mm/vmap: Add a notifier for when we run out of vmap address space
[deliverable/linux.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
1da177e4
LT
35#include <asm/uaccess.h>
36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58}
59
db64fe02 60/*** Page table manipulation functions ***/
b221385b 61
1da177e4
LT
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
db64fe02 73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
b9820d8f
TK
81 if (pmd_clear_huge(pmd))
82 continue;
1da177e4
LT
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
db64fe02 89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
90{
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
b9820d8f
TK
97 if (pud_clear_huge(pud))
98 continue;
1da177e4
LT
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
db64fe02 105static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
106{
107 pgd_t *pgd;
108 unsigned long next;
1da177e4
LT
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
1da177e4
LT
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
1da177e4
LT
118}
119
120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
122{
123 pte_t *pte;
124
db64fe02
NP
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
872fec16 130 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
131 if (!pte)
132 return -ENOMEM;
133 do {
db64fe02
NP
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
1da177e4
LT
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 141 (*nr)++;
1da177e4
LT
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144}
145
db64fe02
NP
146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
148{
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
db64fe02 157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
db64fe02 174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178}
179
db64fe02
NP
180/*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
8fc48985
TH
186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
1da177e4
LT
188{
189 pgd_t *pgd;
190 unsigned long next;
2e4e27c7 191 unsigned long addr = start;
db64fe02
NP
192 int err = 0;
193 int nr = 0;
1da177e4
LT
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
1da177e4
LT
197 do {
198 next = pgd_addr_end(addr, end);
db64fe02 199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 200 if (err)
bf88c8c8 201 return err;
1da177e4 202 } while (pgd++, addr = next, addr != end);
db64fe02 203
db64fe02 204 return nr;
1da177e4
LT
205}
206
8fc48985
TH
207static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209{
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215}
216
81ac3ad9 217int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
218{
219 /*
ab4f2ee1 220 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228#endif
229 return is_vmalloc_addr(x);
230}
231
48667e7a 232/*
add688fb 233 * Walk a vmap address to the struct page it maps.
48667e7a 234 */
add688fb 235struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
236{
237 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 238 struct page *page = NULL;
48667e7a 239 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 240
7aa413de
IM
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
73bdf0a6 245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 246
48667e7a 247 if (!pgd_none(*pgd)) {
db64fe02 248 pud_t *pud = pud_offset(pgd, addr);
48667e7a 249 if (!pud_none(*pud)) {
db64fe02 250 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 251 if (!pmd_none(*pmd)) {
db64fe02
NP
252 pte_t *ptep, pte;
253
48667e7a
CL
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
add688fb 257 page = pte_page(pte);
48667e7a
CL
258 pte_unmap(ptep);
259 }
260 }
261 }
add688fb 262 return page;
48667e7a 263}
add688fb 264EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
265
266/*
add688fb 267 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 268 */
add688fb 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 270{
add688fb 271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 272}
add688fb 273EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 274
db64fe02
NP
275
276/*** Global kva allocator ***/
277
278#define VM_LAZY_FREE 0x01
279#define VM_LAZY_FREEING 0x02
280#define VM_VM_AREA 0x04
281
db64fe02 282static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
283/* Export for kexec only */
284LIST_HEAD(vmap_area_list);
89699605
NP
285static struct rb_root vmap_area_root = RB_ROOT;
286
287/* The vmap cache globals are protected by vmap_area_lock */
288static struct rb_node *free_vmap_cache;
289static unsigned long cached_hole_size;
290static unsigned long cached_vstart;
291static unsigned long cached_align;
292
ca23e405 293static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
294
295static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 296{
db64fe02
NP
297 struct rb_node *n = vmap_area_root.rb_node;
298
299 while (n) {
300 struct vmap_area *va;
301
302 va = rb_entry(n, struct vmap_area, rb_node);
303 if (addr < va->va_start)
304 n = n->rb_left;
cef2ac3f 305 else if (addr >= va->va_end)
db64fe02
NP
306 n = n->rb_right;
307 else
308 return va;
309 }
310
311 return NULL;
312}
313
314static void __insert_vmap_area(struct vmap_area *va)
315{
316 struct rb_node **p = &vmap_area_root.rb_node;
317 struct rb_node *parent = NULL;
318 struct rb_node *tmp;
319
320 while (*p) {
170168d0 321 struct vmap_area *tmp_va;
db64fe02
NP
322
323 parent = *p;
170168d0
NK
324 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
325 if (va->va_start < tmp_va->va_end)
db64fe02 326 p = &(*p)->rb_left;
170168d0 327 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
328 p = &(*p)->rb_right;
329 else
330 BUG();
331 }
332
333 rb_link_node(&va->rb_node, parent, p);
334 rb_insert_color(&va->rb_node, &vmap_area_root);
335
4341fa45 336 /* address-sort this list */
db64fe02
NP
337 tmp = rb_prev(&va->rb_node);
338 if (tmp) {
339 struct vmap_area *prev;
340 prev = rb_entry(tmp, struct vmap_area, rb_node);
341 list_add_rcu(&va->list, &prev->list);
342 } else
343 list_add_rcu(&va->list, &vmap_area_list);
344}
345
346static void purge_vmap_area_lazy(void);
347
4da56b99
CW
348static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
349
db64fe02
NP
350/*
351 * Allocate a region of KVA of the specified size and alignment, within the
352 * vstart and vend.
353 */
354static struct vmap_area *alloc_vmap_area(unsigned long size,
355 unsigned long align,
356 unsigned long vstart, unsigned long vend,
357 int node, gfp_t gfp_mask)
358{
359 struct vmap_area *va;
360 struct rb_node *n;
1da177e4 361 unsigned long addr;
db64fe02 362 int purged = 0;
89699605 363 struct vmap_area *first;
db64fe02 364
7766970c 365 BUG_ON(!size);
891c49ab 366 BUG_ON(offset_in_page(size));
89699605 367 BUG_ON(!is_power_of_2(align));
db64fe02 368
4da56b99
CW
369 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
370
db64fe02
NP
371 va = kmalloc_node(sizeof(struct vmap_area),
372 gfp_mask & GFP_RECLAIM_MASK, node);
373 if (unlikely(!va))
374 return ERR_PTR(-ENOMEM);
375
7f88f88f
CM
376 /*
377 * Only scan the relevant parts containing pointers to other objects
378 * to avoid false negatives.
379 */
380 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
381
db64fe02
NP
382retry:
383 spin_lock(&vmap_area_lock);
89699605
NP
384 /*
385 * Invalidate cache if we have more permissive parameters.
386 * cached_hole_size notes the largest hole noticed _below_
387 * the vmap_area cached in free_vmap_cache: if size fits
388 * into that hole, we want to scan from vstart to reuse
389 * the hole instead of allocating above free_vmap_cache.
390 * Note that __free_vmap_area may update free_vmap_cache
391 * without updating cached_hole_size or cached_align.
392 */
393 if (!free_vmap_cache ||
394 size < cached_hole_size ||
395 vstart < cached_vstart ||
396 align < cached_align) {
397nocache:
398 cached_hole_size = 0;
399 free_vmap_cache = NULL;
400 }
401 /* record if we encounter less permissive parameters */
402 cached_vstart = vstart;
403 cached_align = align;
404
405 /* find starting point for our search */
406 if (free_vmap_cache) {
407 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 408 addr = ALIGN(first->va_end, align);
89699605
NP
409 if (addr < vstart)
410 goto nocache;
bcb615a8 411 if (addr + size < addr)
89699605
NP
412 goto overflow;
413
414 } else {
415 addr = ALIGN(vstart, align);
bcb615a8 416 if (addr + size < addr)
89699605
NP
417 goto overflow;
418
419 n = vmap_area_root.rb_node;
420 first = NULL;
421
422 while (n) {
db64fe02
NP
423 struct vmap_area *tmp;
424 tmp = rb_entry(n, struct vmap_area, rb_node);
425 if (tmp->va_end >= addr) {
db64fe02 426 first = tmp;
89699605
NP
427 if (tmp->va_start <= addr)
428 break;
429 n = n->rb_left;
430 } else
db64fe02 431 n = n->rb_right;
89699605 432 }
db64fe02
NP
433
434 if (!first)
435 goto found;
db64fe02 436 }
89699605
NP
437
438 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 439 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
440 if (addr + cached_hole_size < first->va_start)
441 cached_hole_size = first->va_start - addr;
248ac0e1 442 addr = ALIGN(first->va_end, align);
bcb615a8 443 if (addr + size < addr)
89699605
NP
444 goto overflow;
445
92ca922f 446 if (list_is_last(&first->list, &vmap_area_list))
89699605 447 goto found;
92ca922f 448
6219c2a2 449 first = list_next_entry(first, list);
db64fe02
NP
450 }
451
89699605
NP
452found:
453 if (addr + size > vend)
454 goto overflow;
db64fe02
NP
455
456 va->va_start = addr;
457 va->va_end = addr + size;
458 va->flags = 0;
459 __insert_vmap_area(va);
89699605 460 free_vmap_cache = &va->rb_node;
db64fe02
NP
461 spin_unlock(&vmap_area_lock);
462
61e16557 463 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
464 BUG_ON(va->va_start < vstart);
465 BUG_ON(va->va_end > vend);
466
db64fe02 467 return va;
89699605
NP
468
469overflow:
470 spin_unlock(&vmap_area_lock);
471 if (!purged) {
472 purge_vmap_area_lazy();
473 purged = 1;
474 goto retry;
475 }
4da56b99
CW
476
477 if (gfpflags_allow_blocking(gfp_mask)) {
478 unsigned long freed = 0;
479 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
480 if (freed > 0) {
481 purged = 0;
482 goto retry;
483 }
484 }
485
89699605 486 if (printk_ratelimit())
0cbc8533 487 pr_warn("vmap allocation for size %lu failed: "
89699605
NP
488 "use vmalloc=<size> to increase size.\n", size);
489 kfree(va);
490 return ERR_PTR(-EBUSY);
db64fe02
NP
491}
492
4da56b99
CW
493int register_vmap_purge_notifier(struct notifier_block *nb)
494{
495 return blocking_notifier_chain_register(&vmap_notify_list, nb);
496}
497EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
498
499int unregister_vmap_purge_notifier(struct notifier_block *nb)
500{
501 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
502}
503EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
504
db64fe02
NP
505static void __free_vmap_area(struct vmap_area *va)
506{
507 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
508
509 if (free_vmap_cache) {
510 if (va->va_end < cached_vstart) {
511 free_vmap_cache = NULL;
512 } else {
513 struct vmap_area *cache;
514 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
515 if (va->va_start <= cache->va_start) {
516 free_vmap_cache = rb_prev(&va->rb_node);
517 /*
518 * We don't try to update cached_hole_size or
519 * cached_align, but it won't go very wrong.
520 */
521 }
522 }
523 }
db64fe02
NP
524 rb_erase(&va->rb_node, &vmap_area_root);
525 RB_CLEAR_NODE(&va->rb_node);
526 list_del_rcu(&va->list);
527
ca23e405
TH
528 /*
529 * Track the highest possible candidate for pcpu area
530 * allocation. Areas outside of vmalloc area can be returned
531 * here too, consider only end addresses which fall inside
532 * vmalloc area proper.
533 */
534 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
535 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
536
14769de9 537 kfree_rcu(va, rcu_head);
db64fe02
NP
538}
539
540/*
541 * Free a region of KVA allocated by alloc_vmap_area
542 */
543static void free_vmap_area(struct vmap_area *va)
544{
545 spin_lock(&vmap_area_lock);
546 __free_vmap_area(va);
547 spin_unlock(&vmap_area_lock);
548}
549
550/*
551 * Clear the pagetable entries of a given vmap_area
552 */
553static void unmap_vmap_area(struct vmap_area *va)
554{
555 vunmap_page_range(va->va_start, va->va_end);
556}
557
cd52858c
NP
558static void vmap_debug_free_range(unsigned long start, unsigned long end)
559{
560 /*
561 * Unmap page tables and force a TLB flush immediately if
562 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
563 * bugs similarly to those in linear kernel virtual address
564 * space after a page has been freed.
565 *
566 * All the lazy freeing logic is still retained, in order to
567 * minimise intrusiveness of this debugging feature.
568 *
569 * This is going to be *slow* (linear kernel virtual address
570 * debugging doesn't do a broadcast TLB flush so it is a lot
571 * faster).
572 */
573#ifdef CONFIG_DEBUG_PAGEALLOC
574 vunmap_page_range(start, end);
575 flush_tlb_kernel_range(start, end);
576#endif
577}
578
db64fe02
NP
579/*
580 * lazy_max_pages is the maximum amount of virtual address space we gather up
581 * before attempting to purge with a TLB flush.
582 *
583 * There is a tradeoff here: a larger number will cover more kernel page tables
584 * and take slightly longer to purge, but it will linearly reduce the number of
585 * global TLB flushes that must be performed. It would seem natural to scale
586 * this number up linearly with the number of CPUs (because vmapping activity
587 * could also scale linearly with the number of CPUs), however it is likely
588 * that in practice, workloads might be constrained in other ways that mean
589 * vmap activity will not scale linearly with CPUs. Also, I want to be
590 * conservative and not introduce a big latency on huge systems, so go with
591 * a less aggressive log scale. It will still be an improvement over the old
592 * code, and it will be simple to change the scale factor if we find that it
593 * becomes a problem on bigger systems.
594 */
595static unsigned long lazy_max_pages(void)
596{
597 unsigned int log;
598
599 log = fls(num_online_cpus());
600
601 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
602}
603
604static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
605
02b709df
NP
606/* for per-CPU blocks */
607static void purge_fragmented_blocks_allcpus(void);
608
3ee48b6a
CW
609/*
610 * called before a call to iounmap() if the caller wants vm_area_struct's
611 * immediately freed.
612 */
613void set_iounmap_nonlazy(void)
614{
615 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
616}
617
db64fe02
NP
618/*
619 * Purges all lazily-freed vmap areas.
620 *
621 * If sync is 0 then don't purge if there is already a purge in progress.
622 * If force_flush is 1, then flush kernel TLBs between *start and *end even
623 * if we found no lazy vmap areas to unmap (callers can use this to optimise
624 * their own TLB flushing).
625 * Returns with *start = min(*start, lowest purged address)
626 * *end = max(*end, highest purged address)
627 */
628static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
629 int sync, int force_flush)
630{
46666d8a 631 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
632 LIST_HEAD(valist);
633 struct vmap_area *va;
cbb76676 634 struct vmap_area *n_va;
db64fe02
NP
635 int nr = 0;
636
637 /*
638 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
639 * should not expect such behaviour. This just simplifies locking for
640 * the case that isn't actually used at the moment anyway.
641 */
642 if (!sync && !force_flush) {
46666d8a 643 if (!spin_trylock(&purge_lock))
db64fe02
NP
644 return;
645 } else
46666d8a 646 spin_lock(&purge_lock);
db64fe02 647
02b709df
NP
648 if (sync)
649 purge_fragmented_blocks_allcpus();
650
db64fe02
NP
651 rcu_read_lock();
652 list_for_each_entry_rcu(va, &vmap_area_list, list) {
653 if (va->flags & VM_LAZY_FREE) {
654 if (va->va_start < *start)
655 *start = va->va_start;
656 if (va->va_end > *end)
657 *end = va->va_end;
658 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
659 list_add_tail(&va->purge_list, &valist);
660 va->flags |= VM_LAZY_FREEING;
661 va->flags &= ~VM_LAZY_FREE;
662 }
663 }
664 rcu_read_unlock();
665
88f50044 666 if (nr)
db64fe02 667 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
668
669 if (nr || force_flush)
670 flush_tlb_kernel_range(*start, *end);
671
672 if (nr) {
673 spin_lock(&vmap_area_lock);
cbb76676 674 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
675 __free_vmap_area(va);
676 spin_unlock(&vmap_area_lock);
677 }
46666d8a 678 spin_unlock(&purge_lock);
db64fe02
NP
679}
680
496850e5
NP
681/*
682 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
683 * is already purging.
684 */
685static void try_purge_vmap_area_lazy(void)
686{
687 unsigned long start = ULONG_MAX, end = 0;
688
689 __purge_vmap_area_lazy(&start, &end, 0, 0);
690}
691
db64fe02
NP
692/*
693 * Kick off a purge of the outstanding lazy areas.
694 */
695static void purge_vmap_area_lazy(void)
696{
697 unsigned long start = ULONG_MAX, end = 0;
698
496850e5 699 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
700}
701
702/*
64141da5
JF
703 * Free a vmap area, caller ensuring that the area has been unmapped
704 * and flush_cache_vunmap had been called for the correct range
705 * previously.
db64fe02 706 */
64141da5 707static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
708{
709 va->flags |= VM_LAZY_FREE;
710 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
711 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 712 try_purge_vmap_area_lazy();
db64fe02
NP
713}
714
64141da5
JF
715/*
716 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
717 * called for the correct range previously.
718 */
719static void free_unmap_vmap_area_noflush(struct vmap_area *va)
720{
721 unmap_vmap_area(va);
722 free_vmap_area_noflush(va);
723}
724
b29acbdc
NP
725/*
726 * Free and unmap a vmap area
727 */
728static void free_unmap_vmap_area(struct vmap_area *va)
729{
730 flush_cache_vunmap(va->va_start, va->va_end);
731 free_unmap_vmap_area_noflush(va);
732}
733
db64fe02
NP
734static struct vmap_area *find_vmap_area(unsigned long addr)
735{
736 struct vmap_area *va;
737
738 spin_lock(&vmap_area_lock);
739 va = __find_vmap_area(addr);
740 spin_unlock(&vmap_area_lock);
741
742 return va;
743}
744
745static void free_unmap_vmap_area_addr(unsigned long addr)
746{
747 struct vmap_area *va;
748
749 va = find_vmap_area(addr);
750 BUG_ON(!va);
751 free_unmap_vmap_area(va);
752}
753
754
755/*** Per cpu kva allocator ***/
756
757/*
758 * vmap space is limited especially on 32 bit architectures. Ensure there is
759 * room for at least 16 percpu vmap blocks per CPU.
760 */
761/*
762 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
763 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
764 * instead (we just need a rough idea)
765 */
766#if BITS_PER_LONG == 32
767#define VMALLOC_SPACE (128UL*1024*1024)
768#else
769#define VMALLOC_SPACE (128UL*1024*1024*1024)
770#endif
771
772#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
773#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
774#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
775#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
776#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
777#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
778#define VMAP_BBMAP_BITS \
779 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
780 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
781 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
782
783#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
784
9b463334
JF
785static bool vmap_initialized __read_mostly = false;
786
db64fe02
NP
787struct vmap_block_queue {
788 spinlock_t lock;
789 struct list_head free;
db64fe02
NP
790};
791
792struct vmap_block {
793 spinlock_t lock;
794 struct vmap_area *va;
db64fe02 795 unsigned long free, dirty;
7d61bfe8 796 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
797 struct list_head free_list;
798 struct rcu_head rcu_head;
02b709df 799 struct list_head purge;
db64fe02
NP
800};
801
802/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
803static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
804
805/*
806 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
807 * in the free path. Could get rid of this if we change the API to return a
808 * "cookie" from alloc, to be passed to free. But no big deal yet.
809 */
810static DEFINE_SPINLOCK(vmap_block_tree_lock);
811static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
812
813/*
814 * We should probably have a fallback mechanism to allocate virtual memory
815 * out of partially filled vmap blocks. However vmap block sizing should be
816 * fairly reasonable according to the vmalloc size, so it shouldn't be a
817 * big problem.
818 */
819
820static unsigned long addr_to_vb_idx(unsigned long addr)
821{
822 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
823 addr /= VMAP_BLOCK_SIZE;
824 return addr;
825}
826
cf725ce2
RP
827static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
828{
829 unsigned long addr;
830
831 addr = va_start + (pages_off << PAGE_SHIFT);
832 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
833 return (void *)addr;
834}
835
836/**
837 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
838 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
839 * @order: how many 2^order pages should be occupied in newly allocated block
840 * @gfp_mask: flags for the page level allocator
841 *
842 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
843 */
844static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
845{
846 struct vmap_block_queue *vbq;
847 struct vmap_block *vb;
848 struct vmap_area *va;
849 unsigned long vb_idx;
850 int node, err;
cf725ce2 851 void *vaddr;
db64fe02
NP
852
853 node = numa_node_id();
854
855 vb = kmalloc_node(sizeof(struct vmap_block),
856 gfp_mask & GFP_RECLAIM_MASK, node);
857 if (unlikely(!vb))
858 return ERR_PTR(-ENOMEM);
859
860 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
861 VMALLOC_START, VMALLOC_END,
862 node, gfp_mask);
ddf9c6d4 863 if (IS_ERR(va)) {
db64fe02 864 kfree(vb);
e7d86340 865 return ERR_CAST(va);
db64fe02
NP
866 }
867
868 err = radix_tree_preload(gfp_mask);
869 if (unlikely(err)) {
870 kfree(vb);
871 free_vmap_area(va);
872 return ERR_PTR(err);
873 }
874
cf725ce2 875 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
876 spin_lock_init(&vb->lock);
877 vb->va = va;
cf725ce2
RP
878 /* At least something should be left free */
879 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
880 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 881 vb->dirty = 0;
7d61bfe8
RP
882 vb->dirty_min = VMAP_BBMAP_BITS;
883 vb->dirty_max = 0;
db64fe02 884 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
885
886 vb_idx = addr_to_vb_idx(va->va_start);
887 spin_lock(&vmap_block_tree_lock);
888 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
889 spin_unlock(&vmap_block_tree_lock);
890 BUG_ON(err);
891 radix_tree_preload_end();
892
893 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 894 spin_lock(&vbq->lock);
68ac546f 895 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 896 spin_unlock(&vbq->lock);
3f04ba85 897 put_cpu_var(vmap_block_queue);
db64fe02 898
cf725ce2 899 return vaddr;
db64fe02
NP
900}
901
db64fe02
NP
902static void free_vmap_block(struct vmap_block *vb)
903{
904 struct vmap_block *tmp;
905 unsigned long vb_idx;
906
db64fe02
NP
907 vb_idx = addr_to_vb_idx(vb->va->va_start);
908 spin_lock(&vmap_block_tree_lock);
909 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
910 spin_unlock(&vmap_block_tree_lock);
911 BUG_ON(tmp != vb);
912
64141da5 913 free_vmap_area_noflush(vb->va);
22a3c7d1 914 kfree_rcu(vb, rcu_head);
db64fe02
NP
915}
916
02b709df
NP
917static void purge_fragmented_blocks(int cpu)
918{
919 LIST_HEAD(purge);
920 struct vmap_block *vb;
921 struct vmap_block *n_vb;
922 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
923
924 rcu_read_lock();
925 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
926
927 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
928 continue;
929
930 spin_lock(&vb->lock);
931 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
932 vb->free = 0; /* prevent further allocs after releasing lock */
933 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
934 vb->dirty_min = 0;
935 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
936 spin_lock(&vbq->lock);
937 list_del_rcu(&vb->free_list);
938 spin_unlock(&vbq->lock);
939 spin_unlock(&vb->lock);
940 list_add_tail(&vb->purge, &purge);
941 } else
942 spin_unlock(&vb->lock);
943 }
944 rcu_read_unlock();
945
946 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
947 list_del(&vb->purge);
948 free_vmap_block(vb);
949 }
950}
951
02b709df
NP
952static void purge_fragmented_blocks_allcpus(void)
953{
954 int cpu;
955
956 for_each_possible_cpu(cpu)
957 purge_fragmented_blocks(cpu);
958}
959
db64fe02
NP
960static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
961{
962 struct vmap_block_queue *vbq;
963 struct vmap_block *vb;
cf725ce2 964 void *vaddr = NULL;
db64fe02
NP
965 unsigned int order;
966
891c49ab 967 BUG_ON(offset_in_page(size));
db64fe02 968 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
969 if (WARN_ON(size == 0)) {
970 /*
971 * Allocating 0 bytes isn't what caller wants since
972 * get_order(0) returns funny result. Just warn and terminate
973 * early.
974 */
975 return NULL;
976 }
db64fe02
NP
977 order = get_order(size);
978
db64fe02
NP
979 rcu_read_lock();
980 vbq = &get_cpu_var(vmap_block_queue);
981 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 982 unsigned long pages_off;
db64fe02
NP
983
984 spin_lock(&vb->lock);
cf725ce2
RP
985 if (vb->free < (1UL << order)) {
986 spin_unlock(&vb->lock);
987 continue;
988 }
02b709df 989
cf725ce2
RP
990 pages_off = VMAP_BBMAP_BITS - vb->free;
991 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
992 vb->free -= 1UL << order;
993 if (vb->free == 0) {
994 spin_lock(&vbq->lock);
995 list_del_rcu(&vb->free_list);
996 spin_unlock(&vbq->lock);
997 }
cf725ce2 998
02b709df
NP
999 spin_unlock(&vb->lock);
1000 break;
db64fe02 1001 }
02b709df 1002
3f04ba85 1003 put_cpu_var(vmap_block_queue);
db64fe02
NP
1004 rcu_read_unlock();
1005
cf725ce2
RP
1006 /* Allocate new block if nothing was found */
1007 if (!vaddr)
1008 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1009
cf725ce2 1010 return vaddr;
db64fe02
NP
1011}
1012
1013static void vb_free(const void *addr, unsigned long size)
1014{
1015 unsigned long offset;
1016 unsigned long vb_idx;
1017 unsigned int order;
1018 struct vmap_block *vb;
1019
891c49ab 1020 BUG_ON(offset_in_page(size));
db64fe02 1021 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1022
1023 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1024
db64fe02
NP
1025 order = get_order(size);
1026
1027 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1028 offset >>= PAGE_SHIFT;
db64fe02
NP
1029
1030 vb_idx = addr_to_vb_idx((unsigned long)addr);
1031 rcu_read_lock();
1032 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1033 rcu_read_unlock();
1034 BUG_ON(!vb);
1035
64141da5
JF
1036 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1037
db64fe02 1038 spin_lock(&vb->lock);
7d61bfe8
RP
1039
1040 /* Expand dirty range */
1041 vb->dirty_min = min(vb->dirty_min, offset);
1042 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1043
db64fe02
NP
1044 vb->dirty += 1UL << order;
1045 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1046 BUG_ON(vb->free);
db64fe02
NP
1047 spin_unlock(&vb->lock);
1048 free_vmap_block(vb);
1049 } else
1050 spin_unlock(&vb->lock);
1051}
1052
1053/**
1054 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1055 *
1056 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1057 * to amortize TLB flushing overheads. What this means is that any page you
1058 * have now, may, in a former life, have been mapped into kernel virtual
1059 * address by the vmap layer and so there might be some CPUs with TLB entries
1060 * still referencing that page (additional to the regular 1:1 kernel mapping).
1061 *
1062 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1063 * be sure that none of the pages we have control over will have any aliases
1064 * from the vmap layer.
1065 */
1066void vm_unmap_aliases(void)
1067{
1068 unsigned long start = ULONG_MAX, end = 0;
1069 int cpu;
1070 int flush = 0;
1071
9b463334
JF
1072 if (unlikely(!vmap_initialized))
1073 return;
1074
db64fe02
NP
1075 for_each_possible_cpu(cpu) {
1076 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1077 struct vmap_block *vb;
1078
1079 rcu_read_lock();
1080 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1081 spin_lock(&vb->lock);
7d61bfe8
RP
1082 if (vb->dirty) {
1083 unsigned long va_start = vb->va->va_start;
db64fe02 1084 unsigned long s, e;
b136be5e 1085
7d61bfe8
RP
1086 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1087 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1088
7d61bfe8
RP
1089 start = min(s, start);
1090 end = max(e, end);
db64fe02 1091
7d61bfe8 1092 flush = 1;
db64fe02
NP
1093 }
1094 spin_unlock(&vb->lock);
1095 }
1096 rcu_read_unlock();
1097 }
1098
1099 __purge_vmap_area_lazy(&start, &end, 1, flush);
1100}
1101EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1102
1103/**
1104 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1105 * @mem: the pointer returned by vm_map_ram
1106 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1107 */
1108void vm_unmap_ram(const void *mem, unsigned int count)
1109{
1110 unsigned long size = count << PAGE_SHIFT;
1111 unsigned long addr = (unsigned long)mem;
1112
1113 BUG_ON(!addr);
1114 BUG_ON(addr < VMALLOC_START);
1115 BUG_ON(addr > VMALLOC_END);
61e16557 1116 BUG_ON(!IS_ALIGNED(addr, PAGE_SIZE));
db64fe02
NP
1117
1118 debug_check_no_locks_freed(mem, size);
cd52858c 1119 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1120
1121 if (likely(count <= VMAP_MAX_ALLOC))
1122 vb_free(mem, size);
1123 else
1124 free_unmap_vmap_area_addr(addr);
1125}
1126EXPORT_SYMBOL(vm_unmap_ram);
1127
1128/**
1129 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1130 * @pages: an array of pointers to the pages to be mapped
1131 * @count: number of pages
1132 * @node: prefer to allocate data structures on this node
1133 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1134 *
36437638
GK
1135 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1136 * faster than vmap so it's good. But if you mix long-life and short-life
1137 * objects with vm_map_ram(), it could consume lots of address space through
1138 * fragmentation (especially on a 32bit machine). You could see failures in
1139 * the end. Please use this function for short-lived objects.
1140 *
e99c97ad 1141 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1142 */
1143void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1144{
1145 unsigned long size = count << PAGE_SHIFT;
1146 unsigned long addr;
1147 void *mem;
1148
1149 if (likely(count <= VMAP_MAX_ALLOC)) {
1150 mem = vb_alloc(size, GFP_KERNEL);
1151 if (IS_ERR(mem))
1152 return NULL;
1153 addr = (unsigned long)mem;
1154 } else {
1155 struct vmap_area *va;
1156 va = alloc_vmap_area(size, PAGE_SIZE,
1157 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1158 if (IS_ERR(va))
1159 return NULL;
1160
1161 addr = va->va_start;
1162 mem = (void *)addr;
1163 }
1164 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1165 vm_unmap_ram(mem, count);
1166 return NULL;
1167 }
1168 return mem;
1169}
1170EXPORT_SYMBOL(vm_map_ram);
1171
4341fa45 1172static struct vm_struct *vmlist __initdata;
be9b7335
NP
1173/**
1174 * vm_area_add_early - add vmap area early during boot
1175 * @vm: vm_struct to add
1176 *
1177 * This function is used to add fixed kernel vm area to vmlist before
1178 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1179 * should contain proper values and the other fields should be zero.
1180 *
1181 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1182 */
1183void __init vm_area_add_early(struct vm_struct *vm)
1184{
1185 struct vm_struct *tmp, **p;
1186
1187 BUG_ON(vmap_initialized);
1188 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1189 if (tmp->addr >= vm->addr) {
1190 BUG_ON(tmp->addr < vm->addr + vm->size);
1191 break;
1192 } else
1193 BUG_ON(tmp->addr + tmp->size > vm->addr);
1194 }
1195 vm->next = *p;
1196 *p = vm;
1197}
1198
f0aa6617
TH
1199/**
1200 * vm_area_register_early - register vmap area early during boot
1201 * @vm: vm_struct to register
c0c0a293 1202 * @align: requested alignment
f0aa6617
TH
1203 *
1204 * This function is used to register kernel vm area before
1205 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1206 * proper values on entry and other fields should be zero. On return,
1207 * vm->addr contains the allocated address.
1208 *
1209 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1210 */
c0c0a293 1211void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1212{
1213 static size_t vm_init_off __initdata;
c0c0a293
TH
1214 unsigned long addr;
1215
1216 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1217 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1218
c0c0a293 1219 vm->addr = (void *)addr;
f0aa6617 1220
be9b7335 1221 vm_area_add_early(vm);
f0aa6617
TH
1222}
1223
db64fe02
NP
1224void __init vmalloc_init(void)
1225{
822c18f2
IK
1226 struct vmap_area *va;
1227 struct vm_struct *tmp;
db64fe02
NP
1228 int i;
1229
1230 for_each_possible_cpu(i) {
1231 struct vmap_block_queue *vbq;
32fcfd40 1232 struct vfree_deferred *p;
db64fe02
NP
1233
1234 vbq = &per_cpu(vmap_block_queue, i);
1235 spin_lock_init(&vbq->lock);
1236 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1237 p = &per_cpu(vfree_deferred, i);
1238 init_llist_head(&p->list);
1239 INIT_WORK(&p->wq, free_work);
db64fe02 1240 }
9b463334 1241
822c18f2
IK
1242 /* Import existing vmlist entries. */
1243 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1244 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1245 va->flags = VM_VM_AREA;
822c18f2
IK
1246 va->va_start = (unsigned long)tmp->addr;
1247 va->va_end = va->va_start + tmp->size;
dbda591d 1248 va->vm = tmp;
822c18f2
IK
1249 __insert_vmap_area(va);
1250 }
ca23e405
TH
1251
1252 vmap_area_pcpu_hole = VMALLOC_END;
1253
9b463334 1254 vmap_initialized = true;
db64fe02
NP
1255}
1256
8fc48985
TH
1257/**
1258 * map_kernel_range_noflush - map kernel VM area with the specified pages
1259 * @addr: start of the VM area to map
1260 * @size: size of the VM area to map
1261 * @prot: page protection flags to use
1262 * @pages: pages to map
1263 *
1264 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1265 * specify should have been allocated using get_vm_area() and its
1266 * friends.
1267 *
1268 * NOTE:
1269 * This function does NOT do any cache flushing. The caller is
1270 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1271 * before calling this function.
1272 *
1273 * RETURNS:
1274 * The number of pages mapped on success, -errno on failure.
1275 */
1276int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1277 pgprot_t prot, struct page **pages)
1278{
1279 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1280}
1281
1282/**
1283 * unmap_kernel_range_noflush - unmap kernel VM area
1284 * @addr: start of the VM area to unmap
1285 * @size: size of the VM area to unmap
1286 *
1287 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1288 * specify should have been allocated using get_vm_area() and its
1289 * friends.
1290 *
1291 * NOTE:
1292 * This function does NOT do any cache flushing. The caller is
1293 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1294 * before calling this function and flush_tlb_kernel_range() after.
1295 */
1296void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1297{
1298 vunmap_page_range(addr, addr + size);
1299}
81e88fdc 1300EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1301
1302/**
1303 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1304 * @addr: start of the VM area to unmap
1305 * @size: size of the VM area to unmap
1306 *
1307 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1308 * the unmapping and tlb after.
1309 */
db64fe02
NP
1310void unmap_kernel_range(unsigned long addr, unsigned long size)
1311{
1312 unsigned long end = addr + size;
f6fcba70
TH
1313
1314 flush_cache_vunmap(addr, end);
db64fe02
NP
1315 vunmap_page_range(addr, end);
1316 flush_tlb_kernel_range(addr, end);
1317}
93ef6d6c 1318EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1319
f6f8ed47 1320int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1321{
1322 unsigned long addr = (unsigned long)area->addr;
762216ab 1323 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1324 int err;
1325
f6f8ed47 1326 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1327
f6f8ed47 1328 return err > 0 ? 0 : err;
db64fe02
NP
1329}
1330EXPORT_SYMBOL_GPL(map_vm_area);
1331
f5252e00 1332static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1333 unsigned long flags, const void *caller)
cf88c790 1334{
c69480ad 1335 spin_lock(&vmap_area_lock);
cf88c790
TH
1336 vm->flags = flags;
1337 vm->addr = (void *)va->va_start;
1338 vm->size = va->va_end - va->va_start;
1339 vm->caller = caller;
db1aecaf 1340 va->vm = vm;
cf88c790 1341 va->flags |= VM_VM_AREA;
c69480ad 1342 spin_unlock(&vmap_area_lock);
f5252e00 1343}
cf88c790 1344
20fc02b4 1345static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1346{
d4033afd 1347 /*
20fc02b4 1348 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1349 * we should make sure that vm has proper values.
1350 * Pair with smp_rmb() in show_numa_info().
1351 */
1352 smp_wmb();
20fc02b4 1353 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1354}
1355
db64fe02 1356static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1357 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1358 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1359{
0006526d 1360 struct vmap_area *va;
db64fe02 1361 struct vm_struct *area;
1da177e4 1362
52fd24ca 1363 BUG_ON(in_interrupt());
0f2d4a8e 1364 if (flags & VM_IOREMAP)
0f616be1
TK
1365 align = 1ul << clamp_t(int, fls_long(size),
1366 PAGE_SHIFT, IOREMAP_MAX_ORDER);
db64fe02 1367
1da177e4 1368 size = PAGE_ALIGN(size);
31be8309
OH
1369 if (unlikely(!size))
1370 return NULL;
1da177e4 1371
cf88c790 1372 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1373 if (unlikely(!area))
1374 return NULL;
1375
71394fe5
AR
1376 if (!(flags & VM_NO_GUARD))
1377 size += PAGE_SIZE;
1da177e4 1378
db64fe02
NP
1379 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1380 if (IS_ERR(va)) {
1381 kfree(area);
1382 return NULL;
1da177e4 1383 }
1da177e4 1384
d82b1d85 1385 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1386
1da177e4 1387 return area;
1da177e4
LT
1388}
1389
930fc45a
CL
1390struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1391 unsigned long start, unsigned long end)
1392{
00ef2d2f
DR
1393 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1394 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1395}
5992b6da 1396EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1397
c2968612
BH
1398struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1399 unsigned long start, unsigned long end,
5e6cafc8 1400 const void *caller)
c2968612 1401{
00ef2d2f
DR
1402 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1403 GFP_KERNEL, caller);
c2968612
BH
1404}
1405
1da177e4 1406/**
183ff22b 1407 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1408 * @size: size of the area
1409 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1410 *
1411 * Search an area of @size in the kernel virtual mapping area,
1412 * and reserved it for out purposes. Returns the area descriptor
1413 * on success or %NULL on failure.
1414 */
1415struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1416{
2dca6999 1417 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1418 NUMA_NO_NODE, GFP_KERNEL,
1419 __builtin_return_address(0));
23016969
CL
1420}
1421
1422struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1423 const void *caller)
23016969 1424{
2dca6999 1425 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1426 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1427}
1428
e9da6e99
MS
1429/**
1430 * find_vm_area - find a continuous kernel virtual area
1431 * @addr: base address
1432 *
1433 * Search for the kernel VM area starting at @addr, and return it.
1434 * It is up to the caller to do all required locking to keep the returned
1435 * pointer valid.
1436 */
1437struct vm_struct *find_vm_area(const void *addr)
83342314 1438{
db64fe02 1439 struct vmap_area *va;
83342314 1440
db64fe02
NP
1441 va = find_vmap_area((unsigned long)addr);
1442 if (va && va->flags & VM_VM_AREA)
db1aecaf 1443 return va->vm;
1da177e4 1444
1da177e4 1445 return NULL;
1da177e4
LT
1446}
1447
7856dfeb 1448/**
183ff22b 1449 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1450 * @addr: base address
1451 *
1452 * Search for the kernel VM area starting at @addr, and remove it.
1453 * This function returns the found VM area, but using it is NOT safe
1454 * on SMP machines, except for its size or flags.
1455 */
b3bdda02 1456struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1457{
db64fe02
NP
1458 struct vmap_area *va;
1459
1460 va = find_vmap_area((unsigned long)addr);
1461 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1462 struct vm_struct *vm = va->vm;
f5252e00 1463
c69480ad
JK
1464 spin_lock(&vmap_area_lock);
1465 va->vm = NULL;
1466 va->flags &= ~VM_VM_AREA;
1467 spin_unlock(&vmap_area_lock);
1468
dd32c279 1469 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1470 kasan_free_shadow(vm);
dd32c279 1471 free_unmap_vmap_area(va);
dd32c279 1472
db64fe02
NP
1473 return vm;
1474 }
1475 return NULL;
7856dfeb
AK
1476}
1477
b3bdda02 1478static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1479{
1480 struct vm_struct *area;
1481
1482 if (!addr)
1483 return;
1484
e69e9d4a 1485 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1486 addr))
1da177e4 1487 return;
1da177e4
LT
1488
1489 area = remove_vm_area(addr);
1490 if (unlikely(!area)) {
4c8573e2 1491 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1492 addr);
1da177e4
LT
1493 return;
1494 }
1495
7511c3ed
JM
1496 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1497 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1498
1da177e4
LT
1499 if (deallocate_pages) {
1500 int i;
1501
1502 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1503 struct page *page = area->pages[i];
1504
1505 BUG_ON(!page);
37f08dda 1506 __free_kmem_pages(page, 0);
1da177e4
LT
1507 }
1508
244d63ee 1509 kvfree(area->pages);
1da177e4
LT
1510 }
1511
1512 kfree(area);
1513 return;
1514}
32fcfd40 1515
1da177e4
LT
1516/**
1517 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1518 * @addr: memory base address
1519 *
183ff22b 1520 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1521 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1522 * NULL, no operation is performed.
1da177e4 1523 *
32fcfd40
AV
1524 * Must not be called in NMI context (strictly speaking, only if we don't
1525 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1526 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1527 *
1528 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1529 */
b3bdda02 1530void vfree(const void *addr)
1da177e4 1531{
32fcfd40 1532 BUG_ON(in_nmi());
89219d37
CM
1533
1534 kmemleak_free(addr);
1535
32fcfd40
AV
1536 if (!addr)
1537 return;
1538 if (unlikely(in_interrupt())) {
7c8e0181 1539 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
59d3132f
ON
1540 if (llist_add((struct llist_node *)addr, &p->list))
1541 schedule_work(&p->wq);
32fcfd40
AV
1542 } else
1543 __vunmap(addr, 1);
1da177e4 1544}
1da177e4
LT
1545EXPORT_SYMBOL(vfree);
1546
1547/**
1548 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1549 * @addr: memory base address
1550 *
1551 * Free the virtually contiguous memory area starting at @addr,
1552 * which was created from the page array passed to vmap().
1553 *
80e93eff 1554 * Must not be called in interrupt context.
1da177e4 1555 */
b3bdda02 1556void vunmap(const void *addr)
1da177e4
LT
1557{
1558 BUG_ON(in_interrupt());
34754b69 1559 might_sleep();
32fcfd40
AV
1560 if (addr)
1561 __vunmap(addr, 0);
1da177e4 1562}
1da177e4
LT
1563EXPORT_SYMBOL(vunmap);
1564
1565/**
1566 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1567 * @pages: array of page pointers
1568 * @count: number of pages to map
1569 * @flags: vm_area->flags
1570 * @prot: page protection for the mapping
1571 *
1572 * Maps @count pages from @pages into contiguous kernel virtual
1573 * space.
1574 */
1575void *vmap(struct page **pages, unsigned int count,
1576 unsigned long flags, pgprot_t prot)
1577{
1578 struct vm_struct *area;
1579
34754b69
PZ
1580 might_sleep();
1581
4481374c 1582 if (count > totalram_pages)
1da177e4
LT
1583 return NULL;
1584
23016969
CL
1585 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1586 __builtin_return_address(0));
1da177e4
LT
1587 if (!area)
1588 return NULL;
23016969 1589
f6f8ed47 1590 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1591 vunmap(area->addr);
1592 return NULL;
1593 }
1594
1595 return area->addr;
1596}
1da177e4
LT
1597EXPORT_SYMBOL(vmap);
1598
2dca6999
DM
1599static void *__vmalloc_node(unsigned long size, unsigned long align,
1600 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1601 int node, const void *caller);
e31d9eb5 1602static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1603 pgprot_t prot, int node)
1da177e4 1604{
22943ab1 1605 const int order = 0;
1da177e4
LT
1606 struct page **pages;
1607 unsigned int nr_pages, array_size, i;
930f036b
DR
1608 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1609 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1610
762216ab 1611 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1612 array_size = (nr_pages * sizeof(struct page *));
1613
1614 area->nr_pages = nr_pages;
1615 /* Please note that the recursion is strictly bounded. */
8757d5fa 1616 if (array_size > PAGE_SIZE) {
976d6dfb 1617 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1618 PAGE_KERNEL, node, area->caller);
286e1ea3 1619 } else {
976d6dfb 1620 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1621 }
1da177e4
LT
1622 area->pages = pages;
1623 if (!area->pages) {
1624 remove_vm_area(area->addr);
1625 kfree(area);
1626 return NULL;
1627 }
1da177e4
LT
1628
1629 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1630 struct page *page;
1631
4b90951c 1632 if (node == NUMA_NO_NODE)
37f08dda 1633 page = alloc_kmem_pages(alloc_mask, order);
930fc45a 1634 else
37f08dda 1635 page = alloc_kmem_pages_node(node, alloc_mask, order);
bf53d6f8
CL
1636
1637 if (unlikely(!page)) {
1da177e4
LT
1638 /* Successfully allocated i pages, free them in __vunmap() */
1639 area->nr_pages = i;
1640 goto fail;
1641 }
bf53d6f8 1642 area->pages[i] = page;
d0164adc 1643 if (gfpflags_allow_blocking(gfp_mask))
660654f9 1644 cond_resched();
1da177e4
LT
1645 }
1646
f6f8ed47 1647 if (map_vm_area(area, prot, pages))
1da177e4
LT
1648 goto fail;
1649 return area->addr;
1650
1651fail:
3ee9a4f0
JP
1652 warn_alloc_failed(gfp_mask, order,
1653 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1654 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1655 vfree(area->addr);
1656 return NULL;
1657}
1658
1659/**
d0a21265 1660 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1661 * @size: allocation size
2dca6999 1662 * @align: desired alignment
d0a21265
DR
1663 * @start: vm area range start
1664 * @end: vm area range end
1da177e4
LT
1665 * @gfp_mask: flags for the page level allocator
1666 * @prot: protection mask for the allocated pages
cb9e3c29 1667 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1668 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1669 * @caller: caller's return address
1da177e4
LT
1670 *
1671 * Allocate enough pages to cover @size from the page level
1672 * allocator with @gfp_mask flags. Map them into contiguous
1673 * kernel virtual space, using a pagetable protection of @prot.
1674 */
d0a21265
DR
1675void *__vmalloc_node_range(unsigned long size, unsigned long align,
1676 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1677 pgprot_t prot, unsigned long vm_flags, int node,
1678 const void *caller)
1da177e4
LT
1679{
1680 struct vm_struct *area;
89219d37
CM
1681 void *addr;
1682 unsigned long real_size = size;
1da177e4
LT
1683
1684 size = PAGE_ALIGN(size);
4481374c 1685 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1686 goto fail;
1da177e4 1687
cb9e3c29
AR
1688 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1689 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1690 if (!area)
de7d2b56 1691 goto fail;
1da177e4 1692
3722e13c 1693 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1694 if (!addr)
b82225f3 1695 return NULL;
89219d37 1696
f5252e00 1697 /*
20fc02b4
ZY
1698 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1699 * flag. It means that vm_struct is not fully initialized.
4341fa45 1700 * Now, it is fully initialized, so remove this flag here.
f5252e00 1701 */
20fc02b4 1702 clear_vm_uninitialized_flag(area);
f5252e00 1703
89219d37 1704 /*
7f88f88f
CM
1705 * A ref_count = 2 is needed because vm_struct allocated in
1706 * __get_vm_area_node() contains a reference to the virtual address of
1707 * the vmalloc'ed block.
89219d37 1708 */
7f88f88f 1709 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1710
1711 return addr;
de7d2b56
JP
1712
1713fail:
1714 warn_alloc_failed(gfp_mask, 0,
1715 "vmalloc: allocation failure: %lu bytes\n",
1716 real_size);
1717 return NULL;
1da177e4
LT
1718}
1719
d0a21265
DR
1720/**
1721 * __vmalloc_node - allocate virtually contiguous memory
1722 * @size: allocation size
1723 * @align: desired alignment
1724 * @gfp_mask: flags for the page level allocator
1725 * @prot: protection mask for the allocated pages
00ef2d2f 1726 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1727 * @caller: caller's return address
1728 *
1729 * Allocate enough pages to cover @size from the page level
1730 * allocator with @gfp_mask flags. Map them into contiguous
1731 * kernel virtual space, using a pagetable protection of @prot.
1732 */
1733static void *__vmalloc_node(unsigned long size, unsigned long align,
1734 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1735 int node, const void *caller)
d0a21265
DR
1736{
1737 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1738 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1739}
1740
930fc45a
CL
1741void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1742{
00ef2d2f 1743 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1744 __builtin_return_address(0));
930fc45a 1745}
1da177e4
LT
1746EXPORT_SYMBOL(__vmalloc);
1747
e1ca7788
DY
1748static inline void *__vmalloc_node_flags(unsigned long size,
1749 int node, gfp_t flags)
1750{
1751 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1752 node, __builtin_return_address(0));
1753}
1754
1da177e4
LT
1755/**
1756 * vmalloc - allocate virtually contiguous memory
1da177e4 1757 * @size: allocation size
1da177e4
LT
1758 * Allocate enough pages to cover @size from the page level
1759 * allocator and map them into contiguous kernel virtual space.
1760 *
c1c8897f 1761 * For tight control over page level allocator and protection flags
1da177e4
LT
1762 * use __vmalloc() instead.
1763 */
1764void *vmalloc(unsigned long size)
1765{
00ef2d2f
DR
1766 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1767 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1768}
1da177e4
LT
1769EXPORT_SYMBOL(vmalloc);
1770
e1ca7788
DY
1771/**
1772 * vzalloc - allocate virtually contiguous memory with zero fill
1773 * @size: allocation size
1774 * Allocate enough pages to cover @size from the page level
1775 * allocator and map them into contiguous kernel virtual space.
1776 * The memory allocated is set to zero.
1777 *
1778 * For tight control over page level allocator and protection flags
1779 * use __vmalloc() instead.
1780 */
1781void *vzalloc(unsigned long size)
1782{
00ef2d2f 1783 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1784 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1785}
1786EXPORT_SYMBOL(vzalloc);
1787
83342314 1788/**
ead04089
REB
1789 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1790 * @size: allocation size
83342314 1791 *
ead04089
REB
1792 * The resulting memory area is zeroed so it can be mapped to userspace
1793 * without leaking data.
83342314
NP
1794 */
1795void *vmalloc_user(unsigned long size)
1796{
1797 struct vm_struct *area;
1798 void *ret;
1799
2dca6999
DM
1800 ret = __vmalloc_node(size, SHMLBA,
1801 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1802 PAGE_KERNEL, NUMA_NO_NODE,
1803 __builtin_return_address(0));
2b4ac44e 1804 if (ret) {
db64fe02 1805 area = find_vm_area(ret);
2b4ac44e 1806 area->flags |= VM_USERMAP;
2b4ac44e 1807 }
83342314
NP
1808 return ret;
1809}
1810EXPORT_SYMBOL(vmalloc_user);
1811
930fc45a
CL
1812/**
1813 * vmalloc_node - allocate memory on a specific node
930fc45a 1814 * @size: allocation size
d44e0780 1815 * @node: numa node
930fc45a
CL
1816 *
1817 * Allocate enough pages to cover @size from the page level
1818 * allocator and map them into contiguous kernel virtual space.
1819 *
c1c8897f 1820 * For tight control over page level allocator and protection flags
930fc45a
CL
1821 * use __vmalloc() instead.
1822 */
1823void *vmalloc_node(unsigned long size, int node)
1824{
2dca6999 1825 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1826 node, __builtin_return_address(0));
930fc45a
CL
1827}
1828EXPORT_SYMBOL(vmalloc_node);
1829
e1ca7788
DY
1830/**
1831 * vzalloc_node - allocate memory on a specific node with zero fill
1832 * @size: allocation size
1833 * @node: numa node
1834 *
1835 * Allocate enough pages to cover @size from the page level
1836 * allocator and map them into contiguous kernel virtual space.
1837 * The memory allocated is set to zero.
1838 *
1839 * For tight control over page level allocator and protection flags
1840 * use __vmalloc_node() instead.
1841 */
1842void *vzalloc_node(unsigned long size, int node)
1843{
1844 return __vmalloc_node_flags(size, node,
1845 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1846}
1847EXPORT_SYMBOL(vzalloc_node);
1848
4dc3b16b
PP
1849#ifndef PAGE_KERNEL_EXEC
1850# define PAGE_KERNEL_EXEC PAGE_KERNEL
1851#endif
1852
1da177e4
LT
1853/**
1854 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1855 * @size: allocation size
1856 *
1857 * Kernel-internal function to allocate enough pages to cover @size
1858 * the page level allocator and map them into contiguous and
1859 * executable kernel virtual space.
1860 *
c1c8897f 1861 * For tight control over page level allocator and protection flags
1da177e4
LT
1862 * use __vmalloc() instead.
1863 */
1864
1da177e4
LT
1865void *vmalloc_exec(unsigned long size)
1866{
2dca6999 1867 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1868 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1869}
1870
0d08e0d3 1871#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1872#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1873#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1874#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1875#else
1876#define GFP_VMALLOC32 GFP_KERNEL
1877#endif
1878
1da177e4
LT
1879/**
1880 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1881 * @size: allocation size
1882 *
1883 * Allocate enough 32bit PA addressable pages to cover @size from the
1884 * page level allocator and map them into contiguous kernel virtual space.
1885 */
1886void *vmalloc_32(unsigned long size)
1887{
2dca6999 1888 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1889 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1890}
1da177e4
LT
1891EXPORT_SYMBOL(vmalloc_32);
1892
83342314 1893/**
ead04089 1894 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1895 * @size: allocation size
ead04089
REB
1896 *
1897 * The resulting memory area is 32bit addressable and zeroed so it can be
1898 * mapped to userspace without leaking data.
83342314
NP
1899 */
1900void *vmalloc_32_user(unsigned long size)
1901{
1902 struct vm_struct *area;
1903 void *ret;
1904
2dca6999 1905 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1906 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1907 if (ret) {
db64fe02 1908 area = find_vm_area(ret);
2b4ac44e 1909 area->flags |= VM_USERMAP;
2b4ac44e 1910 }
83342314
NP
1911 return ret;
1912}
1913EXPORT_SYMBOL(vmalloc_32_user);
1914
d0107eb0
KH
1915/*
1916 * small helper routine , copy contents to buf from addr.
1917 * If the page is not present, fill zero.
1918 */
1919
1920static int aligned_vread(char *buf, char *addr, unsigned long count)
1921{
1922 struct page *p;
1923 int copied = 0;
1924
1925 while (count) {
1926 unsigned long offset, length;
1927
891c49ab 1928 offset = offset_in_page(addr);
d0107eb0
KH
1929 length = PAGE_SIZE - offset;
1930 if (length > count)
1931 length = count;
1932 p = vmalloc_to_page(addr);
1933 /*
1934 * To do safe access to this _mapped_ area, we need
1935 * lock. But adding lock here means that we need to add
1936 * overhead of vmalloc()/vfree() calles for this _debug_
1937 * interface, rarely used. Instead of that, we'll use
1938 * kmap() and get small overhead in this access function.
1939 */
1940 if (p) {
1941 /*
1942 * we can expect USER0 is not used (see vread/vwrite's
1943 * function description)
1944 */
9b04c5fe 1945 void *map = kmap_atomic(p);
d0107eb0 1946 memcpy(buf, map + offset, length);
9b04c5fe 1947 kunmap_atomic(map);
d0107eb0
KH
1948 } else
1949 memset(buf, 0, length);
1950
1951 addr += length;
1952 buf += length;
1953 copied += length;
1954 count -= length;
1955 }
1956 return copied;
1957}
1958
1959static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1960{
1961 struct page *p;
1962 int copied = 0;
1963
1964 while (count) {
1965 unsigned long offset, length;
1966
891c49ab 1967 offset = offset_in_page(addr);
d0107eb0
KH
1968 length = PAGE_SIZE - offset;
1969 if (length > count)
1970 length = count;
1971 p = vmalloc_to_page(addr);
1972 /*
1973 * To do safe access to this _mapped_ area, we need
1974 * lock. But adding lock here means that we need to add
1975 * overhead of vmalloc()/vfree() calles for this _debug_
1976 * interface, rarely used. Instead of that, we'll use
1977 * kmap() and get small overhead in this access function.
1978 */
1979 if (p) {
1980 /*
1981 * we can expect USER0 is not used (see vread/vwrite's
1982 * function description)
1983 */
9b04c5fe 1984 void *map = kmap_atomic(p);
d0107eb0 1985 memcpy(map + offset, buf, length);
9b04c5fe 1986 kunmap_atomic(map);
d0107eb0
KH
1987 }
1988 addr += length;
1989 buf += length;
1990 copied += length;
1991 count -= length;
1992 }
1993 return copied;
1994}
1995
1996/**
1997 * vread() - read vmalloc area in a safe way.
1998 * @buf: buffer for reading data
1999 * @addr: vm address.
2000 * @count: number of bytes to be read.
2001 *
2002 * Returns # of bytes which addr and buf should be increased.
2003 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2004 * includes any intersect with alive vmalloc area.
2005 *
2006 * This function checks that addr is a valid vmalloc'ed area, and
2007 * copy data from that area to a given buffer. If the given memory range
2008 * of [addr...addr+count) includes some valid address, data is copied to
2009 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2010 * IOREMAP area is treated as memory hole and no copy is done.
2011 *
2012 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2013 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2014 *
2015 * Note: In usual ops, vread() is never necessary because the caller
2016 * should know vmalloc() area is valid and can use memcpy().
2017 * This is for routines which have to access vmalloc area without
2018 * any informaion, as /dev/kmem.
2019 *
2020 */
2021
1da177e4
LT
2022long vread(char *buf, char *addr, unsigned long count)
2023{
e81ce85f
JK
2024 struct vmap_area *va;
2025 struct vm_struct *vm;
1da177e4 2026 char *vaddr, *buf_start = buf;
d0107eb0 2027 unsigned long buflen = count;
1da177e4
LT
2028 unsigned long n;
2029
2030 /* Don't allow overflow */
2031 if ((unsigned long) addr + count < count)
2032 count = -(unsigned long) addr;
2033
e81ce85f
JK
2034 spin_lock(&vmap_area_lock);
2035 list_for_each_entry(va, &vmap_area_list, list) {
2036 if (!count)
2037 break;
2038
2039 if (!(va->flags & VM_VM_AREA))
2040 continue;
2041
2042 vm = va->vm;
2043 vaddr = (char *) vm->addr;
762216ab 2044 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2045 continue;
2046 while (addr < vaddr) {
2047 if (count == 0)
2048 goto finished;
2049 *buf = '\0';
2050 buf++;
2051 addr++;
2052 count--;
2053 }
762216ab 2054 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2055 if (n > count)
2056 n = count;
e81ce85f 2057 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2058 aligned_vread(buf, addr, n);
2059 else /* IOREMAP area is treated as memory hole */
2060 memset(buf, 0, n);
2061 buf += n;
2062 addr += n;
2063 count -= n;
1da177e4
LT
2064 }
2065finished:
e81ce85f 2066 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2067
2068 if (buf == buf_start)
2069 return 0;
2070 /* zero-fill memory holes */
2071 if (buf != buf_start + buflen)
2072 memset(buf, 0, buflen - (buf - buf_start));
2073
2074 return buflen;
1da177e4
LT
2075}
2076
d0107eb0
KH
2077/**
2078 * vwrite() - write vmalloc area in a safe way.
2079 * @buf: buffer for source data
2080 * @addr: vm address.
2081 * @count: number of bytes to be read.
2082 *
2083 * Returns # of bytes which addr and buf should be incresed.
2084 * (same number to @count).
2085 * If [addr...addr+count) doesn't includes any intersect with valid
2086 * vmalloc area, returns 0.
2087 *
2088 * This function checks that addr is a valid vmalloc'ed area, and
2089 * copy data from a buffer to the given addr. If specified range of
2090 * [addr...addr+count) includes some valid address, data is copied from
2091 * proper area of @buf. If there are memory holes, no copy to hole.
2092 * IOREMAP area is treated as memory hole and no copy is done.
2093 *
2094 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2095 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2096 *
2097 * Note: In usual ops, vwrite() is never necessary because the caller
2098 * should know vmalloc() area is valid and can use memcpy().
2099 * This is for routines which have to access vmalloc area without
2100 * any informaion, as /dev/kmem.
d0107eb0
KH
2101 */
2102
1da177e4
LT
2103long vwrite(char *buf, char *addr, unsigned long count)
2104{
e81ce85f
JK
2105 struct vmap_area *va;
2106 struct vm_struct *vm;
d0107eb0
KH
2107 char *vaddr;
2108 unsigned long n, buflen;
2109 int copied = 0;
1da177e4
LT
2110
2111 /* Don't allow overflow */
2112 if ((unsigned long) addr + count < count)
2113 count = -(unsigned long) addr;
d0107eb0 2114 buflen = count;
1da177e4 2115
e81ce85f
JK
2116 spin_lock(&vmap_area_lock);
2117 list_for_each_entry(va, &vmap_area_list, list) {
2118 if (!count)
2119 break;
2120
2121 if (!(va->flags & VM_VM_AREA))
2122 continue;
2123
2124 vm = va->vm;
2125 vaddr = (char *) vm->addr;
762216ab 2126 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2127 continue;
2128 while (addr < vaddr) {
2129 if (count == 0)
2130 goto finished;
2131 buf++;
2132 addr++;
2133 count--;
2134 }
762216ab 2135 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2136 if (n > count)
2137 n = count;
e81ce85f 2138 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2139 aligned_vwrite(buf, addr, n);
2140 copied++;
2141 }
2142 buf += n;
2143 addr += n;
2144 count -= n;
1da177e4
LT
2145 }
2146finished:
e81ce85f 2147 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2148 if (!copied)
2149 return 0;
2150 return buflen;
1da177e4 2151}
83342314
NP
2152
2153/**
e69e9d4a
HD
2154 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2155 * @vma: vma to cover
2156 * @uaddr: target user address to start at
2157 * @kaddr: virtual address of vmalloc kernel memory
2158 * @size: size of map area
7682486b
RD
2159 *
2160 * Returns: 0 for success, -Exxx on failure
83342314 2161 *
e69e9d4a
HD
2162 * This function checks that @kaddr is a valid vmalloc'ed area,
2163 * and that it is big enough to cover the range starting at
2164 * @uaddr in @vma. Will return failure if that criteria isn't
2165 * met.
83342314 2166 *
72fd4a35 2167 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2168 */
e69e9d4a
HD
2169int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2170 void *kaddr, unsigned long size)
83342314
NP
2171{
2172 struct vm_struct *area;
83342314 2173
e69e9d4a
HD
2174 size = PAGE_ALIGN(size);
2175
2176 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2177 return -EINVAL;
2178
e69e9d4a 2179 area = find_vm_area(kaddr);
83342314 2180 if (!area)
db64fe02 2181 return -EINVAL;
83342314
NP
2182
2183 if (!(area->flags & VM_USERMAP))
db64fe02 2184 return -EINVAL;
83342314 2185
e69e9d4a 2186 if (kaddr + size > area->addr + area->size)
db64fe02 2187 return -EINVAL;
83342314 2188
83342314 2189 do {
e69e9d4a 2190 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2191 int ret;
2192
83342314
NP
2193 ret = vm_insert_page(vma, uaddr, page);
2194 if (ret)
2195 return ret;
2196
2197 uaddr += PAGE_SIZE;
e69e9d4a
HD
2198 kaddr += PAGE_SIZE;
2199 size -= PAGE_SIZE;
2200 } while (size > 0);
83342314 2201
314e51b9 2202 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2203
db64fe02 2204 return 0;
83342314 2205}
e69e9d4a
HD
2206EXPORT_SYMBOL(remap_vmalloc_range_partial);
2207
2208/**
2209 * remap_vmalloc_range - map vmalloc pages to userspace
2210 * @vma: vma to cover (map full range of vma)
2211 * @addr: vmalloc memory
2212 * @pgoff: number of pages into addr before first page to map
2213 *
2214 * Returns: 0 for success, -Exxx on failure
2215 *
2216 * This function checks that addr is a valid vmalloc'ed area, and
2217 * that it is big enough to cover the vma. Will return failure if
2218 * that criteria isn't met.
2219 *
2220 * Similar to remap_pfn_range() (see mm/memory.c)
2221 */
2222int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2223 unsigned long pgoff)
2224{
2225 return remap_vmalloc_range_partial(vma, vma->vm_start,
2226 addr + (pgoff << PAGE_SHIFT),
2227 vma->vm_end - vma->vm_start);
2228}
83342314
NP
2229EXPORT_SYMBOL(remap_vmalloc_range);
2230
1eeb66a1
CH
2231/*
2232 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2233 * have one.
2234 */
3b32123d 2235void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2236{
2237}
5f4352fb
JF
2238
2239
2f569afd 2240static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2241{
cd12909c
DV
2242 pte_t ***p = data;
2243
2244 if (p) {
2245 *(*p) = pte;
2246 (*p)++;
2247 }
5f4352fb
JF
2248 return 0;
2249}
2250
2251/**
2252 * alloc_vm_area - allocate a range of kernel address space
2253 * @size: size of the area
cd12909c 2254 * @ptes: returns the PTEs for the address space
7682486b
RD
2255 *
2256 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2257 *
2258 * This function reserves a range of kernel address space, and
2259 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2260 * are created.
2261 *
2262 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2263 * allocated for the VM area are returned.
5f4352fb 2264 */
cd12909c 2265struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2266{
2267 struct vm_struct *area;
2268
23016969
CL
2269 area = get_vm_area_caller(size, VM_IOREMAP,
2270 __builtin_return_address(0));
5f4352fb
JF
2271 if (area == NULL)
2272 return NULL;
2273
2274 /*
2275 * This ensures that page tables are constructed for this region
2276 * of kernel virtual address space and mapped into init_mm.
2277 */
2278 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2279 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2280 free_vm_area(area);
2281 return NULL;
2282 }
2283
5f4352fb
JF
2284 return area;
2285}
2286EXPORT_SYMBOL_GPL(alloc_vm_area);
2287
2288void free_vm_area(struct vm_struct *area)
2289{
2290 struct vm_struct *ret;
2291 ret = remove_vm_area(area->addr);
2292 BUG_ON(ret != area);
2293 kfree(area);
2294}
2295EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2296
4f8b02b4 2297#ifdef CONFIG_SMP
ca23e405
TH
2298static struct vmap_area *node_to_va(struct rb_node *n)
2299{
2300 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2301}
2302
2303/**
2304 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2305 * @end: target address
2306 * @pnext: out arg for the next vmap_area
2307 * @pprev: out arg for the previous vmap_area
2308 *
2309 * Returns: %true if either or both of next and prev are found,
2310 * %false if no vmap_area exists
2311 *
2312 * Find vmap_areas end addresses of which enclose @end. ie. if not
2313 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2314 */
2315static bool pvm_find_next_prev(unsigned long end,
2316 struct vmap_area **pnext,
2317 struct vmap_area **pprev)
2318{
2319 struct rb_node *n = vmap_area_root.rb_node;
2320 struct vmap_area *va = NULL;
2321
2322 while (n) {
2323 va = rb_entry(n, struct vmap_area, rb_node);
2324 if (end < va->va_end)
2325 n = n->rb_left;
2326 else if (end > va->va_end)
2327 n = n->rb_right;
2328 else
2329 break;
2330 }
2331
2332 if (!va)
2333 return false;
2334
2335 if (va->va_end > end) {
2336 *pnext = va;
2337 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2338 } else {
2339 *pprev = va;
2340 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2341 }
2342 return true;
2343}
2344
2345/**
2346 * pvm_determine_end - find the highest aligned address between two vmap_areas
2347 * @pnext: in/out arg for the next vmap_area
2348 * @pprev: in/out arg for the previous vmap_area
2349 * @align: alignment
2350 *
2351 * Returns: determined end address
2352 *
2353 * Find the highest aligned address between *@pnext and *@pprev below
2354 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2355 * down address is between the end addresses of the two vmap_areas.
2356 *
2357 * Please note that the address returned by this function may fall
2358 * inside *@pnext vmap_area. The caller is responsible for checking
2359 * that.
2360 */
2361static unsigned long pvm_determine_end(struct vmap_area **pnext,
2362 struct vmap_area **pprev,
2363 unsigned long align)
2364{
2365 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2366 unsigned long addr;
2367
2368 if (*pnext)
2369 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2370 else
2371 addr = vmalloc_end;
2372
2373 while (*pprev && (*pprev)->va_end > addr) {
2374 *pnext = *pprev;
2375 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2376 }
2377
2378 return addr;
2379}
2380
2381/**
2382 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2383 * @offsets: array containing offset of each area
2384 * @sizes: array containing size of each area
2385 * @nr_vms: the number of areas to allocate
2386 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2387 *
2388 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2389 * vm_structs on success, %NULL on failure
2390 *
2391 * Percpu allocator wants to use congruent vm areas so that it can
2392 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2393 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2394 * be scattered pretty far, distance between two areas easily going up
2395 * to gigabytes. To avoid interacting with regular vmallocs, these
2396 * areas are allocated from top.
ca23e405
TH
2397 *
2398 * Despite its complicated look, this allocator is rather simple. It
2399 * does everything top-down and scans areas from the end looking for
2400 * matching slot. While scanning, if any of the areas overlaps with
2401 * existing vmap_area, the base address is pulled down to fit the
2402 * area. Scanning is repeated till all the areas fit and then all
2403 * necessary data structres are inserted and the result is returned.
2404 */
2405struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2406 const size_t *sizes, int nr_vms,
ec3f64fc 2407 size_t align)
ca23e405
TH
2408{
2409 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2410 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2411 struct vmap_area **vas, *prev, *next;
2412 struct vm_struct **vms;
2413 int area, area2, last_area, term_area;
2414 unsigned long base, start, end, last_end;
2415 bool purged = false;
2416
ca23e405 2417 /* verify parameters and allocate data structures */
891c49ab 2418 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2419 for (last_area = 0, area = 0; area < nr_vms; area++) {
2420 start = offsets[area];
2421 end = start + sizes[area];
2422
2423 /* is everything aligned properly? */
2424 BUG_ON(!IS_ALIGNED(offsets[area], align));
2425 BUG_ON(!IS_ALIGNED(sizes[area], align));
2426
2427 /* detect the area with the highest address */
2428 if (start > offsets[last_area])
2429 last_area = area;
2430
2431 for (area2 = 0; area2 < nr_vms; area2++) {
2432 unsigned long start2 = offsets[area2];
2433 unsigned long end2 = start2 + sizes[area2];
2434
2435 if (area2 == area)
2436 continue;
2437
2438 BUG_ON(start2 >= start && start2 < end);
2439 BUG_ON(end2 <= end && end2 > start);
2440 }
2441 }
2442 last_end = offsets[last_area] + sizes[last_area];
2443
2444 if (vmalloc_end - vmalloc_start < last_end) {
2445 WARN_ON(true);
2446 return NULL;
2447 }
2448
4d67d860
TM
2449 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2450 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2451 if (!vas || !vms)
f1db7afd 2452 goto err_free2;
ca23e405
TH
2453
2454 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2455 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2456 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2457 if (!vas[area] || !vms[area])
2458 goto err_free;
2459 }
2460retry:
2461 spin_lock(&vmap_area_lock);
2462
2463 /* start scanning - we scan from the top, begin with the last area */
2464 area = term_area = last_area;
2465 start = offsets[area];
2466 end = start + sizes[area];
2467
2468 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2469 base = vmalloc_end - last_end;
2470 goto found;
2471 }
2472 base = pvm_determine_end(&next, &prev, align) - end;
2473
2474 while (true) {
2475 BUG_ON(next && next->va_end <= base + end);
2476 BUG_ON(prev && prev->va_end > base + end);
2477
2478 /*
2479 * base might have underflowed, add last_end before
2480 * comparing.
2481 */
2482 if (base + last_end < vmalloc_start + last_end) {
2483 spin_unlock(&vmap_area_lock);
2484 if (!purged) {
2485 purge_vmap_area_lazy();
2486 purged = true;
2487 goto retry;
2488 }
2489 goto err_free;
2490 }
2491
2492 /*
2493 * If next overlaps, move base downwards so that it's
2494 * right below next and then recheck.
2495 */
2496 if (next && next->va_start < base + end) {
2497 base = pvm_determine_end(&next, &prev, align) - end;
2498 term_area = area;
2499 continue;
2500 }
2501
2502 /*
2503 * If prev overlaps, shift down next and prev and move
2504 * base so that it's right below new next and then
2505 * recheck.
2506 */
2507 if (prev && prev->va_end > base + start) {
2508 next = prev;
2509 prev = node_to_va(rb_prev(&next->rb_node));
2510 base = pvm_determine_end(&next, &prev, align) - end;
2511 term_area = area;
2512 continue;
2513 }
2514
2515 /*
2516 * This area fits, move on to the previous one. If
2517 * the previous one is the terminal one, we're done.
2518 */
2519 area = (area + nr_vms - 1) % nr_vms;
2520 if (area == term_area)
2521 break;
2522 start = offsets[area];
2523 end = start + sizes[area];
2524 pvm_find_next_prev(base + end, &next, &prev);
2525 }
2526found:
2527 /* we've found a fitting base, insert all va's */
2528 for (area = 0; area < nr_vms; area++) {
2529 struct vmap_area *va = vas[area];
2530
2531 va->va_start = base + offsets[area];
2532 va->va_end = va->va_start + sizes[area];
2533 __insert_vmap_area(va);
2534 }
2535
2536 vmap_area_pcpu_hole = base + offsets[last_area];
2537
2538 spin_unlock(&vmap_area_lock);
2539
2540 /* insert all vm's */
2541 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2542 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2543 pcpu_get_vm_areas);
ca23e405
TH
2544
2545 kfree(vas);
2546 return vms;
2547
2548err_free:
2549 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2550 kfree(vas[area]);
2551 kfree(vms[area]);
ca23e405 2552 }
f1db7afd 2553err_free2:
ca23e405
TH
2554 kfree(vas);
2555 kfree(vms);
2556 return NULL;
2557}
2558
2559/**
2560 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2561 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2562 * @nr_vms: the number of allocated areas
2563 *
2564 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2565 */
2566void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2567{
2568 int i;
2569
2570 for (i = 0; i < nr_vms; i++)
2571 free_vm_area(vms[i]);
2572 kfree(vms);
2573}
4f8b02b4 2574#endif /* CONFIG_SMP */
a10aa579
CL
2575
2576#ifdef CONFIG_PROC_FS
2577static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2578 __acquires(&vmap_area_lock)
a10aa579
CL
2579{
2580 loff_t n = *pos;
d4033afd 2581 struct vmap_area *va;
a10aa579 2582
d4033afd 2583 spin_lock(&vmap_area_lock);
6219c2a2 2584 va = list_first_entry(&vmap_area_list, typeof(*va), list);
d4033afd 2585 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2586 n--;
6219c2a2 2587 va = list_next_entry(va, list);
a10aa579 2588 }
d4033afd
JK
2589 if (!n && &va->list != &vmap_area_list)
2590 return va;
a10aa579
CL
2591
2592 return NULL;
2593
2594}
2595
2596static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2597{
d4033afd 2598 struct vmap_area *va = p, *next;
a10aa579
CL
2599
2600 ++*pos;
6219c2a2 2601 next = list_next_entry(va, list);
d4033afd
JK
2602 if (&next->list != &vmap_area_list)
2603 return next;
2604
2605 return NULL;
a10aa579
CL
2606}
2607
2608static void s_stop(struct seq_file *m, void *p)
d4033afd 2609 __releases(&vmap_area_lock)
a10aa579 2610{
d4033afd 2611 spin_unlock(&vmap_area_lock);
a10aa579
CL
2612}
2613
a47a126a
ED
2614static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2615{
e5adfffc 2616 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2617 unsigned int nr, *counters = m->private;
2618
2619 if (!counters)
2620 return;
2621
af12346c
WL
2622 if (v->flags & VM_UNINITIALIZED)
2623 return;
7e5b528b
DV
2624 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2625 smp_rmb();
af12346c 2626
a47a126a
ED
2627 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2628
2629 for (nr = 0; nr < v->nr_pages; nr++)
2630 counters[page_to_nid(v->pages[nr])]++;
2631
2632 for_each_node_state(nr, N_HIGH_MEMORY)
2633 if (counters[nr])
2634 seq_printf(m, " N%u=%u", nr, counters[nr]);
2635 }
2636}
2637
a10aa579
CL
2638static int s_show(struct seq_file *m, void *p)
2639{
d4033afd
JK
2640 struct vmap_area *va = p;
2641 struct vm_struct *v;
2642
c2ce8c14
WL
2643 /*
2644 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2645 * behalf of vmap area is being tear down or vm_map_ram allocation.
2646 */
2647 if (!(va->flags & VM_VM_AREA))
d4033afd 2648 return 0;
d4033afd
JK
2649
2650 v = va->vm;
a10aa579 2651
45ec1690 2652 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2653 v->addr, v->addr + v->size, v->size);
2654
62c70bce
JP
2655 if (v->caller)
2656 seq_printf(m, " %pS", v->caller);
23016969 2657
a10aa579
CL
2658 if (v->nr_pages)
2659 seq_printf(m, " pages=%d", v->nr_pages);
2660
2661 if (v->phys_addr)
ffa71f33 2662 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2663
2664 if (v->flags & VM_IOREMAP)
f4527c90 2665 seq_puts(m, " ioremap");
a10aa579
CL
2666
2667 if (v->flags & VM_ALLOC)
f4527c90 2668 seq_puts(m, " vmalloc");
a10aa579
CL
2669
2670 if (v->flags & VM_MAP)
f4527c90 2671 seq_puts(m, " vmap");
a10aa579
CL
2672
2673 if (v->flags & VM_USERMAP)
f4527c90 2674 seq_puts(m, " user");
a10aa579 2675
244d63ee 2676 if (is_vmalloc_addr(v->pages))
f4527c90 2677 seq_puts(m, " vpages");
a10aa579 2678
a47a126a 2679 show_numa_info(m, v);
a10aa579
CL
2680 seq_putc(m, '\n');
2681 return 0;
2682}
2683
5f6a6a9c 2684static const struct seq_operations vmalloc_op = {
a10aa579
CL
2685 .start = s_start,
2686 .next = s_next,
2687 .stop = s_stop,
2688 .show = s_show,
2689};
5f6a6a9c
AD
2690
2691static int vmalloc_open(struct inode *inode, struct file *file)
2692{
703394c1
RJ
2693 if (IS_ENABLED(CONFIG_NUMA))
2694 return seq_open_private(file, &vmalloc_op,
2695 nr_node_ids * sizeof(unsigned int));
2696 else
2697 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2698}
2699
2700static const struct file_operations proc_vmalloc_operations = {
2701 .open = vmalloc_open,
2702 .read = seq_read,
2703 .llseek = seq_lseek,
2704 .release = seq_release_private,
2705};
2706
2707static int __init proc_vmalloc_init(void)
2708{
2709 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2710 return 0;
2711}
2712module_init(proc_vmalloc_init);
db3808c1 2713
a10aa579
CL
2714#endif
2715
This page took 1.442347 seconds and 5 git commands to generate.