memcg, vmscan: integrate soft reclaim tighter with zone shrinking code
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
3b38722e
MH
142
143static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144{
145 return !mem_cgroup_disabled() && global_reclaim(sc);
146}
91a45470 147#else
89b5fae5
JW
148static bool global_reclaim(struct scan_control *sc)
149{
150 return true;
151}
3b38722e
MH
152
153static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
154{
155 return false;
156}
91a45470
KH
157#endif
158
6e543d57
LD
159unsigned long zone_reclaimable_pages(struct zone *zone)
160{
161 int nr;
162
163 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
164 zone_page_state(zone, NR_INACTIVE_FILE);
165
166 if (get_nr_swap_pages() > 0)
167 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
168 zone_page_state(zone, NR_INACTIVE_ANON);
169
170 return nr;
171}
172
173bool zone_reclaimable(struct zone *zone)
174{
175 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
176}
177
4d7dcca2 178static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 179{
c3c787e8 180 if (!mem_cgroup_disabled())
4d7dcca2 181 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 182
074291fe 183 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
184}
185
1da177e4
LT
186/*
187 * Add a shrinker callback to be called from the vm
188 */
8e1f936b 189void register_shrinker(struct shrinker *shrinker)
1da177e4 190{
83aeeada 191 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
192 down_write(&shrinker_rwsem);
193 list_add_tail(&shrinker->list, &shrinker_list);
194 up_write(&shrinker_rwsem);
1da177e4 195}
8e1f936b 196EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
197
198/*
199 * Remove one
200 */
8e1f936b 201void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
202{
203 down_write(&shrinker_rwsem);
204 list_del(&shrinker->list);
205 up_write(&shrinker_rwsem);
1da177e4 206}
8e1f936b 207EXPORT_SYMBOL(unregister_shrinker);
1da177e4 208
1495f230
YH
209static inline int do_shrinker_shrink(struct shrinker *shrinker,
210 struct shrink_control *sc,
211 unsigned long nr_to_scan)
212{
213 sc->nr_to_scan = nr_to_scan;
214 return (*shrinker->shrink)(shrinker, sc);
215}
216
1da177e4
LT
217#define SHRINK_BATCH 128
218/*
219 * Call the shrink functions to age shrinkable caches
220 *
221 * Here we assume it costs one seek to replace a lru page and that it also
222 * takes a seek to recreate a cache object. With this in mind we age equal
223 * percentages of the lru and ageable caches. This should balance the seeks
224 * generated by these structures.
225 *
183ff22b 226 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
227 * slab to avoid swapping.
228 *
229 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
230 *
231 * `lru_pages' represents the number of on-LRU pages in all the zones which
232 * are eligible for the caller's allocation attempt. It is used for balancing
233 * slab reclaim versus page reclaim.
b15e0905 234 *
235 * Returns the number of slab objects which we shrunk.
1da177e4 236 */
a09ed5e0 237unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 238 unsigned long nr_pages_scanned,
a09ed5e0 239 unsigned long lru_pages)
1da177e4
LT
240{
241 struct shrinker *shrinker;
69e05944 242 unsigned long ret = 0;
1da177e4 243
1495f230
YH
244 if (nr_pages_scanned == 0)
245 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 246
f06590bd
MK
247 if (!down_read_trylock(&shrinker_rwsem)) {
248 /* Assume we'll be able to shrink next time */
249 ret = 1;
250 goto out;
251 }
1da177e4
LT
252
253 list_for_each_entry(shrinker, &shrinker_list, list) {
254 unsigned long long delta;
635697c6
KK
255 long total_scan;
256 long max_pass;
09576073 257 int shrink_ret = 0;
acf92b48
DC
258 long nr;
259 long new_nr;
e9299f50
DC
260 long batch_size = shrinker->batch ? shrinker->batch
261 : SHRINK_BATCH;
1da177e4 262
635697c6
KK
263 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
264 if (max_pass <= 0)
265 continue;
266
acf92b48
DC
267 /*
268 * copy the current shrinker scan count into a local variable
269 * and zero it so that other concurrent shrinker invocations
270 * don't also do this scanning work.
271 */
83aeeada 272 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
273
274 total_scan = nr;
1495f230 275 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 276 delta *= max_pass;
1da177e4 277 do_div(delta, lru_pages + 1);
acf92b48
DC
278 total_scan += delta;
279 if (total_scan < 0) {
88c3bd70
DR
280 printk(KERN_ERR "shrink_slab: %pF negative objects to "
281 "delete nr=%ld\n",
acf92b48
DC
282 shrinker->shrink, total_scan);
283 total_scan = max_pass;
ea164d73
AA
284 }
285
3567b59a
DC
286 /*
287 * We need to avoid excessive windup on filesystem shrinkers
288 * due to large numbers of GFP_NOFS allocations causing the
289 * shrinkers to return -1 all the time. This results in a large
290 * nr being built up so when a shrink that can do some work
291 * comes along it empties the entire cache due to nr >>>
292 * max_pass. This is bad for sustaining a working set in
293 * memory.
294 *
295 * Hence only allow the shrinker to scan the entire cache when
296 * a large delta change is calculated directly.
297 */
298 if (delta < max_pass / 4)
299 total_scan = min(total_scan, max_pass / 2);
300
ea164d73
AA
301 /*
302 * Avoid risking looping forever due to too large nr value:
303 * never try to free more than twice the estimate number of
304 * freeable entries.
305 */
acf92b48
DC
306 if (total_scan > max_pass * 2)
307 total_scan = max_pass * 2;
1da177e4 308
acf92b48 309 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
310 nr_pages_scanned, lru_pages,
311 max_pass, delta, total_scan);
312
e9299f50 313 while (total_scan >= batch_size) {
b15e0905 314 int nr_before;
1da177e4 315
1495f230
YH
316 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
317 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 318 batch_size);
1da177e4
LT
319 if (shrink_ret == -1)
320 break;
b15e0905 321 if (shrink_ret < nr_before)
322 ret += nr_before - shrink_ret;
e9299f50
DC
323 count_vm_events(SLABS_SCANNED, batch_size);
324 total_scan -= batch_size;
1da177e4
LT
325
326 cond_resched();
327 }
328
acf92b48
DC
329 /*
330 * move the unused scan count back into the shrinker in a
331 * manner that handles concurrent updates. If we exhausted the
332 * scan, there is no need to do an update.
333 */
83aeeada
KK
334 if (total_scan > 0)
335 new_nr = atomic_long_add_return(total_scan,
336 &shrinker->nr_in_batch);
337 else
338 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
339
340 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
341 }
342 up_read(&shrinker_rwsem);
f06590bd
MK
343out:
344 cond_resched();
b15e0905 345 return ret;
1da177e4
LT
346}
347
1da177e4
LT
348static inline int is_page_cache_freeable(struct page *page)
349{
ceddc3a5
JW
350 /*
351 * A freeable page cache page is referenced only by the caller
352 * that isolated the page, the page cache radix tree and
353 * optional buffer heads at page->private.
354 */
edcf4748 355 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
356}
357
7d3579e8
KM
358static int may_write_to_queue(struct backing_dev_info *bdi,
359 struct scan_control *sc)
1da177e4 360{
930d9152 361 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
362 return 1;
363 if (!bdi_write_congested(bdi))
364 return 1;
365 if (bdi == current->backing_dev_info)
366 return 1;
367 return 0;
368}
369
370/*
371 * We detected a synchronous write error writing a page out. Probably
372 * -ENOSPC. We need to propagate that into the address_space for a subsequent
373 * fsync(), msync() or close().
374 *
375 * The tricky part is that after writepage we cannot touch the mapping: nothing
376 * prevents it from being freed up. But we have a ref on the page and once
377 * that page is locked, the mapping is pinned.
378 *
379 * We're allowed to run sleeping lock_page() here because we know the caller has
380 * __GFP_FS.
381 */
382static void handle_write_error(struct address_space *mapping,
383 struct page *page, int error)
384{
7eaceacc 385 lock_page(page);
3e9f45bd
GC
386 if (page_mapping(page) == mapping)
387 mapping_set_error(mapping, error);
1da177e4
LT
388 unlock_page(page);
389}
390
04e62a29
CL
391/* possible outcome of pageout() */
392typedef enum {
393 /* failed to write page out, page is locked */
394 PAGE_KEEP,
395 /* move page to the active list, page is locked */
396 PAGE_ACTIVATE,
397 /* page has been sent to the disk successfully, page is unlocked */
398 PAGE_SUCCESS,
399 /* page is clean and locked */
400 PAGE_CLEAN,
401} pageout_t;
402
1da177e4 403/*
1742f19f
AM
404 * pageout is called by shrink_page_list() for each dirty page.
405 * Calls ->writepage().
1da177e4 406 */
c661b078 407static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 408 struct scan_control *sc)
1da177e4
LT
409{
410 /*
411 * If the page is dirty, only perform writeback if that write
412 * will be non-blocking. To prevent this allocation from being
413 * stalled by pagecache activity. But note that there may be
414 * stalls if we need to run get_block(). We could test
415 * PagePrivate for that.
416 *
6aceb53b 417 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
418 * this page's queue, we can perform writeback even if that
419 * will block.
420 *
421 * If the page is swapcache, write it back even if that would
422 * block, for some throttling. This happens by accident, because
423 * swap_backing_dev_info is bust: it doesn't reflect the
424 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
425 */
426 if (!is_page_cache_freeable(page))
427 return PAGE_KEEP;
428 if (!mapping) {
429 /*
430 * Some data journaling orphaned pages can have
431 * page->mapping == NULL while being dirty with clean buffers.
432 */
266cf658 433 if (page_has_private(page)) {
1da177e4
LT
434 if (try_to_free_buffers(page)) {
435 ClearPageDirty(page);
d40cee24 436 printk("%s: orphaned page\n", __func__);
1da177e4
LT
437 return PAGE_CLEAN;
438 }
439 }
440 return PAGE_KEEP;
441 }
442 if (mapping->a_ops->writepage == NULL)
443 return PAGE_ACTIVATE;
0e093d99 444 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
445 return PAGE_KEEP;
446
447 if (clear_page_dirty_for_io(page)) {
448 int res;
449 struct writeback_control wbc = {
450 .sync_mode = WB_SYNC_NONE,
451 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
452 .range_start = 0,
453 .range_end = LLONG_MAX,
1da177e4
LT
454 .for_reclaim = 1,
455 };
456
457 SetPageReclaim(page);
458 res = mapping->a_ops->writepage(page, &wbc);
459 if (res < 0)
460 handle_write_error(mapping, page, res);
994fc28c 461 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
462 ClearPageReclaim(page);
463 return PAGE_ACTIVATE;
464 }
c661b078 465
1da177e4
LT
466 if (!PageWriteback(page)) {
467 /* synchronous write or broken a_ops? */
468 ClearPageReclaim(page);
469 }
23b9da55 470 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 471 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
472 return PAGE_SUCCESS;
473 }
474
475 return PAGE_CLEAN;
476}
477
a649fd92 478/*
e286781d
NP
479 * Same as remove_mapping, but if the page is removed from the mapping, it
480 * gets returned with a refcount of 0.
a649fd92 481 */
e286781d 482static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 483{
28e4d965
NP
484 BUG_ON(!PageLocked(page));
485 BUG_ON(mapping != page_mapping(page));
49d2e9cc 486
19fd6231 487 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 488 /*
0fd0e6b0
NP
489 * The non racy check for a busy page.
490 *
491 * Must be careful with the order of the tests. When someone has
492 * a ref to the page, it may be possible that they dirty it then
493 * drop the reference. So if PageDirty is tested before page_count
494 * here, then the following race may occur:
495 *
496 * get_user_pages(&page);
497 * [user mapping goes away]
498 * write_to(page);
499 * !PageDirty(page) [good]
500 * SetPageDirty(page);
501 * put_page(page);
502 * !page_count(page) [good, discard it]
503 *
504 * [oops, our write_to data is lost]
505 *
506 * Reversing the order of the tests ensures such a situation cannot
507 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
508 * load is not satisfied before that of page->_count.
509 *
510 * Note that if SetPageDirty is always performed via set_page_dirty,
511 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 512 */
e286781d 513 if (!page_freeze_refs(page, 2))
49d2e9cc 514 goto cannot_free;
e286781d
NP
515 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
516 if (unlikely(PageDirty(page))) {
517 page_unfreeze_refs(page, 2);
49d2e9cc 518 goto cannot_free;
e286781d 519 }
49d2e9cc
CL
520
521 if (PageSwapCache(page)) {
522 swp_entry_t swap = { .val = page_private(page) };
523 __delete_from_swap_cache(page);
19fd6231 524 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 525 swapcache_free(swap, page);
e286781d 526 } else {
6072d13c
LT
527 void (*freepage)(struct page *);
528
529 freepage = mapping->a_ops->freepage;
530
e64a782f 531 __delete_from_page_cache(page);
19fd6231 532 spin_unlock_irq(&mapping->tree_lock);
e767e056 533 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
534
535 if (freepage != NULL)
536 freepage(page);
49d2e9cc
CL
537 }
538
49d2e9cc
CL
539 return 1;
540
541cannot_free:
19fd6231 542 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
543 return 0;
544}
545
e286781d
NP
546/*
547 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
548 * someone else has a ref on the page, abort and return 0. If it was
549 * successfully detached, return 1. Assumes the caller has a single ref on
550 * this page.
551 */
552int remove_mapping(struct address_space *mapping, struct page *page)
553{
554 if (__remove_mapping(mapping, page)) {
555 /*
556 * Unfreezing the refcount with 1 rather than 2 effectively
557 * drops the pagecache ref for us without requiring another
558 * atomic operation.
559 */
560 page_unfreeze_refs(page, 1);
561 return 1;
562 }
563 return 0;
564}
565
894bc310
LS
566/**
567 * putback_lru_page - put previously isolated page onto appropriate LRU list
568 * @page: page to be put back to appropriate lru list
569 *
570 * Add previously isolated @page to appropriate LRU list.
571 * Page may still be unevictable for other reasons.
572 *
573 * lru_lock must not be held, interrupts must be enabled.
574 */
894bc310
LS
575void putback_lru_page(struct page *page)
576{
0ec3b74c 577 bool is_unevictable;
bbfd28ee 578 int was_unevictable = PageUnevictable(page);
894bc310
LS
579
580 VM_BUG_ON(PageLRU(page));
581
582redo:
583 ClearPageUnevictable(page);
584
39b5f29a 585 if (page_evictable(page)) {
894bc310
LS
586 /*
587 * For evictable pages, we can use the cache.
588 * In event of a race, worst case is we end up with an
589 * unevictable page on [in]active list.
590 * We know how to handle that.
591 */
0ec3b74c 592 is_unevictable = false;
c53954a0 593 lru_cache_add(page);
894bc310
LS
594 } else {
595 /*
596 * Put unevictable pages directly on zone's unevictable
597 * list.
598 */
0ec3b74c 599 is_unevictable = true;
894bc310 600 add_page_to_unevictable_list(page);
6a7b9548 601 /*
21ee9f39
MK
602 * When racing with an mlock or AS_UNEVICTABLE clearing
603 * (page is unlocked) make sure that if the other thread
604 * does not observe our setting of PG_lru and fails
24513264 605 * isolation/check_move_unevictable_pages,
21ee9f39 606 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
607 * the page back to the evictable list.
608 *
21ee9f39 609 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
610 */
611 smp_mb();
894bc310 612 }
894bc310
LS
613
614 /*
615 * page's status can change while we move it among lru. If an evictable
616 * page is on unevictable list, it never be freed. To avoid that,
617 * check after we added it to the list, again.
618 */
0ec3b74c 619 if (is_unevictable && page_evictable(page)) {
894bc310
LS
620 if (!isolate_lru_page(page)) {
621 put_page(page);
622 goto redo;
623 }
624 /* This means someone else dropped this page from LRU
625 * So, it will be freed or putback to LRU again. There is
626 * nothing to do here.
627 */
628 }
629
0ec3b74c 630 if (was_unevictable && !is_unevictable)
bbfd28ee 631 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 632 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
633 count_vm_event(UNEVICTABLE_PGCULLED);
634
894bc310
LS
635 put_page(page); /* drop ref from isolate */
636}
637
dfc8d636
JW
638enum page_references {
639 PAGEREF_RECLAIM,
640 PAGEREF_RECLAIM_CLEAN,
64574746 641 PAGEREF_KEEP,
dfc8d636
JW
642 PAGEREF_ACTIVATE,
643};
644
645static enum page_references page_check_references(struct page *page,
646 struct scan_control *sc)
647{
64574746 648 int referenced_ptes, referenced_page;
dfc8d636 649 unsigned long vm_flags;
dfc8d636 650
c3ac9a8a
JW
651 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
652 &vm_flags);
64574746 653 referenced_page = TestClearPageReferenced(page);
dfc8d636 654
dfc8d636
JW
655 /*
656 * Mlock lost the isolation race with us. Let try_to_unmap()
657 * move the page to the unevictable list.
658 */
659 if (vm_flags & VM_LOCKED)
660 return PAGEREF_RECLAIM;
661
64574746 662 if (referenced_ptes) {
e4898273 663 if (PageSwapBacked(page))
64574746
JW
664 return PAGEREF_ACTIVATE;
665 /*
666 * All mapped pages start out with page table
667 * references from the instantiating fault, so we need
668 * to look twice if a mapped file page is used more
669 * than once.
670 *
671 * Mark it and spare it for another trip around the
672 * inactive list. Another page table reference will
673 * lead to its activation.
674 *
675 * Note: the mark is set for activated pages as well
676 * so that recently deactivated but used pages are
677 * quickly recovered.
678 */
679 SetPageReferenced(page);
680
34dbc67a 681 if (referenced_page || referenced_ptes > 1)
64574746
JW
682 return PAGEREF_ACTIVATE;
683
c909e993
KK
684 /*
685 * Activate file-backed executable pages after first usage.
686 */
687 if (vm_flags & VM_EXEC)
688 return PAGEREF_ACTIVATE;
689
64574746
JW
690 return PAGEREF_KEEP;
691 }
dfc8d636
JW
692
693 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 694 if (referenced_page && !PageSwapBacked(page))
64574746
JW
695 return PAGEREF_RECLAIM_CLEAN;
696
697 return PAGEREF_RECLAIM;
dfc8d636
JW
698}
699
e2be15f6
MG
700/* Check if a page is dirty or under writeback */
701static void page_check_dirty_writeback(struct page *page,
702 bool *dirty, bool *writeback)
703{
b4597226
MG
704 struct address_space *mapping;
705
e2be15f6
MG
706 /*
707 * Anonymous pages are not handled by flushers and must be written
708 * from reclaim context. Do not stall reclaim based on them
709 */
710 if (!page_is_file_cache(page)) {
711 *dirty = false;
712 *writeback = false;
713 return;
714 }
715
716 /* By default assume that the page flags are accurate */
717 *dirty = PageDirty(page);
718 *writeback = PageWriteback(page);
b4597226
MG
719
720 /* Verify dirty/writeback state if the filesystem supports it */
721 if (!page_has_private(page))
722 return;
723
724 mapping = page_mapping(page);
725 if (mapping && mapping->a_ops->is_dirty_writeback)
726 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
727}
728
1da177e4 729/*
1742f19f 730 * shrink_page_list() returns the number of reclaimed pages
1da177e4 731 */
1742f19f 732static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 733 struct zone *zone,
f84f6e2b 734 struct scan_control *sc,
02c6de8d 735 enum ttu_flags ttu_flags,
8e950282 736 unsigned long *ret_nr_dirty,
d43006d5 737 unsigned long *ret_nr_unqueued_dirty,
8e950282 738 unsigned long *ret_nr_congested,
02c6de8d 739 unsigned long *ret_nr_writeback,
b1a6f21e 740 unsigned long *ret_nr_immediate,
02c6de8d 741 bool force_reclaim)
1da177e4
LT
742{
743 LIST_HEAD(ret_pages);
abe4c3b5 744 LIST_HEAD(free_pages);
1da177e4 745 int pgactivate = 0;
d43006d5 746 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
747 unsigned long nr_dirty = 0;
748 unsigned long nr_congested = 0;
05ff5137 749 unsigned long nr_reclaimed = 0;
92df3a72 750 unsigned long nr_writeback = 0;
b1a6f21e 751 unsigned long nr_immediate = 0;
1da177e4
LT
752
753 cond_resched();
754
69980e31 755 mem_cgroup_uncharge_start();
1da177e4
LT
756 while (!list_empty(page_list)) {
757 struct address_space *mapping;
758 struct page *page;
759 int may_enter_fs;
02c6de8d 760 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 761 bool dirty, writeback;
1da177e4
LT
762
763 cond_resched();
764
765 page = lru_to_page(page_list);
766 list_del(&page->lru);
767
529ae9aa 768 if (!trylock_page(page))
1da177e4
LT
769 goto keep;
770
725d704e 771 VM_BUG_ON(PageActive(page));
6a18adb3 772 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
773
774 sc->nr_scanned++;
80e43426 775
39b5f29a 776 if (unlikely(!page_evictable(page)))
b291f000 777 goto cull_mlocked;
894bc310 778
a6dc60f8 779 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
780 goto keep_locked;
781
1da177e4
LT
782 /* Double the slab pressure for mapped and swapcache pages */
783 if (page_mapped(page) || PageSwapCache(page))
784 sc->nr_scanned++;
785
c661b078
AW
786 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
787 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
788
e2be15f6
MG
789 /*
790 * The number of dirty pages determines if a zone is marked
791 * reclaim_congested which affects wait_iff_congested. kswapd
792 * will stall and start writing pages if the tail of the LRU
793 * is all dirty unqueued pages.
794 */
795 page_check_dirty_writeback(page, &dirty, &writeback);
796 if (dirty || writeback)
797 nr_dirty++;
798
799 if (dirty && !writeback)
800 nr_unqueued_dirty++;
801
d04e8acd
MG
802 /*
803 * Treat this page as congested if the underlying BDI is or if
804 * pages are cycling through the LRU so quickly that the
805 * pages marked for immediate reclaim are making it to the
806 * end of the LRU a second time.
807 */
e2be15f6 808 mapping = page_mapping(page);
d04e8acd
MG
809 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
810 (writeback && PageReclaim(page)))
e2be15f6
MG
811 nr_congested++;
812
283aba9f
MG
813 /*
814 * If a page at the tail of the LRU is under writeback, there
815 * are three cases to consider.
816 *
817 * 1) If reclaim is encountering an excessive number of pages
818 * under writeback and this page is both under writeback and
819 * PageReclaim then it indicates that pages are being queued
820 * for IO but are being recycled through the LRU before the
821 * IO can complete. Waiting on the page itself risks an
822 * indefinite stall if it is impossible to writeback the
823 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
824 * note that the LRU is being scanned too quickly and the
825 * caller can stall after page list has been processed.
283aba9f
MG
826 *
827 * 2) Global reclaim encounters a page, memcg encounters a
828 * page that is not marked for immediate reclaim or
829 * the caller does not have __GFP_IO. In this case mark
830 * the page for immediate reclaim and continue scanning.
831 *
832 * __GFP_IO is checked because a loop driver thread might
833 * enter reclaim, and deadlock if it waits on a page for
834 * which it is needed to do the write (loop masks off
835 * __GFP_IO|__GFP_FS for this reason); but more thought
836 * would probably show more reasons.
837 *
838 * Don't require __GFP_FS, since we're not going into the
839 * FS, just waiting on its writeback completion. Worryingly,
840 * ext4 gfs2 and xfs allocate pages with
841 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
842 * may_enter_fs here is liable to OOM on them.
843 *
844 * 3) memcg encounters a page that is not already marked
845 * PageReclaim. memcg does not have any dirty pages
846 * throttling so we could easily OOM just because too many
847 * pages are in writeback and there is nothing else to
848 * reclaim. Wait for the writeback to complete.
849 */
c661b078 850 if (PageWriteback(page)) {
283aba9f
MG
851 /* Case 1 above */
852 if (current_is_kswapd() &&
853 PageReclaim(page) &&
854 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
855 nr_immediate++;
856 goto keep_locked;
283aba9f
MG
857
858 /* Case 2 above */
859 } else if (global_reclaim(sc) ||
c3b94f44
HD
860 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
861 /*
862 * This is slightly racy - end_page_writeback()
863 * might have just cleared PageReclaim, then
864 * setting PageReclaim here end up interpreted
865 * as PageReadahead - but that does not matter
866 * enough to care. What we do want is for this
867 * page to have PageReclaim set next time memcg
868 * reclaim reaches the tests above, so it will
869 * then wait_on_page_writeback() to avoid OOM;
870 * and it's also appropriate in global reclaim.
871 */
872 SetPageReclaim(page);
e62e384e 873 nr_writeback++;
283aba9f 874
c3b94f44 875 goto keep_locked;
283aba9f
MG
876
877 /* Case 3 above */
878 } else {
879 wait_on_page_writeback(page);
e62e384e 880 }
c661b078 881 }
1da177e4 882
02c6de8d
MK
883 if (!force_reclaim)
884 references = page_check_references(page, sc);
885
dfc8d636
JW
886 switch (references) {
887 case PAGEREF_ACTIVATE:
1da177e4 888 goto activate_locked;
64574746
JW
889 case PAGEREF_KEEP:
890 goto keep_locked;
dfc8d636
JW
891 case PAGEREF_RECLAIM:
892 case PAGEREF_RECLAIM_CLEAN:
893 ; /* try to reclaim the page below */
894 }
1da177e4 895
1da177e4
LT
896 /*
897 * Anonymous process memory has backing store?
898 * Try to allocate it some swap space here.
899 */
b291f000 900 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
901 if (!(sc->gfp_mask & __GFP_IO))
902 goto keep_locked;
5bc7b8ac 903 if (!add_to_swap(page, page_list))
1da177e4 904 goto activate_locked;
63eb6b93 905 may_enter_fs = 1;
1da177e4 906
e2be15f6
MG
907 /* Adding to swap updated mapping */
908 mapping = page_mapping(page);
909 }
1da177e4
LT
910
911 /*
912 * The page is mapped into the page tables of one or more
913 * processes. Try to unmap it here.
914 */
915 if (page_mapped(page) && mapping) {
02c6de8d 916 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
917 case SWAP_FAIL:
918 goto activate_locked;
919 case SWAP_AGAIN:
920 goto keep_locked;
b291f000
NP
921 case SWAP_MLOCK:
922 goto cull_mlocked;
1da177e4
LT
923 case SWAP_SUCCESS:
924 ; /* try to free the page below */
925 }
926 }
927
928 if (PageDirty(page)) {
ee72886d
MG
929 /*
930 * Only kswapd can writeback filesystem pages to
d43006d5
MG
931 * avoid risk of stack overflow but only writeback
932 * if many dirty pages have been encountered.
ee72886d 933 */
f84f6e2b 934 if (page_is_file_cache(page) &&
9e3b2f8c 935 (!current_is_kswapd() ||
d43006d5 936 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
937 /*
938 * Immediately reclaim when written back.
939 * Similar in principal to deactivate_page()
940 * except we already have the page isolated
941 * and know it's dirty
942 */
943 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
944 SetPageReclaim(page);
945
ee72886d
MG
946 goto keep_locked;
947 }
948
dfc8d636 949 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 950 goto keep_locked;
4dd4b920 951 if (!may_enter_fs)
1da177e4 952 goto keep_locked;
52a8363e 953 if (!sc->may_writepage)
1da177e4
LT
954 goto keep_locked;
955
956 /* Page is dirty, try to write it out here */
7d3579e8 957 switch (pageout(page, mapping, sc)) {
1da177e4
LT
958 case PAGE_KEEP:
959 goto keep_locked;
960 case PAGE_ACTIVATE:
961 goto activate_locked;
962 case PAGE_SUCCESS:
7d3579e8 963 if (PageWriteback(page))
41ac1999 964 goto keep;
7d3579e8 965 if (PageDirty(page))
1da177e4 966 goto keep;
7d3579e8 967
1da177e4
LT
968 /*
969 * A synchronous write - probably a ramdisk. Go
970 * ahead and try to reclaim the page.
971 */
529ae9aa 972 if (!trylock_page(page))
1da177e4
LT
973 goto keep;
974 if (PageDirty(page) || PageWriteback(page))
975 goto keep_locked;
976 mapping = page_mapping(page);
977 case PAGE_CLEAN:
978 ; /* try to free the page below */
979 }
980 }
981
982 /*
983 * If the page has buffers, try to free the buffer mappings
984 * associated with this page. If we succeed we try to free
985 * the page as well.
986 *
987 * We do this even if the page is PageDirty().
988 * try_to_release_page() does not perform I/O, but it is
989 * possible for a page to have PageDirty set, but it is actually
990 * clean (all its buffers are clean). This happens if the
991 * buffers were written out directly, with submit_bh(). ext3
894bc310 992 * will do this, as well as the blockdev mapping.
1da177e4
LT
993 * try_to_release_page() will discover that cleanness and will
994 * drop the buffers and mark the page clean - it can be freed.
995 *
996 * Rarely, pages can have buffers and no ->mapping. These are
997 * the pages which were not successfully invalidated in
998 * truncate_complete_page(). We try to drop those buffers here
999 * and if that worked, and the page is no longer mapped into
1000 * process address space (page_count == 1) it can be freed.
1001 * Otherwise, leave the page on the LRU so it is swappable.
1002 */
266cf658 1003 if (page_has_private(page)) {
1da177e4
LT
1004 if (!try_to_release_page(page, sc->gfp_mask))
1005 goto activate_locked;
e286781d
NP
1006 if (!mapping && page_count(page) == 1) {
1007 unlock_page(page);
1008 if (put_page_testzero(page))
1009 goto free_it;
1010 else {
1011 /*
1012 * rare race with speculative reference.
1013 * the speculative reference will free
1014 * this page shortly, so we may
1015 * increment nr_reclaimed here (and
1016 * leave it off the LRU).
1017 */
1018 nr_reclaimed++;
1019 continue;
1020 }
1021 }
1da177e4
LT
1022 }
1023
e286781d 1024 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1025 goto keep_locked;
1da177e4 1026
a978d6f5
NP
1027 /*
1028 * At this point, we have no other references and there is
1029 * no way to pick any more up (removed from LRU, removed
1030 * from pagecache). Can use non-atomic bitops now (and
1031 * we obviously don't have to worry about waking up a process
1032 * waiting on the page lock, because there are no references.
1033 */
1034 __clear_page_locked(page);
e286781d 1035free_it:
05ff5137 1036 nr_reclaimed++;
abe4c3b5
MG
1037
1038 /*
1039 * Is there need to periodically free_page_list? It would
1040 * appear not as the counts should be low
1041 */
1042 list_add(&page->lru, &free_pages);
1da177e4
LT
1043 continue;
1044
b291f000 1045cull_mlocked:
63d6c5ad
HD
1046 if (PageSwapCache(page))
1047 try_to_free_swap(page);
b291f000
NP
1048 unlock_page(page);
1049 putback_lru_page(page);
1050 continue;
1051
1da177e4 1052activate_locked:
68a22394
RR
1053 /* Not a candidate for swapping, so reclaim swap space. */
1054 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1055 try_to_free_swap(page);
894bc310 1056 VM_BUG_ON(PageActive(page));
1da177e4
LT
1057 SetPageActive(page);
1058 pgactivate++;
1059keep_locked:
1060 unlock_page(page);
1061keep:
1062 list_add(&page->lru, &ret_pages);
b291f000 1063 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1064 }
abe4c3b5 1065
cc59850e 1066 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1067
1da177e4 1068 list_splice(&ret_pages, page_list);
f8891e5e 1069 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1070 mem_cgroup_uncharge_end();
8e950282
MG
1071 *ret_nr_dirty += nr_dirty;
1072 *ret_nr_congested += nr_congested;
d43006d5 1073 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1074 *ret_nr_writeback += nr_writeback;
b1a6f21e 1075 *ret_nr_immediate += nr_immediate;
05ff5137 1076 return nr_reclaimed;
1da177e4
LT
1077}
1078
02c6de8d
MK
1079unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1080 struct list_head *page_list)
1081{
1082 struct scan_control sc = {
1083 .gfp_mask = GFP_KERNEL,
1084 .priority = DEF_PRIORITY,
1085 .may_unmap = 1,
1086 };
8e950282 1087 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1088 struct page *page, *next;
1089 LIST_HEAD(clean_pages);
1090
1091 list_for_each_entry_safe(page, next, page_list, lru) {
1092 if (page_is_file_cache(page) && !PageDirty(page)) {
1093 ClearPageActive(page);
1094 list_move(&page->lru, &clean_pages);
1095 }
1096 }
1097
1098 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1099 TTU_UNMAP|TTU_IGNORE_ACCESS,
1100 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1101 list_splice(&clean_pages, page_list);
1102 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1103 return ret;
1104}
1105
5ad333eb
AW
1106/*
1107 * Attempt to remove the specified page from its LRU. Only take this page
1108 * if it is of the appropriate PageActive status. Pages which are being
1109 * freed elsewhere are also ignored.
1110 *
1111 * page: page to consider
1112 * mode: one of the LRU isolation modes defined above
1113 *
1114 * returns 0 on success, -ve errno on failure.
1115 */
f3fd4a61 1116int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1117{
1118 int ret = -EINVAL;
1119
1120 /* Only take pages on the LRU. */
1121 if (!PageLRU(page))
1122 return ret;
1123
e46a2879
MK
1124 /* Compaction should not handle unevictable pages but CMA can do so */
1125 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1126 return ret;
1127
5ad333eb 1128 ret = -EBUSY;
08e552c6 1129
c8244935
MG
1130 /*
1131 * To minimise LRU disruption, the caller can indicate that it only
1132 * wants to isolate pages it will be able to operate on without
1133 * blocking - clean pages for the most part.
1134 *
1135 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1136 * is used by reclaim when it is cannot write to backing storage
1137 *
1138 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1139 * that it is possible to migrate without blocking
1140 */
1141 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1142 /* All the caller can do on PageWriteback is block */
1143 if (PageWriteback(page))
1144 return ret;
1145
1146 if (PageDirty(page)) {
1147 struct address_space *mapping;
1148
1149 /* ISOLATE_CLEAN means only clean pages */
1150 if (mode & ISOLATE_CLEAN)
1151 return ret;
1152
1153 /*
1154 * Only pages without mappings or that have a
1155 * ->migratepage callback are possible to migrate
1156 * without blocking
1157 */
1158 mapping = page_mapping(page);
1159 if (mapping && !mapping->a_ops->migratepage)
1160 return ret;
1161 }
1162 }
39deaf85 1163
f80c0673
MK
1164 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1165 return ret;
1166
5ad333eb
AW
1167 if (likely(get_page_unless_zero(page))) {
1168 /*
1169 * Be careful not to clear PageLRU until after we're
1170 * sure the page is not being freed elsewhere -- the
1171 * page release code relies on it.
1172 */
1173 ClearPageLRU(page);
1174 ret = 0;
1175 }
1176
1177 return ret;
1178}
1179
1da177e4
LT
1180/*
1181 * zone->lru_lock is heavily contended. Some of the functions that
1182 * shrink the lists perform better by taking out a batch of pages
1183 * and working on them outside the LRU lock.
1184 *
1185 * For pagecache intensive workloads, this function is the hottest
1186 * spot in the kernel (apart from copy_*_user functions).
1187 *
1188 * Appropriate locks must be held before calling this function.
1189 *
1190 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1191 * @lruvec: The LRU vector to pull pages from.
1da177e4 1192 * @dst: The temp list to put pages on to.
f626012d 1193 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1194 * @sc: The scan_control struct for this reclaim session
5ad333eb 1195 * @mode: One of the LRU isolation modes
3cb99451 1196 * @lru: LRU list id for isolating
1da177e4
LT
1197 *
1198 * returns how many pages were moved onto *@dst.
1199 */
69e05944 1200static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1201 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1202 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1203 isolate_mode_t mode, enum lru_list lru)
1da177e4 1204{
75b00af7 1205 struct list_head *src = &lruvec->lists[lru];
69e05944 1206 unsigned long nr_taken = 0;
c9b02d97 1207 unsigned long scan;
1da177e4 1208
c9b02d97 1209 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1210 struct page *page;
fa9add64 1211 int nr_pages;
5ad333eb 1212
1da177e4
LT
1213 page = lru_to_page(src);
1214 prefetchw_prev_lru_page(page, src, flags);
1215
725d704e 1216 VM_BUG_ON(!PageLRU(page));
8d438f96 1217
f3fd4a61 1218 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1219 case 0:
fa9add64
HD
1220 nr_pages = hpage_nr_pages(page);
1221 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1222 list_move(&page->lru, dst);
fa9add64 1223 nr_taken += nr_pages;
5ad333eb
AW
1224 break;
1225
1226 case -EBUSY:
1227 /* else it is being freed elsewhere */
1228 list_move(&page->lru, src);
1229 continue;
46453a6e 1230
5ad333eb
AW
1231 default:
1232 BUG();
1233 }
1da177e4
LT
1234 }
1235
f626012d 1236 *nr_scanned = scan;
75b00af7
HD
1237 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1238 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1239 return nr_taken;
1240}
1241
62695a84
NP
1242/**
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1245 *
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1248 *
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1251 *
1252 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1253 * the active list, it will have PageActive set. If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1256 *
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1259 *
1260 * Restrictions:
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 * fundamentnal difference from isolate_lru_pages (which is called
1263 * without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1266 */
1267int isolate_lru_page(struct page *page)
1268{
1269 int ret = -EBUSY;
1270
0c917313
KK
1271 VM_BUG_ON(!page_count(page));
1272
62695a84
NP
1273 if (PageLRU(page)) {
1274 struct zone *zone = page_zone(page);
fa9add64 1275 struct lruvec *lruvec;
62695a84
NP
1276
1277 spin_lock_irq(&zone->lru_lock);
fa9add64 1278 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1279 if (PageLRU(page)) {
894bc310 1280 int lru = page_lru(page);
0c917313 1281 get_page(page);
62695a84 1282 ClearPageLRU(page);
fa9add64
HD
1283 del_page_from_lru_list(page, lruvec, lru);
1284 ret = 0;
62695a84
NP
1285 }
1286 spin_unlock_irq(&zone->lru_lock);
1287 }
1288 return ret;
1289}
1290
35cd7815 1291/*
d37dd5dc
FW
1292 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1293 * then get resheduled. When there are massive number of tasks doing page
1294 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1295 * the LRU list will go small and be scanned faster than necessary, leading to
1296 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1297 */
1298static int too_many_isolated(struct zone *zone, int file,
1299 struct scan_control *sc)
1300{
1301 unsigned long inactive, isolated;
1302
1303 if (current_is_kswapd())
1304 return 0;
1305
89b5fae5 1306 if (!global_reclaim(sc))
35cd7815
RR
1307 return 0;
1308
1309 if (file) {
1310 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1311 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1312 } else {
1313 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1314 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1315 }
1316
3cf23841
FW
1317 /*
1318 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1319 * won't get blocked by normal direct-reclaimers, forming a circular
1320 * deadlock.
1321 */
1322 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1323 inactive >>= 3;
1324
35cd7815
RR
1325 return isolated > inactive;
1326}
1327
66635629 1328static noinline_for_stack void
75b00af7 1329putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1330{
27ac81d8
KK
1331 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1332 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1333 LIST_HEAD(pages_to_free);
66635629 1334
66635629
MG
1335 /*
1336 * Put back any unfreeable pages.
1337 */
66635629 1338 while (!list_empty(page_list)) {
3f79768f 1339 struct page *page = lru_to_page(page_list);
66635629 1340 int lru;
3f79768f 1341
66635629
MG
1342 VM_BUG_ON(PageLRU(page));
1343 list_del(&page->lru);
39b5f29a 1344 if (unlikely(!page_evictable(page))) {
66635629
MG
1345 spin_unlock_irq(&zone->lru_lock);
1346 putback_lru_page(page);
1347 spin_lock_irq(&zone->lru_lock);
1348 continue;
1349 }
fa9add64
HD
1350
1351 lruvec = mem_cgroup_page_lruvec(page, zone);
1352
7a608572 1353 SetPageLRU(page);
66635629 1354 lru = page_lru(page);
fa9add64
HD
1355 add_page_to_lru_list(page, lruvec, lru);
1356
66635629
MG
1357 if (is_active_lru(lru)) {
1358 int file = is_file_lru(lru);
9992af10
RR
1359 int numpages = hpage_nr_pages(page);
1360 reclaim_stat->recent_rotated[file] += numpages;
66635629 1361 }
2bcf8879
HD
1362 if (put_page_testzero(page)) {
1363 __ClearPageLRU(page);
1364 __ClearPageActive(page);
fa9add64 1365 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1366
1367 if (unlikely(PageCompound(page))) {
1368 spin_unlock_irq(&zone->lru_lock);
1369 (*get_compound_page_dtor(page))(page);
1370 spin_lock_irq(&zone->lru_lock);
1371 } else
1372 list_add(&page->lru, &pages_to_free);
66635629
MG
1373 }
1374 }
66635629 1375
3f79768f
HD
1376 /*
1377 * To save our caller's stack, now use input list for pages to free.
1378 */
1379 list_splice(&pages_to_free, page_list);
66635629
MG
1380}
1381
1da177e4 1382/*
1742f19f
AM
1383 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1384 * of reclaimed pages
1da177e4 1385 */
66635629 1386static noinline_for_stack unsigned long
1a93be0e 1387shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1388 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1389{
1390 LIST_HEAD(page_list);
e247dbce 1391 unsigned long nr_scanned;
05ff5137 1392 unsigned long nr_reclaimed = 0;
e247dbce 1393 unsigned long nr_taken;
8e950282
MG
1394 unsigned long nr_dirty = 0;
1395 unsigned long nr_congested = 0;
e2be15f6 1396 unsigned long nr_unqueued_dirty = 0;
92df3a72 1397 unsigned long nr_writeback = 0;
b1a6f21e 1398 unsigned long nr_immediate = 0;
f3fd4a61 1399 isolate_mode_t isolate_mode = 0;
3cb99451 1400 int file = is_file_lru(lru);
1a93be0e
KK
1401 struct zone *zone = lruvec_zone(lruvec);
1402 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1403
35cd7815 1404 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1405 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1406
1407 /* We are about to die and free our memory. Return now. */
1408 if (fatal_signal_pending(current))
1409 return SWAP_CLUSTER_MAX;
1410 }
1411
1da177e4 1412 lru_add_drain();
f80c0673
MK
1413
1414 if (!sc->may_unmap)
61317289 1415 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1416 if (!sc->may_writepage)
61317289 1417 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1418
1da177e4 1419 spin_lock_irq(&zone->lru_lock);
b35ea17b 1420
5dc35979
KK
1421 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1422 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1423
1424 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1425 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1426
89b5fae5 1427 if (global_reclaim(sc)) {
e247dbce
KM
1428 zone->pages_scanned += nr_scanned;
1429 if (current_is_kswapd())
75b00af7 1430 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1431 else
75b00af7 1432 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1433 }
d563c050 1434 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1435
d563c050 1436 if (nr_taken == 0)
66635629 1437 return 0;
5ad333eb 1438
02c6de8d 1439 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1440 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1441 &nr_writeback, &nr_immediate,
1442 false);
c661b078 1443
3f79768f
HD
1444 spin_lock_irq(&zone->lru_lock);
1445
95d918fc 1446 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1447
904249aa
YH
1448 if (global_reclaim(sc)) {
1449 if (current_is_kswapd())
1450 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1451 nr_reclaimed);
1452 else
1453 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1454 nr_reclaimed);
1455 }
a74609fa 1456
27ac81d8 1457 putback_inactive_pages(lruvec, &page_list);
3f79768f 1458
95d918fc 1459 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1460
1461 spin_unlock_irq(&zone->lru_lock);
1462
1463 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1464
92df3a72
MG
1465 /*
1466 * If reclaim is isolating dirty pages under writeback, it implies
1467 * that the long-lived page allocation rate is exceeding the page
1468 * laundering rate. Either the global limits are not being effective
1469 * at throttling processes due to the page distribution throughout
1470 * zones or there is heavy usage of a slow backing device. The
1471 * only option is to throttle from reclaim context which is not ideal
1472 * as there is no guarantee the dirtying process is throttled in the
1473 * same way balance_dirty_pages() manages.
1474 *
8e950282
MG
1475 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1476 * of pages under pages flagged for immediate reclaim and stall if any
1477 * are encountered in the nr_immediate check below.
92df3a72 1478 */
918fc718 1479 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1480 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1481
d43006d5 1482 /*
b1a6f21e
MG
1483 * memcg will stall in page writeback so only consider forcibly
1484 * stalling for global reclaim
d43006d5 1485 */
b1a6f21e 1486 if (global_reclaim(sc)) {
8e950282
MG
1487 /*
1488 * Tag a zone as congested if all the dirty pages scanned were
1489 * backed by a congested BDI and wait_iff_congested will stall.
1490 */
1491 if (nr_dirty && nr_dirty == nr_congested)
1492 zone_set_flag(zone, ZONE_CONGESTED);
1493
b1a6f21e
MG
1494 /*
1495 * If dirty pages are scanned that are not queued for IO, it
1496 * implies that flushers are not keeping up. In this case, flag
1497 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1498 * pages from reclaim context. It will forcibly stall in the
1499 * next check.
1500 */
1501 if (nr_unqueued_dirty == nr_taken)
1502 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1503
1504 /*
1505 * In addition, if kswapd scans pages marked marked for
1506 * immediate reclaim and under writeback (nr_immediate), it
1507 * implies that pages are cycling through the LRU faster than
1508 * they are written so also forcibly stall.
1509 */
1510 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1511 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1512 }
d43006d5 1513
8e950282
MG
1514 /*
1515 * Stall direct reclaim for IO completions if underlying BDIs or zone
1516 * is congested. Allow kswapd to continue until it starts encountering
1517 * unqueued dirty pages or cycling through the LRU too quickly.
1518 */
1519 if (!sc->hibernation_mode && !current_is_kswapd())
1520 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1521
e11da5b4
MG
1522 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1523 zone_idx(zone),
1524 nr_scanned, nr_reclaimed,
9e3b2f8c 1525 sc->priority,
23b9da55 1526 trace_shrink_flags(file));
05ff5137 1527 return nr_reclaimed;
1da177e4
LT
1528}
1529
1530/*
1531 * This moves pages from the active list to the inactive list.
1532 *
1533 * We move them the other way if the page is referenced by one or more
1534 * processes, from rmap.
1535 *
1536 * If the pages are mostly unmapped, the processing is fast and it is
1537 * appropriate to hold zone->lru_lock across the whole operation. But if
1538 * the pages are mapped, the processing is slow (page_referenced()) so we
1539 * should drop zone->lru_lock around each page. It's impossible to balance
1540 * this, so instead we remove the pages from the LRU while processing them.
1541 * It is safe to rely on PG_active against the non-LRU pages in here because
1542 * nobody will play with that bit on a non-LRU page.
1543 *
1544 * The downside is that we have to touch page->_count against each page.
1545 * But we had to alter page->flags anyway.
1546 */
1cfb419b 1547
fa9add64 1548static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1549 struct list_head *list,
2bcf8879 1550 struct list_head *pages_to_free,
3eb4140f
WF
1551 enum lru_list lru)
1552{
fa9add64 1553 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1554 unsigned long pgmoved = 0;
3eb4140f 1555 struct page *page;
fa9add64 1556 int nr_pages;
3eb4140f 1557
3eb4140f
WF
1558 while (!list_empty(list)) {
1559 page = lru_to_page(list);
fa9add64 1560 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1561
1562 VM_BUG_ON(PageLRU(page));
1563 SetPageLRU(page);
1564
fa9add64
HD
1565 nr_pages = hpage_nr_pages(page);
1566 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1567 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1568 pgmoved += nr_pages;
3eb4140f 1569
2bcf8879
HD
1570 if (put_page_testzero(page)) {
1571 __ClearPageLRU(page);
1572 __ClearPageActive(page);
fa9add64 1573 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1574
1575 if (unlikely(PageCompound(page))) {
1576 spin_unlock_irq(&zone->lru_lock);
1577 (*get_compound_page_dtor(page))(page);
1578 spin_lock_irq(&zone->lru_lock);
1579 } else
1580 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1581 }
1582 }
1583 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1584 if (!is_active_lru(lru))
1585 __count_vm_events(PGDEACTIVATE, pgmoved);
1586}
1cfb419b 1587
f626012d 1588static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1589 struct lruvec *lruvec,
f16015fb 1590 struct scan_control *sc,
9e3b2f8c 1591 enum lru_list lru)
1da177e4 1592{
44c241f1 1593 unsigned long nr_taken;
f626012d 1594 unsigned long nr_scanned;
6fe6b7e3 1595 unsigned long vm_flags;
1da177e4 1596 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1597 LIST_HEAD(l_active);
b69408e8 1598 LIST_HEAD(l_inactive);
1da177e4 1599 struct page *page;
1a93be0e 1600 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1601 unsigned long nr_rotated = 0;
f3fd4a61 1602 isolate_mode_t isolate_mode = 0;
3cb99451 1603 int file = is_file_lru(lru);
1a93be0e 1604 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1605
1606 lru_add_drain();
f80c0673
MK
1607
1608 if (!sc->may_unmap)
61317289 1609 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1610 if (!sc->may_writepage)
61317289 1611 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1612
1da177e4 1613 spin_lock_irq(&zone->lru_lock);
925b7673 1614
5dc35979
KK
1615 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1616 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1617 if (global_reclaim(sc))
f626012d 1618 zone->pages_scanned += nr_scanned;
89b5fae5 1619
b7c46d15 1620 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1621
f626012d 1622 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1623 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1624 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1625 spin_unlock_irq(&zone->lru_lock);
1626
1da177e4
LT
1627 while (!list_empty(&l_hold)) {
1628 cond_resched();
1629 page = lru_to_page(&l_hold);
1630 list_del(&page->lru);
7e9cd484 1631
39b5f29a 1632 if (unlikely(!page_evictable(page))) {
894bc310
LS
1633 putback_lru_page(page);
1634 continue;
1635 }
1636
cc715d99
MG
1637 if (unlikely(buffer_heads_over_limit)) {
1638 if (page_has_private(page) && trylock_page(page)) {
1639 if (page_has_private(page))
1640 try_to_release_page(page, 0);
1641 unlock_page(page);
1642 }
1643 }
1644
c3ac9a8a
JW
1645 if (page_referenced(page, 0, sc->target_mem_cgroup,
1646 &vm_flags)) {
9992af10 1647 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1648 /*
1649 * Identify referenced, file-backed active pages and
1650 * give them one more trip around the active list. So
1651 * that executable code get better chances to stay in
1652 * memory under moderate memory pressure. Anon pages
1653 * are not likely to be evicted by use-once streaming
1654 * IO, plus JVM can create lots of anon VM_EXEC pages,
1655 * so we ignore them here.
1656 */
41e20983 1657 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1658 list_add(&page->lru, &l_active);
1659 continue;
1660 }
1661 }
7e9cd484 1662
5205e56e 1663 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1664 list_add(&page->lru, &l_inactive);
1665 }
1666
b555749a 1667 /*
8cab4754 1668 * Move pages back to the lru list.
b555749a 1669 */
2a1dc509 1670 spin_lock_irq(&zone->lru_lock);
556adecb 1671 /*
8cab4754
WF
1672 * Count referenced pages from currently used mappings as rotated,
1673 * even though only some of them are actually re-activated. This
1674 * helps balance scan pressure between file and anonymous pages in
1675 * get_scan_ratio.
7e9cd484 1676 */
b7c46d15 1677 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1678
fa9add64
HD
1679 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1680 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1681 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1682 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1683
1684 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1685}
1686
74e3f3c3 1687#ifdef CONFIG_SWAP
14797e23 1688static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1689{
1690 unsigned long active, inactive;
1691
1692 active = zone_page_state(zone, NR_ACTIVE_ANON);
1693 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1694
1695 if (inactive * zone->inactive_ratio < active)
1696 return 1;
1697
1698 return 0;
1699}
1700
14797e23
KM
1701/**
1702 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1703 * @lruvec: LRU vector to check
14797e23
KM
1704 *
1705 * Returns true if the zone does not have enough inactive anon pages,
1706 * meaning some active anon pages need to be deactivated.
1707 */
c56d5c7d 1708static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1709{
74e3f3c3
MK
1710 /*
1711 * If we don't have swap space, anonymous page deactivation
1712 * is pointless.
1713 */
1714 if (!total_swap_pages)
1715 return 0;
1716
c3c787e8 1717 if (!mem_cgroup_disabled())
c56d5c7d 1718 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1719
c56d5c7d 1720 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1721}
74e3f3c3 1722#else
c56d5c7d 1723static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1724{
1725 return 0;
1726}
1727#endif
14797e23 1728
56e49d21
RR
1729/**
1730 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1731 * @lruvec: LRU vector to check
56e49d21
RR
1732 *
1733 * When the system is doing streaming IO, memory pressure here
1734 * ensures that active file pages get deactivated, until more
1735 * than half of the file pages are on the inactive list.
1736 *
1737 * Once we get to that situation, protect the system's working
1738 * set from being evicted by disabling active file page aging.
1739 *
1740 * This uses a different ratio than the anonymous pages, because
1741 * the page cache uses a use-once replacement algorithm.
1742 */
c56d5c7d 1743static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1744{
e3790144
JW
1745 unsigned long inactive;
1746 unsigned long active;
1747
1748 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1749 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1750
e3790144 1751 return active > inactive;
56e49d21
RR
1752}
1753
75b00af7 1754static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1755{
75b00af7 1756 if (is_file_lru(lru))
c56d5c7d 1757 return inactive_file_is_low(lruvec);
b39415b2 1758 else
c56d5c7d 1759 return inactive_anon_is_low(lruvec);
b39415b2
RR
1760}
1761
4f98a2fe 1762static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1763 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1764{
b39415b2 1765 if (is_active_lru(lru)) {
75b00af7 1766 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1767 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1768 return 0;
1769 }
1770
1a93be0e 1771 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1772}
1773
3d58ab5c 1774static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1775{
89b5fae5 1776 if (global_reclaim(sc))
1f4c025b 1777 return vm_swappiness;
3d58ab5c 1778 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1779}
1780
9a265114
JW
1781enum scan_balance {
1782 SCAN_EQUAL,
1783 SCAN_FRACT,
1784 SCAN_ANON,
1785 SCAN_FILE,
1786};
1787
4f98a2fe
RR
1788/*
1789 * Determine how aggressively the anon and file LRU lists should be
1790 * scanned. The relative value of each set of LRU lists is determined
1791 * by looking at the fraction of the pages scanned we did rotate back
1792 * onto the active list instead of evict.
1793 *
be7bd59d
WL
1794 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1795 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1796 */
90126375 1797static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1798 unsigned long *nr)
4f98a2fe 1799{
9a265114
JW
1800 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1801 u64 fraction[2];
1802 u64 denominator = 0; /* gcc */
1803 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1804 unsigned long anon_prio, file_prio;
9a265114
JW
1805 enum scan_balance scan_balance;
1806 unsigned long anon, file, free;
1807 bool force_scan = false;
4f98a2fe 1808 unsigned long ap, fp;
4111304d 1809 enum lru_list lru;
246e87a9 1810
f11c0ca5
JW
1811 /*
1812 * If the zone or memcg is small, nr[l] can be 0. This
1813 * results in no scanning on this priority and a potential
1814 * priority drop. Global direct reclaim can go to the next
1815 * zone and tends to have no problems. Global kswapd is for
1816 * zone balancing and it needs to scan a minimum amount. When
1817 * reclaiming for a memcg, a priority drop can cause high
1818 * latencies, so it's better to scan a minimum amount there as
1819 * well.
1820 */
6e543d57 1821 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1822 force_scan = true;
89b5fae5 1823 if (!global_reclaim(sc))
a4d3e9e7 1824 force_scan = true;
76a33fc3
SL
1825
1826 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1827 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1828 scan_balance = SCAN_FILE;
76a33fc3
SL
1829 goto out;
1830 }
4f98a2fe 1831
10316b31
JW
1832 /*
1833 * Global reclaim will swap to prevent OOM even with no
1834 * swappiness, but memcg users want to use this knob to
1835 * disable swapping for individual groups completely when
1836 * using the memory controller's swap limit feature would be
1837 * too expensive.
1838 */
1839 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1840 scan_balance = SCAN_FILE;
10316b31
JW
1841 goto out;
1842 }
1843
1844 /*
1845 * Do not apply any pressure balancing cleverness when the
1846 * system is close to OOM, scan both anon and file equally
1847 * (unless the swappiness setting disagrees with swapping).
1848 */
1849 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1850 scan_balance = SCAN_EQUAL;
10316b31
JW
1851 goto out;
1852 }
1853
4d7dcca2
HD
1854 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1855 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1856 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1857 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1858
11d16c25
JW
1859 /*
1860 * If it's foreseeable that reclaiming the file cache won't be
1861 * enough to get the zone back into a desirable shape, we have
1862 * to swap. Better start now and leave the - probably heavily
1863 * thrashing - remaining file pages alone.
1864 */
89b5fae5 1865 if (global_reclaim(sc)) {
11d16c25 1866 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1867 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1868 scan_balance = SCAN_ANON;
76a33fc3 1869 goto out;
eeee9a8c 1870 }
4f98a2fe
RR
1871 }
1872
7c5bd705
JW
1873 /*
1874 * There is enough inactive page cache, do not reclaim
1875 * anything from the anonymous working set right now.
1876 */
1877 if (!inactive_file_is_low(lruvec)) {
9a265114 1878 scan_balance = SCAN_FILE;
7c5bd705
JW
1879 goto out;
1880 }
1881
9a265114
JW
1882 scan_balance = SCAN_FRACT;
1883
58c37f6e
KM
1884 /*
1885 * With swappiness at 100, anonymous and file have the same priority.
1886 * This scanning priority is essentially the inverse of IO cost.
1887 */
3d58ab5c 1888 anon_prio = vmscan_swappiness(sc);
75b00af7 1889 file_prio = 200 - anon_prio;
58c37f6e 1890
4f98a2fe
RR
1891 /*
1892 * OK, so we have swap space and a fair amount of page cache
1893 * pages. We use the recently rotated / recently scanned
1894 * ratios to determine how valuable each cache is.
1895 *
1896 * Because workloads change over time (and to avoid overflow)
1897 * we keep these statistics as a floating average, which ends
1898 * up weighing recent references more than old ones.
1899 *
1900 * anon in [0], file in [1]
1901 */
90126375 1902 spin_lock_irq(&zone->lru_lock);
6e901571 1903 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1904 reclaim_stat->recent_scanned[0] /= 2;
1905 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1906 }
1907
6e901571 1908 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1909 reclaim_stat->recent_scanned[1] /= 2;
1910 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1911 }
1912
4f98a2fe 1913 /*
00d8089c
RR
1914 * The amount of pressure on anon vs file pages is inversely
1915 * proportional to the fraction of recently scanned pages on
1916 * each list that were recently referenced and in active use.
4f98a2fe 1917 */
fe35004f 1918 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1919 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1920
fe35004f 1921 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1922 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1923 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1924
76a33fc3
SL
1925 fraction[0] = ap;
1926 fraction[1] = fp;
1927 denominator = ap + fp + 1;
1928out:
4111304d
HD
1929 for_each_evictable_lru(lru) {
1930 int file = is_file_lru(lru);
d778df51 1931 unsigned long size;
76a33fc3 1932 unsigned long scan;
6e08a369 1933
d778df51 1934 size = get_lru_size(lruvec, lru);
10316b31 1935 scan = size >> sc->priority;
9a265114 1936
10316b31
JW
1937 if (!scan && force_scan)
1938 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1939
1940 switch (scan_balance) {
1941 case SCAN_EQUAL:
1942 /* Scan lists relative to size */
1943 break;
1944 case SCAN_FRACT:
1945 /*
1946 * Scan types proportional to swappiness and
1947 * their relative recent reclaim efficiency.
1948 */
1949 scan = div64_u64(scan * fraction[file], denominator);
1950 break;
1951 case SCAN_FILE:
1952 case SCAN_ANON:
1953 /* Scan one type exclusively */
1954 if ((scan_balance == SCAN_FILE) != file)
1955 scan = 0;
1956 break;
1957 default:
1958 /* Look ma, no brain */
1959 BUG();
1960 }
4111304d 1961 nr[lru] = scan;
76a33fc3 1962 }
6e08a369 1963}
4f98a2fe 1964
9b4f98cd
JW
1965/*
1966 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1967 */
1968static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1969{
1970 unsigned long nr[NR_LRU_LISTS];
e82e0561 1971 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1972 unsigned long nr_to_scan;
1973 enum lru_list lru;
1974 unsigned long nr_reclaimed = 0;
1975 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1976 struct blk_plug plug;
e82e0561 1977 bool scan_adjusted = false;
9b4f98cd
JW
1978
1979 get_scan_count(lruvec, sc, nr);
1980
e82e0561
MG
1981 /* Record the original scan target for proportional adjustments later */
1982 memcpy(targets, nr, sizeof(nr));
1983
9b4f98cd
JW
1984 blk_start_plug(&plug);
1985 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1986 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
1987 unsigned long nr_anon, nr_file, percentage;
1988 unsigned long nr_scanned;
1989
9b4f98cd
JW
1990 for_each_evictable_lru(lru) {
1991 if (nr[lru]) {
1992 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1993 nr[lru] -= nr_to_scan;
1994
1995 nr_reclaimed += shrink_list(lru, nr_to_scan,
1996 lruvec, sc);
1997 }
1998 }
e82e0561
MG
1999
2000 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2001 continue;
2002
9b4f98cd 2003 /*
e82e0561
MG
2004 * For global direct reclaim, reclaim only the number of pages
2005 * requested. Less care is taken to scan proportionally as it
2006 * is more important to minimise direct reclaim stall latency
2007 * than it is to properly age the LRU lists.
9b4f98cd 2008 */
e82e0561 2009 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2010 break;
e82e0561
MG
2011
2012 /*
2013 * For kswapd and memcg, reclaim at least the number of pages
2014 * requested. Ensure that the anon and file LRUs shrink
2015 * proportionally what was requested by get_scan_count(). We
2016 * stop reclaiming one LRU and reduce the amount scanning
2017 * proportional to the original scan target.
2018 */
2019 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2020 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2021
2022 if (nr_file > nr_anon) {
2023 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2024 targets[LRU_ACTIVE_ANON] + 1;
2025 lru = LRU_BASE;
2026 percentage = nr_anon * 100 / scan_target;
2027 } else {
2028 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2029 targets[LRU_ACTIVE_FILE] + 1;
2030 lru = LRU_FILE;
2031 percentage = nr_file * 100 / scan_target;
2032 }
2033
2034 /* Stop scanning the smaller of the LRU */
2035 nr[lru] = 0;
2036 nr[lru + LRU_ACTIVE] = 0;
2037
2038 /*
2039 * Recalculate the other LRU scan count based on its original
2040 * scan target and the percentage scanning already complete
2041 */
2042 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2043 nr_scanned = targets[lru] - nr[lru];
2044 nr[lru] = targets[lru] * (100 - percentage) / 100;
2045 nr[lru] -= min(nr[lru], nr_scanned);
2046
2047 lru += LRU_ACTIVE;
2048 nr_scanned = targets[lru] - nr[lru];
2049 nr[lru] = targets[lru] * (100 - percentage) / 100;
2050 nr[lru] -= min(nr[lru], nr_scanned);
2051
2052 scan_adjusted = true;
9b4f98cd
JW
2053 }
2054 blk_finish_plug(&plug);
2055 sc->nr_reclaimed += nr_reclaimed;
2056
2057 /*
2058 * Even if we did not try to evict anon pages at all, we want to
2059 * rebalance the anon lru active/inactive ratio.
2060 */
2061 if (inactive_anon_is_low(lruvec))
2062 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2063 sc, LRU_ACTIVE_ANON);
2064
2065 throttle_vm_writeout(sc->gfp_mask);
2066}
2067
23b9da55 2068/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2069static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2070{
d84da3f9 2071 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2072 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2073 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2074 return true;
2075
2076 return false;
2077}
2078
3e7d3449 2079/*
23b9da55
MG
2080 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2081 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2082 * true if more pages should be reclaimed such that when the page allocator
2083 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2084 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2085 */
9b4f98cd 2086static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2087 unsigned long nr_reclaimed,
2088 unsigned long nr_scanned,
2089 struct scan_control *sc)
2090{
2091 unsigned long pages_for_compaction;
2092 unsigned long inactive_lru_pages;
2093
2094 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2095 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2096 return false;
2097
2876592f
MG
2098 /* Consider stopping depending on scan and reclaim activity */
2099 if (sc->gfp_mask & __GFP_REPEAT) {
2100 /*
2101 * For __GFP_REPEAT allocations, stop reclaiming if the
2102 * full LRU list has been scanned and we are still failing
2103 * to reclaim pages. This full LRU scan is potentially
2104 * expensive but a __GFP_REPEAT caller really wants to succeed
2105 */
2106 if (!nr_reclaimed && !nr_scanned)
2107 return false;
2108 } else {
2109 /*
2110 * For non-__GFP_REPEAT allocations which can presumably
2111 * fail without consequence, stop if we failed to reclaim
2112 * any pages from the last SWAP_CLUSTER_MAX number of
2113 * pages that were scanned. This will return to the
2114 * caller faster at the risk reclaim/compaction and
2115 * the resulting allocation attempt fails
2116 */
2117 if (!nr_reclaimed)
2118 return false;
2119 }
3e7d3449
MG
2120
2121 /*
2122 * If we have not reclaimed enough pages for compaction and the
2123 * inactive lists are large enough, continue reclaiming
2124 */
2125 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2126 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2127 if (get_nr_swap_pages() > 0)
9b4f98cd 2128 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2129 if (sc->nr_reclaimed < pages_for_compaction &&
2130 inactive_lru_pages > pages_for_compaction)
2131 return true;
2132
2133 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2134 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2135 case COMPACT_PARTIAL:
2136 case COMPACT_CONTINUE:
2137 return false;
2138 default:
2139 return true;
2140 }
2141}
2142
3b38722e
MH
2143static void
2144__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
1da177e4 2145{
f0fdc5e8 2146 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2147
9b4f98cd
JW
2148 do {
2149 struct mem_cgroup *root = sc->target_mem_cgroup;
2150 struct mem_cgroup_reclaim_cookie reclaim = {
2151 .zone = zone,
2152 .priority = sc->priority,
2153 };
2154 struct mem_cgroup *memcg;
3e7d3449 2155
9b4f98cd
JW
2156 nr_reclaimed = sc->nr_reclaimed;
2157 nr_scanned = sc->nr_scanned;
1da177e4 2158
9b4f98cd
JW
2159 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2160 do {
2161 struct lruvec *lruvec;
5660048c 2162
3b38722e
MH
2163 if (soft_reclaim &&
2164 !mem_cgroup_soft_reclaim_eligible(memcg)) {
2165 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2166 continue;
2167 }
2168
9b4f98cd 2169 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2170
9b4f98cd 2171 shrink_lruvec(lruvec, sc);
f16015fb 2172
9b4f98cd 2173 /*
a394cb8e
MH
2174 * Direct reclaim and kswapd have to scan all memory
2175 * cgroups to fulfill the overall scan target for the
9b4f98cd 2176 * zone.
a394cb8e
MH
2177 *
2178 * Limit reclaim, on the other hand, only cares about
2179 * nr_to_reclaim pages to be reclaimed and it will
2180 * retry with decreasing priority if one round over the
2181 * whole hierarchy is not sufficient.
9b4f98cd 2182 */
a394cb8e
MH
2183 if (!global_reclaim(sc) &&
2184 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2185 mem_cgroup_iter_break(root, memcg);
2186 break;
2187 }
2188 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2189 } while (memcg);
70ddf637
AV
2190
2191 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2192 sc->nr_scanned - nr_scanned,
2193 sc->nr_reclaimed - nr_reclaimed);
2194
9b4f98cd
JW
2195 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2196 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2197}
2198
3b38722e
MH
2199
2200static void shrink_zone(struct zone *zone, struct scan_control *sc)
2201{
2202 bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2203 unsigned long nr_scanned = sc->nr_scanned;
2204
2205 __shrink_zone(zone, sc, do_soft_reclaim);
2206
2207 /*
2208 * No group is over the soft limit or those that are do not have
2209 * pages in the zone we are reclaiming so we have to reclaim everybody
2210 */
2211 if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2212 __shrink_zone(zone, sc, false);
2213 return;
2214 }
2215}
2216
fe4b1b24
MG
2217/* Returns true if compaction should go ahead for a high-order request */
2218static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2219{
2220 unsigned long balance_gap, watermark;
2221 bool watermark_ok;
2222
2223 /* Do not consider compaction for orders reclaim is meant to satisfy */
2224 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2225 return false;
2226
2227 /*
2228 * Compaction takes time to run and there are potentially other
2229 * callers using the pages just freed. Continue reclaiming until
2230 * there is a buffer of free pages available to give compaction
2231 * a reasonable chance of completing and allocating the page
2232 */
2233 balance_gap = min(low_wmark_pages(zone),
b40da049 2234 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2235 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2236 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2237 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2238
2239 /*
2240 * If compaction is deferred, reclaim up to a point where
2241 * compaction will have a chance of success when re-enabled
2242 */
aff62249 2243 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2244 return watermark_ok;
2245
2246 /* If compaction is not ready to start, keep reclaiming */
2247 if (!compaction_suitable(zone, sc->order))
2248 return false;
2249
2250 return watermark_ok;
2251}
2252
1da177e4
LT
2253/*
2254 * This is the direct reclaim path, for page-allocating processes. We only
2255 * try to reclaim pages from zones which will satisfy the caller's allocation
2256 * request.
2257 *
41858966
MG
2258 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2259 * Because:
1da177e4
LT
2260 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2261 * allocation or
41858966
MG
2262 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2263 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2264 * zone defense algorithm.
1da177e4 2265 *
1da177e4
LT
2266 * If a zone is deemed to be full of pinned pages then just give it a light
2267 * scan then give up on it.
e0c23279
MG
2268 *
2269 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2270 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2271 * the caller that it should consider retrying the allocation instead of
2272 * further reclaim.
1da177e4 2273 */
9e3b2f8c 2274static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2275{
dd1a239f 2276 struct zoneref *z;
54a6eb5c 2277 struct zone *zone;
0cee34fd 2278 bool aborted_reclaim = false;
1cfb419b 2279
cc715d99
MG
2280 /*
2281 * If the number of buffer_heads in the machine exceeds the maximum
2282 * allowed level, force direct reclaim to scan the highmem zone as
2283 * highmem pages could be pinning lowmem pages storing buffer_heads
2284 */
2285 if (buffer_heads_over_limit)
2286 sc->gfp_mask |= __GFP_HIGHMEM;
2287
d4debc66
MG
2288 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2289 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2290 if (!populated_zone(zone))
1da177e4 2291 continue;
1cfb419b
KH
2292 /*
2293 * Take care memory controller reclaiming has small influence
2294 * to global LRU.
2295 */
89b5fae5 2296 if (global_reclaim(sc)) {
1cfb419b
KH
2297 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2298 continue;
6e543d57
LD
2299 if (sc->priority != DEF_PRIORITY &&
2300 !zone_reclaimable(zone))
1cfb419b 2301 continue; /* Let kswapd poll it */
d84da3f9 2302 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2303 /*
e0c23279
MG
2304 * If we already have plenty of memory free for
2305 * compaction in this zone, don't free any more.
2306 * Even though compaction is invoked for any
2307 * non-zero order, only frequent costly order
2308 * reclamation is disruptive enough to become a
c7cfa37b
CA
2309 * noticeable problem, like transparent huge
2310 * page allocations.
e0887c19 2311 */
fe4b1b24 2312 if (compaction_ready(zone, sc)) {
0cee34fd 2313 aborted_reclaim = true;
e0887c19 2314 continue;
e0c23279 2315 }
e0887c19 2316 }
ac34a1a3 2317 /* need some check for avoid more shrink_zone() */
1cfb419b 2318 }
408d8544 2319
9e3b2f8c 2320 shrink_zone(zone, sc);
1da177e4 2321 }
e0c23279 2322
0cee34fd 2323 return aborted_reclaim;
d1908362
MK
2324}
2325
929bea7c 2326/* All zones in zonelist are unreclaimable? */
d1908362
MK
2327static bool all_unreclaimable(struct zonelist *zonelist,
2328 struct scan_control *sc)
2329{
2330 struct zoneref *z;
2331 struct zone *zone;
d1908362
MK
2332
2333 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2334 gfp_zone(sc->gfp_mask), sc->nodemask) {
2335 if (!populated_zone(zone))
2336 continue;
2337 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2338 continue;
6e543d57 2339 if (zone_reclaimable(zone))
929bea7c 2340 return false;
d1908362
MK
2341 }
2342
929bea7c 2343 return true;
1da177e4 2344}
4f98a2fe 2345
1da177e4
LT
2346/*
2347 * This is the main entry point to direct page reclaim.
2348 *
2349 * If a full scan of the inactive list fails to free enough memory then we
2350 * are "out of memory" and something needs to be killed.
2351 *
2352 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2353 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2354 * caller can't do much about. We kick the writeback threads and take explicit
2355 * naps in the hope that some of these pages can be written. But if the
2356 * allocating task holds filesystem locks which prevent writeout this might not
2357 * work, and the allocation attempt will fail.
a41f24ea
NA
2358 *
2359 * returns: 0, if no pages reclaimed
2360 * else, the number of pages reclaimed
1da177e4 2361 */
dac1d27b 2362static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2363 struct scan_control *sc,
2364 struct shrink_control *shrink)
1da177e4 2365{
69e05944 2366 unsigned long total_scanned = 0;
1da177e4 2367 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2368 struct zoneref *z;
54a6eb5c 2369 struct zone *zone;
22fba335 2370 unsigned long writeback_threshold;
0cee34fd 2371 bool aborted_reclaim;
1da177e4 2372
873b4771
KK
2373 delayacct_freepages_start();
2374
89b5fae5 2375 if (global_reclaim(sc))
1cfb419b 2376 count_vm_event(ALLOCSTALL);
1da177e4 2377
9e3b2f8c 2378 do {
70ddf637
AV
2379 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2380 sc->priority);
66e1707b 2381 sc->nr_scanned = 0;
9e3b2f8c 2382 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2383
66e1707b 2384 /*
5a1c9cbc
MG
2385 * Don't shrink slabs when reclaiming memory from over limit
2386 * cgroups but do shrink slab at least once when aborting
2387 * reclaim for compaction to avoid unevenly scanning file/anon
2388 * LRU pages over slab pages.
66e1707b 2389 */
89b5fae5 2390 if (global_reclaim(sc)) {
c6a8a8c5 2391 unsigned long lru_pages = 0;
d4debc66
MG
2392 for_each_zone_zonelist(zone, z, zonelist,
2393 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2394 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2395 continue;
2396
2397 lru_pages += zone_reclaimable_pages(zone);
2398 }
2399
1495f230 2400 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2401 if (reclaim_state) {
a79311c1 2402 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2403 reclaim_state->reclaimed_slab = 0;
2404 }
1da177e4 2405 }
66e1707b 2406 total_scanned += sc->nr_scanned;
bb21c7ce 2407 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2408 goto out;
1da177e4 2409
0e50ce3b
MK
2410 /*
2411 * If we're getting trouble reclaiming, start doing
2412 * writepage even in laptop mode.
2413 */
2414 if (sc->priority < DEF_PRIORITY - 2)
2415 sc->may_writepage = 1;
2416
1da177e4
LT
2417 /*
2418 * Try to write back as many pages as we just scanned. This
2419 * tends to cause slow streaming writers to write data to the
2420 * disk smoothly, at the dirtying rate, which is nice. But
2421 * that's undesirable in laptop mode, where we *want* lumpy
2422 * writeout. So in laptop mode, write out the whole world.
2423 */
22fba335
KM
2424 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2425 if (total_scanned > writeback_threshold) {
0e175a18
CW
2426 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2427 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2428 sc->may_writepage = 1;
1da177e4 2429 }
5a1c9cbc 2430 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2431
1da177e4 2432out:
873b4771
KK
2433 delayacct_freepages_end();
2434
bb21c7ce
KM
2435 if (sc->nr_reclaimed)
2436 return sc->nr_reclaimed;
2437
929bea7c
KM
2438 /*
2439 * As hibernation is going on, kswapd is freezed so that it can't mark
2440 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2441 * check.
2442 */
2443 if (oom_killer_disabled)
2444 return 0;
2445
0cee34fd
MG
2446 /* Aborted reclaim to try compaction? don't OOM, then */
2447 if (aborted_reclaim)
7335084d
MG
2448 return 1;
2449
bb21c7ce 2450 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2451 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2452 return 1;
2453
2454 return 0;
1da177e4
LT
2455}
2456
5515061d
MG
2457static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2458{
2459 struct zone *zone;
2460 unsigned long pfmemalloc_reserve = 0;
2461 unsigned long free_pages = 0;
2462 int i;
2463 bool wmark_ok;
2464
2465 for (i = 0; i <= ZONE_NORMAL; i++) {
2466 zone = &pgdat->node_zones[i];
2467 pfmemalloc_reserve += min_wmark_pages(zone);
2468 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2469 }
2470
2471 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2472
2473 /* kswapd must be awake if processes are being throttled */
2474 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2475 pgdat->classzone_idx = min(pgdat->classzone_idx,
2476 (enum zone_type)ZONE_NORMAL);
2477 wake_up_interruptible(&pgdat->kswapd_wait);
2478 }
2479
2480 return wmark_ok;
2481}
2482
2483/*
2484 * Throttle direct reclaimers if backing storage is backed by the network
2485 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2486 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2487 * when the low watermark is reached.
2488 *
2489 * Returns true if a fatal signal was delivered during throttling. If this
2490 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2491 */
50694c28 2492static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2493 nodemask_t *nodemask)
2494{
2495 struct zone *zone;
2496 int high_zoneidx = gfp_zone(gfp_mask);
2497 pg_data_t *pgdat;
2498
2499 /*
2500 * Kernel threads should not be throttled as they may be indirectly
2501 * responsible for cleaning pages necessary for reclaim to make forward
2502 * progress. kjournald for example may enter direct reclaim while
2503 * committing a transaction where throttling it could forcing other
2504 * processes to block on log_wait_commit().
2505 */
2506 if (current->flags & PF_KTHREAD)
50694c28
MG
2507 goto out;
2508
2509 /*
2510 * If a fatal signal is pending, this process should not throttle.
2511 * It should return quickly so it can exit and free its memory
2512 */
2513 if (fatal_signal_pending(current))
2514 goto out;
5515061d
MG
2515
2516 /* Check if the pfmemalloc reserves are ok */
2517 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2518 pgdat = zone->zone_pgdat;
2519 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2520 goto out;
5515061d 2521
68243e76
MG
2522 /* Account for the throttling */
2523 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2524
5515061d
MG
2525 /*
2526 * If the caller cannot enter the filesystem, it's possible that it
2527 * is due to the caller holding an FS lock or performing a journal
2528 * transaction in the case of a filesystem like ext[3|4]. In this case,
2529 * it is not safe to block on pfmemalloc_wait as kswapd could be
2530 * blocked waiting on the same lock. Instead, throttle for up to a
2531 * second before continuing.
2532 */
2533 if (!(gfp_mask & __GFP_FS)) {
2534 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2535 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2536
2537 goto check_pending;
5515061d
MG
2538 }
2539
2540 /* Throttle until kswapd wakes the process */
2541 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2542 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2543
2544check_pending:
2545 if (fatal_signal_pending(current))
2546 return true;
2547
2548out:
2549 return false;
5515061d
MG
2550}
2551
dac1d27b 2552unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2553 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2554{
33906bc5 2555 unsigned long nr_reclaimed;
66e1707b 2556 struct scan_control sc = {
21caf2fc 2557 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2558 .may_writepage = !laptop_mode,
22fba335 2559 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2560 .may_unmap = 1,
2e2e4259 2561 .may_swap = 1,
66e1707b 2562 .order = order,
9e3b2f8c 2563 .priority = DEF_PRIORITY,
f16015fb 2564 .target_mem_cgroup = NULL,
327c0e96 2565 .nodemask = nodemask,
66e1707b 2566 };
a09ed5e0
YH
2567 struct shrink_control shrink = {
2568 .gfp_mask = sc.gfp_mask,
2569 };
66e1707b 2570
5515061d 2571 /*
50694c28
MG
2572 * Do not enter reclaim if fatal signal was delivered while throttled.
2573 * 1 is returned so that the page allocator does not OOM kill at this
2574 * point.
5515061d 2575 */
50694c28 2576 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2577 return 1;
2578
33906bc5
MG
2579 trace_mm_vmscan_direct_reclaim_begin(order,
2580 sc.may_writepage,
2581 gfp_mask);
2582
a09ed5e0 2583 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2584
2585 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2586
2587 return nr_reclaimed;
66e1707b
BS
2588}
2589
c255a458 2590#ifdef CONFIG_MEMCG
66e1707b 2591
72835c86 2592unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2593 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2594 struct zone *zone,
2595 unsigned long *nr_scanned)
4e416953
BS
2596{
2597 struct scan_control sc = {
0ae5e89c 2598 .nr_scanned = 0,
b8f5c566 2599 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2600 .may_writepage = !laptop_mode,
2601 .may_unmap = 1,
2602 .may_swap = !noswap,
4e416953 2603 .order = 0,
9e3b2f8c 2604 .priority = 0,
72835c86 2605 .target_mem_cgroup = memcg,
4e416953 2606 };
f9be23d6 2607 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2608
4e416953
BS
2609 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2610 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2611
9e3b2f8c 2612 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2613 sc.may_writepage,
2614 sc.gfp_mask);
2615
4e416953
BS
2616 /*
2617 * NOTE: Although we can get the priority field, using it
2618 * here is not a good idea, since it limits the pages we can scan.
2619 * if we don't reclaim here, the shrink_zone from balance_pgdat
2620 * will pick up pages from other mem cgroup's as well. We hack
2621 * the priority and make it zero.
2622 */
f9be23d6 2623 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2624
2625 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2626
0ae5e89c 2627 *nr_scanned = sc.nr_scanned;
4e416953
BS
2628 return sc.nr_reclaimed;
2629}
2630
72835c86 2631unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2632 gfp_t gfp_mask,
185efc0f 2633 bool noswap)
66e1707b 2634{
4e416953 2635 struct zonelist *zonelist;
bdce6d9e 2636 unsigned long nr_reclaimed;
889976db 2637 int nid;
66e1707b 2638 struct scan_control sc = {
66e1707b 2639 .may_writepage = !laptop_mode,
a6dc60f8 2640 .may_unmap = 1,
2e2e4259 2641 .may_swap = !noswap,
22fba335 2642 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2643 .order = 0,
9e3b2f8c 2644 .priority = DEF_PRIORITY,
72835c86 2645 .target_mem_cgroup = memcg,
327c0e96 2646 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2647 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2648 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2649 };
2650 struct shrink_control shrink = {
2651 .gfp_mask = sc.gfp_mask,
66e1707b 2652 };
66e1707b 2653
889976db
YH
2654 /*
2655 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2656 * take care of from where we get pages. So the node where we start the
2657 * scan does not need to be the current node.
2658 */
72835c86 2659 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2660
2661 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2662
2663 trace_mm_vmscan_memcg_reclaim_begin(0,
2664 sc.may_writepage,
2665 sc.gfp_mask);
2666
a09ed5e0 2667 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2668
2669 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2670
2671 return nr_reclaimed;
66e1707b
BS
2672}
2673#endif
2674
9e3b2f8c 2675static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2676{
b95a2f2d 2677 struct mem_cgroup *memcg;
f16015fb 2678
b95a2f2d
JW
2679 if (!total_swap_pages)
2680 return;
2681
2682 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2683 do {
c56d5c7d 2684 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2685
c56d5c7d 2686 if (inactive_anon_is_low(lruvec))
1a93be0e 2687 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2688 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2689
2690 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2691 } while (memcg);
f16015fb
JW
2692}
2693
60cefed4
JW
2694static bool zone_balanced(struct zone *zone, int order,
2695 unsigned long balance_gap, int classzone_idx)
2696{
2697 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2698 balance_gap, classzone_idx, 0))
2699 return false;
2700
d84da3f9
KS
2701 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2702 !compaction_suitable(zone, order))
60cefed4
JW
2703 return false;
2704
2705 return true;
2706}
2707
1741c877 2708/*
4ae0a48b
ZC
2709 * pgdat_balanced() is used when checking if a node is balanced.
2710 *
2711 * For order-0, all zones must be balanced!
2712 *
2713 * For high-order allocations only zones that meet watermarks and are in a
2714 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2715 * total of balanced pages must be at least 25% of the zones allowed by
2716 * classzone_idx for the node to be considered balanced. Forcing all zones to
2717 * be balanced for high orders can cause excessive reclaim when there are
2718 * imbalanced zones.
1741c877
MG
2719 * The choice of 25% is due to
2720 * o a 16M DMA zone that is balanced will not balance a zone on any
2721 * reasonable sized machine
2722 * o On all other machines, the top zone must be at least a reasonable
25985edc 2723 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2724 * would need to be at least 256M for it to be balance a whole node.
2725 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2726 * to balance a node on its own. These seemed like reasonable ratios.
2727 */
4ae0a48b 2728static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2729{
b40da049 2730 unsigned long managed_pages = 0;
4ae0a48b 2731 unsigned long balanced_pages = 0;
1741c877
MG
2732 int i;
2733
4ae0a48b
ZC
2734 /* Check the watermark levels */
2735 for (i = 0; i <= classzone_idx; i++) {
2736 struct zone *zone = pgdat->node_zones + i;
1741c877 2737
4ae0a48b
ZC
2738 if (!populated_zone(zone))
2739 continue;
2740
b40da049 2741 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2742
2743 /*
2744 * A special case here:
2745 *
2746 * balance_pgdat() skips over all_unreclaimable after
2747 * DEF_PRIORITY. Effectively, it considers them balanced so
2748 * they must be considered balanced here as well!
2749 */
6e543d57 2750 if (!zone_reclaimable(zone)) {
b40da049 2751 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2752 continue;
2753 }
2754
2755 if (zone_balanced(zone, order, 0, i))
b40da049 2756 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2757 else if (!order)
2758 return false;
2759 }
2760
2761 if (order)
b40da049 2762 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2763 else
2764 return true;
1741c877
MG
2765}
2766
5515061d
MG
2767/*
2768 * Prepare kswapd for sleeping. This verifies that there are no processes
2769 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2770 *
2771 * Returns true if kswapd is ready to sleep
2772 */
2773static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2774 int classzone_idx)
f50de2d3 2775{
f50de2d3
MG
2776 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2777 if (remaining)
5515061d
MG
2778 return false;
2779
2780 /*
2781 * There is a potential race between when kswapd checks its watermarks
2782 * and a process gets throttled. There is also a potential race if
2783 * processes get throttled, kswapd wakes, a large process exits therby
2784 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2785 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2786 * so wake them now if necessary. If necessary, processes will wake
2787 * kswapd and get throttled again
2788 */
2789 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2790 wake_up(&pgdat->pfmemalloc_wait);
2791 return false;
2792 }
f50de2d3 2793
4ae0a48b 2794 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2795}
2796
75485363
MG
2797/*
2798 * kswapd shrinks the zone by the number of pages required to reach
2799 * the high watermark.
b8e83b94
MG
2800 *
2801 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2802 * reclaim or if the lack of progress was due to pages under writeback.
2803 * This is used to determine if the scanning priority needs to be raised.
75485363 2804 */
b8e83b94 2805static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2806 int classzone_idx,
75485363 2807 struct scan_control *sc,
2ab44f43
MG
2808 unsigned long lru_pages,
2809 unsigned long *nr_attempted)
75485363 2810{
7c954f6d
MG
2811 int testorder = sc->order;
2812 unsigned long balance_gap;
75485363
MG
2813 struct reclaim_state *reclaim_state = current->reclaim_state;
2814 struct shrink_control shrink = {
2815 .gfp_mask = sc->gfp_mask,
2816 };
7c954f6d 2817 bool lowmem_pressure;
75485363
MG
2818
2819 /* Reclaim above the high watermark. */
2820 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2821
2822 /*
2823 * Kswapd reclaims only single pages with compaction enabled. Trying
2824 * too hard to reclaim until contiguous free pages have become
2825 * available can hurt performance by evicting too much useful data
2826 * from memory. Do not reclaim more than needed for compaction.
2827 */
2828 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2829 compaction_suitable(zone, sc->order) !=
2830 COMPACT_SKIPPED)
2831 testorder = 0;
2832
2833 /*
2834 * We put equal pressure on every zone, unless one zone has way too
2835 * many pages free already. The "too many pages" is defined as the
2836 * high wmark plus a "gap" where the gap is either the low
2837 * watermark or 1% of the zone, whichever is smaller.
2838 */
2839 balance_gap = min(low_wmark_pages(zone),
2840 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2841 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2842
2843 /*
2844 * If there is no low memory pressure or the zone is balanced then no
2845 * reclaim is necessary
2846 */
2847 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2848 if (!lowmem_pressure && zone_balanced(zone, testorder,
2849 balance_gap, classzone_idx))
2850 return true;
2851
75485363
MG
2852 shrink_zone(zone, sc);
2853
2854 reclaim_state->reclaimed_slab = 0;
6e543d57 2855 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2856 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2857
2ab44f43
MG
2858 /* Account for the number of pages attempted to reclaim */
2859 *nr_attempted += sc->nr_to_reclaim;
2860
283aba9f
MG
2861 zone_clear_flag(zone, ZONE_WRITEBACK);
2862
7c954f6d
MG
2863 /*
2864 * If a zone reaches its high watermark, consider it to be no longer
2865 * congested. It's possible there are dirty pages backed by congested
2866 * BDIs but as pressure is relieved, speculatively avoid congestion
2867 * waits.
2868 */
6e543d57 2869 if (zone_reclaimable(zone) &&
7c954f6d
MG
2870 zone_balanced(zone, testorder, 0, classzone_idx)) {
2871 zone_clear_flag(zone, ZONE_CONGESTED);
2872 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2873 }
2874
b8e83b94 2875 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2876}
2877
1da177e4
LT
2878/*
2879 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2880 * they are all at high_wmark_pages(zone).
1da177e4 2881 *
0abdee2b 2882 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2883 *
2884 * There is special handling here for zones which are full of pinned pages.
2885 * This can happen if the pages are all mlocked, or if they are all used by
2886 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2887 * What we do is to detect the case where all pages in the zone have been
2888 * scanned twice and there has been zero successful reclaim. Mark the zone as
2889 * dead and from now on, only perform a short scan. Basically we're polling
2890 * the zone for when the problem goes away.
2891 *
2892 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2893 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2894 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2895 * lower zones regardless of the number of free pages in the lower zones. This
2896 * interoperates with the page allocator fallback scheme to ensure that aging
2897 * of pages is balanced across the zones.
1da177e4 2898 */
99504748 2899static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2900 int *classzone_idx)
1da177e4 2901{
1da177e4 2902 int i;
99504748 2903 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
179e9639
AM
2904 struct scan_control sc = {
2905 .gfp_mask = GFP_KERNEL,
b8e83b94 2906 .priority = DEF_PRIORITY,
a6dc60f8 2907 .may_unmap = 1,
2e2e4259 2908 .may_swap = 1,
b8e83b94 2909 .may_writepage = !laptop_mode,
5ad333eb 2910 .order = order,
f16015fb 2911 .target_mem_cgroup = NULL,
179e9639 2912 };
f8891e5e 2913 count_vm_event(PAGEOUTRUN);
1da177e4 2914
9e3b2f8c 2915 do {
1da177e4 2916 unsigned long lru_pages = 0;
2ab44f43 2917 unsigned long nr_attempted = 0;
b8e83b94 2918 bool raise_priority = true;
2ab44f43 2919 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2920
2921 sc.nr_reclaimed = 0;
1da177e4 2922
d6277db4
RW
2923 /*
2924 * Scan in the highmem->dma direction for the highest
2925 * zone which needs scanning
2926 */
2927 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2928 struct zone *zone = pgdat->node_zones + i;
1da177e4 2929
d6277db4
RW
2930 if (!populated_zone(zone))
2931 continue;
1da177e4 2932
6e543d57
LD
2933 if (sc.priority != DEF_PRIORITY &&
2934 !zone_reclaimable(zone))
d6277db4 2935 continue;
1da177e4 2936
556adecb
RR
2937 /*
2938 * Do some background aging of the anon list, to give
2939 * pages a chance to be referenced before reclaiming.
2940 */
9e3b2f8c 2941 age_active_anon(zone, &sc);
556adecb 2942
cc715d99
MG
2943 /*
2944 * If the number of buffer_heads in the machine
2945 * exceeds the maximum allowed level and this node
2946 * has a highmem zone, force kswapd to reclaim from
2947 * it to relieve lowmem pressure.
2948 */
2949 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2950 end_zone = i;
2951 break;
2952 }
2953
60cefed4 2954 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2955 end_zone = i;
e1dbeda6 2956 break;
439423f6 2957 } else {
d43006d5
MG
2958 /*
2959 * If balanced, clear the dirty and congested
2960 * flags
2961 */
439423f6 2962 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2963 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2964 }
1da177e4 2965 }
dafcb73e 2966
b8e83b94 2967 if (i < 0)
e1dbeda6
AM
2968 goto out;
2969
1da177e4
LT
2970 for (i = 0; i <= end_zone; i++) {
2971 struct zone *zone = pgdat->node_zones + i;
2972
2ab44f43
MG
2973 if (!populated_zone(zone))
2974 continue;
2975
adea02a1 2976 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
2977
2978 /*
2979 * If any zone is currently balanced then kswapd will
2980 * not call compaction as it is expected that the
2981 * necessary pages are already available.
2982 */
2983 if (pgdat_needs_compaction &&
2984 zone_watermark_ok(zone, order,
2985 low_wmark_pages(zone),
2986 *classzone_idx, 0))
2987 pgdat_needs_compaction = false;
1da177e4
LT
2988 }
2989
b7ea3c41
MG
2990 /*
2991 * If we're getting trouble reclaiming, start doing writepage
2992 * even in laptop mode.
2993 */
2994 if (sc.priority < DEF_PRIORITY - 2)
2995 sc.may_writepage = 1;
2996
1da177e4
LT
2997 /*
2998 * Now scan the zone in the dma->highmem direction, stopping
2999 * at the last zone which needs scanning.
3000 *
3001 * We do this because the page allocator works in the opposite
3002 * direction. This prevents the page allocator from allocating
3003 * pages behind kswapd's direction of progress, which would
3004 * cause too much scanning of the lower zones.
3005 */
3006 for (i = 0; i <= end_zone; i++) {
3007 struct zone *zone = pgdat->node_zones + i;
3008
f3fe6512 3009 if (!populated_zone(zone))
1da177e4
LT
3010 continue;
3011
6e543d57
LD
3012 if (sc.priority != DEF_PRIORITY &&
3013 !zone_reclaimable(zone))
1da177e4
LT
3014 continue;
3015
1da177e4 3016 sc.nr_scanned = 0;
4e416953 3017
32a4330d 3018 /*
7c954f6d
MG
3019 * There should be no need to raise the scanning
3020 * priority if enough pages are already being scanned
3021 * that that high watermark would be met at 100%
3022 * efficiency.
fe2c2a10 3023 */
7c954f6d
MG
3024 if (kswapd_shrink_zone(zone, end_zone, &sc,
3025 lru_pages, &nr_attempted))
3026 raise_priority = false;
1da177e4 3027 }
5515061d
MG
3028
3029 /*
3030 * If the low watermark is met there is no need for processes
3031 * to be throttled on pfmemalloc_wait as they should not be
3032 * able to safely make forward progress. Wake them
3033 */
3034 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3035 pfmemalloc_watermark_ok(pgdat))
3036 wake_up(&pgdat->pfmemalloc_wait);
3037
1da177e4 3038 /*
b8e83b94
MG
3039 * Fragmentation may mean that the system cannot be rebalanced
3040 * for high-order allocations in all zones. If twice the
3041 * allocation size has been reclaimed and the zones are still
3042 * not balanced then recheck the watermarks at order-0 to
3043 * prevent kswapd reclaiming excessively. Assume that a
3044 * process requested a high-order can direct reclaim/compact.
1da177e4 3045 */
b8e83b94
MG
3046 if (order && sc.nr_reclaimed >= 2UL << order)
3047 order = sc.order = 0;
8357376d 3048
b8e83b94
MG
3049 /* Check if kswapd should be suspending */
3050 if (try_to_freeze() || kthread_should_stop())
3051 break;
8357376d 3052
2ab44f43
MG
3053 /*
3054 * Compact if necessary and kswapd is reclaiming at least the
3055 * high watermark number of pages as requsted
3056 */
3057 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3058 compact_pgdat(pgdat, order);
3059
73ce02e9 3060 /*
b8e83b94
MG
3061 * Raise priority if scanning rate is too low or there was no
3062 * progress in reclaiming pages
73ce02e9 3063 */
b8e83b94
MG
3064 if (raise_priority || !sc.nr_reclaimed)
3065 sc.priority--;
9aa41348 3066 } while (sc.priority >= 1 &&
b8e83b94 3067 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3068
b8e83b94 3069out:
0abdee2b 3070 /*
5515061d 3071 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3072 * makes a decision on the order we were last reclaiming at. However,
3073 * if another caller entered the allocator slow path while kswapd
3074 * was awake, order will remain at the higher level
3075 */
dc83edd9 3076 *classzone_idx = end_zone;
0abdee2b 3077 return order;
1da177e4
LT
3078}
3079
dc83edd9 3080static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3081{
3082 long remaining = 0;
3083 DEFINE_WAIT(wait);
3084
3085 if (freezing(current) || kthread_should_stop())
3086 return;
3087
3088 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3089
3090 /* Try to sleep for a short interval */
5515061d 3091 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3092 remaining = schedule_timeout(HZ/10);
3093 finish_wait(&pgdat->kswapd_wait, &wait);
3094 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3095 }
3096
3097 /*
3098 * After a short sleep, check if it was a premature sleep. If not, then
3099 * go fully to sleep until explicitly woken up.
3100 */
5515061d 3101 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3102 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3103
3104 /*
3105 * vmstat counters are not perfectly accurate and the estimated
3106 * value for counters such as NR_FREE_PAGES can deviate from the
3107 * true value by nr_online_cpus * threshold. To avoid the zone
3108 * watermarks being breached while under pressure, we reduce the
3109 * per-cpu vmstat threshold while kswapd is awake and restore
3110 * them before going back to sleep.
3111 */
3112 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3113
62997027
MG
3114 /*
3115 * Compaction records what page blocks it recently failed to
3116 * isolate pages from and skips them in the future scanning.
3117 * When kswapd is going to sleep, it is reasonable to assume
3118 * that pages and compaction may succeed so reset the cache.
3119 */
3120 reset_isolation_suitable(pgdat);
3121
1c7e7f6c
AK
3122 if (!kthread_should_stop())
3123 schedule();
3124
f0bc0a60
KM
3125 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3126 } else {
3127 if (remaining)
3128 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3129 else
3130 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3131 }
3132 finish_wait(&pgdat->kswapd_wait, &wait);
3133}
3134
1da177e4
LT
3135/*
3136 * The background pageout daemon, started as a kernel thread
4f98a2fe 3137 * from the init process.
1da177e4
LT
3138 *
3139 * This basically trickles out pages so that we have _some_
3140 * free memory available even if there is no other activity
3141 * that frees anything up. This is needed for things like routing
3142 * etc, where we otherwise might have all activity going on in
3143 * asynchronous contexts that cannot page things out.
3144 *
3145 * If there are applications that are active memory-allocators
3146 * (most normal use), this basically shouldn't matter.
3147 */
3148static int kswapd(void *p)
3149{
215ddd66 3150 unsigned long order, new_order;
d2ebd0f6 3151 unsigned balanced_order;
215ddd66 3152 int classzone_idx, new_classzone_idx;
d2ebd0f6 3153 int balanced_classzone_idx;
1da177e4
LT
3154 pg_data_t *pgdat = (pg_data_t*)p;
3155 struct task_struct *tsk = current;
f0bc0a60 3156
1da177e4
LT
3157 struct reclaim_state reclaim_state = {
3158 .reclaimed_slab = 0,
3159 };
a70f7302 3160 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3161
cf40bd16
NP
3162 lockdep_set_current_reclaim_state(GFP_KERNEL);
3163
174596a0 3164 if (!cpumask_empty(cpumask))
c5f59f08 3165 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3166 current->reclaim_state = &reclaim_state;
3167
3168 /*
3169 * Tell the memory management that we're a "memory allocator",
3170 * and that if we need more memory we should get access to it
3171 * regardless (see "__alloc_pages()"). "kswapd" should
3172 * never get caught in the normal page freeing logic.
3173 *
3174 * (Kswapd normally doesn't need memory anyway, but sometimes
3175 * you need a small amount of memory in order to be able to
3176 * page out something else, and this flag essentially protects
3177 * us from recursively trying to free more memory as we're
3178 * trying to free the first piece of memory in the first place).
3179 */
930d9152 3180 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3181 set_freezable();
1da177e4 3182
215ddd66 3183 order = new_order = 0;
d2ebd0f6 3184 balanced_order = 0;
215ddd66 3185 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3186 balanced_classzone_idx = classzone_idx;
1da177e4 3187 for ( ; ; ) {
6f6313d4 3188 bool ret;
3e1d1d28 3189
215ddd66
MG
3190 /*
3191 * If the last balance_pgdat was unsuccessful it's unlikely a
3192 * new request of a similar or harder type will succeed soon
3193 * so consider going to sleep on the basis we reclaimed at
3194 */
d2ebd0f6
AS
3195 if (balanced_classzone_idx >= new_classzone_idx &&
3196 balanced_order == new_order) {
215ddd66
MG
3197 new_order = pgdat->kswapd_max_order;
3198 new_classzone_idx = pgdat->classzone_idx;
3199 pgdat->kswapd_max_order = 0;
3200 pgdat->classzone_idx = pgdat->nr_zones - 1;
3201 }
3202
99504748 3203 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3204 /*
3205 * Don't sleep if someone wants a larger 'order'
99504748 3206 * allocation or has tigher zone constraints
1da177e4
LT
3207 */
3208 order = new_order;
99504748 3209 classzone_idx = new_classzone_idx;
1da177e4 3210 } else {
d2ebd0f6
AS
3211 kswapd_try_to_sleep(pgdat, balanced_order,
3212 balanced_classzone_idx);
1da177e4 3213 order = pgdat->kswapd_max_order;
99504748 3214 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3215 new_order = order;
3216 new_classzone_idx = classzone_idx;
4d40502e 3217 pgdat->kswapd_max_order = 0;
215ddd66 3218 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3219 }
1da177e4 3220
8fe23e05
DR
3221 ret = try_to_freeze();
3222 if (kthread_should_stop())
3223 break;
3224
3225 /*
3226 * We can speed up thawing tasks if we don't call balance_pgdat
3227 * after returning from the refrigerator
3228 */
33906bc5
MG
3229 if (!ret) {
3230 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3231 balanced_classzone_idx = classzone_idx;
3232 balanced_order = balance_pgdat(pgdat, order,
3233 &balanced_classzone_idx);
33906bc5 3234 }
1da177e4 3235 }
b0a8cc58
TY
3236
3237 current->reclaim_state = NULL;
1da177e4
LT
3238 return 0;
3239}
3240
3241/*
3242 * A zone is low on free memory, so wake its kswapd task to service it.
3243 */
99504748 3244void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3245{
3246 pg_data_t *pgdat;
3247
f3fe6512 3248 if (!populated_zone(zone))
1da177e4
LT
3249 return;
3250
88f5acf8 3251 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3252 return;
88f5acf8 3253 pgdat = zone->zone_pgdat;
99504748 3254 if (pgdat->kswapd_max_order < order) {
1da177e4 3255 pgdat->kswapd_max_order = order;
99504748
MG
3256 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3257 }
8d0986e2 3258 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3259 return;
892f795d 3260 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3261 return;
3262
3263 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3264 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3265}
3266
adea02a1
WF
3267/*
3268 * The reclaimable count would be mostly accurate.
3269 * The less reclaimable pages may be
3270 * - mlocked pages, which will be moved to unevictable list when encountered
3271 * - mapped pages, which may require several travels to be reclaimed
3272 * - dirty pages, which is not "instantly" reclaimable
3273 */
3274unsigned long global_reclaimable_pages(void)
4f98a2fe 3275{
adea02a1
WF
3276 int nr;
3277
3278 nr = global_page_state(NR_ACTIVE_FILE) +
3279 global_page_state(NR_INACTIVE_FILE);
3280
ec8acf20 3281 if (get_nr_swap_pages() > 0)
adea02a1
WF
3282 nr += global_page_state(NR_ACTIVE_ANON) +
3283 global_page_state(NR_INACTIVE_ANON);
3284
3285 return nr;
3286}
3287
c6f37f12 3288#ifdef CONFIG_HIBERNATION
1da177e4 3289/*
7b51755c 3290 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3291 * freed pages.
3292 *
3293 * Rather than trying to age LRUs the aim is to preserve the overall
3294 * LRU order by reclaiming preferentially
3295 * inactive > active > active referenced > active mapped
1da177e4 3296 */
7b51755c 3297unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3298{
d6277db4 3299 struct reclaim_state reclaim_state;
d6277db4 3300 struct scan_control sc = {
7b51755c
KM
3301 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3302 .may_swap = 1,
3303 .may_unmap = 1,
d6277db4 3304 .may_writepage = 1,
7b51755c
KM
3305 .nr_to_reclaim = nr_to_reclaim,
3306 .hibernation_mode = 1,
7b51755c 3307 .order = 0,
9e3b2f8c 3308 .priority = DEF_PRIORITY,
1da177e4 3309 };
a09ed5e0
YH
3310 struct shrink_control shrink = {
3311 .gfp_mask = sc.gfp_mask,
3312 };
3313 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3314 struct task_struct *p = current;
3315 unsigned long nr_reclaimed;
1da177e4 3316
7b51755c
KM
3317 p->flags |= PF_MEMALLOC;
3318 lockdep_set_current_reclaim_state(sc.gfp_mask);
3319 reclaim_state.reclaimed_slab = 0;
3320 p->reclaim_state = &reclaim_state;
d6277db4 3321
a09ed5e0 3322 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3323
7b51755c
KM
3324 p->reclaim_state = NULL;
3325 lockdep_clear_current_reclaim_state();
3326 p->flags &= ~PF_MEMALLOC;
d6277db4 3327
7b51755c 3328 return nr_reclaimed;
1da177e4 3329}
c6f37f12 3330#endif /* CONFIG_HIBERNATION */
1da177e4 3331
1da177e4
LT
3332/* It's optimal to keep kswapds on the same CPUs as their memory, but
3333 not required for correctness. So if the last cpu in a node goes
3334 away, we get changed to run anywhere: as the first one comes back,
3335 restore their cpu bindings. */
fcb35a9b
GKH
3336static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3337 void *hcpu)
1da177e4 3338{
58c0a4a7 3339 int nid;
1da177e4 3340
8bb78442 3341 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3342 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3343 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3344 const struct cpumask *mask;
3345
3346 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3347
3e597945 3348 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3349 /* One of our CPUs online: restore mask */
c5f59f08 3350 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3351 }
3352 }
3353 return NOTIFY_OK;
3354}
1da177e4 3355
3218ae14
YG
3356/*
3357 * This kswapd start function will be called by init and node-hot-add.
3358 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3359 */
3360int kswapd_run(int nid)
3361{
3362 pg_data_t *pgdat = NODE_DATA(nid);
3363 int ret = 0;
3364
3365 if (pgdat->kswapd)
3366 return 0;
3367
3368 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3369 if (IS_ERR(pgdat->kswapd)) {
3370 /* failure at boot is fatal */
3371 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3372 pr_err("Failed to start kswapd on node %d\n", nid);
3373 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3374 pgdat->kswapd = NULL;
3218ae14
YG
3375 }
3376 return ret;
3377}
3378
8fe23e05 3379/*
d8adde17
JL
3380 * Called by memory hotplug when all memory in a node is offlined. Caller must
3381 * hold lock_memory_hotplug().
8fe23e05
DR
3382 */
3383void kswapd_stop(int nid)
3384{
3385 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3386
d8adde17 3387 if (kswapd) {
8fe23e05 3388 kthread_stop(kswapd);
d8adde17
JL
3389 NODE_DATA(nid)->kswapd = NULL;
3390 }
8fe23e05
DR
3391}
3392
1da177e4
LT
3393static int __init kswapd_init(void)
3394{
3218ae14 3395 int nid;
69e05944 3396
1da177e4 3397 swap_setup();
48fb2e24 3398 for_each_node_state(nid, N_MEMORY)
3218ae14 3399 kswapd_run(nid);
1da177e4
LT
3400 hotcpu_notifier(cpu_callback, 0);
3401 return 0;
3402}
3403
3404module_init(kswapd_init)
9eeff239
CL
3405
3406#ifdef CONFIG_NUMA
3407/*
3408 * Zone reclaim mode
3409 *
3410 * If non-zero call zone_reclaim when the number of free pages falls below
3411 * the watermarks.
9eeff239
CL
3412 */
3413int zone_reclaim_mode __read_mostly;
3414
1b2ffb78 3415#define RECLAIM_OFF 0
7d03431c 3416#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3417#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3418#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3419
a92f7126
CL
3420/*
3421 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3422 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3423 * a zone.
3424 */
3425#define ZONE_RECLAIM_PRIORITY 4
3426
9614634f
CL
3427/*
3428 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3429 * occur.
3430 */
3431int sysctl_min_unmapped_ratio = 1;
3432
0ff38490
CL
3433/*
3434 * If the number of slab pages in a zone grows beyond this percentage then
3435 * slab reclaim needs to occur.
3436 */
3437int sysctl_min_slab_ratio = 5;
3438
90afa5de
MG
3439static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3440{
3441 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3442 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3443 zone_page_state(zone, NR_ACTIVE_FILE);
3444
3445 /*
3446 * It's possible for there to be more file mapped pages than
3447 * accounted for by the pages on the file LRU lists because
3448 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3449 */
3450 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3451}
3452
3453/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3454static long zone_pagecache_reclaimable(struct zone *zone)
3455{
3456 long nr_pagecache_reclaimable;
3457 long delta = 0;
3458
3459 /*
3460 * If RECLAIM_SWAP is set, then all file pages are considered
3461 * potentially reclaimable. Otherwise, we have to worry about
3462 * pages like swapcache and zone_unmapped_file_pages() provides
3463 * a better estimate
3464 */
3465 if (zone_reclaim_mode & RECLAIM_SWAP)
3466 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3467 else
3468 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3469
3470 /* If we can't clean pages, remove dirty pages from consideration */
3471 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3472 delta += zone_page_state(zone, NR_FILE_DIRTY);
3473
3474 /* Watch for any possible underflows due to delta */
3475 if (unlikely(delta > nr_pagecache_reclaimable))
3476 delta = nr_pagecache_reclaimable;
3477
3478 return nr_pagecache_reclaimable - delta;
3479}
3480
9eeff239
CL
3481/*
3482 * Try to free up some pages from this zone through reclaim.
3483 */
179e9639 3484static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3485{
7fb2d46d 3486 /* Minimum pages needed in order to stay on node */
69e05944 3487 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3488 struct task_struct *p = current;
3489 struct reclaim_state reclaim_state;
179e9639
AM
3490 struct scan_control sc = {
3491 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3492 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3493 .may_swap = 1,
62b726c1 3494 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3495 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3496 .order = order,
9e3b2f8c 3497 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3498 };
a09ed5e0
YH
3499 struct shrink_control shrink = {
3500 .gfp_mask = sc.gfp_mask,
3501 };
15748048 3502 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3503
9eeff239 3504 cond_resched();
d4f7796e
CL
3505 /*
3506 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3507 * and we also need to be able to write out pages for RECLAIM_WRITE
3508 * and RECLAIM_SWAP.
3509 */
3510 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3511 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3512 reclaim_state.reclaimed_slab = 0;
3513 p->reclaim_state = &reclaim_state;
c84db23c 3514
90afa5de 3515 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3516 /*
3517 * Free memory by calling shrink zone with increasing
3518 * priorities until we have enough memory freed.
3519 */
0ff38490 3520 do {
9e3b2f8c
KK
3521 shrink_zone(zone, &sc);
3522 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3523 }
c84db23c 3524
15748048
KM
3525 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3526 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3527 /*
7fb2d46d 3528 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3529 * many pages were freed in this zone. So we take the current
3530 * number of slab pages and shake the slab until it is reduced
3531 * by the same nr_pages that we used for reclaiming unmapped
3532 * pages.
2a16e3f4 3533 *
0ff38490
CL
3534 * Note that shrink_slab will free memory on all zones and may
3535 * take a long time.
2a16e3f4 3536 */
4dc4b3d9
KM
3537 for (;;) {
3538 unsigned long lru_pages = zone_reclaimable_pages(zone);
3539
3540 /* No reclaimable slab or very low memory pressure */
1495f230 3541 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3542 break;
3543
3544 /* Freed enough memory */
3545 nr_slab_pages1 = zone_page_state(zone,
3546 NR_SLAB_RECLAIMABLE);
3547 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3548 break;
3549 }
83e33a47
CL
3550
3551 /*
3552 * Update nr_reclaimed by the number of slab pages we
3553 * reclaimed from this zone.
3554 */
15748048
KM
3555 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3556 if (nr_slab_pages1 < nr_slab_pages0)
3557 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3558 }
3559
9eeff239 3560 p->reclaim_state = NULL;
d4f7796e 3561 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3562 lockdep_clear_current_reclaim_state();
a79311c1 3563 return sc.nr_reclaimed >= nr_pages;
9eeff239 3564}
179e9639
AM
3565
3566int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3567{
179e9639 3568 int node_id;
d773ed6b 3569 int ret;
179e9639
AM
3570
3571 /*
0ff38490
CL
3572 * Zone reclaim reclaims unmapped file backed pages and
3573 * slab pages if we are over the defined limits.
34aa1330 3574 *
9614634f
CL
3575 * A small portion of unmapped file backed pages is needed for
3576 * file I/O otherwise pages read by file I/O will be immediately
3577 * thrown out if the zone is overallocated. So we do not reclaim
3578 * if less than a specified percentage of the zone is used by
3579 * unmapped file backed pages.
179e9639 3580 */
90afa5de
MG
3581 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3582 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3583 return ZONE_RECLAIM_FULL;
179e9639 3584
6e543d57 3585 if (!zone_reclaimable(zone))
fa5e084e 3586 return ZONE_RECLAIM_FULL;
d773ed6b 3587
179e9639 3588 /*
d773ed6b 3589 * Do not scan if the allocation should not be delayed.
179e9639 3590 */
d773ed6b 3591 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3592 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3593
3594 /*
3595 * Only run zone reclaim on the local zone or on zones that do not
3596 * have associated processors. This will favor the local processor
3597 * over remote processors and spread off node memory allocations
3598 * as wide as possible.
3599 */
89fa3024 3600 node_id = zone_to_nid(zone);
37c0708d 3601 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3602 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3603
3604 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3605 return ZONE_RECLAIM_NOSCAN;
3606
d773ed6b
DR
3607 ret = __zone_reclaim(zone, gfp_mask, order);
3608 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3609
24cf7251
MG
3610 if (!ret)
3611 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3612
d773ed6b 3613 return ret;
179e9639 3614}
9eeff239 3615#endif
894bc310 3616
894bc310
LS
3617/*
3618 * page_evictable - test whether a page is evictable
3619 * @page: the page to test
894bc310
LS
3620 *
3621 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3622 * lists vs unevictable list.
894bc310
LS
3623 *
3624 * Reasons page might not be evictable:
ba9ddf49 3625 * (1) page's mapping marked unevictable
b291f000 3626 * (2) page is part of an mlocked VMA
ba9ddf49 3627 *
894bc310 3628 */
39b5f29a 3629int page_evictable(struct page *page)
894bc310 3630{
39b5f29a 3631 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3632}
89e004ea 3633
85046579 3634#ifdef CONFIG_SHMEM
89e004ea 3635/**
24513264
HD
3636 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3637 * @pages: array of pages to check
3638 * @nr_pages: number of pages to check
89e004ea 3639 *
24513264 3640 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3641 *
3642 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3643 */
24513264 3644void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3645{
925b7673 3646 struct lruvec *lruvec;
24513264
HD
3647 struct zone *zone = NULL;
3648 int pgscanned = 0;
3649 int pgrescued = 0;
3650 int i;
89e004ea 3651
24513264
HD
3652 for (i = 0; i < nr_pages; i++) {
3653 struct page *page = pages[i];
3654 struct zone *pagezone;
89e004ea 3655
24513264
HD
3656 pgscanned++;
3657 pagezone = page_zone(page);
3658 if (pagezone != zone) {
3659 if (zone)
3660 spin_unlock_irq(&zone->lru_lock);
3661 zone = pagezone;
3662 spin_lock_irq(&zone->lru_lock);
3663 }
fa9add64 3664 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3665
24513264
HD
3666 if (!PageLRU(page) || !PageUnevictable(page))
3667 continue;
89e004ea 3668
39b5f29a 3669 if (page_evictable(page)) {
24513264
HD
3670 enum lru_list lru = page_lru_base_type(page);
3671
3672 VM_BUG_ON(PageActive(page));
3673 ClearPageUnevictable(page);
fa9add64
HD
3674 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3675 add_page_to_lru_list(page, lruvec, lru);
24513264 3676 pgrescued++;
89e004ea 3677 }
24513264 3678 }
89e004ea 3679
24513264
HD
3680 if (zone) {
3681 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3682 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3683 spin_unlock_irq(&zone->lru_lock);
89e004ea 3684 }
89e004ea 3685}
85046579 3686#endif /* CONFIG_SHMEM */
af936a16 3687
264e56d8 3688static void warn_scan_unevictable_pages(void)
af936a16 3689{
264e56d8 3690 printk_once(KERN_WARNING
25bd91bd 3691 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3692 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3693 "one, please send an email to linux-mm@kvack.org.\n",
3694 current->comm);
af936a16
LS
3695}
3696
3697/*
3698 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3699 * all nodes' unevictable lists for evictable pages
3700 */
3701unsigned long scan_unevictable_pages;
3702
3703int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3704 void __user *buffer,
af936a16
LS
3705 size_t *length, loff_t *ppos)
3706{
264e56d8 3707 warn_scan_unevictable_pages();
8d65af78 3708 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3709 scan_unevictable_pages = 0;
3710 return 0;
3711}
3712
e4455abb 3713#ifdef CONFIG_NUMA
af936a16
LS
3714/*
3715 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3716 * a specified node's per zone unevictable lists for evictable pages.
3717 */
3718
10fbcf4c
KS
3719static ssize_t read_scan_unevictable_node(struct device *dev,
3720 struct device_attribute *attr,
af936a16
LS
3721 char *buf)
3722{
264e56d8 3723 warn_scan_unevictable_pages();
af936a16
LS
3724 return sprintf(buf, "0\n"); /* always zero; should fit... */
3725}
3726
10fbcf4c
KS
3727static ssize_t write_scan_unevictable_node(struct device *dev,
3728 struct device_attribute *attr,
af936a16
LS
3729 const char *buf, size_t count)
3730{
264e56d8 3731 warn_scan_unevictable_pages();
af936a16
LS
3732 return 1;
3733}
3734
3735
10fbcf4c 3736static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3737 read_scan_unevictable_node,
3738 write_scan_unevictable_node);
3739
3740int scan_unevictable_register_node(struct node *node)
3741{
10fbcf4c 3742 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3743}
3744
3745void scan_unevictable_unregister_node(struct node *node)
3746{
10fbcf4c 3747 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3748}
e4455abb 3749#endif
This page took 1.281809 seconds and 5 git commands to generate.