xen/mmu: Correct PAT MST setting.
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
91a45470 142#else
89b5fae5
JW
143static bool global_reclaim(struct scan_control *sc)
144{
145 return true;
146}
91a45470
KH
147#endif
148
6e543d57
LD
149unsigned long zone_reclaimable_pages(struct zone *zone)
150{
151 int nr;
152
153 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154 zone_page_state(zone, NR_INACTIVE_FILE);
155
156 if (get_nr_swap_pages() > 0)
157 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158 zone_page_state(zone, NR_INACTIVE_ANON);
159
160 return nr;
161}
162
163bool zone_reclaimable(struct zone *zone)
164{
165 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166}
167
4d7dcca2 168static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 169{
c3c787e8 170 if (!mem_cgroup_disabled())
4d7dcca2 171 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 172
074291fe 173 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
174}
175
1da177e4 176/*
1d3d4437 177 * Add a shrinker callback to be called from the vm.
1da177e4 178 */
1d3d4437 179int register_shrinker(struct shrinker *shrinker)
1da177e4 180{
1d3d4437
GC
181 size_t size = sizeof(*shrinker->nr_deferred);
182
183 /*
184 * If we only have one possible node in the system anyway, save
185 * ourselves the trouble and disable NUMA aware behavior. This way we
186 * will save memory and some small loop time later.
187 */
188 if (nr_node_ids == 1)
189 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
190
191 if (shrinker->flags & SHRINKER_NUMA_AWARE)
192 size *= nr_node_ids;
193
194 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
195 if (!shrinker->nr_deferred)
196 return -ENOMEM;
197
8e1f936b
RR
198 down_write(&shrinker_rwsem);
199 list_add_tail(&shrinker->list, &shrinker_list);
200 up_write(&shrinker_rwsem);
1d3d4437 201 return 0;
1da177e4 202}
8e1f936b 203EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
204
205/*
206 * Remove one
207 */
8e1f936b 208void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
209{
210 down_write(&shrinker_rwsem);
211 list_del(&shrinker->list);
212 up_write(&shrinker_rwsem);
1da177e4 213}
8e1f936b 214EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
215
216#define SHRINK_BATCH 128
1d3d4437
GC
217
218static unsigned long
219shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
220 unsigned long nr_pages_scanned, unsigned long lru_pages)
221{
222 unsigned long freed = 0;
223 unsigned long long delta;
224 long total_scan;
225 long max_pass;
226 long nr;
227 long new_nr;
228 int nid = shrinkctl->nid;
229 long batch_size = shrinker->batch ? shrinker->batch
230 : SHRINK_BATCH;
231
a0b02131 232 max_pass = shrinker->count_objects(shrinker, shrinkctl);
1d3d4437
GC
233 if (max_pass == 0)
234 return 0;
235
236 /*
237 * copy the current shrinker scan count into a local variable
238 * and zero it so that other concurrent shrinker invocations
239 * don't also do this scanning work.
240 */
241 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
242
243 total_scan = nr;
244 delta = (4 * nr_pages_scanned) / shrinker->seeks;
245 delta *= max_pass;
246 do_div(delta, lru_pages + 1);
247 total_scan += delta;
248 if (total_scan < 0) {
249 printk(KERN_ERR
250 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 251 shrinker->scan_objects, total_scan);
1d3d4437
GC
252 total_scan = max_pass;
253 }
254
255 /*
256 * We need to avoid excessive windup on filesystem shrinkers
257 * due to large numbers of GFP_NOFS allocations causing the
258 * shrinkers to return -1 all the time. This results in a large
259 * nr being built up so when a shrink that can do some work
260 * comes along it empties the entire cache due to nr >>>
261 * max_pass. This is bad for sustaining a working set in
262 * memory.
263 *
264 * Hence only allow the shrinker to scan the entire cache when
265 * a large delta change is calculated directly.
266 */
267 if (delta < max_pass / 4)
268 total_scan = min(total_scan, max_pass / 2);
269
270 /*
271 * Avoid risking looping forever due to too large nr value:
272 * never try to free more than twice the estimate number of
273 * freeable entries.
274 */
275 if (total_scan > max_pass * 2)
276 total_scan = max_pass * 2;
277
278 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
279 nr_pages_scanned, lru_pages,
280 max_pass, delta, total_scan);
281
282 while (total_scan >= batch_size) {
a0b02131 283 unsigned long ret;
1d3d4437 284
a0b02131
DC
285 shrinkctl->nr_to_scan = batch_size;
286 ret = shrinker->scan_objects(shrinker, shrinkctl);
287 if (ret == SHRINK_STOP)
288 break;
289 freed += ret;
1d3d4437
GC
290
291 count_vm_events(SLABS_SCANNED, batch_size);
292 total_scan -= batch_size;
293
294 cond_resched();
295 }
296
297 /*
298 * move the unused scan count back into the shrinker in a
299 * manner that handles concurrent updates. If we exhausted the
300 * scan, there is no need to do an update.
301 */
302 if (total_scan > 0)
303 new_nr = atomic_long_add_return(total_scan,
304 &shrinker->nr_deferred[nid]);
305 else
306 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
307
308 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
309 return freed;
1495f230
YH
310}
311
1da177e4
LT
312/*
313 * Call the shrink functions to age shrinkable caches
314 *
315 * Here we assume it costs one seek to replace a lru page and that it also
316 * takes a seek to recreate a cache object. With this in mind we age equal
317 * percentages of the lru and ageable caches. This should balance the seeks
318 * generated by these structures.
319 *
183ff22b 320 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
321 * slab to avoid swapping.
322 *
323 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
324 *
325 * `lru_pages' represents the number of on-LRU pages in all the zones which
326 * are eligible for the caller's allocation attempt. It is used for balancing
327 * slab reclaim versus page reclaim.
b15e0905 328 *
329 * Returns the number of slab objects which we shrunk.
1da177e4 330 */
24f7c6b9 331unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 332 unsigned long nr_pages_scanned,
a09ed5e0 333 unsigned long lru_pages)
1da177e4
LT
334{
335 struct shrinker *shrinker;
24f7c6b9 336 unsigned long freed = 0;
1da177e4 337
1495f230
YH
338 if (nr_pages_scanned == 0)
339 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 340
f06590bd 341 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
342 /*
343 * If we would return 0, our callers would understand that we
344 * have nothing else to shrink and give up trying. By returning
345 * 1 we keep it going and assume we'll be able to shrink next
346 * time.
347 */
348 freed = 1;
f06590bd
MK
349 goto out;
350 }
1da177e4
LT
351
352 list_for_each_entry(shrinker, &shrinker_list, list) {
1d3d4437
GC
353 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
354 if (!node_online(shrinkctl->nid))
355 continue;
1da177e4 356
1d3d4437
GC
357 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
358 (shrinkctl->nid != 0))
1da177e4 359 break;
1da177e4 360
1d3d4437
GC
361 freed += shrink_slab_node(shrinkctl, shrinker,
362 nr_pages_scanned, lru_pages);
1da177e4 363
1da177e4 364 }
1da177e4
LT
365 }
366 up_read(&shrinker_rwsem);
f06590bd
MK
367out:
368 cond_resched();
24f7c6b9 369 return freed;
1da177e4
LT
370}
371
1da177e4
LT
372static inline int is_page_cache_freeable(struct page *page)
373{
ceddc3a5
JW
374 /*
375 * A freeable page cache page is referenced only by the caller
376 * that isolated the page, the page cache radix tree and
377 * optional buffer heads at page->private.
378 */
edcf4748 379 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
380}
381
7d3579e8
KM
382static int may_write_to_queue(struct backing_dev_info *bdi,
383 struct scan_control *sc)
1da177e4 384{
930d9152 385 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
386 return 1;
387 if (!bdi_write_congested(bdi))
388 return 1;
389 if (bdi == current->backing_dev_info)
390 return 1;
391 return 0;
392}
393
394/*
395 * We detected a synchronous write error writing a page out. Probably
396 * -ENOSPC. We need to propagate that into the address_space for a subsequent
397 * fsync(), msync() or close().
398 *
399 * The tricky part is that after writepage we cannot touch the mapping: nothing
400 * prevents it from being freed up. But we have a ref on the page and once
401 * that page is locked, the mapping is pinned.
402 *
403 * We're allowed to run sleeping lock_page() here because we know the caller has
404 * __GFP_FS.
405 */
406static void handle_write_error(struct address_space *mapping,
407 struct page *page, int error)
408{
7eaceacc 409 lock_page(page);
3e9f45bd
GC
410 if (page_mapping(page) == mapping)
411 mapping_set_error(mapping, error);
1da177e4
LT
412 unlock_page(page);
413}
414
04e62a29
CL
415/* possible outcome of pageout() */
416typedef enum {
417 /* failed to write page out, page is locked */
418 PAGE_KEEP,
419 /* move page to the active list, page is locked */
420 PAGE_ACTIVATE,
421 /* page has been sent to the disk successfully, page is unlocked */
422 PAGE_SUCCESS,
423 /* page is clean and locked */
424 PAGE_CLEAN,
425} pageout_t;
426
1da177e4 427/*
1742f19f
AM
428 * pageout is called by shrink_page_list() for each dirty page.
429 * Calls ->writepage().
1da177e4 430 */
c661b078 431static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 432 struct scan_control *sc)
1da177e4
LT
433{
434 /*
435 * If the page is dirty, only perform writeback if that write
436 * will be non-blocking. To prevent this allocation from being
437 * stalled by pagecache activity. But note that there may be
438 * stalls if we need to run get_block(). We could test
439 * PagePrivate for that.
440 *
6aceb53b 441 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
442 * this page's queue, we can perform writeback even if that
443 * will block.
444 *
445 * If the page is swapcache, write it back even if that would
446 * block, for some throttling. This happens by accident, because
447 * swap_backing_dev_info is bust: it doesn't reflect the
448 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
449 */
450 if (!is_page_cache_freeable(page))
451 return PAGE_KEEP;
452 if (!mapping) {
453 /*
454 * Some data journaling orphaned pages can have
455 * page->mapping == NULL while being dirty with clean buffers.
456 */
266cf658 457 if (page_has_private(page)) {
1da177e4
LT
458 if (try_to_free_buffers(page)) {
459 ClearPageDirty(page);
d40cee24 460 printk("%s: orphaned page\n", __func__);
1da177e4
LT
461 return PAGE_CLEAN;
462 }
463 }
464 return PAGE_KEEP;
465 }
466 if (mapping->a_ops->writepage == NULL)
467 return PAGE_ACTIVATE;
0e093d99 468 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
469 return PAGE_KEEP;
470
471 if (clear_page_dirty_for_io(page)) {
472 int res;
473 struct writeback_control wbc = {
474 .sync_mode = WB_SYNC_NONE,
475 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
476 .range_start = 0,
477 .range_end = LLONG_MAX,
1da177e4
LT
478 .for_reclaim = 1,
479 };
480
481 SetPageReclaim(page);
482 res = mapping->a_ops->writepage(page, &wbc);
483 if (res < 0)
484 handle_write_error(mapping, page, res);
994fc28c 485 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
486 ClearPageReclaim(page);
487 return PAGE_ACTIVATE;
488 }
c661b078 489
1da177e4
LT
490 if (!PageWriteback(page)) {
491 /* synchronous write or broken a_ops? */
492 ClearPageReclaim(page);
493 }
23b9da55 494 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 495 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
496 return PAGE_SUCCESS;
497 }
498
499 return PAGE_CLEAN;
500}
501
a649fd92 502/*
e286781d
NP
503 * Same as remove_mapping, but if the page is removed from the mapping, it
504 * gets returned with a refcount of 0.
a649fd92 505 */
e286781d 506static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 507{
28e4d965
NP
508 BUG_ON(!PageLocked(page));
509 BUG_ON(mapping != page_mapping(page));
49d2e9cc 510
19fd6231 511 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 512 /*
0fd0e6b0
NP
513 * The non racy check for a busy page.
514 *
515 * Must be careful with the order of the tests. When someone has
516 * a ref to the page, it may be possible that they dirty it then
517 * drop the reference. So if PageDirty is tested before page_count
518 * here, then the following race may occur:
519 *
520 * get_user_pages(&page);
521 * [user mapping goes away]
522 * write_to(page);
523 * !PageDirty(page) [good]
524 * SetPageDirty(page);
525 * put_page(page);
526 * !page_count(page) [good, discard it]
527 *
528 * [oops, our write_to data is lost]
529 *
530 * Reversing the order of the tests ensures such a situation cannot
531 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
532 * load is not satisfied before that of page->_count.
533 *
534 * Note that if SetPageDirty is always performed via set_page_dirty,
535 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 536 */
e286781d 537 if (!page_freeze_refs(page, 2))
49d2e9cc 538 goto cannot_free;
e286781d
NP
539 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
540 if (unlikely(PageDirty(page))) {
541 page_unfreeze_refs(page, 2);
49d2e9cc 542 goto cannot_free;
e286781d 543 }
49d2e9cc
CL
544
545 if (PageSwapCache(page)) {
546 swp_entry_t swap = { .val = page_private(page) };
547 __delete_from_swap_cache(page);
19fd6231 548 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 549 swapcache_free(swap, page);
e286781d 550 } else {
6072d13c
LT
551 void (*freepage)(struct page *);
552
553 freepage = mapping->a_ops->freepage;
554
e64a782f 555 __delete_from_page_cache(page);
19fd6231 556 spin_unlock_irq(&mapping->tree_lock);
e767e056 557 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
558
559 if (freepage != NULL)
560 freepage(page);
49d2e9cc
CL
561 }
562
49d2e9cc
CL
563 return 1;
564
565cannot_free:
19fd6231 566 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
567 return 0;
568}
569
e286781d
NP
570/*
571 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
572 * someone else has a ref on the page, abort and return 0. If it was
573 * successfully detached, return 1. Assumes the caller has a single ref on
574 * this page.
575 */
576int remove_mapping(struct address_space *mapping, struct page *page)
577{
578 if (__remove_mapping(mapping, page)) {
579 /*
580 * Unfreezing the refcount with 1 rather than 2 effectively
581 * drops the pagecache ref for us without requiring another
582 * atomic operation.
583 */
584 page_unfreeze_refs(page, 1);
585 return 1;
586 }
587 return 0;
588}
589
894bc310
LS
590/**
591 * putback_lru_page - put previously isolated page onto appropriate LRU list
592 * @page: page to be put back to appropriate lru list
593 *
594 * Add previously isolated @page to appropriate LRU list.
595 * Page may still be unevictable for other reasons.
596 *
597 * lru_lock must not be held, interrupts must be enabled.
598 */
894bc310
LS
599void putback_lru_page(struct page *page)
600{
0ec3b74c 601 bool is_unevictable;
bbfd28ee 602 int was_unevictable = PageUnevictable(page);
894bc310
LS
603
604 VM_BUG_ON(PageLRU(page));
605
606redo:
607 ClearPageUnevictable(page);
608
39b5f29a 609 if (page_evictable(page)) {
894bc310
LS
610 /*
611 * For evictable pages, we can use the cache.
612 * In event of a race, worst case is we end up with an
613 * unevictable page on [in]active list.
614 * We know how to handle that.
615 */
0ec3b74c 616 is_unevictable = false;
c53954a0 617 lru_cache_add(page);
894bc310
LS
618 } else {
619 /*
620 * Put unevictable pages directly on zone's unevictable
621 * list.
622 */
0ec3b74c 623 is_unevictable = true;
894bc310 624 add_page_to_unevictable_list(page);
6a7b9548 625 /*
21ee9f39
MK
626 * When racing with an mlock or AS_UNEVICTABLE clearing
627 * (page is unlocked) make sure that if the other thread
628 * does not observe our setting of PG_lru and fails
24513264 629 * isolation/check_move_unevictable_pages,
21ee9f39 630 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
631 * the page back to the evictable list.
632 *
21ee9f39 633 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
634 */
635 smp_mb();
894bc310 636 }
894bc310
LS
637
638 /*
639 * page's status can change while we move it among lru. If an evictable
640 * page is on unevictable list, it never be freed. To avoid that,
641 * check after we added it to the list, again.
642 */
0ec3b74c 643 if (is_unevictable && page_evictable(page)) {
894bc310
LS
644 if (!isolate_lru_page(page)) {
645 put_page(page);
646 goto redo;
647 }
648 /* This means someone else dropped this page from LRU
649 * So, it will be freed or putback to LRU again. There is
650 * nothing to do here.
651 */
652 }
653
0ec3b74c 654 if (was_unevictable && !is_unevictable)
bbfd28ee 655 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 656 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
657 count_vm_event(UNEVICTABLE_PGCULLED);
658
894bc310
LS
659 put_page(page); /* drop ref from isolate */
660}
661
dfc8d636
JW
662enum page_references {
663 PAGEREF_RECLAIM,
664 PAGEREF_RECLAIM_CLEAN,
64574746 665 PAGEREF_KEEP,
dfc8d636
JW
666 PAGEREF_ACTIVATE,
667};
668
669static enum page_references page_check_references(struct page *page,
670 struct scan_control *sc)
671{
64574746 672 int referenced_ptes, referenced_page;
dfc8d636 673 unsigned long vm_flags;
dfc8d636 674
c3ac9a8a
JW
675 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
676 &vm_flags);
64574746 677 referenced_page = TestClearPageReferenced(page);
dfc8d636 678
dfc8d636
JW
679 /*
680 * Mlock lost the isolation race with us. Let try_to_unmap()
681 * move the page to the unevictable list.
682 */
683 if (vm_flags & VM_LOCKED)
684 return PAGEREF_RECLAIM;
685
64574746 686 if (referenced_ptes) {
e4898273 687 if (PageSwapBacked(page))
64574746
JW
688 return PAGEREF_ACTIVATE;
689 /*
690 * All mapped pages start out with page table
691 * references from the instantiating fault, so we need
692 * to look twice if a mapped file page is used more
693 * than once.
694 *
695 * Mark it and spare it for another trip around the
696 * inactive list. Another page table reference will
697 * lead to its activation.
698 *
699 * Note: the mark is set for activated pages as well
700 * so that recently deactivated but used pages are
701 * quickly recovered.
702 */
703 SetPageReferenced(page);
704
34dbc67a 705 if (referenced_page || referenced_ptes > 1)
64574746
JW
706 return PAGEREF_ACTIVATE;
707
c909e993
KK
708 /*
709 * Activate file-backed executable pages after first usage.
710 */
711 if (vm_flags & VM_EXEC)
712 return PAGEREF_ACTIVATE;
713
64574746
JW
714 return PAGEREF_KEEP;
715 }
dfc8d636
JW
716
717 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 718 if (referenced_page && !PageSwapBacked(page))
64574746
JW
719 return PAGEREF_RECLAIM_CLEAN;
720
721 return PAGEREF_RECLAIM;
dfc8d636
JW
722}
723
e2be15f6
MG
724/* Check if a page is dirty or under writeback */
725static void page_check_dirty_writeback(struct page *page,
726 bool *dirty, bool *writeback)
727{
b4597226
MG
728 struct address_space *mapping;
729
e2be15f6
MG
730 /*
731 * Anonymous pages are not handled by flushers and must be written
732 * from reclaim context. Do not stall reclaim based on them
733 */
734 if (!page_is_file_cache(page)) {
735 *dirty = false;
736 *writeback = false;
737 return;
738 }
739
740 /* By default assume that the page flags are accurate */
741 *dirty = PageDirty(page);
742 *writeback = PageWriteback(page);
b4597226
MG
743
744 /* Verify dirty/writeback state if the filesystem supports it */
745 if (!page_has_private(page))
746 return;
747
748 mapping = page_mapping(page);
749 if (mapping && mapping->a_ops->is_dirty_writeback)
750 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
751}
752
1da177e4 753/*
1742f19f 754 * shrink_page_list() returns the number of reclaimed pages
1da177e4 755 */
1742f19f 756static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 757 struct zone *zone,
f84f6e2b 758 struct scan_control *sc,
02c6de8d 759 enum ttu_flags ttu_flags,
8e950282 760 unsigned long *ret_nr_dirty,
d43006d5 761 unsigned long *ret_nr_unqueued_dirty,
8e950282 762 unsigned long *ret_nr_congested,
02c6de8d 763 unsigned long *ret_nr_writeback,
b1a6f21e 764 unsigned long *ret_nr_immediate,
02c6de8d 765 bool force_reclaim)
1da177e4
LT
766{
767 LIST_HEAD(ret_pages);
abe4c3b5 768 LIST_HEAD(free_pages);
1da177e4 769 int pgactivate = 0;
d43006d5 770 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
771 unsigned long nr_dirty = 0;
772 unsigned long nr_congested = 0;
05ff5137 773 unsigned long nr_reclaimed = 0;
92df3a72 774 unsigned long nr_writeback = 0;
b1a6f21e 775 unsigned long nr_immediate = 0;
1da177e4
LT
776
777 cond_resched();
778
69980e31 779 mem_cgroup_uncharge_start();
1da177e4
LT
780 while (!list_empty(page_list)) {
781 struct address_space *mapping;
782 struct page *page;
783 int may_enter_fs;
02c6de8d 784 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 785 bool dirty, writeback;
1da177e4
LT
786
787 cond_resched();
788
789 page = lru_to_page(page_list);
790 list_del(&page->lru);
791
529ae9aa 792 if (!trylock_page(page))
1da177e4
LT
793 goto keep;
794
725d704e 795 VM_BUG_ON(PageActive(page));
6a18adb3 796 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
797
798 sc->nr_scanned++;
80e43426 799
39b5f29a 800 if (unlikely(!page_evictable(page)))
b291f000 801 goto cull_mlocked;
894bc310 802
a6dc60f8 803 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
804 goto keep_locked;
805
1da177e4
LT
806 /* Double the slab pressure for mapped and swapcache pages */
807 if (page_mapped(page) || PageSwapCache(page))
808 sc->nr_scanned++;
809
c661b078
AW
810 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
811 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
812
e2be15f6
MG
813 /*
814 * The number of dirty pages determines if a zone is marked
815 * reclaim_congested which affects wait_iff_congested. kswapd
816 * will stall and start writing pages if the tail of the LRU
817 * is all dirty unqueued pages.
818 */
819 page_check_dirty_writeback(page, &dirty, &writeback);
820 if (dirty || writeback)
821 nr_dirty++;
822
823 if (dirty && !writeback)
824 nr_unqueued_dirty++;
825
d04e8acd
MG
826 /*
827 * Treat this page as congested if the underlying BDI is or if
828 * pages are cycling through the LRU so quickly that the
829 * pages marked for immediate reclaim are making it to the
830 * end of the LRU a second time.
831 */
e2be15f6 832 mapping = page_mapping(page);
d04e8acd
MG
833 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
834 (writeback && PageReclaim(page)))
e2be15f6
MG
835 nr_congested++;
836
283aba9f
MG
837 /*
838 * If a page at the tail of the LRU is under writeback, there
839 * are three cases to consider.
840 *
841 * 1) If reclaim is encountering an excessive number of pages
842 * under writeback and this page is both under writeback and
843 * PageReclaim then it indicates that pages are being queued
844 * for IO but are being recycled through the LRU before the
845 * IO can complete. Waiting on the page itself risks an
846 * indefinite stall if it is impossible to writeback the
847 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
848 * note that the LRU is being scanned too quickly and the
849 * caller can stall after page list has been processed.
283aba9f
MG
850 *
851 * 2) Global reclaim encounters a page, memcg encounters a
852 * page that is not marked for immediate reclaim or
853 * the caller does not have __GFP_IO. In this case mark
854 * the page for immediate reclaim and continue scanning.
855 *
856 * __GFP_IO is checked because a loop driver thread might
857 * enter reclaim, and deadlock if it waits on a page for
858 * which it is needed to do the write (loop masks off
859 * __GFP_IO|__GFP_FS for this reason); but more thought
860 * would probably show more reasons.
861 *
862 * Don't require __GFP_FS, since we're not going into the
863 * FS, just waiting on its writeback completion. Worryingly,
864 * ext4 gfs2 and xfs allocate pages with
865 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
866 * may_enter_fs here is liable to OOM on them.
867 *
868 * 3) memcg encounters a page that is not already marked
869 * PageReclaim. memcg does not have any dirty pages
870 * throttling so we could easily OOM just because too many
871 * pages are in writeback and there is nothing else to
872 * reclaim. Wait for the writeback to complete.
873 */
c661b078 874 if (PageWriteback(page)) {
283aba9f
MG
875 /* Case 1 above */
876 if (current_is_kswapd() &&
877 PageReclaim(page) &&
878 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
879 nr_immediate++;
880 goto keep_locked;
283aba9f
MG
881
882 /* Case 2 above */
883 } else if (global_reclaim(sc) ||
c3b94f44
HD
884 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
885 /*
886 * This is slightly racy - end_page_writeback()
887 * might have just cleared PageReclaim, then
888 * setting PageReclaim here end up interpreted
889 * as PageReadahead - but that does not matter
890 * enough to care. What we do want is for this
891 * page to have PageReclaim set next time memcg
892 * reclaim reaches the tests above, so it will
893 * then wait_on_page_writeback() to avoid OOM;
894 * and it's also appropriate in global reclaim.
895 */
896 SetPageReclaim(page);
e62e384e 897 nr_writeback++;
283aba9f 898
c3b94f44 899 goto keep_locked;
283aba9f
MG
900
901 /* Case 3 above */
902 } else {
903 wait_on_page_writeback(page);
e62e384e 904 }
c661b078 905 }
1da177e4 906
02c6de8d
MK
907 if (!force_reclaim)
908 references = page_check_references(page, sc);
909
dfc8d636
JW
910 switch (references) {
911 case PAGEREF_ACTIVATE:
1da177e4 912 goto activate_locked;
64574746
JW
913 case PAGEREF_KEEP:
914 goto keep_locked;
dfc8d636
JW
915 case PAGEREF_RECLAIM:
916 case PAGEREF_RECLAIM_CLEAN:
917 ; /* try to reclaim the page below */
918 }
1da177e4 919
1da177e4
LT
920 /*
921 * Anonymous process memory has backing store?
922 * Try to allocate it some swap space here.
923 */
b291f000 924 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
925 if (!(sc->gfp_mask & __GFP_IO))
926 goto keep_locked;
5bc7b8ac 927 if (!add_to_swap(page, page_list))
1da177e4 928 goto activate_locked;
63eb6b93 929 may_enter_fs = 1;
1da177e4 930
e2be15f6
MG
931 /* Adding to swap updated mapping */
932 mapping = page_mapping(page);
933 }
1da177e4
LT
934
935 /*
936 * The page is mapped into the page tables of one or more
937 * processes. Try to unmap it here.
938 */
939 if (page_mapped(page) && mapping) {
02c6de8d 940 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
941 case SWAP_FAIL:
942 goto activate_locked;
943 case SWAP_AGAIN:
944 goto keep_locked;
b291f000
NP
945 case SWAP_MLOCK:
946 goto cull_mlocked;
1da177e4
LT
947 case SWAP_SUCCESS:
948 ; /* try to free the page below */
949 }
950 }
951
952 if (PageDirty(page)) {
ee72886d
MG
953 /*
954 * Only kswapd can writeback filesystem pages to
d43006d5
MG
955 * avoid risk of stack overflow but only writeback
956 * if many dirty pages have been encountered.
ee72886d 957 */
f84f6e2b 958 if (page_is_file_cache(page) &&
9e3b2f8c 959 (!current_is_kswapd() ||
d43006d5 960 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
961 /*
962 * Immediately reclaim when written back.
963 * Similar in principal to deactivate_page()
964 * except we already have the page isolated
965 * and know it's dirty
966 */
967 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
968 SetPageReclaim(page);
969
ee72886d
MG
970 goto keep_locked;
971 }
972
dfc8d636 973 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 974 goto keep_locked;
4dd4b920 975 if (!may_enter_fs)
1da177e4 976 goto keep_locked;
52a8363e 977 if (!sc->may_writepage)
1da177e4
LT
978 goto keep_locked;
979
980 /* Page is dirty, try to write it out here */
7d3579e8 981 switch (pageout(page, mapping, sc)) {
1da177e4
LT
982 case PAGE_KEEP:
983 goto keep_locked;
984 case PAGE_ACTIVATE:
985 goto activate_locked;
986 case PAGE_SUCCESS:
7d3579e8 987 if (PageWriteback(page))
41ac1999 988 goto keep;
7d3579e8 989 if (PageDirty(page))
1da177e4 990 goto keep;
7d3579e8 991
1da177e4
LT
992 /*
993 * A synchronous write - probably a ramdisk. Go
994 * ahead and try to reclaim the page.
995 */
529ae9aa 996 if (!trylock_page(page))
1da177e4
LT
997 goto keep;
998 if (PageDirty(page) || PageWriteback(page))
999 goto keep_locked;
1000 mapping = page_mapping(page);
1001 case PAGE_CLEAN:
1002 ; /* try to free the page below */
1003 }
1004 }
1005
1006 /*
1007 * If the page has buffers, try to free the buffer mappings
1008 * associated with this page. If we succeed we try to free
1009 * the page as well.
1010 *
1011 * We do this even if the page is PageDirty().
1012 * try_to_release_page() does not perform I/O, but it is
1013 * possible for a page to have PageDirty set, but it is actually
1014 * clean (all its buffers are clean). This happens if the
1015 * buffers were written out directly, with submit_bh(). ext3
894bc310 1016 * will do this, as well as the blockdev mapping.
1da177e4
LT
1017 * try_to_release_page() will discover that cleanness and will
1018 * drop the buffers and mark the page clean - it can be freed.
1019 *
1020 * Rarely, pages can have buffers and no ->mapping. These are
1021 * the pages which were not successfully invalidated in
1022 * truncate_complete_page(). We try to drop those buffers here
1023 * and if that worked, and the page is no longer mapped into
1024 * process address space (page_count == 1) it can be freed.
1025 * Otherwise, leave the page on the LRU so it is swappable.
1026 */
266cf658 1027 if (page_has_private(page)) {
1da177e4
LT
1028 if (!try_to_release_page(page, sc->gfp_mask))
1029 goto activate_locked;
e286781d
NP
1030 if (!mapping && page_count(page) == 1) {
1031 unlock_page(page);
1032 if (put_page_testzero(page))
1033 goto free_it;
1034 else {
1035 /*
1036 * rare race with speculative reference.
1037 * the speculative reference will free
1038 * this page shortly, so we may
1039 * increment nr_reclaimed here (and
1040 * leave it off the LRU).
1041 */
1042 nr_reclaimed++;
1043 continue;
1044 }
1045 }
1da177e4
LT
1046 }
1047
e286781d 1048 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1049 goto keep_locked;
1da177e4 1050
a978d6f5
NP
1051 /*
1052 * At this point, we have no other references and there is
1053 * no way to pick any more up (removed from LRU, removed
1054 * from pagecache). Can use non-atomic bitops now (and
1055 * we obviously don't have to worry about waking up a process
1056 * waiting on the page lock, because there are no references.
1057 */
1058 __clear_page_locked(page);
e286781d 1059free_it:
05ff5137 1060 nr_reclaimed++;
abe4c3b5
MG
1061
1062 /*
1063 * Is there need to periodically free_page_list? It would
1064 * appear not as the counts should be low
1065 */
1066 list_add(&page->lru, &free_pages);
1da177e4
LT
1067 continue;
1068
b291f000 1069cull_mlocked:
63d6c5ad
HD
1070 if (PageSwapCache(page))
1071 try_to_free_swap(page);
b291f000
NP
1072 unlock_page(page);
1073 putback_lru_page(page);
1074 continue;
1075
1da177e4 1076activate_locked:
68a22394
RR
1077 /* Not a candidate for swapping, so reclaim swap space. */
1078 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1079 try_to_free_swap(page);
894bc310 1080 VM_BUG_ON(PageActive(page));
1da177e4
LT
1081 SetPageActive(page);
1082 pgactivate++;
1083keep_locked:
1084 unlock_page(page);
1085keep:
1086 list_add(&page->lru, &ret_pages);
b291f000 1087 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1088 }
abe4c3b5 1089
cc59850e 1090 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1091
1da177e4 1092 list_splice(&ret_pages, page_list);
f8891e5e 1093 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1094 mem_cgroup_uncharge_end();
8e950282
MG
1095 *ret_nr_dirty += nr_dirty;
1096 *ret_nr_congested += nr_congested;
d43006d5 1097 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1098 *ret_nr_writeback += nr_writeback;
b1a6f21e 1099 *ret_nr_immediate += nr_immediate;
05ff5137 1100 return nr_reclaimed;
1da177e4
LT
1101}
1102
02c6de8d
MK
1103unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1104 struct list_head *page_list)
1105{
1106 struct scan_control sc = {
1107 .gfp_mask = GFP_KERNEL,
1108 .priority = DEF_PRIORITY,
1109 .may_unmap = 1,
1110 };
8e950282 1111 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1112 struct page *page, *next;
1113 LIST_HEAD(clean_pages);
1114
1115 list_for_each_entry_safe(page, next, page_list, lru) {
1116 if (page_is_file_cache(page) && !PageDirty(page)) {
1117 ClearPageActive(page);
1118 list_move(&page->lru, &clean_pages);
1119 }
1120 }
1121
1122 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1123 TTU_UNMAP|TTU_IGNORE_ACCESS,
1124 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1125 list_splice(&clean_pages, page_list);
1126 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1127 return ret;
1128}
1129
5ad333eb
AW
1130/*
1131 * Attempt to remove the specified page from its LRU. Only take this page
1132 * if it is of the appropriate PageActive status. Pages which are being
1133 * freed elsewhere are also ignored.
1134 *
1135 * page: page to consider
1136 * mode: one of the LRU isolation modes defined above
1137 *
1138 * returns 0 on success, -ve errno on failure.
1139 */
f3fd4a61 1140int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1141{
1142 int ret = -EINVAL;
1143
1144 /* Only take pages on the LRU. */
1145 if (!PageLRU(page))
1146 return ret;
1147
e46a2879
MK
1148 /* Compaction should not handle unevictable pages but CMA can do so */
1149 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1150 return ret;
1151
5ad333eb 1152 ret = -EBUSY;
08e552c6 1153
c8244935
MG
1154 /*
1155 * To minimise LRU disruption, the caller can indicate that it only
1156 * wants to isolate pages it will be able to operate on without
1157 * blocking - clean pages for the most part.
1158 *
1159 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1160 * is used by reclaim when it is cannot write to backing storage
1161 *
1162 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1163 * that it is possible to migrate without blocking
1164 */
1165 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1166 /* All the caller can do on PageWriteback is block */
1167 if (PageWriteback(page))
1168 return ret;
1169
1170 if (PageDirty(page)) {
1171 struct address_space *mapping;
1172
1173 /* ISOLATE_CLEAN means only clean pages */
1174 if (mode & ISOLATE_CLEAN)
1175 return ret;
1176
1177 /*
1178 * Only pages without mappings or that have a
1179 * ->migratepage callback are possible to migrate
1180 * without blocking
1181 */
1182 mapping = page_mapping(page);
1183 if (mapping && !mapping->a_ops->migratepage)
1184 return ret;
1185 }
1186 }
39deaf85 1187
f80c0673
MK
1188 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1189 return ret;
1190
5ad333eb
AW
1191 if (likely(get_page_unless_zero(page))) {
1192 /*
1193 * Be careful not to clear PageLRU until after we're
1194 * sure the page is not being freed elsewhere -- the
1195 * page release code relies on it.
1196 */
1197 ClearPageLRU(page);
1198 ret = 0;
1199 }
1200
1201 return ret;
1202}
1203
1da177e4
LT
1204/*
1205 * zone->lru_lock is heavily contended. Some of the functions that
1206 * shrink the lists perform better by taking out a batch of pages
1207 * and working on them outside the LRU lock.
1208 *
1209 * For pagecache intensive workloads, this function is the hottest
1210 * spot in the kernel (apart from copy_*_user functions).
1211 *
1212 * Appropriate locks must be held before calling this function.
1213 *
1214 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1215 * @lruvec: The LRU vector to pull pages from.
1da177e4 1216 * @dst: The temp list to put pages on to.
f626012d 1217 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1218 * @sc: The scan_control struct for this reclaim session
5ad333eb 1219 * @mode: One of the LRU isolation modes
3cb99451 1220 * @lru: LRU list id for isolating
1da177e4
LT
1221 *
1222 * returns how many pages were moved onto *@dst.
1223 */
69e05944 1224static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1225 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1226 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1227 isolate_mode_t mode, enum lru_list lru)
1da177e4 1228{
75b00af7 1229 struct list_head *src = &lruvec->lists[lru];
69e05944 1230 unsigned long nr_taken = 0;
c9b02d97 1231 unsigned long scan;
1da177e4 1232
c9b02d97 1233 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1234 struct page *page;
fa9add64 1235 int nr_pages;
5ad333eb 1236
1da177e4
LT
1237 page = lru_to_page(src);
1238 prefetchw_prev_lru_page(page, src, flags);
1239
725d704e 1240 VM_BUG_ON(!PageLRU(page));
8d438f96 1241
f3fd4a61 1242 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1243 case 0:
fa9add64
HD
1244 nr_pages = hpage_nr_pages(page);
1245 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1246 list_move(&page->lru, dst);
fa9add64 1247 nr_taken += nr_pages;
5ad333eb
AW
1248 break;
1249
1250 case -EBUSY:
1251 /* else it is being freed elsewhere */
1252 list_move(&page->lru, src);
1253 continue;
46453a6e 1254
5ad333eb
AW
1255 default:
1256 BUG();
1257 }
1da177e4
LT
1258 }
1259
f626012d 1260 *nr_scanned = scan;
75b00af7
HD
1261 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1262 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1263 return nr_taken;
1264}
1265
62695a84
NP
1266/**
1267 * isolate_lru_page - tries to isolate a page from its LRU list
1268 * @page: page to isolate from its LRU list
1269 *
1270 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1271 * vmstat statistic corresponding to whatever LRU list the page was on.
1272 *
1273 * Returns 0 if the page was removed from an LRU list.
1274 * Returns -EBUSY if the page was not on an LRU list.
1275 *
1276 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1277 * the active list, it will have PageActive set. If it was found on
1278 * the unevictable list, it will have the PageUnevictable bit set. That flag
1279 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1280 *
1281 * The vmstat statistic corresponding to the list on which the page was
1282 * found will be decremented.
1283 *
1284 * Restrictions:
1285 * (1) Must be called with an elevated refcount on the page. This is a
1286 * fundamentnal difference from isolate_lru_pages (which is called
1287 * without a stable reference).
1288 * (2) the lru_lock must not be held.
1289 * (3) interrupts must be enabled.
1290 */
1291int isolate_lru_page(struct page *page)
1292{
1293 int ret = -EBUSY;
1294
0c917313
KK
1295 VM_BUG_ON(!page_count(page));
1296
62695a84
NP
1297 if (PageLRU(page)) {
1298 struct zone *zone = page_zone(page);
fa9add64 1299 struct lruvec *lruvec;
62695a84
NP
1300
1301 spin_lock_irq(&zone->lru_lock);
fa9add64 1302 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1303 if (PageLRU(page)) {
894bc310 1304 int lru = page_lru(page);
0c917313 1305 get_page(page);
62695a84 1306 ClearPageLRU(page);
fa9add64
HD
1307 del_page_from_lru_list(page, lruvec, lru);
1308 ret = 0;
62695a84
NP
1309 }
1310 spin_unlock_irq(&zone->lru_lock);
1311 }
1312 return ret;
1313}
1314
35cd7815 1315/*
d37dd5dc
FW
1316 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1317 * then get resheduled. When there are massive number of tasks doing page
1318 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1319 * the LRU list will go small and be scanned faster than necessary, leading to
1320 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1321 */
1322static int too_many_isolated(struct zone *zone, int file,
1323 struct scan_control *sc)
1324{
1325 unsigned long inactive, isolated;
1326
1327 if (current_is_kswapd())
1328 return 0;
1329
89b5fae5 1330 if (!global_reclaim(sc))
35cd7815
RR
1331 return 0;
1332
1333 if (file) {
1334 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1335 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1336 } else {
1337 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1338 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1339 }
1340
3cf23841
FW
1341 /*
1342 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1343 * won't get blocked by normal direct-reclaimers, forming a circular
1344 * deadlock.
1345 */
1346 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1347 inactive >>= 3;
1348
35cd7815
RR
1349 return isolated > inactive;
1350}
1351
66635629 1352static noinline_for_stack void
75b00af7 1353putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1354{
27ac81d8
KK
1355 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1356 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1357 LIST_HEAD(pages_to_free);
66635629 1358
66635629
MG
1359 /*
1360 * Put back any unfreeable pages.
1361 */
66635629 1362 while (!list_empty(page_list)) {
3f79768f 1363 struct page *page = lru_to_page(page_list);
66635629 1364 int lru;
3f79768f 1365
66635629
MG
1366 VM_BUG_ON(PageLRU(page));
1367 list_del(&page->lru);
39b5f29a 1368 if (unlikely(!page_evictable(page))) {
66635629
MG
1369 spin_unlock_irq(&zone->lru_lock);
1370 putback_lru_page(page);
1371 spin_lock_irq(&zone->lru_lock);
1372 continue;
1373 }
fa9add64
HD
1374
1375 lruvec = mem_cgroup_page_lruvec(page, zone);
1376
7a608572 1377 SetPageLRU(page);
66635629 1378 lru = page_lru(page);
fa9add64
HD
1379 add_page_to_lru_list(page, lruvec, lru);
1380
66635629
MG
1381 if (is_active_lru(lru)) {
1382 int file = is_file_lru(lru);
9992af10
RR
1383 int numpages = hpage_nr_pages(page);
1384 reclaim_stat->recent_rotated[file] += numpages;
66635629 1385 }
2bcf8879
HD
1386 if (put_page_testzero(page)) {
1387 __ClearPageLRU(page);
1388 __ClearPageActive(page);
fa9add64 1389 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1390
1391 if (unlikely(PageCompound(page))) {
1392 spin_unlock_irq(&zone->lru_lock);
1393 (*get_compound_page_dtor(page))(page);
1394 spin_lock_irq(&zone->lru_lock);
1395 } else
1396 list_add(&page->lru, &pages_to_free);
66635629
MG
1397 }
1398 }
66635629 1399
3f79768f
HD
1400 /*
1401 * To save our caller's stack, now use input list for pages to free.
1402 */
1403 list_splice(&pages_to_free, page_list);
66635629
MG
1404}
1405
1da177e4 1406/*
1742f19f
AM
1407 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1408 * of reclaimed pages
1da177e4 1409 */
66635629 1410static noinline_for_stack unsigned long
1a93be0e 1411shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1412 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1413{
1414 LIST_HEAD(page_list);
e247dbce 1415 unsigned long nr_scanned;
05ff5137 1416 unsigned long nr_reclaimed = 0;
e247dbce 1417 unsigned long nr_taken;
8e950282
MG
1418 unsigned long nr_dirty = 0;
1419 unsigned long nr_congested = 0;
e2be15f6 1420 unsigned long nr_unqueued_dirty = 0;
92df3a72 1421 unsigned long nr_writeback = 0;
b1a6f21e 1422 unsigned long nr_immediate = 0;
f3fd4a61 1423 isolate_mode_t isolate_mode = 0;
3cb99451 1424 int file = is_file_lru(lru);
1a93be0e
KK
1425 struct zone *zone = lruvec_zone(lruvec);
1426 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1427
35cd7815 1428 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1429 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1430
1431 /* We are about to die and free our memory. Return now. */
1432 if (fatal_signal_pending(current))
1433 return SWAP_CLUSTER_MAX;
1434 }
1435
1da177e4 1436 lru_add_drain();
f80c0673
MK
1437
1438 if (!sc->may_unmap)
61317289 1439 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1440 if (!sc->may_writepage)
61317289 1441 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1442
1da177e4 1443 spin_lock_irq(&zone->lru_lock);
b35ea17b 1444
5dc35979
KK
1445 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1446 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1447
1448 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1449 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1450
89b5fae5 1451 if (global_reclaim(sc)) {
e247dbce
KM
1452 zone->pages_scanned += nr_scanned;
1453 if (current_is_kswapd())
75b00af7 1454 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1455 else
75b00af7 1456 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1457 }
d563c050 1458 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1459
d563c050 1460 if (nr_taken == 0)
66635629 1461 return 0;
5ad333eb 1462
02c6de8d 1463 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1464 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1465 &nr_writeback, &nr_immediate,
1466 false);
c661b078 1467
3f79768f
HD
1468 spin_lock_irq(&zone->lru_lock);
1469
95d918fc 1470 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1471
904249aa
YH
1472 if (global_reclaim(sc)) {
1473 if (current_is_kswapd())
1474 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1475 nr_reclaimed);
1476 else
1477 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1478 nr_reclaimed);
1479 }
a74609fa 1480
27ac81d8 1481 putback_inactive_pages(lruvec, &page_list);
3f79768f 1482
95d918fc 1483 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1484
1485 spin_unlock_irq(&zone->lru_lock);
1486
1487 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1488
92df3a72
MG
1489 /*
1490 * If reclaim is isolating dirty pages under writeback, it implies
1491 * that the long-lived page allocation rate is exceeding the page
1492 * laundering rate. Either the global limits are not being effective
1493 * at throttling processes due to the page distribution throughout
1494 * zones or there is heavy usage of a slow backing device. The
1495 * only option is to throttle from reclaim context which is not ideal
1496 * as there is no guarantee the dirtying process is throttled in the
1497 * same way balance_dirty_pages() manages.
1498 *
8e950282
MG
1499 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1500 * of pages under pages flagged for immediate reclaim and stall if any
1501 * are encountered in the nr_immediate check below.
92df3a72 1502 */
918fc718 1503 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1504 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1505
d43006d5 1506 /*
b1a6f21e
MG
1507 * memcg will stall in page writeback so only consider forcibly
1508 * stalling for global reclaim
d43006d5 1509 */
b1a6f21e 1510 if (global_reclaim(sc)) {
8e950282
MG
1511 /*
1512 * Tag a zone as congested if all the dirty pages scanned were
1513 * backed by a congested BDI and wait_iff_congested will stall.
1514 */
1515 if (nr_dirty && nr_dirty == nr_congested)
1516 zone_set_flag(zone, ZONE_CONGESTED);
1517
b1a6f21e
MG
1518 /*
1519 * If dirty pages are scanned that are not queued for IO, it
1520 * implies that flushers are not keeping up. In this case, flag
1521 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1522 * pages from reclaim context. It will forcibly stall in the
1523 * next check.
1524 */
1525 if (nr_unqueued_dirty == nr_taken)
1526 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1527
1528 /*
1529 * In addition, if kswapd scans pages marked marked for
1530 * immediate reclaim and under writeback (nr_immediate), it
1531 * implies that pages are cycling through the LRU faster than
1532 * they are written so also forcibly stall.
1533 */
1534 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1535 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1536 }
d43006d5 1537
8e950282
MG
1538 /*
1539 * Stall direct reclaim for IO completions if underlying BDIs or zone
1540 * is congested. Allow kswapd to continue until it starts encountering
1541 * unqueued dirty pages or cycling through the LRU too quickly.
1542 */
1543 if (!sc->hibernation_mode && !current_is_kswapd())
1544 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1545
e11da5b4
MG
1546 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1547 zone_idx(zone),
1548 nr_scanned, nr_reclaimed,
9e3b2f8c 1549 sc->priority,
23b9da55 1550 trace_shrink_flags(file));
05ff5137 1551 return nr_reclaimed;
1da177e4
LT
1552}
1553
1554/*
1555 * This moves pages from the active list to the inactive list.
1556 *
1557 * We move them the other way if the page is referenced by one or more
1558 * processes, from rmap.
1559 *
1560 * If the pages are mostly unmapped, the processing is fast and it is
1561 * appropriate to hold zone->lru_lock across the whole operation. But if
1562 * the pages are mapped, the processing is slow (page_referenced()) so we
1563 * should drop zone->lru_lock around each page. It's impossible to balance
1564 * this, so instead we remove the pages from the LRU while processing them.
1565 * It is safe to rely on PG_active against the non-LRU pages in here because
1566 * nobody will play with that bit on a non-LRU page.
1567 *
1568 * The downside is that we have to touch page->_count against each page.
1569 * But we had to alter page->flags anyway.
1570 */
1cfb419b 1571
fa9add64 1572static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1573 struct list_head *list,
2bcf8879 1574 struct list_head *pages_to_free,
3eb4140f
WF
1575 enum lru_list lru)
1576{
fa9add64 1577 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1578 unsigned long pgmoved = 0;
3eb4140f 1579 struct page *page;
fa9add64 1580 int nr_pages;
3eb4140f 1581
3eb4140f
WF
1582 while (!list_empty(list)) {
1583 page = lru_to_page(list);
fa9add64 1584 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1585
1586 VM_BUG_ON(PageLRU(page));
1587 SetPageLRU(page);
1588
fa9add64
HD
1589 nr_pages = hpage_nr_pages(page);
1590 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1591 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1592 pgmoved += nr_pages;
3eb4140f 1593
2bcf8879
HD
1594 if (put_page_testzero(page)) {
1595 __ClearPageLRU(page);
1596 __ClearPageActive(page);
fa9add64 1597 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1598
1599 if (unlikely(PageCompound(page))) {
1600 spin_unlock_irq(&zone->lru_lock);
1601 (*get_compound_page_dtor(page))(page);
1602 spin_lock_irq(&zone->lru_lock);
1603 } else
1604 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1605 }
1606 }
1607 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1608 if (!is_active_lru(lru))
1609 __count_vm_events(PGDEACTIVATE, pgmoved);
1610}
1cfb419b 1611
f626012d 1612static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1613 struct lruvec *lruvec,
f16015fb 1614 struct scan_control *sc,
9e3b2f8c 1615 enum lru_list lru)
1da177e4 1616{
44c241f1 1617 unsigned long nr_taken;
f626012d 1618 unsigned long nr_scanned;
6fe6b7e3 1619 unsigned long vm_flags;
1da177e4 1620 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1621 LIST_HEAD(l_active);
b69408e8 1622 LIST_HEAD(l_inactive);
1da177e4 1623 struct page *page;
1a93be0e 1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1625 unsigned long nr_rotated = 0;
f3fd4a61 1626 isolate_mode_t isolate_mode = 0;
3cb99451 1627 int file = is_file_lru(lru);
1a93be0e 1628 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1629
1630 lru_add_drain();
f80c0673
MK
1631
1632 if (!sc->may_unmap)
61317289 1633 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1634 if (!sc->may_writepage)
61317289 1635 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1636
1da177e4 1637 spin_lock_irq(&zone->lru_lock);
925b7673 1638
5dc35979
KK
1639 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1640 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1641 if (global_reclaim(sc))
f626012d 1642 zone->pages_scanned += nr_scanned;
89b5fae5 1643
b7c46d15 1644 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1645
f626012d 1646 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1647 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1648 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1649 spin_unlock_irq(&zone->lru_lock);
1650
1da177e4
LT
1651 while (!list_empty(&l_hold)) {
1652 cond_resched();
1653 page = lru_to_page(&l_hold);
1654 list_del(&page->lru);
7e9cd484 1655
39b5f29a 1656 if (unlikely(!page_evictable(page))) {
894bc310
LS
1657 putback_lru_page(page);
1658 continue;
1659 }
1660
cc715d99
MG
1661 if (unlikely(buffer_heads_over_limit)) {
1662 if (page_has_private(page) && trylock_page(page)) {
1663 if (page_has_private(page))
1664 try_to_release_page(page, 0);
1665 unlock_page(page);
1666 }
1667 }
1668
c3ac9a8a
JW
1669 if (page_referenced(page, 0, sc->target_mem_cgroup,
1670 &vm_flags)) {
9992af10 1671 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1672 /*
1673 * Identify referenced, file-backed active pages and
1674 * give them one more trip around the active list. So
1675 * that executable code get better chances to stay in
1676 * memory under moderate memory pressure. Anon pages
1677 * are not likely to be evicted by use-once streaming
1678 * IO, plus JVM can create lots of anon VM_EXEC pages,
1679 * so we ignore them here.
1680 */
41e20983 1681 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1682 list_add(&page->lru, &l_active);
1683 continue;
1684 }
1685 }
7e9cd484 1686
5205e56e 1687 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1688 list_add(&page->lru, &l_inactive);
1689 }
1690
b555749a 1691 /*
8cab4754 1692 * Move pages back to the lru list.
b555749a 1693 */
2a1dc509 1694 spin_lock_irq(&zone->lru_lock);
556adecb 1695 /*
8cab4754
WF
1696 * Count referenced pages from currently used mappings as rotated,
1697 * even though only some of them are actually re-activated. This
1698 * helps balance scan pressure between file and anonymous pages in
1699 * get_scan_ratio.
7e9cd484 1700 */
b7c46d15 1701 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1702
fa9add64
HD
1703 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1704 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1705 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1706 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1707
1708 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1709}
1710
74e3f3c3 1711#ifdef CONFIG_SWAP
14797e23 1712static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1713{
1714 unsigned long active, inactive;
1715
1716 active = zone_page_state(zone, NR_ACTIVE_ANON);
1717 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1718
1719 if (inactive * zone->inactive_ratio < active)
1720 return 1;
1721
1722 return 0;
1723}
1724
14797e23
KM
1725/**
1726 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1727 * @lruvec: LRU vector to check
14797e23
KM
1728 *
1729 * Returns true if the zone does not have enough inactive anon pages,
1730 * meaning some active anon pages need to be deactivated.
1731 */
c56d5c7d 1732static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1733{
74e3f3c3
MK
1734 /*
1735 * If we don't have swap space, anonymous page deactivation
1736 * is pointless.
1737 */
1738 if (!total_swap_pages)
1739 return 0;
1740
c3c787e8 1741 if (!mem_cgroup_disabled())
c56d5c7d 1742 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1743
c56d5c7d 1744 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1745}
74e3f3c3 1746#else
c56d5c7d 1747static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1748{
1749 return 0;
1750}
1751#endif
14797e23 1752
56e49d21
RR
1753/**
1754 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1755 * @lruvec: LRU vector to check
56e49d21
RR
1756 *
1757 * When the system is doing streaming IO, memory pressure here
1758 * ensures that active file pages get deactivated, until more
1759 * than half of the file pages are on the inactive list.
1760 *
1761 * Once we get to that situation, protect the system's working
1762 * set from being evicted by disabling active file page aging.
1763 *
1764 * This uses a different ratio than the anonymous pages, because
1765 * the page cache uses a use-once replacement algorithm.
1766 */
c56d5c7d 1767static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1768{
e3790144
JW
1769 unsigned long inactive;
1770 unsigned long active;
1771
1772 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1773 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1774
e3790144 1775 return active > inactive;
56e49d21
RR
1776}
1777
75b00af7 1778static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1779{
75b00af7 1780 if (is_file_lru(lru))
c56d5c7d 1781 return inactive_file_is_low(lruvec);
b39415b2 1782 else
c56d5c7d 1783 return inactive_anon_is_low(lruvec);
b39415b2
RR
1784}
1785
4f98a2fe 1786static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1787 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1788{
b39415b2 1789 if (is_active_lru(lru)) {
75b00af7 1790 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1791 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1792 return 0;
1793 }
1794
1a93be0e 1795 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1796}
1797
3d58ab5c 1798static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1799{
89b5fae5 1800 if (global_reclaim(sc))
1f4c025b 1801 return vm_swappiness;
3d58ab5c 1802 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1803}
1804
9a265114
JW
1805enum scan_balance {
1806 SCAN_EQUAL,
1807 SCAN_FRACT,
1808 SCAN_ANON,
1809 SCAN_FILE,
1810};
1811
4f98a2fe
RR
1812/*
1813 * Determine how aggressively the anon and file LRU lists should be
1814 * scanned. The relative value of each set of LRU lists is determined
1815 * by looking at the fraction of the pages scanned we did rotate back
1816 * onto the active list instead of evict.
1817 *
be7bd59d
WL
1818 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1819 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1820 */
90126375 1821static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1822 unsigned long *nr)
4f98a2fe 1823{
9a265114
JW
1824 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825 u64 fraction[2];
1826 u64 denominator = 0; /* gcc */
1827 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1828 unsigned long anon_prio, file_prio;
9a265114
JW
1829 enum scan_balance scan_balance;
1830 unsigned long anon, file, free;
1831 bool force_scan = false;
4f98a2fe 1832 unsigned long ap, fp;
4111304d 1833 enum lru_list lru;
246e87a9 1834
f11c0ca5
JW
1835 /*
1836 * If the zone or memcg is small, nr[l] can be 0. This
1837 * results in no scanning on this priority and a potential
1838 * priority drop. Global direct reclaim can go to the next
1839 * zone and tends to have no problems. Global kswapd is for
1840 * zone balancing and it needs to scan a minimum amount. When
1841 * reclaiming for a memcg, a priority drop can cause high
1842 * latencies, so it's better to scan a minimum amount there as
1843 * well.
1844 */
6e543d57 1845 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1846 force_scan = true;
89b5fae5 1847 if (!global_reclaim(sc))
a4d3e9e7 1848 force_scan = true;
76a33fc3
SL
1849
1850 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1851 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1852 scan_balance = SCAN_FILE;
76a33fc3
SL
1853 goto out;
1854 }
4f98a2fe 1855
10316b31
JW
1856 /*
1857 * Global reclaim will swap to prevent OOM even with no
1858 * swappiness, but memcg users want to use this knob to
1859 * disable swapping for individual groups completely when
1860 * using the memory controller's swap limit feature would be
1861 * too expensive.
1862 */
1863 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1864 scan_balance = SCAN_FILE;
10316b31
JW
1865 goto out;
1866 }
1867
1868 /*
1869 * Do not apply any pressure balancing cleverness when the
1870 * system is close to OOM, scan both anon and file equally
1871 * (unless the swappiness setting disagrees with swapping).
1872 */
1873 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1874 scan_balance = SCAN_EQUAL;
10316b31
JW
1875 goto out;
1876 }
1877
4d7dcca2
HD
1878 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1879 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1880 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1881 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1882
11d16c25
JW
1883 /*
1884 * If it's foreseeable that reclaiming the file cache won't be
1885 * enough to get the zone back into a desirable shape, we have
1886 * to swap. Better start now and leave the - probably heavily
1887 * thrashing - remaining file pages alone.
1888 */
89b5fae5 1889 if (global_reclaim(sc)) {
11d16c25 1890 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1891 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1892 scan_balance = SCAN_ANON;
76a33fc3 1893 goto out;
eeee9a8c 1894 }
4f98a2fe
RR
1895 }
1896
7c5bd705
JW
1897 /*
1898 * There is enough inactive page cache, do not reclaim
1899 * anything from the anonymous working set right now.
1900 */
1901 if (!inactive_file_is_low(lruvec)) {
9a265114 1902 scan_balance = SCAN_FILE;
7c5bd705
JW
1903 goto out;
1904 }
1905
9a265114
JW
1906 scan_balance = SCAN_FRACT;
1907
58c37f6e
KM
1908 /*
1909 * With swappiness at 100, anonymous and file have the same priority.
1910 * This scanning priority is essentially the inverse of IO cost.
1911 */
3d58ab5c 1912 anon_prio = vmscan_swappiness(sc);
75b00af7 1913 file_prio = 200 - anon_prio;
58c37f6e 1914
4f98a2fe
RR
1915 /*
1916 * OK, so we have swap space and a fair amount of page cache
1917 * pages. We use the recently rotated / recently scanned
1918 * ratios to determine how valuable each cache is.
1919 *
1920 * Because workloads change over time (and to avoid overflow)
1921 * we keep these statistics as a floating average, which ends
1922 * up weighing recent references more than old ones.
1923 *
1924 * anon in [0], file in [1]
1925 */
90126375 1926 spin_lock_irq(&zone->lru_lock);
6e901571 1927 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1928 reclaim_stat->recent_scanned[0] /= 2;
1929 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1930 }
1931
6e901571 1932 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1933 reclaim_stat->recent_scanned[1] /= 2;
1934 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1935 }
1936
4f98a2fe 1937 /*
00d8089c
RR
1938 * The amount of pressure on anon vs file pages is inversely
1939 * proportional to the fraction of recently scanned pages on
1940 * each list that were recently referenced and in active use.
4f98a2fe 1941 */
fe35004f 1942 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1943 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1944
fe35004f 1945 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1946 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1947 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1948
76a33fc3
SL
1949 fraction[0] = ap;
1950 fraction[1] = fp;
1951 denominator = ap + fp + 1;
1952out:
4111304d
HD
1953 for_each_evictable_lru(lru) {
1954 int file = is_file_lru(lru);
d778df51 1955 unsigned long size;
76a33fc3 1956 unsigned long scan;
6e08a369 1957
d778df51 1958 size = get_lru_size(lruvec, lru);
10316b31 1959 scan = size >> sc->priority;
9a265114 1960
10316b31
JW
1961 if (!scan && force_scan)
1962 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1963
1964 switch (scan_balance) {
1965 case SCAN_EQUAL:
1966 /* Scan lists relative to size */
1967 break;
1968 case SCAN_FRACT:
1969 /*
1970 * Scan types proportional to swappiness and
1971 * their relative recent reclaim efficiency.
1972 */
1973 scan = div64_u64(scan * fraction[file], denominator);
1974 break;
1975 case SCAN_FILE:
1976 case SCAN_ANON:
1977 /* Scan one type exclusively */
1978 if ((scan_balance == SCAN_FILE) != file)
1979 scan = 0;
1980 break;
1981 default:
1982 /* Look ma, no brain */
1983 BUG();
1984 }
4111304d 1985 nr[lru] = scan;
76a33fc3 1986 }
6e08a369 1987}
4f98a2fe 1988
9b4f98cd
JW
1989/*
1990 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1991 */
1992static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1993{
1994 unsigned long nr[NR_LRU_LISTS];
e82e0561 1995 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1996 unsigned long nr_to_scan;
1997 enum lru_list lru;
1998 unsigned long nr_reclaimed = 0;
1999 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2000 struct blk_plug plug;
e82e0561 2001 bool scan_adjusted = false;
9b4f98cd
JW
2002
2003 get_scan_count(lruvec, sc, nr);
2004
e82e0561
MG
2005 /* Record the original scan target for proportional adjustments later */
2006 memcpy(targets, nr, sizeof(nr));
2007
9b4f98cd
JW
2008 blk_start_plug(&plug);
2009 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2010 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2011 unsigned long nr_anon, nr_file, percentage;
2012 unsigned long nr_scanned;
2013
9b4f98cd
JW
2014 for_each_evictable_lru(lru) {
2015 if (nr[lru]) {
2016 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2017 nr[lru] -= nr_to_scan;
2018
2019 nr_reclaimed += shrink_list(lru, nr_to_scan,
2020 lruvec, sc);
2021 }
2022 }
e82e0561
MG
2023
2024 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2025 continue;
2026
9b4f98cd 2027 /*
e82e0561
MG
2028 * For global direct reclaim, reclaim only the number of pages
2029 * requested. Less care is taken to scan proportionally as it
2030 * is more important to minimise direct reclaim stall latency
2031 * than it is to properly age the LRU lists.
9b4f98cd 2032 */
e82e0561 2033 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2034 break;
e82e0561
MG
2035
2036 /*
2037 * For kswapd and memcg, reclaim at least the number of pages
2038 * requested. Ensure that the anon and file LRUs shrink
2039 * proportionally what was requested by get_scan_count(). We
2040 * stop reclaiming one LRU and reduce the amount scanning
2041 * proportional to the original scan target.
2042 */
2043 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2044 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2045
2046 if (nr_file > nr_anon) {
2047 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2048 targets[LRU_ACTIVE_ANON] + 1;
2049 lru = LRU_BASE;
2050 percentage = nr_anon * 100 / scan_target;
2051 } else {
2052 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2053 targets[LRU_ACTIVE_FILE] + 1;
2054 lru = LRU_FILE;
2055 percentage = nr_file * 100 / scan_target;
2056 }
2057
2058 /* Stop scanning the smaller of the LRU */
2059 nr[lru] = 0;
2060 nr[lru + LRU_ACTIVE] = 0;
2061
2062 /*
2063 * Recalculate the other LRU scan count based on its original
2064 * scan target and the percentage scanning already complete
2065 */
2066 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2067 nr_scanned = targets[lru] - nr[lru];
2068 nr[lru] = targets[lru] * (100 - percentage) / 100;
2069 nr[lru] -= min(nr[lru], nr_scanned);
2070
2071 lru += LRU_ACTIVE;
2072 nr_scanned = targets[lru] - nr[lru];
2073 nr[lru] = targets[lru] * (100 - percentage) / 100;
2074 nr[lru] -= min(nr[lru], nr_scanned);
2075
2076 scan_adjusted = true;
9b4f98cd
JW
2077 }
2078 blk_finish_plug(&plug);
2079 sc->nr_reclaimed += nr_reclaimed;
2080
2081 /*
2082 * Even if we did not try to evict anon pages at all, we want to
2083 * rebalance the anon lru active/inactive ratio.
2084 */
2085 if (inactive_anon_is_low(lruvec))
2086 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2087 sc, LRU_ACTIVE_ANON);
2088
2089 throttle_vm_writeout(sc->gfp_mask);
2090}
2091
23b9da55 2092/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2093static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2094{
d84da3f9 2095 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2096 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2097 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2098 return true;
2099
2100 return false;
2101}
2102
3e7d3449 2103/*
23b9da55
MG
2104 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2105 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2106 * true if more pages should be reclaimed such that when the page allocator
2107 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2108 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2109 */
9b4f98cd 2110static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2111 unsigned long nr_reclaimed,
2112 unsigned long nr_scanned,
2113 struct scan_control *sc)
2114{
2115 unsigned long pages_for_compaction;
2116 unsigned long inactive_lru_pages;
2117
2118 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2119 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2120 return false;
2121
2876592f
MG
2122 /* Consider stopping depending on scan and reclaim activity */
2123 if (sc->gfp_mask & __GFP_REPEAT) {
2124 /*
2125 * For __GFP_REPEAT allocations, stop reclaiming if the
2126 * full LRU list has been scanned and we are still failing
2127 * to reclaim pages. This full LRU scan is potentially
2128 * expensive but a __GFP_REPEAT caller really wants to succeed
2129 */
2130 if (!nr_reclaimed && !nr_scanned)
2131 return false;
2132 } else {
2133 /*
2134 * For non-__GFP_REPEAT allocations which can presumably
2135 * fail without consequence, stop if we failed to reclaim
2136 * any pages from the last SWAP_CLUSTER_MAX number of
2137 * pages that were scanned. This will return to the
2138 * caller faster at the risk reclaim/compaction and
2139 * the resulting allocation attempt fails
2140 */
2141 if (!nr_reclaimed)
2142 return false;
2143 }
3e7d3449
MG
2144
2145 /*
2146 * If we have not reclaimed enough pages for compaction and the
2147 * inactive lists are large enough, continue reclaiming
2148 */
2149 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2150 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2151 if (get_nr_swap_pages() > 0)
9b4f98cd 2152 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2153 if (sc->nr_reclaimed < pages_for_compaction &&
2154 inactive_lru_pages > pages_for_compaction)
2155 return true;
2156
2157 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2158 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2159 case COMPACT_PARTIAL:
2160 case COMPACT_CONTINUE:
2161 return false;
2162 default:
2163 return true;
2164 }
2165}
2166
0608f43d 2167static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2168{
f0fdc5e8 2169 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2170
9b4f98cd
JW
2171 do {
2172 struct mem_cgroup *root = sc->target_mem_cgroup;
2173 struct mem_cgroup_reclaim_cookie reclaim = {
2174 .zone = zone,
2175 .priority = sc->priority,
2176 };
694fbc0f 2177 struct mem_cgroup *memcg;
3e7d3449 2178
9b4f98cd
JW
2179 nr_reclaimed = sc->nr_reclaimed;
2180 nr_scanned = sc->nr_scanned;
1da177e4 2181
694fbc0f
AM
2182 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2183 do {
9b4f98cd 2184 struct lruvec *lruvec;
5660048c 2185
9b4f98cd 2186 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2187
9b4f98cd 2188 shrink_lruvec(lruvec, sc);
f16015fb 2189
9b4f98cd 2190 /*
a394cb8e
MH
2191 * Direct reclaim and kswapd have to scan all memory
2192 * cgroups to fulfill the overall scan target for the
9b4f98cd 2193 * zone.
a394cb8e
MH
2194 *
2195 * Limit reclaim, on the other hand, only cares about
2196 * nr_to_reclaim pages to be reclaimed and it will
2197 * retry with decreasing priority if one round over the
2198 * whole hierarchy is not sufficient.
9b4f98cd 2199 */
a394cb8e
MH
2200 if (!global_reclaim(sc) &&
2201 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2202 mem_cgroup_iter_break(root, memcg);
2203 break;
2204 }
694fbc0f
AM
2205 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2206 } while (memcg);
70ddf637
AV
2207
2208 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2209 sc->nr_scanned - nr_scanned,
2210 sc->nr_reclaimed - nr_reclaimed);
2211
9b4f98cd
JW
2212 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2213 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2214}
2215
fe4b1b24
MG
2216/* Returns true if compaction should go ahead for a high-order request */
2217static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2218{
2219 unsigned long balance_gap, watermark;
2220 bool watermark_ok;
2221
2222 /* Do not consider compaction for orders reclaim is meant to satisfy */
2223 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2224 return false;
2225
2226 /*
2227 * Compaction takes time to run and there are potentially other
2228 * callers using the pages just freed. Continue reclaiming until
2229 * there is a buffer of free pages available to give compaction
2230 * a reasonable chance of completing and allocating the page
2231 */
2232 balance_gap = min(low_wmark_pages(zone),
b40da049 2233 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2234 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2235 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2236 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2237
2238 /*
2239 * If compaction is deferred, reclaim up to a point where
2240 * compaction will have a chance of success when re-enabled
2241 */
aff62249 2242 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2243 return watermark_ok;
2244
2245 /* If compaction is not ready to start, keep reclaiming */
2246 if (!compaction_suitable(zone, sc->order))
2247 return false;
2248
2249 return watermark_ok;
2250}
2251
1da177e4
LT
2252/*
2253 * This is the direct reclaim path, for page-allocating processes. We only
2254 * try to reclaim pages from zones which will satisfy the caller's allocation
2255 * request.
2256 *
41858966
MG
2257 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2258 * Because:
1da177e4
LT
2259 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2260 * allocation or
41858966
MG
2261 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2262 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2263 * zone defense algorithm.
1da177e4 2264 *
1da177e4
LT
2265 * If a zone is deemed to be full of pinned pages then just give it a light
2266 * scan then give up on it.
e0c23279
MG
2267 *
2268 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2269 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2270 * the caller that it should consider retrying the allocation instead of
2271 * further reclaim.
1da177e4 2272 */
9e3b2f8c 2273static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2274{
dd1a239f 2275 struct zoneref *z;
54a6eb5c 2276 struct zone *zone;
0608f43d
AM
2277 unsigned long nr_soft_reclaimed;
2278 unsigned long nr_soft_scanned;
0cee34fd 2279 bool aborted_reclaim = false;
1cfb419b 2280
cc715d99
MG
2281 /*
2282 * If the number of buffer_heads in the machine exceeds the maximum
2283 * allowed level, force direct reclaim to scan the highmem zone as
2284 * highmem pages could be pinning lowmem pages storing buffer_heads
2285 */
2286 if (buffer_heads_over_limit)
2287 sc->gfp_mask |= __GFP_HIGHMEM;
2288
d4debc66
MG
2289 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2290 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2291 if (!populated_zone(zone))
1da177e4 2292 continue;
1cfb419b
KH
2293 /*
2294 * Take care memory controller reclaiming has small influence
2295 * to global LRU.
2296 */
89b5fae5 2297 if (global_reclaim(sc)) {
1cfb419b
KH
2298 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2299 continue;
6e543d57
LD
2300 if (sc->priority != DEF_PRIORITY &&
2301 !zone_reclaimable(zone))
1cfb419b 2302 continue; /* Let kswapd poll it */
d84da3f9 2303 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2304 /*
e0c23279
MG
2305 * If we already have plenty of memory free for
2306 * compaction in this zone, don't free any more.
2307 * Even though compaction is invoked for any
2308 * non-zero order, only frequent costly order
2309 * reclamation is disruptive enough to become a
c7cfa37b
CA
2310 * noticeable problem, like transparent huge
2311 * page allocations.
e0887c19 2312 */
fe4b1b24 2313 if (compaction_ready(zone, sc)) {
0cee34fd 2314 aborted_reclaim = true;
e0887c19 2315 continue;
e0c23279 2316 }
e0887c19 2317 }
0608f43d
AM
2318 /*
2319 * This steals pages from memory cgroups over softlimit
2320 * and returns the number of reclaimed pages and
2321 * scanned pages. This works for global memory pressure
2322 * and balancing, not for a memcg's limit.
2323 */
2324 nr_soft_scanned = 0;
2325 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2326 sc->order, sc->gfp_mask,
2327 &nr_soft_scanned);
2328 sc->nr_reclaimed += nr_soft_reclaimed;
2329 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2330 /* need some check for avoid more shrink_zone() */
1cfb419b 2331 }
408d8544 2332
9e3b2f8c 2333 shrink_zone(zone, sc);
1da177e4 2334 }
e0c23279 2335
0cee34fd 2336 return aborted_reclaim;
d1908362
MK
2337}
2338
929bea7c 2339/* All zones in zonelist are unreclaimable? */
d1908362
MK
2340static bool all_unreclaimable(struct zonelist *zonelist,
2341 struct scan_control *sc)
2342{
2343 struct zoneref *z;
2344 struct zone *zone;
d1908362
MK
2345
2346 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2347 gfp_zone(sc->gfp_mask), sc->nodemask) {
2348 if (!populated_zone(zone))
2349 continue;
2350 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2351 continue;
6e543d57 2352 if (zone_reclaimable(zone))
929bea7c 2353 return false;
d1908362
MK
2354 }
2355
929bea7c 2356 return true;
1da177e4 2357}
4f98a2fe 2358
1da177e4
LT
2359/*
2360 * This is the main entry point to direct page reclaim.
2361 *
2362 * If a full scan of the inactive list fails to free enough memory then we
2363 * are "out of memory" and something needs to be killed.
2364 *
2365 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2366 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2367 * caller can't do much about. We kick the writeback threads and take explicit
2368 * naps in the hope that some of these pages can be written. But if the
2369 * allocating task holds filesystem locks which prevent writeout this might not
2370 * work, and the allocation attempt will fail.
a41f24ea
NA
2371 *
2372 * returns: 0, if no pages reclaimed
2373 * else, the number of pages reclaimed
1da177e4 2374 */
dac1d27b 2375static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2376 struct scan_control *sc,
2377 struct shrink_control *shrink)
1da177e4 2378{
69e05944 2379 unsigned long total_scanned = 0;
1da177e4 2380 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2381 struct zoneref *z;
54a6eb5c 2382 struct zone *zone;
22fba335 2383 unsigned long writeback_threshold;
0cee34fd 2384 bool aborted_reclaim;
1da177e4 2385
873b4771
KK
2386 delayacct_freepages_start();
2387
89b5fae5 2388 if (global_reclaim(sc))
1cfb419b 2389 count_vm_event(ALLOCSTALL);
1da177e4 2390
9e3b2f8c 2391 do {
70ddf637
AV
2392 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2393 sc->priority);
66e1707b 2394 sc->nr_scanned = 0;
9e3b2f8c 2395 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2396
66e1707b 2397 /*
5a1c9cbc
MG
2398 * Don't shrink slabs when reclaiming memory from over limit
2399 * cgroups but do shrink slab at least once when aborting
2400 * reclaim for compaction to avoid unevenly scanning file/anon
2401 * LRU pages over slab pages.
66e1707b 2402 */
89b5fae5 2403 if (global_reclaim(sc)) {
c6a8a8c5 2404 unsigned long lru_pages = 0;
0ce3d744
DC
2405
2406 nodes_clear(shrink->nodes_to_scan);
d4debc66
MG
2407 for_each_zone_zonelist(zone, z, zonelist,
2408 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2409 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2410 continue;
2411
2412 lru_pages += zone_reclaimable_pages(zone);
0ce3d744
DC
2413 node_set(zone_to_nid(zone),
2414 shrink->nodes_to_scan);
c6a8a8c5
KM
2415 }
2416
1495f230 2417 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2418 if (reclaim_state) {
a79311c1 2419 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2420 reclaim_state->reclaimed_slab = 0;
2421 }
1da177e4 2422 }
66e1707b 2423 total_scanned += sc->nr_scanned;
bb21c7ce 2424 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2425 goto out;
1da177e4 2426
0e50ce3b
MK
2427 /*
2428 * If we're getting trouble reclaiming, start doing
2429 * writepage even in laptop mode.
2430 */
2431 if (sc->priority < DEF_PRIORITY - 2)
2432 sc->may_writepage = 1;
2433
1da177e4
LT
2434 /*
2435 * Try to write back as many pages as we just scanned. This
2436 * tends to cause slow streaming writers to write data to the
2437 * disk smoothly, at the dirtying rate, which is nice. But
2438 * that's undesirable in laptop mode, where we *want* lumpy
2439 * writeout. So in laptop mode, write out the whole world.
2440 */
22fba335
KM
2441 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2442 if (total_scanned > writeback_threshold) {
0e175a18
CW
2443 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2444 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2445 sc->may_writepage = 1;
1da177e4 2446 }
5a1c9cbc 2447 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2448
1da177e4 2449out:
873b4771
KK
2450 delayacct_freepages_end();
2451
bb21c7ce
KM
2452 if (sc->nr_reclaimed)
2453 return sc->nr_reclaimed;
2454
929bea7c
KM
2455 /*
2456 * As hibernation is going on, kswapd is freezed so that it can't mark
2457 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2458 * check.
2459 */
2460 if (oom_killer_disabled)
2461 return 0;
2462
0cee34fd
MG
2463 /* Aborted reclaim to try compaction? don't OOM, then */
2464 if (aborted_reclaim)
7335084d
MG
2465 return 1;
2466
bb21c7ce 2467 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2468 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2469 return 1;
2470
2471 return 0;
1da177e4
LT
2472}
2473
5515061d
MG
2474static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2475{
2476 struct zone *zone;
2477 unsigned long pfmemalloc_reserve = 0;
2478 unsigned long free_pages = 0;
2479 int i;
2480 bool wmark_ok;
2481
2482 for (i = 0; i <= ZONE_NORMAL; i++) {
2483 zone = &pgdat->node_zones[i];
2484 pfmemalloc_reserve += min_wmark_pages(zone);
2485 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2486 }
2487
2488 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2489
2490 /* kswapd must be awake if processes are being throttled */
2491 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2492 pgdat->classzone_idx = min(pgdat->classzone_idx,
2493 (enum zone_type)ZONE_NORMAL);
2494 wake_up_interruptible(&pgdat->kswapd_wait);
2495 }
2496
2497 return wmark_ok;
2498}
2499
2500/*
2501 * Throttle direct reclaimers if backing storage is backed by the network
2502 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2503 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2504 * when the low watermark is reached.
2505 *
2506 * Returns true if a fatal signal was delivered during throttling. If this
2507 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2508 */
50694c28 2509static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2510 nodemask_t *nodemask)
2511{
2512 struct zone *zone;
2513 int high_zoneidx = gfp_zone(gfp_mask);
2514 pg_data_t *pgdat;
2515
2516 /*
2517 * Kernel threads should not be throttled as they may be indirectly
2518 * responsible for cleaning pages necessary for reclaim to make forward
2519 * progress. kjournald for example may enter direct reclaim while
2520 * committing a transaction where throttling it could forcing other
2521 * processes to block on log_wait_commit().
2522 */
2523 if (current->flags & PF_KTHREAD)
50694c28
MG
2524 goto out;
2525
2526 /*
2527 * If a fatal signal is pending, this process should not throttle.
2528 * It should return quickly so it can exit and free its memory
2529 */
2530 if (fatal_signal_pending(current))
2531 goto out;
5515061d
MG
2532
2533 /* Check if the pfmemalloc reserves are ok */
2534 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2535 pgdat = zone->zone_pgdat;
2536 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2537 goto out;
5515061d 2538
68243e76
MG
2539 /* Account for the throttling */
2540 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2541
5515061d
MG
2542 /*
2543 * If the caller cannot enter the filesystem, it's possible that it
2544 * is due to the caller holding an FS lock or performing a journal
2545 * transaction in the case of a filesystem like ext[3|4]. In this case,
2546 * it is not safe to block on pfmemalloc_wait as kswapd could be
2547 * blocked waiting on the same lock. Instead, throttle for up to a
2548 * second before continuing.
2549 */
2550 if (!(gfp_mask & __GFP_FS)) {
2551 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2552 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2553
2554 goto check_pending;
5515061d
MG
2555 }
2556
2557 /* Throttle until kswapd wakes the process */
2558 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2559 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2560
2561check_pending:
2562 if (fatal_signal_pending(current))
2563 return true;
2564
2565out:
2566 return false;
5515061d
MG
2567}
2568
dac1d27b 2569unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2570 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2571{
33906bc5 2572 unsigned long nr_reclaimed;
66e1707b 2573 struct scan_control sc = {
21caf2fc 2574 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2575 .may_writepage = !laptop_mode,
22fba335 2576 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2577 .may_unmap = 1,
2e2e4259 2578 .may_swap = 1,
66e1707b 2579 .order = order,
9e3b2f8c 2580 .priority = DEF_PRIORITY,
f16015fb 2581 .target_mem_cgroup = NULL,
327c0e96 2582 .nodemask = nodemask,
66e1707b 2583 };
a09ed5e0
YH
2584 struct shrink_control shrink = {
2585 .gfp_mask = sc.gfp_mask,
2586 };
66e1707b 2587
5515061d 2588 /*
50694c28
MG
2589 * Do not enter reclaim if fatal signal was delivered while throttled.
2590 * 1 is returned so that the page allocator does not OOM kill at this
2591 * point.
5515061d 2592 */
50694c28 2593 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2594 return 1;
2595
33906bc5
MG
2596 trace_mm_vmscan_direct_reclaim_begin(order,
2597 sc.may_writepage,
2598 gfp_mask);
2599
a09ed5e0 2600 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2601
2602 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2603
2604 return nr_reclaimed;
66e1707b
BS
2605}
2606
c255a458 2607#ifdef CONFIG_MEMCG
66e1707b 2608
72835c86 2609unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2610 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2611 struct zone *zone,
2612 unsigned long *nr_scanned)
4e416953
BS
2613{
2614 struct scan_control sc = {
0ae5e89c 2615 .nr_scanned = 0,
b8f5c566 2616 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2617 .may_writepage = !laptop_mode,
2618 .may_unmap = 1,
2619 .may_swap = !noswap,
4e416953 2620 .order = 0,
9e3b2f8c 2621 .priority = 0,
72835c86 2622 .target_mem_cgroup = memcg,
4e416953 2623 };
f9be23d6 2624 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2625
4e416953
BS
2626 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2628
9e3b2f8c 2629 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2630 sc.may_writepage,
2631 sc.gfp_mask);
2632
4e416953
BS
2633 /*
2634 * NOTE: Although we can get the priority field, using it
2635 * here is not a good idea, since it limits the pages we can scan.
2636 * if we don't reclaim here, the shrink_zone from balance_pgdat
2637 * will pick up pages from other mem cgroup's as well. We hack
2638 * the priority and make it zero.
2639 */
f9be23d6 2640 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2641
2642 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2643
0ae5e89c 2644 *nr_scanned = sc.nr_scanned;
4e416953
BS
2645 return sc.nr_reclaimed;
2646}
2647
72835c86 2648unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2649 gfp_t gfp_mask,
185efc0f 2650 bool noswap)
66e1707b 2651{
4e416953 2652 struct zonelist *zonelist;
bdce6d9e 2653 unsigned long nr_reclaimed;
889976db 2654 int nid;
66e1707b 2655 struct scan_control sc = {
66e1707b 2656 .may_writepage = !laptop_mode,
a6dc60f8 2657 .may_unmap = 1,
2e2e4259 2658 .may_swap = !noswap,
22fba335 2659 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2660 .order = 0,
9e3b2f8c 2661 .priority = DEF_PRIORITY,
72835c86 2662 .target_mem_cgroup = memcg,
327c0e96 2663 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2664 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2665 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2666 };
2667 struct shrink_control shrink = {
2668 .gfp_mask = sc.gfp_mask,
66e1707b 2669 };
66e1707b 2670
889976db
YH
2671 /*
2672 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2673 * take care of from where we get pages. So the node where we start the
2674 * scan does not need to be the current node.
2675 */
72835c86 2676 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2677
2678 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2679
2680 trace_mm_vmscan_memcg_reclaim_begin(0,
2681 sc.may_writepage,
2682 sc.gfp_mask);
2683
a09ed5e0 2684 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2685
2686 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2687
2688 return nr_reclaimed;
66e1707b
BS
2689}
2690#endif
2691
9e3b2f8c 2692static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2693{
b95a2f2d 2694 struct mem_cgroup *memcg;
f16015fb 2695
b95a2f2d
JW
2696 if (!total_swap_pages)
2697 return;
2698
2699 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2700 do {
c56d5c7d 2701 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2702
c56d5c7d 2703 if (inactive_anon_is_low(lruvec))
1a93be0e 2704 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2705 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2706
2707 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2708 } while (memcg);
f16015fb
JW
2709}
2710
60cefed4
JW
2711static bool zone_balanced(struct zone *zone, int order,
2712 unsigned long balance_gap, int classzone_idx)
2713{
2714 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2715 balance_gap, classzone_idx, 0))
2716 return false;
2717
d84da3f9
KS
2718 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2719 !compaction_suitable(zone, order))
60cefed4
JW
2720 return false;
2721
2722 return true;
2723}
2724
1741c877 2725/*
4ae0a48b
ZC
2726 * pgdat_balanced() is used when checking if a node is balanced.
2727 *
2728 * For order-0, all zones must be balanced!
2729 *
2730 * For high-order allocations only zones that meet watermarks and are in a
2731 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2732 * total of balanced pages must be at least 25% of the zones allowed by
2733 * classzone_idx for the node to be considered balanced. Forcing all zones to
2734 * be balanced for high orders can cause excessive reclaim when there are
2735 * imbalanced zones.
1741c877
MG
2736 * The choice of 25% is due to
2737 * o a 16M DMA zone that is balanced will not balance a zone on any
2738 * reasonable sized machine
2739 * o On all other machines, the top zone must be at least a reasonable
25985edc 2740 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2741 * would need to be at least 256M for it to be balance a whole node.
2742 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2743 * to balance a node on its own. These seemed like reasonable ratios.
2744 */
4ae0a48b 2745static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2746{
b40da049 2747 unsigned long managed_pages = 0;
4ae0a48b 2748 unsigned long balanced_pages = 0;
1741c877
MG
2749 int i;
2750
4ae0a48b
ZC
2751 /* Check the watermark levels */
2752 for (i = 0; i <= classzone_idx; i++) {
2753 struct zone *zone = pgdat->node_zones + i;
1741c877 2754
4ae0a48b
ZC
2755 if (!populated_zone(zone))
2756 continue;
2757
b40da049 2758 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2759
2760 /*
2761 * A special case here:
2762 *
2763 * balance_pgdat() skips over all_unreclaimable after
2764 * DEF_PRIORITY. Effectively, it considers them balanced so
2765 * they must be considered balanced here as well!
2766 */
6e543d57 2767 if (!zone_reclaimable(zone)) {
b40da049 2768 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2769 continue;
2770 }
2771
2772 if (zone_balanced(zone, order, 0, i))
b40da049 2773 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2774 else if (!order)
2775 return false;
2776 }
2777
2778 if (order)
b40da049 2779 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2780 else
2781 return true;
1741c877
MG
2782}
2783
5515061d
MG
2784/*
2785 * Prepare kswapd for sleeping. This verifies that there are no processes
2786 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2787 *
2788 * Returns true if kswapd is ready to sleep
2789 */
2790static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2791 int classzone_idx)
f50de2d3 2792{
f50de2d3
MG
2793 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2794 if (remaining)
5515061d
MG
2795 return false;
2796
2797 /*
2798 * There is a potential race between when kswapd checks its watermarks
2799 * and a process gets throttled. There is also a potential race if
2800 * processes get throttled, kswapd wakes, a large process exits therby
2801 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2802 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2803 * so wake them now if necessary. If necessary, processes will wake
2804 * kswapd and get throttled again
2805 */
2806 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2807 wake_up(&pgdat->pfmemalloc_wait);
2808 return false;
2809 }
f50de2d3 2810
4ae0a48b 2811 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2812}
2813
75485363
MG
2814/*
2815 * kswapd shrinks the zone by the number of pages required to reach
2816 * the high watermark.
b8e83b94
MG
2817 *
2818 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2819 * reclaim or if the lack of progress was due to pages under writeback.
2820 * This is used to determine if the scanning priority needs to be raised.
75485363 2821 */
b8e83b94 2822static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2823 int classzone_idx,
75485363 2824 struct scan_control *sc,
2ab44f43
MG
2825 unsigned long lru_pages,
2826 unsigned long *nr_attempted)
75485363 2827{
7c954f6d
MG
2828 int testorder = sc->order;
2829 unsigned long balance_gap;
75485363
MG
2830 struct reclaim_state *reclaim_state = current->reclaim_state;
2831 struct shrink_control shrink = {
2832 .gfp_mask = sc->gfp_mask,
2833 };
7c954f6d 2834 bool lowmem_pressure;
75485363
MG
2835
2836 /* Reclaim above the high watermark. */
2837 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2838
2839 /*
2840 * Kswapd reclaims only single pages with compaction enabled. Trying
2841 * too hard to reclaim until contiguous free pages have become
2842 * available can hurt performance by evicting too much useful data
2843 * from memory. Do not reclaim more than needed for compaction.
2844 */
2845 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2846 compaction_suitable(zone, sc->order) !=
2847 COMPACT_SKIPPED)
2848 testorder = 0;
2849
2850 /*
2851 * We put equal pressure on every zone, unless one zone has way too
2852 * many pages free already. The "too many pages" is defined as the
2853 * high wmark plus a "gap" where the gap is either the low
2854 * watermark or 1% of the zone, whichever is smaller.
2855 */
2856 balance_gap = min(low_wmark_pages(zone),
2857 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2858 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2859
2860 /*
2861 * If there is no low memory pressure or the zone is balanced then no
2862 * reclaim is necessary
2863 */
2864 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2865 if (!lowmem_pressure && zone_balanced(zone, testorder,
2866 balance_gap, classzone_idx))
2867 return true;
2868
75485363 2869 shrink_zone(zone, sc);
0ce3d744
DC
2870 nodes_clear(shrink.nodes_to_scan);
2871 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2872
2873 reclaim_state->reclaimed_slab = 0;
6e543d57 2874 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2875 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2876
2ab44f43
MG
2877 /* Account for the number of pages attempted to reclaim */
2878 *nr_attempted += sc->nr_to_reclaim;
2879
283aba9f
MG
2880 zone_clear_flag(zone, ZONE_WRITEBACK);
2881
7c954f6d
MG
2882 /*
2883 * If a zone reaches its high watermark, consider it to be no longer
2884 * congested. It's possible there are dirty pages backed by congested
2885 * BDIs but as pressure is relieved, speculatively avoid congestion
2886 * waits.
2887 */
6e543d57 2888 if (zone_reclaimable(zone) &&
7c954f6d
MG
2889 zone_balanced(zone, testorder, 0, classzone_idx)) {
2890 zone_clear_flag(zone, ZONE_CONGESTED);
2891 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2892 }
2893
b8e83b94 2894 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2895}
2896
1da177e4
LT
2897/*
2898 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2899 * they are all at high_wmark_pages(zone).
1da177e4 2900 *
0abdee2b 2901 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2902 *
2903 * There is special handling here for zones which are full of pinned pages.
2904 * This can happen if the pages are all mlocked, or if they are all used by
2905 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2906 * What we do is to detect the case where all pages in the zone have been
2907 * scanned twice and there has been zero successful reclaim. Mark the zone as
2908 * dead and from now on, only perform a short scan. Basically we're polling
2909 * the zone for when the problem goes away.
2910 *
2911 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2912 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2913 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2914 * lower zones regardless of the number of free pages in the lower zones. This
2915 * interoperates with the page allocator fallback scheme to ensure that aging
2916 * of pages is balanced across the zones.
1da177e4 2917 */
99504748 2918static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2919 int *classzone_idx)
1da177e4 2920{
1da177e4 2921 int i;
99504748 2922 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
2923 unsigned long nr_soft_reclaimed;
2924 unsigned long nr_soft_scanned;
179e9639
AM
2925 struct scan_control sc = {
2926 .gfp_mask = GFP_KERNEL,
b8e83b94 2927 .priority = DEF_PRIORITY,
a6dc60f8 2928 .may_unmap = 1,
2e2e4259 2929 .may_swap = 1,
b8e83b94 2930 .may_writepage = !laptop_mode,
5ad333eb 2931 .order = order,
f16015fb 2932 .target_mem_cgroup = NULL,
179e9639 2933 };
f8891e5e 2934 count_vm_event(PAGEOUTRUN);
1da177e4 2935
9e3b2f8c 2936 do {
1da177e4 2937 unsigned long lru_pages = 0;
2ab44f43 2938 unsigned long nr_attempted = 0;
b8e83b94 2939 bool raise_priority = true;
2ab44f43 2940 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2941
2942 sc.nr_reclaimed = 0;
1da177e4 2943
d6277db4
RW
2944 /*
2945 * Scan in the highmem->dma direction for the highest
2946 * zone which needs scanning
2947 */
2948 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2949 struct zone *zone = pgdat->node_zones + i;
1da177e4 2950
d6277db4
RW
2951 if (!populated_zone(zone))
2952 continue;
1da177e4 2953
6e543d57
LD
2954 if (sc.priority != DEF_PRIORITY &&
2955 !zone_reclaimable(zone))
d6277db4 2956 continue;
1da177e4 2957
556adecb
RR
2958 /*
2959 * Do some background aging of the anon list, to give
2960 * pages a chance to be referenced before reclaiming.
2961 */
9e3b2f8c 2962 age_active_anon(zone, &sc);
556adecb 2963
cc715d99
MG
2964 /*
2965 * If the number of buffer_heads in the machine
2966 * exceeds the maximum allowed level and this node
2967 * has a highmem zone, force kswapd to reclaim from
2968 * it to relieve lowmem pressure.
2969 */
2970 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2971 end_zone = i;
2972 break;
2973 }
2974
60cefed4 2975 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2976 end_zone = i;
e1dbeda6 2977 break;
439423f6 2978 } else {
d43006d5
MG
2979 /*
2980 * If balanced, clear the dirty and congested
2981 * flags
2982 */
439423f6 2983 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2984 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2985 }
1da177e4 2986 }
dafcb73e 2987
b8e83b94 2988 if (i < 0)
e1dbeda6
AM
2989 goto out;
2990
1da177e4
LT
2991 for (i = 0; i <= end_zone; i++) {
2992 struct zone *zone = pgdat->node_zones + i;
2993
2ab44f43
MG
2994 if (!populated_zone(zone))
2995 continue;
2996
adea02a1 2997 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
2998
2999 /*
3000 * If any zone is currently balanced then kswapd will
3001 * not call compaction as it is expected that the
3002 * necessary pages are already available.
3003 */
3004 if (pgdat_needs_compaction &&
3005 zone_watermark_ok(zone, order,
3006 low_wmark_pages(zone),
3007 *classzone_idx, 0))
3008 pgdat_needs_compaction = false;
1da177e4
LT
3009 }
3010
b7ea3c41
MG
3011 /*
3012 * If we're getting trouble reclaiming, start doing writepage
3013 * even in laptop mode.
3014 */
3015 if (sc.priority < DEF_PRIORITY - 2)
3016 sc.may_writepage = 1;
3017
1da177e4
LT
3018 /*
3019 * Now scan the zone in the dma->highmem direction, stopping
3020 * at the last zone which needs scanning.
3021 *
3022 * We do this because the page allocator works in the opposite
3023 * direction. This prevents the page allocator from allocating
3024 * pages behind kswapd's direction of progress, which would
3025 * cause too much scanning of the lower zones.
3026 */
3027 for (i = 0; i <= end_zone; i++) {
3028 struct zone *zone = pgdat->node_zones + i;
3029
f3fe6512 3030 if (!populated_zone(zone))
1da177e4
LT
3031 continue;
3032
6e543d57
LD
3033 if (sc.priority != DEF_PRIORITY &&
3034 !zone_reclaimable(zone))
1da177e4
LT
3035 continue;
3036
1da177e4 3037 sc.nr_scanned = 0;
4e416953 3038
0608f43d
AM
3039 nr_soft_scanned = 0;
3040 /*
3041 * Call soft limit reclaim before calling shrink_zone.
3042 */
3043 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3044 order, sc.gfp_mask,
3045 &nr_soft_scanned);
3046 sc.nr_reclaimed += nr_soft_reclaimed;
3047
32a4330d 3048 /*
7c954f6d
MG
3049 * There should be no need to raise the scanning
3050 * priority if enough pages are already being scanned
3051 * that that high watermark would be met at 100%
3052 * efficiency.
fe2c2a10 3053 */
7c954f6d
MG
3054 if (kswapd_shrink_zone(zone, end_zone, &sc,
3055 lru_pages, &nr_attempted))
3056 raise_priority = false;
1da177e4 3057 }
5515061d
MG
3058
3059 /*
3060 * If the low watermark is met there is no need for processes
3061 * to be throttled on pfmemalloc_wait as they should not be
3062 * able to safely make forward progress. Wake them
3063 */
3064 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3065 pfmemalloc_watermark_ok(pgdat))
3066 wake_up(&pgdat->pfmemalloc_wait);
3067
1da177e4 3068 /*
b8e83b94
MG
3069 * Fragmentation may mean that the system cannot be rebalanced
3070 * for high-order allocations in all zones. If twice the
3071 * allocation size has been reclaimed and the zones are still
3072 * not balanced then recheck the watermarks at order-0 to
3073 * prevent kswapd reclaiming excessively. Assume that a
3074 * process requested a high-order can direct reclaim/compact.
1da177e4 3075 */
b8e83b94
MG
3076 if (order && sc.nr_reclaimed >= 2UL << order)
3077 order = sc.order = 0;
8357376d 3078
b8e83b94
MG
3079 /* Check if kswapd should be suspending */
3080 if (try_to_freeze() || kthread_should_stop())
3081 break;
8357376d 3082
2ab44f43
MG
3083 /*
3084 * Compact if necessary and kswapd is reclaiming at least the
3085 * high watermark number of pages as requsted
3086 */
3087 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3088 compact_pgdat(pgdat, order);
3089
73ce02e9 3090 /*
b8e83b94
MG
3091 * Raise priority if scanning rate is too low or there was no
3092 * progress in reclaiming pages
73ce02e9 3093 */
b8e83b94
MG
3094 if (raise_priority || !sc.nr_reclaimed)
3095 sc.priority--;
9aa41348 3096 } while (sc.priority >= 1 &&
b8e83b94 3097 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3098
b8e83b94 3099out:
0abdee2b 3100 /*
5515061d 3101 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3102 * makes a decision on the order we were last reclaiming at. However,
3103 * if another caller entered the allocator slow path while kswapd
3104 * was awake, order will remain at the higher level
3105 */
dc83edd9 3106 *classzone_idx = end_zone;
0abdee2b 3107 return order;
1da177e4
LT
3108}
3109
dc83edd9 3110static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3111{
3112 long remaining = 0;
3113 DEFINE_WAIT(wait);
3114
3115 if (freezing(current) || kthread_should_stop())
3116 return;
3117
3118 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3119
3120 /* Try to sleep for a short interval */
5515061d 3121 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3122 remaining = schedule_timeout(HZ/10);
3123 finish_wait(&pgdat->kswapd_wait, &wait);
3124 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3125 }
3126
3127 /*
3128 * After a short sleep, check if it was a premature sleep. If not, then
3129 * go fully to sleep until explicitly woken up.
3130 */
5515061d 3131 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3132 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3133
3134 /*
3135 * vmstat counters are not perfectly accurate and the estimated
3136 * value for counters such as NR_FREE_PAGES can deviate from the
3137 * true value by nr_online_cpus * threshold. To avoid the zone
3138 * watermarks being breached while under pressure, we reduce the
3139 * per-cpu vmstat threshold while kswapd is awake and restore
3140 * them before going back to sleep.
3141 */
3142 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3143
62997027
MG
3144 /*
3145 * Compaction records what page blocks it recently failed to
3146 * isolate pages from and skips them in the future scanning.
3147 * When kswapd is going to sleep, it is reasonable to assume
3148 * that pages and compaction may succeed so reset the cache.
3149 */
3150 reset_isolation_suitable(pgdat);
3151
1c7e7f6c
AK
3152 if (!kthread_should_stop())
3153 schedule();
3154
f0bc0a60
KM
3155 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3156 } else {
3157 if (remaining)
3158 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3159 else
3160 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3161 }
3162 finish_wait(&pgdat->kswapd_wait, &wait);
3163}
3164
1da177e4
LT
3165/*
3166 * The background pageout daemon, started as a kernel thread
4f98a2fe 3167 * from the init process.
1da177e4
LT
3168 *
3169 * This basically trickles out pages so that we have _some_
3170 * free memory available even if there is no other activity
3171 * that frees anything up. This is needed for things like routing
3172 * etc, where we otherwise might have all activity going on in
3173 * asynchronous contexts that cannot page things out.
3174 *
3175 * If there are applications that are active memory-allocators
3176 * (most normal use), this basically shouldn't matter.
3177 */
3178static int kswapd(void *p)
3179{
215ddd66 3180 unsigned long order, new_order;
d2ebd0f6 3181 unsigned balanced_order;
215ddd66 3182 int classzone_idx, new_classzone_idx;
d2ebd0f6 3183 int balanced_classzone_idx;
1da177e4
LT
3184 pg_data_t *pgdat = (pg_data_t*)p;
3185 struct task_struct *tsk = current;
f0bc0a60 3186
1da177e4
LT
3187 struct reclaim_state reclaim_state = {
3188 .reclaimed_slab = 0,
3189 };
a70f7302 3190 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3191
cf40bd16
NP
3192 lockdep_set_current_reclaim_state(GFP_KERNEL);
3193
174596a0 3194 if (!cpumask_empty(cpumask))
c5f59f08 3195 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3196 current->reclaim_state = &reclaim_state;
3197
3198 /*
3199 * Tell the memory management that we're a "memory allocator",
3200 * and that if we need more memory we should get access to it
3201 * regardless (see "__alloc_pages()"). "kswapd" should
3202 * never get caught in the normal page freeing logic.
3203 *
3204 * (Kswapd normally doesn't need memory anyway, but sometimes
3205 * you need a small amount of memory in order to be able to
3206 * page out something else, and this flag essentially protects
3207 * us from recursively trying to free more memory as we're
3208 * trying to free the first piece of memory in the first place).
3209 */
930d9152 3210 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3211 set_freezable();
1da177e4 3212
215ddd66 3213 order = new_order = 0;
d2ebd0f6 3214 balanced_order = 0;
215ddd66 3215 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3216 balanced_classzone_idx = classzone_idx;
1da177e4 3217 for ( ; ; ) {
6f6313d4 3218 bool ret;
3e1d1d28 3219
215ddd66
MG
3220 /*
3221 * If the last balance_pgdat was unsuccessful it's unlikely a
3222 * new request of a similar or harder type will succeed soon
3223 * so consider going to sleep on the basis we reclaimed at
3224 */
d2ebd0f6
AS
3225 if (balanced_classzone_idx >= new_classzone_idx &&
3226 balanced_order == new_order) {
215ddd66
MG
3227 new_order = pgdat->kswapd_max_order;
3228 new_classzone_idx = pgdat->classzone_idx;
3229 pgdat->kswapd_max_order = 0;
3230 pgdat->classzone_idx = pgdat->nr_zones - 1;
3231 }
3232
99504748 3233 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3234 /*
3235 * Don't sleep if someone wants a larger 'order'
99504748 3236 * allocation or has tigher zone constraints
1da177e4
LT
3237 */
3238 order = new_order;
99504748 3239 classzone_idx = new_classzone_idx;
1da177e4 3240 } else {
d2ebd0f6
AS
3241 kswapd_try_to_sleep(pgdat, balanced_order,
3242 balanced_classzone_idx);
1da177e4 3243 order = pgdat->kswapd_max_order;
99504748 3244 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3245 new_order = order;
3246 new_classzone_idx = classzone_idx;
4d40502e 3247 pgdat->kswapd_max_order = 0;
215ddd66 3248 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3249 }
1da177e4 3250
8fe23e05
DR
3251 ret = try_to_freeze();
3252 if (kthread_should_stop())
3253 break;
3254
3255 /*
3256 * We can speed up thawing tasks if we don't call balance_pgdat
3257 * after returning from the refrigerator
3258 */
33906bc5
MG
3259 if (!ret) {
3260 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3261 balanced_classzone_idx = classzone_idx;
3262 balanced_order = balance_pgdat(pgdat, order,
3263 &balanced_classzone_idx);
33906bc5 3264 }
1da177e4 3265 }
b0a8cc58
TY
3266
3267 current->reclaim_state = NULL;
1da177e4
LT
3268 return 0;
3269}
3270
3271/*
3272 * A zone is low on free memory, so wake its kswapd task to service it.
3273 */
99504748 3274void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3275{
3276 pg_data_t *pgdat;
3277
f3fe6512 3278 if (!populated_zone(zone))
1da177e4
LT
3279 return;
3280
88f5acf8 3281 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3282 return;
88f5acf8 3283 pgdat = zone->zone_pgdat;
99504748 3284 if (pgdat->kswapd_max_order < order) {
1da177e4 3285 pgdat->kswapd_max_order = order;
99504748
MG
3286 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3287 }
8d0986e2 3288 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3289 return;
892f795d 3290 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3291 return;
3292
3293 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3294 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3295}
3296
adea02a1
WF
3297/*
3298 * The reclaimable count would be mostly accurate.
3299 * The less reclaimable pages may be
3300 * - mlocked pages, which will be moved to unevictable list when encountered
3301 * - mapped pages, which may require several travels to be reclaimed
3302 * - dirty pages, which is not "instantly" reclaimable
3303 */
3304unsigned long global_reclaimable_pages(void)
4f98a2fe 3305{
adea02a1
WF
3306 int nr;
3307
3308 nr = global_page_state(NR_ACTIVE_FILE) +
3309 global_page_state(NR_INACTIVE_FILE);
3310
ec8acf20 3311 if (get_nr_swap_pages() > 0)
adea02a1
WF
3312 nr += global_page_state(NR_ACTIVE_ANON) +
3313 global_page_state(NR_INACTIVE_ANON);
3314
3315 return nr;
3316}
3317
c6f37f12 3318#ifdef CONFIG_HIBERNATION
1da177e4 3319/*
7b51755c 3320 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3321 * freed pages.
3322 *
3323 * Rather than trying to age LRUs the aim is to preserve the overall
3324 * LRU order by reclaiming preferentially
3325 * inactive > active > active referenced > active mapped
1da177e4 3326 */
7b51755c 3327unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3328{
d6277db4 3329 struct reclaim_state reclaim_state;
d6277db4 3330 struct scan_control sc = {
7b51755c
KM
3331 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3332 .may_swap = 1,
3333 .may_unmap = 1,
d6277db4 3334 .may_writepage = 1,
7b51755c
KM
3335 .nr_to_reclaim = nr_to_reclaim,
3336 .hibernation_mode = 1,
7b51755c 3337 .order = 0,
9e3b2f8c 3338 .priority = DEF_PRIORITY,
1da177e4 3339 };
a09ed5e0
YH
3340 struct shrink_control shrink = {
3341 .gfp_mask = sc.gfp_mask,
3342 };
3343 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3344 struct task_struct *p = current;
3345 unsigned long nr_reclaimed;
1da177e4 3346
7b51755c
KM
3347 p->flags |= PF_MEMALLOC;
3348 lockdep_set_current_reclaim_state(sc.gfp_mask);
3349 reclaim_state.reclaimed_slab = 0;
3350 p->reclaim_state = &reclaim_state;
d6277db4 3351
a09ed5e0 3352 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3353
7b51755c
KM
3354 p->reclaim_state = NULL;
3355 lockdep_clear_current_reclaim_state();
3356 p->flags &= ~PF_MEMALLOC;
d6277db4 3357
7b51755c 3358 return nr_reclaimed;
1da177e4 3359}
c6f37f12 3360#endif /* CONFIG_HIBERNATION */
1da177e4 3361
1da177e4
LT
3362/* It's optimal to keep kswapds on the same CPUs as their memory, but
3363 not required for correctness. So if the last cpu in a node goes
3364 away, we get changed to run anywhere: as the first one comes back,
3365 restore their cpu bindings. */
fcb35a9b
GKH
3366static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3367 void *hcpu)
1da177e4 3368{
58c0a4a7 3369 int nid;
1da177e4 3370
8bb78442 3371 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3372 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3373 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3374 const struct cpumask *mask;
3375
3376 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3377
3e597945 3378 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3379 /* One of our CPUs online: restore mask */
c5f59f08 3380 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3381 }
3382 }
3383 return NOTIFY_OK;
3384}
1da177e4 3385
3218ae14
YG
3386/*
3387 * This kswapd start function will be called by init and node-hot-add.
3388 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3389 */
3390int kswapd_run(int nid)
3391{
3392 pg_data_t *pgdat = NODE_DATA(nid);
3393 int ret = 0;
3394
3395 if (pgdat->kswapd)
3396 return 0;
3397
3398 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3399 if (IS_ERR(pgdat->kswapd)) {
3400 /* failure at boot is fatal */
3401 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3402 pr_err("Failed to start kswapd on node %d\n", nid);
3403 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3404 pgdat->kswapd = NULL;
3218ae14
YG
3405 }
3406 return ret;
3407}
3408
8fe23e05 3409/*
d8adde17
JL
3410 * Called by memory hotplug when all memory in a node is offlined. Caller must
3411 * hold lock_memory_hotplug().
8fe23e05
DR
3412 */
3413void kswapd_stop(int nid)
3414{
3415 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3416
d8adde17 3417 if (kswapd) {
8fe23e05 3418 kthread_stop(kswapd);
d8adde17
JL
3419 NODE_DATA(nid)->kswapd = NULL;
3420 }
8fe23e05
DR
3421}
3422
1da177e4
LT
3423static int __init kswapd_init(void)
3424{
3218ae14 3425 int nid;
69e05944 3426
1da177e4 3427 swap_setup();
48fb2e24 3428 for_each_node_state(nid, N_MEMORY)
3218ae14 3429 kswapd_run(nid);
1da177e4
LT
3430 hotcpu_notifier(cpu_callback, 0);
3431 return 0;
3432}
3433
3434module_init(kswapd_init)
9eeff239
CL
3435
3436#ifdef CONFIG_NUMA
3437/*
3438 * Zone reclaim mode
3439 *
3440 * If non-zero call zone_reclaim when the number of free pages falls below
3441 * the watermarks.
9eeff239
CL
3442 */
3443int zone_reclaim_mode __read_mostly;
3444
1b2ffb78 3445#define RECLAIM_OFF 0
7d03431c 3446#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3447#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3448#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3449
a92f7126
CL
3450/*
3451 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3452 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3453 * a zone.
3454 */
3455#define ZONE_RECLAIM_PRIORITY 4
3456
9614634f
CL
3457/*
3458 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3459 * occur.
3460 */
3461int sysctl_min_unmapped_ratio = 1;
3462
0ff38490
CL
3463/*
3464 * If the number of slab pages in a zone grows beyond this percentage then
3465 * slab reclaim needs to occur.
3466 */
3467int sysctl_min_slab_ratio = 5;
3468
90afa5de
MG
3469static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3470{
3471 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3472 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3473 zone_page_state(zone, NR_ACTIVE_FILE);
3474
3475 /*
3476 * It's possible for there to be more file mapped pages than
3477 * accounted for by the pages on the file LRU lists because
3478 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3479 */
3480 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3481}
3482
3483/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3484static long zone_pagecache_reclaimable(struct zone *zone)
3485{
3486 long nr_pagecache_reclaimable;
3487 long delta = 0;
3488
3489 /*
3490 * If RECLAIM_SWAP is set, then all file pages are considered
3491 * potentially reclaimable. Otherwise, we have to worry about
3492 * pages like swapcache and zone_unmapped_file_pages() provides
3493 * a better estimate
3494 */
3495 if (zone_reclaim_mode & RECLAIM_SWAP)
3496 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3497 else
3498 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3499
3500 /* If we can't clean pages, remove dirty pages from consideration */
3501 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3502 delta += zone_page_state(zone, NR_FILE_DIRTY);
3503
3504 /* Watch for any possible underflows due to delta */
3505 if (unlikely(delta > nr_pagecache_reclaimable))
3506 delta = nr_pagecache_reclaimable;
3507
3508 return nr_pagecache_reclaimable - delta;
3509}
3510
9eeff239
CL
3511/*
3512 * Try to free up some pages from this zone through reclaim.
3513 */
179e9639 3514static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3515{
7fb2d46d 3516 /* Minimum pages needed in order to stay on node */
69e05944 3517 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3518 struct task_struct *p = current;
3519 struct reclaim_state reclaim_state;
179e9639
AM
3520 struct scan_control sc = {
3521 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3522 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3523 .may_swap = 1,
62b726c1 3524 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3525 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3526 .order = order,
9e3b2f8c 3527 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3528 };
a09ed5e0
YH
3529 struct shrink_control shrink = {
3530 .gfp_mask = sc.gfp_mask,
3531 };
15748048 3532 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3533
9eeff239 3534 cond_resched();
d4f7796e
CL
3535 /*
3536 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3537 * and we also need to be able to write out pages for RECLAIM_WRITE
3538 * and RECLAIM_SWAP.
3539 */
3540 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3541 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3542 reclaim_state.reclaimed_slab = 0;
3543 p->reclaim_state = &reclaim_state;
c84db23c 3544
90afa5de 3545 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3546 /*
3547 * Free memory by calling shrink zone with increasing
3548 * priorities until we have enough memory freed.
3549 */
0ff38490 3550 do {
9e3b2f8c
KK
3551 shrink_zone(zone, &sc);
3552 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3553 }
c84db23c 3554
15748048
KM
3555 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3556 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3557 /*
7fb2d46d 3558 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3559 * many pages were freed in this zone. So we take the current
3560 * number of slab pages and shake the slab until it is reduced
3561 * by the same nr_pages that we used for reclaiming unmapped
3562 * pages.
2a16e3f4 3563 */
0ce3d744
DC
3564 nodes_clear(shrink.nodes_to_scan);
3565 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3566 for (;;) {
3567 unsigned long lru_pages = zone_reclaimable_pages(zone);
3568
3569 /* No reclaimable slab or very low memory pressure */
1495f230 3570 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3571 break;
3572
3573 /* Freed enough memory */
3574 nr_slab_pages1 = zone_page_state(zone,
3575 NR_SLAB_RECLAIMABLE);
3576 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3577 break;
3578 }
83e33a47
CL
3579
3580 /*
3581 * Update nr_reclaimed by the number of slab pages we
3582 * reclaimed from this zone.
3583 */
15748048
KM
3584 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3585 if (nr_slab_pages1 < nr_slab_pages0)
3586 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3587 }
3588
9eeff239 3589 p->reclaim_state = NULL;
d4f7796e 3590 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3591 lockdep_clear_current_reclaim_state();
a79311c1 3592 return sc.nr_reclaimed >= nr_pages;
9eeff239 3593}
179e9639
AM
3594
3595int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3596{
179e9639 3597 int node_id;
d773ed6b 3598 int ret;
179e9639
AM
3599
3600 /*
0ff38490
CL
3601 * Zone reclaim reclaims unmapped file backed pages and
3602 * slab pages if we are over the defined limits.
34aa1330 3603 *
9614634f
CL
3604 * A small portion of unmapped file backed pages is needed for
3605 * file I/O otherwise pages read by file I/O will be immediately
3606 * thrown out if the zone is overallocated. So we do not reclaim
3607 * if less than a specified percentage of the zone is used by
3608 * unmapped file backed pages.
179e9639 3609 */
90afa5de
MG
3610 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3611 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3612 return ZONE_RECLAIM_FULL;
179e9639 3613
6e543d57 3614 if (!zone_reclaimable(zone))
fa5e084e 3615 return ZONE_RECLAIM_FULL;
d773ed6b 3616
179e9639 3617 /*
d773ed6b 3618 * Do not scan if the allocation should not be delayed.
179e9639 3619 */
d773ed6b 3620 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3621 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3622
3623 /*
3624 * Only run zone reclaim on the local zone or on zones that do not
3625 * have associated processors. This will favor the local processor
3626 * over remote processors and spread off node memory allocations
3627 * as wide as possible.
3628 */
89fa3024 3629 node_id = zone_to_nid(zone);
37c0708d 3630 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3631 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3632
3633 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3634 return ZONE_RECLAIM_NOSCAN;
3635
d773ed6b
DR
3636 ret = __zone_reclaim(zone, gfp_mask, order);
3637 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3638
24cf7251
MG
3639 if (!ret)
3640 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3641
d773ed6b 3642 return ret;
179e9639 3643}
9eeff239 3644#endif
894bc310 3645
894bc310
LS
3646/*
3647 * page_evictable - test whether a page is evictable
3648 * @page: the page to test
894bc310
LS
3649 *
3650 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3651 * lists vs unevictable list.
894bc310
LS
3652 *
3653 * Reasons page might not be evictable:
ba9ddf49 3654 * (1) page's mapping marked unevictable
b291f000 3655 * (2) page is part of an mlocked VMA
ba9ddf49 3656 *
894bc310 3657 */
39b5f29a 3658int page_evictable(struct page *page)
894bc310 3659{
39b5f29a 3660 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3661}
89e004ea 3662
85046579 3663#ifdef CONFIG_SHMEM
89e004ea 3664/**
24513264
HD
3665 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3666 * @pages: array of pages to check
3667 * @nr_pages: number of pages to check
89e004ea 3668 *
24513264 3669 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3670 *
3671 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3672 */
24513264 3673void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3674{
925b7673 3675 struct lruvec *lruvec;
24513264
HD
3676 struct zone *zone = NULL;
3677 int pgscanned = 0;
3678 int pgrescued = 0;
3679 int i;
89e004ea 3680
24513264
HD
3681 for (i = 0; i < nr_pages; i++) {
3682 struct page *page = pages[i];
3683 struct zone *pagezone;
89e004ea 3684
24513264
HD
3685 pgscanned++;
3686 pagezone = page_zone(page);
3687 if (pagezone != zone) {
3688 if (zone)
3689 spin_unlock_irq(&zone->lru_lock);
3690 zone = pagezone;
3691 spin_lock_irq(&zone->lru_lock);
3692 }
fa9add64 3693 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3694
24513264
HD
3695 if (!PageLRU(page) || !PageUnevictable(page))
3696 continue;
89e004ea 3697
39b5f29a 3698 if (page_evictable(page)) {
24513264
HD
3699 enum lru_list lru = page_lru_base_type(page);
3700
3701 VM_BUG_ON(PageActive(page));
3702 ClearPageUnevictable(page);
fa9add64
HD
3703 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3704 add_page_to_lru_list(page, lruvec, lru);
24513264 3705 pgrescued++;
89e004ea 3706 }
24513264 3707 }
89e004ea 3708
24513264
HD
3709 if (zone) {
3710 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3711 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3712 spin_unlock_irq(&zone->lru_lock);
89e004ea 3713 }
89e004ea 3714}
85046579 3715#endif /* CONFIG_SHMEM */
af936a16 3716
264e56d8 3717static void warn_scan_unevictable_pages(void)
af936a16 3718{
264e56d8 3719 printk_once(KERN_WARNING
25bd91bd 3720 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3721 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3722 "one, please send an email to linux-mm@kvack.org.\n",
3723 current->comm);
af936a16
LS
3724}
3725
3726/*
3727 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3728 * all nodes' unevictable lists for evictable pages
3729 */
3730unsigned long scan_unevictable_pages;
3731
3732int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3733 void __user *buffer,
af936a16
LS
3734 size_t *length, loff_t *ppos)
3735{
264e56d8 3736 warn_scan_unevictable_pages();
8d65af78 3737 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3738 scan_unevictable_pages = 0;
3739 return 0;
3740}
3741
e4455abb 3742#ifdef CONFIG_NUMA
af936a16
LS
3743/*
3744 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3745 * a specified node's per zone unevictable lists for evictable pages.
3746 */
3747
10fbcf4c
KS
3748static ssize_t read_scan_unevictable_node(struct device *dev,
3749 struct device_attribute *attr,
af936a16
LS
3750 char *buf)
3751{
264e56d8 3752 warn_scan_unevictable_pages();
af936a16
LS
3753 return sprintf(buf, "0\n"); /* always zero; should fit... */
3754}
3755
10fbcf4c
KS
3756static ssize_t write_scan_unevictable_node(struct device *dev,
3757 struct device_attribute *attr,
af936a16
LS
3758 const char *buf, size_t count)
3759{
264e56d8 3760 warn_scan_unevictable_pages();
af936a16
LS
3761 return 1;
3762}
3763
3764
10fbcf4c 3765static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3766 read_scan_unevictable_node,
3767 write_scan_unevictable_node);
3768
3769int scan_unevictable_register_node(struct node *node)
3770{
10fbcf4c 3771 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3772}
3773
3774void scan_unevictable_unregister_node(struct node *node)
3775{
10fbcf4c 3776 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3777}
e4455abb 3778#endif
This page took 1.117757 seconds and 5 git commands to generate.