vmscan: kill unused lru functions
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
1da177e4 55 /* This context's GFP mask */
6daa0e28 56 gfp_t gfp_mask;
1da177e4
LT
57
58 int may_writepage;
59
f1fd1067
CL
60 /* Can pages be swapped as part of reclaim? */
61 int may_swap;
62
1da177e4
LT
63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 * In this context, it doesn't matter that we scan the
66 * whole list at once. */
67 int swap_cluster_max;
d6277db4
RW
68
69 int swappiness;
408d8544
NP
70
71 int all_unreclaimable;
5ad333eb
AW
72
73 int order;
66e1707b
BS
74
75 /* Which cgroup do we reclaim from */
76 struct mem_cgroup *mem_cgroup;
77
78 /* Pluggable isolate pages callback */
79 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
80 unsigned long *scanned, int order, int mode,
81 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 82 int active, int file);
1da177e4
LT
83};
84
1da177e4
LT
85#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86
87#ifdef ARCH_HAS_PREFETCH
88#define prefetch_prev_lru_page(_page, _base, _field) \
89 do { \
90 if ((_page)->lru.prev != _base) { \
91 struct page *prev; \
92 \
93 prev = lru_to_page(&(_page->lru)); \
94 prefetch(&prev->_field); \
95 } \
96 } while (0)
97#else
98#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
99#endif
100
101#ifdef ARCH_HAS_PREFETCHW
102#define prefetchw_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetchw(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115/*
116 * From 0 .. 100. Higher means more swappy.
117 */
118int vm_swappiness = 60;
bd1e22b8 119long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
120
121static LIST_HEAD(shrinker_list);
122static DECLARE_RWSEM(shrinker_rwsem);
123
00f0b825 124#ifdef CONFIG_CGROUP_MEM_RES_CTLR
91a45470
KH
125#define scan_global_lru(sc) (!(sc)->mem_cgroup)
126#else
127#define scan_global_lru(sc) (1)
128#endif
129
1da177e4
LT
130/*
131 * Add a shrinker callback to be called from the vm
132 */
8e1f936b 133void register_shrinker(struct shrinker *shrinker)
1da177e4 134{
8e1f936b
RR
135 shrinker->nr = 0;
136 down_write(&shrinker_rwsem);
137 list_add_tail(&shrinker->list, &shrinker_list);
138 up_write(&shrinker_rwsem);
1da177e4 139}
8e1f936b 140EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
141
142/*
143 * Remove one
144 */
8e1f936b 145void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
146{
147 down_write(&shrinker_rwsem);
148 list_del(&shrinker->list);
149 up_write(&shrinker_rwsem);
1da177e4 150}
8e1f936b 151EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
152
153#define SHRINK_BATCH 128
154/*
155 * Call the shrink functions to age shrinkable caches
156 *
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
161 *
183ff22b 162 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
163 * slab to avoid swapping.
164 *
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 *
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
b15e0905 170 *
171 * Returns the number of slab objects which we shrunk.
1da177e4 172 */
69e05944
AM
173unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 unsigned long lru_pages)
1da177e4
LT
175{
176 struct shrinker *shrinker;
69e05944 177 unsigned long ret = 0;
1da177e4
LT
178
179 if (scanned == 0)
180 scanned = SWAP_CLUSTER_MAX;
181
182 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 183 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
184
185 list_for_each_entry(shrinker, &shrinker_list, list) {
186 unsigned long long delta;
187 unsigned long total_scan;
8e1f936b 188 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
189
190 delta = (4 * scanned) / shrinker->seeks;
ea164d73 191 delta *= max_pass;
1da177e4
LT
192 do_div(delta, lru_pages + 1);
193 shrinker->nr += delta;
ea164d73
AA
194 if (shrinker->nr < 0) {
195 printk(KERN_ERR "%s: nr=%ld\n",
d40cee24 196 __func__, shrinker->nr);
ea164d73
AA
197 shrinker->nr = max_pass;
198 }
199
200 /*
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
203 * freeable entries.
204 */
205 if (shrinker->nr > max_pass * 2)
206 shrinker->nr = max_pass * 2;
1da177e4
LT
207
208 total_scan = shrinker->nr;
209 shrinker->nr = 0;
210
211 while (total_scan >= SHRINK_BATCH) {
212 long this_scan = SHRINK_BATCH;
213 int shrink_ret;
b15e0905 214 int nr_before;
1da177e4 215
8e1f936b
RR
216 nr_before = (*shrinker->shrink)(0, gfp_mask);
217 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
218 if (shrink_ret == -1)
219 break;
b15e0905 220 if (shrink_ret < nr_before)
221 ret += nr_before - shrink_ret;
f8891e5e 222 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
223 total_scan -= this_scan;
224
225 cond_resched();
226 }
227
228 shrinker->nr += total_scan;
229 }
230 up_read(&shrinker_rwsem);
b15e0905 231 return ret;
1da177e4
LT
232}
233
234/* Called without lock on whether page is mapped, so answer is unstable */
235static inline int page_mapping_inuse(struct page *page)
236{
237 struct address_space *mapping;
238
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page))
241 return 1;
242
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page))
245 return 1;
246
247 mapping = page_mapping(page);
248 if (!mapping)
249 return 0;
250
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping);
253}
254
255static inline int is_page_cache_freeable(struct page *page)
256{
257 return page_count(page) - !!PagePrivate(page) == 2;
258}
259
260static int may_write_to_queue(struct backing_dev_info *bdi)
261{
930d9152 262 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
263 return 1;
264 if (!bdi_write_congested(bdi))
265 return 1;
266 if (bdi == current->backing_dev_info)
267 return 1;
268 return 0;
269}
270
271/*
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
275 *
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
279 *
280 * We're allowed to run sleeping lock_page() here because we know the caller has
281 * __GFP_FS.
282 */
283static void handle_write_error(struct address_space *mapping,
284 struct page *page, int error)
285{
286 lock_page(page);
3e9f45bd
GC
287 if (page_mapping(page) == mapping)
288 mapping_set_error(mapping, error);
1da177e4
LT
289 unlock_page(page);
290}
291
c661b078
AW
292/* Request for sync pageout. */
293enum pageout_io {
294 PAGEOUT_IO_ASYNC,
295 PAGEOUT_IO_SYNC,
296};
297
04e62a29
CL
298/* possible outcome of pageout() */
299typedef enum {
300 /* failed to write page out, page is locked */
301 PAGE_KEEP,
302 /* move page to the active list, page is locked */
303 PAGE_ACTIVATE,
304 /* page has been sent to the disk successfully, page is unlocked */
305 PAGE_SUCCESS,
306 /* page is clean and locked */
307 PAGE_CLEAN,
308} pageout_t;
309
1da177e4 310/*
1742f19f
AM
311 * pageout is called by shrink_page_list() for each dirty page.
312 * Calls ->writepage().
1da177e4 313 */
c661b078
AW
314static pageout_t pageout(struct page *page, struct address_space *mapping,
315 enum pageout_io sync_writeback)
1da177e4
LT
316{
317 /*
318 * If the page is dirty, only perform writeback if that write
319 * will be non-blocking. To prevent this allocation from being
320 * stalled by pagecache activity. But note that there may be
321 * stalls if we need to run get_block(). We could test
322 * PagePrivate for that.
323 *
324 * If this process is currently in generic_file_write() against
325 * this page's queue, we can perform writeback even if that
326 * will block.
327 *
328 * If the page is swapcache, write it back even if that would
329 * block, for some throttling. This happens by accident, because
330 * swap_backing_dev_info is bust: it doesn't reflect the
331 * congestion state of the swapdevs. Easy to fix, if needed.
332 * See swapfile.c:page_queue_congested().
333 */
334 if (!is_page_cache_freeable(page))
335 return PAGE_KEEP;
336 if (!mapping) {
337 /*
338 * Some data journaling orphaned pages can have
339 * page->mapping == NULL while being dirty with clean buffers.
340 */
323aca6c 341 if (PagePrivate(page)) {
1da177e4
LT
342 if (try_to_free_buffers(page)) {
343 ClearPageDirty(page);
d40cee24 344 printk("%s: orphaned page\n", __func__);
1da177e4
LT
345 return PAGE_CLEAN;
346 }
347 }
348 return PAGE_KEEP;
349 }
350 if (mapping->a_ops->writepage == NULL)
351 return PAGE_ACTIVATE;
352 if (!may_write_to_queue(mapping->backing_dev_info))
353 return PAGE_KEEP;
354
355 if (clear_page_dirty_for_io(page)) {
356 int res;
357 struct writeback_control wbc = {
358 .sync_mode = WB_SYNC_NONE,
359 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
360 .range_start = 0,
361 .range_end = LLONG_MAX,
1da177e4
LT
362 .nonblocking = 1,
363 .for_reclaim = 1,
364 };
365
366 SetPageReclaim(page);
367 res = mapping->a_ops->writepage(page, &wbc);
368 if (res < 0)
369 handle_write_error(mapping, page, res);
994fc28c 370 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
371 ClearPageReclaim(page);
372 return PAGE_ACTIVATE;
373 }
c661b078
AW
374
375 /*
376 * Wait on writeback if requested to. This happens when
377 * direct reclaiming a large contiguous area and the
378 * first attempt to free a range of pages fails.
379 */
380 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
381 wait_on_page_writeback(page);
382
1da177e4
LT
383 if (!PageWriteback(page)) {
384 /* synchronous write or broken a_ops? */
385 ClearPageReclaim(page);
386 }
e129b5c2 387 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
388 return PAGE_SUCCESS;
389 }
390
391 return PAGE_CLEAN;
392}
393
a649fd92 394/*
e286781d
NP
395 * Same as remove_mapping, but if the page is removed from the mapping, it
396 * gets returned with a refcount of 0.
a649fd92 397 */
e286781d 398static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 399{
28e4d965
NP
400 BUG_ON(!PageLocked(page));
401 BUG_ON(mapping != page_mapping(page));
49d2e9cc 402
19fd6231 403 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 404 /*
0fd0e6b0
NP
405 * The non racy check for a busy page.
406 *
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
411 *
412 * get_user_pages(&page);
413 * [user mapping goes away]
414 * write_to(page);
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
417 * put_page(page);
418 * !page_count(page) [good, discard it]
419 *
420 * [oops, our write_to data is lost]
421 *
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
425 *
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 428 */
e286781d 429 if (!page_freeze_refs(page, 2))
49d2e9cc 430 goto cannot_free;
e286781d
NP
431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 if (unlikely(PageDirty(page))) {
433 page_unfreeze_refs(page, 2);
49d2e9cc 434 goto cannot_free;
e286781d 435 }
49d2e9cc
CL
436
437 if (PageSwapCache(page)) {
438 swp_entry_t swap = { .val = page_private(page) };
439 __delete_from_swap_cache(page);
19fd6231 440 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc 441 swap_free(swap);
e286781d
NP
442 } else {
443 __remove_from_page_cache(page);
19fd6231 444 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
445 }
446
49d2e9cc
CL
447 return 1;
448
449cannot_free:
19fd6231 450 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
451 return 0;
452}
453
e286781d
NP
454/*
455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
456 * someone else has a ref on the page, abort and return 0. If it was
457 * successfully detached, return 1. Assumes the caller has a single ref on
458 * this page.
459 */
460int remove_mapping(struct address_space *mapping, struct page *page)
461{
462 if (__remove_mapping(mapping, page)) {
463 /*
464 * Unfreezing the refcount with 1 rather than 2 effectively
465 * drops the pagecache ref for us without requiring another
466 * atomic operation.
467 */
468 page_unfreeze_refs(page, 1);
469 return 1;
470 }
471 return 0;
472}
473
894bc310
LS
474/**
475 * putback_lru_page - put previously isolated page onto appropriate LRU list
476 * @page: page to be put back to appropriate lru list
477 *
478 * Add previously isolated @page to appropriate LRU list.
479 * Page may still be unevictable for other reasons.
480 *
481 * lru_lock must not be held, interrupts must be enabled.
482 */
483#ifdef CONFIG_UNEVICTABLE_LRU
484void putback_lru_page(struct page *page)
485{
486 int lru;
487 int active = !!TestClearPageActive(page);
bbfd28ee 488 int was_unevictable = PageUnevictable(page);
894bc310
LS
489
490 VM_BUG_ON(PageLRU(page));
491
492redo:
493 ClearPageUnevictable(page);
494
495 if (page_evictable(page, NULL)) {
496 /*
497 * For evictable pages, we can use the cache.
498 * In event of a race, worst case is we end up with an
499 * unevictable page on [in]active list.
500 * We know how to handle that.
501 */
502 lru = active + page_is_file_cache(page);
503 lru_cache_add_lru(page, lru);
504 } else {
505 /*
506 * Put unevictable pages directly on zone's unevictable
507 * list.
508 */
509 lru = LRU_UNEVICTABLE;
510 add_page_to_unevictable_list(page);
511 }
512 mem_cgroup_move_lists(page, lru);
513
514 /*
515 * page's status can change while we move it among lru. If an evictable
516 * page is on unevictable list, it never be freed. To avoid that,
517 * check after we added it to the list, again.
518 */
519 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
520 if (!isolate_lru_page(page)) {
521 put_page(page);
522 goto redo;
523 }
524 /* This means someone else dropped this page from LRU
525 * So, it will be freed or putback to LRU again. There is
526 * nothing to do here.
527 */
528 }
529
bbfd28ee
LS
530 if (was_unevictable && lru != LRU_UNEVICTABLE)
531 count_vm_event(UNEVICTABLE_PGRESCUED);
532 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
533 count_vm_event(UNEVICTABLE_PGCULLED);
534
894bc310
LS
535 put_page(page); /* drop ref from isolate */
536}
537
538#else /* CONFIG_UNEVICTABLE_LRU */
539
540void putback_lru_page(struct page *page)
541{
542 int lru;
543 VM_BUG_ON(PageLRU(page));
544
545 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
546 lru_cache_add_lru(page, lru);
547 mem_cgroup_move_lists(page, lru);
548 put_page(page);
549}
550#endif /* CONFIG_UNEVICTABLE_LRU */
551
552
1da177e4 553/*
1742f19f 554 * shrink_page_list() returns the number of reclaimed pages
1da177e4 555 */
1742f19f 556static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
557 struct scan_control *sc,
558 enum pageout_io sync_writeback)
1da177e4
LT
559{
560 LIST_HEAD(ret_pages);
561 struct pagevec freed_pvec;
562 int pgactivate = 0;
05ff5137 563 unsigned long nr_reclaimed = 0;
1da177e4
LT
564
565 cond_resched();
566
567 pagevec_init(&freed_pvec, 1);
568 while (!list_empty(page_list)) {
569 struct address_space *mapping;
570 struct page *page;
571 int may_enter_fs;
572 int referenced;
573
574 cond_resched();
575
576 page = lru_to_page(page_list);
577 list_del(&page->lru);
578
529ae9aa 579 if (!trylock_page(page))
1da177e4
LT
580 goto keep;
581
725d704e 582 VM_BUG_ON(PageActive(page));
1da177e4
LT
583
584 sc->nr_scanned++;
80e43426 585
b291f000
NP
586 if (unlikely(!page_evictable(page, NULL)))
587 goto cull_mlocked;
894bc310 588
80e43426
CL
589 if (!sc->may_swap && page_mapped(page))
590 goto keep_locked;
591
1da177e4
LT
592 /* Double the slab pressure for mapped and swapcache pages */
593 if (page_mapped(page) || PageSwapCache(page))
594 sc->nr_scanned++;
595
c661b078
AW
596 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
597 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
598
599 if (PageWriteback(page)) {
600 /*
601 * Synchronous reclaim is performed in two passes,
602 * first an asynchronous pass over the list to
603 * start parallel writeback, and a second synchronous
604 * pass to wait for the IO to complete. Wait here
605 * for any page for which writeback has already
606 * started.
607 */
608 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
609 wait_on_page_writeback(page);
4dd4b920 610 else
c661b078
AW
611 goto keep_locked;
612 }
1da177e4 613
bed7161a 614 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 615 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
616 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
617 referenced && page_mapping_inuse(page))
1da177e4
LT
618 goto activate_locked;
619
620#ifdef CONFIG_SWAP
621 /*
622 * Anonymous process memory has backing store?
623 * Try to allocate it some swap space here.
624 */
b291f000
NP
625 if (PageAnon(page) && !PageSwapCache(page)) {
626 switch (try_to_munlock(page)) {
627 case SWAP_FAIL: /* shouldn't happen */
628 case SWAP_AGAIN:
629 goto keep_locked;
630 case SWAP_MLOCK:
631 goto cull_mlocked;
632 case SWAP_SUCCESS:
633 ; /* fall thru'; add to swap cache */
634 }
1480a540 635 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 636 goto activate_locked;
b291f000 637 }
1da177e4
LT
638#endif /* CONFIG_SWAP */
639
640 mapping = page_mapping(page);
1da177e4
LT
641
642 /*
643 * The page is mapped into the page tables of one or more
644 * processes. Try to unmap it here.
645 */
646 if (page_mapped(page) && mapping) {
a48d07af 647 switch (try_to_unmap(page, 0)) {
1da177e4
LT
648 case SWAP_FAIL:
649 goto activate_locked;
650 case SWAP_AGAIN:
651 goto keep_locked;
b291f000
NP
652 case SWAP_MLOCK:
653 goto cull_mlocked;
1da177e4
LT
654 case SWAP_SUCCESS:
655 ; /* try to free the page below */
656 }
657 }
658
659 if (PageDirty(page)) {
5ad333eb 660 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 661 goto keep_locked;
4dd4b920 662 if (!may_enter_fs)
1da177e4 663 goto keep_locked;
52a8363e 664 if (!sc->may_writepage)
1da177e4
LT
665 goto keep_locked;
666
667 /* Page is dirty, try to write it out here */
c661b078 668 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
669 case PAGE_KEEP:
670 goto keep_locked;
671 case PAGE_ACTIVATE:
672 goto activate_locked;
673 case PAGE_SUCCESS:
4dd4b920 674 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
675 goto keep;
676 /*
677 * A synchronous write - probably a ramdisk. Go
678 * ahead and try to reclaim the page.
679 */
529ae9aa 680 if (!trylock_page(page))
1da177e4
LT
681 goto keep;
682 if (PageDirty(page) || PageWriteback(page))
683 goto keep_locked;
684 mapping = page_mapping(page);
685 case PAGE_CLEAN:
686 ; /* try to free the page below */
687 }
688 }
689
690 /*
691 * If the page has buffers, try to free the buffer mappings
692 * associated with this page. If we succeed we try to free
693 * the page as well.
694 *
695 * We do this even if the page is PageDirty().
696 * try_to_release_page() does not perform I/O, but it is
697 * possible for a page to have PageDirty set, but it is actually
698 * clean (all its buffers are clean). This happens if the
699 * buffers were written out directly, with submit_bh(). ext3
894bc310 700 * will do this, as well as the blockdev mapping.
1da177e4
LT
701 * try_to_release_page() will discover that cleanness and will
702 * drop the buffers and mark the page clean - it can be freed.
703 *
704 * Rarely, pages can have buffers and no ->mapping. These are
705 * the pages which were not successfully invalidated in
706 * truncate_complete_page(). We try to drop those buffers here
707 * and if that worked, and the page is no longer mapped into
708 * process address space (page_count == 1) it can be freed.
709 * Otherwise, leave the page on the LRU so it is swappable.
710 */
711 if (PagePrivate(page)) {
712 if (!try_to_release_page(page, sc->gfp_mask))
713 goto activate_locked;
e286781d
NP
714 if (!mapping && page_count(page) == 1) {
715 unlock_page(page);
716 if (put_page_testzero(page))
717 goto free_it;
718 else {
719 /*
720 * rare race with speculative reference.
721 * the speculative reference will free
722 * this page shortly, so we may
723 * increment nr_reclaimed here (and
724 * leave it off the LRU).
725 */
726 nr_reclaimed++;
727 continue;
728 }
729 }
1da177e4
LT
730 }
731
e286781d 732 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 733 goto keep_locked;
1da177e4 734
1da177e4 735 unlock_page(page);
e286781d 736free_it:
05ff5137 737 nr_reclaimed++;
e286781d
NP
738 if (!pagevec_add(&freed_pvec, page)) {
739 __pagevec_free(&freed_pvec);
740 pagevec_reinit(&freed_pvec);
741 }
1da177e4
LT
742 continue;
743
b291f000
NP
744cull_mlocked:
745 unlock_page(page);
746 putback_lru_page(page);
747 continue;
748
1da177e4 749activate_locked:
68a22394
RR
750 /* Not a candidate for swapping, so reclaim swap space. */
751 if (PageSwapCache(page) && vm_swap_full())
752 remove_exclusive_swap_page_ref(page);
894bc310 753 VM_BUG_ON(PageActive(page));
1da177e4
LT
754 SetPageActive(page);
755 pgactivate++;
756keep_locked:
757 unlock_page(page);
758keep:
759 list_add(&page->lru, &ret_pages);
b291f000 760 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
761 }
762 list_splice(&ret_pages, page_list);
763 if (pagevec_count(&freed_pvec))
e286781d 764 __pagevec_free(&freed_pvec);
f8891e5e 765 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 766 return nr_reclaimed;
1da177e4
LT
767}
768
5ad333eb
AW
769/* LRU Isolation modes. */
770#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
771#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
772#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
773
774/*
775 * Attempt to remove the specified page from its LRU. Only take this page
776 * if it is of the appropriate PageActive status. Pages which are being
777 * freed elsewhere are also ignored.
778 *
779 * page: page to consider
780 * mode: one of the LRU isolation modes defined above
781 *
782 * returns 0 on success, -ve errno on failure.
783 */
4f98a2fe 784int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
785{
786 int ret = -EINVAL;
787
788 /* Only take pages on the LRU. */
789 if (!PageLRU(page))
790 return ret;
791
792 /*
793 * When checking the active state, we need to be sure we are
794 * dealing with comparible boolean values. Take the logical not
795 * of each.
796 */
797 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
798 return ret;
799
4f98a2fe
RR
800 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
801 return ret;
802
894bc310
LS
803 /*
804 * When this function is being called for lumpy reclaim, we
805 * initially look into all LRU pages, active, inactive and
806 * unevictable; only give shrink_page_list evictable pages.
807 */
808 if (PageUnevictable(page))
809 return ret;
810
5ad333eb
AW
811 ret = -EBUSY;
812 if (likely(get_page_unless_zero(page))) {
813 /*
814 * Be careful not to clear PageLRU until after we're
815 * sure the page is not being freed elsewhere -- the
816 * page release code relies on it.
817 */
818 ClearPageLRU(page);
819 ret = 0;
820 }
821
822 return ret;
823}
824
1da177e4
LT
825/*
826 * zone->lru_lock is heavily contended. Some of the functions that
827 * shrink the lists perform better by taking out a batch of pages
828 * and working on them outside the LRU lock.
829 *
830 * For pagecache intensive workloads, this function is the hottest
831 * spot in the kernel (apart from copy_*_user functions).
832 *
833 * Appropriate locks must be held before calling this function.
834 *
835 * @nr_to_scan: The number of pages to look through on the list.
836 * @src: The LRU list to pull pages off.
837 * @dst: The temp list to put pages on to.
838 * @scanned: The number of pages that were scanned.
5ad333eb
AW
839 * @order: The caller's attempted allocation order
840 * @mode: One of the LRU isolation modes
4f98a2fe 841 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
842 *
843 * returns how many pages were moved onto *@dst.
844 */
69e05944
AM
845static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
846 struct list_head *src, struct list_head *dst,
4f98a2fe 847 unsigned long *scanned, int order, int mode, int file)
1da177e4 848{
69e05944 849 unsigned long nr_taken = 0;
c9b02d97 850 unsigned long scan;
1da177e4 851
c9b02d97 852 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
853 struct page *page;
854 unsigned long pfn;
855 unsigned long end_pfn;
856 unsigned long page_pfn;
857 int zone_id;
858
1da177e4
LT
859 page = lru_to_page(src);
860 prefetchw_prev_lru_page(page, src, flags);
861
725d704e 862 VM_BUG_ON(!PageLRU(page));
8d438f96 863
4f98a2fe 864 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
865 case 0:
866 list_move(&page->lru, dst);
7c8ee9a8 867 nr_taken++;
5ad333eb
AW
868 break;
869
870 case -EBUSY:
871 /* else it is being freed elsewhere */
872 list_move(&page->lru, src);
873 continue;
46453a6e 874
5ad333eb
AW
875 default:
876 BUG();
877 }
878
879 if (!order)
880 continue;
881
882 /*
883 * Attempt to take all pages in the order aligned region
884 * surrounding the tag page. Only take those pages of
885 * the same active state as that tag page. We may safely
886 * round the target page pfn down to the requested order
887 * as the mem_map is guarenteed valid out to MAX_ORDER,
888 * where that page is in a different zone we will detect
889 * it from its zone id and abort this block scan.
890 */
891 zone_id = page_zone_id(page);
892 page_pfn = page_to_pfn(page);
893 pfn = page_pfn & ~((1 << order) - 1);
894 end_pfn = pfn + (1 << order);
895 for (; pfn < end_pfn; pfn++) {
896 struct page *cursor_page;
897
898 /* The target page is in the block, ignore it. */
899 if (unlikely(pfn == page_pfn))
900 continue;
901
902 /* Avoid holes within the zone. */
903 if (unlikely(!pfn_valid_within(pfn)))
904 break;
905
906 cursor_page = pfn_to_page(pfn);
4f98a2fe 907
5ad333eb
AW
908 /* Check that we have not crossed a zone boundary. */
909 if (unlikely(page_zone_id(cursor_page) != zone_id))
910 continue;
4f98a2fe 911 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
912 case 0:
913 list_move(&cursor_page->lru, dst);
914 nr_taken++;
915 scan++;
916 break;
917
918 case -EBUSY:
919 /* else it is being freed elsewhere */
920 list_move(&cursor_page->lru, src);
921 default:
894bc310 922 break; /* ! on LRU or wrong list */
5ad333eb
AW
923 }
924 }
1da177e4
LT
925 }
926
927 *scanned = scan;
928 return nr_taken;
929}
930
66e1707b
BS
931static unsigned long isolate_pages_global(unsigned long nr,
932 struct list_head *dst,
933 unsigned long *scanned, int order,
934 int mode, struct zone *z,
935 struct mem_cgroup *mem_cont,
4f98a2fe 936 int active, int file)
66e1707b 937{
4f98a2fe 938 int lru = LRU_BASE;
66e1707b 939 if (active)
4f98a2fe
RR
940 lru += LRU_ACTIVE;
941 if (file)
942 lru += LRU_FILE;
943 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
944 mode, !!file);
66e1707b
BS
945}
946
5ad333eb
AW
947/*
948 * clear_active_flags() is a helper for shrink_active_list(), clearing
949 * any active bits from the pages in the list.
950 */
4f98a2fe
RR
951static unsigned long clear_active_flags(struct list_head *page_list,
952 unsigned int *count)
5ad333eb
AW
953{
954 int nr_active = 0;
4f98a2fe 955 int lru;
5ad333eb
AW
956 struct page *page;
957
4f98a2fe
RR
958 list_for_each_entry(page, page_list, lru) {
959 lru = page_is_file_cache(page);
5ad333eb 960 if (PageActive(page)) {
4f98a2fe 961 lru += LRU_ACTIVE;
5ad333eb
AW
962 ClearPageActive(page);
963 nr_active++;
964 }
4f98a2fe
RR
965 count[lru]++;
966 }
5ad333eb
AW
967
968 return nr_active;
969}
970
62695a84
NP
971/**
972 * isolate_lru_page - tries to isolate a page from its LRU list
973 * @page: page to isolate from its LRU list
974 *
975 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
976 * vmstat statistic corresponding to whatever LRU list the page was on.
977 *
978 * Returns 0 if the page was removed from an LRU list.
979 * Returns -EBUSY if the page was not on an LRU list.
980 *
981 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
982 * the active list, it will have PageActive set. If it was found on
983 * the unevictable list, it will have the PageUnevictable bit set. That flag
984 * may need to be cleared by the caller before letting the page go.
62695a84
NP
985 *
986 * The vmstat statistic corresponding to the list on which the page was
987 * found will be decremented.
988 *
989 * Restrictions:
990 * (1) Must be called with an elevated refcount on the page. This is a
991 * fundamentnal difference from isolate_lru_pages (which is called
992 * without a stable reference).
993 * (2) the lru_lock must not be held.
994 * (3) interrupts must be enabled.
995 */
996int isolate_lru_page(struct page *page)
997{
998 int ret = -EBUSY;
999
1000 if (PageLRU(page)) {
1001 struct zone *zone = page_zone(page);
1002
1003 spin_lock_irq(&zone->lru_lock);
1004 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1005 int lru = page_lru(page);
62695a84
NP
1006 ret = 0;
1007 ClearPageLRU(page);
4f98a2fe 1008
4f98a2fe 1009 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1010 }
1011 spin_unlock_irq(&zone->lru_lock);
1012 }
1013 return ret;
1014}
1015
1da177e4 1016/*
1742f19f
AM
1017 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1018 * of reclaimed pages
1da177e4 1019 */
1742f19f 1020static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1021 struct zone *zone, struct scan_control *sc,
1022 int priority, int file)
1da177e4
LT
1023{
1024 LIST_HEAD(page_list);
1025 struct pagevec pvec;
69e05944 1026 unsigned long nr_scanned = 0;
05ff5137 1027 unsigned long nr_reclaimed = 0;
1da177e4
LT
1028
1029 pagevec_init(&pvec, 1);
1030
1031 lru_add_drain();
1032 spin_lock_irq(&zone->lru_lock);
69e05944 1033 do {
1da177e4 1034 struct page *page;
69e05944
AM
1035 unsigned long nr_taken;
1036 unsigned long nr_scan;
1037 unsigned long nr_freed;
5ad333eb 1038 unsigned long nr_active;
4f98a2fe 1039 unsigned int count[NR_LRU_LISTS] = { 0, };
33c120ed
RR
1040 int mode = ISOLATE_INACTIVE;
1041
1042 /*
1043 * If we need a large contiguous chunk of memory, or have
1044 * trouble getting a small set of contiguous pages, we
1045 * will reclaim both active and inactive pages.
1046 *
1047 * We use the same threshold as pageout congestion_wait below.
1048 */
1049 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1050 mode = ISOLATE_BOTH;
1051 else if (sc->order && priority < DEF_PRIORITY - 2)
1052 mode = ISOLATE_BOTH;
1da177e4 1053
66e1707b 1054 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1055 &page_list, &nr_scan, sc->order, mode,
1056 zone, sc->mem_cgroup, 0, file);
1057 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1058 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1059
4f98a2fe
RR
1060 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1061 -count[LRU_ACTIVE_FILE]);
1062 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1063 -count[LRU_INACTIVE_FILE]);
1064 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1065 -count[LRU_ACTIVE_ANON]);
1066 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1067 -count[LRU_INACTIVE_ANON]);
1068
1069 if (scan_global_lru(sc)) {
1cfb419b 1070 zone->pages_scanned += nr_scan;
4f98a2fe
RR
1071 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1072 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1073 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1074 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1075 }
1da177e4
LT
1076 spin_unlock_irq(&zone->lru_lock);
1077
69e05944 1078 nr_scanned += nr_scan;
c661b078
AW
1079 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1080
1081 /*
1082 * If we are direct reclaiming for contiguous pages and we do
1083 * not reclaim everything in the list, try again and wait
1084 * for IO to complete. This will stall high-order allocations
1085 * but that should be acceptable to the caller
1086 */
1087 if (nr_freed < nr_taken && !current_is_kswapd() &&
1088 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1089 congestion_wait(WRITE, HZ/10);
1090
1091 /*
1092 * The attempt at page out may have made some
1093 * of the pages active, mark them inactive again.
1094 */
4f98a2fe 1095 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1096 count_vm_events(PGDEACTIVATE, nr_active);
1097
1098 nr_freed += shrink_page_list(&page_list, sc,
1099 PAGEOUT_IO_SYNC);
1100 }
1101
05ff5137 1102 nr_reclaimed += nr_freed;
a74609fa
NP
1103 local_irq_disable();
1104 if (current_is_kswapd()) {
f8891e5e
CL
1105 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1106 __count_vm_events(KSWAPD_STEAL, nr_freed);
1cfb419b 1107 } else if (scan_global_lru(sc))
f8891e5e 1108 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1109
918d3f90 1110 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1111
fb8d14e1
WF
1112 if (nr_taken == 0)
1113 goto done;
1114
a74609fa 1115 spin_lock(&zone->lru_lock);
1da177e4
LT
1116 /*
1117 * Put back any unfreeable pages.
1118 */
1119 while (!list_empty(&page_list)) {
894bc310 1120 int lru;
1da177e4 1121 page = lru_to_page(&page_list);
725d704e 1122 VM_BUG_ON(PageLRU(page));
1da177e4 1123 list_del(&page->lru);
894bc310
LS
1124 if (unlikely(!page_evictable(page, NULL))) {
1125 spin_unlock_irq(&zone->lru_lock);
1126 putback_lru_page(page);
1127 spin_lock_irq(&zone->lru_lock);
1128 continue;
1129 }
1130 SetPageLRU(page);
1131 lru = page_lru(page);
1132 add_page_to_lru_list(zone, page, lru);
1133 mem_cgroup_move_lists(page, lru);
4f98a2fe
RR
1134 if (PageActive(page) && scan_global_lru(sc)) {
1135 int file = !!page_is_file_cache(page);
1136 zone->recent_rotated[file]++;
1137 }
1da177e4
LT
1138 if (!pagevec_add(&pvec, page)) {
1139 spin_unlock_irq(&zone->lru_lock);
1140 __pagevec_release(&pvec);
1141 spin_lock_irq(&zone->lru_lock);
1142 }
1143 }
69e05944 1144 } while (nr_scanned < max_scan);
fb8d14e1 1145 spin_unlock(&zone->lru_lock);
1da177e4 1146done:
fb8d14e1 1147 local_irq_enable();
1da177e4 1148 pagevec_release(&pvec);
05ff5137 1149 return nr_reclaimed;
1da177e4
LT
1150}
1151
3bb1a852
MB
1152/*
1153 * We are about to scan this zone at a certain priority level. If that priority
1154 * level is smaller (ie: more urgent) than the previous priority, then note
1155 * that priority level within the zone. This is done so that when the next
1156 * process comes in to scan this zone, it will immediately start out at this
1157 * priority level rather than having to build up its own scanning priority.
1158 * Here, this priority affects only the reclaim-mapped threshold.
1159 */
1160static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1161{
1162 if (priority < zone->prev_priority)
1163 zone->prev_priority = priority;
1164}
1165
4ff1ffb4
NP
1166static inline int zone_is_near_oom(struct zone *zone)
1167{
4f98a2fe 1168 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1cfb419b
KH
1169}
1170
1da177e4
LT
1171/*
1172 * This moves pages from the active list to the inactive list.
1173 *
1174 * We move them the other way if the page is referenced by one or more
1175 * processes, from rmap.
1176 *
1177 * If the pages are mostly unmapped, the processing is fast and it is
1178 * appropriate to hold zone->lru_lock across the whole operation. But if
1179 * the pages are mapped, the processing is slow (page_referenced()) so we
1180 * should drop zone->lru_lock around each page. It's impossible to balance
1181 * this, so instead we remove the pages from the LRU while processing them.
1182 * It is safe to rely on PG_active against the non-LRU pages in here because
1183 * nobody will play with that bit on a non-LRU page.
1184 *
1185 * The downside is that we have to touch page->_count against each page.
1186 * But we had to alter page->flags anyway.
1187 */
1cfb419b
KH
1188
1189
1742f19f 1190static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1191 struct scan_control *sc, int priority, int file)
1da177e4 1192{
69e05944 1193 unsigned long pgmoved;
1da177e4 1194 int pgdeactivate = 0;
69e05944 1195 unsigned long pgscanned;
1da177e4 1196 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1197 LIST_HEAD(l_inactive);
1da177e4
LT
1198 struct page *page;
1199 struct pagevec pvec;
4f98a2fe 1200 enum lru_list lru;
1da177e4
LT
1201
1202 lru_add_drain();
1203 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1204 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1205 ISOLATE_ACTIVE, zone,
4f98a2fe 1206 sc->mem_cgroup, 1, file);
1cfb419b
KH
1207 /*
1208 * zone->pages_scanned is used for detect zone's oom
1209 * mem_cgroup remembers nr_scan by itself.
1210 */
4f98a2fe 1211 if (scan_global_lru(sc)) {
1cfb419b 1212 zone->pages_scanned += pgscanned;
4f98a2fe
RR
1213 zone->recent_scanned[!!file] += pgmoved;
1214 }
1cfb419b 1215
4f98a2fe
RR
1216 if (file)
1217 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1218 else
1219 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1220 spin_unlock_irq(&zone->lru_lock);
1221
556adecb 1222 pgmoved = 0;
1da177e4
LT
1223 while (!list_empty(&l_hold)) {
1224 cond_resched();
1225 page = lru_to_page(&l_hold);
1226 list_del(&page->lru);
7e9cd484 1227
894bc310
LS
1228 if (unlikely(!page_evictable(page, NULL))) {
1229 putback_lru_page(page);
1230 continue;
1231 }
1232
7e9cd484
RR
1233 /* page_referenced clears PageReferenced */
1234 if (page_mapping_inuse(page) &&
1235 page_referenced(page, 0, sc->mem_cgroup))
1236 pgmoved++;
1237
1da177e4
LT
1238 list_add(&page->lru, &l_inactive);
1239 }
1240
556adecb 1241 /*
7e9cd484
RR
1242 * Count referenced pages from currently used mappings as
1243 * rotated, even though they are moved to the inactive list.
1244 * This helps balance scan pressure between file and anonymous
1245 * pages in get_scan_ratio.
1246 */
556adecb
RR
1247 zone->recent_rotated[!!file] += pgmoved;
1248
4f98a2fe 1249 /*
7e9cd484 1250 * Move the pages to the [file or anon] inactive list.
4f98a2fe 1251 */
1da177e4 1252 pagevec_init(&pvec, 1);
7e9cd484 1253
1da177e4 1254 pgmoved = 0;
4f98a2fe 1255 lru = LRU_BASE + file * LRU_FILE;
1da177e4
LT
1256 spin_lock_irq(&zone->lru_lock);
1257 while (!list_empty(&l_inactive)) {
1258 page = lru_to_page(&l_inactive);
1259 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1260 VM_BUG_ON(PageLRU(page));
8d438f96 1261 SetPageLRU(page);
725d704e 1262 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1263 ClearPageActive(page);
1264
4f98a2fe 1265 list_move(&page->lru, &zone->lru[lru].list);
894bc310 1266 mem_cgroup_move_lists(page, lru);
1da177e4
LT
1267 pgmoved++;
1268 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1269 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1270 spin_unlock_irq(&zone->lru_lock);
1271 pgdeactivate += pgmoved;
1272 pgmoved = 0;
1273 if (buffer_heads_over_limit)
1274 pagevec_strip(&pvec);
1275 __pagevec_release(&pvec);
1276 spin_lock_irq(&zone->lru_lock);
1277 }
1278 }
4f98a2fe 1279 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1280 pgdeactivate += pgmoved;
1281 if (buffer_heads_over_limit) {
1282 spin_unlock_irq(&zone->lru_lock);
1283 pagevec_strip(&pvec);
1284 spin_lock_irq(&zone->lru_lock);
1285 }
f8891e5e
CL
1286 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1287 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1288 spin_unlock_irq(&zone->lru_lock);
68a22394
RR
1289 if (vm_swap_full())
1290 pagevec_swap_free(&pvec);
1da177e4 1291
a74609fa 1292 pagevec_release(&pvec);
1da177e4
LT
1293}
1294
4f98a2fe 1295static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1296 struct zone *zone, struct scan_control *sc, int priority)
1297{
4f98a2fe
RR
1298 int file = is_file_lru(lru);
1299
556adecb
RR
1300 if (lru == LRU_ACTIVE_FILE) {
1301 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1302 return 0;
1303 }
1304
1305 if (lru == LRU_ACTIVE_ANON &&
1306 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
4f98a2fe 1307 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1308 return 0;
1309 }
33c120ed 1310 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1311}
1312
1313/*
1314 * Determine how aggressively the anon and file LRU lists should be
1315 * scanned. The relative value of each set of LRU lists is determined
1316 * by looking at the fraction of the pages scanned we did rotate back
1317 * onto the active list instead of evict.
1318 *
1319 * percent[0] specifies how much pressure to put on ram/swap backed
1320 * memory, while percent[1] determines pressure on the file LRUs.
1321 */
1322static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1323 unsigned long *percent)
1324{
1325 unsigned long anon, file, free;
1326 unsigned long anon_prio, file_prio;
1327 unsigned long ap, fp;
1328
1329 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1330 zone_page_state(zone, NR_INACTIVE_ANON);
1331 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1332 zone_page_state(zone, NR_INACTIVE_FILE);
1333 free = zone_page_state(zone, NR_FREE_PAGES);
1334
1335 /* If we have no swap space, do not bother scanning anon pages. */
1336 if (nr_swap_pages <= 0) {
1337 percent[0] = 0;
1338 percent[1] = 100;
1339 return;
1340 }
1341
1342 /* If we have very few page cache pages, force-scan anon pages. */
1343 if (unlikely(file + free <= zone->pages_high)) {
1344 percent[0] = 100;
1345 percent[1] = 0;
1346 return;
1347 }
1348
1349 /*
1350 * OK, so we have swap space and a fair amount of page cache
1351 * pages. We use the recently rotated / recently scanned
1352 * ratios to determine how valuable each cache is.
1353 *
1354 * Because workloads change over time (and to avoid overflow)
1355 * we keep these statistics as a floating average, which ends
1356 * up weighing recent references more than old ones.
1357 *
1358 * anon in [0], file in [1]
1359 */
1360 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1361 spin_lock_irq(&zone->lru_lock);
1362 zone->recent_scanned[0] /= 2;
1363 zone->recent_rotated[0] /= 2;
1364 spin_unlock_irq(&zone->lru_lock);
1365 }
1366
1367 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1368 spin_lock_irq(&zone->lru_lock);
1369 zone->recent_scanned[1] /= 2;
1370 zone->recent_rotated[1] /= 2;
1371 spin_unlock_irq(&zone->lru_lock);
1372 }
1373
1374 /*
1375 * With swappiness at 100, anonymous and file have the same priority.
1376 * This scanning priority is essentially the inverse of IO cost.
1377 */
1378 anon_prio = sc->swappiness;
1379 file_prio = 200 - sc->swappiness;
1380
1381 /*
1382 * anon recent_rotated[0]
1383 * %anon = 100 * ----------- / ----------------- * IO cost
1384 * anon + file rotate_sum
1385 */
1386 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1387 ap /= zone->recent_rotated[0] + 1;
1388
1389 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1390 fp /= zone->recent_rotated[1] + 1;
1391
1392 /* Normalize to percentages */
1393 percent[0] = 100 * ap / (ap + fp + 1);
1394 percent[1] = 100 - percent[0];
b69408e8
CL
1395}
1396
4f98a2fe 1397
1da177e4
LT
1398/*
1399 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1400 */
05ff5137
AM
1401static unsigned long shrink_zone(int priority, struct zone *zone,
1402 struct scan_control *sc)
1da177e4 1403{
b69408e8 1404 unsigned long nr[NR_LRU_LISTS];
8695949a 1405 unsigned long nr_to_scan;
05ff5137 1406 unsigned long nr_reclaimed = 0;
4f98a2fe 1407 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1408 enum lru_list l;
1da177e4 1409
4f98a2fe
RR
1410 get_scan_ratio(zone, sc, percent);
1411
894bc310 1412 for_each_evictable_lru(l) {
4f98a2fe
RR
1413 if (scan_global_lru(sc)) {
1414 int file = is_file_lru(l);
1415 int scan;
1416 /*
1417 * Add one to nr_to_scan just to make sure that the
1418 * kernel will slowly sift through each list.
1419 */
1420 scan = zone_page_state(zone, NR_LRU_BASE + l);
1421 if (priority) {
1422 scan >>= priority;
1423 scan = (scan * percent[file]) / 100;
1424 }
1425 zone->lru[l].nr_scan += scan + 1;
b69408e8
CL
1426 nr[l] = zone->lru[l].nr_scan;
1427 if (nr[l] >= sc->swap_cluster_max)
1428 zone->lru[l].nr_scan = 0;
1429 else
1430 nr[l] = 0;
4f98a2fe
RR
1431 } else {
1432 /*
1433 * This reclaim occurs not because zone memory shortage
1434 * but because memory controller hits its limit.
1435 * Don't modify zone reclaim related data.
1436 */
1437 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1438 priority, l);
b69408e8 1439 }
1cfb419b 1440 }
1da177e4 1441
556adecb
RR
1442 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1443 nr[LRU_INACTIVE_FILE]) {
894bc310 1444 for_each_evictable_lru(l) {
b69408e8
CL
1445 if (nr[l]) {
1446 nr_to_scan = min(nr[l],
1da177e4 1447 (unsigned long)sc->swap_cluster_max);
b69408e8 1448 nr[l] -= nr_to_scan;
1da177e4 1449
b69408e8
CL
1450 nr_reclaimed += shrink_list(l, nr_to_scan,
1451 zone, sc, priority);
1452 }
1da177e4
LT
1453 }
1454 }
1455
556adecb
RR
1456 /*
1457 * Even if we did not try to evict anon pages at all, we want to
1458 * rebalance the anon lru active/inactive ratio.
1459 */
1460 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1461 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1462 else if (!scan_global_lru(sc))
1463 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1464
232ea4d6 1465 throttle_vm_writeout(sc->gfp_mask);
05ff5137 1466 return nr_reclaimed;
1da177e4
LT
1467}
1468
1469/*
1470 * This is the direct reclaim path, for page-allocating processes. We only
1471 * try to reclaim pages from zones which will satisfy the caller's allocation
1472 * request.
1473 *
1474 * We reclaim from a zone even if that zone is over pages_high. Because:
1475 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1476 * allocation or
1477 * b) The zones may be over pages_high but they must go *over* pages_high to
1478 * satisfy the `incremental min' zone defense algorithm.
1479 *
1480 * Returns the number of reclaimed pages.
1481 *
1482 * If a zone is deemed to be full of pinned pages then just give it a light
1483 * scan then give up on it.
1484 */
dac1d27b 1485static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1486 struct scan_control *sc)
1da177e4 1487{
54a6eb5c 1488 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
05ff5137 1489 unsigned long nr_reclaimed = 0;
dd1a239f 1490 struct zoneref *z;
54a6eb5c 1491 struct zone *zone;
1cfb419b 1492
408d8544 1493 sc->all_unreclaimable = 1;
54a6eb5c 1494 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1495 if (!populated_zone(zone))
1da177e4 1496 continue;
1cfb419b
KH
1497 /*
1498 * Take care memory controller reclaiming has small influence
1499 * to global LRU.
1500 */
1501 if (scan_global_lru(sc)) {
1502 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1503 continue;
1504 note_zone_scanning_priority(zone, priority);
1da177e4 1505
1cfb419b
KH
1506 if (zone_is_all_unreclaimable(zone) &&
1507 priority != DEF_PRIORITY)
1508 continue; /* Let kswapd poll it */
1509 sc->all_unreclaimable = 0;
1510 } else {
1511 /*
1512 * Ignore cpuset limitation here. We just want to reduce
1513 * # of used pages by us regardless of memory shortage.
1514 */
1515 sc->all_unreclaimable = 0;
1516 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1517 priority);
1518 }
408d8544 1519
05ff5137 1520 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 1521 }
1cfb419b 1522
05ff5137 1523 return nr_reclaimed;
1da177e4 1524}
4f98a2fe 1525
1da177e4
LT
1526/*
1527 * This is the main entry point to direct page reclaim.
1528 *
1529 * If a full scan of the inactive list fails to free enough memory then we
1530 * are "out of memory" and something needs to be killed.
1531 *
1532 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1533 * high - the zone may be full of dirty or under-writeback pages, which this
1534 * caller can't do much about. We kick pdflush and take explicit naps in the
1535 * hope that some of these pages can be written. But if the allocating task
1536 * holds filesystem locks which prevent writeout this might not work, and the
1537 * allocation attempt will fail.
a41f24ea
NA
1538 *
1539 * returns: 0, if no pages reclaimed
1540 * else, the number of pages reclaimed
1da177e4 1541 */
dac1d27b 1542static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1543 struct scan_control *sc)
1da177e4
LT
1544{
1545 int priority;
c700be3d 1546 unsigned long ret = 0;
69e05944 1547 unsigned long total_scanned = 0;
05ff5137 1548 unsigned long nr_reclaimed = 0;
1da177e4 1549 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1550 unsigned long lru_pages = 0;
dd1a239f 1551 struct zoneref *z;
54a6eb5c 1552 struct zone *zone;
dd1a239f 1553 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1554
873b4771
KK
1555 delayacct_freepages_start();
1556
1cfb419b
KH
1557 if (scan_global_lru(sc))
1558 count_vm_event(ALLOCSTALL);
1559 /*
1560 * mem_cgroup will not do shrink_slab.
1561 */
1562 if (scan_global_lru(sc)) {
54a6eb5c 1563 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1564
1cfb419b
KH
1565 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1566 continue;
1da177e4 1567
4f98a2fe 1568 lru_pages += zone_lru_pages(zone);
1cfb419b 1569 }
1da177e4
LT
1570 }
1571
1572 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1573 sc->nr_scanned = 0;
f7b7fd8f
RR
1574 if (!priority)
1575 disable_swap_token();
dac1d27b 1576 nr_reclaimed += shrink_zones(priority, zonelist, sc);
66e1707b
BS
1577 /*
1578 * Don't shrink slabs when reclaiming memory from
1579 * over limit cgroups
1580 */
91a45470 1581 if (scan_global_lru(sc)) {
dd1a239f 1582 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470
KH
1583 if (reclaim_state) {
1584 nr_reclaimed += reclaim_state->reclaimed_slab;
1585 reclaim_state->reclaimed_slab = 0;
1586 }
1da177e4 1587 }
66e1707b
BS
1588 total_scanned += sc->nr_scanned;
1589 if (nr_reclaimed >= sc->swap_cluster_max) {
a41f24ea 1590 ret = nr_reclaimed;
1da177e4
LT
1591 goto out;
1592 }
1593
1594 /*
1595 * Try to write back as many pages as we just scanned. This
1596 * tends to cause slow streaming writers to write data to the
1597 * disk smoothly, at the dirtying rate, which is nice. But
1598 * that's undesirable in laptop mode, where we *want* lumpy
1599 * writeout. So in laptop mode, write out the whole world.
1600 */
66e1707b
BS
1601 if (total_scanned > sc->swap_cluster_max +
1602 sc->swap_cluster_max / 2) {
687a21ce 1603 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1604 sc->may_writepage = 1;
1da177e4
LT
1605 }
1606
1607 /* Take a nap, wait for some writeback to complete */
4dd4b920 1608 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1609 congestion_wait(WRITE, HZ/10);
1da177e4 1610 }
87547ee9 1611 /* top priority shrink_zones still had more to do? don't OOM, then */
91a45470 1612 if (!sc->all_unreclaimable && scan_global_lru(sc))
a41f24ea 1613 ret = nr_reclaimed;
1da177e4 1614out:
3bb1a852
MB
1615 /*
1616 * Now that we've scanned all the zones at this priority level, note
1617 * that level within the zone so that the next thread which performs
1618 * scanning of this zone will immediately start out at this priority
1619 * level. This affects only the decision whether or not to bring
1620 * mapped pages onto the inactive list.
1621 */
1622 if (priority < 0)
1623 priority = 0;
1da177e4 1624
1cfb419b 1625 if (scan_global_lru(sc)) {
54a6eb5c 1626 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1627
1628 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1629 continue;
1630
1631 zone->prev_priority = priority;
1632 }
1633 } else
1634 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1635
873b4771
KK
1636 delayacct_freepages_end();
1637
1da177e4
LT
1638 return ret;
1639}
1640
dac1d27b
MG
1641unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1642 gfp_t gfp_mask)
66e1707b
BS
1643{
1644 struct scan_control sc = {
1645 .gfp_mask = gfp_mask,
1646 .may_writepage = !laptop_mode,
1647 .swap_cluster_max = SWAP_CLUSTER_MAX,
1648 .may_swap = 1,
1649 .swappiness = vm_swappiness,
1650 .order = order,
1651 .mem_cgroup = NULL,
1652 .isolate_pages = isolate_pages_global,
1653 };
1654
dd1a239f 1655 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1656}
1657
00f0b825 1658#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1659
e1a1cd59
BS
1660unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1661 gfp_t gfp_mask)
66e1707b
BS
1662{
1663 struct scan_control sc = {
66e1707b
BS
1664 .may_writepage = !laptop_mode,
1665 .may_swap = 1,
1666 .swap_cluster_max = SWAP_CLUSTER_MAX,
1667 .swappiness = vm_swappiness,
1668 .order = 0,
1669 .mem_cgroup = mem_cont,
1670 .isolate_pages = mem_cgroup_isolate_pages,
1671 };
dac1d27b 1672 struct zonelist *zonelist;
66e1707b 1673
dd1a239f
MG
1674 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1675 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1676 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1677 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1678}
1679#endif
1680
1da177e4
LT
1681/*
1682 * For kswapd, balance_pgdat() will work across all this node's zones until
1683 * they are all at pages_high.
1684 *
1da177e4
LT
1685 * Returns the number of pages which were actually freed.
1686 *
1687 * There is special handling here for zones which are full of pinned pages.
1688 * This can happen if the pages are all mlocked, or if they are all used by
1689 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1690 * What we do is to detect the case where all pages in the zone have been
1691 * scanned twice and there has been zero successful reclaim. Mark the zone as
1692 * dead and from now on, only perform a short scan. Basically we're polling
1693 * the zone for when the problem goes away.
1694 *
1695 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1696 * zones which have free_pages > pages_high, but once a zone is found to have
1697 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1698 * of the number of free pages in the lower zones. This interoperates with
1699 * the page allocator fallback scheme to ensure that aging of pages is balanced
1700 * across the zones.
1701 */
d6277db4 1702static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1703{
1da177e4
LT
1704 int all_zones_ok;
1705 int priority;
1706 int i;
69e05944 1707 unsigned long total_scanned;
05ff5137 1708 unsigned long nr_reclaimed;
1da177e4 1709 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1710 struct scan_control sc = {
1711 .gfp_mask = GFP_KERNEL,
1712 .may_swap = 1,
d6277db4
RW
1713 .swap_cluster_max = SWAP_CLUSTER_MAX,
1714 .swappiness = vm_swappiness,
5ad333eb 1715 .order = order,
66e1707b
BS
1716 .mem_cgroup = NULL,
1717 .isolate_pages = isolate_pages_global,
179e9639 1718 };
3bb1a852
MB
1719 /*
1720 * temp_priority is used to remember the scanning priority at which
1721 * this zone was successfully refilled to free_pages == pages_high.
1722 */
1723 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1724
1725loop_again:
1726 total_scanned = 0;
05ff5137 1727 nr_reclaimed = 0;
c0bbbc73 1728 sc.may_writepage = !laptop_mode;
f8891e5e 1729 count_vm_event(PAGEOUTRUN);
1da177e4 1730
3bb1a852
MB
1731 for (i = 0; i < pgdat->nr_zones; i++)
1732 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1733
1734 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1735 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1736 unsigned long lru_pages = 0;
1737
f7b7fd8f
RR
1738 /* The swap token gets in the way of swapout... */
1739 if (!priority)
1740 disable_swap_token();
1741
1da177e4
LT
1742 all_zones_ok = 1;
1743
d6277db4
RW
1744 /*
1745 * Scan in the highmem->dma direction for the highest
1746 * zone which needs scanning
1747 */
1748 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1749 struct zone *zone = pgdat->node_zones + i;
1da177e4 1750
d6277db4
RW
1751 if (!populated_zone(zone))
1752 continue;
1da177e4 1753
e815af95
DR
1754 if (zone_is_all_unreclaimable(zone) &&
1755 priority != DEF_PRIORITY)
d6277db4 1756 continue;
1da177e4 1757
556adecb
RR
1758 /*
1759 * Do some background aging of the anon list, to give
1760 * pages a chance to be referenced before reclaiming.
1761 */
1762 if (inactive_anon_is_low(zone))
1763 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1764 &sc, priority, 0);
1765
d6277db4
RW
1766 if (!zone_watermark_ok(zone, order, zone->pages_high,
1767 0, 0)) {
1768 end_zone = i;
e1dbeda6 1769 break;
1da177e4 1770 }
1da177e4 1771 }
e1dbeda6
AM
1772 if (i < 0)
1773 goto out;
1774
1da177e4
LT
1775 for (i = 0; i <= end_zone; i++) {
1776 struct zone *zone = pgdat->node_zones + i;
1777
4f98a2fe 1778 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1779 }
1780
1781 /*
1782 * Now scan the zone in the dma->highmem direction, stopping
1783 * at the last zone which needs scanning.
1784 *
1785 * We do this because the page allocator works in the opposite
1786 * direction. This prevents the page allocator from allocating
1787 * pages behind kswapd's direction of progress, which would
1788 * cause too much scanning of the lower zones.
1789 */
1790 for (i = 0; i <= end_zone; i++) {
1791 struct zone *zone = pgdat->node_zones + i;
b15e0905 1792 int nr_slab;
1da177e4 1793
f3fe6512 1794 if (!populated_zone(zone))
1da177e4
LT
1795 continue;
1796
e815af95
DR
1797 if (zone_is_all_unreclaimable(zone) &&
1798 priority != DEF_PRIORITY)
1da177e4
LT
1799 continue;
1800
d6277db4
RW
1801 if (!zone_watermark_ok(zone, order, zone->pages_high,
1802 end_zone, 0))
1803 all_zones_ok = 0;
3bb1a852 1804 temp_priority[i] = priority;
1da177e4 1805 sc.nr_scanned = 0;
3bb1a852 1806 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1807 /*
1808 * We put equal pressure on every zone, unless one
1809 * zone has way too many pages free already.
1810 */
1811 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1812 end_zone, 0))
1813 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1814 reclaim_state->reclaimed_slab = 0;
b15e0905 1815 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1816 lru_pages);
05ff5137 1817 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1818 total_scanned += sc.nr_scanned;
e815af95 1819 if (zone_is_all_unreclaimable(zone))
1da177e4 1820 continue;
b15e0905 1821 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1822 (zone_lru_pages(zone) * 6))
e815af95
DR
1823 zone_set_flag(zone,
1824 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1825 /*
1826 * If we've done a decent amount of scanning and
1827 * the reclaim ratio is low, start doing writepage
1828 * even in laptop mode
1829 */
1830 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1831 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1832 sc.may_writepage = 1;
1833 }
1da177e4
LT
1834 if (all_zones_ok)
1835 break; /* kswapd: all done */
1836 /*
1837 * OK, kswapd is getting into trouble. Take a nap, then take
1838 * another pass across the zones.
1839 */
4dd4b920 1840 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1841 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1842
1843 /*
1844 * We do this so kswapd doesn't build up large priorities for
1845 * example when it is freeing in parallel with allocators. It
1846 * matches the direct reclaim path behaviour in terms of impact
1847 * on zone->*_priority.
1848 */
d6277db4 1849 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1850 break;
1851 }
1852out:
3bb1a852
MB
1853 /*
1854 * Note within each zone the priority level at which this zone was
1855 * brought into a happy state. So that the next thread which scans this
1856 * zone will start out at that priority level.
1857 */
1da177e4
LT
1858 for (i = 0; i < pgdat->nr_zones; i++) {
1859 struct zone *zone = pgdat->node_zones + i;
1860
3bb1a852 1861 zone->prev_priority = temp_priority[i];
1da177e4
LT
1862 }
1863 if (!all_zones_ok) {
1864 cond_resched();
8357376d
RW
1865
1866 try_to_freeze();
1867
1da177e4
LT
1868 goto loop_again;
1869 }
1870
05ff5137 1871 return nr_reclaimed;
1da177e4
LT
1872}
1873
1874/*
1875 * The background pageout daemon, started as a kernel thread
4f98a2fe 1876 * from the init process.
1da177e4
LT
1877 *
1878 * This basically trickles out pages so that we have _some_
1879 * free memory available even if there is no other activity
1880 * that frees anything up. This is needed for things like routing
1881 * etc, where we otherwise might have all activity going on in
1882 * asynchronous contexts that cannot page things out.
1883 *
1884 * If there are applications that are active memory-allocators
1885 * (most normal use), this basically shouldn't matter.
1886 */
1887static int kswapd(void *p)
1888{
1889 unsigned long order;
1890 pg_data_t *pgdat = (pg_data_t*)p;
1891 struct task_struct *tsk = current;
1892 DEFINE_WAIT(wait);
1893 struct reclaim_state reclaim_state = {
1894 .reclaimed_slab = 0,
1895 };
c5f59f08 1896 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1897
c5f59f08
MT
1898 if (!cpus_empty(*cpumask))
1899 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1900 current->reclaim_state = &reclaim_state;
1901
1902 /*
1903 * Tell the memory management that we're a "memory allocator",
1904 * and that if we need more memory we should get access to it
1905 * regardless (see "__alloc_pages()"). "kswapd" should
1906 * never get caught in the normal page freeing logic.
1907 *
1908 * (Kswapd normally doesn't need memory anyway, but sometimes
1909 * you need a small amount of memory in order to be able to
1910 * page out something else, and this flag essentially protects
1911 * us from recursively trying to free more memory as we're
1912 * trying to free the first piece of memory in the first place).
1913 */
930d9152 1914 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1915 set_freezable();
1da177e4
LT
1916
1917 order = 0;
1918 for ( ; ; ) {
1919 unsigned long new_order;
3e1d1d28 1920
1da177e4
LT
1921 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1922 new_order = pgdat->kswapd_max_order;
1923 pgdat->kswapd_max_order = 0;
1924 if (order < new_order) {
1925 /*
1926 * Don't sleep if someone wants a larger 'order'
1927 * allocation
1928 */
1929 order = new_order;
1930 } else {
b1296cc4
RW
1931 if (!freezing(current))
1932 schedule();
1933
1da177e4
LT
1934 order = pgdat->kswapd_max_order;
1935 }
1936 finish_wait(&pgdat->kswapd_wait, &wait);
1937
b1296cc4
RW
1938 if (!try_to_freeze()) {
1939 /* We can speed up thawing tasks if we don't call
1940 * balance_pgdat after returning from the refrigerator
1941 */
1942 balance_pgdat(pgdat, order);
1943 }
1da177e4
LT
1944 }
1945 return 0;
1946}
1947
1948/*
1949 * A zone is low on free memory, so wake its kswapd task to service it.
1950 */
1951void wakeup_kswapd(struct zone *zone, int order)
1952{
1953 pg_data_t *pgdat;
1954
f3fe6512 1955 if (!populated_zone(zone))
1da177e4
LT
1956 return;
1957
1958 pgdat = zone->zone_pgdat;
7fb1d9fc 1959 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1960 return;
1961 if (pgdat->kswapd_max_order < order)
1962 pgdat->kswapd_max_order = order;
02a0e53d 1963 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1964 return;
8d0986e2 1965 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1966 return;
8d0986e2 1967 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1968}
1969
4f98a2fe
RR
1970unsigned long global_lru_pages(void)
1971{
1972 return global_page_state(NR_ACTIVE_ANON)
1973 + global_page_state(NR_ACTIVE_FILE)
1974 + global_page_state(NR_INACTIVE_ANON)
1975 + global_page_state(NR_INACTIVE_FILE);
1976}
1977
1da177e4
LT
1978#ifdef CONFIG_PM
1979/*
d6277db4
RW
1980 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1981 * from LRU lists system-wide, for given pass and priority, and returns the
1982 * number of reclaimed pages
1983 *
1984 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1985 */
e07aa05b
NC
1986static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1987 int pass, struct scan_control *sc)
d6277db4
RW
1988{
1989 struct zone *zone;
1990 unsigned long nr_to_scan, ret = 0;
b69408e8 1991 enum lru_list l;
d6277db4
RW
1992
1993 for_each_zone(zone) {
1994
1995 if (!populated_zone(zone))
1996 continue;
1997
e815af95 1998 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
1999 continue;
2000
894bc310
LS
2001 for_each_evictable_lru(l) {
2002 /* For pass = 0, we don't shrink the active list */
4f98a2fe
RR
2003 if (pass == 0 &&
2004 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
b69408e8
CL
2005 continue;
2006
2007 zone->lru[l].nr_scan +=
2008 (zone_page_state(zone, NR_LRU_BASE + l)
2009 >> prio) + 1;
2010 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2011 zone->lru[l].nr_scan = 0;
c8785385 2012 nr_to_scan = min(nr_pages,
b69408e8
CL
2013 zone_page_state(zone,
2014 NR_LRU_BASE + l));
2015 ret += shrink_list(l, nr_to_scan, zone,
2016 sc, prio);
2017 if (ret >= nr_pages)
2018 return ret;
d6277db4
RW
2019 }
2020 }
d6277db4
RW
2021 }
2022
2023 return ret;
2024}
2025
2026/*
2027 * Try to free `nr_pages' of memory, system-wide, and return the number of
2028 * freed pages.
2029 *
2030 * Rather than trying to age LRUs the aim is to preserve the overall
2031 * LRU order by reclaiming preferentially
2032 * inactive > active > active referenced > active mapped
1da177e4 2033 */
69e05944 2034unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2035{
d6277db4 2036 unsigned long lru_pages, nr_slab;
69e05944 2037 unsigned long ret = 0;
d6277db4
RW
2038 int pass;
2039 struct reclaim_state reclaim_state;
d6277db4
RW
2040 struct scan_control sc = {
2041 .gfp_mask = GFP_KERNEL,
2042 .may_swap = 0,
2043 .swap_cluster_max = nr_pages,
2044 .may_writepage = 1,
2045 .swappiness = vm_swappiness,
66e1707b 2046 .isolate_pages = isolate_pages_global,
1da177e4
LT
2047 };
2048
2049 current->reclaim_state = &reclaim_state;
69e05944 2050
4f98a2fe 2051 lru_pages = global_lru_pages();
972d1a7b 2052 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2053 /* If slab caches are huge, it's better to hit them first */
2054 while (nr_slab >= lru_pages) {
2055 reclaim_state.reclaimed_slab = 0;
2056 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2057 if (!reclaim_state.reclaimed_slab)
1da177e4 2058 break;
d6277db4
RW
2059
2060 ret += reclaim_state.reclaimed_slab;
2061 if (ret >= nr_pages)
2062 goto out;
2063
2064 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2065 }
d6277db4
RW
2066
2067 /*
2068 * We try to shrink LRUs in 5 passes:
2069 * 0 = Reclaim from inactive_list only
2070 * 1 = Reclaim from active list but don't reclaim mapped
2071 * 2 = 2nd pass of type 1
2072 * 3 = Reclaim mapped (normal reclaim)
2073 * 4 = 2nd pass of type 3
2074 */
2075 for (pass = 0; pass < 5; pass++) {
2076 int prio;
2077
d6277db4
RW
2078 /* Force reclaiming mapped pages in the passes #3 and #4 */
2079 if (pass > 2) {
2080 sc.may_swap = 1;
2081 sc.swappiness = 100;
2082 }
2083
2084 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2085 unsigned long nr_to_scan = nr_pages - ret;
2086
d6277db4 2087 sc.nr_scanned = 0;
d6277db4
RW
2088 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2089 if (ret >= nr_pages)
2090 goto out;
2091
2092 reclaim_state.reclaimed_slab = 0;
76395d37 2093 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2094 global_lru_pages());
d6277db4
RW
2095 ret += reclaim_state.reclaimed_slab;
2096 if (ret >= nr_pages)
2097 goto out;
2098
2099 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2100 congestion_wait(WRITE, HZ / 10);
d6277db4 2101 }
248a0301 2102 }
d6277db4
RW
2103
2104 /*
2105 * If ret = 0, we could not shrink LRUs, but there may be something
2106 * in slab caches
2107 */
76395d37 2108 if (!ret) {
d6277db4
RW
2109 do {
2110 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2111 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d6277db4
RW
2112 ret += reclaim_state.reclaimed_slab;
2113 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 2114 }
d6277db4
RW
2115
2116out:
1da177e4 2117 current->reclaim_state = NULL;
d6277db4 2118
1da177e4
LT
2119 return ret;
2120}
2121#endif
2122
1da177e4
LT
2123/* It's optimal to keep kswapds on the same CPUs as their memory, but
2124 not required for correctness. So if the last cpu in a node goes
2125 away, we get changed to run anywhere: as the first one comes back,
2126 restore their cpu bindings. */
9c7b216d 2127static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2128 unsigned long action, void *hcpu)
1da177e4 2129{
58c0a4a7 2130 int nid;
1da177e4 2131
8bb78442 2132 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2133 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
2134 pg_data_t *pgdat = NODE_DATA(nid);
2135 node_to_cpumask_ptr(mask, pgdat->node_id);
2136
2137 if (any_online_cpu(*mask) < nr_cpu_ids)
1da177e4 2138 /* One of our CPUs online: restore mask */
c5f59f08 2139 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2140 }
2141 }
2142 return NOTIFY_OK;
2143}
1da177e4 2144
3218ae14
YG
2145/*
2146 * This kswapd start function will be called by init and node-hot-add.
2147 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2148 */
2149int kswapd_run(int nid)
2150{
2151 pg_data_t *pgdat = NODE_DATA(nid);
2152 int ret = 0;
2153
2154 if (pgdat->kswapd)
2155 return 0;
2156
2157 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2158 if (IS_ERR(pgdat->kswapd)) {
2159 /* failure at boot is fatal */
2160 BUG_ON(system_state == SYSTEM_BOOTING);
2161 printk("Failed to start kswapd on node %d\n",nid);
2162 ret = -1;
2163 }
2164 return ret;
2165}
2166
1da177e4
LT
2167static int __init kswapd_init(void)
2168{
3218ae14 2169 int nid;
69e05944 2170
1da177e4 2171 swap_setup();
9422ffba 2172 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2173 kswapd_run(nid);
1da177e4
LT
2174 hotcpu_notifier(cpu_callback, 0);
2175 return 0;
2176}
2177
2178module_init(kswapd_init)
9eeff239
CL
2179
2180#ifdef CONFIG_NUMA
2181/*
2182 * Zone reclaim mode
2183 *
2184 * If non-zero call zone_reclaim when the number of free pages falls below
2185 * the watermarks.
9eeff239
CL
2186 */
2187int zone_reclaim_mode __read_mostly;
2188
1b2ffb78 2189#define RECLAIM_OFF 0
7d03431c 2190#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2191#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2192#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2193
a92f7126
CL
2194/*
2195 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2196 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2197 * a zone.
2198 */
2199#define ZONE_RECLAIM_PRIORITY 4
2200
9614634f
CL
2201/*
2202 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2203 * occur.
2204 */
2205int sysctl_min_unmapped_ratio = 1;
2206
0ff38490
CL
2207/*
2208 * If the number of slab pages in a zone grows beyond this percentage then
2209 * slab reclaim needs to occur.
2210 */
2211int sysctl_min_slab_ratio = 5;
2212
9eeff239
CL
2213/*
2214 * Try to free up some pages from this zone through reclaim.
2215 */
179e9639 2216static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2217{
7fb2d46d 2218 /* Minimum pages needed in order to stay on node */
69e05944 2219 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2220 struct task_struct *p = current;
2221 struct reclaim_state reclaim_state;
8695949a 2222 int priority;
05ff5137 2223 unsigned long nr_reclaimed = 0;
179e9639
AM
2224 struct scan_control sc = {
2225 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2226 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
2227 .swap_cluster_max = max_t(unsigned long, nr_pages,
2228 SWAP_CLUSTER_MAX),
179e9639 2229 .gfp_mask = gfp_mask,
d6277db4 2230 .swappiness = vm_swappiness,
66e1707b 2231 .isolate_pages = isolate_pages_global,
179e9639 2232 };
83e33a47 2233 unsigned long slab_reclaimable;
9eeff239
CL
2234
2235 disable_swap_token();
9eeff239 2236 cond_resched();
d4f7796e
CL
2237 /*
2238 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2239 * and we also need to be able to write out pages for RECLAIM_WRITE
2240 * and RECLAIM_SWAP.
2241 */
2242 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2243 reclaim_state.reclaimed_slab = 0;
2244 p->reclaim_state = &reclaim_state;
c84db23c 2245
0ff38490
CL
2246 if (zone_page_state(zone, NR_FILE_PAGES) -
2247 zone_page_state(zone, NR_FILE_MAPPED) >
2248 zone->min_unmapped_pages) {
2249 /*
2250 * Free memory by calling shrink zone with increasing
2251 * priorities until we have enough memory freed.
2252 */
2253 priority = ZONE_RECLAIM_PRIORITY;
2254 do {
3bb1a852 2255 note_zone_scanning_priority(zone, priority);
0ff38490
CL
2256 nr_reclaimed += shrink_zone(priority, zone, &sc);
2257 priority--;
2258 } while (priority >= 0 && nr_reclaimed < nr_pages);
2259 }
c84db23c 2260
83e33a47
CL
2261 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2262 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2263 /*
7fb2d46d 2264 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2265 * many pages were freed in this zone. So we take the current
2266 * number of slab pages and shake the slab until it is reduced
2267 * by the same nr_pages that we used for reclaiming unmapped
2268 * pages.
2a16e3f4 2269 *
0ff38490
CL
2270 * Note that shrink_slab will free memory on all zones and may
2271 * take a long time.
2a16e3f4 2272 */
0ff38490 2273 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2274 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2275 slab_reclaimable - nr_pages)
0ff38490 2276 ;
83e33a47
CL
2277
2278 /*
2279 * Update nr_reclaimed by the number of slab pages we
2280 * reclaimed from this zone.
2281 */
2282 nr_reclaimed += slab_reclaimable -
2283 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2284 }
2285
9eeff239 2286 p->reclaim_state = NULL;
d4f7796e 2287 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
05ff5137 2288 return nr_reclaimed >= nr_pages;
9eeff239 2289}
179e9639
AM
2290
2291int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2292{
179e9639 2293 int node_id;
d773ed6b 2294 int ret;
179e9639
AM
2295
2296 /*
0ff38490
CL
2297 * Zone reclaim reclaims unmapped file backed pages and
2298 * slab pages if we are over the defined limits.
34aa1330 2299 *
9614634f
CL
2300 * A small portion of unmapped file backed pages is needed for
2301 * file I/O otherwise pages read by file I/O will be immediately
2302 * thrown out if the zone is overallocated. So we do not reclaim
2303 * if less than a specified percentage of the zone is used by
2304 * unmapped file backed pages.
179e9639 2305 */
34aa1330 2306 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2307 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2308 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2309 <= zone->min_slab_pages)
9614634f 2310 return 0;
179e9639 2311
d773ed6b
DR
2312 if (zone_is_all_unreclaimable(zone))
2313 return 0;
2314
179e9639 2315 /*
d773ed6b 2316 * Do not scan if the allocation should not be delayed.
179e9639 2317 */
d773ed6b 2318 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2319 return 0;
2320
2321 /*
2322 * Only run zone reclaim on the local zone or on zones that do not
2323 * have associated processors. This will favor the local processor
2324 * over remote processors and spread off node memory allocations
2325 * as wide as possible.
2326 */
89fa3024 2327 node_id = zone_to_nid(zone);
37c0708d 2328 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2329 return 0;
d773ed6b
DR
2330
2331 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2332 return 0;
2333 ret = __zone_reclaim(zone, gfp_mask, order);
2334 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2335
2336 return ret;
179e9639 2337}
9eeff239 2338#endif
894bc310
LS
2339
2340#ifdef CONFIG_UNEVICTABLE_LRU
2341/*
2342 * page_evictable - test whether a page is evictable
2343 * @page: the page to test
2344 * @vma: the VMA in which the page is or will be mapped, may be NULL
2345 *
2346 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2347 * lists vs unevictable list. The vma argument is !NULL when called from the
2348 * fault path to determine how to instantate a new page.
894bc310
LS
2349 *
2350 * Reasons page might not be evictable:
ba9ddf49 2351 * (1) page's mapping marked unevictable
b291f000 2352 * (2) page is part of an mlocked VMA
ba9ddf49 2353 *
894bc310
LS
2354 */
2355int page_evictable(struct page *page, struct vm_area_struct *vma)
2356{
2357
ba9ddf49
LS
2358 if (mapping_unevictable(page_mapping(page)))
2359 return 0;
2360
b291f000
NP
2361 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2362 return 0;
894bc310
LS
2363
2364 return 1;
2365}
89e004ea 2366
af936a16
LS
2367static void show_page_path(struct page *page)
2368{
2369 char buf[256];
2370 if (page_is_file_cache(page)) {
2371 struct address_space *mapping = page->mapping;
2372 struct dentry *dentry;
2373 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
2374
2375 spin_lock(&mapping->i_mmap_lock);
2376 dentry = d_find_alias(mapping->host);
2377 printk(KERN_INFO "rescued: %s %lu\n",
2378 dentry_path(dentry, buf, 256), pgoff);
2379 spin_unlock(&mapping->i_mmap_lock);
2380 } else {
2381#if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU)
2382 struct anon_vma *anon_vma;
2383 struct vm_area_struct *vma;
2384
2385 anon_vma = page_lock_anon_vma(page);
2386 if (!anon_vma)
2387 return;
2388
2389 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
2390 printk(KERN_INFO "rescued: anon %s\n",
2391 vma->vm_mm->owner->comm);
2392 break;
2393 }
2394 page_unlock_anon_vma(anon_vma);
2395#endif
2396 }
2397}
2398
2399
89e004ea
LS
2400/**
2401 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2402 * @page: page to check evictability and move to appropriate lru list
2403 * @zone: zone page is in
2404 *
2405 * Checks a page for evictability and moves the page to the appropriate
2406 * zone lru list.
2407 *
2408 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2409 * have PageUnevictable set.
2410 */
2411static void check_move_unevictable_page(struct page *page, struct zone *zone)
2412{
2413 VM_BUG_ON(PageActive(page));
2414
2415retry:
2416 ClearPageUnevictable(page);
2417 if (page_evictable(page, NULL)) {
2418 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16
LS
2419
2420 show_page_path(page);
2421
89e004ea
LS
2422 __dec_zone_state(zone, NR_UNEVICTABLE);
2423 list_move(&page->lru, &zone->lru[l].list);
2424 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2425 __count_vm_event(UNEVICTABLE_PGRESCUED);
2426 } else {
2427 /*
2428 * rotate unevictable list
2429 */
2430 SetPageUnevictable(page);
2431 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2432 if (page_evictable(page, NULL))
2433 goto retry;
2434 }
2435}
2436
2437/**
2438 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2439 * @mapping: struct address_space to scan for evictable pages
2440 *
2441 * Scan all pages in mapping. Check unevictable pages for
2442 * evictability and move them to the appropriate zone lru list.
2443 */
2444void scan_mapping_unevictable_pages(struct address_space *mapping)
2445{
2446 pgoff_t next = 0;
2447 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2448 PAGE_CACHE_SHIFT;
2449 struct zone *zone;
2450 struct pagevec pvec;
2451
2452 if (mapping->nrpages == 0)
2453 return;
2454
2455 pagevec_init(&pvec, 0);
2456 while (next < end &&
2457 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2458 int i;
2459 int pg_scanned = 0;
2460
2461 zone = NULL;
2462
2463 for (i = 0; i < pagevec_count(&pvec); i++) {
2464 struct page *page = pvec.pages[i];
2465 pgoff_t page_index = page->index;
2466 struct zone *pagezone = page_zone(page);
2467
2468 pg_scanned++;
2469 if (page_index > next)
2470 next = page_index;
2471 next++;
2472
2473 if (pagezone != zone) {
2474 if (zone)
2475 spin_unlock_irq(&zone->lru_lock);
2476 zone = pagezone;
2477 spin_lock_irq(&zone->lru_lock);
2478 }
2479
2480 if (PageLRU(page) && PageUnevictable(page))
2481 check_move_unevictable_page(page, zone);
2482 }
2483 if (zone)
2484 spin_unlock_irq(&zone->lru_lock);
2485 pagevec_release(&pvec);
2486
2487 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2488 }
2489
2490}
af936a16
LS
2491
2492/**
2493 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2494 * @zone - zone of which to scan the unevictable list
2495 *
2496 * Scan @zone's unevictable LRU lists to check for pages that have become
2497 * evictable. Move those that have to @zone's inactive list where they
2498 * become candidates for reclaim, unless shrink_inactive_zone() decides
2499 * to reactivate them. Pages that are still unevictable are rotated
2500 * back onto @zone's unevictable list.
2501 */
2502#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2503void scan_zone_unevictable_pages(struct zone *zone)
2504{
2505 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2506 unsigned long scan;
2507 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2508
2509 while (nr_to_scan > 0) {
2510 unsigned long batch_size = min(nr_to_scan,
2511 SCAN_UNEVICTABLE_BATCH_SIZE);
2512
2513 spin_lock_irq(&zone->lru_lock);
2514 for (scan = 0; scan < batch_size; scan++) {
2515 struct page *page = lru_to_page(l_unevictable);
2516
2517 if (!trylock_page(page))
2518 continue;
2519
2520 prefetchw_prev_lru_page(page, l_unevictable, flags);
2521
2522 if (likely(PageLRU(page) && PageUnevictable(page)))
2523 check_move_unevictable_page(page, zone);
2524
2525 unlock_page(page);
2526 }
2527 spin_unlock_irq(&zone->lru_lock);
2528
2529 nr_to_scan -= batch_size;
2530 }
2531}
2532
2533
2534/**
2535 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2536 *
2537 * A really big hammer: scan all zones' unevictable LRU lists to check for
2538 * pages that have become evictable. Move those back to the zones'
2539 * inactive list where they become candidates for reclaim.
2540 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2541 * and we add swap to the system. As such, it runs in the context of a task
2542 * that has possibly/probably made some previously unevictable pages
2543 * evictable.
2544 */
2545void scan_all_zones_unevictable_pages(void)
2546{
2547 struct zone *zone;
2548
2549 for_each_zone(zone) {
2550 scan_zone_unevictable_pages(zone);
2551 }
2552}
2553
2554/*
2555 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2556 * all nodes' unevictable lists for evictable pages
2557 */
2558unsigned long scan_unevictable_pages;
2559
2560int scan_unevictable_handler(struct ctl_table *table, int write,
2561 struct file *file, void __user *buffer,
2562 size_t *length, loff_t *ppos)
2563{
2564 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2565
2566 if (write && *(unsigned long *)table->data)
2567 scan_all_zones_unevictable_pages();
2568
2569 scan_unevictable_pages = 0;
2570 return 0;
2571}
2572
2573/*
2574 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2575 * a specified node's per zone unevictable lists for evictable pages.
2576 */
2577
2578static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2579 struct sysdev_attribute *attr,
2580 char *buf)
2581{
2582 return sprintf(buf, "0\n"); /* always zero; should fit... */
2583}
2584
2585static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2586 struct sysdev_attribute *attr,
2587 const char *buf, size_t count)
2588{
2589 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2590 struct zone *zone;
2591 unsigned long res;
2592 unsigned long req = strict_strtoul(buf, 10, &res);
2593
2594 if (!req)
2595 return 1; /* zero is no-op */
2596
2597 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2598 if (!populated_zone(zone))
2599 continue;
2600 scan_zone_unevictable_pages(zone);
2601 }
2602 return 1;
2603}
2604
2605
2606static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2607 read_scan_unevictable_node,
2608 write_scan_unevictable_node);
2609
2610int scan_unevictable_register_node(struct node *node)
2611{
2612 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2613}
2614
2615void scan_unevictable_unregister_node(struct node *node)
2616{
2617 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2618}
2619
894bc310 2620#endif
This page took 0.80592 seconds and 5 git commands to generate.