp_entry_t or the architecture definition of a
9b15b817 2260 * swap pte.
ca8bd38b
CEB
2261 */
2262 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2263 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2264 last_page = swap_header->info.last_page;
2265 if (last_page > maxpages) {
465c47fd 2266 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2267 maxpages << (PAGE_SHIFT - 10),
2268 last_page << (PAGE_SHIFT - 10));
2269 }
2270 if (maxpages > last_page) {
2271 maxpages = last_page + 1;
ca8bd38b
CEB
2272 /* p->max is an unsigned int: don't overflow it */
2273 if ((unsigned int)maxpages == 0)
2274 maxpages = UINT_MAX;
2275 }
2276 p->highest_bit = maxpages - 1;
2277
2278 if (!maxpages)
38719025 2279 return 0;
ca8bd38b
CEB
2280 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2281 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2282 pr_warn("Swap area shorter than signature indicates\n");
38719025 2283 return 0;
ca8bd38b
CEB
2284 }
2285 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2286 return 0;
ca8bd38b 2287 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2288 return 0;
ca8bd38b
CEB
2289
2290 return maxpages;
ca8bd38b
CEB
2291}
2292
915d4d7b
CEB
2293static int setup_swap_map_and_extents(struct swap_info_struct *p,
2294 union swap_header *swap_header,
2295 unsigned char *swap_map,
2a8f9449 2296 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2297 unsigned long maxpages,
2298 sector_t *span)
2299{
2300 int i;
915d4d7b
CEB
2301 unsigned int nr_good_pages;
2302 int nr_extents;
2a8f9449
SL
2303 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2304 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2305
2306 nr_good_pages = maxpages - 1; /* omit header page */
2307
2a8f9449
SL
2308 cluster_set_null(&p->free_cluster_head);
2309 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2310 cluster_set_null(&p->discard_cluster_head);
2311 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2312
915d4d7b
CEB
2313 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2314 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2315 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2316 return -EINVAL;
915d4d7b
CEB
2317 if (page_nr < maxpages) {
2318 swap_map[page_nr] = SWAP_MAP_BAD;
2319 nr_good_pages--;
2a8f9449
SL
2320 /*
2321 * Haven't marked the cluster free yet, no list
2322 * operation involved
2323 */
2324 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2325 }
2326 }
2327
2a8f9449
SL
2328 /* Haven't marked the cluster free yet, no list operation involved */
2329 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2330 inc_cluster_info_page(p, cluster_info, i);
2331
915d4d7b
CEB
2332 if (nr_good_pages) {
2333 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2334 /*
2335 * Not mark the cluster free yet, no list
2336 * operation involved
2337 */
2338 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2339 p->max = maxpages;
2340 p->pages = nr_good_pages;
2341 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2342 if (nr_extents < 0)
2343 return nr_extents;
915d4d7b
CEB
2344 nr_good_pages = p->pages;
2345 }
2346 if (!nr_good_pages) {
465c47fd 2347 pr_warn("Empty swap-file\n");
bdb8e3f6 2348 return -EINVAL;
915d4d7b
CEB
2349 }
2350
2a8f9449
SL
2351 if (!cluster_info)
2352 return nr_extents;
2353
2354 for (i = 0; i < nr_clusters; i++) {
2355 if (!cluster_count(&cluster_info[idx])) {
2356 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2357 if (cluster_is_null(&p->free_cluster_head)) {
2358 cluster_set_next_flag(&p->free_cluster_head,
2359 idx, 0);
2360 cluster_set_next_flag(&p->free_cluster_tail,
2361 idx, 0);
2362 } else {
2363 unsigned int tail;
2364
2365 tail = cluster_next(&p->free_cluster_tail);
2366 cluster_set_next(&cluster_info[tail], idx);
2367 cluster_set_next_flag(&p->free_cluster_tail,
2368 idx, 0);
2369 }
2370 }
2371 idx++;
2372 if (idx == nr_clusters)
2373 idx = 0;
2374 }
915d4d7b 2375 return nr_extents;
915d4d7b
CEB
2376}
2377
dcf6b7dd
RA
2378/*
2379 * Helper to sys_swapon determining if a given swap
2380 * backing device queue supports DISCARD operations.
2381 */
2382static bool swap_discardable(struct swap_info_struct *si)
2383{
2384 struct request_queue *q = bdev_get_queue(si->bdev);
2385
2386 if (!q || !blk_queue_discard(q))
2387 return false;
2388
2389 return true;
2390}
2391
53cbb243
CEB
2392SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2393{
2394 struct swap_info_struct *p;
91a27b2a 2395 struct filename *name;
53cbb243
CEB
2396 struct file *swap_file = NULL;
2397 struct address_space *mapping;
40531542 2398 int prio;
53cbb243
CEB
2399 int error;
2400 union swap_header *swap_header;
915d4d7b 2401 int nr_extents;
53cbb243
CEB
2402 sector_t span;
2403 unsigned long maxpages;
53cbb243 2404 unsigned char *swap_map = NULL;
2a8f9449 2405 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2406 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2407 struct page *page = NULL;
2408 struct inode *inode = NULL;
53cbb243 2409
d15cab97
HD
2410 if (swap_flags & ~SWAP_FLAGS_VALID)
2411 return -EINVAL;
2412
53cbb243
CEB
2413 if (!capable(CAP_SYS_ADMIN))
2414 return -EPERM;
2415
2416 p = alloc_swap_info();
2542e513
CEB
2417 if (IS_ERR(p))
2418 return PTR_ERR(p);
53cbb243 2419
815c2c54
SL
2420 INIT_WORK(&p->discard_work, swap_discard_work);
2421
1da177e4 2422 name = getname(specialfile);
1da177e4 2423 if (IS_ERR(name)) {
7de7fb6b 2424 error = PTR_ERR(name);
1da177e4 2425 name = NULL;
bd69010b 2426 goto bad_swap;
1da177e4 2427 }
669abf4e 2428 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2429 if (IS_ERR(swap_file)) {
7de7fb6b 2430 error = PTR_ERR(swap_file);
1da177e4 2431 swap_file = NULL;
bd69010b 2432 goto bad_swap;
1da177e4
LT
2433 }
2434
2435 p->swap_file = swap_file;
2436 mapping = swap_file->f_mapping;
2130781e 2437 inode = mapping->host;
6f179af8 2438
2130781e 2439 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2440 error = claim_swapfile(p, inode);
2441 if (unlikely(error))
1da177e4 2442 goto bad_swap;
1da177e4 2443
1da177e4
LT
2444 /*
2445 * Read the swap header.
2446 */
2447 if (!mapping->a_ops->readpage) {
2448 error = -EINVAL;
2449 goto bad_swap;
2450 }
090d2b18 2451 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2452 if (IS_ERR(page)) {
2453 error = PTR_ERR(page);
2454 goto bad_swap;
2455 }
81e33971 2456 swap_header = kmap(page);
1da177e4 2457
ca8bd38b
CEB
2458 maxpages = read_swap_header(p, swap_header, inode);
2459 if (unlikely(!maxpages)) {
1da177e4
LT
2460 error = -EINVAL;
2461 goto bad_swap;
2462 }
886bb7e9 2463
81e33971 2464 /* OK, set up the swap map and apply the bad block list */
803d0c83 2465 swap_map = vzalloc(maxpages);
81e33971
HD
2466 if (!swap_map) {
2467 error = -ENOMEM;
2468 goto bad_swap;
2469 }
2a8f9449 2470 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2471 int cpu;
2472
2a8f9449
SL
2473 p->flags |= SWP_SOLIDSTATE;
2474 /*
2475 * select a random position to start with to help wear leveling
2476 * SSD
2477 */
2478 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2479
2480 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2481 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2482 if (!cluster_info) {
2483 error = -ENOMEM;
2484 goto bad_swap;
2485 }
ebc2a1a6
SL
2486 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2487 if (!p->percpu_cluster) {
2488 error = -ENOMEM;
2489 goto bad_swap;
2490 }
6f179af8 2491 for_each_possible_cpu(cpu) {
ebc2a1a6 2492 struct percpu_cluster *cluster;
6f179af8 2493 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2494 cluster_set_null(&cluster->index);
2495 }
2a8f9449 2496 }
1da177e4 2497
1421ef3c
CEB
2498 error = swap_cgroup_swapon(p->type, maxpages);
2499 if (error)
2500 goto bad_swap;
2501
915d4d7b 2502 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2503 cluster_info, maxpages, &span);
915d4d7b
CEB
2504 if (unlikely(nr_extents < 0)) {
2505 error = nr_extents;
1da177e4
LT
2506 goto bad_swap;
2507 }
38b5faf4
DM
2508 /* frontswap enabled? set up bit-per-page map for frontswap */
2509 if (frontswap_enabled)
7b57976d 2510 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2511
2a8f9449
SL
2512 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2513 /*
2514 * When discard is enabled for swap with no particular
2515 * policy flagged, we set all swap discard flags here in
2516 * order to sustain backward compatibility with older
2517 * swapon(8) releases.
2518 */
2519 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2520 SWP_PAGE_DISCARD);
dcf6b7dd 2521
2a8f9449
SL
2522 /*
2523 * By flagging sys_swapon, a sysadmin can tell us to
2524 * either do single-time area discards only, or to just
2525 * perform discards for released swap page-clusters.
2526 * Now it's time to adjust the p->flags accordingly.
2527 */
2528 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2529 p->flags &= ~SWP_PAGE_DISCARD;
2530 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2531 p->flags &= ~SWP_AREA_DISCARD;
2532
2533 /* issue a swapon-time discard if it's still required */
2534 if (p->flags & SWP_AREA_DISCARD) {
2535 int err = discard_swap(p);
2536 if (unlikely(err))
2537 pr_err("swapon: discard_swap(%p): %d\n",
2538 p, err);
dcf6b7dd 2539 }
20137a49 2540 }
6a6ba831 2541
fc0abb14 2542 mutex_lock(&swapon_mutex);
40531542 2543 prio = -1;
78ecba08 2544 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2545 prio =
78ecba08 2546 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2547 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2548
465c47fd 2549 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2550 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2551 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2552 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2553 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2554 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2555 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2556 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2557 (frontswap_map) ? "FS" : "");
c69dbfb8 2558
fc0abb14 2559 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2560 atomic_inc(&proc_poll_event);
2561 wake_up_interruptible(&proc_poll_wait);
2562
9b01c350
CEB
2563 if (S_ISREG(inode->i_mode))
2564 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2565 error = 0;
2566 goto out;
2567bad_swap:
ebc2a1a6
SL
2568 free_percpu(p->percpu_cluster);
2569 p->percpu_cluster = NULL;
bd69010b 2570 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2571 set_blocksize(p->bdev, p->old_block_size);
2572 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2573 }
4cd3bb10 2574 destroy_swap_extents(p);
e8e6c2ec 2575 swap_cgroup_swapoff(p->type);
5d337b91 2576 spin_lock(&swap_lock);
1da177e4 2577 p->swap_file = NULL;
1da177e4 2578 p->flags = 0;
5d337b91 2579 spin_unlock(&swap_lock);
1da177e4 2580 vfree(swap_map);
2a8f9449 2581 vfree(cluster_info);
52c50567 2582 if (swap_file) {
2130781e 2583 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2584 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2585 inode = NULL;
2586 }
1da177e4 2587 filp_close(swap_file, NULL);
52c50567 2588 }
1da177e4
LT
2589out:
2590 if (page && !IS_ERR(page)) {
2591 kunmap(page);
2592 page_cache_release(page);
2593 }
2594 if (name)
2595 putname(name);
9b01c350 2596 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2597 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2598 return error;
2599}
2600
2601void si_swapinfo(struct sysinfo *val)
2602{
efa90a98 2603 unsigned int type;
1da177e4
LT
2604 unsigned long nr_to_be_unused = 0;
2605
5d337b91 2606 spin_lock(&swap_lock);
efa90a98
HD
2607 for (type = 0; type < nr_swapfiles; type++) {
2608 struct swap_info_struct *si = swap_info[type];
2609
2610 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2611 nr_to_be_unused += si->inuse_pages;
1da177e4 2612 }
ec8acf20 2613 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2614 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2615 spin_unlock(&swap_lock);
1da177e4
LT
2616}
2617
2618/*
2619 * Verify that a swap entry is valid and increment its swap map count.
2620 *
355cfa73
KH
2621 * Returns error code in following case.
2622 * - success -> 0
2623 * - swp_entry is invalid -> EINVAL
2624 * - swp_entry is migration entry -> EINVAL
2625 * - swap-cache reference is requested but there is already one. -> EEXIST
2626 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2627 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2628 */
8d69aaee 2629static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2630{
73c34b6a 2631 struct swap_info_struct *p;
1da177e4 2632 unsigned long offset, type;
8d69aaee
HD
2633 unsigned char count;
2634 unsigned char has_cache;
253d553b 2635 int err = -EINVAL;
1da177e4 2636
a7420aa5 2637 if (non_swap_entry(entry))
253d553b 2638 goto out;
0697212a 2639
1da177e4
LT
2640 type = swp_type(entry);
2641 if (type >= nr_swapfiles)
2642 goto bad_file;
efa90a98 2643 p = swap_info[type];
1da177e4
LT
2644 offset = swp_offset(entry);
2645
ec8acf20 2646 spin_lock(&p->lock);
355cfa73
KH
2647 if (unlikely(offset >= p->max))
2648 goto unlock_out;
2649
253d553b 2650 count = p->swap_map[offset];
edfe23da
SL
2651
2652 /*
2653 * swapin_readahead() doesn't check if a swap entry is valid, so the
2654 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2655 */
2656 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2657 err = -ENOENT;
2658 goto unlock_out;
2659 }
2660
253d553b
HD
2661 has_cache = count & SWAP_HAS_CACHE;
2662 count &= ~SWAP_HAS_CACHE;
2663 err = 0;
355cfa73 2664
253d553b 2665 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2666
2667 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2668 if (!has_cache && count)
2669 has_cache = SWAP_HAS_CACHE;
2670 else if (has_cache) /* someone else added cache */
2671 err = -EEXIST;
2672 else /* no users remaining */
2673 err = -ENOENT;
355cfa73
KH
2674
2675 } else if (count || has_cache) {
253d553b 2676
570a335b
HD
2677 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2678 count += usage;
2679 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2680 err = -EINVAL;
570a335b
HD
2681 else if (swap_count_continued(p, offset, count))
2682 count = COUNT_CONTINUED;
2683 else
2684 err = -ENOMEM;
355cfa73 2685 } else
253d553b
HD
2686 err = -ENOENT; /* unused swap entry */
2687
2688 p->swap_map[offset] = count | has_cache;
2689
355cfa73 2690unlock_out:
ec8acf20 2691 spin_unlock(&p->lock);
1da177e4 2692out:
253d553b 2693 return err;
1da177e4
LT
2694
2695bad_file:
465c47fd 2696 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2697 goto out;
2698}
253d553b 2699
aaa46865
HD
2700/*
2701 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2702 * (in which case its reference count is never incremented).
2703 */
2704void swap_shmem_alloc(swp_entry_t entry)
2705{
2706 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2707}
2708
355cfa73 2709/*
08259d58
HD
2710 * Increase reference count of swap entry by 1.
2711 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2712 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2713 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2714 * might occur if a page table entry has got corrupted.
355cfa73 2715 */
570a335b 2716int swap_duplicate(swp_entry_t entry)
355cfa73 2717{
570a335b
HD
2718 int err = 0;
2719
2720 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2721 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2722 return err;
355cfa73 2723}
1da177e4 2724
cb4b86ba 2725/*
355cfa73
KH
2726 * @entry: swap entry for which we allocate swap cache.
2727 *
73c34b6a 2728 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2729 * This can return error codes. Returns 0 at success.
2730 * -EBUSY means there is a swap cache.
2731 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2732 */
2733int swapcache_prepare(swp_entry_t entry)
2734{
253d553b 2735 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2736}
2737
f981c595
MG
2738struct swap_info_struct *page_swap_info(struct page *page)
2739{
2740 swp_entry_t swap = { .val = page_private(page) };
2741 BUG_ON(!PageSwapCache(page));
2742 return swap_info[swp_type(swap)];
2743}
2744
2745/*
2746 * out-of-line __page_file_ methods to avoid include hell.
2747 */
2748struct address_space *__page_file_mapping(struct page *page)
2749{
309381fe 2750 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2751 return page_swap_info(page)->swap_file->f_mapping;
2752}
2753EXPORT_SYMBOL_GPL(__page_file_mapping);
2754
2755pgoff_t __page_file_index(struct page *page)
2756{
2757 swp_entry_t swap = { .val = page_private(page) };
309381fe 2758 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2759 return swp_offset(swap);
2760}
2761EXPORT_SYMBOL_GPL(__page_file_index);
2762
570a335b
HD
2763/*
2764 * add_swap_count_continuation - called when a swap count is duplicated
2765 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2766 * page of the original vmalloc'ed swap_map, to hold the continuation count
2767 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2768 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2769 *
2770 * These continuation pages are seldom referenced: the common paths all work
2771 * on the original swap_map, only referring to a continuation page when the
2772 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2773 *
2774 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2775 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2776 * can be called after dropping locks.
2777 */
2778int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2779{
2780 struct swap_info_struct *si;
2781 struct page *head;
2782 struct page *page;
2783 struct page *list_page;
2784 pgoff_t offset;
2785 unsigned char count;
2786
2787 /*
2788 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2789 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2790 */
2791 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2792
2793 si = swap_info_get(entry);
2794 if (!si) {
2795 /*
2796 * An acceptable race has occurred since the failing
2797 * __swap_duplicate(): the swap entry has been freed,
2798 * perhaps even the whole swap_map cleared for swapoff.
2799 */
2800 goto outer;
2801 }
2802
2803 offset = swp_offset(entry);
2804 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2805
2806 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2807 /*
2808 * The higher the swap count, the more likely it is that tasks
2809 * will race to add swap count continuation: we need to avoid
2810 * over-provisioning.
2811 */
2812 goto out;
2813 }
2814
2815 if (!page) {
ec8acf20 2816 spin_unlock(&si->lock);
570a335b
HD
2817 return -ENOMEM;
2818 }
2819
2820 /*
2821 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2822 * no architecture is using highmem pages for kernel page tables: so it
2823 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2824 */
2825 head = vmalloc_to_page(si->swap_map + offset);
2826 offset &= ~PAGE_MASK;
2827
2828 /*
2829 * Page allocation does not initialize the page's lru field,
2830 * but it does always reset its private field.
2831 */
2832 if (!page_private(head)) {
2833 BUG_ON(count & COUNT_CONTINUED);
2834 INIT_LIST_HEAD(&head->lru);
2835 set_page_private(head, SWP_CONTINUED);
2836 si->flags |= SWP_CONTINUED;
2837 }
2838
2839 list_for_each_entry(list_page, &head->lru, lru) {
2840 unsigned char *map;
2841
2842 /*
2843 * If the previous map said no continuation, but we've found
2844 * a continuation page, free our allocation and use this one.
2845 */
2846 if (!(count & COUNT_CONTINUED))
2847 goto out;
2848
9b04c5fe 2849 map = kmap_atomic(list_page) + offset;
570a335b 2850 count = *map;
9b04c5fe 2851 kunmap_atomic(map);
570a335b
HD
2852
2853 /*
2854 * If this continuation count now has some space in it,
2855 * free our allocation and use this one.
2856 */
2857 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2858 goto out;
2859 }
2860
2861 list_add_tail(&page->lru, &head->lru);
2862 page = NULL; /* now it's attached, don't free it */
2863out:
ec8acf20 2864 spin_unlock(&si->lock);
570a335b
HD
2865outer:
2866 if (page)
2867 __free_page(page);
2868 return 0;
2869}
2870
2871/*
2872 * swap_count_continued - when the original swap_map count is incremented
2873 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2874 * into, carry if so, or else fail until a new continuation page is allocated;
2875 * when the original swap_map count is decremented from 0 with continuation,
2876 * borrow from the continuation and report whether it still holds more.
2877 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2878 */
2879static bool swap_count_continued(struct swap_info_struct *si,
2880 pgoff_t offset, unsigned char count)
2881{
2882 struct page *head;
2883 struct page *page;
2884 unsigned char *map;
2885
2886 head = vmalloc_to_page(si->swap_map + offset);
2887 if (page_private(head) != SWP_CONTINUED) {
2888 BUG_ON(count & COUNT_CONTINUED);
2889 return false; /* need to add count continuation */
2890 }
2891
2892 offset &= ~PAGE_MASK;
2893 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2894 map = kmap_atomic(page) + offset;
570a335b
HD
2895
2896 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2897 goto init_map; /* jump over SWAP_CONT_MAX checks */
2898
2899 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2900 /*
2901 * Think of how you add 1 to 999
2902 */
2903 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2904 kunmap_atomic(map);
570a335b
HD
2905 page = list_entry(page->lru.next, struct page, lru);
2906 BUG_ON(page == head);
9b04c5fe 2907 map = kmap_atomic(page) + offset;
570a335b
HD
2908 }
2909 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2910 kunmap_atomic(map);
570a335b
HD
2911 page = list_entry(page->lru.next, struct page, lru);
2912 if (page == head)
2913 return false; /* add count continuation */
9b04c5fe 2914 map = kmap_atomic(page) + offset;
570a335b
HD
2915init_map: *map = 0; /* we didn't zero the page */
2916 }
2917 *map += 1;
9b04c5fe 2918 kunmap_atomic(map);
570a335b
HD
2919 page = list_entry(page->lru.prev, struct page, lru);
2920 while (page != head) {
9b04c5fe 2921 map = kmap_atomic(page) + offset;
570a335b 2922 *map = COUNT_CONTINUED;
9b04c5fe 2923 kunmap_atomic(map);
570a335b
HD
2924 page = list_entry(page->lru.prev, struct page, lru);
2925 }
2926 return true; /* incremented */
2927
2928 } else { /* decrementing */
2929 /*
2930 * Think of how you subtract 1 from 1000
2931 */
2932 BUG_ON(count != COUNT_CONTINUED);
2933 while (*map == COUNT_CONTINUED) {
9b04c5fe 2934 kunmap_atomic(map);
570a335b
HD
2935 page = list_entry(page->lru.next, struct page, lru);
2936 BUG_ON(page == head);
9b04c5fe 2937 map = kmap_atomic(page) + offset;
570a335b
HD
2938 }
2939 BUG_ON(*map == 0);
2940 *map -= 1;
2941 if (*map == 0)
2942 count = 0;
9b04c5fe 2943 kunmap_atomic(map);
570a335b
HD
2944 page = list_entry(page->lru.prev, struct page, lru);
2945 while (page != head) {
9b04c5fe 2946 map = kmap_atomic(page) + offset;
570a335b
HD
2947 *map = SWAP_CONT_MAX | count;
2948 count = COUNT_CONTINUED;
9b04c5fe 2949 kunmap_atomic(map);
570a335b
HD
2950 page = list_entry(page->lru.prev, struct page, lru);
2951 }
2952 return count == COUNT_CONTINUED;
2953 }
2954}
2955
2956/*
2957 * free_swap_count_continuations - swapoff free all the continuation pages
2958 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2959 */
2960static void free_swap_count_continuations(struct swap_info_struct *si)
2961{
2962 pgoff_t offset;
2963
2964 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2965 struct page *head;
2966 head = vmalloc_to_page(si->swap_map + offset);
2967 if (page_private(head)) {
2968 struct list_head *this, *next;
2969 list_for_each_safe(this, next, &head->lru) {
2970 struct page *page;
2971 page = list_entry(this, struct page, lru);
2972 list_del(this);
2973 __free_page(page);
2974 }
2975 }
2976 }
2977}
This page took 0.993535 seconds and 5 git commands to generate.