memcg: remove MEMCG_NR_FILE_MAPPED
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
3b38722e
MH
142
143static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144{
e839b6a1
MH
145 struct mem_cgroup *root = sc->target_mem_cgroup;
146 return !mem_cgroup_disabled() &&
147 mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE;
3b38722e 148}
91a45470 149#else
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
152 return true;
153}
3b38722e
MH
154
155static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
156{
157 return false;
158}
91a45470
KH
159#endif
160
6e543d57
LD
161unsigned long zone_reclaimable_pages(struct zone *zone)
162{
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173}
174
175bool zone_reclaimable(struct zone *zone)
176{
177 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
178}
179
4d7dcca2 180static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 181{
c3c787e8 182 if (!mem_cgroup_disabled())
4d7dcca2 183 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 184
074291fe 185 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
186}
187
1da177e4
LT
188/*
189 * Add a shrinker callback to be called from the vm
190 */
8e1f936b 191void register_shrinker(struct shrinker *shrinker)
1da177e4 192{
83aeeada 193 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
194 down_write(&shrinker_rwsem);
195 list_add_tail(&shrinker->list, &shrinker_list);
196 up_write(&shrinker_rwsem);
1da177e4 197}
8e1f936b 198EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
199
200/*
201 * Remove one
202 */
8e1f936b 203void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
204{
205 down_write(&shrinker_rwsem);
206 list_del(&shrinker->list);
207 up_write(&shrinker_rwsem);
1da177e4 208}
8e1f936b 209EXPORT_SYMBOL(unregister_shrinker);
1da177e4 210
1495f230
YH
211static inline int do_shrinker_shrink(struct shrinker *shrinker,
212 struct shrink_control *sc,
213 unsigned long nr_to_scan)
214{
215 sc->nr_to_scan = nr_to_scan;
216 return (*shrinker->shrink)(shrinker, sc);
217}
218
1da177e4
LT
219#define SHRINK_BATCH 128
220/*
221 * Call the shrink functions to age shrinkable caches
222 *
223 * Here we assume it costs one seek to replace a lru page and that it also
224 * takes a seek to recreate a cache object. With this in mind we age equal
225 * percentages of the lru and ageable caches. This should balance the seeks
226 * generated by these structures.
227 *
183ff22b 228 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
229 * slab to avoid swapping.
230 *
231 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
232 *
233 * `lru_pages' represents the number of on-LRU pages in all the zones which
234 * are eligible for the caller's allocation attempt. It is used for balancing
235 * slab reclaim versus page reclaim.
b15e0905 236 *
237 * Returns the number of slab objects which we shrunk.
1da177e4 238 */
a09ed5e0 239unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 240 unsigned long nr_pages_scanned,
a09ed5e0 241 unsigned long lru_pages)
1da177e4
LT
242{
243 struct shrinker *shrinker;
69e05944 244 unsigned long ret = 0;
1da177e4 245
1495f230
YH
246 if (nr_pages_scanned == 0)
247 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 248
f06590bd
MK
249 if (!down_read_trylock(&shrinker_rwsem)) {
250 /* Assume we'll be able to shrink next time */
251 ret = 1;
252 goto out;
253 }
1da177e4
LT
254
255 list_for_each_entry(shrinker, &shrinker_list, list) {
256 unsigned long long delta;
635697c6
KK
257 long total_scan;
258 long max_pass;
09576073 259 int shrink_ret = 0;
acf92b48
DC
260 long nr;
261 long new_nr;
e9299f50
DC
262 long batch_size = shrinker->batch ? shrinker->batch
263 : SHRINK_BATCH;
1da177e4 264
635697c6
KK
265 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
266 if (max_pass <= 0)
267 continue;
268
acf92b48
DC
269 /*
270 * copy the current shrinker scan count into a local variable
271 * and zero it so that other concurrent shrinker invocations
272 * don't also do this scanning work.
273 */
83aeeada 274 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
275
276 total_scan = nr;
1495f230 277 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 278 delta *= max_pass;
1da177e4 279 do_div(delta, lru_pages + 1);
acf92b48
DC
280 total_scan += delta;
281 if (total_scan < 0) {
88c3bd70
DR
282 printk(KERN_ERR "shrink_slab: %pF negative objects to "
283 "delete nr=%ld\n",
acf92b48
DC
284 shrinker->shrink, total_scan);
285 total_scan = max_pass;
ea164d73
AA
286 }
287
3567b59a
DC
288 /*
289 * We need to avoid excessive windup on filesystem shrinkers
290 * due to large numbers of GFP_NOFS allocations causing the
291 * shrinkers to return -1 all the time. This results in a large
292 * nr being built up so when a shrink that can do some work
293 * comes along it empties the entire cache due to nr >>>
294 * max_pass. This is bad for sustaining a working set in
295 * memory.
296 *
297 * Hence only allow the shrinker to scan the entire cache when
298 * a large delta change is calculated directly.
299 */
300 if (delta < max_pass / 4)
301 total_scan = min(total_scan, max_pass / 2);
302
ea164d73
AA
303 /*
304 * Avoid risking looping forever due to too large nr value:
305 * never try to free more than twice the estimate number of
306 * freeable entries.
307 */
acf92b48
DC
308 if (total_scan > max_pass * 2)
309 total_scan = max_pass * 2;
1da177e4 310
acf92b48 311 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
312 nr_pages_scanned, lru_pages,
313 max_pass, delta, total_scan);
314
e9299f50 315 while (total_scan >= batch_size) {
b15e0905 316 int nr_before;
1da177e4 317
1495f230
YH
318 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
319 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 320 batch_size);
1da177e4
LT
321 if (shrink_ret == -1)
322 break;
b15e0905 323 if (shrink_ret < nr_before)
324 ret += nr_before - shrink_ret;
e9299f50
DC
325 count_vm_events(SLABS_SCANNED, batch_size);
326 total_scan -= batch_size;
1da177e4
LT
327
328 cond_resched();
329 }
330
acf92b48
DC
331 /*
332 * move the unused scan count back into the shrinker in a
333 * manner that handles concurrent updates. If we exhausted the
334 * scan, there is no need to do an update.
335 */
83aeeada
KK
336 if (total_scan > 0)
337 new_nr = atomic_long_add_return(total_scan,
338 &shrinker->nr_in_batch);
339 else
340 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
341
342 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
343 }
344 up_read(&shrinker_rwsem);
f06590bd
MK
345out:
346 cond_resched();
b15e0905 347 return ret;
1da177e4
LT
348}
349
1da177e4
LT
350static inline int is_page_cache_freeable(struct page *page)
351{
ceddc3a5
JW
352 /*
353 * A freeable page cache page is referenced only by the caller
354 * that isolated the page, the page cache radix tree and
355 * optional buffer heads at page->private.
356 */
edcf4748 357 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
358}
359
7d3579e8
KM
360static int may_write_to_queue(struct backing_dev_info *bdi,
361 struct scan_control *sc)
1da177e4 362{
930d9152 363 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
364 return 1;
365 if (!bdi_write_congested(bdi))
366 return 1;
367 if (bdi == current->backing_dev_info)
368 return 1;
369 return 0;
370}
371
372/*
373 * We detected a synchronous write error writing a page out. Probably
374 * -ENOSPC. We need to propagate that into the address_space for a subsequent
375 * fsync(), msync() or close().
376 *
377 * The tricky part is that after writepage we cannot touch the mapping: nothing
378 * prevents it from being freed up. But we have a ref on the page and once
379 * that page is locked, the mapping is pinned.
380 *
381 * We're allowed to run sleeping lock_page() here because we know the caller has
382 * __GFP_FS.
383 */
384static void handle_write_error(struct address_space *mapping,
385 struct page *page, int error)
386{
7eaceacc 387 lock_page(page);
3e9f45bd
GC
388 if (page_mapping(page) == mapping)
389 mapping_set_error(mapping, error);
1da177e4
LT
390 unlock_page(page);
391}
392
04e62a29
CL
393/* possible outcome of pageout() */
394typedef enum {
395 /* failed to write page out, page is locked */
396 PAGE_KEEP,
397 /* move page to the active list, page is locked */
398 PAGE_ACTIVATE,
399 /* page has been sent to the disk successfully, page is unlocked */
400 PAGE_SUCCESS,
401 /* page is clean and locked */
402 PAGE_CLEAN,
403} pageout_t;
404
1da177e4 405/*
1742f19f
AM
406 * pageout is called by shrink_page_list() for each dirty page.
407 * Calls ->writepage().
1da177e4 408 */
c661b078 409static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 410 struct scan_control *sc)
1da177e4
LT
411{
412 /*
413 * If the page is dirty, only perform writeback if that write
414 * will be non-blocking. To prevent this allocation from being
415 * stalled by pagecache activity. But note that there may be
416 * stalls if we need to run get_block(). We could test
417 * PagePrivate for that.
418 *
6aceb53b 419 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
420 * this page's queue, we can perform writeback even if that
421 * will block.
422 *
423 * If the page is swapcache, write it back even if that would
424 * block, for some throttling. This happens by accident, because
425 * swap_backing_dev_info is bust: it doesn't reflect the
426 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
427 */
428 if (!is_page_cache_freeable(page))
429 return PAGE_KEEP;
430 if (!mapping) {
431 /*
432 * Some data journaling orphaned pages can have
433 * page->mapping == NULL while being dirty with clean buffers.
434 */
266cf658 435 if (page_has_private(page)) {
1da177e4
LT
436 if (try_to_free_buffers(page)) {
437 ClearPageDirty(page);
d40cee24 438 printk("%s: orphaned page\n", __func__);
1da177e4
LT
439 return PAGE_CLEAN;
440 }
441 }
442 return PAGE_KEEP;
443 }
444 if (mapping->a_ops->writepage == NULL)
445 return PAGE_ACTIVATE;
0e093d99 446 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
447 return PAGE_KEEP;
448
449 if (clear_page_dirty_for_io(page)) {
450 int res;
451 struct writeback_control wbc = {
452 .sync_mode = WB_SYNC_NONE,
453 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
454 .range_start = 0,
455 .range_end = LLONG_MAX,
1da177e4
LT
456 .for_reclaim = 1,
457 };
458
459 SetPageReclaim(page);
460 res = mapping->a_ops->writepage(page, &wbc);
461 if (res < 0)
462 handle_write_error(mapping, page, res);
994fc28c 463 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
464 ClearPageReclaim(page);
465 return PAGE_ACTIVATE;
466 }
c661b078 467
1da177e4
LT
468 if (!PageWriteback(page)) {
469 /* synchronous write or broken a_ops? */
470 ClearPageReclaim(page);
471 }
23b9da55 472 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 473 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
474 return PAGE_SUCCESS;
475 }
476
477 return PAGE_CLEAN;
478}
479
a649fd92 480/*
e286781d
NP
481 * Same as remove_mapping, but if the page is removed from the mapping, it
482 * gets returned with a refcount of 0.
a649fd92 483 */
e286781d 484static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 485{
28e4d965
NP
486 BUG_ON(!PageLocked(page));
487 BUG_ON(mapping != page_mapping(page));
49d2e9cc 488
19fd6231 489 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 490 /*
0fd0e6b0
NP
491 * The non racy check for a busy page.
492 *
493 * Must be careful with the order of the tests. When someone has
494 * a ref to the page, it may be possible that they dirty it then
495 * drop the reference. So if PageDirty is tested before page_count
496 * here, then the following race may occur:
497 *
498 * get_user_pages(&page);
499 * [user mapping goes away]
500 * write_to(page);
501 * !PageDirty(page) [good]
502 * SetPageDirty(page);
503 * put_page(page);
504 * !page_count(page) [good, discard it]
505 *
506 * [oops, our write_to data is lost]
507 *
508 * Reversing the order of the tests ensures such a situation cannot
509 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510 * load is not satisfied before that of page->_count.
511 *
512 * Note that if SetPageDirty is always performed via set_page_dirty,
513 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 514 */
e286781d 515 if (!page_freeze_refs(page, 2))
49d2e9cc 516 goto cannot_free;
e286781d
NP
517 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518 if (unlikely(PageDirty(page))) {
519 page_unfreeze_refs(page, 2);
49d2e9cc 520 goto cannot_free;
e286781d 521 }
49d2e9cc
CL
522
523 if (PageSwapCache(page)) {
524 swp_entry_t swap = { .val = page_private(page) };
525 __delete_from_swap_cache(page);
19fd6231 526 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 527 swapcache_free(swap, page);
e286781d 528 } else {
6072d13c
LT
529 void (*freepage)(struct page *);
530
531 freepage = mapping->a_ops->freepage;
532
e64a782f 533 __delete_from_page_cache(page);
19fd6231 534 spin_unlock_irq(&mapping->tree_lock);
e767e056 535 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
536
537 if (freepage != NULL)
538 freepage(page);
49d2e9cc
CL
539 }
540
49d2e9cc
CL
541 return 1;
542
543cannot_free:
19fd6231 544 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
545 return 0;
546}
547
e286781d
NP
548/*
549 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
550 * someone else has a ref on the page, abort and return 0. If it was
551 * successfully detached, return 1. Assumes the caller has a single ref on
552 * this page.
553 */
554int remove_mapping(struct address_space *mapping, struct page *page)
555{
556 if (__remove_mapping(mapping, page)) {
557 /*
558 * Unfreezing the refcount with 1 rather than 2 effectively
559 * drops the pagecache ref for us without requiring another
560 * atomic operation.
561 */
562 page_unfreeze_refs(page, 1);
563 return 1;
564 }
565 return 0;
566}
567
894bc310
LS
568/**
569 * putback_lru_page - put previously isolated page onto appropriate LRU list
570 * @page: page to be put back to appropriate lru list
571 *
572 * Add previously isolated @page to appropriate LRU list.
573 * Page may still be unevictable for other reasons.
574 *
575 * lru_lock must not be held, interrupts must be enabled.
576 */
894bc310
LS
577void putback_lru_page(struct page *page)
578{
0ec3b74c 579 bool is_unevictable;
bbfd28ee 580 int was_unevictable = PageUnevictable(page);
894bc310
LS
581
582 VM_BUG_ON(PageLRU(page));
583
584redo:
585 ClearPageUnevictable(page);
586
39b5f29a 587 if (page_evictable(page)) {
894bc310
LS
588 /*
589 * For evictable pages, we can use the cache.
590 * In event of a race, worst case is we end up with an
591 * unevictable page on [in]active list.
592 * We know how to handle that.
593 */
0ec3b74c 594 is_unevictable = false;
c53954a0 595 lru_cache_add(page);
894bc310
LS
596 } else {
597 /*
598 * Put unevictable pages directly on zone's unevictable
599 * list.
600 */
0ec3b74c 601 is_unevictable = true;
894bc310 602 add_page_to_unevictable_list(page);
6a7b9548 603 /*
21ee9f39
MK
604 * When racing with an mlock or AS_UNEVICTABLE clearing
605 * (page is unlocked) make sure that if the other thread
606 * does not observe our setting of PG_lru and fails
24513264 607 * isolation/check_move_unevictable_pages,
21ee9f39 608 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
609 * the page back to the evictable list.
610 *
21ee9f39 611 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
612 */
613 smp_mb();
894bc310 614 }
894bc310
LS
615
616 /*
617 * page's status can change while we move it among lru. If an evictable
618 * page is on unevictable list, it never be freed. To avoid that,
619 * check after we added it to the list, again.
620 */
0ec3b74c 621 if (is_unevictable && page_evictable(page)) {
894bc310
LS
622 if (!isolate_lru_page(page)) {
623 put_page(page);
624 goto redo;
625 }
626 /* This means someone else dropped this page from LRU
627 * So, it will be freed or putback to LRU again. There is
628 * nothing to do here.
629 */
630 }
631
0ec3b74c 632 if (was_unevictable && !is_unevictable)
bbfd28ee 633 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 634 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
635 count_vm_event(UNEVICTABLE_PGCULLED);
636
894bc310
LS
637 put_page(page); /* drop ref from isolate */
638}
639
dfc8d636
JW
640enum page_references {
641 PAGEREF_RECLAIM,
642 PAGEREF_RECLAIM_CLEAN,
64574746 643 PAGEREF_KEEP,
dfc8d636
JW
644 PAGEREF_ACTIVATE,
645};
646
647static enum page_references page_check_references(struct page *page,
648 struct scan_control *sc)
649{
64574746 650 int referenced_ptes, referenced_page;
dfc8d636 651 unsigned long vm_flags;
dfc8d636 652
c3ac9a8a
JW
653 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
654 &vm_flags);
64574746 655 referenced_page = TestClearPageReferenced(page);
dfc8d636 656
dfc8d636
JW
657 /*
658 * Mlock lost the isolation race with us. Let try_to_unmap()
659 * move the page to the unevictable list.
660 */
661 if (vm_flags & VM_LOCKED)
662 return PAGEREF_RECLAIM;
663
64574746 664 if (referenced_ptes) {
e4898273 665 if (PageSwapBacked(page))
64574746
JW
666 return PAGEREF_ACTIVATE;
667 /*
668 * All mapped pages start out with page table
669 * references from the instantiating fault, so we need
670 * to look twice if a mapped file page is used more
671 * than once.
672 *
673 * Mark it and spare it for another trip around the
674 * inactive list. Another page table reference will
675 * lead to its activation.
676 *
677 * Note: the mark is set for activated pages as well
678 * so that recently deactivated but used pages are
679 * quickly recovered.
680 */
681 SetPageReferenced(page);
682
34dbc67a 683 if (referenced_page || referenced_ptes > 1)
64574746
JW
684 return PAGEREF_ACTIVATE;
685
c909e993
KK
686 /*
687 * Activate file-backed executable pages after first usage.
688 */
689 if (vm_flags & VM_EXEC)
690 return PAGEREF_ACTIVATE;
691
64574746
JW
692 return PAGEREF_KEEP;
693 }
dfc8d636
JW
694
695 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 696 if (referenced_page && !PageSwapBacked(page))
64574746
JW
697 return PAGEREF_RECLAIM_CLEAN;
698
699 return PAGEREF_RECLAIM;
dfc8d636
JW
700}
701
e2be15f6
MG
702/* Check if a page is dirty or under writeback */
703static void page_check_dirty_writeback(struct page *page,
704 bool *dirty, bool *writeback)
705{
b4597226
MG
706 struct address_space *mapping;
707
e2be15f6
MG
708 /*
709 * Anonymous pages are not handled by flushers and must be written
710 * from reclaim context. Do not stall reclaim based on them
711 */
712 if (!page_is_file_cache(page)) {
713 *dirty = false;
714 *writeback = false;
715 return;
716 }
717
718 /* By default assume that the page flags are accurate */
719 *dirty = PageDirty(page);
720 *writeback = PageWriteback(page);
b4597226
MG
721
722 /* Verify dirty/writeback state if the filesystem supports it */
723 if (!page_has_private(page))
724 return;
725
726 mapping = page_mapping(page);
727 if (mapping && mapping->a_ops->is_dirty_writeback)
728 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
729}
730
1da177e4 731/*
1742f19f 732 * shrink_page_list() returns the number of reclaimed pages
1da177e4 733 */
1742f19f 734static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 735 struct zone *zone,
f84f6e2b 736 struct scan_control *sc,
02c6de8d 737 enum ttu_flags ttu_flags,
8e950282 738 unsigned long *ret_nr_dirty,
d43006d5 739 unsigned long *ret_nr_unqueued_dirty,
8e950282 740 unsigned long *ret_nr_congested,
02c6de8d 741 unsigned long *ret_nr_writeback,
b1a6f21e 742 unsigned long *ret_nr_immediate,
02c6de8d 743 bool force_reclaim)
1da177e4
LT
744{
745 LIST_HEAD(ret_pages);
abe4c3b5 746 LIST_HEAD(free_pages);
1da177e4 747 int pgactivate = 0;
d43006d5 748 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
749 unsigned long nr_dirty = 0;
750 unsigned long nr_congested = 0;
05ff5137 751 unsigned long nr_reclaimed = 0;
92df3a72 752 unsigned long nr_writeback = 0;
b1a6f21e 753 unsigned long nr_immediate = 0;
1da177e4
LT
754
755 cond_resched();
756
69980e31 757 mem_cgroup_uncharge_start();
1da177e4
LT
758 while (!list_empty(page_list)) {
759 struct address_space *mapping;
760 struct page *page;
761 int may_enter_fs;
02c6de8d 762 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 763 bool dirty, writeback;
1da177e4
LT
764
765 cond_resched();
766
767 page = lru_to_page(page_list);
768 list_del(&page->lru);
769
529ae9aa 770 if (!trylock_page(page))
1da177e4
LT
771 goto keep;
772
725d704e 773 VM_BUG_ON(PageActive(page));
6a18adb3 774 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
775
776 sc->nr_scanned++;
80e43426 777
39b5f29a 778 if (unlikely(!page_evictable(page)))
b291f000 779 goto cull_mlocked;
894bc310 780
a6dc60f8 781 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
782 goto keep_locked;
783
1da177e4
LT
784 /* Double the slab pressure for mapped and swapcache pages */
785 if (page_mapped(page) || PageSwapCache(page))
786 sc->nr_scanned++;
787
c661b078
AW
788 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
789 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
790
e2be15f6
MG
791 /*
792 * The number of dirty pages determines if a zone is marked
793 * reclaim_congested which affects wait_iff_congested. kswapd
794 * will stall and start writing pages if the tail of the LRU
795 * is all dirty unqueued pages.
796 */
797 page_check_dirty_writeback(page, &dirty, &writeback);
798 if (dirty || writeback)
799 nr_dirty++;
800
801 if (dirty && !writeback)
802 nr_unqueued_dirty++;
803
d04e8acd
MG
804 /*
805 * Treat this page as congested if the underlying BDI is or if
806 * pages are cycling through the LRU so quickly that the
807 * pages marked for immediate reclaim are making it to the
808 * end of the LRU a second time.
809 */
e2be15f6 810 mapping = page_mapping(page);
d04e8acd
MG
811 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
812 (writeback && PageReclaim(page)))
e2be15f6
MG
813 nr_congested++;
814
283aba9f
MG
815 /*
816 * If a page at the tail of the LRU is under writeback, there
817 * are three cases to consider.
818 *
819 * 1) If reclaim is encountering an excessive number of pages
820 * under writeback and this page is both under writeback and
821 * PageReclaim then it indicates that pages are being queued
822 * for IO but are being recycled through the LRU before the
823 * IO can complete. Waiting on the page itself risks an
824 * indefinite stall if it is impossible to writeback the
825 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
826 * note that the LRU is being scanned too quickly and the
827 * caller can stall after page list has been processed.
283aba9f
MG
828 *
829 * 2) Global reclaim encounters a page, memcg encounters a
830 * page that is not marked for immediate reclaim or
831 * the caller does not have __GFP_IO. In this case mark
832 * the page for immediate reclaim and continue scanning.
833 *
834 * __GFP_IO is checked because a loop driver thread might
835 * enter reclaim, and deadlock if it waits on a page for
836 * which it is needed to do the write (loop masks off
837 * __GFP_IO|__GFP_FS for this reason); but more thought
838 * would probably show more reasons.
839 *
840 * Don't require __GFP_FS, since we're not going into the
841 * FS, just waiting on its writeback completion. Worryingly,
842 * ext4 gfs2 and xfs allocate pages with
843 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
844 * may_enter_fs here is liable to OOM on them.
845 *
846 * 3) memcg encounters a page that is not already marked
847 * PageReclaim. memcg does not have any dirty pages
848 * throttling so we could easily OOM just because too many
849 * pages are in writeback and there is nothing else to
850 * reclaim. Wait for the writeback to complete.
851 */
c661b078 852 if (PageWriteback(page)) {
283aba9f
MG
853 /* Case 1 above */
854 if (current_is_kswapd() &&
855 PageReclaim(page) &&
856 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
857 nr_immediate++;
858 goto keep_locked;
283aba9f
MG
859
860 /* Case 2 above */
861 } else if (global_reclaim(sc) ||
c3b94f44
HD
862 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
863 /*
864 * This is slightly racy - end_page_writeback()
865 * might have just cleared PageReclaim, then
866 * setting PageReclaim here end up interpreted
867 * as PageReadahead - but that does not matter
868 * enough to care. What we do want is for this
869 * page to have PageReclaim set next time memcg
870 * reclaim reaches the tests above, so it will
871 * then wait_on_page_writeback() to avoid OOM;
872 * and it's also appropriate in global reclaim.
873 */
874 SetPageReclaim(page);
e62e384e 875 nr_writeback++;
283aba9f 876
c3b94f44 877 goto keep_locked;
283aba9f
MG
878
879 /* Case 3 above */
880 } else {
881 wait_on_page_writeback(page);
e62e384e 882 }
c661b078 883 }
1da177e4 884
02c6de8d
MK
885 if (!force_reclaim)
886 references = page_check_references(page, sc);
887
dfc8d636
JW
888 switch (references) {
889 case PAGEREF_ACTIVATE:
1da177e4 890 goto activate_locked;
64574746
JW
891 case PAGEREF_KEEP:
892 goto keep_locked;
dfc8d636
JW
893 case PAGEREF_RECLAIM:
894 case PAGEREF_RECLAIM_CLEAN:
895 ; /* try to reclaim the page below */
896 }
1da177e4 897
1da177e4
LT
898 /*
899 * Anonymous process memory has backing store?
900 * Try to allocate it some swap space here.
901 */
b291f000 902 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
903 if (!(sc->gfp_mask & __GFP_IO))
904 goto keep_locked;
5bc7b8ac 905 if (!add_to_swap(page, page_list))
1da177e4 906 goto activate_locked;
63eb6b93 907 may_enter_fs = 1;
1da177e4 908
e2be15f6
MG
909 /* Adding to swap updated mapping */
910 mapping = page_mapping(page);
911 }
1da177e4
LT
912
913 /*
914 * The page is mapped into the page tables of one or more
915 * processes. Try to unmap it here.
916 */
917 if (page_mapped(page) && mapping) {
02c6de8d 918 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
919 case SWAP_FAIL:
920 goto activate_locked;
921 case SWAP_AGAIN:
922 goto keep_locked;
b291f000
NP
923 case SWAP_MLOCK:
924 goto cull_mlocked;
1da177e4
LT
925 case SWAP_SUCCESS:
926 ; /* try to free the page below */
927 }
928 }
929
930 if (PageDirty(page)) {
ee72886d
MG
931 /*
932 * Only kswapd can writeback filesystem pages to
d43006d5
MG
933 * avoid risk of stack overflow but only writeback
934 * if many dirty pages have been encountered.
ee72886d 935 */
f84f6e2b 936 if (page_is_file_cache(page) &&
9e3b2f8c 937 (!current_is_kswapd() ||
d43006d5 938 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
939 /*
940 * Immediately reclaim when written back.
941 * Similar in principal to deactivate_page()
942 * except we already have the page isolated
943 * and know it's dirty
944 */
945 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
946 SetPageReclaim(page);
947
ee72886d
MG
948 goto keep_locked;
949 }
950
dfc8d636 951 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 952 goto keep_locked;
4dd4b920 953 if (!may_enter_fs)
1da177e4 954 goto keep_locked;
52a8363e 955 if (!sc->may_writepage)
1da177e4
LT
956 goto keep_locked;
957
958 /* Page is dirty, try to write it out here */
7d3579e8 959 switch (pageout(page, mapping, sc)) {
1da177e4
LT
960 case PAGE_KEEP:
961 goto keep_locked;
962 case PAGE_ACTIVATE:
963 goto activate_locked;
964 case PAGE_SUCCESS:
7d3579e8 965 if (PageWriteback(page))
41ac1999 966 goto keep;
7d3579e8 967 if (PageDirty(page))
1da177e4 968 goto keep;
7d3579e8 969
1da177e4
LT
970 /*
971 * A synchronous write - probably a ramdisk. Go
972 * ahead and try to reclaim the page.
973 */
529ae9aa 974 if (!trylock_page(page))
1da177e4
LT
975 goto keep;
976 if (PageDirty(page) || PageWriteback(page))
977 goto keep_locked;
978 mapping = page_mapping(page);
979 case PAGE_CLEAN:
980 ; /* try to free the page below */
981 }
982 }
983
984 /*
985 * If the page has buffers, try to free the buffer mappings
986 * associated with this page. If we succeed we try to free
987 * the page as well.
988 *
989 * We do this even if the page is PageDirty().
990 * try_to_release_page() does not perform I/O, but it is
991 * possible for a page to have PageDirty set, but it is actually
992 * clean (all its buffers are clean). This happens if the
993 * buffers were written out directly, with submit_bh(). ext3
894bc310 994 * will do this, as well as the blockdev mapping.
1da177e4
LT
995 * try_to_release_page() will discover that cleanness and will
996 * drop the buffers and mark the page clean - it can be freed.
997 *
998 * Rarely, pages can have buffers and no ->mapping. These are
999 * the pages which were not successfully invalidated in
1000 * truncate_complete_page(). We try to drop those buffers here
1001 * and if that worked, and the page is no longer mapped into
1002 * process address space (page_count == 1) it can be freed.
1003 * Otherwise, leave the page on the LRU so it is swappable.
1004 */
266cf658 1005 if (page_has_private(page)) {
1da177e4
LT
1006 if (!try_to_release_page(page, sc->gfp_mask))
1007 goto activate_locked;
e286781d
NP
1008 if (!mapping && page_count(page) == 1) {
1009 unlock_page(page);
1010 if (put_page_testzero(page))
1011 goto free_it;
1012 else {
1013 /*
1014 * rare race with speculative reference.
1015 * the speculative reference will free
1016 * this page shortly, so we may
1017 * increment nr_reclaimed here (and
1018 * leave it off the LRU).
1019 */
1020 nr_reclaimed++;
1021 continue;
1022 }
1023 }
1da177e4
LT
1024 }
1025
e286781d 1026 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1027 goto keep_locked;
1da177e4 1028
a978d6f5
NP
1029 /*
1030 * At this point, we have no other references and there is
1031 * no way to pick any more up (removed from LRU, removed
1032 * from pagecache). Can use non-atomic bitops now (and
1033 * we obviously don't have to worry about waking up a process
1034 * waiting on the page lock, because there are no references.
1035 */
1036 __clear_page_locked(page);
e286781d 1037free_it:
05ff5137 1038 nr_reclaimed++;
abe4c3b5
MG
1039
1040 /*
1041 * Is there need to periodically free_page_list? It would
1042 * appear not as the counts should be low
1043 */
1044 list_add(&page->lru, &free_pages);
1da177e4
LT
1045 continue;
1046
b291f000 1047cull_mlocked:
63d6c5ad
HD
1048 if (PageSwapCache(page))
1049 try_to_free_swap(page);
b291f000
NP
1050 unlock_page(page);
1051 putback_lru_page(page);
1052 continue;
1053
1da177e4 1054activate_locked:
68a22394
RR
1055 /* Not a candidate for swapping, so reclaim swap space. */
1056 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1057 try_to_free_swap(page);
894bc310 1058 VM_BUG_ON(PageActive(page));
1da177e4
LT
1059 SetPageActive(page);
1060 pgactivate++;
1061keep_locked:
1062 unlock_page(page);
1063keep:
1064 list_add(&page->lru, &ret_pages);
b291f000 1065 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1066 }
abe4c3b5 1067
cc59850e 1068 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1069
1da177e4 1070 list_splice(&ret_pages, page_list);
f8891e5e 1071 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1072 mem_cgroup_uncharge_end();
8e950282
MG
1073 *ret_nr_dirty += nr_dirty;
1074 *ret_nr_congested += nr_congested;
d43006d5 1075 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1076 *ret_nr_writeback += nr_writeback;
b1a6f21e 1077 *ret_nr_immediate += nr_immediate;
05ff5137 1078 return nr_reclaimed;
1da177e4
LT
1079}
1080
02c6de8d
MK
1081unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1082 struct list_head *page_list)
1083{
1084 struct scan_control sc = {
1085 .gfp_mask = GFP_KERNEL,
1086 .priority = DEF_PRIORITY,
1087 .may_unmap = 1,
1088 };
8e950282 1089 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1090 struct page *page, *next;
1091 LIST_HEAD(clean_pages);
1092
1093 list_for_each_entry_safe(page, next, page_list, lru) {
1094 if (page_is_file_cache(page) && !PageDirty(page)) {
1095 ClearPageActive(page);
1096 list_move(&page->lru, &clean_pages);
1097 }
1098 }
1099
1100 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1101 TTU_UNMAP|TTU_IGNORE_ACCESS,
1102 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1103 list_splice(&clean_pages, page_list);
1104 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1105 return ret;
1106}
1107
5ad333eb
AW
1108/*
1109 * Attempt to remove the specified page from its LRU. Only take this page
1110 * if it is of the appropriate PageActive status. Pages which are being
1111 * freed elsewhere are also ignored.
1112 *
1113 * page: page to consider
1114 * mode: one of the LRU isolation modes defined above
1115 *
1116 * returns 0 on success, -ve errno on failure.
1117 */
f3fd4a61 1118int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1119{
1120 int ret = -EINVAL;
1121
1122 /* Only take pages on the LRU. */
1123 if (!PageLRU(page))
1124 return ret;
1125
e46a2879
MK
1126 /* Compaction should not handle unevictable pages but CMA can do so */
1127 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1128 return ret;
1129
5ad333eb 1130 ret = -EBUSY;
08e552c6 1131
c8244935
MG
1132 /*
1133 * To minimise LRU disruption, the caller can indicate that it only
1134 * wants to isolate pages it will be able to operate on without
1135 * blocking - clean pages for the most part.
1136 *
1137 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1138 * is used by reclaim when it is cannot write to backing storage
1139 *
1140 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1141 * that it is possible to migrate without blocking
1142 */
1143 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1144 /* All the caller can do on PageWriteback is block */
1145 if (PageWriteback(page))
1146 return ret;
1147
1148 if (PageDirty(page)) {
1149 struct address_space *mapping;
1150
1151 /* ISOLATE_CLEAN means only clean pages */
1152 if (mode & ISOLATE_CLEAN)
1153 return ret;
1154
1155 /*
1156 * Only pages without mappings or that have a
1157 * ->migratepage callback are possible to migrate
1158 * without blocking
1159 */
1160 mapping = page_mapping(page);
1161 if (mapping && !mapping->a_ops->migratepage)
1162 return ret;
1163 }
1164 }
39deaf85 1165
f80c0673
MK
1166 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1167 return ret;
1168
5ad333eb
AW
1169 if (likely(get_page_unless_zero(page))) {
1170 /*
1171 * Be careful not to clear PageLRU until after we're
1172 * sure the page is not being freed elsewhere -- the
1173 * page release code relies on it.
1174 */
1175 ClearPageLRU(page);
1176 ret = 0;
1177 }
1178
1179 return ret;
1180}
1181
1da177e4
LT
1182/*
1183 * zone->lru_lock is heavily contended. Some of the functions that
1184 * shrink the lists perform better by taking out a batch of pages
1185 * and working on them outside the LRU lock.
1186 *
1187 * For pagecache intensive workloads, this function is the hottest
1188 * spot in the kernel (apart from copy_*_user functions).
1189 *
1190 * Appropriate locks must be held before calling this function.
1191 *
1192 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1193 * @lruvec: The LRU vector to pull pages from.
1da177e4 1194 * @dst: The temp list to put pages on to.
f626012d 1195 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1196 * @sc: The scan_control struct for this reclaim session
5ad333eb 1197 * @mode: One of the LRU isolation modes
3cb99451 1198 * @lru: LRU list id for isolating
1da177e4
LT
1199 *
1200 * returns how many pages were moved onto *@dst.
1201 */
69e05944 1202static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1203 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1204 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1205 isolate_mode_t mode, enum lru_list lru)
1da177e4 1206{
75b00af7 1207 struct list_head *src = &lruvec->lists[lru];
69e05944 1208 unsigned long nr_taken = 0;
c9b02d97 1209 unsigned long scan;
1da177e4 1210
c9b02d97 1211 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1212 struct page *page;
fa9add64 1213 int nr_pages;
5ad333eb 1214
1da177e4
LT
1215 page = lru_to_page(src);
1216 prefetchw_prev_lru_page(page, src, flags);
1217
725d704e 1218 VM_BUG_ON(!PageLRU(page));
8d438f96 1219
f3fd4a61 1220 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1221 case 0:
fa9add64
HD
1222 nr_pages = hpage_nr_pages(page);
1223 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1224 list_move(&page->lru, dst);
fa9add64 1225 nr_taken += nr_pages;
5ad333eb
AW
1226 break;
1227
1228 case -EBUSY:
1229 /* else it is being freed elsewhere */
1230 list_move(&page->lru, src);
1231 continue;
46453a6e 1232
5ad333eb
AW
1233 default:
1234 BUG();
1235 }
1da177e4
LT
1236 }
1237
f626012d 1238 *nr_scanned = scan;
75b00af7
HD
1239 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1240 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1241 return nr_taken;
1242}
1243
62695a84
NP
1244/**
1245 * isolate_lru_page - tries to isolate a page from its LRU list
1246 * @page: page to isolate from its LRU list
1247 *
1248 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1249 * vmstat statistic corresponding to whatever LRU list the page was on.
1250 *
1251 * Returns 0 if the page was removed from an LRU list.
1252 * Returns -EBUSY if the page was not on an LRU list.
1253 *
1254 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1255 * the active list, it will have PageActive set. If it was found on
1256 * the unevictable list, it will have the PageUnevictable bit set. That flag
1257 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1258 *
1259 * The vmstat statistic corresponding to the list on which the page was
1260 * found will be decremented.
1261 *
1262 * Restrictions:
1263 * (1) Must be called with an elevated refcount on the page. This is a
1264 * fundamentnal difference from isolate_lru_pages (which is called
1265 * without a stable reference).
1266 * (2) the lru_lock must not be held.
1267 * (3) interrupts must be enabled.
1268 */
1269int isolate_lru_page(struct page *page)
1270{
1271 int ret = -EBUSY;
1272
0c917313
KK
1273 VM_BUG_ON(!page_count(page));
1274
62695a84
NP
1275 if (PageLRU(page)) {
1276 struct zone *zone = page_zone(page);
fa9add64 1277 struct lruvec *lruvec;
62695a84
NP
1278
1279 spin_lock_irq(&zone->lru_lock);
fa9add64 1280 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1281 if (PageLRU(page)) {
894bc310 1282 int lru = page_lru(page);
0c917313 1283 get_page(page);
62695a84 1284 ClearPageLRU(page);
fa9add64
HD
1285 del_page_from_lru_list(page, lruvec, lru);
1286 ret = 0;
62695a84
NP
1287 }
1288 spin_unlock_irq(&zone->lru_lock);
1289 }
1290 return ret;
1291}
1292
35cd7815 1293/*
d37dd5dc
FW
1294 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1295 * then get resheduled. When there are massive number of tasks doing page
1296 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1297 * the LRU list will go small and be scanned faster than necessary, leading to
1298 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1299 */
1300static int too_many_isolated(struct zone *zone, int file,
1301 struct scan_control *sc)
1302{
1303 unsigned long inactive, isolated;
1304
1305 if (current_is_kswapd())
1306 return 0;
1307
89b5fae5 1308 if (!global_reclaim(sc))
35cd7815
RR
1309 return 0;
1310
1311 if (file) {
1312 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1313 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1314 } else {
1315 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1316 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1317 }
1318
3cf23841
FW
1319 /*
1320 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1321 * won't get blocked by normal direct-reclaimers, forming a circular
1322 * deadlock.
1323 */
1324 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1325 inactive >>= 3;
1326
35cd7815
RR
1327 return isolated > inactive;
1328}
1329
66635629 1330static noinline_for_stack void
75b00af7 1331putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1332{
27ac81d8
KK
1333 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1334 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1335 LIST_HEAD(pages_to_free);
66635629 1336
66635629
MG
1337 /*
1338 * Put back any unfreeable pages.
1339 */
66635629 1340 while (!list_empty(page_list)) {
3f79768f 1341 struct page *page = lru_to_page(page_list);
66635629 1342 int lru;
3f79768f 1343
66635629
MG
1344 VM_BUG_ON(PageLRU(page));
1345 list_del(&page->lru);
39b5f29a 1346 if (unlikely(!page_evictable(page))) {
66635629
MG
1347 spin_unlock_irq(&zone->lru_lock);
1348 putback_lru_page(page);
1349 spin_lock_irq(&zone->lru_lock);
1350 continue;
1351 }
fa9add64
HD
1352
1353 lruvec = mem_cgroup_page_lruvec(page, zone);
1354
7a608572 1355 SetPageLRU(page);
66635629 1356 lru = page_lru(page);
fa9add64
HD
1357 add_page_to_lru_list(page, lruvec, lru);
1358
66635629
MG
1359 if (is_active_lru(lru)) {
1360 int file = is_file_lru(lru);
9992af10
RR
1361 int numpages = hpage_nr_pages(page);
1362 reclaim_stat->recent_rotated[file] += numpages;
66635629 1363 }
2bcf8879
HD
1364 if (put_page_testzero(page)) {
1365 __ClearPageLRU(page);
1366 __ClearPageActive(page);
fa9add64 1367 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1368
1369 if (unlikely(PageCompound(page))) {
1370 spin_unlock_irq(&zone->lru_lock);
1371 (*get_compound_page_dtor(page))(page);
1372 spin_lock_irq(&zone->lru_lock);
1373 } else
1374 list_add(&page->lru, &pages_to_free);
66635629
MG
1375 }
1376 }
66635629 1377
3f79768f
HD
1378 /*
1379 * To save our caller's stack, now use input list for pages to free.
1380 */
1381 list_splice(&pages_to_free, page_list);
66635629
MG
1382}
1383
1da177e4 1384/*
1742f19f
AM
1385 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1386 * of reclaimed pages
1da177e4 1387 */
66635629 1388static noinline_for_stack unsigned long
1a93be0e 1389shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1390 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1391{
1392 LIST_HEAD(page_list);
e247dbce 1393 unsigned long nr_scanned;
05ff5137 1394 unsigned long nr_reclaimed = 0;
e247dbce 1395 unsigned long nr_taken;
8e950282
MG
1396 unsigned long nr_dirty = 0;
1397 unsigned long nr_congested = 0;
e2be15f6 1398 unsigned long nr_unqueued_dirty = 0;
92df3a72 1399 unsigned long nr_writeback = 0;
b1a6f21e 1400 unsigned long nr_immediate = 0;
f3fd4a61 1401 isolate_mode_t isolate_mode = 0;
3cb99451 1402 int file = is_file_lru(lru);
1a93be0e
KK
1403 struct zone *zone = lruvec_zone(lruvec);
1404 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1405
35cd7815 1406 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1407 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1408
1409 /* We are about to die and free our memory. Return now. */
1410 if (fatal_signal_pending(current))
1411 return SWAP_CLUSTER_MAX;
1412 }
1413
1da177e4 1414 lru_add_drain();
f80c0673
MK
1415
1416 if (!sc->may_unmap)
61317289 1417 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1418 if (!sc->may_writepage)
61317289 1419 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1420
1da177e4 1421 spin_lock_irq(&zone->lru_lock);
b35ea17b 1422
5dc35979
KK
1423 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1424 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1425
1426 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1427 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1428
89b5fae5 1429 if (global_reclaim(sc)) {
e247dbce
KM
1430 zone->pages_scanned += nr_scanned;
1431 if (current_is_kswapd())
75b00af7 1432 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1433 else
75b00af7 1434 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1435 }
d563c050 1436 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1437
d563c050 1438 if (nr_taken == 0)
66635629 1439 return 0;
5ad333eb 1440
02c6de8d 1441 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1442 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1443 &nr_writeback, &nr_immediate,
1444 false);
c661b078 1445
3f79768f
HD
1446 spin_lock_irq(&zone->lru_lock);
1447
95d918fc 1448 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1449
904249aa
YH
1450 if (global_reclaim(sc)) {
1451 if (current_is_kswapd())
1452 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1453 nr_reclaimed);
1454 else
1455 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1456 nr_reclaimed);
1457 }
a74609fa 1458
27ac81d8 1459 putback_inactive_pages(lruvec, &page_list);
3f79768f 1460
95d918fc 1461 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1462
1463 spin_unlock_irq(&zone->lru_lock);
1464
1465 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1466
92df3a72
MG
1467 /*
1468 * If reclaim is isolating dirty pages under writeback, it implies
1469 * that the long-lived page allocation rate is exceeding the page
1470 * laundering rate. Either the global limits are not being effective
1471 * at throttling processes due to the page distribution throughout
1472 * zones or there is heavy usage of a slow backing device. The
1473 * only option is to throttle from reclaim context which is not ideal
1474 * as there is no guarantee the dirtying process is throttled in the
1475 * same way balance_dirty_pages() manages.
1476 *
8e950282
MG
1477 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1478 * of pages under pages flagged for immediate reclaim and stall if any
1479 * are encountered in the nr_immediate check below.
92df3a72 1480 */
918fc718 1481 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1482 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1483
d43006d5 1484 /*
b1a6f21e
MG
1485 * memcg will stall in page writeback so only consider forcibly
1486 * stalling for global reclaim
d43006d5 1487 */
b1a6f21e 1488 if (global_reclaim(sc)) {
8e950282
MG
1489 /*
1490 * Tag a zone as congested if all the dirty pages scanned were
1491 * backed by a congested BDI and wait_iff_congested will stall.
1492 */
1493 if (nr_dirty && nr_dirty == nr_congested)
1494 zone_set_flag(zone, ZONE_CONGESTED);
1495
b1a6f21e
MG
1496 /*
1497 * If dirty pages are scanned that are not queued for IO, it
1498 * implies that flushers are not keeping up. In this case, flag
1499 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1500 * pages from reclaim context. It will forcibly stall in the
1501 * next check.
1502 */
1503 if (nr_unqueued_dirty == nr_taken)
1504 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1505
1506 /*
1507 * In addition, if kswapd scans pages marked marked for
1508 * immediate reclaim and under writeback (nr_immediate), it
1509 * implies that pages are cycling through the LRU faster than
1510 * they are written so also forcibly stall.
1511 */
1512 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1513 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1514 }
d43006d5 1515
8e950282
MG
1516 /*
1517 * Stall direct reclaim for IO completions if underlying BDIs or zone
1518 * is congested. Allow kswapd to continue until it starts encountering
1519 * unqueued dirty pages or cycling through the LRU too quickly.
1520 */
1521 if (!sc->hibernation_mode && !current_is_kswapd())
1522 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1523
e11da5b4
MG
1524 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1525 zone_idx(zone),
1526 nr_scanned, nr_reclaimed,
9e3b2f8c 1527 sc->priority,
23b9da55 1528 trace_shrink_flags(file));
05ff5137 1529 return nr_reclaimed;
1da177e4
LT
1530}
1531
1532/*
1533 * This moves pages from the active list to the inactive list.
1534 *
1535 * We move them the other way if the page is referenced by one or more
1536 * processes, from rmap.
1537 *
1538 * If the pages are mostly unmapped, the processing is fast and it is
1539 * appropriate to hold zone->lru_lock across the whole operation. But if
1540 * the pages are mapped, the processing is slow (page_referenced()) so we
1541 * should drop zone->lru_lock around each page. It's impossible to balance
1542 * this, so instead we remove the pages from the LRU while processing them.
1543 * It is safe to rely on PG_active against the non-LRU pages in here because
1544 * nobody will play with that bit on a non-LRU page.
1545 *
1546 * The downside is that we have to touch page->_count against each page.
1547 * But we had to alter page->flags anyway.
1548 */
1cfb419b 1549
fa9add64 1550static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1551 struct list_head *list,
2bcf8879 1552 struct list_head *pages_to_free,
3eb4140f
WF
1553 enum lru_list lru)
1554{
fa9add64 1555 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1556 unsigned long pgmoved = 0;
3eb4140f 1557 struct page *page;
fa9add64 1558 int nr_pages;
3eb4140f 1559
3eb4140f
WF
1560 while (!list_empty(list)) {
1561 page = lru_to_page(list);
fa9add64 1562 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1563
1564 VM_BUG_ON(PageLRU(page));
1565 SetPageLRU(page);
1566
fa9add64
HD
1567 nr_pages = hpage_nr_pages(page);
1568 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1569 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1570 pgmoved += nr_pages;
3eb4140f 1571
2bcf8879
HD
1572 if (put_page_testzero(page)) {
1573 __ClearPageLRU(page);
1574 __ClearPageActive(page);
fa9add64 1575 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1576
1577 if (unlikely(PageCompound(page))) {
1578 spin_unlock_irq(&zone->lru_lock);
1579 (*get_compound_page_dtor(page))(page);
1580 spin_lock_irq(&zone->lru_lock);
1581 } else
1582 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1583 }
1584 }
1585 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1586 if (!is_active_lru(lru))
1587 __count_vm_events(PGDEACTIVATE, pgmoved);
1588}
1cfb419b 1589
f626012d 1590static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1591 struct lruvec *lruvec,
f16015fb 1592 struct scan_control *sc,
9e3b2f8c 1593 enum lru_list lru)
1da177e4 1594{
44c241f1 1595 unsigned long nr_taken;
f626012d 1596 unsigned long nr_scanned;
6fe6b7e3 1597 unsigned long vm_flags;
1da177e4 1598 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1599 LIST_HEAD(l_active);
b69408e8 1600 LIST_HEAD(l_inactive);
1da177e4 1601 struct page *page;
1a93be0e 1602 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1603 unsigned long nr_rotated = 0;
f3fd4a61 1604 isolate_mode_t isolate_mode = 0;
3cb99451 1605 int file = is_file_lru(lru);
1a93be0e 1606 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1607
1608 lru_add_drain();
f80c0673
MK
1609
1610 if (!sc->may_unmap)
61317289 1611 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1612 if (!sc->may_writepage)
61317289 1613 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1614
1da177e4 1615 spin_lock_irq(&zone->lru_lock);
925b7673 1616
5dc35979
KK
1617 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1618 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1619 if (global_reclaim(sc))
f626012d 1620 zone->pages_scanned += nr_scanned;
89b5fae5 1621
b7c46d15 1622 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1623
f626012d 1624 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1625 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1626 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1627 spin_unlock_irq(&zone->lru_lock);
1628
1da177e4
LT
1629 while (!list_empty(&l_hold)) {
1630 cond_resched();
1631 page = lru_to_page(&l_hold);
1632 list_del(&page->lru);
7e9cd484 1633
39b5f29a 1634 if (unlikely(!page_evictable(page))) {
894bc310
LS
1635 putback_lru_page(page);
1636 continue;
1637 }
1638
cc715d99
MG
1639 if (unlikely(buffer_heads_over_limit)) {
1640 if (page_has_private(page) && trylock_page(page)) {
1641 if (page_has_private(page))
1642 try_to_release_page(page, 0);
1643 unlock_page(page);
1644 }
1645 }
1646
c3ac9a8a
JW
1647 if (page_referenced(page, 0, sc->target_mem_cgroup,
1648 &vm_flags)) {
9992af10 1649 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1650 /*
1651 * Identify referenced, file-backed active pages and
1652 * give them one more trip around the active list. So
1653 * that executable code get better chances to stay in
1654 * memory under moderate memory pressure. Anon pages
1655 * are not likely to be evicted by use-once streaming
1656 * IO, plus JVM can create lots of anon VM_EXEC pages,
1657 * so we ignore them here.
1658 */
41e20983 1659 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1660 list_add(&page->lru, &l_active);
1661 continue;
1662 }
1663 }
7e9cd484 1664
5205e56e 1665 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1666 list_add(&page->lru, &l_inactive);
1667 }
1668
b555749a 1669 /*
8cab4754 1670 * Move pages back to the lru list.
b555749a 1671 */
2a1dc509 1672 spin_lock_irq(&zone->lru_lock);
556adecb 1673 /*
8cab4754
WF
1674 * Count referenced pages from currently used mappings as rotated,
1675 * even though only some of them are actually re-activated. This
1676 * helps balance scan pressure between file and anonymous pages in
1677 * get_scan_ratio.
7e9cd484 1678 */
b7c46d15 1679 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1680
fa9add64
HD
1681 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1682 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1683 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1684 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1685
1686 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1687}
1688
74e3f3c3 1689#ifdef CONFIG_SWAP
14797e23 1690static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1691{
1692 unsigned long active, inactive;
1693
1694 active = zone_page_state(zone, NR_ACTIVE_ANON);
1695 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1696
1697 if (inactive * zone->inactive_ratio < active)
1698 return 1;
1699
1700 return 0;
1701}
1702
14797e23
KM
1703/**
1704 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1705 * @lruvec: LRU vector to check
14797e23
KM
1706 *
1707 * Returns true if the zone does not have enough inactive anon pages,
1708 * meaning some active anon pages need to be deactivated.
1709 */
c56d5c7d 1710static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1711{
74e3f3c3
MK
1712 /*
1713 * If we don't have swap space, anonymous page deactivation
1714 * is pointless.
1715 */
1716 if (!total_swap_pages)
1717 return 0;
1718
c3c787e8 1719 if (!mem_cgroup_disabled())
c56d5c7d 1720 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1721
c56d5c7d 1722 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1723}
74e3f3c3 1724#else
c56d5c7d 1725static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1726{
1727 return 0;
1728}
1729#endif
14797e23 1730
56e49d21
RR
1731/**
1732 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1733 * @lruvec: LRU vector to check
56e49d21
RR
1734 *
1735 * When the system is doing streaming IO, memory pressure here
1736 * ensures that active file pages get deactivated, until more
1737 * than half of the file pages are on the inactive list.
1738 *
1739 * Once we get to that situation, protect the system's working
1740 * set from being evicted by disabling active file page aging.
1741 *
1742 * This uses a different ratio than the anonymous pages, because
1743 * the page cache uses a use-once replacement algorithm.
1744 */
c56d5c7d 1745static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1746{
e3790144
JW
1747 unsigned long inactive;
1748 unsigned long active;
1749
1750 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1751 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1752
e3790144 1753 return active > inactive;
56e49d21
RR
1754}
1755
75b00af7 1756static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1757{
75b00af7 1758 if (is_file_lru(lru))
c56d5c7d 1759 return inactive_file_is_low(lruvec);
b39415b2 1760 else
c56d5c7d 1761 return inactive_anon_is_low(lruvec);
b39415b2
RR
1762}
1763
4f98a2fe 1764static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1765 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1766{
b39415b2 1767 if (is_active_lru(lru)) {
75b00af7 1768 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1769 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1770 return 0;
1771 }
1772
1a93be0e 1773 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1774}
1775
3d58ab5c 1776static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1777{
89b5fae5 1778 if (global_reclaim(sc))
1f4c025b 1779 return vm_swappiness;
3d58ab5c 1780 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1781}
1782
9a265114
JW
1783enum scan_balance {
1784 SCAN_EQUAL,
1785 SCAN_FRACT,
1786 SCAN_ANON,
1787 SCAN_FILE,
1788};
1789
4f98a2fe
RR
1790/*
1791 * Determine how aggressively the anon and file LRU lists should be
1792 * scanned. The relative value of each set of LRU lists is determined
1793 * by looking at the fraction of the pages scanned we did rotate back
1794 * onto the active list instead of evict.
1795 *
be7bd59d
WL
1796 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1797 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1798 */
90126375 1799static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1800 unsigned long *nr)
4f98a2fe 1801{
9a265114
JW
1802 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1803 u64 fraction[2];
1804 u64 denominator = 0; /* gcc */
1805 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1806 unsigned long anon_prio, file_prio;
9a265114
JW
1807 enum scan_balance scan_balance;
1808 unsigned long anon, file, free;
1809 bool force_scan = false;
4f98a2fe 1810 unsigned long ap, fp;
4111304d 1811 enum lru_list lru;
246e87a9 1812
f11c0ca5
JW
1813 /*
1814 * If the zone or memcg is small, nr[l] can be 0. This
1815 * results in no scanning on this priority and a potential
1816 * priority drop. Global direct reclaim can go to the next
1817 * zone and tends to have no problems. Global kswapd is for
1818 * zone balancing and it needs to scan a minimum amount. When
1819 * reclaiming for a memcg, a priority drop can cause high
1820 * latencies, so it's better to scan a minimum amount there as
1821 * well.
1822 */
6e543d57 1823 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1824 force_scan = true;
89b5fae5 1825 if (!global_reclaim(sc))
a4d3e9e7 1826 force_scan = true;
76a33fc3
SL
1827
1828 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1829 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1830 scan_balance = SCAN_FILE;
76a33fc3
SL
1831 goto out;
1832 }
4f98a2fe 1833
10316b31
JW
1834 /*
1835 * Global reclaim will swap to prevent OOM even with no
1836 * swappiness, but memcg users want to use this knob to
1837 * disable swapping for individual groups completely when
1838 * using the memory controller's swap limit feature would be
1839 * too expensive.
1840 */
1841 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1842 scan_balance = SCAN_FILE;
10316b31
JW
1843 goto out;
1844 }
1845
1846 /*
1847 * Do not apply any pressure balancing cleverness when the
1848 * system is close to OOM, scan both anon and file equally
1849 * (unless the swappiness setting disagrees with swapping).
1850 */
1851 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1852 scan_balance = SCAN_EQUAL;
10316b31
JW
1853 goto out;
1854 }
1855
4d7dcca2
HD
1856 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1857 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1858 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1859 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1860
11d16c25
JW
1861 /*
1862 * If it's foreseeable that reclaiming the file cache won't be
1863 * enough to get the zone back into a desirable shape, we have
1864 * to swap. Better start now and leave the - probably heavily
1865 * thrashing - remaining file pages alone.
1866 */
89b5fae5 1867 if (global_reclaim(sc)) {
11d16c25 1868 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1869 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1870 scan_balance = SCAN_ANON;
76a33fc3 1871 goto out;
eeee9a8c 1872 }
4f98a2fe
RR
1873 }
1874
7c5bd705
JW
1875 /*
1876 * There is enough inactive page cache, do not reclaim
1877 * anything from the anonymous working set right now.
1878 */
1879 if (!inactive_file_is_low(lruvec)) {
9a265114 1880 scan_balance = SCAN_FILE;
7c5bd705
JW
1881 goto out;
1882 }
1883
9a265114
JW
1884 scan_balance = SCAN_FRACT;
1885
58c37f6e
KM
1886 /*
1887 * With swappiness at 100, anonymous and file have the same priority.
1888 * This scanning priority is essentially the inverse of IO cost.
1889 */
3d58ab5c 1890 anon_prio = vmscan_swappiness(sc);
75b00af7 1891 file_prio = 200 - anon_prio;
58c37f6e 1892
4f98a2fe
RR
1893 /*
1894 * OK, so we have swap space and a fair amount of page cache
1895 * pages. We use the recently rotated / recently scanned
1896 * ratios to determine how valuable each cache is.
1897 *
1898 * Because workloads change over time (and to avoid overflow)
1899 * we keep these statistics as a floating average, which ends
1900 * up weighing recent references more than old ones.
1901 *
1902 * anon in [0], file in [1]
1903 */
90126375 1904 spin_lock_irq(&zone->lru_lock);
6e901571 1905 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1906 reclaim_stat->recent_scanned[0] /= 2;
1907 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1908 }
1909
6e901571 1910 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1911 reclaim_stat->recent_scanned[1] /= 2;
1912 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1913 }
1914
4f98a2fe 1915 /*
00d8089c
RR
1916 * The amount of pressure on anon vs file pages is inversely
1917 * proportional to the fraction of recently scanned pages on
1918 * each list that were recently referenced and in active use.
4f98a2fe 1919 */
fe35004f 1920 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1921 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1922
fe35004f 1923 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1924 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1925 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1926
76a33fc3
SL
1927 fraction[0] = ap;
1928 fraction[1] = fp;
1929 denominator = ap + fp + 1;
1930out:
4111304d
HD
1931 for_each_evictable_lru(lru) {
1932 int file = is_file_lru(lru);
d778df51 1933 unsigned long size;
76a33fc3 1934 unsigned long scan;
6e08a369 1935
d778df51 1936 size = get_lru_size(lruvec, lru);
10316b31 1937 scan = size >> sc->priority;
9a265114 1938
10316b31
JW
1939 if (!scan && force_scan)
1940 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1941
1942 switch (scan_balance) {
1943 case SCAN_EQUAL:
1944 /* Scan lists relative to size */
1945 break;
1946 case SCAN_FRACT:
1947 /*
1948 * Scan types proportional to swappiness and
1949 * their relative recent reclaim efficiency.
1950 */
1951 scan = div64_u64(scan * fraction[file], denominator);
1952 break;
1953 case SCAN_FILE:
1954 case SCAN_ANON:
1955 /* Scan one type exclusively */
1956 if ((scan_balance == SCAN_FILE) != file)
1957 scan = 0;
1958 break;
1959 default:
1960 /* Look ma, no brain */
1961 BUG();
1962 }
4111304d 1963 nr[lru] = scan;
76a33fc3 1964 }
6e08a369 1965}
4f98a2fe 1966
9b4f98cd
JW
1967/*
1968 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1969 */
1970static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1971{
1972 unsigned long nr[NR_LRU_LISTS];
e82e0561 1973 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1974 unsigned long nr_to_scan;
1975 enum lru_list lru;
1976 unsigned long nr_reclaimed = 0;
1977 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1978 struct blk_plug plug;
e82e0561 1979 bool scan_adjusted = false;
9b4f98cd
JW
1980
1981 get_scan_count(lruvec, sc, nr);
1982
e82e0561
MG
1983 /* Record the original scan target for proportional adjustments later */
1984 memcpy(targets, nr, sizeof(nr));
1985
9b4f98cd
JW
1986 blk_start_plug(&plug);
1987 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1988 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
1989 unsigned long nr_anon, nr_file, percentage;
1990 unsigned long nr_scanned;
1991
9b4f98cd
JW
1992 for_each_evictable_lru(lru) {
1993 if (nr[lru]) {
1994 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1995 nr[lru] -= nr_to_scan;
1996
1997 nr_reclaimed += shrink_list(lru, nr_to_scan,
1998 lruvec, sc);
1999 }
2000 }
e82e0561
MG
2001
2002 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2003 continue;
2004
9b4f98cd 2005 /*
e82e0561
MG
2006 * For global direct reclaim, reclaim only the number of pages
2007 * requested. Less care is taken to scan proportionally as it
2008 * is more important to minimise direct reclaim stall latency
2009 * than it is to properly age the LRU lists.
9b4f98cd 2010 */
e82e0561 2011 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2012 break;
e82e0561
MG
2013
2014 /*
2015 * For kswapd and memcg, reclaim at least the number of pages
2016 * requested. Ensure that the anon and file LRUs shrink
2017 * proportionally what was requested by get_scan_count(). We
2018 * stop reclaiming one LRU and reduce the amount scanning
2019 * proportional to the original scan target.
2020 */
2021 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2022 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2023
2024 if (nr_file > nr_anon) {
2025 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2026 targets[LRU_ACTIVE_ANON] + 1;
2027 lru = LRU_BASE;
2028 percentage = nr_anon * 100 / scan_target;
2029 } else {
2030 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2031 targets[LRU_ACTIVE_FILE] + 1;
2032 lru = LRU_FILE;
2033 percentage = nr_file * 100 / scan_target;
2034 }
2035
2036 /* Stop scanning the smaller of the LRU */
2037 nr[lru] = 0;
2038 nr[lru + LRU_ACTIVE] = 0;
2039
2040 /*
2041 * Recalculate the other LRU scan count based on its original
2042 * scan target and the percentage scanning already complete
2043 */
2044 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2045 nr_scanned = targets[lru] - nr[lru];
2046 nr[lru] = targets[lru] * (100 - percentage) / 100;
2047 nr[lru] -= min(nr[lru], nr_scanned);
2048
2049 lru += LRU_ACTIVE;
2050 nr_scanned = targets[lru] - nr[lru];
2051 nr[lru] = targets[lru] * (100 - percentage) / 100;
2052 nr[lru] -= min(nr[lru], nr_scanned);
2053
2054 scan_adjusted = true;
9b4f98cd
JW
2055 }
2056 blk_finish_plug(&plug);
2057 sc->nr_reclaimed += nr_reclaimed;
2058
2059 /*
2060 * Even if we did not try to evict anon pages at all, we want to
2061 * rebalance the anon lru active/inactive ratio.
2062 */
2063 if (inactive_anon_is_low(lruvec))
2064 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2065 sc, LRU_ACTIVE_ANON);
2066
2067 throttle_vm_writeout(sc->gfp_mask);
2068}
2069
23b9da55 2070/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2071static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2072{
d84da3f9 2073 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2074 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2075 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2076 return true;
2077
2078 return false;
2079}
2080
3e7d3449 2081/*
23b9da55
MG
2082 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2083 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2084 * true if more pages should be reclaimed such that when the page allocator
2085 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2086 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2087 */
9b4f98cd 2088static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2089 unsigned long nr_reclaimed,
2090 unsigned long nr_scanned,
2091 struct scan_control *sc)
2092{
2093 unsigned long pages_for_compaction;
2094 unsigned long inactive_lru_pages;
2095
2096 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2097 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2098 return false;
2099
2876592f
MG
2100 /* Consider stopping depending on scan and reclaim activity */
2101 if (sc->gfp_mask & __GFP_REPEAT) {
2102 /*
2103 * For __GFP_REPEAT allocations, stop reclaiming if the
2104 * full LRU list has been scanned and we are still failing
2105 * to reclaim pages. This full LRU scan is potentially
2106 * expensive but a __GFP_REPEAT caller really wants to succeed
2107 */
2108 if (!nr_reclaimed && !nr_scanned)
2109 return false;
2110 } else {
2111 /*
2112 * For non-__GFP_REPEAT allocations which can presumably
2113 * fail without consequence, stop if we failed to reclaim
2114 * any pages from the last SWAP_CLUSTER_MAX number of
2115 * pages that were scanned. This will return to the
2116 * caller faster at the risk reclaim/compaction and
2117 * the resulting allocation attempt fails
2118 */
2119 if (!nr_reclaimed)
2120 return false;
2121 }
3e7d3449
MG
2122
2123 /*
2124 * If we have not reclaimed enough pages for compaction and the
2125 * inactive lists are large enough, continue reclaiming
2126 */
2127 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2128 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2129 if (get_nr_swap_pages() > 0)
9b4f98cd 2130 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2131 if (sc->nr_reclaimed < pages_for_compaction &&
2132 inactive_lru_pages > pages_for_compaction)
2133 return true;
2134
2135 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2136 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2137 case COMPACT_PARTIAL:
2138 case COMPACT_CONTINUE:
2139 return false;
2140 default:
2141 return true;
2142 }
2143}
2144
e975de99 2145static int
3b38722e 2146__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
1da177e4 2147{
f0fdc5e8 2148 unsigned long nr_reclaimed, nr_scanned;
e975de99 2149 int groups_scanned = 0;
1da177e4 2150
9b4f98cd
JW
2151 do {
2152 struct mem_cgroup *root = sc->target_mem_cgroup;
2153 struct mem_cgroup_reclaim_cookie reclaim = {
2154 .zone = zone,
2155 .priority = sc->priority,
2156 };
de57780d
MH
2157 struct mem_cgroup *memcg = NULL;
2158 mem_cgroup_iter_filter filter = (soft_reclaim) ?
2159 mem_cgroup_soft_reclaim_eligible : NULL;
3e7d3449 2160
9b4f98cd
JW
2161 nr_reclaimed = sc->nr_reclaimed;
2162 nr_scanned = sc->nr_scanned;
1da177e4 2163
de57780d 2164 while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
9b4f98cd 2165 struct lruvec *lruvec;
5660048c 2166
e975de99 2167 groups_scanned++;
9b4f98cd 2168 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2169
9b4f98cd 2170 shrink_lruvec(lruvec, sc);
f16015fb 2171
9b4f98cd 2172 /*
a394cb8e
MH
2173 * Direct reclaim and kswapd have to scan all memory
2174 * cgroups to fulfill the overall scan target for the
9b4f98cd 2175 * zone.
a394cb8e
MH
2176 *
2177 * Limit reclaim, on the other hand, only cares about
2178 * nr_to_reclaim pages to be reclaimed and it will
2179 * retry with decreasing priority if one round over the
2180 * whole hierarchy is not sufficient.
9b4f98cd 2181 */
a394cb8e
MH
2182 if (!global_reclaim(sc) &&
2183 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2184 mem_cgroup_iter_break(root, memcg);
2185 break;
2186 }
de57780d 2187 }
70ddf637
AV
2188
2189 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2190 sc->nr_scanned - nr_scanned,
2191 sc->nr_reclaimed - nr_reclaimed);
2192
9b4f98cd
JW
2193 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2194 sc->nr_scanned - nr_scanned, sc));
e975de99
MH
2195
2196 return groups_scanned;
f16015fb
JW
2197}
2198
3b38722e
MH
2199
2200static void shrink_zone(struct zone *zone, struct scan_control *sc)
2201{
2202 bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2203 unsigned long nr_scanned = sc->nr_scanned;
e975de99 2204 int scanned_groups;
3b38722e 2205
e975de99
MH
2206 scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim);
2207 /*
f894ffa8
AM
2208 * memcg iterator might race with other reclaimer or start from
2209 * a incomplete tree walk so the tree walk in __shrink_zone
2210 * might have missed groups that are above the soft limit. Try
2211 * another loop to catch up with others. Do it just once to
2212 * prevent from reclaim latencies when other reclaimers always
2213 * preempt this one.
e975de99
MH
2214 */
2215 if (do_soft_reclaim && !scanned_groups)
2216 __shrink_zone(zone, sc, do_soft_reclaim);
3b38722e
MH
2217
2218 /*
2219 * No group is over the soft limit or those that are do not have
2220 * pages in the zone we are reclaiming so we have to reclaim everybody
2221 */
2222 if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2223 __shrink_zone(zone, sc, false);
2224 return;
2225 }
2226}
2227
fe4b1b24
MG
2228/* Returns true if compaction should go ahead for a high-order request */
2229static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2230{
2231 unsigned long balance_gap, watermark;
2232 bool watermark_ok;
2233
2234 /* Do not consider compaction for orders reclaim is meant to satisfy */
2235 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2236 return false;
2237
2238 /*
2239 * Compaction takes time to run and there are potentially other
2240 * callers using the pages just freed. Continue reclaiming until
2241 * there is a buffer of free pages available to give compaction
2242 * a reasonable chance of completing and allocating the page
2243 */
2244 balance_gap = min(low_wmark_pages(zone),
b40da049 2245 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2246 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2247 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2248 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2249
2250 /*
2251 * If compaction is deferred, reclaim up to a point where
2252 * compaction will have a chance of success when re-enabled
2253 */
aff62249 2254 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2255 return watermark_ok;
2256
2257 /* If compaction is not ready to start, keep reclaiming */
2258 if (!compaction_suitable(zone, sc->order))
2259 return false;
2260
2261 return watermark_ok;
2262}
2263
1da177e4
LT
2264/*
2265 * This is the direct reclaim path, for page-allocating processes. We only
2266 * try to reclaim pages from zones which will satisfy the caller's allocation
2267 * request.
2268 *
41858966
MG
2269 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2270 * Because:
1da177e4
LT
2271 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2272 * allocation or
41858966
MG
2273 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2274 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2275 * zone defense algorithm.
1da177e4 2276 *
1da177e4
LT
2277 * If a zone is deemed to be full of pinned pages then just give it a light
2278 * scan then give up on it.
e0c23279
MG
2279 *
2280 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2281 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2282 * the caller that it should consider retrying the allocation instead of
2283 * further reclaim.
1da177e4 2284 */
9e3b2f8c 2285static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2286{
dd1a239f 2287 struct zoneref *z;
54a6eb5c 2288 struct zone *zone;
0cee34fd 2289 bool aborted_reclaim = false;
1cfb419b 2290
cc715d99
MG
2291 /*
2292 * If the number of buffer_heads in the machine exceeds the maximum
2293 * allowed level, force direct reclaim to scan the highmem zone as
2294 * highmem pages could be pinning lowmem pages storing buffer_heads
2295 */
2296 if (buffer_heads_over_limit)
2297 sc->gfp_mask |= __GFP_HIGHMEM;
2298
d4debc66
MG
2299 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2300 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2301 if (!populated_zone(zone))
1da177e4 2302 continue;
1cfb419b
KH
2303 /*
2304 * Take care memory controller reclaiming has small influence
2305 * to global LRU.
2306 */
89b5fae5 2307 if (global_reclaim(sc)) {
1cfb419b
KH
2308 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2309 continue;
6e543d57
LD
2310 if (sc->priority != DEF_PRIORITY &&
2311 !zone_reclaimable(zone))
1cfb419b 2312 continue; /* Let kswapd poll it */
d84da3f9 2313 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2314 /*
e0c23279
MG
2315 * If we already have plenty of memory free for
2316 * compaction in this zone, don't free any more.
2317 * Even though compaction is invoked for any
2318 * non-zero order, only frequent costly order
2319 * reclamation is disruptive enough to become a
c7cfa37b
CA
2320 * noticeable problem, like transparent huge
2321 * page allocations.
e0887c19 2322 */
fe4b1b24 2323 if (compaction_ready(zone, sc)) {
0cee34fd 2324 aborted_reclaim = true;
e0887c19 2325 continue;
e0c23279 2326 }
e0887c19 2327 }
ac34a1a3 2328 /* need some check for avoid more shrink_zone() */
1cfb419b 2329 }
408d8544 2330
9e3b2f8c 2331 shrink_zone(zone, sc);
1da177e4 2332 }
e0c23279 2333
0cee34fd 2334 return aborted_reclaim;
d1908362
MK
2335}
2336
929bea7c 2337/* All zones in zonelist are unreclaimable? */
d1908362
MK
2338static bool all_unreclaimable(struct zonelist *zonelist,
2339 struct scan_control *sc)
2340{
2341 struct zoneref *z;
2342 struct zone *zone;
d1908362
MK
2343
2344 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2345 gfp_zone(sc->gfp_mask), sc->nodemask) {
2346 if (!populated_zone(zone))
2347 continue;
2348 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2349 continue;
6e543d57 2350 if (zone_reclaimable(zone))
929bea7c 2351 return false;
d1908362
MK
2352 }
2353
929bea7c 2354 return true;
1da177e4 2355}
4f98a2fe 2356
1da177e4
LT
2357/*
2358 * This is the main entry point to direct page reclaim.
2359 *
2360 * If a full scan of the inactive list fails to free enough memory then we
2361 * are "out of memory" and something needs to be killed.
2362 *
2363 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2364 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2365 * caller can't do much about. We kick the writeback threads and take explicit
2366 * naps in the hope that some of these pages can be written. But if the
2367 * allocating task holds filesystem locks which prevent writeout this might not
2368 * work, and the allocation attempt will fail.
a41f24ea
NA
2369 *
2370 * returns: 0, if no pages reclaimed
2371 * else, the number of pages reclaimed
1da177e4 2372 */
dac1d27b 2373static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2374 struct scan_control *sc,
2375 struct shrink_control *shrink)
1da177e4 2376{
69e05944 2377 unsigned long total_scanned = 0;
1da177e4 2378 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2379 struct zoneref *z;
54a6eb5c 2380 struct zone *zone;
22fba335 2381 unsigned long writeback_threshold;
0cee34fd 2382 bool aborted_reclaim;
1da177e4 2383
873b4771
KK
2384 delayacct_freepages_start();
2385
89b5fae5 2386 if (global_reclaim(sc))
1cfb419b 2387 count_vm_event(ALLOCSTALL);
1da177e4 2388
9e3b2f8c 2389 do {
70ddf637
AV
2390 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2391 sc->priority);
66e1707b 2392 sc->nr_scanned = 0;
9e3b2f8c 2393 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2394
66e1707b 2395 /*
5a1c9cbc
MG
2396 * Don't shrink slabs when reclaiming memory from over limit
2397 * cgroups but do shrink slab at least once when aborting
2398 * reclaim for compaction to avoid unevenly scanning file/anon
2399 * LRU pages over slab pages.
66e1707b 2400 */
89b5fae5 2401 if (global_reclaim(sc)) {
c6a8a8c5 2402 unsigned long lru_pages = 0;
d4debc66
MG
2403 for_each_zone_zonelist(zone, z, zonelist,
2404 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2405 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2406 continue;
2407
2408 lru_pages += zone_reclaimable_pages(zone);
2409 }
2410
1495f230 2411 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2412 if (reclaim_state) {
a79311c1 2413 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2414 reclaim_state->reclaimed_slab = 0;
2415 }
1da177e4 2416 }
66e1707b 2417 total_scanned += sc->nr_scanned;
bb21c7ce 2418 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2419 goto out;
1da177e4 2420
0e50ce3b
MK
2421 /*
2422 * If we're getting trouble reclaiming, start doing
2423 * writepage even in laptop mode.
2424 */
2425 if (sc->priority < DEF_PRIORITY - 2)
2426 sc->may_writepage = 1;
2427
1da177e4
LT
2428 /*
2429 * Try to write back as many pages as we just scanned. This
2430 * tends to cause slow streaming writers to write data to the
2431 * disk smoothly, at the dirtying rate, which is nice. But
2432 * that's undesirable in laptop mode, where we *want* lumpy
2433 * writeout. So in laptop mode, write out the whole world.
2434 */
22fba335
KM
2435 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2436 if (total_scanned > writeback_threshold) {
0e175a18
CW
2437 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2438 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2439 sc->may_writepage = 1;
1da177e4 2440 }
5a1c9cbc 2441 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2442
1da177e4 2443out:
873b4771
KK
2444 delayacct_freepages_end();
2445
bb21c7ce
KM
2446 if (sc->nr_reclaimed)
2447 return sc->nr_reclaimed;
2448
929bea7c
KM
2449 /*
2450 * As hibernation is going on, kswapd is freezed so that it can't mark
2451 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2452 * check.
2453 */
2454 if (oom_killer_disabled)
2455 return 0;
2456
0cee34fd
MG
2457 /* Aborted reclaim to try compaction? don't OOM, then */
2458 if (aborted_reclaim)
7335084d
MG
2459 return 1;
2460
bb21c7ce 2461 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2462 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2463 return 1;
2464
2465 return 0;
1da177e4
LT
2466}
2467
5515061d
MG
2468static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2469{
2470 struct zone *zone;
2471 unsigned long pfmemalloc_reserve = 0;
2472 unsigned long free_pages = 0;
2473 int i;
2474 bool wmark_ok;
2475
2476 for (i = 0; i <= ZONE_NORMAL; i++) {
2477 zone = &pgdat->node_zones[i];
2478 pfmemalloc_reserve += min_wmark_pages(zone);
2479 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2480 }
2481
2482 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2483
2484 /* kswapd must be awake if processes are being throttled */
2485 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2486 pgdat->classzone_idx = min(pgdat->classzone_idx,
2487 (enum zone_type)ZONE_NORMAL);
2488 wake_up_interruptible(&pgdat->kswapd_wait);
2489 }
2490
2491 return wmark_ok;
2492}
2493
2494/*
2495 * Throttle direct reclaimers if backing storage is backed by the network
2496 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2497 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2498 * when the low watermark is reached.
2499 *
2500 * Returns true if a fatal signal was delivered during throttling. If this
2501 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2502 */
50694c28 2503static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2504 nodemask_t *nodemask)
2505{
2506 struct zone *zone;
2507 int high_zoneidx = gfp_zone(gfp_mask);
2508 pg_data_t *pgdat;
2509
2510 /*
2511 * Kernel threads should not be throttled as they may be indirectly
2512 * responsible for cleaning pages necessary for reclaim to make forward
2513 * progress. kjournald for example may enter direct reclaim while
2514 * committing a transaction where throttling it could forcing other
2515 * processes to block on log_wait_commit().
2516 */
2517 if (current->flags & PF_KTHREAD)
50694c28
MG
2518 goto out;
2519
2520 /*
2521 * If a fatal signal is pending, this process should not throttle.
2522 * It should return quickly so it can exit and free its memory
2523 */
2524 if (fatal_signal_pending(current))
2525 goto out;
5515061d
MG
2526
2527 /* Check if the pfmemalloc reserves are ok */
2528 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2529 pgdat = zone->zone_pgdat;
2530 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2531 goto out;
5515061d 2532
68243e76
MG
2533 /* Account for the throttling */
2534 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2535
5515061d
MG
2536 /*
2537 * If the caller cannot enter the filesystem, it's possible that it
2538 * is due to the caller holding an FS lock or performing a journal
2539 * transaction in the case of a filesystem like ext[3|4]. In this case,
2540 * it is not safe to block on pfmemalloc_wait as kswapd could be
2541 * blocked waiting on the same lock. Instead, throttle for up to a
2542 * second before continuing.
2543 */
2544 if (!(gfp_mask & __GFP_FS)) {
2545 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2546 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2547
2548 goto check_pending;
5515061d
MG
2549 }
2550
2551 /* Throttle until kswapd wakes the process */
2552 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2553 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2554
2555check_pending:
2556 if (fatal_signal_pending(current))
2557 return true;
2558
2559out:
2560 return false;
5515061d
MG
2561}
2562
dac1d27b 2563unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2564 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2565{
33906bc5 2566 unsigned long nr_reclaimed;
66e1707b 2567 struct scan_control sc = {
21caf2fc 2568 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2569 .may_writepage = !laptop_mode,
22fba335 2570 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2571 .may_unmap = 1,
2e2e4259 2572 .may_swap = 1,
66e1707b 2573 .order = order,
9e3b2f8c 2574 .priority = DEF_PRIORITY,
f16015fb 2575 .target_mem_cgroup = NULL,
327c0e96 2576 .nodemask = nodemask,
66e1707b 2577 };
a09ed5e0
YH
2578 struct shrink_control shrink = {
2579 .gfp_mask = sc.gfp_mask,
2580 };
66e1707b 2581
5515061d 2582 /*
50694c28
MG
2583 * Do not enter reclaim if fatal signal was delivered while throttled.
2584 * 1 is returned so that the page allocator does not OOM kill at this
2585 * point.
5515061d 2586 */
50694c28 2587 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2588 return 1;
2589
33906bc5
MG
2590 trace_mm_vmscan_direct_reclaim_begin(order,
2591 sc.may_writepage,
2592 gfp_mask);
2593
a09ed5e0 2594 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2595
2596 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2597
2598 return nr_reclaimed;
66e1707b
BS
2599}
2600
c255a458 2601#ifdef CONFIG_MEMCG
66e1707b 2602
72835c86 2603unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2604 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2605 struct zone *zone,
2606 unsigned long *nr_scanned)
4e416953
BS
2607{
2608 struct scan_control sc = {
0ae5e89c 2609 .nr_scanned = 0,
b8f5c566 2610 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2611 .may_writepage = !laptop_mode,
2612 .may_unmap = 1,
2613 .may_swap = !noswap,
4e416953 2614 .order = 0,
9e3b2f8c 2615 .priority = 0,
72835c86 2616 .target_mem_cgroup = memcg,
4e416953 2617 };
f9be23d6 2618 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2619
4e416953
BS
2620 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2621 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2622
9e3b2f8c 2623 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2624 sc.may_writepage,
2625 sc.gfp_mask);
2626
4e416953
BS
2627 /*
2628 * NOTE: Although we can get the priority field, using it
2629 * here is not a good idea, since it limits the pages we can scan.
2630 * if we don't reclaim here, the shrink_zone from balance_pgdat
2631 * will pick up pages from other mem cgroup's as well. We hack
2632 * the priority and make it zero.
2633 */
f9be23d6 2634 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2635
2636 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2637
0ae5e89c 2638 *nr_scanned = sc.nr_scanned;
4e416953
BS
2639 return sc.nr_reclaimed;
2640}
2641
72835c86 2642unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2643 gfp_t gfp_mask,
185efc0f 2644 bool noswap)
66e1707b 2645{
4e416953 2646 struct zonelist *zonelist;
bdce6d9e 2647 unsigned long nr_reclaimed;
889976db 2648 int nid;
66e1707b 2649 struct scan_control sc = {
66e1707b 2650 .may_writepage = !laptop_mode,
a6dc60f8 2651 .may_unmap = 1,
2e2e4259 2652 .may_swap = !noswap,
22fba335 2653 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2654 .order = 0,
9e3b2f8c 2655 .priority = DEF_PRIORITY,
72835c86 2656 .target_mem_cgroup = memcg,
327c0e96 2657 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2658 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2659 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2660 };
2661 struct shrink_control shrink = {
2662 .gfp_mask = sc.gfp_mask,
66e1707b 2663 };
66e1707b 2664
889976db
YH
2665 /*
2666 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2667 * take care of from where we get pages. So the node where we start the
2668 * scan does not need to be the current node.
2669 */
72835c86 2670 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2671
2672 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2673
2674 trace_mm_vmscan_memcg_reclaim_begin(0,
2675 sc.may_writepage,
2676 sc.gfp_mask);
2677
a09ed5e0 2678 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2679
2680 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2681
2682 return nr_reclaimed;
66e1707b
BS
2683}
2684#endif
2685
9e3b2f8c 2686static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2687{
b95a2f2d 2688 struct mem_cgroup *memcg;
f16015fb 2689
b95a2f2d
JW
2690 if (!total_swap_pages)
2691 return;
2692
2693 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2694 do {
c56d5c7d 2695 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2696
c56d5c7d 2697 if (inactive_anon_is_low(lruvec))
1a93be0e 2698 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2699 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2700
2701 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2702 } while (memcg);
f16015fb
JW
2703}
2704
60cefed4
JW
2705static bool zone_balanced(struct zone *zone, int order,
2706 unsigned long balance_gap, int classzone_idx)
2707{
2708 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2709 balance_gap, classzone_idx, 0))
2710 return false;
2711
d84da3f9
KS
2712 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2713 !compaction_suitable(zone, order))
60cefed4
JW
2714 return false;
2715
2716 return true;
2717}
2718
1741c877 2719/*
4ae0a48b
ZC
2720 * pgdat_balanced() is used when checking if a node is balanced.
2721 *
2722 * For order-0, all zones must be balanced!
2723 *
2724 * For high-order allocations only zones that meet watermarks and are in a
2725 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2726 * total of balanced pages must be at least 25% of the zones allowed by
2727 * classzone_idx for the node to be considered balanced. Forcing all zones to
2728 * be balanced for high orders can cause excessive reclaim when there are
2729 * imbalanced zones.
1741c877
MG
2730 * The choice of 25% is due to
2731 * o a 16M DMA zone that is balanced will not balance a zone on any
2732 * reasonable sized machine
2733 * o On all other machines, the top zone must be at least a reasonable
25985edc 2734 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2735 * would need to be at least 256M for it to be balance a whole node.
2736 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2737 * to balance a node on its own. These seemed like reasonable ratios.
2738 */
4ae0a48b 2739static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2740{
b40da049 2741 unsigned long managed_pages = 0;
4ae0a48b 2742 unsigned long balanced_pages = 0;
1741c877
MG
2743 int i;
2744
4ae0a48b
ZC
2745 /* Check the watermark levels */
2746 for (i = 0; i <= classzone_idx; i++) {
2747 struct zone *zone = pgdat->node_zones + i;
1741c877 2748
4ae0a48b
ZC
2749 if (!populated_zone(zone))
2750 continue;
2751
b40da049 2752 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2753
2754 /*
2755 * A special case here:
2756 *
2757 * balance_pgdat() skips over all_unreclaimable after
2758 * DEF_PRIORITY. Effectively, it considers them balanced so
2759 * they must be considered balanced here as well!
2760 */
6e543d57 2761 if (!zone_reclaimable(zone)) {
b40da049 2762 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2763 continue;
2764 }
2765
2766 if (zone_balanced(zone, order, 0, i))
b40da049 2767 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2768 else if (!order)
2769 return false;
2770 }
2771
2772 if (order)
b40da049 2773 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2774 else
2775 return true;
1741c877
MG
2776}
2777
5515061d
MG
2778/*
2779 * Prepare kswapd for sleeping. This verifies that there are no processes
2780 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2781 *
2782 * Returns true if kswapd is ready to sleep
2783 */
2784static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2785 int classzone_idx)
f50de2d3 2786{
f50de2d3
MG
2787 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2788 if (remaining)
5515061d
MG
2789 return false;
2790
2791 /*
2792 * There is a potential race between when kswapd checks its watermarks
2793 * and a process gets throttled. There is also a potential race if
2794 * processes get throttled, kswapd wakes, a large process exits therby
2795 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2796 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2797 * so wake them now if necessary. If necessary, processes will wake
2798 * kswapd and get throttled again
2799 */
2800 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2801 wake_up(&pgdat->pfmemalloc_wait);
2802 return false;
2803 }
f50de2d3 2804
4ae0a48b 2805 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2806}
2807
75485363
MG
2808/*
2809 * kswapd shrinks the zone by the number of pages required to reach
2810 * the high watermark.
b8e83b94
MG
2811 *
2812 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2813 * reclaim or if the lack of progress was due to pages under writeback.
2814 * This is used to determine if the scanning priority needs to be raised.
75485363 2815 */
b8e83b94 2816static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2817 int classzone_idx,
75485363 2818 struct scan_control *sc,
2ab44f43
MG
2819 unsigned long lru_pages,
2820 unsigned long *nr_attempted)
75485363 2821{
7c954f6d
MG
2822 int testorder = sc->order;
2823 unsigned long balance_gap;
75485363
MG
2824 struct reclaim_state *reclaim_state = current->reclaim_state;
2825 struct shrink_control shrink = {
2826 .gfp_mask = sc->gfp_mask,
2827 };
7c954f6d 2828 bool lowmem_pressure;
75485363
MG
2829
2830 /* Reclaim above the high watermark. */
2831 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2832
2833 /*
2834 * Kswapd reclaims only single pages with compaction enabled. Trying
2835 * too hard to reclaim until contiguous free pages have become
2836 * available can hurt performance by evicting too much useful data
2837 * from memory. Do not reclaim more than needed for compaction.
2838 */
2839 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2840 compaction_suitable(zone, sc->order) !=
2841 COMPACT_SKIPPED)
2842 testorder = 0;
2843
2844 /*
2845 * We put equal pressure on every zone, unless one zone has way too
2846 * many pages free already. The "too many pages" is defined as the
2847 * high wmark plus a "gap" where the gap is either the low
2848 * watermark or 1% of the zone, whichever is smaller.
2849 */
2850 balance_gap = min(low_wmark_pages(zone),
2851 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2852 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2853
2854 /*
2855 * If there is no low memory pressure or the zone is balanced then no
2856 * reclaim is necessary
2857 */
2858 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2859 if (!lowmem_pressure && zone_balanced(zone, testorder,
2860 balance_gap, classzone_idx))
2861 return true;
2862
75485363
MG
2863 shrink_zone(zone, sc);
2864
2865 reclaim_state->reclaimed_slab = 0;
6e543d57 2866 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2867 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2868
2ab44f43
MG
2869 /* Account for the number of pages attempted to reclaim */
2870 *nr_attempted += sc->nr_to_reclaim;
2871
283aba9f
MG
2872 zone_clear_flag(zone, ZONE_WRITEBACK);
2873
7c954f6d
MG
2874 /*
2875 * If a zone reaches its high watermark, consider it to be no longer
2876 * congested. It's possible there are dirty pages backed by congested
2877 * BDIs but as pressure is relieved, speculatively avoid congestion
2878 * waits.
2879 */
6e543d57 2880 if (zone_reclaimable(zone) &&
7c954f6d
MG
2881 zone_balanced(zone, testorder, 0, classzone_idx)) {
2882 zone_clear_flag(zone, ZONE_CONGESTED);
2883 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2884 }
2885
b8e83b94 2886 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2887}
2888
1da177e4
LT
2889/*
2890 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2891 * they are all at high_wmark_pages(zone).
1da177e4 2892 *
0abdee2b 2893 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2894 *
2895 * There is special handling here for zones which are full of pinned pages.
2896 * This can happen if the pages are all mlocked, or if they are all used by
2897 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2898 * What we do is to detect the case where all pages in the zone have been
2899 * scanned twice and there has been zero successful reclaim. Mark the zone as
2900 * dead and from now on, only perform a short scan. Basically we're polling
2901 * the zone for when the problem goes away.
2902 *
2903 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2904 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2905 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2906 * lower zones regardless of the number of free pages in the lower zones. This
2907 * interoperates with the page allocator fallback scheme to ensure that aging
2908 * of pages is balanced across the zones.
1da177e4 2909 */
99504748 2910static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2911 int *classzone_idx)
1da177e4 2912{
1da177e4 2913 int i;
99504748 2914 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
179e9639
AM
2915 struct scan_control sc = {
2916 .gfp_mask = GFP_KERNEL,
b8e83b94 2917 .priority = DEF_PRIORITY,
a6dc60f8 2918 .may_unmap = 1,
2e2e4259 2919 .may_swap = 1,
b8e83b94 2920 .may_writepage = !laptop_mode,
5ad333eb 2921 .order = order,
f16015fb 2922 .target_mem_cgroup = NULL,
179e9639 2923 };
f8891e5e 2924 count_vm_event(PAGEOUTRUN);
1da177e4 2925
9e3b2f8c 2926 do {
1da177e4 2927 unsigned long lru_pages = 0;
2ab44f43 2928 unsigned long nr_attempted = 0;
b8e83b94 2929 bool raise_priority = true;
2ab44f43 2930 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2931
2932 sc.nr_reclaimed = 0;
1da177e4 2933
d6277db4
RW
2934 /*
2935 * Scan in the highmem->dma direction for the highest
2936 * zone which needs scanning
2937 */
2938 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2939 struct zone *zone = pgdat->node_zones + i;
1da177e4 2940
d6277db4
RW
2941 if (!populated_zone(zone))
2942 continue;
1da177e4 2943
6e543d57
LD
2944 if (sc.priority != DEF_PRIORITY &&
2945 !zone_reclaimable(zone))
d6277db4 2946 continue;
1da177e4 2947
556adecb
RR
2948 /*
2949 * Do some background aging of the anon list, to give
2950 * pages a chance to be referenced before reclaiming.
2951 */
9e3b2f8c 2952 age_active_anon(zone, &sc);
556adecb 2953
cc715d99
MG
2954 /*
2955 * If the number of buffer_heads in the machine
2956 * exceeds the maximum allowed level and this node
2957 * has a highmem zone, force kswapd to reclaim from
2958 * it to relieve lowmem pressure.
2959 */
2960 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2961 end_zone = i;
2962 break;
2963 }
2964
60cefed4 2965 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2966 end_zone = i;
e1dbeda6 2967 break;
439423f6 2968 } else {
d43006d5
MG
2969 /*
2970 * If balanced, clear the dirty and congested
2971 * flags
2972 */
439423f6 2973 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2974 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2975 }
1da177e4 2976 }
dafcb73e 2977
b8e83b94 2978 if (i < 0)
e1dbeda6
AM
2979 goto out;
2980
1da177e4
LT
2981 for (i = 0; i <= end_zone; i++) {
2982 struct zone *zone = pgdat->node_zones + i;
2983
2ab44f43
MG
2984 if (!populated_zone(zone))
2985 continue;
2986
adea02a1 2987 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
2988
2989 /*
2990 * If any zone is currently balanced then kswapd will
2991 * not call compaction as it is expected that the
2992 * necessary pages are already available.
2993 */
2994 if (pgdat_needs_compaction &&
2995 zone_watermark_ok(zone, order,
2996 low_wmark_pages(zone),
2997 *classzone_idx, 0))
2998 pgdat_needs_compaction = false;
1da177e4
LT
2999 }
3000
b7ea3c41
MG
3001 /*
3002 * If we're getting trouble reclaiming, start doing writepage
3003 * even in laptop mode.
3004 */
3005 if (sc.priority < DEF_PRIORITY - 2)
3006 sc.may_writepage = 1;
3007
1da177e4
LT
3008 /*
3009 * Now scan the zone in the dma->highmem direction, stopping
3010 * at the last zone which needs scanning.
3011 *
3012 * We do this because the page allocator works in the opposite
3013 * direction. This prevents the page allocator from allocating
3014 * pages behind kswapd's direction of progress, which would
3015 * cause too much scanning of the lower zones.
3016 */
3017 for (i = 0; i <= end_zone; i++) {
3018 struct zone *zone = pgdat->node_zones + i;
3019
f3fe6512 3020 if (!populated_zone(zone))
1da177e4
LT
3021 continue;
3022
6e543d57
LD
3023 if (sc.priority != DEF_PRIORITY &&
3024 !zone_reclaimable(zone))
1da177e4
LT
3025 continue;
3026
1da177e4 3027 sc.nr_scanned = 0;
4e416953 3028
32a4330d 3029 /*
7c954f6d
MG
3030 * There should be no need to raise the scanning
3031 * priority if enough pages are already being scanned
3032 * that that high watermark would be met at 100%
3033 * efficiency.
fe2c2a10 3034 */
7c954f6d
MG
3035 if (kswapd_shrink_zone(zone, end_zone, &sc,
3036 lru_pages, &nr_attempted))
3037 raise_priority = false;
1da177e4 3038 }
5515061d
MG
3039
3040 /*
3041 * If the low watermark is met there is no need for processes
3042 * to be throttled on pfmemalloc_wait as they should not be
3043 * able to safely make forward progress. Wake them
3044 */
3045 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3046 pfmemalloc_watermark_ok(pgdat))
3047 wake_up(&pgdat->pfmemalloc_wait);
3048
1da177e4 3049 /*
b8e83b94
MG
3050 * Fragmentation may mean that the system cannot be rebalanced
3051 * for high-order allocations in all zones. If twice the
3052 * allocation size has been reclaimed and the zones are still
3053 * not balanced then recheck the watermarks at order-0 to
3054 * prevent kswapd reclaiming excessively. Assume that a
3055 * process requested a high-order can direct reclaim/compact.
1da177e4 3056 */
b8e83b94
MG
3057 if (order && sc.nr_reclaimed >= 2UL << order)
3058 order = sc.order = 0;
8357376d 3059
b8e83b94
MG
3060 /* Check if kswapd should be suspending */
3061 if (try_to_freeze() || kthread_should_stop())
3062 break;
8357376d 3063
2ab44f43
MG
3064 /*
3065 * Compact if necessary and kswapd is reclaiming at least the
3066 * high watermark number of pages as requsted
3067 */
3068 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3069 compact_pgdat(pgdat, order);
3070
73ce02e9 3071 /*
b8e83b94
MG
3072 * Raise priority if scanning rate is too low or there was no
3073 * progress in reclaiming pages
73ce02e9 3074 */
b8e83b94
MG
3075 if (raise_priority || !sc.nr_reclaimed)
3076 sc.priority--;
9aa41348 3077 } while (sc.priority >= 1 &&
b8e83b94 3078 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3079
b8e83b94 3080out:
0abdee2b 3081 /*
5515061d 3082 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3083 * makes a decision on the order we were last reclaiming at. However,
3084 * if another caller entered the allocator slow path while kswapd
3085 * was awake, order will remain at the higher level
3086 */
dc83edd9 3087 *classzone_idx = end_zone;
0abdee2b 3088 return order;
1da177e4
LT
3089}
3090
dc83edd9 3091static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3092{
3093 long remaining = 0;
3094 DEFINE_WAIT(wait);
3095
3096 if (freezing(current) || kthread_should_stop())
3097 return;
3098
3099 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3100
3101 /* Try to sleep for a short interval */
5515061d 3102 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3103 remaining = schedule_timeout(HZ/10);
3104 finish_wait(&pgdat->kswapd_wait, &wait);
3105 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3106 }
3107
3108 /*
3109 * After a short sleep, check if it was a premature sleep. If not, then
3110 * go fully to sleep until explicitly woken up.
3111 */
5515061d 3112 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3113 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3114
3115 /*
3116 * vmstat counters are not perfectly accurate and the estimated
3117 * value for counters such as NR_FREE_PAGES can deviate from the
3118 * true value by nr_online_cpus * threshold. To avoid the zone
3119 * watermarks being breached while under pressure, we reduce the
3120 * per-cpu vmstat threshold while kswapd is awake and restore
3121 * them before going back to sleep.
3122 */
3123 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3124
62997027
MG
3125 /*
3126 * Compaction records what page blocks it recently failed to
3127 * isolate pages from and skips them in the future scanning.
3128 * When kswapd is going to sleep, it is reasonable to assume
3129 * that pages and compaction may succeed so reset the cache.
3130 */
3131 reset_isolation_suitable(pgdat);
3132
1c7e7f6c
AK
3133 if (!kthread_should_stop())
3134 schedule();
3135
f0bc0a60
KM
3136 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3137 } else {
3138 if (remaining)
3139 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3140 else
3141 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3142 }
3143 finish_wait(&pgdat->kswapd_wait, &wait);
3144}
3145
1da177e4
LT
3146/*
3147 * The background pageout daemon, started as a kernel thread
4f98a2fe 3148 * from the init process.
1da177e4
LT
3149 *
3150 * This basically trickles out pages so that we have _some_
3151 * free memory available even if there is no other activity
3152 * that frees anything up. This is needed for things like routing
3153 * etc, where we otherwise might have all activity going on in
3154 * asynchronous contexts that cannot page things out.
3155 *
3156 * If there are applications that are active memory-allocators
3157 * (most normal use), this basically shouldn't matter.
3158 */
3159static int kswapd(void *p)
3160{
215ddd66 3161 unsigned long order, new_order;
d2ebd0f6 3162 unsigned balanced_order;
215ddd66 3163 int classzone_idx, new_classzone_idx;
d2ebd0f6 3164 int balanced_classzone_idx;
1da177e4
LT
3165 pg_data_t *pgdat = (pg_data_t*)p;
3166 struct task_struct *tsk = current;
f0bc0a60 3167
1da177e4
LT
3168 struct reclaim_state reclaim_state = {
3169 .reclaimed_slab = 0,
3170 };
a70f7302 3171 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3172
cf40bd16
NP
3173 lockdep_set_current_reclaim_state(GFP_KERNEL);
3174
174596a0 3175 if (!cpumask_empty(cpumask))
c5f59f08 3176 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3177 current->reclaim_state = &reclaim_state;
3178
3179 /*
3180 * Tell the memory management that we're a "memory allocator",
3181 * and that if we need more memory we should get access to it
3182 * regardless (see "__alloc_pages()"). "kswapd" should
3183 * never get caught in the normal page freeing logic.
3184 *
3185 * (Kswapd normally doesn't need memory anyway, but sometimes
3186 * you need a small amount of memory in order to be able to
3187 * page out something else, and this flag essentially protects
3188 * us from recursively trying to free more memory as we're
3189 * trying to free the first piece of memory in the first place).
3190 */
930d9152 3191 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3192 set_freezable();
1da177e4 3193
215ddd66 3194 order = new_order = 0;
d2ebd0f6 3195 balanced_order = 0;
215ddd66 3196 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3197 balanced_classzone_idx = classzone_idx;
1da177e4 3198 for ( ; ; ) {
6f6313d4 3199 bool ret;
3e1d1d28 3200
215ddd66
MG
3201 /*
3202 * If the last balance_pgdat was unsuccessful it's unlikely a
3203 * new request of a similar or harder type will succeed soon
3204 * so consider going to sleep on the basis we reclaimed at
3205 */
d2ebd0f6
AS
3206 if (balanced_classzone_idx >= new_classzone_idx &&
3207 balanced_order == new_order) {
215ddd66
MG
3208 new_order = pgdat->kswapd_max_order;
3209 new_classzone_idx = pgdat->classzone_idx;
3210 pgdat->kswapd_max_order = 0;
3211 pgdat->classzone_idx = pgdat->nr_zones - 1;
3212 }
3213
99504748 3214 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3215 /*
3216 * Don't sleep if someone wants a larger 'order'
99504748 3217 * allocation or has tigher zone constraints
1da177e4
LT
3218 */
3219 order = new_order;
99504748 3220 classzone_idx = new_classzone_idx;
1da177e4 3221 } else {
d2ebd0f6
AS
3222 kswapd_try_to_sleep(pgdat, balanced_order,
3223 balanced_classzone_idx);
1da177e4 3224 order = pgdat->kswapd_max_order;
99504748 3225 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3226 new_order = order;
3227 new_classzone_idx = classzone_idx;
4d40502e 3228 pgdat->kswapd_max_order = 0;
215ddd66 3229 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3230 }
1da177e4 3231
8fe23e05
DR
3232 ret = try_to_freeze();
3233 if (kthread_should_stop())
3234 break;
3235
3236 /*
3237 * We can speed up thawing tasks if we don't call balance_pgdat
3238 * after returning from the refrigerator
3239 */
33906bc5
MG
3240 if (!ret) {
3241 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3242 balanced_classzone_idx = classzone_idx;
3243 balanced_order = balance_pgdat(pgdat, order,
3244 &balanced_classzone_idx);
33906bc5 3245 }
1da177e4 3246 }
b0a8cc58
TY
3247
3248 current->reclaim_state = NULL;
1da177e4
LT
3249 return 0;
3250}
3251
3252/*
3253 * A zone is low on free memory, so wake its kswapd task to service it.
3254 */
99504748 3255void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3256{
3257 pg_data_t *pgdat;
3258
f3fe6512 3259 if (!populated_zone(zone))
1da177e4
LT
3260 return;
3261
88f5acf8 3262 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3263 return;
88f5acf8 3264 pgdat = zone->zone_pgdat;
99504748 3265 if (pgdat->kswapd_max_order < order) {
1da177e4 3266 pgdat->kswapd_max_order = order;
99504748
MG
3267 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3268 }
8d0986e2 3269 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3270 return;
892f795d 3271 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3272 return;
3273
3274 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3275 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3276}
3277
adea02a1
WF
3278/*
3279 * The reclaimable count would be mostly accurate.
3280 * The less reclaimable pages may be
3281 * - mlocked pages, which will be moved to unevictable list when encountered
3282 * - mapped pages, which may require several travels to be reclaimed
3283 * - dirty pages, which is not "instantly" reclaimable
3284 */
3285unsigned long global_reclaimable_pages(void)
4f98a2fe 3286{
adea02a1
WF
3287 int nr;
3288
3289 nr = global_page_state(NR_ACTIVE_FILE) +
3290 global_page_state(NR_INACTIVE_FILE);
3291
ec8acf20 3292 if (get_nr_swap_pages() > 0)
adea02a1
WF
3293 nr += global_page_state(NR_ACTIVE_ANON) +
3294 global_page_state(NR_INACTIVE_ANON);
3295
3296 return nr;
3297}
3298
c6f37f12 3299#ifdef CONFIG_HIBERNATION
1da177e4 3300/*
7b51755c 3301 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3302 * freed pages.
3303 *
3304 * Rather than trying to age LRUs the aim is to preserve the overall
3305 * LRU order by reclaiming preferentially
3306 * inactive > active > active referenced > active mapped
1da177e4 3307 */
7b51755c 3308unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3309{
d6277db4 3310 struct reclaim_state reclaim_state;
d6277db4 3311 struct scan_control sc = {
7b51755c
KM
3312 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3313 .may_swap = 1,
3314 .may_unmap = 1,
d6277db4 3315 .may_writepage = 1,
7b51755c
KM
3316 .nr_to_reclaim = nr_to_reclaim,
3317 .hibernation_mode = 1,
7b51755c 3318 .order = 0,
9e3b2f8c 3319 .priority = DEF_PRIORITY,
1da177e4 3320 };
a09ed5e0
YH
3321 struct shrink_control shrink = {
3322 .gfp_mask = sc.gfp_mask,
3323 };
3324 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3325 struct task_struct *p = current;
3326 unsigned long nr_reclaimed;
1da177e4 3327
7b51755c
KM
3328 p->flags |= PF_MEMALLOC;
3329 lockdep_set_current_reclaim_state(sc.gfp_mask);
3330 reclaim_state.reclaimed_slab = 0;
3331 p->reclaim_state = &reclaim_state;
d6277db4 3332
a09ed5e0 3333 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3334
7b51755c
KM
3335 p->reclaim_state = NULL;
3336 lockdep_clear_current_reclaim_state();
3337 p->flags &= ~PF_MEMALLOC;
d6277db4 3338
7b51755c 3339 return nr_reclaimed;
1da177e4 3340}
c6f37f12 3341#endif /* CONFIG_HIBERNATION */
1da177e4 3342
1da177e4
LT
3343/* It's optimal to keep kswapds on the same CPUs as their memory, but
3344 not required for correctness. So if the last cpu in a node goes
3345 away, we get changed to run anywhere: as the first one comes back,
3346 restore their cpu bindings. */
fcb35a9b
GKH
3347static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3348 void *hcpu)
1da177e4 3349{
58c0a4a7 3350 int nid;
1da177e4 3351
8bb78442 3352 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3353 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3354 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3355 const struct cpumask *mask;
3356
3357 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3358
3e597945 3359 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3360 /* One of our CPUs online: restore mask */
c5f59f08 3361 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3362 }
3363 }
3364 return NOTIFY_OK;
3365}
1da177e4 3366
3218ae14
YG
3367/*
3368 * This kswapd start function will be called by init and node-hot-add.
3369 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3370 */
3371int kswapd_run(int nid)
3372{
3373 pg_data_t *pgdat = NODE_DATA(nid);
3374 int ret = 0;
3375
3376 if (pgdat->kswapd)
3377 return 0;
3378
3379 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3380 if (IS_ERR(pgdat->kswapd)) {
3381 /* failure at boot is fatal */
3382 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3383 pr_err("Failed to start kswapd on node %d\n", nid);
3384 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3385 pgdat->kswapd = NULL;
3218ae14
YG
3386 }
3387 return ret;
3388}
3389
8fe23e05 3390/*
d8adde17
JL
3391 * Called by memory hotplug when all memory in a node is offlined. Caller must
3392 * hold lock_memory_hotplug().
8fe23e05
DR
3393 */
3394void kswapd_stop(int nid)
3395{
3396 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3397
d8adde17 3398 if (kswapd) {
8fe23e05 3399 kthread_stop(kswapd);
d8adde17
JL
3400 NODE_DATA(nid)->kswapd = NULL;
3401 }
8fe23e05
DR
3402}
3403
1da177e4
LT
3404static int __init kswapd_init(void)
3405{
3218ae14 3406 int nid;
69e05944 3407
1da177e4 3408 swap_setup();
48fb2e24 3409 for_each_node_state(nid, N_MEMORY)
3218ae14 3410 kswapd_run(nid);
1da177e4
LT
3411 hotcpu_notifier(cpu_callback, 0);
3412 return 0;
3413}
3414
3415module_init(kswapd_init)
9eeff239
CL
3416
3417#ifdef CONFIG_NUMA
3418/*
3419 * Zone reclaim mode
3420 *
3421 * If non-zero call zone_reclaim when the number of free pages falls below
3422 * the watermarks.
9eeff239
CL
3423 */
3424int zone_reclaim_mode __read_mostly;
3425
1b2ffb78 3426#define RECLAIM_OFF 0
7d03431c 3427#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3428#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3429#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3430
a92f7126
CL
3431/*
3432 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3433 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3434 * a zone.
3435 */
3436#define ZONE_RECLAIM_PRIORITY 4
3437
9614634f
CL
3438/*
3439 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3440 * occur.
3441 */
3442int sysctl_min_unmapped_ratio = 1;
3443
0ff38490
CL
3444/*
3445 * If the number of slab pages in a zone grows beyond this percentage then
3446 * slab reclaim needs to occur.
3447 */
3448int sysctl_min_slab_ratio = 5;
3449
90afa5de
MG
3450static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3451{
3452 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3453 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3454 zone_page_state(zone, NR_ACTIVE_FILE);
3455
3456 /*
3457 * It's possible for there to be more file mapped pages than
3458 * accounted for by the pages on the file LRU lists because
3459 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3460 */
3461 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3462}
3463
3464/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3465static long zone_pagecache_reclaimable(struct zone *zone)
3466{
3467 long nr_pagecache_reclaimable;
3468 long delta = 0;
3469
3470 /*
3471 * If RECLAIM_SWAP is set, then all file pages are considered
3472 * potentially reclaimable. Otherwise, we have to worry about
3473 * pages like swapcache and zone_unmapped_file_pages() provides
3474 * a better estimate
3475 */
3476 if (zone_reclaim_mode & RECLAIM_SWAP)
3477 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3478 else
3479 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3480
3481 /* If we can't clean pages, remove dirty pages from consideration */
3482 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3483 delta += zone_page_state(zone, NR_FILE_DIRTY);
3484
3485 /* Watch for any possible underflows due to delta */
3486 if (unlikely(delta > nr_pagecache_reclaimable))
3487 delta = nr_pagecache_reclaimable;
3488
3489 return nr_pagecache_reclaimable - delta;
3490}
3491
9eeff239
CL
3492/*
3493 * Try to free up some pages from this zone through reclaim.
3494 */
179e9639 3495static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3496{
7fb2d46d 3497 /* Minimum pages needed in order to stay on node */
69e05944 3498 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3499 struct task_struct *p = current;
3500 struct reclaim_state reclaim_state;
179e9639
AM
3501 struct scan_control sc = {
3502 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3503 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3504 .may_swap = 1,
62b726c1 3505 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3506 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3507 .order = order,
9e3b2f8c 3508 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3509 };
a09ed5e0
YH
3510 struct shrink_control shrink = {
3511 .gfp_mask = sc.gfp_mask,
3512 };
15748048 3513 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3514
9eeff239 3515 cond_resched();
d4f7796e
CL
3516 /*
3517 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3518 * and we also need to be able to write out pages for RECLAIM_WRITE
3519 * and RECLAIM_SWAP.
3520 */
3521 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3522 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3523 reclaim_state.reclaimed_slab = 0;
3524 p->reclaim_state = &reclaim_state;
c84db23c 3525
90afa5de 3526 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3527 /*
3528 * Free memory by calling shrink zone with increasing
3529 * priorities until we have enough memory freed.
3530 */
0ff38490 3531 do {
9e3b2f8c
KK
3532 shrink_zone(zone, &sc);
3533 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3534 }
c84db23c 3535
15748048
KM
3536 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3537 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3538 /*
7fb2d46d 3539 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3540 * many pages were freed in this zone. So we take the current
3541 * number of slab pages and shake the slab until it is reduced
3542 * by the same nr_pages that we used for reclaiming unmapped
3543 * pages.
2a16e3f4 3544 *
0ff38490
CL
3545 * Note that shrink_slab will free memory on all zones and may
3546 * take a long time.
2a16e3f4 3547 */
4dc4b3d9
KM
3548 for (;;) {
3549 unsigned long lru_pages = zone_reclaimable_pages(zone);
3550
3551 /* No reclaimable slab or very low memory pressure */
1495f230 3552 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3553 break;
3554
3555 /* Freed enough memory */
3556 nr_slab_pages1 = zone_page_state(zone,
3557 NR_SLAB_RECLAIMABLE);
3558 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3559 break;
3560 }
83e33a47
CL
3561
3562 /*
3563 * Update nr_reclaimed by the number of slab pages we
3564 * reclaimed from this zone.
3565 */
15748048
KM
3566 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3567 if (nr_slab_pages1 < nr_slab_pages0)
3568 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3569 }
3570
9eeff239 3571 p->reclaim_state = NULL;
d4f7796e 3572 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3573 lockdep_clear_current_reclaim_state();
a79311c1 3574 return sc.nr_reclaimed >= nr_pages;
9eeff239 3575}
179e9639
AM
3576
3577int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3578{
179e9639 3579 int node_id;
d773ed6b 3580 int ret;
179e9639
AM
3581
3582 /*
0ff38490
CL
3583 * Zone reclaim reclaims unmapped file backed pages and
3584 * slab pages if we are over the defined limits.
34aa1330 3585 *
9614634f
CL
3586 * A small portion of unmapped file backed pages is needed for
3587 * file I/O otherwise pages read by file I/O will be immediately
3588 * thrown out if the zone is overallocated. So we do not reclaim
3589 * if less than a specified percentage of the zone is used by
3590 * unmapped file backed pages.
179e9639 3591 */
90afa5de
MG
3592 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3593 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3594 return ZONE_RECLAIM_FULL;
179e9639 3595
6e543d57 3596 if (!zone_reclaimable(zone))
fa5e084e 3597 return ZONE_RECLAIM_FULL;
d773ed6b 3598
179e9639 3599 /*
d773ed6b 3600 * Do not scan if the allocation should not be delayed.
179e9639 3601 */
d773ed6b 3602 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3603 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3604
3605 /*
3606 * Only run zone reclaim on the local zone or on zones that do not
3607 * have associated processors. This will favor the local processor
3608 * over remote processors and spread off node memory allocations
3609 * as wide as possible.
3610 */
89fa3024 3611 node_id = zone_to_nid(zone);
37c0708d 3612 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3613 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3614
3615 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3616 return ZONE_RECLAIM_NOSCAN;
3617
d773ed6b
DR
3618 ret = __zone_reclaim(zone, gfp_mask, order);
3619 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3620
24cf7251
MG
3621 if (!ret)
3622 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3623
d773ed6b 3624 return ret;
179e9639 3625}
9eeff239 3626#endif
894bc310 3627
894bc310
LS
3628/*
3629 * page_evictable - test whether a page is evictable
3630 * @page: the page to test
894bc310
LS
3631 *
3632 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3633 * lists vs unevictable list.
894bc310
LS
3634 *
3635 * Reasons page might not be evictable:
ba9ddf49 3636 * (1) page's mapping marked unevictable
b291f000 3637 * (2) page is part of an mlocked VMA
ba9ddf49 3638 *
894bc310 3639 */
39b5f29a 3640int page_evictable(struct page *page)
894bc310 3641{
39b5f29a 3642 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3643}
89e004ea 3644
85046579 3645#ifdef CONFIG_SHMEM
89e004ea 3646/**
24513264
HD
3647 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3648 * @pages: array of pages to check
3649 * @nr_pages: number of pages to check
89e004ea 3650 *
24513264 3651 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3652 *
3653 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3654 */
24513264 3655void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3656{
925b7673 3657 struct lruvec *lruvec;
24513264
HD
3658 struct zone *zone = NULL;
3659 int pgscanned = 0;
3660 int pgrescued = 0;
3661 int i;
89e004ea 3662
24513264
HD
3663 for (i = 0; i < nr_pages; i++) {
3664 struct page *page = pages[i];
3665 struct zone *pagezone;
89e004ea 3666
24513264
HD
3667 pgscanned++;
3668 pagezone = page_zone(page);
3669 if (pagezone != zone) {
3670 if (zone)
3671 spin_unlock_irq(&zone->lru_lock);
3672 zone = pagezone;
3673 spin_lock_irq(&zone->lru_lock);
3674 }
fa9add64 3675 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3676
24513264
HD
3677 if (!PageLRU(page) || !PageUnevictable(page))
3678 continue;
89e004ea 3679
39b5f29a 3680 if (page_evictable(page)) {
24513264
HD
3681 enum lru_list lru = page_lru_base_type(page);
3682
3683 VM_BUG_ON(PageActive(page));
3684 ClearPageUnevictable(page);
fa9add64
HD
3685 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3686 add_page_to_lru_list(page, lruvec, lru);
24513264 3687 pgrescued++;
89e004ea 3688 }
24513264 3689 }
89e004ea 3690
24513264
HD
3691 if (zone) {
3692 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3693 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3694 spin_unlock_irq(&zone->lru_lock);
89e004ea 3695 }
89e004ea 3696}
85046579 3697#endif /* CONFIG_SHMEM */
af936a16 3698
264e56d8 3699static void warn_scan_unevictable_pages(void)
af936a16 3700{
264e56d8 3701 printk_once(KERN_WARNING
25bd91bd 3702 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3703 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3704 "one, please send an email to linux-mm@kvack.org.\n",
3705 current->comm);
af936a16
LS
3706}
3707
3708/*
3709 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3710 * all nodes' unevictable lists for evictable pages
3711 */
3712unsigned long scan_unevictable_pages;
3713
3714int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3715 void __user *buffer,
af936a16
LS
3716 size_t *length, loff_t *ppos)
3717{
264e56d8 3718 warn_scan_unevictable_pages();
8d65af78 3719 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3720 scan_unevictable_pages = 0;
3721 return 0;
3722}
3723
e4455abb 3724#ifdef CONFIG_NUMA
af936a16
LS
3725/*
3726 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3727 * a specified node's per zone unevictable lists for evictable pages.
3728 */
3729
10fbcf4c
KS
3730static ssize_t read_scan_unevictable_node(struct device *dev,
3731 struct device_attribute *attr,
af936a16
LS
3732 char *buf)
3733{
264e56d8 3734 warn_scan_unevictable_pages();
af936a16
LS
3735 return sprintf(buf, "0\n"); /* always zero; should fit... */
3736}
3737
10fbcf4c
KS
3738static ssize_t write_scan_unevictable_node(struct device *dev,
3739 struct device_attribute *attr,
af936a16
LS
3740 const char *buf, size_t count)
3741{
264e56d8 3742 warn_scan_unevictable_pages();
af936a16
LS
3743 return 1;
3744}
3745
3746
10fbcf4c 3747static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3748 read_scan_unevictable_node,
3749 write_scan_unevictable_node);
3750
3751int scan_unevictable_register_node(struct node *node)
3752{
10fbcf4c 3753 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3754}
3755
3756void scan_unevictable_unregister_node(struct node *node)
3757{
10fbcf4c 3758 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3759}
e4455abb 3760#endif
This page took 1.737611 seconds and 5 git commands to generate.