vmscan: fix initial shrinker size handling
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
8e1f936b
RR
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
635697c6
KK
250 long total_scan;
251 long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
635697c6
KK
258 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 if (max_pass <= 0)
260 continue;
261
acf92b48
DC
262 /*
263 * copy the current shrinker scan count into a local variable
264 * and zero it so that other concurrent shrinker invocations
265 * don't also do this scanning work.
266 */
267 do {
268 nr = shrinker->nr;
269 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
270
271 total_scan = nr;
1495f230 272 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 273 delta *= max_pass;
1da177e4 274 do_div(delta, lru_pages + 1);
acf92b48
DC
275 total_scan += delta;
276 if (total_scan < 0) {
88c3bd70
DR
277 printk(KERN_ERR "shrink_slab: %pF negative objects to "
278 "delete nr=%ld\n",
acf92b48
DC
279 shrinker->shrink, total_scan);
280 total_scan = max_pass;
ea164d73
AA
281 }
282
3567b59a
DC
283 /*
284 * We need to avoid excessive windup on filesystem shrinkers
285 * due to large numbers of GFP_NOFS allocations causing the
286 * shrinkers to return -1 all the time. This results in a large
287 * nr being built up so when a shrink that can do some work
288 * comes along it empties the entire cache due to nr >>>
289 * max_pass. This is bad for sustaining a working set in
290 * memory.
291 *
292 * Hence only allow the shrinker to scan the entire cache when
293 * a large delta change is calculated directly.
294 */
295 if (delta < max_pass / 4)
296 total_scan = min(total_scan, max_pass / 2);
297
ea164d73
AA
298 /*
299 * Avoid risking looping forever due to too large nr value:
300 * never try to free more than twice the estimate number of
301 * freeable entries.
302 */
acf92b48
DC
303 if (total_scan > max_pass * 2)
304 total_scan = max_pass * 2;
1da177e4 305
acf92b48 306 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
307 nr_pages_scanned, lru_pages,
308 max_pass, delta, total_scan);
309
e9299f50 310 while (total_scan >= batch_size) {
b15e0905 311 int nr_before;
1da177e4 312
1495f230
YH
313 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
314 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 315 batch_size);
1da177e4
LT
316 if (shrink_ret == -1)
317 break;
b15e0905 318 if (shrink_ret < nr_before)
319 ret += nr_before - shrink_ret;
e9299f50
DC
320 count_vm_events(SLABS_SCANNED, batch_size);
321 total_scan -= batch_size;
1da177e4
LT
322
323 cond_resched();
324 }
325
acf92b48
DC
326 /*
327 * move the unused scan count back into the shrinker in a
328 * manner that handles concurrent updates. If we exhausted the
329 * scan, there is no need to do an update.
330 */
331 do {
332 nr = shrinker->nr;
333 new_nr = total_scan + nr;
334 if (total_scan <= 0)
335 break;
336 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
337
338 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
339 }
340 up_read(&shrinker_rwsem);
f06590bd
MK
341out:
342 cond_resched();
b15e0905 343 return ret;
1da177e4
LT
344}
345
f3a310bc 346static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
347 bool sync)
348{
f3a310bc 349 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
350
351 /*
3e7d3449
MG
352 * Initially assume we are entering either lumpy reclaim or
353 * reclaim/compaction.Depending on the order, we will either set the
354 * sync mode or just reclaim order-0 pages later.
7d3579e8 355 */
3e7d3449 356 if (COMPACTION_BUILD)
f3a310bc 357 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 358 else
f3a310bc 359 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
360
361 /*
3e7d3449
MG
362 * Avoid using lumpy reclaim or reclaim/compaction if possible by
363 * restricting when its set to either costly allocations or when
364 * under memory pressure
7d3579e8
KM
365 */
366 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 367 sc->reclaim_mode |= syncmode;
7d3579e8 368 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 369 sc->reclaim_mode |= syncmode;
7d3579e8 370 else
f3a310bc 371 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
372}
373
f3a310bc 374static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 375{
f3a310bc 376 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
377}
378
1da177e4
LT
379static inline int is_page_cache_freeable(struct page *page)
380{
ceddc3a5
JW
381 /*
382 * A freeable page cache page is referenced only by the caller
383 * that isolated the page, the page cache radix tree and
384 * optional buffer heads at page->private.
385 */
edcf4748 386 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
387}
388
7d3579e8
KM
389static int may_write_to_queue(struct backing_dev_info *bdi,
390 struct scan_control *sc)
1da177e4 391{
930d9152 392 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
393 return 1;
394 if (!bdi_write_congested(bdi))
395 return 1;
396 if (bdi == current->backing_dev_info)
397 return 1;
7d3579e8
KM
398
399 /* lumpy reclaim for hugepage often need a lot of write */
400 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
401 return 1;
1da177e4
LT
402 return 0;
403}
404
405/*
406 * We detected a synchronous write error writing a page out. Probably
407 * -ENOSPC. We need to propagate that into the address_space for a subsequent
408 * fsync(), msync() or close().
409 *
410 * The tricky part is that after writepage we cannot touch the mapping: nothing
411 * prevents it from being freed up. But we have a ref on the page and once
412 * that page is locked, the mapping is pinned.
413 *
414 * We're allowed to run sleeping lock_page() here because we know the caller has
415 * __GFP_FS.
416 */
417static void handle_write_error(struct address_space *mapping,
418 struct page *page, int error)
419{
7eaceacc 420 lock_page(page);
3e9f45bd
GC
421 if (page_mapping(page) == mapping)
422 mapping_set_error(mapping, error);
1da177e4
LT
423 unlock_page(page);
424}
425
04e62a29
CL
426/* possible outcome of pageout() */
427typedef enum {
428 /* failed to write page out, page is locked */
429 PAGE_KEEP,
430 /* move page to the active list, page is locked */
431 PAGE_ACTIVATE,
432 /* page has been sent to the disk successfully, page is unlocked */
433 PAGE_SUCCESS,
434 /* page is clean and locked */
435 PAGE_CLEAN,
436} pageout_t;
437
1da177e4 438/*
1742f19f
AM
439 * pageout is called by shrink_page_list() for each dirty page.
440 * Calls ->writepage().
1da177e4 441 */
c661b078 442static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 443 struct scan_control *sc)
1da177e4
LT
444{
445 /*
446 * If the page is dirty, only perform writeback if that write
447 * will be non-blocking. To prevent this allocation from being
448 * stalled by pagecache activity. But note that there may be
449 * stalls if we need to run get_block(). We could test
450 * PagePrivate for that.
451 *
6aceb53b 452 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
453 * this page's queue, we can perform writeback even if that
454 * will block.
455 *
456 * If the page is swapcache, write it back even if that would
457 * block, for some throttling. This happens by accident, because
458 * swap_backing_dev_info is bust: it doesn't reflect the
459 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
460 */
461 if (!is_page_cache_freeable(page))
462 return PAGE_KEEP;
463 if (!mapping) {
464 /*
465 * Some data journaling orphaned pages can have
466 * page->mapping == NULL while being dirty with clean buffers.
467 */
266cf658 468 if (page_has_private(page)) {
1da177e4
LT
469 if (try_to_free_buffers(page)) {
470 ClearPageDirty(page);
d40cee24 471 printk("%s: orphaned page\n", __func__);
1da177e4
LT
472 return PAGE_CLEAN;
473 }
474 }
475 return PAGE_KEEP;
476 }
477 if (mapping->a_ops->writepage == NULL)
478 return PAGE_ACTIVATE;
0e093d99 479 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
480 return PAGE_KEEP;
481
482 if (clear_page_dirty_for_io(page)) {
483 int res;
484 struct writeback_control wbc = {
485 .sync_mode = WB_SYNC_NONE,
486 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
487 .range_start = 0,
488 .range_end = LLONG_MAX,
1da177e4
LT
489 .for_reclaim = 1,
490 };
491
492 SetPageReclaim(page);
493 res = mapping->a_ops->writepage(page, &wbc);
494 if (res < 0)
495 handle_write_error(mapping, page, res);
994fc28c 496 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
497 ClearPageReclaim(page);
498 return PAGE_ACTIVATE;
499 }
c661b078 500
1da177e4
LT
501 if (!PageWriteback(page)) {
502 /* synchronous write or broken a_ops? */
503 ClearPageReclaim(page);
504 }
755f0225 505 trace_mm_vmscan_writepage(page,
f3a310bc 506 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 507 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
508 return PAGE_SUCCESS;
509 }
510
511 return PAGE_CLEAN;
512}
513
a649fd92 514/*
e286781d
NP
515 * Same as remove_mapping, but if the page is removed from the mapping, it
516 * gets returned with a refcount of 0.
a649fd92 517 */
e286781d 518static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 519{
28e4d965
NP
520 BUG_ON(!PageLocked(page));
521 BUG_ON(mapping != page_mapping(page));
49d2e9cc 522
19fd6231 523 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 524 /*
0fd0e6b0
NP
525 * The non racy check for a busy page.
526 *
527 * Must be careful with the order of the tests. When someone has
528 * a ref to the page, it may be possible that they dirty it then
529 * drop the reference. So if PageDirty is tested before page_count
530 * here, then the following race may occur:
531 *
532 * get_user_pages(&page);
533 * [user mapping goes away]
534 * write_to(page);
535 * !PageDirty(page) [good]
536 * SetPageDirty(page);
537 * put_page(page);
538 * !page_count(page) [good, discard it]
539 *
540 * [oops, our write_to data is lost]
541 *
542 * Reversing the order of the tests ensures such a situation cannot
543 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
544 * load is not satisfied before that of page->_count.
545 *
546 * Note that if SetPageDirty is always performed via set_page_dirty,
547 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 548 */
e286781d 549 if (!page_freeze_refs(page, 2))
49d2e9cc 550 goto cannot_free;
e286781d
NP
551 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
552 if (unlikely(PageDirty(page))) {
553 page_unfreeze_refs(page, 2);
49d2e9cc 554 goto cannot_free;
e286781d 555 }
49d2e9cc
CL
556
557 if (PageSwapCache(page)) {
558 swp_entry_t swap = { .val = page_private(page) };
559 __delete_from_swap_cache(page);
19fd6231 560 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 561 swapcache_free(swap, page);
e286781d 562 } else {
6072d13c
LT
563 void (*freepage)(struct page *);
564
565 freepage = mapping->a_ops->freepage;
566
e64a782f 567 __delete_from_page_cache(page);
19fd6231 568 spin_unlock_irq(&mapping->tree_lock);
e767e056 569 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
570
571 if (freepage != NULL)
572 freepage(page);
49d2e9cc
CL
573 }
574
49d2e9cc
CL
575 return 1;
576
577cannot_free:
19fd6231 578 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
579 return 0;
580}
581
e286781d
NP
582/*
583 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
584 * someone else has a ref on the page, abort and return 0. If it was
585 * successfully detached, return 1. Assumes the caller has a single ref on
586 * this page.
587 */
588int remove_mapping(struct address_space *mapping, struct page *page)
589{
590 if (__remove_mapping(mapping, page)) {
591 /*
592 * Unfreezing the refcount with 1 rather than 2 effectively
593 * drops the pagecache ref for us without requiring another
594 * atomic operation.
595 */
596 page_unfreeze_refs(page, 1);
597 return 1;
598 }
599 return 0;
600}
601
894bc310
LS
602/**
603 * putback_lru_page - put previously isolated page onto appropriate LRU list
604 * @page: page to be put back to appropriate lru list
605 *
606 * Add previously isolated @page to appropriate LRU list.
607 * Page may still be unevictable for other reasons.
608 *
609 * lru_lock must not be held, interrupts must be enabled.
610 */
894bc310
LS
611void putback_lru_page(struct page *page)
612{
613 int lru;
614 int active = !!TestClearPageActive(page);
bbfd28ee 615 int was_unevictable = PageUnevictable(page);
894bc310
LS
616
617 VM_BUG_ON(PageLRU(page));
618
619redo:
620 ClearPageUnevictable(page);
621
622 if (page_evictable(page, NULL)) {
623 /*
624 * For evictable pages, we can use the cache.
625 * In event of a race, worst case is we end up with an
626 * unevictable page on [in]active list.
627 * We know how to handle that.
628 */
401a8e1c 629 lru = active + page_lru_base_type(page);
894bc310
LS
630 lru_cache_add_lru(page, lru);
631 } else {
632 /*
633 * Put unevictable pages directly on zone's unevictable
634 * list.
635 */
636 lru = LRU_UNEVICTABLE;
637 add_page_to_unevictable_list(page);
6a7b9548 638 /*
21ee9f39
MK
639 * When racing with an mlock or AS_UNEVICTABLE clearing
640 * (page is unlocked) make sure that if the other thread
641 * does not observe our setting of PG_lru and fails
642 * isolation/check_move_unevictable_page,
643 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
644 * the page back to the evictable list.
645 *
21ee9f39 646 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
647 */
648 smp_mb();
894bc310 649 }
894bc310
LS
650
651 /*
652 * page's status can change while we move it among lru. If an evictable
653 * page is on unevictable list, it never be freed. To avoid that,
654 * check after we added it to the list, again.
655 */
656 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
657 if (!isolate_lru_page(page)) {
658 put_page(page);
659 goto redo;
660 }
661 /* This means someone else dropped this page from LRU
662 * So, it will be freed or putback to LRU again. There is
663 * nothing to do here.
664 */
665 }
666
bbfd28ee
LS
667 if (was_unevictable && lru != LRU_UNEVICTABLE)
668 count_vm_event(UNEVICTABLE_PGRESCUED);
669 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
670 count_vm_event(UNEVICTABLE_PGCULLED);
671
894bc310
LS
672 put_page(page); /* drop ref from isolate */
673}
674
dfc8d636
JW
675enum page_references {
676 PAGEREF_RECLAIM,
677 PAGEREF_RECLAIM_CLEAN,
64574746 678 PAGEREF_KEEP,
dfc8d636
JW
679 PAGEREF_ACTIVATE,
680};
681
682static enum page_references page_check_references(struct page *page,
683 struct scan_control *sc)
684{
64574746 685 int referenced_ptes, referenced_page;
dfc8d636 686 unsigned long vm_flags;
dfc8d636 687
64574746
JW
688 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
689 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
690
691 /* Lumpy reclaim - ignore references */
f3a310bc 692 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
693 return PAGEREF_RECLAIM;
694
695 /*
696 * Mlock lost the isolation race with us. Let try_to_unmap()
697 * move the page to the unevictable list.
698 */
699 if (vm_flags & VM_LOCKED)
700 return PAGEREF_RECLAIM;
701
64574746
JW
702 if (referenced_ptes) {
703 if (PageAnon(page))
704 return PAGEREF_ACTIVATE;
705 /*
706 * All mapped pages start out with page table
707 * references from the instantiating fault, so we need
708 * to look twice if a mapped file page is used more
709 * than once.
710 *
711 * Mark it and spare it for another trip around the
712 * inactive list. Another page table reference will
713 * lead to its activation.
714 *
715 * Note: the mark is set for activated pages as well
716 * so that recently deactivated but used pages are
717 * quickly recovered.
718 */
719 SetPageReferenced(page);
720
721 if (referenced_page)
722 return PAGEREF_ACTIVATE;
723
724 return PAGEREF_KEEP;
725 }
dfc8d636
JW
726
727 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 728 if (referenced_page && !PageSwapBacked(page))
64574746
JW
729 return PAGEREF_RECLAIM_CLEAN;
730
731 return PAGEREF_RECLAIM;
dfc8d636
JW
732}
733
abe4c3b5
MG
734static noinline_for_stack void free_page_list(struct list_head *free_pages)
735{
736 struct pagevec freed_pvec;
737 struct page *page, *tmp;
738
739 pagevec_init(&freed_pvec, 1);
740
741 list_for_each_entry_safe(page, tmp, free_pages, lru) {
742 list_del(&page->lru);
743 if (!pagevec_add(&freed_pvec, page)) {
744 __pagevec_free(&freed_pvec);
745 pagevec_reinit(&freed_pvec);
746 }
747 }
748
749 pagevec_free(&freed_pvec);
750}
751
1da177e4 752/*
1742f19f 753 * shrink_page_list() returns the number of reclaimed pages
1da177e4 754 */
1742f19f 755static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 756 struct zone *zone,
f84f6e2b 757 struct scan_control *sc,
92df3a72
MG
758 int priority,
759 unsigned long *ret_nr_dirty,
760 unsigned long *ret_nr_writeback)
1da177e4
LT
761{
762 LIST_HEAD(ret_pages);
abe4c3b5 763 LIST_HEAD(free_pages);
1da177e4 764 int pgactivate = 0;
0e093d99
MG
765 unsigned long nr_dirty = 0;
766 unsigned long nr_congested = 0;
05ff5137 767 unsigned long nr_reclaimed = 0;
92df3a72 768 unsigned long nr_writeback = 0;
1da177e4
LT
769
770 cond_resched();
771
1da177e4 772 while (!list_empty(page_list)) {
dfc8d636 773 enum page_references references;
1da177e4
LT
774 struct address_space *mapping;
775 struct page *page;
776 int may_enter_fs;
1da177e4
LT
777
778 cond_resched();
779
780 page = lru_to_page(page_list);
781 list_del(&page->lru);
782
529ae9aa 783 if (!trylock_page(page))
1da177e4
LT
784 goto keep;
785
725d704e 786 VM_BUG_ON(PageActive(page));
0e093d99 787 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
788
789 sc->nr_scanned++;
80e43426 790
b291f000
NP
791 if (unlikely(!page_evictable(page, NULL)))
792 goto cull_mlocked;
894bc310 793
a6dc60f8 794 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
795 goto keep_locked;
796
1da177e4
LT
797 /* Double the slab pressure for mapped and swapcache pages */
798 if (page_mapped(page) || PageSwapCache(page))
799 sc->nr_scanned++;
800
c661b078
AW
801 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
802 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
803
804 if (PageWriteback(page)) {
92df3a72 805 nr_writeback++;
c661b078 806 /*
a18bba06
MG
807 * Synchronous reclaim cannot queue pages for
808 * writeback due to the possibility of stack overflow
809 * but if it encounters a page under writeback, wait
810 * for the IO to complete.
c661b078 811 */
f3a310bc 812 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 813 may_enter_fs)
c661b078 814 wait_on_page_writeback(page);
7d3579e8
KM
815 else {
816 unlock_page(page);
817 goto keep_lumpy;
818 }
c661b078 819 }
1da177e4 820
dfc8d636
JW
821 references = page_check_references(page, sc);
822 switch (references) {
823 case PAGEREF_ACTIVATE:
1da177e4 824 goto activate_locked;
64574746
JW
825 case PAGEREF_KEEP:
826 goto keep_locked;
dfc8d636
JW
827 case PAGEREF_RECLAIM:
828 case PAGEREF_RECLAIM_CLEAN:
829 ; /* try to reclaim the page below */
830 }
1da177e4 831
1da177e4
LT
832 /*
833 * Anonymous process memory has backing store?
834 * Try to allocate it some swap space here.
835 */
b291f000 836 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
837 if (!(sc->gfp_mask & __GFP_IO))
838 goto keep_locked;
ac47b003 839 if (!add_to_swap(page))
1da177e4 840 goto activate_locked;
63eb6b93 841 may_enter_fs = 1;
b291f000 842 }
1da177e4
LT
843
844 mapping = page_mapping(page);
1da177e4
LT
845
846 /*
847 * The page is mapped into the page tables of one or more
848 * processes. Try to unmap it here.
849 */
850 if (page_mapped(page) && mapping) {
14fa31b8 851 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
852 case SWAP_FAIL:
853 goto activate_locked;
854 case SWAP_AGAIN:
855 goto keep_locked;
b291f000
NP
856 case SWAP_MLOCK:
857 goto cull_mlocked;
1da177e4
LT
858 case SWAP_SUCCESS:
859 ; /* try to free the page below */
860 }
861 }
862
863 if (PageDirty(page)) {
0e093d99
MG
864 nr_dirty++;
865
ee72886d
MG
866 /*
867 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
868 * avoid risk of stack overflow but do not writeback
869 * unless under significant pressure.
ee72886d 870 */
f84f6e2b
MG
871 if (page_is_file_cache(page) &&
872 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
873 /*
874 * Immediately reclaim when written back.
875 * Similar in principal to deactivate_page()
876 * except we already have the page isolated
877 * and know it's dirty
878 */
879 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
880 SetPageReclaim(page);
881
ee72886d
MG
882 goto keep_locked;
883 }
884
dfc8d636 885 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 886 goto keep_locked;
4dd4b920 887 if (!may_enter_fs)
1da177e4 888 goto keep_locked;
52a8363e 889 if (!sc->may_writepage)
1da177e4
LT
890 goto keep_locked;
891
892 /* Page is dirty, try to write it out here */
7d3579e8 893 switch (pageout(page, mapping, sc)) {
1da177e4 894 case PAGE_KEEP:
0e093d99 895 nr_congested++;
1da177e4
LT
896 goto keep_locked;
897 case PAGE_ACTIVATE:
898 goto activate_locked;
899 case PAGE_SUCCESS:
7d3579e8
KM
900 if (PageWriteback(page))
901 goto keep_lumpy;
902 if (PageDirty(page))
1da177e4 903 goto keep;
7d3579e8 904
1da177e4
LT
905 /*
906 * A synchronous write - probably a ramdisk. Go
907 * ahead and try to reclaim the page.
908 */
529ae9aa 909 if (!trylock_page(page))
1da177e4
LT
910 goto keep;
911 if (PageDirty(page) || PageWriteback(page))
912 goto keep_locked;
913 mapping = page_mapping(page);
914 case PAGE_CLEAN:
915 ; /* try to free the page below */
916 }
917 }
918
919 /*
920 * If the page has buffers, try to free the buffer mappings
921 * associated with this page. If we succeed we try to free
922 * the page as well.
923 *
924 * We do this even if the page is PageDirty().
925 * try_to_release_page() does not perform I/O, but it is
926 * possible for a page to have PageDirty set, but it is actually
927 * clean (all its buffers are clean). This happens if the
928 * buffers were written out directly, with submit_bh(). ext3
894bc310 929 * will do this, as well as the blockdev mapping.
1da177e4
LT
930 * try_to_release_page() will discover that cleanness and will
931 * drop the buffers and mark the page clean - it can be freed.
932 *
933 * Rarely, pages can have buffers and no ->mapping. These are
934 * the pages which were not successfully invalidated in
935 * truncate_complete_page(). We try to drop those buffers here
936 * and if that worked, and the page is no longer mapped into
937 * process address space (page_count == 1) it can be freed.
938 * Otherwise, leave the page on the LRU so it is swappable.
939 */
266cf658 940 if (page_has_private(page)) {
1da177e4
LT
941 if (!try_to_release_page(page, sc->gfp_mask))
942 goto activate_locked;
e286781d
NP
943 if (!mapping && page_count(page) == 1) {
944 unlock_page(page);
945 if (put_page_testzero(page))
946 goto free_it;
947 else {
948 /*
949 * rare race with speculative reference.
950 * the speculative reference will free
951 * this page shortly, so we may
952 * increment nr_reclaimed here (and
953 * leave it off the LRU).
954 */
955 nr_reclaimed++;
956 continue;
957 }
958 }
1da177e4
LT
959 }
960
e286781d 961 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 962 goto keep_locked;
1da177e4 963
a978d6f5
NP
964 /*
965 * At this point, we have no other references and there is
966 * no way to pick any more up (removed from LRU, removed
967 * from pagecache). Can use non-atomic bitops now (and
968 * we obviously don't have to worry about waking up a process
969 * waiting on the page lock, because there are no references.
970 */
971 __clear_page_locked(page);
e286781d 972free_it:
05ff5137 973 nr_reclaimed++;
abe4c3b5
MG
974
975 /*
976 * Is there need to periodically free_page_list? It would
977 * appear not as the counts should be low
978 */
979 list_add(&page->lru, &free_pages);
1da177e4
LT
980 continue;
981
b291f000 982cull_mlocked:
63d6c5ad
HD
983 if (PageSwapCache(page))
984 try_to_free_swap(page);
b291f000
NP
985 unlock_page(page);
986 putback_lru_page(page);
f3a310bc 987 reset_reclaim_mode(sc);
b291f000
NP
988 continue;
989
1da177e4 990activate_locked:
68a22394
RR
991 /* Not a candidate for swapping, so reclaim swap space. */
992 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 993 try_to_free_swap(page);
894bc310 994 VM_BUG_ON(PageActive(page));
1da177e4
LT
995 SetPageActive(page);
996 pgactivate++;
997keep_locked:
998 unlock_page(page);
999keep:
f3a310bc 1000 reset_reclaim_mode(sc);
7d3579e8 1001keep_lumpy:
1da177e4 1002 list_add(&page->lru, &ret_pages);
b291f000 1003 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1004 }
abe4c3b5 1005
0e093d99
MG
1006 /*
1007 * Tag a zone as congested if all the dirty pages encountered were
1008 * backed by a congested BDI. In this case, reclaimers should just
1009 * back off and wait for congestion to clear because further reclaim
1010 * will encounter the same problem
1011 */
d6c438b6 1012 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
1013 zone_set_flag(zone, ZONE_CONGESTED);
1014
abe4c3b5
MG
1015 free_page_list(&free_pages);
1016
1da177e4 1017 list_splice(&ret_pages, page_list);
f8891e5e 1018 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
1019 *ret_nr_dirty += nr_dirty;
1020 *ret_nr_writeback += nr_writeback;
05ff5137 1021 return nr_reclaimed;
1da177e4
LT
1022}
1023
5ad333eb
AW
1024/*
1025 * Attempt to remove the specified page from its LRU. Only take this page
1026 * if it is of the appropriate PageActive status. Pages which are being
1027 * freed elsewhere are also ignored.
1028 *
1029 * page: page to consider
1030 * mode: one of the LRU isolation modes defined above
1031 *
1032 * returns 0 on success, -ve errno on failure.
1033 */
4356f21d 1034int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1035{
4356f21d 1036 bool all_lru_mode;
5ad333eb
AW
1037 int ret = -EINVAL;
1038
1039 /* Only take pages on the LRU. */
1040 if (!PageLRU(page))
1041 return ret;
1042
4356f21d
MK
1043 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1044 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1045
5ad333eb
AW
1046 /*
1047 * When checking the active state, we need to be sure we are
1048 * dealing with comparible boolean values. Take the logical not
1049 * of each.
1050 */
4356f21d 1051 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1052 return ret;
1053
4356f21d 1054 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1055 return ret;
1056
894bc310
LS
1057 /*
1058 * When this function is being called for lumpy reclaim, we
1059 * initially look into all LRU pages, active, inactive and
1060 * unevictable; only give shrink_page_list evictable pages.
1061 */
1062 if (PageUnevictable(page))
1063 return ret;
1064
5ad333eb 1065 ret = -EBUSY;
08e552c6 1066
39deaf85
MK
1067 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1068 return ret;
1069
f80c0673
MK
1070 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1071 return ret;
1072
5ad333eb
AW
1073 if (likely(get_page_unless_zero(page))) {
1074 /*
1075 * Be careful not to clear PageLRU until after we're
1076 * sure the page is not being freed elsewhere -- the
1077 * page release code relies on it.
1078 */
1079 ClearPageLRU(page);
1080 ret = 0;
1081 }
1082
1083 return ret;
1084}
1085
1da177e4
LT
1086/*
1087 * zone->lru_lock is heavily contended. Some of the functions that
1088 * shrink the lists perform better by taking out a batch of pages
1089 * and working on them outside the LRU lock.
1090 *
1091 * For pagecache intensive workloads, this function is the hottest
1092 * spot in the kernel (apart from copy_*_user functions).
1093 *
1094 * Appropriate locks must be held before calling this function.
1095 *
1096 * @nr_to_scan: The number of pages to look through on the list.
1097 * @src: The LRU list to pull pages off.
1098 * @dst: The temp list to put pages on to.
1099 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1100 * @order: The caller's attempted allocation order
1101 * @mode: One of the LRU isolation modes
4f98a2fe 1102 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1103 *
1104 * returns how many pages were moved onto *@dst.
1105 */
69e05944
AM
1106static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1107 struct list_head *src, struct list_head *dst,
4356f21d
MK
1108 unsigned long *scanned, int order, isolate_mode_t mode,
1109 int file)
1da177e4 1110{
69e05944 1111 unsigned long nr_taken = 0;
a8a94d15
MG
1112 unsigned long nr_lumpy_taken = 0;
1113 unsigned long nr_lumpy_dirty = 0;
1114 unsigned long nr_lumpy_failed = 0;
c9b02d97 1115 unsigned long scan;
1da177e4 1116
c9b02d97 1117 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1118 struct page *page;
1119 unsigned long pfn;
1120 unsigned long end_pfn;
1121 unsigned long page_pfn;
1122 int zone_id;
1123
1da177e4
LT
1124 page = lru_to_page(src);
1125 prefetchw_prev_lru_page(page, src, flags);
1126
725d704e 1127 VM_BUG_ON(!PageLRU(page));
8d438f96 1128
4f98a2fe 1129 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1130 case 0:
1131 list_move(&page->lru, dst);
2ffebca6 1132 mem_cgroup_del_lru(page);
2c888cfb 1133 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1134 break;
1135
1136 case -EBUSY:
1137 /* else it is being freed elsewhere */
1138 list_move(&page->lru, src);
2ffebca6 1139 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1140 continue;
46453a6e 1141
5ad333eb
AW
1142 default:
1143 BUG();
1144 }
1145
1146 if (!order)
1147 continue;
1148
1149 /*
1150 * Attempt to take all pages in the order aligned region
1151 * surrounding the tag page. Only take those pages of
1152 * the same active state as that tag page. We may safely
1153 * round the target page pfn down to the requested order
25985edc 1154 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1155 * where that page is in a different zone we will detect
1156 * it from its zone id and abort this block scan.
1157 */
1158 zone_id = page_zone_id(page);
1159 page_pfn = page_to_pfn(page);
1160 pfn = page_pfn & ~((1 << order) - 1);
1161 end_pfn = pfn + (1 << order);
1162 for (; pfn < end_pfn; pfn++) {
1163 struct page *cursor_page;
1164
1165 /* The target page is in the block, ignore it. */
1166 if (unlikely(pfn == page_pfn))
1167 continue;
1168
1169 /* Avoid holes within the zone. */
1170 if (unlikely(!pfn_valid_within(pfn)))
1171 break;
1172
1173 cursor_page = pfn_to_page(pfn);
4f98a2fe 1174
5ad333eb
AW
1175 /* Check that we have not crossed a zone boundary. */
1176 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1177 break;
de2e7567
MK
1178
1179 /*
1180 * If we don't have enough swap space, reclaiming of
1181 * anon page which don't already have a swap slot is
1182 * pointless.
1183 */
1184 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1185 !PageSwapCache(cursor_page))
1186 break;
de2e7567 1187
ee993b13 1188 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1189 list_move(&cursor_page->lru, dst);
cb4cbcf6 1190 mem_cgroup_del_lru(cursor_page);
2c888cfb 1191 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1192 nr_lumpy_taken++;
1193 if (PageDirty(cursor_page))
1194 nr_lumpy_dirty++;
5ad333eb 1195 scan++;
a8a94d15 1196 } else {
d179e84b
AA
1197 /*
1198 * Check if the page is freed already.
1199 *
1200 * We can't use page_count() as that
1201 * requires compound_head and we don't
1202 * have a pin on the page here. If a
1203 * page is tail, we may or may not
1204 * have isolated the head, so assume
1205 * it's not free, it'd be tricky to
1206 * track the head status without a
1207 * page pin.
1208 */
1209 if (!PageTail(cursor_page) &&
1210 !atomic_read(&cursor_page->_count))
08fc468f
KM
1211 continue;
1212 break;
5ad333eb
AW
1213 }
1214 }
08fc468f
KM
1215
1216 /* If we break out of the loop above, lumpy reclaim failed */
1217 if (pfn < end_pfn)
1218 nr_lumpy_failed++;
1da177e4
LT
1219 }
1220
1221 *scanned = scan;
a8a94d15
MG
1222
1223 trace_mm_vmscan_lru_isolate(order,
1224 nr_to_scan, scan,
1225 nr_taken,
1226 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1227 mode);
1da177e4
LT
1228 return nr_taken;
1229}
1230
66e1707b
BS
1231static unsigned long isolate_pages_global(unsigned long nr,
1232 struct list_head *dst,
1233 unsigned long *scanned, int order,
4356f21d
MK
1234 isolate_mode_t mode,
1235 struct zone *z, int active, int file)
66e1707b 1236{
4f98a2fe 1237 int lru = LRU_BASE;
66e1707b 1238 if (active)
4f98a2fe
RR
1239 lru += LRU_ACTIVE;
1240 if (file)
1241 lru += LRU_FILE;
1242 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1243 mode, file);
66e1707b
BS
1244}
1245
5ad333eb
AW
1246/*
1247 * clear_active_flags() is a helper for shrink_active_list(), clearing
1248 * any active bits from the pages in the list.
1249 */
4f98a2fe
RR
1250static unsigned long clear_active_flags(struct list_head *page_list,
1251 unsigned int *count)
5ad333eb
AW
1252{
1253 int nr_active = 0;
4f98a2fe 1254 int lru;
5ad333eb
AW
1255 struct page *page;
1256
4f98a2fe 1257 list_for_each_entry(page, page_list, lru) {
2c888cfb 1258 int numpages = hpage_nr_pages(page);
401a8e1c 1259 lru = page_lru_base_type(page);
5ad333eb 1260 if (PageActive(page)) {
4f98a2fe 1261 lru += LRU_ACTIVE;
5ad333eb 1262 ClearPageActive(page);
2c888cfb 1263 nr_active += numpages;
5ad333eb 1264 }
1489fa14 1265 if (count)
2c888cfb 1266 count[lru] += numpages;
4f98a2fe 1267 }
5ad333eb
AW
1268
1269 return nr_active;
1270}
1271
62695a84
NP
1272/**
1273 * isolate_lru_page - tries to isolate a page from its LRU list
1274 * @page: page to isolate from its LRU list
1275 *
1276 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1277 * vmstat statistic corresponding to whatever LRU list the page was on.
1278 *
1279 * Returns 0 if the page was removed from an LRU list.
1280 * Returns -EBUSY if the page was not on an LRU list.
1281 *
1282 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1283 * the active list, it will have PageActive set. If it was found on
1284 * the unevictable list, it will have the PageUnevictable bit set. That flag
1285 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1286 *
1287 * The vmstat statistic corresponding to the list on which the page was
1288 * found will be decremented.
1289 *
1290 * Restrictions:
1291 * (1) Must be called with an elevated refcount on the page. This is a
1292 * fundamentnal difference from isolate_lru_pages (which is called
1293 * without a stable reference).
1294 * (2) the lru_lock must not be held.
1295 * (3) interrupts must be enabled.
1296 */
1297int isolate_lru_page(struct page *page)
1298{
1299 int ret = -EBUSY;
1300
0c917313
KK
1301 VM_BUG_ON(!page_count(page));
1302
62695a84
NP
1303 if (PageLRU(page)) {
1304 struct zone *zone = page_zone(page);
1305
1306 spin_lock_irq(&zone->lru_lock);
0c917313 1307 if (PageLRU(page)) {
894bc310 1308 int lru = page_lru(page);
62695a84 1309 ret = 0;
0c917313 1310 get_page(page);
62695a84 1311 ClearPageLRU(page);
4f98a2fe 1312
4f98a2fe 1313 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1314 }
1315 spin_unlock_irq(&zone->lru_lock);
1316 }
1317 return ret;
1318}
1319
35cd7815
RR
1320/*
1321 * Are there way too many processes in the direct reclaim path already?
1322 */
1323static int too_many_isolated(struct zone *zone, int file,
1324 struct scan_control *sc)
1325{
1326 unsigned long inactive, isolated;
1327
1328 if (current_is_kswapd())
1329 return 0;
1330
1331 if (!scanning_global_lru(sc))
1332 return 0;
1333
1334 if (file) {
1335 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1336 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1337 } else {
1338 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1339 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1340 }
1341
1342 return isolated > inactive;
1343}
1344
66635629
MG
1345/*
1346 * TODO: Try merging with migrations version of putback_lru_pages
1347 */
1348static noinline_for_stack void
1489fa14 1349putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1350 unsigned long nr_anon, unsigned long nr_file,
1351 struct list_head *page_list)
1352{
1353 struct page *page;
1354 struct pagevec pvec;
1489fa14 1355 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1356
1357 pagevec_init(&pvec, 1);
1358
1359 /*
1360 * Put back any unfreeable pages.
1361 */
1362 spin_lock(&zone->lru_lock);
1363 while (!list_empty(page_list)) {
1364 int lru;
1365 page = lru_to_page(page_list);
1366 VM_BUG_ON(PageLRU(page));
1367 list_del(&page->lru);
1368 if (unlikely(!page_evictable(page, NULL))) {
1369 spin_unlock_irq(&zone->lru_lock);
1370 putback_lru_page(page);
1371 spin_lock_irq(&zone->lru_lock);
1372 continue;
1373 }
7a608572 1374 SetPageLRU(page);
66635629 1375 lru = page_lru(page);
7a608572 1376 add_page_to_lru_list(zone, page, lru);
66635629
MG
1377 if (is_active_lru(lru)) {
1378 int file = is_file_lru(lru);
9992af10
RR
1379 int numpages = hpage_nr_pages(page);
1380 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1381 }
1382 if (!pagevec_add(&pvec, page)) {
1383 spin_unlock_irq(&zone->lru_lock);
1384 __pagevec_release(&pvec);
1385 spin_lock_irq(&zone->lru_lock);
1386 }
1387 }
1388 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1389 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1390
1391 spin_unlock_irq(&zone->lru_lock);
1392 pagevec_release(&pvec);
1393}
1394
1489fa14
MG
1395static noinline_for_stack void update_isolated_counts(struct zone *zone,
1396 struct scan_control *sc,
1397 unsigned long *nr_anon,
1398 unsigned long *nr_file,
1399 struct list_head *isolated_list)
1400{
1401 unsigned long nr_active;
1402 unsigned int count[NR_LRU_LISTS] = { 0, };
1403 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1404
1405 nr_active = clear_active_flags(isolated_list, count);
1406 __count_vm_events(PGDEACTIVATE, nr_active);
1407
1408 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1409 -count[LRU_ACTIVE_FILE]);
1410 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1411 -count[LRU_INACTIVE_FILE]);
1412 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1413 -count[LRU_ACTIVE_ANON]);
1414 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1415 -count[LRU_INACTIVE_ANON]);
1416
1417 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1418 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1419 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1420 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1421
1422 reclaim_stat->recent_scanned[0] += *nr_anon;
1423 reclaim_stat->recent_scanned[1] += *nr_file;
1424}
1425
e31f3698 1426/*
a18bba06 1427 * Returns true if a direct reclaim should wait on pages under writeback.
e31f3698
WF
1428 *
1429 * If we are direct reclaiming for contiguous pages and we do not reclaim
1430 * everything in the list, try again and wait for writeback IO to complete.
1431 * This will stall high-order allocations noticeably. Only do that when really
1432 * need to free the pages under high memory pressure.
1433 */
1434static inline bool should_reclaim_stall(unsigned long nr_taken,
1435 unsigned long nr_freed,
1436 int priority,
1437 struct scan_control *sc)
1438{
1439 int lumpy_stall_priority;
1440
1441 /* kswapd should not stall on sync IO */
1442 if (current_is_kswapd())
1443 return false;
1444
1445 /* Only stall on lumpy reclaim */
f3a310bc 1446 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1447 return false;
1448
81d66c70 1449 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1450 if (nr_freed == nr_taken)
1451 return false;
1452
1453 /*
1454 * For high-order allocations, there are two stall thresholds.
1455 * High-cost allocations stall immediately where as lower
1456 * order allocations such as stacks require the scanning
1457 * priority to be much higher before stalling.
1458 */
1459 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1460 lumpy_stall_priority = DEF_PRIORITY;
1461 else
1462 lumpy_stall_priority = DEF_PRIORITY / 3;
1463
1464 return priority <= lumpy_stall_priority;
1465}
1466
1da177e4 1467/*
1742f19f
AM
1468 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1469 * of reclaimed pages
1da177e4 1470 */
66635629
MG
1471static noinline_for_stack unsigned long
1472shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1473 struct scan_control *sc, int priority, int file)
1da177e4
LT
1474{
1475 LIST_HEAD(page_list);
e247dbce 1476 unsigned long nr_scanned;
05ff5137 1477 unsigned long nr_reclaimed = 0;
e247dbce 1478 unsigned long nr_taken;
e247dbce
KM
1479 unsigned long nr_anon;
1480 unsigned long nr_file;
92df3a72
MG
1481 unsigned long nr_dirty = 0;
1482 unsigned long nr_writeback = 0;
4356f21d 1483 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1484
35cd7815 1485 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1486 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1487
1488 /* We are about to die and free our memory. Return now. */
1489 if (fatal_signal_pending(current))
1490 return SWAP_CLUSTER_MAX;
1491 }
1492
f3a310bc 1493 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1494 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1495 reclaim_mode |= ISOLATE_ACTIVE;
1496
1da177e4 1497 lru_add_drain();
f80c0673
MK
1498
1499 if (!sc->may_unmap)
1500 reclaim_mode |= ISOLATE_UNMAPPED;
1501 if (!sc->may_writepage)
1502 reclaim_mode |= ISOLATE_CLEAN;
1503
1da177e4 1504 spin_lock_irq(&zone->lru_lock);
b35ea17b 1505
e247dbce 1506 if (scanning_global_lru(sc)) {
4356f21d
MK
1507 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1508 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1509 zone->pages_scanned += nr_scanned;
1510 if (current_is_kswapd())
1511 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1512 nr_scanned);
1513 else
1514 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1515 nr_scanned);
1516 } else {
4356f21d
MK
1517 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1518 &nr_scanned, sc->order, reclaim_mode, zone,
1519 sc->mem_cgroup, 0, file);
e247dbce
KM
1520 /*
1521 * mem_cgroup_isolate_pages() keeps track of
1522 * scanned pages on its own.
1523 */
1524 }
b35ea17b 1525
66635629
MG
1526 if (nr_taken == 0) {
1527 spin_unlock_irq(&zone->lru_lock);
1528 return 0;
1529 }
5ad333eb 1530
1489fa14 1531 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1532
e247dbce 1533 spin_unlock_irq(&zone->lru_lock);
c661b078 1534
92df3a72
MG
1535 nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1536 &nr_dirty, &nr_writeback);
c661b078 1537
e31f3698
WF
1538 /* Check if we should syncronously wait for writeback */
1539 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1540 set_reclaim_mode(priority, sc, true);
92df3a72
MG
1541 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1542 priority, &nr_dirty, &nr_writeback);
e247dbce 1543 }
b35ea17b 1544
e247dbce
KM
1545 local_irq_disable();
1546 if (current_is_kswapd())
1547 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1548 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1549
1489fa14 1550 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4 1551
92df3a72
MG
1552 /*
1553 * If reclaim is isolating dirty pages under writeback, it implies
1554 * that the long-lived page allocation rate is exceeding the page
1555 * laundering rate. Either the global limits are not being effective
1556 * at throttling processes due to the page distribution throughout
1557 * zones or there is heavy usage of a slow backing device. The
1558 * only option is to throttle from reclaim context which is not ideal
1559 * as there is no guarantee the dirtying process is throttled in the
1560 * same way balance_dirty_pages() manages.
1561 *
1562 * This scales the number of dirty pages that must be under writeback
1563 * before throttling depending on priority. It is a simple backoff
1564 * function that has the most effect in the range DEF_PRIORITY to
1565 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1566 * in trouble and reclaim is considered to be in trouble.
1567 *
1568 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1569 * DEF_PRIORITY-1 50% must be PageWriteback
1570 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1571 * ...
1572 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1573 * isolated page is PageWriteback
1574 */
1575 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1576 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1577
e11da5b4
MG
1578 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1579 zone_idx(zone),
1580 nr_scanned, nr_reclaimed,
1581 priority,
f3a310bc 1582 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1583 return nr_reclaimed;
1da177e4
LT
1584}
1585
1586/*
1587 * This moves pages from the active list to the inactive list.
1588 *
1589 * We move them the other way if the page is referenced by one or more
1590 * processes, from rmap.
1591 *
1592 * If the pages are mostly unmapped, the processing is fast and it is
1593 * appropriate to hold zone->lru_lock across the whole operation. But if
1594 * the pages are mapped, the processing is slow (page_referenced()) so we
1595 * should drop zone->lru_lock around each page. It's impossible to balance
1596 * this, so instead we remove the pages from the LRU while processing them.
1597 * It is safe to rely on PG_active against the non-LRU pages in here because
1598 * nobody will play with that bit on a non-LRU page.
1599 *
1600 * The downside is that we have to touch page->_count against each page.
1601 * But we had to alter page->flags anyway.
1602 */
1cfb419b 1603
3eb4140f
WF
1604static void move_active_pages_to_lru(struct zone *zone,
1605 struct list_head *list,
1606 enum lru_list lru)
1607{
1608 unsigned long pgmoved = 0;
1609 struct pagevec pvec;
1610 struct page *page;
1611
1612 pagevec_init(&pvec, 1);
1613
1614 while (!list_empty(list)) {
1615 page = lru_to_page(list);
3eb4140f
WF
1616
1617 VM_BUG_ON(PageLRU(page));
1618 SetPageLRU(page);
1619
3eb4140f
WF
1620 list_move(&page->lru, &zone->lru[lru].list);
1621 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1622 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1623
1624 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1625 spin_unlock_irq(&zone->lru_lock);
1626 if (buffer_heads_over_limit)
1627 pagevec_strip(&pvec);
1628 __pagevec_release(&pvec);
1629 spin_lock_irq(&zone->lru_lock);
1630 }
1631 }
1632 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1633 if (!is_active_lru(lru))
1634 __count_vm_events(PGDEACTIVATE, pgmoved);
1635}
1cfb419b 1636
1742f19f 1637static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1638 struct scan_control *sc, int priority, int file)
1da177e4 1639{
44c241f1 1640 unsigned long nr_taken;
69e05944 1641 unsigned long pgscanned;
6fe6b7e3 1642 unsigned long vm_flags;
1da177e4 1643 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1644 LIST_HEAD(l_active);
b69408e8 1645 LIST_HEAD(l_inactive);
1da177e4 1646 struct page *page;
6e901571 1647 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1648 unsigned long nr_rotated = 0;
f80c0673 1649 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1da177e4
LT
1650
1651 lru_add_drain();
f80c0673
MK
1652
1653 if (!sc->may_unmap)
1654 reclaim_mode |= ISOLATE_UNMAPPED;
1655 if (!sc->may_writepage)
1656 reclaim_mode |= ISOLATE_CLEAN;
1657
1da177e4 1658 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1659 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1660 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1661 &pgscanned, sc->order,
f80c0673 1662 reclaim_mode, zone,
8b25c6d2 1663 1, file);
1cfb419b 1664 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1665 } else {
1666 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1667 &pgscanned, sc->order,
f80c0673 1668 reclaim_mode, zone,
8b25c6d2
JW
1669 sc->mem_cgroup, 1, file);
1670 /*
1671 * mem_cgroup_isolate_pages() keeps track of
1672 * scanned pages on its own.
1673 */
4f98a2fe 1674 }
8b25c6d2 1675
b7c46d15 1676 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1677
3eb4140f 1678 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1679 if (file)
44c241f1 1680 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1681 else
44c241f1 1682 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1683 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1684 spin_unlock_irq(&zone->lru_lock);
1685
1da177e4
LT
1686 while (!list_empty(&l_hold)) {
1687 cond_resched();
1688 page = lru_to_page(&l_hold);
1689 list_del(&page->lru);
7e9cd484 1690
894bc310
LS
1691 if (unlikely(!page_evictable(page, NULL))) {
1692 putback_lru_page(page);
1693 continue;
1694 }
1695
64574746 1696 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1697 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1698 /*
1699 * Identify referenced, file-backed active pages and
1700 * give them one more trip around the active list. So
1701 * that executable code get better chances to stay in
1702 * memory under moderate memory pressure. Anon pages
1703 * are not likely to be evicted by use-once streaming
1704 * IO, plus JVM can create lots of anon VM_EXEC pages,
1705 * so we ignore them here.
1706 */
41e20983 1707 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1708 list_add(&page->lru, &l_active);
1709 continue;
1710 }
1711 }
7e9cd484 1712
5205e56e 1713 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1714 list_add(&page->lru, &l_inactive);
1715 }
1716
b555749a 1717 /*
8cab4754 1718 * Move pages back to the lru list.
b555749a 1719 */
2a1dc509 1720 spin_lock_irq(&zone->lru_lock);
556adecb 1721 /*
8cab4754
WF
1722 * Count referenced pages from currently used mappings as rotated,
1723 * even though only some of them are actually re-activated. This
1724 * helps balance scan pressure between file and anonymous pages in
1725 * get_scan_ratio.
7e9cd484 1726 */
b7c46d15 1727 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1728
3eb4140f
WF
1729 move_active_pages_to_lru(zone, &l_active,
1730 LRU_ACTIVE + file * LRU_FILE);
1731 move_active_pages_to_lru(zone, &l_inactive,
1732 LRU_BASE + file * LRU_FILE);
a731286d 1733 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1734 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1735}
1736
74e3f3c3 1737#ifdef CONFIG_SWAP
14797e23 1738static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1739{
1740 unsigned long active, inactive;
1741
1742 active = zone_page_state(zone, NR_ACTIVE_ANON);
1743 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1744
1745 if (inactive * zone->inactive_ratio < active)
1746 return 1;
1747
1748 return 0;
1749}
1750
14797e23
KM
1751/**
1752 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1753 * @zone: zone to check
1754 * @sc: scan control of this context
1755 *
1756 * Returns true if the zone does not have enough inactive anon pages,
1757 * meaning some active anon pages need to be deactivated.
1758 */
1759static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1760{
1761 int low;
1762
74e3f3c3
MK
1763 /*
1764 * If we don't have swap space, anonymous page deactivation
1765 * is pointless.
1766 */
1767 if (!total_swap_pages)
1768 return 0;
1769
e72e2bd6 1770 if (scanning_global_lru(sc))
14797e23
KM
1771 low = inactive_anon_is_low_global(zone);
1772 else
9b272977 1773 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
14797e23
KM
1774 return low;
1775}
74e3f3c3
MK
1776#else
1777static inline int inactive_anon_is_low(struct zone *zone,
1778 struct scan_control *sc)
1779{
1780 return 0;
1781}
1782#endif
14797e23 1783
56e49d21
RR
1784static int inactive_file_is_low_global(struct zone *zone)
1785{
1786 unsigned long active, inactive;
1787
1788 active = zone_page_state(zone, NR_ACTIVE_FILE);
1789 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1790
1791 return (active > inactive);
1792}
1793
1794/**
1795 * inactive_file_is_low - check if file pages need to be deactivated
1796 * @zone: zone to check
1797 * @sc: scan control of this context
1798 *
1799 * When the system is doing streaming IO, memory pressure here
1800 * ensures that active file pages get deactivated, until more
1801 * than half of the file pages are on the inactive list.
1802 *
1803 * Once we get to that situation, protect the system's working
1804 * set from being evicted by disabling active file page aging.
1805 *
1806 * This uses a different ratio than the anonymous pages, because
1807 * the page cache uses a use-once replacement algorithm.
1808 */
1809static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1810{
1811 int low;
1812
1813 if (scanning_global_lru(sc))
1814 low = inactive_file_is_low_global(zone);
1815 else
9b272977 1816 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
56e49d21
RR
1817 return low;
1818}
1819
b39415b2
RR
1820static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1821 int file)
1822{
1823 if (file)
1824 return inactive_file_is_low(zone, sc);
1825 else
1826 return inactive_anon_is_low(zone, sc);
1827}
1828
4f98a2fe 1829static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1830 struct zone *zone, struct scan_control *sc, int priority)
1831{
4f98a2fe
RR
1832 int file = is_file_lru(lru);
1833
b39415b2
RR
1834 if (is_active_lru(lru)) {
1835 if (inactive_list_is_low(zone, sc, file))
1836 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1837 return 0;
1838 }
1839
33c120ed 1840 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1841}
1842
1f4c025b
KH
1843static int vmscan_swappiness(struct scan_control *sc)
1844{
1845 if (scanning_global_lru(sc))
1846 return vm_swappiness;
1847 return mem_cgroup_swappiness(sc->mem_cgroup);
1848}
1849
4f98a2fe
RR
1850/*
1851 * Determine how aggressively the anon and file LRU lists should be
1852 * scanned. The relative value of each set of LRU lists is determined
1853 * by looking at the fraction of the pages scanned we did rotate back
1854 * onto the active list instead of evict.
1855 *
76a33fc3 1856 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1857 */
76a33fc3
SL
1858static void get_scan_count(struct zone *zone, struct scan_control *sc,
1859 unsigned long *nr, int priority)
4f98a2fe
RR
1860{
1861 unsigned long anon, file, free;
1862 unsigned long anon_prio, file_prio;
1863 unsigned long ap, fp;
6e901571 1864 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1865 u64 fraction[2], denominator;
1866 enum lru_list l;
1867 int noswap = 0;
a4d3e9e7 1868 bool force_scan = false;
246e87a9 1869
f11c0ca5
JW
1870 /*
1871 * If the zone or memcg is small, nr[l] can be 0. This
1872 * results in no scanning on this priority and a potential
1873 * priority drop. Global direct reclaim can go to the next
1874 * zone and tends to have no problems. Global kswapd is for
1875 * zone balancing and it needs to scan a minimum amount. When
1876 * reclaiming for a memcg, a priority drop can cause high
1877 * latencies, so it's better to scan a minimum amount there as
1878 * well.
1879 */
a4d3e9e7
JW
1880 if (scanning_global_lru(sc) && current_is_kswapd())
1881 force_scan = true;
a4d3e9e7
JW
1882 if (!scanning_global_lru(sc))
1883 force_scan = true;
76a33fc3
SL
1884
1885 /* If we have no swap space, do not bother scanning anon pages. */
1886 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1887 noswap = 1;
1888 fraction[0] = 0;
1889 fraction[1] = 1;
1890 denominator = 1;
1891 goto out;
1892 }
4f98a2fe 1893
a4d3e9e7
JW
1894 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1895 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1896 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1897 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1898
e72e2bd6 1899 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1900 free = zone_page_state(zone, NR_FREE_PAGES);
1901 /* If we have very few page cache pages,
1902 force-scan anon pages. */
41858966 1903 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1904 fraction[0] = 1;
1905 fraction[1] = 0;
1906 denominator = 1;
1907 goto out;
eeee9a8c 1908 }
4f98a2fe
RR
1909 }
1910
58c37f6e
KM
1911 /*
1912 * With swappiness at 100, anonymous and file have the same priority.
1913 * This scanning priority is essentially the inverse of IO cost.
1914 */
1f4c025b
KH
1915 anon_prio = vmscan_swappiness(sc);
1916 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1917
4f98a2fe
RR
1918 /*
1919 * OK, so we have swap space and a fair amount of page cache
1920 * pages. We use the recently rotated / recently scanned
1921 * ratios to determine how valuable each cache is.
1922 *
1923 * Because workloads change over time (and to avoid overflow)
1924 * we keep these statistics as a floating average, which ends
1925 * up weighing recent references more than old ones.
1926 *
1927 * anon in [0], file in [1]
1928 */
58c37f6e 1929 spin_lock_irq(&zone->lru_lock);
6e901571 1930 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1931 reclaim_stat->recent_scanned[0] /= 2;
1932 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1933 }
1934
6e901571 1935 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1936 reclaim_stat->recent_scanned[1] /= 2;
1937 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1938 }
1939
4f98a2fe 1940 /*
00d8089c
RR
1941 * The amount of pressure on anon vs file pages is inversely
1942 * proportional to the fraction of recently scanned pages on
1943 * each list that were recently referenced and in active use.
4f98a2fe 1944 */
6e901571
KM
1945 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1946 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1947
6e901571
KM
1948 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1949 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1950 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1951
76a33fc3
SL
1952 fraction[0] = ap;
1953 fraction[1] = fp;
1954 denominator = ap + fp + 1;
1955out:
1956 for_each_evictable_lru(l) {
1957 int file = is_file_lru(l);
1958 unsigned long scan;
6e08a369 1959
76a33fc3
SL
1960 scan = zone_nr_lru_pages(zone, sc, l);
1961 if (priority || noswap) {
1962 scan >>= priority;
f11c0ca5
JW
1963 if (!scan && force_scan)
1964 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1965 scan = div64_u64(scan * fraction[file], denominator);
1966 }
246e87a9 1967 nr[l] = scan;
76a33fc3 1968 }
6e08a369 1969}
4f98a2fe 1970
3e7d3449
MG
1971/*
1972 * Reclaim/compaction depends on a number of pages being freed. To avoid
1973 * disruption to the system, a small number of order-0 pages continue to be
1974 * rotated and reclaimed in the normal fashion. However, by the time we get
1975 * back to the allocator and call try_to_compact_zone(), we ensure that
1976 * there are enough free pages for it to be likely successful
1977 */
1978static inline bool should_continue_reclaim(struct zone *zone,
1979 unsigned long nr_reclaimed,
1980 unsigned long nr_scanned,
1981 struct scan_control *sc)
1982{
1983 unsigned long pages_for_compaction;
1984 unsigned long inactive_lru_pages;
1985
1986 /* If not in reclaim/compaction mode, stop */
f3a310bc 1987 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1988 return false;
1989
2876592f
MG
1990 /* Consider stopping depending on scan and reclaim activity */
1991 if (sc->gfp_mask & __GFP_REPEAT) {
1992 /*
1993 * For __GFP_REPEAT allocations, stop reclaiming if the
1994 * full LRU list has been scanned and we are still failing
1995 * to reclaim pages. This full LRU scan is potentially
1996 * expensive but a __GFP_REPEAT caller really wants to succeed
1997 */
1998 if (!nr_reclaimed && !nr_scanned)
1999 return false;
2000 } else {
2001 /*
2002 * For non-__GFP_REPEAT allocations which can presumably
2003 * fail without consequence, stop if we failed to reclaim
2004 * any pages from the last SWAP_CLUSTER_MAX number of
2005 * pages that were scanned. This will return to the
2006 * caller faster at the risk reclaim/compaction and
2007 * the resulting allocation attempt fails
2008 */
2009 if (!nr_reclaimed)
2010 return false;
2011 }
3e7d3449
MG
2012
2013 /*
2014 * If we have not reclaimed enough pages for compaction and the
2015 * inactive lists are large enough, continue reclaiming
2016 */
2017 pages_for_compaction = (2UL << sc->order);
2018 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2019 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2020 if (sc->nr_reclaimed < pages_for_compaction &&
2021 inactive_lru_pages > pages_for_compaction)
2022 return true;
2023
2024 /* If compaction would go ahead or the allocation would succeed, stop */
2025 switch (compaction_suitable(zone, sc->order)) {
2026 case COMPACT_PARTIAL:
2027 case COMPACT_CONTINUE:
2028 return false;
2029 default:
2030 return true;
2031 }
2032}
2033
1da177e4
LT
2034/*
2035 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2036 */
a79311c1 2037static void shrink_zone(int priority, struct zone *zone,
05ff5137 2038 struct scan_control *sc)
1da177e4 2039{
b69408e8 2040 unsigned long nr[NR_LRU_LISTS];
8695949a 2041 unsigned long nr_to_scan;
b69408e8 2042 enum lru_list l;
f0fdc5e8 2043 unsigned long nr_reclaimed, nr_scanned;
22fba335 2044 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 2045 struct blk_plug plug;
e0f79b8f 2046
3e7d3449
MG
2047restart:
2048 nr_reclaimed = 0;
f0fdc5e8 2049 nr_scanned = sc->nr_scanned;
76a33fc3 2050 get_scan_count(zone, sc, nr, priority);
1da177e4 2051
3da367c3 2052 blk_start_plug(&plug);
556adecb
RR
2053 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2054 nr[LRU_INACTIVE_FILE]) {
894bc310 2055 for_each_evictable_lru(l) {
b69408e8 2056 if (nr[l]) {
ece74b2e
KM
2057 nr_to_scan = min_t(unsigned long,
2058 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2059 nr[l] -= nr_to_scan;
1da177e4 2060
01dbe5c9
KM
2061 nr_reclaimed += shrink_list(l, nr_to_scan,
2062 zone, sc, priority);
b69408e8 2063 }
1da177e4 2064 }
a79311c1
RR
2065 /*
2066 * On large memory systems, scan >> priority can become
2067 * really large. This is fine for the starting priority;
2068 * we want to put equal scanning pressure on each zone.
2069 * However, if the VM has a harder time of freeing pages,
2070 * with multiple processes reclaiming pages, the total
2071 * freeing target can get unreasonably large.
2072 */
338fde90 2073 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2074 break;
1da177e4 2075 }
3da367c3 2076 blk_finish_plug(&plug);
3e7d3449 2077 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2078
556adecb
RR
2079 /*
2080 * Even if we did not try to evict anon pages at all, we want to
2081 * rebalance the anon lru active/inactive ratio.
2082 */
74e3f3c3 2083 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2084 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2085
3e7d3449
MG
2086 /* reclaim/compaction might need reclaim to continue */
2087 if (should_continue_reclaim(zone, nr_reclaimed,
2088 sc->nr_scanned - nr_scanned, sc))
2089 goto restart;
2090
232ea4d6 2091 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2092}
2093
2094/*
2095 * This is the direct reclaim path, for page-allocating processes. We only
2096 * try to reclaim pages from zones which will satisfy the caller's allocation
2097 * request.
2098 *
41858966
MG
2099 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100 * Because:
1da177e4
LT
2101 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102 * allocation or
41858966
MG
2103 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105 * zone defense algorithm.
1da177e4 2106 *
1da177e4
LT
2107 * If a zone is deemed to be full of pinned pages then just give it a light
2108 * scan then give up on it.
e0c23279
MG
2109 *
2110 * This function returns true if a zone is being reclaimed for a costly
2111 * high-order allocation and compaction is either ready to begin or deferred.
2112 * This indicates to the caller that it should retry the allocation or fail.
1da177e4 2113 */
e0c23279 2114static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2115 struct scan_control *sc)
1da177e4 2116{
dd1a239f 2117 struct zoneref *z;
54a6eb5c 2118 struct zone *zone;
d149e3b2
YH
2119 unsigned long nr_soft_reclaimed;
2120 unsigned long nr_soft_scanned;
e0c23279 2121 bool should_abort_reclaim = false;
1cfb419b 2122
d4debc66
MG
2123 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2124 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2125 if (!populated_zone(zone))
1da177e4 2126 continue;
1cfb419b
KH
2127 /*
2128 * Take care memory controller reclaiming has small influence
2129 * to global LRU.
2130 */
e72e2bd6 2131 if (scanning_global_lru(sc)) {
1cfb419b
KH
2132 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2133 continue;
93e4a89a 2134 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2135 continue; /* Let kswapd poll it */
e0887c19
RR
2136 if (COMPACTION_BUILD) {
2137 /*
e0c23279
MG
2138 * If we already have plenty of memory free for
2139 * compaction in this zone, don't free any more.
2140 * Even though compaction is invoked for any
2141 * non-zero order, only frequent costly order
2142 * reclamation is disruptive enough to become a
2143 * noticable problem, like transparent huge page
2144 * allocations.
e0887c19
RR
2145 */
2146 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2147 (compaction_suitable(zone, sc->order) ||
e0c23279
MG
2148 compaction_deferred(zone))) {
2149 should_abort_reclaim = true;
e0887c19 2150 continue;
e0c23279 2151 }
e0887c19 2152 }
ac34a1a3
KH
2153 /*
2154 * This steals pages from memory cgroups over softlimit
2155 * and returns the number of reclaimed pages and
2156 * scanned pages. This works for global memory pressure
2157 * and balancing, not for a memcg's limit.
2158 */
2159 nr_soft_scanned = 0;
2160 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2161 sc->order, sc->gfp_mask,
2162 &nr_soft_scanned);
2163 sc->nr_reclaimed += nr_soft_reclaimed;
2164 sc->nr_scanned += nr_soft_scanned;
2165 /* need some check for avoid more shrink_zone() */
1cfb419b 2166 }
408d8544 2167
a79311c1 2168 shrink_zone(priority, zone, sc);
1da177e4 2169 }
e0c23279
MG
2170
2171 return should_abort_reclaim;
d1908362
MK
2172}
2173
2174static bool zone_reclaimable(struct zone *zone)
2175{
2176 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2177}
2178
929bea7c 2179/* All zones in zonelist are unreclaimable? */
d1908362
MK
2180static bool all_unreclaimable(struct zonelist *zonelist,
2181 struct scan_control *sc)
2182{
2183 struct zoneref *z;
2184 struct zone *zone;
d1908362
MK
2185
2186 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2187 gfp_zone(sc->gfp_mask), sc->nodemask) {
2188 if (!populated_zone(zone))
2189 continue;
2190 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2191 continue;
929bea7c
KM
2192 if (!zone->all_unreclaimable)
2193 return false;
d1908362
MK
2194 }
2195
929bea7c 2196 return true;
1da177e4 2197}
4f98a2fe 2198
1da177e4
LT
2199/*
2200 * This is the main entry point to direct page reclaim.
2201 *
2202 * If a full scan of the inactive list fails to free enough memory then we
2203 * are "out of memory" and something needs to be killed.
2204 *
2205 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2206 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2207 * caller can't do much about. We kick the writeback threads and take explicit
2208 * naps in the hope that some of these pages can be written. But if the
2209 * allocating task holds filesystem locks which prevent writeout this might not
2210 * work, and the allocation attempt will fail.
a41f24ea
NA
2211 *
2212 * returns: 0, if no pages reclaimed
2213 * else, the number of pages reclaimed
1da177e4 2214 */
dac1d27b 2215static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2216 struct scan_control *sc,
2217 struct shrink_control *shrink)
1da177e4
LT
2218{
2219 int priority;
69e05944 2220 unsigned long total_scanned = 0;
1da177e4 2221 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2222 struct zoneref *z;
54a6eb5c 2223 struct zone *zone;
22fba335 2224 unsigned long writeback_threshold;
1da177e4 2225
c0ff7453 2226 get_mems_allowed();
873b4771
KK
2227 delayacct_freepages_start();
2228
e72e2bd6 2229 if (scanning_global_lru(sc))
1cfb419b 2230 count_vm_event(ALLOCSTALL);
1da177e4
LT
2231
2232 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2233 sc->nr_scanned = 0;
f7b7fd8f 2234 if (!priority)
a433658c 2235 disable_swap_token(sc->mem_cgroup);
e0c23279
MG
2236 if (shrink_zones(priority, zonelist, sc))
2237 break;
2238
66e1707b
BS
2239 /*
2240 * Don't shrink slabs when reclaiming memory from
2241 * over limit cgroups
2242 */
e72e2bd6 2243 if (scanning_global_lru(sc)) {
c6a8a8c5 2244 unsigned long lru_pages = 0;
d4debc66
MG
2245 for_each_zone_zonelist(zone, z, zonelist,
2246 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2247 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2248 continue;
2249
2250 lru_pages += zone_reclaimable_pages(zone);
2251 }
2252
1495f230 2253 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2254 if (reclaim_state) {
a79311c1 2255 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2256 reclaim_state->reclaimed_slab = 0;
2257 }
1da177e4 2258 }
66e1707b 2259 total_scanned += sc->nr_scanned;
bb21c7ce 2260 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2261 goto out;
1da177e4
LT
2262
2263 /*
2264 * Try to write back as many pages as we just scanned. This
2265 * tends to cause slow streaming writers to write data to the
2266 * disk smoothly, at the dirtying rate, which is nice. But
2267 * that's undesirable in laptop mode, where we *want* lumpy
2268 * writeout. So in laptop mode, write out the whole world.
2269 */
22fba335
KM
2270 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2271 if (total_scanned > writeback_threshold) {
0e175a18
CW
2272 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2273 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2274 sc->may_writepage = 1;
1da177e4
LT
2275 }
2276
2277 /* Take a nap, wait for some writeback to complete */
7b51755c 2278 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2279 priority < DEF_PRIORITY - 2) {
2280 struct zone *preferred_zone;
2281
2282 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2283 &cpuset_current_mems_allowed,
2284 &preferred_zone);
0e093d99
MG
2285 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2286 }
1da177e4 2287 }
bb21c7ce 2288
1da177e4 2289out:
873b4771 2290 delayacct_freepages_end();
c0ff7453 2291 put_mems_allowed();
873b4771 2292
bb21c7ce
KM
2293 if (sc->nr_reclaimed)
2294 return sc->nr_reclaimed;
2295
929bea7c
KM
2296 /*
2297 * As hibernation is going on, kswapd is freezed so that it can't mark
2298 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2299 * check.
2300 */
2301 if (oom_killer_disabled)
2302 return 0;
2303
bb21c7ce 2304 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2305 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2306 return 1;
2307
2308 return 0;
1da177e4
LT
2309}
2310
dac1d27b 2311unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2312 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2313{
33906bc5 2314 unsigned long nr_reclaimed;
66e1707b
BS
2315 struct scan_control sc = {
2316 .gfp_mask = gfp_mask,
2317 .may_writepage = !laptop_mode,
22fba335 2318 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2319 .may_unmap = 1,
2e2e4259 2320 .may_swap = 1,
66e1707b
BS
2321 .order = order,
2322 .mem_cgroup = NULL,
327c0e96 2323 .nodemask = nodemask,
66e1707b 2324 };
a09ed5e0
YH
2325 struct shrink_control shrink = {
2326 .gfp_mask = sc.gfp_mask,
2327 };
66e1707b 2328
33906bc5
MG
2329 trace_mm_vmscan_direct_reclaim_begin(order,
2330 sc.may_writepage,
2331 gfp_mask);
2332
a09ed5e0 2333 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2334
2335 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2336
2337 return nr_reclaimed;
66e1707b
BS
2338}
2339
00f0b825 2340#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2341
4e416953
BS
2342unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2343 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2344 struct zone *zone,
2345 unsigned long *nr_scanned)
4e416953
BS
2346{
2347 struct scan_control sc = {
0ae5e89c 2348 .nr_scanned = 0,
b8f5c566 2349 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2350 .may_writepage = !laptop_mode,
2351 .may_unmap = 1,
2352 .may_swap = !noswap,
4e416953
BS
2353 .order = 0,
2354 .mem_cgroup = mem,
4e416953 2355 };
0ae5e89c 2356
4e416953
BS
2357 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2358 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2359
2360 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2361 sc.may_writepage,
2362 sc.gfp_mask);
2363
4e416953
BS
2364 /*
2365 * NOTE: Although we can get the priority field, using it
2366 * here is not a good idea, since it limits the pages we can scan.
2367 * if we don't reclaim here, the shrink_zone from balance_pgdat
2368 * will pick up pages from other mem cgroup's as well. We hack
2369 * the priority and make it zero.
2370 */
2371 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2372
2373 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2374
0ae5e89c 2375 *nr_scanned = sc.nr_scanned;
4e416953
BS
2376 return sc.nr_reclaimed;
2377}
2378
e1a1cd59 2379unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2380 gfp_t gfp_mask,
185efc0f 2381 bool noswap)
66e1707b 2382{
4e416953 2383 struct zonelist *zonelist;
bdce6d9e 2384 unsigned long nr_reclaimed;
889976db 2385 int nid;
66e1707b 2386 struct scan_control sc = {
66e1707b 2387 .may_writepage = !laptop_mode,
a6dc60f8 2388 .may_unmap = 1,
2e2e4259 2389 .may_swap = !noswap,
22fba335 2390 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2391 .order = 0,
2392 .mem_cgroup = mem_cont,
327c0e96 2393 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2394 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2395 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2396 };
2397 struct shrink_control shrink = {
2398 .gfp_mask = sc.gfp_mask,
66e1707b 2399 };
66e1707b 2400
889976db
YH
2401 /*
2402 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2403 * take care of from where we get pages. So the node where we start the
2404 * scan does not need to be the current node.
2405 */
2406 nid = mem_cgroup_select_victim_node(mem_cont);
2407
2408 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2409
2410 trace_mm_vmscan_memcg_reclaim_begin(0,
2411 sc.may_writepage,
2412 sc.gfp_mask);
2413
a09ed5e0 2414 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2415
2416 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2417
2418 return nr_reclaimed;
66e1707b
BS
2419}
2420#endif
2421
1741c877
MG
2422/*
2423 * pgdat_balanced is used when checking if a node is balanced for high-order
2424 * allocations. Only zones that meet watermarks and are in a zone allowed
2425 * by the callers classzone_idx are added to balanced_pages. The total of
2426 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2427 * for the node to be considered balanced. Forcing all zones to be balanced
2428 * for high orders can cause excessive reclaim when there are imbalanced zones.
2429 * The choice of 25% is due to
2430 * o a 16M DMA zone that is balanced will not balance a zone on any
2431 * reasonable sized machine
2432 * o On all other machines, the top zone must be at least a reasonable
25985edc 2433 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2434 * would need to be at least 256M for it to be balance a whole node.
2435 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2436 * to balance a node on its own. These seemed like reasonable ratios.
2437 */
2438static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2439 int classzone_idx)
2440{
2441 unsigned long present_pages = 0;
2442 int i;
2443
2444 for (i = 0; i <= classzone_idx; i++)
2445 present_pages += pgdat->node_zones[i].present_pages;
2446
4746efde
SL
2447 /* A special case here: if zone has no page, we think it's balanced */
2448 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2449}
2450
f50de2d3 2451/* is kswapd sleeping prematurely? */
dc83edd9
MG
2452static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2453 int classzone_idx)
f50de2d3 2454{
bb3ab596 2455 int i;
1741c877
MG
2456 unsigned long balanced = 0;
2457 bool all_zones_ok = true;
f50de2d3
MG
2458
2459 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2460 if (remaining)
dc83edd9 2461 return true;
f50de2d3 2462
0abdee2b 2463 /* Check the watermark levels */
08951e54 2464 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2465 struct zone *zone = pgdat->node_zones + i;
2466
2467 if (!populated_zone(zone))
2468 continue;
2469
355b09c4
MG
2470 /*
2471 * balance_pgdat() skips over all_unreclaimable after
2472 * DEF_PRIORITY. Effectively, it considers them balanced so
2473 * they must be considered balanced here as well if kswapd
2474 * is to sleep
2475 */
2476 if (zone->all_unreclaimable) {
2477 balanced += zone->present_pages;
de3fab39 2478 continue;
355b09c4 2479 }
de3fab39 2480
88f5acf8 2481 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2482 i, 0))
1741c877
MG
2483 all_zones_ok = false;
2484 else
2485 balanced += zone->present_pages;
bb3ab596 2486 }
f50de2d3 2487
1741c877
MG
2488 /*
2489 * For high-order requests, the balanced zones must contain at least
2490 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2491 * must be balanced
2492 */
2493 if (order)
afc7e326 2494 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2495 else
2496 return !all_zones_ok;
f50de2d3
MG
2497}
2498
1da177e4
LT
2499/*
2500 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2501 * they are all at high_wmark_pages(zone).
1da177e4 2502 *
0abdee2b 2503 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2504 *
2505 * There is special handling here for zones which are full of pinned pages.
2506 * This can happen if the pages are all mlocked, or if they are all used by
2507 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2508 * What we do is to detect the case where all pages in the zone have been
2509 * scanned twice and there has been zero successful reclaim. Mark the zone as
2510 * dead and from now on, only perform a short scan. Basically we're polling
2511 * the zone for when the problem goes away.
2512 *
2513 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2514 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2515 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2516 * lower zones regardless of the number of free pages in the lower zones. This
2517 * interoperates with the page allocator fallback scheme to ensure that aging
2518 * of pages is balanced across the zones.
1da177e4 2519 */
99504748 2520static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2521 int *classzone_idx)
1da177e4 2522{
1da177e4 2523 int all_zones_ok;
1741c877 2524 unsigned long balanced;
1da177e4
LT
2525 int priority;
2526 int i;
99504748 2527 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2528 unsigned long total_scanned;
1da177e4 2529 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2530 unsigned long nr_soft_reclaimed;
2531 unsigned long nr_soft_scanned;
179e9639
AM
2532 struct scan_control sc = {
2533 .gfp_mask = GFP_KERNEL,
a6dc60f8 2534 .may_unmap = 1,
2e2e4259 2535 .may_swap = 1,
22fba335
KM
2536 /*
2537 * kswapd doesn't want to be bailed out while reclaim. because
2538 * we want to put equal scanning pressure on each zone.
2539 */
2540 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2541 .order = order,
66e1707b 2542 .mem_cgroup = NULL,
179e9639 2543 };
a09ed5e0
YH
2544 struct shrink_control shrink = {
2545 .gfp_mask = sc.gfp_mask,
2546 };
1da177e4
LT
2547loop_again:
2548 total_scanned = 0;
a79311c1 2549 sc.nr_reclaimed = 0;
c0bbbc73 2550 sc.may_writepage = !laptop_mode;
f8891e5e 2551 count_vm_event(PAGEOUTRUN);
1da177e4 2552
1da177e4 2553 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2554 unsigned long lru_pages = 0;
bb3ab596 2555 int has_under_min_watermark_zone = 0;
1da177e4 2556
f7b7fd8f
RR
2557 /* The swap token gets in the way of swapout... */
2558 if (!priority)
a433658c 2559 disable_swap_token(NULL);
f7b7fd8f 2560
1da177e4 2561 all_zones_ok = 1;
1741c877 2562 balanced = 0;
1da177e4 2563
d6277db4
RW
2564 /*
2565 * Scan in the highmem->dma direction for the highest
2566 * zone which needs scanning
2567 */
2568 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2569 struct zone *zone = pgdat->node_zones + i;
1da177e4 2570
d6277db4
RW
2571 if (!populated_zone(zone))
2572 continue;
1da177e4 2573
93e4a89a 2574 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2575 continue;
1da177e4 2576
556adecb
RR
2577 /*
2578 * Do some background aging of the anon list, to give
2579 * pages a chance to be referenced before reclaiming.
2580 */
14797e23 2581 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2582 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2583 &sc, priority, 0);
2584
88f5acf8 2585 if (!zone_watermark_ok_safe(zone, order,
41858966 2586 high_wmark_pages(zone), 0, 0)) {
d6277db4 2587 end_zone = i;
e1dbeda6 2588 break;
439423f6
SL
2589 } else {
2590 /* If balanced, clear the congested flag */
2591 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2592 }
1da177e4 2593 }
e1dbeda6
AM
2594 if (i < 0)
2595 goto out;
2596
1da177e4
LT
2597 for (i = 0; i <= end_zone; i++) {
2598 struct zone *zone = pgdat->node_zones + i;
2599
adea02a1 2600 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2601 }
2602
2603 /*
2604 * Now scan the zone in the dma->highmem direction, stopping
2605 * at the last zone which needs scanning.
2606 *
2607 * We do this because the page allocator works in the opposite
2608 * direction. This prevents the page allocator from allocating
2609 * pages behind kswapd's direction of progress, which would
2610 * cause too much scanning of the lower zones.
2611 */
2612 for (i = 0; i <= end_zone; i++) {
2613 struct zone *zone = pgdat->node_zones + i;
b15e0905 2614 int nr_slab;
8afdcece 2615 unsigned long balance_gap;
1da177e4 2616
f3fe6512 2617 if (!populated_zone(zone))
1da177e4
LT
2618 continue;
2619
93e4a89a 2620 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2621 continue;
2622
1da177e4 2623 sc.nr_scanned = 0;
4e416953 2624
0ae5e89c 2625 nr_soft_scanned = 0;
4e416953
BS
2626 /*
2627 * Call soft limit reclaim before calling shrink_zone.
4e416953 2628 */
0ae5e89c
YH
2629 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2630 order, sc.gfp_mask,
2631 &nr_soft_scanned);
2632 sc.nr_reclaimed += nr_soft_reclaimed;
2633 total_scanned += nr_soft_scanned;
00918b6a 2634
32a4330d 2635 /*
8afdcece
MG
2636 * We put equal pressure on every zone, unless
2637 * one zone has way too many pages free
2638 * already. The "too many pages" is defined
2639 * as the high wmark plus a "gap" where the
2640 * gap is either the low watermark or 1%
2641 * of the zone, whichever is smaller.
32a4330d 2642 */
8afdcece
MG
2643 balance_gap = min(low_wmark_pages(zone),
2644 (zone->present_pages +
2645 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2646 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2647 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2648 high_wmark_pages(zone) + balance_gap,
d7868dae 2649 end_zone, 0)) {
a79311c1 2650 shrink_zone(priority, zone, &sc);
5a03b051 2651
d7868dae
MG
2652 reclaim_state->reclaimed_slab = 0;
2653 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2654 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2655 total_scanned += sc.nr_scanned;
2656
2657 if (nr_slab == 0 && !zone_reclaimable(zone))
2658 zone->all_unreclaimable = 1;
2659 }
2660
1da177e4
LT
2661 /*
2662 * If we've done a decent amount of scanning and
2663 * the reclaim ratio is low, start doing writepage
2664 * even in laptop mode
2665 */
2666 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2667 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2668 sc.may_writepage = 1;
bb3ab596 2669
215ddd66
MG
2670 if (zone->all_unreclaimable) {
2671 if (end_zone && end_zone == i)
2672 end_zone--;
d7868dae 2673 continue;
215ddd66 2674 }
d7868dae 2675
88f5acf8 2676 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2677 high_wmark_pages(zone), end_zone, 0)) {
2678 all_zones_ok = 0;
2679 /*
2680 * We are still under min water mark. This
2681 * means that we have a GFP_ATOMIC allocation
2682 * failure risk. Hurry up!
2683 */
88f5acf8 2684 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2685 min_wmark_pages(zone), end_zone, 0))
2686 has_under_min_watermark_zone = 1;
0e093d99
MG
2687 } else {
2688 /*
2689 * If a zone reaches its high watermark,
2690 * consider it to be no longer congested. It's
2691 * possible there are dirty pages backed by
2692 * congested BDIs but as pressure is relieved,
2693 * spectulatively avoid congestion waits
2694 */
2695 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2696 if (i <= *classzone_idx)
1741c877 2697 balanced += zone->present_pages;
45973d74 2698 }
bb3ab596 2699
1da177e4 2700 }
dc83edd9 2701 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2702 break; /* kswapd: all done */
2703 /*
2704 * OK, kswapd is getting into trouble. Take a nap, then take
2705 * another pass across the zones.
2706 */
bb3ab596
KM
2707 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2708 if (has_under_min_watermark_zone)
2709 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2710 else
2711 congestion_wait(BLK_RW_ASYNC, HZ/10);
2712 }
1da177e4
LT
2713
2714 /*
2715 * We do this so kswapd doesn't build up large priorities for
2716 * example when it is freeing in parallel with allocators. It
2717 * matches the direct reclaim path behaviour in terms of impact
2718 * on zone->*_priority.
2719 */
a79311c1 2720 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2721 break;
2722 }
2723out:
99504748
MG
2724
2725 /*
2726 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2727 * high-order: Balanced zones must make up at least 25% of the node
2728 * for the node to be balanced
99504748 2729 */
dc83edd9 2730 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2731 cond_resched();
8357376d
RW
2732
2733 try_to_freeze();
2734
73ce02e9
KM
2735 /*
2736 * Fragmentation may mean that the system cannot be
2737 * rebalanced for high-order allocations in all zones.
2738 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2739 * it means the zones have been fully scanned and are still
2740 * not balanced. For high-order allocations, there is
2741 * little point trying all over again as kswapd may
2742 * infinite loop.
2743 *
2744 * Instead, recheck all watermarks at order-0 as they
2745 * are the most important. If watermarks are ok, kswapd will go
2746 * back to sleep. High-order users can still perform direct
2747 * reclaim if they wish.
2748 */
2749 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2750 order = sc.order = 0;
2751
1da177e4
LT
2752 goto loop_again;
2753 }
2754
99504748
MG
2755 /*
2756 * If kswapd was reclaiming at a higher order, it has the option of
2757 * sleeping without all zones being balanced. Before it does, it must
2758 * ensure that the watermarks for order-0 on *all* zones are met and
2759 * that the congestion flags are cleared. The congestion flag must
2760 * be cleared as kswapd is the only mechanism that clears the flag
2761 * and it is potentially going to sleep here.
2762 */
2763 if (order) {
2764 for (i = 0; i <= end_zone; i++) {
2765 struct zone *zone = pgdat->node_zones + i;
2766
2767 if (!populated_zone(zone))
2768 continue;
2769
2770 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2771 continue;
2772
2773 /* Confirm the zone is balanced for order-0 */
2774 if (!zone_watermark_ok(zone, 0,
2775 high_wmark_pages(zone), 0, 0)) {
2776 order = sc.order = 0;
2777 goto loop_again;
2778 }
2779
2780 /* If balanced, clear the congested flag */
2781 zone_clear_flag(zone, ZONE_CONGESTED);
16fb9512
SL
2782 if (i <= *classzone_idx)
2783 balanced += zone->present_pages;
99504748
MG
2784 }
2785 }
2786
0abdee2b
MG
2787 /*
2788 * Return the order we were reclaiming at so sleeping_prematurely()
2789 * makes a decision on the order we were last reclaiming at. However,
2790 * if another caller entered the allocator slow path while kswapd
2791 * was awake, order will remain at the higher level
2792 */
dc83edd9 2793 *classzone_idx = end_zone;
0abdee2b 2794 return order;
1da177e4
LT
2795}
2796
dc83edd9 2797static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2798{
2799 long remaining = 0;
2800 DEFINE_WAIT(wait);
2801
2802 if (freezing(current) || kthread_should_stop())
2803 return;
2804
2805 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2806
2807 /* Try to sleep for a short interval */
dc83edd9 2808 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2809 remaining = schedule_timeout(HZ/10);
2810 finish_wait(&pgdat->kswapd_wait, &wait);
2811 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2812 }
2813
2814 /*
2815 * After a short sleep, check if it was a premature sleep. If not, then
2816 * go fully to sleep until explicitly woken up.
2817 */
dc83edd9 2818 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2819 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2820
2821 /*
2822 * vmstat counters are not perfectly accurate and the estimated
2823 * value for counters such as NR_FREE_PAGES can deviate from the
2824 * true value by nr_online_cpus * threshold. To avoid the zone
2825 * watermarks being breached while under pressure, we reduce the
2826 * per-cpu vmstat threshold while kswapd is awake and restore
2827 * them before going back to sleep.
2828 */
2829 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2830 schedule();
2831 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2832 } else {
2833 if (remaining)
2834 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2835 else
2836 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2837 }
2838 finish_wait(&pgdat->kswapd_wait, &wait);
2839}
2840
1da177e4
LT
2841/*
2842 * The background pageout daemon, started as a kernel thread
4f98a2fe 2843 * from the init process.
1da177e4
LT
2844 *
2845 * This basically trickles out pages so that we have _some_
2846 * free memory available even if there is no other activity
2847 * that frees anything up. This is needed for things like routing
2848 * etc, where we otherwise might have all activity going on in
2849 * asynchronous contexts that cannot page things out.
2850 *
2851 * If there are applications that are active memory-allocators
2852 * (most normal use), this basically shouldn't matter.
2853 */
2854static int kswapd(void *p)
2855{
215ddd66 2856 unsigned long order, new_order;
d2ebd0f6 2857 unsigned balanced_order;
215ddd66 2858 int classzone_idx, new_classzone_idx;
d2ebd0f6 2859 int balanced_classzone_idx;
1da177e4
LT
2860 pg_data_t *pgdat = (pg_data_t*)p;
2861 struct task_struct *tsk = current;
f0bc0a60 2862
1da177e4
LT
2863 struct reclaim_state reclaim_state = {
2864 .reclaimed_slab = 0,
2865 };
a70f7302 2866 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2867
cf40bd16
NP
2868 lockdep_set_current_reclaim_state(GFP_KERNEL);
2869
174596a0 2870 if (!cpumask_empty(cpumask))
c5f59f08 2871 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2872 current->reclaim_state = &reclaim_state;
2873
2874 /*
2875 * Tell the memory management that we're a "memory allocator",
2876 * and that if we need more memory we should get access to it
2877 * regardless (see "__alloc_pages()"). "kswapd" should
2878 * never get caught in the normal page freeing logic.
2879 *
2880 * (Kswapd normally doesn't need memory anyway, but sometimes
2881 * you need a small amount of memory in order to be able to
2882 * page out something else, and this flag essentially protects
2883 * us from recursively trying to free more memory as we're
2884 * trying to free the first piece of memory in the first place).
2885 */
930d9152 2886 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2887 set_freezable();
1da177e4 2888
215ddd66 2889 order = new_order = 0;
d2ebd0f6 2890 balanced_order = 0;
215ddd66 2891 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2892 balanced_classzone_idx = classzone_idx;
1da177e4 2893 for ( ; ; ) {
8fe23e05 2894 int ret;
3e1d1d28 2895
215ddd66
MG
2896 /*
2897 * If the last balance_pgdat was unsuccessful it's unlikely a
2898 * new request of a similar or harder type will succeed soon
2899 * so consider going to sleep on the basis we reclaimed at
2900 */
d2ebd0f6
AS
2901 if (balanced_classzone_idx >= new_classzone_idx &&
2902 balanced_order == new_order) {
215ddd66
MG
2903 new_order = pgdat->kswapd_max_order;
2904 new_classzone_idx = pgdat->classzone_idx;
2905 pgdat->kswapd_max_order = 0;
2906 pgdat->classzone_idx = pgdat->nr_zones - 1;
2907 }
2908
99504748 2909 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2910 /*
2911 * Don't sleep if someone wants a larger 'order'
99504748 2912 * allocation or has tigher zone constraints
1da177e4
LT
2913 */
2914 order = new_order;
99504748 2915 classzone_idx = new_classzone_idx;
1da177e4 2916 } else {
d2ebd0f6
AS
2917 kswapd_try_to_sleep(pgdat, balanced_order,
2918 balanced_classzone_idx);
1da177e4 2919 order = pgdat->kswapd_max_order;
99504748 2920 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2921 new_order = order;
2922 new_classzone_idx = classzone_idx;
4d40502e 2923 pgdat->kswapd_max_order = 0;
215ddd66 2924 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2925 }
1da177e4 2926
8fe23e05
DR
2927 ret = try_to_freeze();
2928 if (kthread_should_stop())
2929 break;
2930
2931 /*
2932 * We can speed up thawing tasks if we don't call balance_pgdat
2933 * after returning from the refrigerator
2934 */
33906bc5
MG
2935 if (!ret) {
2936 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2937 balanced_classzone_idx = classzone_idx;
2938 balanced_order = balance_pgdat(pgdat, order,
2939 &balanced_classzone_idx);
33906bc5 2940 }
1da177e4
LT
2941 }
2942 return 0;
2943}
2944
2945/*
2946 * A zone is low on free memory, so wake its kswapd task to service it.
2947 */
99504748 2948void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2949{
2950 pg_data_t *pgdat;
2951
f3fe6512 2952 if (!populated_zone(zone))
1da177e4
LT
2953 return;
2954
88f5acf8 2955 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2956 return;
88f5acf8 2957 pgdat = zone->zone_pgdat;
99504748 2958 if (pgdat->kswapd_max_order < order) {
1da177e4 2959 pgdat->kswapd_max_order = order;
99504748
MG
2960 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2961 }
8d0986e2 2962 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2963 return;
88f5acf8
MG
2964 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2965 return;
2966
2967 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2968 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2969}
2970
adea02a1
WF
2971/*
2972 * The reclaimable count would be mostly accurate.
2973 * The less reclaimable pages may be
2974 * - mlocked pages, which will be moved to unevictable list when encountered
2975 * - mapped pages, which may require several travels to be reclaimed
2976 * - dirty pages, which is not "instantly" reclaimable
2977 */
2978unsigned long global_reclaimable_pages(void)
4f98a2fe 2979{
adea02a1
WF
2980 int nr;
2981
2982 nr = global_page_state(NR_ACTIVE_FILE) +
2983 global_page_state(NR_INACTIVE_FILE);
2984
2985 if (nr_swap_pages > 0)
2986 nr += global_page_state(NR_ACTIVE_ANON) +
2987 global_page_state(NR_INACTIVE_ANON);
2988
2989 return nr;
2990}
2991
2992unsigned long zone_reclaimable_pages(struct zone *zone)
2993{
2994 int nr;
2995
2996 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2997 zone_page_state(zone, NR_INACTIVE_FILE);
2998
2999 if (nr_swap_pages > 0)
3000 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3001 zone_page_state(zone, NR_INACTIVE_ANON);
3002
3003 return nr;
4f98a2fe
RR
3004}
3005
c6f37f12 3006#ifdef CONFIG_HIBERNATION
1da177e4 3007/*
7b51755c 3008 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3009 * freed pages.
3010 *
3011 * Rather than trying to age LRUs the aim is to preserve the overall
3012 * LRU order by reclaiming preferentially
3013 * inactive > active > active referenced > active mapped
1da177e4 3014 */
7b51755c 3015unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3016{
d6277db4 3017 struct reclaim_state reclaim_state;
d6277db4 3018 struct scan_control sc = {
7b51755c
KM
3019 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3020 .may_swap = 1,
3021 .may_unmap = 1,
d6277db4 3022 .may_writepage = 1,
7b51755c
KM
3023 .nr_to_reclaim = nr_to_reclaim,
3024 .hibernation_mode = 1,
7b51755c 3025 .order = 0,
1da177e4 3026 };
a09ed5e0
YH
3027 struct shrink_control shrink = {
3028 .gfp_mask = sc.gfp_mask,
3029 };
3030 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3031 struct task_struct *p = current;
3032 unsigned long nr_reclaimed;
1da177e4 3033
7b51755c
KM
3034 p->flags |= PF_MEMALLOC;
3035 lockdep_set_current_reclaim_state(sc.gfp_mask);
3036 reclaim_state.reclaimed_slab = 0;
3037 p->reclaim_state = &reclaim_state;
d6277db4 3038
a09ed5e0 3039 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3040
7b51755c
KM
3041 p->reclaim_state = NULL;
3042 lockdep_clear_current_reclaim_state();
3043 p->flags &= ~PF_MEMALLOC;
d6277db4 3044
7b51755c 3045 return nr_reclaimed;
1da177e4 3046}
c6f37f12 3047#endif /* CONFIG_HIBERNATION */
1da177e4 3048
1da177e4
LT
3049/* It's optimal to keep kswapds on the same CPUs as their memory, but
3050 not required for correctness. So if the last cpu in a node goes
3051 away, we get changed to run anywhere: as the first one comes back,
3052 restore their cpu bindings. */
9c7b216d 3053static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3054 unsigned long action, void *hcpu)
1da177e4 3055{
58c0a4a7 3056 int nid;
1da177e4 3057
8bb78442 3058 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3059 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3060 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3061 const struct cpumask *mask;
3062
3063 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3064
3e597945 3065 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3066 /* One of our CPUs online: restore mask */
c5f59f08 3067 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3068 }
3069 }
3070 return NOTIFY_OK;
3071}
1da177e4 3072
3218ae14
YG
3073/*
3074 * This kswapd start function will be called by init and node-hot-add.
3075 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3076 */
3077int kswapd_run(int nid)
3078{
3079 pg_data_t *pgdat = NODE_DATA(nid);
3080 int ret = 0;
3081
3082 if (pgdat->kswapd)
3083 return 0;
3084
3085 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3086 if (IS_ERR(pgdat->kswapd)) {
3087 /* failure at boot is fatal */
3088 BUG_ON(system_state == SYSTEM_BOOTING);
3089 printk("Failed to start kswapd on node %d\n",nid);
3090 ret = -1;
3091 }
3092 return ret;
3093}
3094
8fe23e05
DR
3095/*
3096 * Called by memory hotplug when all memory in a node is offlined.
3097 */
3098void kswapd_stop(int nid)
3099{
3100 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3101
3102 if (kswapd)
3103 kthread_stop(kswapd);
3104}
3105
1da177e4
LT
3106static int __init kswapd_init(void)
3107{
3218ae14 3108 int nid;
69e05944 3109
1da177e4 3110 swap_setup();
9422ffba 3111 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3112 kswapd_run(nid);
1da177e4
LT
3113 hotcpu_notifier(cpu_callback, 0);
3114 return 0;
3115}
3116
3117module_init(kswapd_init)
9eeff239
CL
3118
3119#ifdef CONFIG_NUMA
3120/*
3121 * Zone reclaim mode
3122 *
3123 * If non-zero call zone_reclaim when the number of free pages falls below
3124 * the watermarks.
9eeff239
CL
3125 */
3126int zone_reclaim_mode __read_mostly;
3127
1b2ffb78 3128#define RECLAIM_OFF 0
7d03431c 3129#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3130#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3131#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3132
a92f7126
CL
3133/*
3134 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3135 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3136 * a zone.
3137 */
3138#define ZONE_RECLAIM_PRIORITY 4
3139
9614634f
CL
3140/*
3141 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3142 * occur.
3143 */
3144int sysctl_min_unmapped_ratio = 1;
3145
0ff38490
CL
3146/*
3147 * If the number of slab pages in a zone grows beyond this percentage then
3148 * slab reclaim needs to occur.
3149 */
3150int sysctl_min_slab_ratio = 5;
3151
90afa5de
MG
3152static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3153{
3154 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3155 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3156 zone_page_state(zone, NR_ACTIVE_FILE);
3157
3158 /*
3159 * It's possible for there to be more file mapped pages than
3160 * accounted for by the pages on the file LRU lists because
3161 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3162 */
3163 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3164}
3165
3166/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3167static long zone_pagecache_reclaimable(struct zone *zone)
3168{
3169 long nr_pagecache_reclaimable;
3170 long delta = 0;
3171
3172 /*
3173 * If RECLAIM_SWAP is set, then all file pages are considered
3174 * potentially reclaimable. Otherwise, we have to worry about
3175 * pages like swapcache and zone_unmapped_file_pages() provides
3176 * a better estimate
3177 */
3178 if (zone_reclaim_mode & RECLAIM_SWAP)
3179 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3180 else
3181 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3182
3183 /* If we can't clean pages, remove dirty pages from consideration */
3184 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3185 delta += zone_page_state(zone, NR_FILE_DIRTY);
3186
3187 /* Watch for any possible underflows due to delta */
3188 if (unlikely(delta > nr_pagecache_reclaimable))
3189 delta = nr_pagecache_reclaimable;
3190
3191 return nr_pagecache_reclaimable - delta;
3192}
3193
9eeff239
CL
3194/*
3195 * Try to free up some pages from this zone through reclaim.
3196 */
179e9639 3197static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3198{
7fb2d46d 3199 /* Minimum pages needed in order to stay on node */
69e05944 3200 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3201 struct task_struct *p = current;
3202 struct reclaim_state reclaim_state;
8695949a 3203 int priority;
179e9639
AM
3204 struct scan_control sc = {
3205 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3206 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3207 .may_swap = 1,
22fba335
KM
3208 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3209 SWAP_CLUSTER_MAX),
179e9639 3210 .gfp_mask = gfp_mask,
bd2f6199 3211 .order = order,
179e9639 3212 };
a09ed5e0
YH
3213 struct shrink_control shrink = {
3214 .gfp_mask = sc.gfp_mask,
3215 };
15748048 3216 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3217
9eeff239 3218 cond_resched();
d4f7796e
CL
3219 /*
3220 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3221 * and we also need to be able to write out pages for RECLAIM_WRITE
3222 * and RECLAIM_SWAP.
3223 */
3224 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3225 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3226 reclaim_state.reclaimed_slab = 0;
3227 p->reclaim_state = &reclaim_state;
c84db23c 3228
90afa5de 3229 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3230 /*
3231 * Free memory by calling shrink zone with increasing
3232 * priorities until we have enough memory freed.
3233 */
3234 priority = ZONE_RECLAIM_PRIORITY;
3235 do {
a79311c1 3236 shrink_zone(priority, zone, &sc);
0ff38490 3237 priority--;
a79311c1 3238 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3239 }
c84db23c 3240
15748048
KM
3241 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3242 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3243 /*
7fb2d46d 3244 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3245 * many pages were freed in this zone. So we take the current
3246 * number of slab pages and shake the slab until it is reduced
3247 * by the same nr_pages that we used for reclaiming unmapped
3248 * pages.
2a16e3f4 3249 *
0ff38490
CL
3250 * Note that shrink_slab will free memory on all zones and may
3251 * take a long time.
2a16e3f4 3252 */
4dc4b3d9
KM
3253 for (;;) {
3254 unsigned long lru_pages = zone_reclaimable_pages(zone);
3255
3256 /* No reclaimable slab or very low memory pressure */
1495f230 3257 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3258 break;
3259
3260 /* Freed enough memory */
3261 nr_slab_pages1 = zone_page_state(zone,
3262 NR_SLAB_RECLAIMABLE);
3263 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3264 break;
3265 }
83e33a47
CL
3266
3267 /*
3268 * Update nr_reclaimed by the number of slab pages we
3269 * reclaimed from this zone.
3270 */
15748048
KM
3271 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3272 if (nr_slab_pages1 < nr_slab_pages0)
3273 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3274 }
3275
9eeff239 3276 p->reclaim_state = NULL;
d4f7796e 3277 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3278 lockdep_clear_current_reclaim_state();
a79311c1 3279 return sc.nr_reclaimed >= nr_pages;
9eeff239 3280}
179e9639
AM
3281
3282int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3283{
179e9639 3284 int node_id;
d773ed6b 3285 int ret;
179e9639
AM
3286
3287 /*
0ff38490
CL
3288 * Zone reclaim reclaims unmapped file backed pages and
3289 * slab pages if we are over the defined limits.
34aa1330 3290 *
9614634f
CL
3291 * A small portion of unmapped file backed pages is needed for
3292 * file I/O otherwise pages read by file I/O will be immediately
3293 * thrown out if the zone is overallocated. So we do not reclaim
3294 * if less than a specified percentage of the zone is used by
3295 * unmapped file backed pages.
179e9639 3296 */
90afa5de
MG
3297 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3298 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3299 return ZONE_RECLAIM_FULL;
179e9639 3300
93e4a89a 3301 if (zone->all_unreclaimable)
fa5e084e 3302 return ZONE_RECLAIM_FULL;
d773ed6b 3303
179e9639 3304 /*
d773ed6b 3305 * Do not scan if the allocation should not be delayed.
179e9639 3306 */
d773ed6b 3307 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3308 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3309
3310 /*
3311 * Only run zone reclaim on the local zone or on zones that do not
3312 * have associated processors. This will favor the local processor
3313 * over remote processors and spread off node memory allocations
3314 * as wide as possible.
3315 */
89fa3024 3316 node_id = zone_to_nid(zone);
37c0708d 3317 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3318 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3319
3320 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3321 return ZONE_RECLAIM_NOSCAN;
3322
d773ed6b
DR
3323 ret = __zone_reclaim(zone, gfp_mask, order);
3324 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3325
24cf7251
MG
3326 if (!ret)
3327 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3328
d773ed6b 3329 return ret;
179e9639 3330}
9eeff239 3331#endif
894bc310 3332
894bc310
LS
3333/*
3334 * page_evictable - test whether a page is evictable
3335 * @page: the page to test
3336 * @vma: the VMA in which the page is or will be mapped, may be NULL
3337 *
3338 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3339 * lists vs unevictable list. The vma argument is !NULL when called from the
3340 * fault path to determine how to instantate a new page.
894bc310
LS
3341 *
3342 * Reasons page might not be evictable:
ba9ddf49 3343 * (1) page's mapping marked unevictable
b291f000 3344 * (2) page is part of an mlocked VMA
ba9ddf49 3345 *
894bc310
LS
3346 */
3347int page_evictable(struct page *page, struct vm_area_struct *vma)
3348{
3349
ba9ddf49
LS
3350 if (mapping_unevictable(page_mapping(page)))
3351 return 0;
3352
b291f000
NP
3353 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3354 return 0;
894bc310
LS
3355
3356 return 1;
3357}
89e004ea
LS
3358
3359/**
3360 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3361 * @page: page to check evictability and move to appropriate lru list
3362 * @zone: zone page is in
3363 *
3364 * Checks a page for evictability and moves the page to the appropriate
3365 * zone lru list.
3366 *
3367 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3368 * have PageUnevictable set.
3369 */
3370static void check_move_unevictable_page(struct page *page, struct zone *zone)
3371{
3372 VM_BUG_ON(PageActive(page));
3373
3374retry:
3375 ClearPageUnevictable(page);
3376 if (page_evictable(page, NULL)) {
401a8e1c 3377 enum lru_list l = page_lru_base_type(page);
af936a16 3378
89e004ea
LS
3379 __dec_zone_state(zone, NR_UNEVICTABLE);
3380 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3381 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3382 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3383 __count_vm_event(UNEVICTABLE_PGRESCUED);
3384 } else {
3385 /*
3386 * rotate unevictable list
3387 */
3388 SetPageUnevictable(page);
3389 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3390 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3391 if (page_evictable(page, NULL))
3392 goto retry;
3393 }
3394}
3395
3396/**
3397 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3398 * @mapping: struct address_space to scan for evictable pages
3399 *
3400 * Scan all pages in mapping. Check unevictable pages for
3401 * evictability and move them to the appropriate zone lru list.
3402 */
3403void scan_mapping_unevictable_pages(struct address_space *mapping)
3404{
3405 pgoff_t next = 0;
3406 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3407 PAGE_CACHE_SHIFT;
3408 struct zone *zone;
3409 struct pagevec pvec;
3410
3411 if (mapping->nrpages == 0)
3412 return;
3413
3414 pagevec_init(&pvec, 0);
3415 while (next < end &&
3416 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3417 int i;
3418 int pg_scanned = 0;
3419
3420 zone = NULL;
3421
3422 for (i = 0; i < pagevec_count(&pvec); i++) {
3423 struct page *page = pvec.pages[i];
3424 pgoff_t page_index = page->index;
3425 struct zone *pagezone = page_zone(page);
3426
3427 pg_scanned++;
3428 if (page_index > next)
3429 next = page_index;
3430 next++;
3431
3432 if (pagezone != zone) {
3433 if (zone)
3434 spin_unlock_irq(&zone->lru_lock);
3435 zone = pagezone;
3436 spin_lock_irq(&zone->lru_lock);
3437 }
3438
3439 if (PageLRU(page) && PageUnevictable(page))
3440 check_move_unevictable_page(page, zone);
3441 }
3442 if (zone)
3443 spin_unlock_irq(&zone->lru_lock);
3444 pagevec_release(&pvec);
3445
3446 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3447 }
3448
3449}
af936a16 3450
264e56d8 3451static void warn_scan_unevictable_pages(void)
af936a16 3452{
264e56d8
JW
3453 printk_once(KERN_WARNING
3454 "The scan_unevictable_pages sysctl/node-interface has been "
3455 "disabled for lack of a legitimate use case. If you have "
3456 "one, please send an email to linux-mm@kvack.org.\n");
af936a16
LS
3457}
3458
3459/*
3460 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3461 * all nodes' unevictable lists for evictable pages
3462 */
3463unsigned long scan_unevictable_pages;
3464
3465int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3466 void __user *buffer,
af936a16
LS
3467 size_t *length, loff_t *ppos)
3468{
264e56d8 3469 warn_scan_unevictable_pages();
8d65af78 3470 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3471 scan_unevictable_pages = 0;
3472 return 0;
3473}
3474
e4455abb 3475#ifdef CONFIG_NUMA
af936a16
LS
3476/*
3477 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3478 * a specified node's per zone unevictable lists for evictable pages.
3479 */
3480
3481static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3482 struct sysdev_attribute *attr,
3483 char *buf)
3484{
264e56d8 3485 warn_scan_unevictable_pages();
af936a16
LS
3486 return sprintf(buf, "0\n"); /* always zero; should fit... */
3487}
3488
3489static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3490 struct sysdev_attribute *attr,
3491 const char *buf, size_t count)
3492{
264e56d8 3493 warn_scan_unevictable_pages();
af936a16
LS
3494 return 1;
3495}
3496
3497
3498static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3499 read_scan_unevictable_node,
3500 write_scan_unevictable_node);
3501
3502int scan_unevictable_register_node(struct node *node)
3503{
3504 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3505}
3506
3507void scan_unevictable_unregister_node(struct node *node)
3508{
3509 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3510}
e4455abb 3511#endif
This page took 1.156649 seconds and 5 git commands to generate.