memcg: add mem_cgroup_zone_nr_pages()
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
f1fd1067
CL
63 /* Can pages be swapped as part of reclaim? */
64 int may_swap;
65
1da177e4
LT
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
d6277db4
RW
71
72 int swappiness;
408d8544
NP
73
74 int all_unreclaimable;
5ad333eb
AW
75
76 int order;
66e1707b
BS
77
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
80
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 unsigned long *scanned, int order, int mode,
84 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 85 int active, int file);
1da177e4
LT
86};
87
1da177e4
LT
88#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90#ifdef ARCH_HAS_PREFETCH
91#define prefetch_prev_lru_page(_page, _base, _field) \
92 do { \
93 if ((_page)->lru.prev != _base) { \
94 struct page *prev; \
95 \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
98 } \
99 } while (0)
100#else
101#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102#endif
103
104#ifdef ARCH_HAS_PREFETCHW
105#define prefetchw_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118/*
119 * From 0 .. 100. Higher means more swappy.
120 */
121int vm_swappiness = 60;
bd1e22b8 122long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
123
124static LIST_HEAD(shrinker_list);
125static DECLARE_RWSEM(shrinker_rwsem);
126
00f0b825 127#ifdef CONFIG_CGROUP_MEM_RES_CTLR
91a45470
KH
128#define scan_global_lru(sc) (!(sc)->mem_cgroup)
129#else
130#define scan_global_lru(sc) (1)
131#endif
132
6e901571
KM
133static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134 struct scan_control *sc)
135{
136 return &zone->reclaim_stat;
137}
138
c9f299d9
KM
139static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
140 enum lru_list lru)
141{
a3d8e054
KM
142 if (!scan_global_lru(sc))
143 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
144
c9f299d9
KM
145 return zone_page_state(zone, NR_LRU_BASE + lru);
146}
147
148
1da177e4
LT
149/*
150 * Add a shrinker callback to be called from the vm
151 */
8e1f936b 152void register_shrinker(struct shrinker *shrinker)
1da177e4 153{
8e1f936b
RR
154 shrinker->nr = 0;
155 down_write(&shrinker_rwsem);
156 list_add_tail(&shrinker->list, &shrinker_list);
157 up_write(&shrinker_rwsem);
1da177e4 158}
8e1f936b 159EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
160
161/*
162 * Remove one
163 */
8e1f936b 164void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
165{
166 down_write(&shrinker_rwsem);
167 list_del(&shrinker->list);
168 up_write(&shrinker_rwsem);
1da177e4 169}
8e1f936b 170EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
171
172#define SHRINK_BATCH 128
173/*
174 * Call the shrink functions to age shrinkable caches
175 *
176 * Here we assume it costs one seek to replace a lru page and that it also
177 * takes a seek to recreate a cache object. With this in mind we age equal
178 * percentages of the lru and ageable caches. This should balance the seeks
179 * generated by these structures.
180 *
183ff22b 181 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
182 * slab to avoid swapping.
183 *
184 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
185 *
186 * `lru_pages' represents the number of on-LRU pages in all the zones which
187 * are eligible for the caller's allocation attempt. It is used for balancing
188 * slab reclaim versus page reclaim.
b15e0905 189 *
190 * Returns the number of slab objects which we shrunk.
1da177e4 191 */
69e05944
AM
192unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
193 unsigned long lru_pages)
1da177e4
LT
194{
195 struct shrinker *shrinker;
69e05944 196 unsigned long ret = 0;
1da177e4
LT
197
198 if (scanned == 0)
199 scanned = SWAP_CLUSTER_MAX;
200
201 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 202 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
203
204 list_for_each_entry(shrinker, &shrinker_list, list) {
205 unsigned long long delta;
206 unsigned long total_scan;
8e1f936b 207 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
208
209 delta = (4 * scanned) / shrinker->seeks;
ea164d73 210 delta *= max_pass;
1da177e4
LT
211 do_div(delta, lru_pages + 1);
212 shrinker->nr += delta;
ea164d73
AA
213 if (shrinker->nr < 0) {
214 printk(KERN_ERR "%s: nr=%ld\n",
d40cee24 215 __func__, shrinker->nr);
ea164d73
AA
216 shrinker->nr = max_pass;
217 }
218
219 /*
220 * Avoid risking looping forever due to too large nr value:
221 * never try to free more than twice the estimate number of
222 * freeable entries.
223 */
224 if (shrinker->nr > max_pass * 2)
225 shrinker->nr = max_pass * 2;
1da177e4
LT
226
227 total_scan = shrinker->nr;
228 shrinker->nr = 0;
229
230 while (total_scan >= SHRINK_BATCH) {
231 long this_scan = SHRINK_BATCH;
232 int shrink_ret;
b15e0905 233 int nr_before;
1da177e4 234
8e1f936b
RR
235 nr_before = (*shrinker->shrink)(0, gfp_mask);
236 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
237 if (shrink_ret == -1)
238 break;
b15e0905 239 if (shrink_ret < nr_before)
240 ret += nr_before - shrink_ret;
f8891e5e 241 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
242 total_scan -= this_scan;
243
244 cond_resched();
245 }
246
247 shrinker->nr += total_scan;
248 }
249 up_read(&shrinker_rwsem);
b15e0905 250 return ret;
1da177e4
LT
251}
252
253/* Called without lock on whether page is mapped, so answer is unstable */
254static inline int page_mapping_inuse(struct page *page)
255{
256 struct address_space *mapping;
257
258 /* Page is in somebody's page tables. */
259 if (page_mapped(page))
260 return 1;
261
262 /* Be more reluctant to reclaim swapcache than pagecache */
263 if (PageSwapCache(page))
264 return 1;
265
266 mapping = page_mapping(page);
267 if (!mapping)
268 return 0;
269
270 /* File is mmap'd by somebody? */
271 return mapping_mapped(mapping);
272}
273
274static inline int is_page_cache_freeable(struct page *page)
275{
276 return page_count(page) - !!PagePrivate(page) == 2;
277}
278
279static int may_write_to_queue(struct backing_dev_info *bdi)
280{
930d9152 281 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
282 return 1;
283 if (!bdi_write_congested(bdi))
284 return 1;
285 if (bdi == current->backing_dev_info)
286 return 1;
287 return 0;
288}
289
290/*
291 * We detected a synchronous write error writing a page out. Probably
292 * -ENOSPC. We need to propagate that into the address_space for a subsequent
293 * fsync(), msync() or close().
294 *
295 * The tricky part is that after writepage we cannot touch the mapping: nothing
296 * prevents it from being freed up. But we have a ref on the page and once
297 * that page is locked, the mapping is pinned.
298 *
299 * We're allowed to run sleeping lock_page() here because we know the caller has
300 * __GFP_FS.
301 */
302static void handle_write_error(struct address_space *mapping,
303 struct page *page, int error)
304{
305 lock_page(page);
3e9f45bd
GC
306 if (page_mapping(page) == mapping)
307 mapping_set_error(mapping, error);
1da177e4
LT
308 unlock_page(page);
309}
310
c661b078
AW
311/* Request for sync pageout. */
312enum pageout_io {
313 PAGEOUT_IO_ASYNC,
314 PAGEOUT_IO_SYNC,
315};
316
04e62a29
CL
317/* possible outcome of pageout() */
318typedef enum {
319 /* failed to write page out, page is locked */
320 PAGE_KEEP,
321 /* move page to the active list, page is locked */
322 PAGE_ACTIVATE,
323 /* page has been sent to the disk successfully, page is unlocked */
324 PAGE_SUCCESS,
325 /* page is clean and locked */
326 PAGE_CLEAN,
327} pageout_t;
328
1da177e4 329/*
1742f19f
AM
330 * pageout is called by shrink_page_list() for each dirty page.
331 * Calls ->writepage().
1da177e4 332 */
c661b078
AW
333static pageout_t pageout(struct page *page, struct address_space *mapping,
334 enum pageout_io sync_writeback)
1da177e4
LT
335{
336 /*
337 * If the page is dirty, only perform writeback if that write
338 * will be non-blocking. To prevent this allocation from being
339 * stalled by pagecache activity. But note that there may be
340 * stalls if we need to run get_block(). We could test
341 * PagePrivate for that.
342 *
343 * If this process is currently in generic_file_write() against
344 * this page's queue, we can perform writeback even if that
345 * will block.
346 *
347 * If the page is swapcache, write it back even if that would
348 * block, for some throttling. This happens by accident, because
349 * swap_backing_dev_info is bust: it doesn't reflect the
350 * congestion state of the swapdevs. Easy to fix, if needed.
351 * See swapfile.c:page_queue_congested().
352 */
353 if (!is_page_cache_freeable(page))
354 return PAGE_KEEP;
355 if (!mapping) {
356 /*
357 * Some data journaling orphaned pages can have
358 * page->mapping == NULL while being dirty with clean buffers.
359 */
323aca6c 360 if (PagePrivate(page)) {
1da177e4
LT
361 if (try_to_free_buffers(page)) {
362 ClearPageDirty(page);
d40cee24 363 printk("%s: orphaned page\n", __func__);
1da177e4
LT
364 return PAGE_CLEAN;
365 }
366 }
367 return PAGE_KEEP;
368 }
369 if (mapping->a_ops->writepage == NULL)
370 return PAGE_ACTIVATE;
371 if (!may_write_to_queue(mapping->backing_dev_info))
372 return PAGE_KEEP;
373
374 if (clear_page_dirty_for_io(page)) {
375 int res;
376 struct writeback_control wbc = {
377 .sync_mode = WB_SYNC_NONE,
378 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
379 .range_start = 0,
380 .range_end = LLONG_MAX,
1da177e4
LT
381 .nonblocking = 1,
382 .for_reclaim = 1,
383 };
384
385 SetPageReclaim(page);
386 res = mapping->a_ops->writepage(page, &wbc);
387 if (res < 0)
388 handle_write_error(mapping, page, res);
994fc28c 389 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
390 ClearPageReclaim(page);
391 return PAGE_ACTIVATE;
392 }
c661b078
AW
393
394 /*
395 * Wait on writeback if requested to. This happens when
396 * direct reclaiming a large contiguous area and the
397 * first attempt to free a range of pages fails.
398 */
399 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
400 wait_on_page_writeback(page);
401
1da177e4
LT
402 if (!PageWriteback(page)) {
403 /* synchronous write or broken a_ops? */
404 ClearPageReclaim(page);
405 }
e129b5c2 406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
407 return PAGE_SUCCESS;
408 }
409
410 return PAGE_CLEAN;
411}
412
a649fd92 413/*
e286781d
NP
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
a649fd92 416 */
e286781d 417static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 418{
28e4d965
NP
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
49d2e9cc 421
19fd6231 422 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 423 /*
0fd0e6b0
NP
424 * The non racy check for a busy page.
425 *
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
430 *
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
438 *
439 * [oops, our write_to data is lost]
440 *
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
444 *
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 447 */
e286781d 448 if (!page_freeze_refs(page, 2))
49d2e9cc 449 goto cannot_free;
e286781d
NP
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
49d2e9cc 453 goto cannot_free;
e286781d 454 }
49d2e9cc
CL
455
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
19fd6231 459 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc 460 swap_free(swap);
e286781d
NP
461 } else {
462 __remove_from_page_cache(page);
19fd6231 463 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
464 }
465
49d2e9cc
CL
466 return 1;
467
468cannot_free:
19fd6231 469 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
470 return 0;
471}
472
e286781d
NP
473/*
474 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
475 * someone else has a ref on the page, abort and return 0. If it was
476 * successfully detached, return 1. Assumes the caller has a single ref on
477 * this page.
478 */
479int remove_mapping(struct address_space *mapping, struct page *page)
480{
481 if (__remove_mapping(mapping, page)) {
482 /*
483 * Unfreezing the refcount with 1 rather than 2 effectively
484 * drops the pagecache ref for us without requiring another
485 * atomic operation.
486 */
487 page_unfreeze_refs(page, 1);
488 return 1;
489 }
490 return 0;
491}
492
894bc310
LS
493/**
494 * putback_lru_page - put previously isolated page onto appropriate LRU list
495 * @page: page to be put back to appropriate lru list
496 *
497 * Add previously isolated @page to appropriate LRU list.
498 * Page may still be unevictable for other reasons.
499 *
500 * lru_lock must not be held, interrupts must be enabled.
501 */
502#ifdef CONFIG_UNEVICTABLE_LRU
503void putback_lru_page(struct page *page)
504{
505 int lru;
506 int active = !!TestClearPageActive(page);
bbfd28ee 507 int was_unevictable = PageUnevictable(page);
894bc310
LS
508
509 VM_BUG_ON(PageLRU(page));
510
511redo:
512 ClearPageUnevictable(page);
513
514 if (page_evictable(page, NULL)) {
515 /*
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
520 */
521 lru = active + page_is_file_cache(page);
522 lru_cache_add_lru(page, lru);
523 } else {
524 /*
525 * Put unevictable pages directly on zone's unevictable
526 * list.
527 */
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
530 }
894bc310
LS
531
532 /*
533 * page's status can change while we move it among lru. If an evictable
534 * page is on unevictable list, it never be freed. To avoid that,
535 * check after we added it to the list, again.
536 */
537 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
538 if (!isolate_lru_page(page)) {
539 put_page(page);
540 goto redo;
541 }
542 /* This means someone else dropped this page from LRU
543 * So, it will be freed or putback to LRU again. There is
544 * nothing to do here.
545 */
546 }
547
bbfd28ee
LS
548 if (was_unevictable && lru != LRU_UNEVICTABLE)
549 count_vm_event(UNEVICTABLE_PGRESCUED);
550 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
551 count_vm_event(UNEVICTABLE_PGCULLED);
552
894bc310
LS
553 put_page(page); /* drop ref from isolate */
554}
555
556#else /* CONFIG_UNEVICTABLE_LRU */
557
558void putback_lru_page(struct page *page)
559{
560 int lru;
561 VM_BUG_ON(PageLRU(page));
562
563 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
564 lru_cache_add_lru(page, lru);
894bc310
LS
565 put_page(page);
566}
567#endif /* CONFIG_UNEVICTABLE_LRU */
568
569
1da177e4 570/*
1742f19f 571 * shrink_page_list() returns the number of reclaimed pages
1da177e4 572 */
1742f19f 573static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
574 struct scan_control *sc,
575 enum pageout_io sync_writeback)
1da177e4
LT
576{
577 LIST_HEAD(ret_pages);
578 struct pagevec freed_pvec;
579 int pgactivate = 0;
05ff5137 580 unsigned long nr_reclaimed = 0;
1da177e4
LT
581
582 cond_resched();
583
584 pagevec_init(&freed_pvec, 1);
585 while (!list_empty(page_list)) {
586 struct address_space *mapping;
587 struct page *page;
588 int may_enter_fs;
589 int referenced;
590
591 cond_resched();
592
593 page = lru_to_page(page_list);
594 list_del(&page->lru);
595
529ae9aa 596 if (!trylock_page(page))
1da177e4
LT
597 goto keep;
598
725d704e 599 VM_BUG_ON(PageActive(page));
1da177e4
LT
600
601 sc->nr_scanned++;
80e43426 602
b291f000
NP
603 if (unlikely(!page_evictable(page, NULL)))
604 goto cull_mlocked;
894bc310 605
80e43426
CL
606 if (!sc->may_swap && page_mapped(page))
607 goto keep_locked;
608
1da177e4
LT
609 /* Double the slab pressure for mapped and swapcache pages */
610 if (page_mapped(page) || PageSwapCache(page))
611 sc->nr_scanned++;
612
c661b078
AW
613 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615
616 if (PageWriteback(page)) {
617 /*
618 * Synchronous reclaim is performed in two passes,
619 * first an asynchronous pass over the list to
620 * start parallel writeback, and a second synchronous
621 * pass to wait for the IO to complete. Wait here
622 * for any page for which writeback has already
623 * started.
624 */
625 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626 wait_on_page_writeback(page);
4dd4b920 627 else
c661b078
AW
628 goto keep_locked;
629 }
1da177e4 630
bed7161a 631 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 632 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
633 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
634 referenced && page_mapping_inuse(page))
1da177e4
LT
635 goto activate_locked;
636
1da177e4
LT
637 /*
638 * Anonymous process memory has backing store?
639 * Try to allocate it some swap space here.
640 */
b291f000 641 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
642 if (!(sc->gfp_mask & __GFP_IO))
643 goto keep_locked;
ac47b003 644 if (!add_to_swap(page))
1da177e4 645 goto activate_locked;
63eb6b93 646 may_enter_fs = 1;
b291f000 647 }
1da177e4
LT
648
649 mapping = page_mapping(page);
1da177e4
LT
650
651 /*
652 * The page is mapped into the page tables of one or more
653 * processes. Try to unmap it here.
654 */
655 if (page_mapped(page) && mapping) {
a48d07af 656 switch (try_to_unmap(page, 0)) {
1da177e4
LT
657 case SWAP_FAIL:
658 goto activate_locked;
659 case SWAP_AGAIN:
660 goto keep_locked;
b291f000
NP
661 case SWAP_MLOCK:
662 goto cull_mlocked;
1da177e4
LT
663 case SWAP_SUCCESS:
664 ; /* try to free the page below */
665 }
666 }
667
668 if (PageDirty(page)) {
5ad333eb 669 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 670 goto keep_locked;
4dd4b920 671 if (!may_enter_fs)
1da177e4 672 goto keep_locked;
52a8363e 673 if (!sc->may_writepage)
1da177e4
LT
674 goto keep_locked;
675
676 /* Page is dirty, try to write it out here */
c661b078 677 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
678 case PAGE_KEEP:
679 goto keep_locked;
680 case PAGE_ACTIVATE:
681 goto activate_locked;
682 case PAGE_SUCCESS:
4dd4b920 683 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
684 goto keep;
685 /*
686 * A synchronous write - probably a ramdisk. Go
687 * ahead and try to reclaim the page.
688 */
529ae9aa 689 if (!trylock_page(page))
1da177e4
LT
690 goto keep;
691 if (PageDirty(page) || PageWriteback(page))
692 goto keep_locked;
693 mapping = page_mapping(page);
694 case PAGE_CLEAN:
695 ; /* try to free the page below */
696 }
697 }
698
699 /*
700 * If the page has buffers, try to free the buffer mappings
701 * associated with this page. If we succeed we try to free
702 * the page as well.
703 *
704 * We do this even if the page is PageDirty().
705 * try_to_release_page() does not perform I/O, but it is
706 * possible for a page to have PageDirty set, but it is actually
707 * clean (all its buffers are clean). This happens if the
708 * buffers were written out directly, with submit_bh(). ext3
894bc310 709 * will do this, as well as the blockdev mapping.
1da177e4
LT
710 * try_to_release_page() will discover that cleanness and will
711 * drop the buffers and mark the page clean - it can be freed.
712 *
713 * Rarely, pages can have buffers and no ->mapping. These are
714 * the pages which were not successfully invalidated in
715 * truncate_complete_page(). We try to drop those buffers here
716 * and if that worked, and the page is no longer mapped into
717 * process address space (page_count == 1) it can be freed.
718 * Otherwise, leave the page on the LRU so it is swappable.
719 */
720 if (PagePrivate(page)) {
721 if (!try_to_release_page(page, sc->gfp_mask))
722 goto activate_locked;
e286781d
NP
723 if (!mapping && page_count(page) == 1) {
724 unlock_page(page);
725 if (put_page_testzero(page))
726 goto free_it;
727 else {
728 /*
729 * rare race with speculative reference.
730 * the speculative reference will free
731 * this page shortly, so we may
732 * increment nr_reclaimed here (and
733 * leave it off the LRU).
734 */
735 nr_reclaimed++;
736 continue;
737 }
738 }
1da177e4
LT
739 }
740
e286781d 741 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 742 goto keep_locked;
1da177e4 743
a978d6f5
NP
744 /*
745 * At this point, we have no other references and there is
746 * no way to pick any more up (removed from LRU, removed
747 * from pagecache). Can use non-atomic bitops now (and
748 * we obviously don't have to worry about waking up a process
749 * waiting on the page lock, because there are no references.
750 */
751 __clear_page_locked(page);
e286781d 752free_it:
05ff5137 753 nr_reclaimed++;
e286781d
NP
754 if (!pagevec_add(&freed_pvec, page)) {
755 __pagevec_free(&freed_pvec);
756 pagevec_reinit(&freed_pvec);
757 }
1da177e4
LT
758 continue;
759
b291f000 760cull_mlocked:
63d6c5ad
HD
761 if (PageSwapCache(page))
762 try_to_free_swap(page);
b291f000
NP
763 unlock_page(page);
764 putback_lru_page(page);
765 continue;
766
1da177e4 767activate_locked:
68a22394
RR
768 /* Not a candidate for swapping, so reclaim swap space. */
769 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 770 try_to_free_swap(page);
894bc310 771 VM_BUG_ON(PageActive(page));
1da177e4
LT
772 SetPageActive(page);
773 pgactivate++;
774keep_locked:
775 unlock_page(page);
776keep:
777 list_add(&page->lru, &ret_pages);
b291f000 778 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
779 }
780 list_splice(&ret_pages, page_list);
781 if (pagevec_count(&freed_pvec))
e286781d 782 __pagevec_free(&freed_pvec);
f8891e5e 783 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 784 return nr_reclaimed;
1da177e4
LT
785}
786
5ad333eb
AW
787/* LRU Isolation modes. */
788#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
789#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
790#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
791
792/*
793 * Attempt to remove the specified page from its LRU. Only take this page
794 * if it is of the appropriate PageActive status. Pages which are being
795 * freed elsewhere are also ignored.
796 *
797 * page: page to consider
798 * mode: one of the LRU isolation modes defined above
799 *
800 * returns 0 on success, -ve errno on failure.
801 */
4f98a2fe 802int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
803{
804 int ret = -EINVAL;
805
806 /* Only take pages on the LRU. */
807 if (!PageLRU(page))
808 return ret;
809
810 /*
811 * When checking the active state, we need to be sure we are
812 * dealing with comparible boolean values. Take the logical not
813 * of each.
814 */
815 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
816 return ret;
817
4f98a2fe
RR
818 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
819 return ret;
820
894bc310
LS
821 /*
822 * When this function is being called for lumpy reclaim, we
823 * initially look into all LRU pages, active, inactive and
824 * unevictable; only give shrink_page_list evictable pages.
825 */
826 if (PageUnevictable(page))
827 return ret;
828
5ad333eb 829 ret = -EBUSY;
08e552c6 830
5ad333eb
AW
831 if (likely(get_page_unless_zero(page))) {
832 /*
833 * Be careful not to clear PageLRU until after we're
834 * sure the page is not being freed elsewhere -- the
835 * page release code relies on it.
836 */
837 ClearPageLRU(page);
838 ret = 0;
08e552c6 839 mem_cgroup_del_lru(page);
5ad333eb
AW
840 }
841
842 return ret;
843}
844
1da177e4
LT
845/*
846 * zone->lru_lock is heavily contended. Some of the functions that
847 * shrink the lists perform better by taking out a batch of pages
848 * and working on them outside the LRU lock.
849 *
850 * For pagecache intensive workloads, this function is the hottest
851 * spot in the kernel (apart from copy_*_user functions).
852 *
853 * Appropriate locks must be held before calling this function.
854 *
855 * @nr_to_scan: The number of pages to look through on the list.
856 * @src: The LRU list to pull pages off.
857 * @dst: The temp list to put pages on to.
858 * @scanned: The number of pages that were scanned.
5ad333eb
AW
859 * @order: The caller's attempted allocation order
860 * @mode: One of the LRU isolation modes
4f98a2fe 861 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
862 *
863 * returns how many pages were moved onto *@dst.
864 */
69e05944
AM
865static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
866 struct list_head *src, struct list_head *dst,
4f98a2fe 867 unsigned long *scanned, int order, int mode, int file)
1da177e4 868{
69e05944 869 unsigned long nr_taken = 0;
c9b02d97 870 unsigned long scan;
1da177e4 871
c9b02d97 872 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
873 struct page *page;
874 unsigned long pfn;
875 unsigned long end_pfn;
876 unsigned long page_pfn;
877 int zone_id;
878
1da177e4
LT
879 page = lru_to_page(src);
880 prefetchw_prev_lru_page(page, src, flags);
881
725d704e 882 VM_BUG_ON(!PageLRU(page));
8d438f96 883
4f98a2fe 884 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
885 case 0:
886 list_move(&page->lru, dst);
7c8ee9a8 887 nr_taken++;
5ad333eb
AW
888 break;
889
890 case -EBUSY:
891 /* else it is being freed elsewhere */
892 list_move(&page->lru, src);
893 continue;
46453a6e 894
5ad333eb
AW
895 default:
896 BUG();
897 }
898
899 if (!order)
900 continue;
901
902 /*
903 * Attempt to take all pages in the order aligned region
904 * surrounding the tag page. Only take those pages of
905 * the same active state as that tag page. We may safely
906 * round the target page pfn down to the requested order
907 * as the mem_map is guarenteed valid out to MAX_ORDER,
908 * where that page is in a different zone we will detect
909 * it from its zone id and abort this block scan.
910 */
911 zone_id = page_zone_id(page);
912 page_pfn = page_to_pfn(page);
913 pfn = page_pfn & ~((1 << order) - 1);
914 end_pfn = pfn + (1 << order);
915 for (; pfn < end_pfn; pfn++) {
916 struct page *cursor_page;
917
918 /* The target page is in the block, ignore it. */
919 if (unlikely(pfn == page_pfn))
920 continue;
921
922 /* Avoid holes within the zone. */
923 if (unlikely(!pfn_valid_within(pfn)))
924 break;
925
926 cursor_page = pfn_to_page(pfn);
4f98a2fe 927
5ad333eb
AW
928 /* Check that we have not crossed a zone boundary. */
929 if (unlikely(page_zone_id(cursor_page) != zone_id))
930 continue;
4f98a2fe 931 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
932 case 0:
933 list_move(&cursor_page->lru, dst);
934 nr_taken++;
935 scan++;
936 break;
937
938 case -EBUSY:
939 /* else it is being freed elsewhere */
940 list_move(&cursor_page->lru, src);
941 default:
894bc310 942 break; /* ! on LRU or wrong list */
5ad333eb
AW
943 }
944 }
1da177e4
LT
945 }
946
947 *scanned = scan;
948 return nr_taken;
949}
950
66e1707b
BS
951static unsigned long isolate_pages_global(unsigned long nr,
952 struct list_head *dst,
953 unsigned long *scanned, int order,
954 int mode, struct zone *z,
955 struct mem_cgroup *mem_cont,
4f98a2fe 956 int active, int file)
66e1707b 957{
4f98a2fe 958 int lru = LRU_BASE;
66e1707b 959 if (active)
4f98a2fe
RR
960 lru += LRU_ACTIVE;
961 if (file)
962 lru += LRU_FILE;
963 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
964 mode, !!file);
66e1707b
BS
965}
966
5ad333eb
AW
967/*
968 * clear_active_flags() is a helper for shrink_active_list(), clearing
969 * any active bits from the pages in the list.
970 */
4f98a2fe
RR
971static unsigned long clear_active_flags(struct list_head *page_list,
972 unsigned int *count)
5ad333eb
AW
973{
974 int nr_active = 0;
4f98a2fe 975 int lru;
5ad333eb
AW
976 struct page *page;
977
4f98a2fe
RR
978 list_for_each_entry(page, page_list, lru) {
979 lru = page_is_file_cache(page);
5ad333eb 980 if (PageActive(page)) {
4f98a2fe 981 lru += LRU_ACTIVE;
5ad333eb
AW
982 ClearPageActive(page);
983 nr_active++;
984 }
4f98a2fe
RR
985 count[lru]++;
986 }
5ad333eb
AW
987
988 return nr_active;
989}
990
62695a84
NP
991/**
992 * isolate_lru_page - tries to isolate a page from its LRU list
993 * @page: page to isolate from its LRU list
994 *
995 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
996 * vmstat statistic corresponding to whatever LRU list the page was on.
997 *
998 * Returns 0 if the page was removed from an LRU list.
999 * Returns -EBUSY if the page was not on an LRU list.
1000 *
1001 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1002 * the active list, it will have PageActive set. If it was found on
1003 * the unevictable list, it will have the PageUnevictable bit set. That flag
1004 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1005 *
1006 * The vmstat statistic corresponding to the list on which the page was
1007 * found will be decremented.
1008 *
1009 * Restrictions:
1010 * (1) Must be called with an elevated refcount on the page. This is a
1011 * fundamentnal difference from isolate_lru_pages (which is called
1012 * without a stable reference).
1013 * (2) the lru_lock must not be held.
1014 * (3) interrupts must be enabled.
1015 */
1016int isolate_lru_page(struct page *page)
1017{
1018 int ret = -EBUSY;
1019
1020 if (PageLRU(page)) {
1021 struct zone *zone = page_zone(page);
1022
1023 spin_lock_irq(&zone->lru_lock);
1024 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1025 int lru = page_lru(page);
62695a84
NP
1026 ret = 0;
1027 ClearPageLRU(page);
4f98a2fe 1028
4f98a2fe 1029 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1030 }
1031 spin_unlock_irq(&zone->lru_lock);
1032 }
1033 return ret;
1034}
1035
1da177e4 1036/*
1742f19f
AM
1037 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1038 * of reclaimed pages
1da177e4 1039 */
1742f19f 1040static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1041 struct zone *zone, struct scan_control *sc,
1042 int priority, int file)
1da177e4
LT
1043{
1044 LIST_HEAD(page_list);
1045 struct pagevec pvec;
69e05944 1046 unsigned long nr_scanned = 0;
05ff5137 1047 unsigned long nr_reclaimed = 0;
6e901571 1048 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1049
1050 pagevec_init(&pvec, 1);
1051
1052 lru_add_drain();
1053 spin_lock_irq(&zone->lru_lock);
69e05944 1054 do {
1da177e4 1055 struct page *page;
69e05944
AM
1056 unsigned long nr_taken;
1057 unsigned long nr_scan;
1058 unsigned long nr_freed;
5ad333eb 1059 unsigned long nr_active;
4f98a2fe 1060 unsigned int count[NR_LRU_LISTS] = { 0, };
33c120ed
RR
1061 int mode = ISOLATE_INACTIVE;
1062
1063 /*
1064 * If we need a large contiguous chunk of memory, or have
1065 * trouble getting a small set of contiguous pages, we
1066 * will reclaim both active and inactive pages.
1067 *
1068 * We use the same threshold as pageout congestion_wait below.
1069 */
1070 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1071 mode = ISOLATE_BOTH;
1072 else if (sc->order && priority < DEF_PRIORITY - 2)
1073 mode = ISOLATE_BOTH;
1da177e4 1074
66e1707b 1075 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1076 &page_list, &nr_scan, sc->order, mode,
1077 zone, sc->mem_cgroup, 0, file);
1078 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1079 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1080
4f98a2fe
RR
1081 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1082 -count[LRU_ACTIVE_FILE]);
1083 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1084 -count[LRU_INACTIVE_FILE]);
1085 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1086 -count[LRU_ACTIVE_ANON]);
1087 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1088 -count[LRU_INACTIVE_ANON]);
1089
1090 if (scan_global_lru(sc)) {
1cfb419b 1091 zone->pages_scanned += nr_scan;
6e901571
KM
1092 reclaim_stat->recent_scanned[0] +=
1093 count[LRU_INACTIVE_ANON];
1094 reclaim_stat->recent_scanned[0] +=
1095 count[LRU_ACTIVE_ANON];
1096 reclaim_stat->recent_scanned[1] +=
1097 count[LRU_INACTIVE_FILE];
1098 reclaim_stat->recent_scanned[1] +=
1099 count[LRU_ACTIVE_FILE];
4f98a2fe 1100 }
1da177e4
LT
1101 spin_unlock_irq(&zone->lru_lock);
1102
69e05944 1103 nr_scanned += nr_scan;
c661b078
AW
1104 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1105
1106 /*
1107 * If we are direct reclaiming for contiguous pages and we do
1108 * not reclaim everything in the list, try again and wait
1109 * for IO to complete. This will stall high-order allocations
1110 * but that should be acceptable to the caller
1111 */
1112 if (nr_freed < nr_taken && !current_is_kswapd() &&
1113 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1114 congestion_wait(WRITE, HZ/10);
1115
1116 /*
1117 * The attempt at page out may have made some
1118 * of the pages active, mark them inactive again.
1119 */
4f98a2fe 1120 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1121 count_vm_events(PGDEACTIVATE, nr_active);
1122
1123 nr_freed += shrink_page_list(&page_list, sc,
1124 PAGEOUT_IO_SYNC);
1125 }
1126
05ff5137 1127 nr_reclaimed += nr_freed;
a74609fa
NP
1128 local_irq_disable();
1129 if (current_is_kswapd()) {
f8891e5e
CL
1130 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1131 __count_vm_events(KSWAPD_STEAL, nr_freed);
1cfb419b 1132 } else if (scan_global_lru(sc))
f8891e5e 1133 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1134
918d3f90 1135 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1136
fb8d14e1
WF
1137 if (nr_taken == 0)
1138 goto done;
1139
a74609fa 1140 spin_lock(&zone->lru_lock);
1da177e4
LT
1141 /*
1142 * Put back any unfreeable pages.
1143 */
1144 while (!list_empty(&page_list)) {
894bc310 1145 int lru;
1da177e4 1146 page = lru_to_page(&page_list);
725d704e 1147 VM_BUG_ON(PageLRU(page));
1da177e4 1148 list_del(&page->lru);
894bc310
LS
1149 if (unlikely(!page_evictable(page, NULL))) {
1150 spin_unlock_irq(&zone->lru_lock);
1151 putback_lru_page(page);
1152 spin_lock_irq(&zone->lru_lock);
1153 continue;
1154 }
1155 SetPageLRU(page);
1156 lru = page_lru(page);
1157 add_page_to_lru_list(zone, page, lru);
4f98a2fe
RR
1158 if (PageActive(page) && scan_global_lru(sc)) {
1159 int file = !!page_is_file_cache(page);
6e901571 1160 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1161 }
1da177e4
LT
1162 if (!pagevec_add(&pvec, page)) {
1163 spin_unlock_irq(&zone->lru_lock);
1164 __pagevec_release(&pvec);
1165 spin_lock_irq(&zone->lru_lock);
1166 }
1167 }
69e05944 1168 } while (nr_scanned < max_scan);
fb8d14e1 1169 spin_unlock(&zone->lru_lock);
1da177e4 1170done:
fb8d14e1 1171 local_irq_enable();
1da177e4 1172 pagevec_release(&pvec);
05ff5137 1173 return nr_reclaimed;
1da177e4
LT
1174}
1175
3bb1a852
MB
1176/*
1177 * We are about to scan this zone at a certain priority level. If that priority
1178 * level is smaller (ie: more urgent) than the previous priority, then note
1179 * that priority level within the zone. This is done so that when the next
1180 * process comes in to scan this zone, it will immediately start out at this
1181 * priority level rather than having to build up its own scanning priority.
1182 * Here, this priority affects only the reclaim-mapped threshold.
1183 */
1184static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1185{
1186 if (priority < zone->prev_priority)
1187 zone->prev_priority = priority;
1188}
1189
1da177e4
LT
1190/*
1191 * This moves pages from the active list to the inactive list.
1192 *
1193 * We move them the other way if the page is referenced by one or more
1194 * processes, from rmap.
1195 *
1196 * If the pages are mostly unmapped, the processing is fast and it is
1197 * appropriate to hold zone->lru_lock across the whole operation. But if
1198 * the pages are mapped, the processing is slow (page_referenced()) so we
1199 * should drop zone->lru_lock around each page. It's impossible to balance
1200 * this, so instead we remove the pages from the LRU while processing them.
1201 * It is safe to rely on PG_active against the non-LRU pages in here because
1202 * nobody will play with that bit on a non-LRU page.
1203 *
1204 * The downside is that we have to touch page->_count against each page.
1205 * But we had to alter page->flags anyway.
1206 */
1cfb419b
KH
1207
1208
1742f19f 1209static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1210 struct scan_control *sc, int priority, int file)
1da177e4 1211{
69e05944 1212 unsigned long pgmoved;
1da177e4 1213 int pgdeactivate = 0;
69e05944 1214 unsigned long pgscanned;
1da177e4 1215 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1216 LIST_HEAD(l_inactive);
1da177e4
LT
1217 struct page *page;
1218 struct pagevec pvec;
4f98a2fe 1219 enum lru_list lru;
6e901571 1220 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1221
1222 lru_add_drain();
1223 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1224 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1225 ISOLATE_ACTIVE, zone,
4f98a2fe 1226 sc->mem_cgroup, 1, file);
1cfb419b
KH
1227 /*
1228 * zone->pages_scanned is used for detect zone's oom
1229 * mem_cgroup remembers nr_scan by itself.
1230 */
4f98a2fe 1231 if (scan_global_lru(sc)) {
1cfb419b 1232 zone->pages_scanned += pgscanned;
6e901571 1233 reclaim_stat->recent_scanned[!!file] += pgmoved;
4f98a2fe 1234 }
1cfb419b 1235
4f98a2fe
RR
1236 if (file)
1237 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1238 else
1239 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1240 spin_unlock_irq(&zone->lru_lock);
1241
556adecb 1242 pgmoved = 0;
1da177e4
LT
1243 while (!list_empty(&l_hold)) {
1244 cond_resched();
1245 page = lru_to_page(&l_hold);
1246 list_del(&page->lru);
7e9cd484 1247
894bc310
LS
1248 if (unlikely(!page_evictable(page, NULL))) {
1249 putback_lru_page(page);
1250 continue;
1251 }
1252
7e9cd484
RR
1253 /* page_referenced clears PageReferenced */
1254 if (page_mapping_inuse(page) &&
1255 page_referenced(page, 0, sc->mem_cgroup))
1256 pgmoved++;
1257
1da177e4
LT
1258 list_add(&page->lru, &l_inactive);
1259 }
1260
b555749a
AM
1261 /*
1262 * Move the pages to the [file or anon] inactive list.
1263 */
1264 pagevec_init(&pvec, 1);
1265 pgmoved = 0;
1266 lru = LRU_BASE + file * LRU_FILE;
1267
2a1dc509 1268 spin_lock_irq(&zone->lru_lock);
556adecb 1269 /*
7e9cd484
RR
1270 * Count referenced pages from currently used mappings as
1271 * rotated, even though they are moved to the inactive list.
1272 * This helps balance scan pressure between file and anonymous
1273 * pages in get_scan_ratio.
1274 */
077cbc58 1275 if (scan_global_lru(sc))
6e901571 1276 reclaim_stat->recent_rotated[!!file] += pgmoved;
556adecb 1277
1da177e4
LT
1278 while (!list_empty(&l_inactive)) {
1279 page = lru_to_page(&l_inactive);
1280 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1281 VM_BUG_ON(PageLRU(page));
8d438f96 1282 SetPageLRU(page);
725d704e 1283 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1284 ClearPageActive(page);
1285
4f98a2fe 1286 list_move(&page->lru, &zone->lru[lru].list);
08e552c6 1287 mem_cgroup_add_lru_list(page, lru);
1da177e4
LT
1288 pgmoved++;
1289 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1290 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1291 spin_unlock_irq(&zone->lru_lock);
1292 pgdeactivate += pgmoved;
1293 pgmoved = 0;
1294 if (buffer_heads_over_limit)
1295 pagevec_strip(&pvec);
1296 __pagevec_release(&pvec);
1297 spin_lock_irq(&zone->lru_lock);
1298 }
1299 }
4f98a2fe 1300 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1301 pgdeactivate += pgmoved;
1302 if (buffer_heads_over_limit) {
1303 spin_unlock_irq(&zone->lru_lock);
1304 pagevec_strip(&pvec);
1305 spin_lock_irq(&zone->lru_lock);
1306 }
f8891e5e
CL
1307 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1308 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1309 spin_unlock_irq(&zone->lru_lock);
68a22394
RR
1310 if (vm_swap_full())
1311 pagevec_swap_free(&pvec);
1da177e4 1312
a74609fa 1313 pagevec_release(&pvec);
1da177e4
LT
1314}
1315
14797e23 1316static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1317{
1318 unsigned long active, inactive;
1319
1320 active = zone_page_state(zone, NR_ACTIVE_ANON);
1321 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1322
1323 if (inactive * zone->inactive_ratio < active)
1324 return 1;
1325
1326 return 0;
1327}
1328
14797e23
KM
1329/**
1330 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1331 * @zone: zone to check
1332 * @sc: scan control of this context
1333 *
1334 * Returns true if the zone does not have enough inactive anon pages,
1335 * meaning some active anon pages need to be deactivated.
1336 */
1337static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1338{
1339 int low;
1340
1341 if (scan_global_lru(sc))
1342 low = inactive_anon_is_low_global(zone);
1343 else
1344 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1345 return low;
1346}
1347
4f98a2fe 1348static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1349 struct zone *zone, struct scan_control *sc, int priority)
1350{
4f98a2fe
RR
1351 int file = is_file_lru(lru);
1352
556adecb
RR
1353 if (lru == LRU_ACTIVE_FILE) {
1354 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1355 return 0;
1356 }
1357
14797e23 1358 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1359 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1360 return 0;
1361 }
33c120ed 1362 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1363}
1364
1365/*
1366 * Determine how aggressively the anon and file LRU lists should be
1367 * scanned. The relative value of each set of LRU lists is determined
1368 * by looking at the fraction of the pages scanned we did rotate back
1369 * onto the active list instead of evict.
1370 *
1371 * percent[0] specifies how much pressure to put on ram/swap backed
1372 * memory, while percent[1] determines pressure on the file LRUs.
1373 */
1374static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1375 unsigned long *percent)
1376{
1377 unsigned long anon, file, free;
1378 unsigned long anon_prio, file_prio;
1379 unsigned long ap, fp;
6e901571 1380 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1381
4f98a2fe
RR
1382 /* If we have no swap space, do not bother scanning anon pages. */
1383 if (nr_swap_pages <= 0) {
1384 percent[0] = 0;
1385 percent[1] = 100;
1386 return;
1387 }
1388
c9f299d9
KM
1389 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1390 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1391 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1392 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1393
eeee9a8c
KM
1394 if (scan_global_lru(sc)) {
1395 free = zone_page_state(zone, NR_FREE_PAGES);
1396 /* If we have very few page cache pages,
1397 force-scan anon pages. */
1398 if (unlikely(file + free <= zone->pages_high)) {
1399 percent[0] = 100;
1400 percent[1] = 0;
1401 return;
1402 }
4f98a2fe
RR
1403 }
1404
1405 /*
1406 * OK, so we have swap space and a fair amount of page cache
1407 * pages. We use the recently rotated / recently scanned
1408 * ratios to determine how valuable each cache is.
1409 *
1410 * Because workloads change over time (and to avoid overflow)
1411 * we keep these statistics as a floating average, which ends
1412 * up weighing recent references more than old ones.
1413 *
1414 * anon in [0], file in [1]
1415 */
6e901571 1416 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1417 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1418 reclaim_stat->recent_scanned[0] /= 2;
1419 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1420 spin_unlock_irq(&zone->lru_lock);
1421 }
1422
6e901571 1423 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1424 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1425 reclaim_stat->recent_scanned[1] /= 2;
1426 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1427 spin_unlock_irq(&zone->lru_lock);
1428 }
1429
1430 /*
1431 * With swappiness at 100, anonymous and file have the same priority.
1432 * This scanning priority is essentially the inverse of IO cost.
1433 */
1434 anon_prio = sc->swappiness;
1435 file_prio = 200 - sc->swappiness;
1436
1437 /*
00d8089c
RR
1438 * The amount of pressure on anon vs file pages is inversely
1439 * proportional to the fraction of recently scanned pages on
1440 * each list that were recently referenced and in active use.
4f98a2fe 1441 */
6e901571
KM
1442 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1443 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1444
6e901571
KM
1445 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1446 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1447
1448 /* Normalize to percentages */
1449 percent[0] = 100 * ap / (ap + fp + 1);
1450 percent[1] = 100 - percent[0];
b69408e8
CL
1451}
1452
4f98a2fe 1453
1da177e4
LT
1454/*
1455 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1456 */
a79311c1 1457static void shrink_zone(int priority, struct zone *zone,
05ff5137 1458 struct scan_control *sc)
1da177e4 1459{
b69408e8 1460 unsigned long nr[NR_LRU_LISTS];
8695949a 1461 unsigned long nr_to_scan;
4f98a2fe 1462 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1463 enum lru_list l;
01dbe5c9
KM
1464 unsigned long nr_reclaimed = sc->nr_reclaimed;
1465 unsigned long swap_cluster_max = sc->swap_cluster_max;
1da177e4 1466
4f98a2fe
RR
1467 get_scan_ratio(zone, sc, percent);
1468
894bc310 1469 for_each_evictable_lru(l) {
4f98a2fe
RR
1470 if (scan_global_lru(sc)) {
1471 int file = is_file_lru(l);
1472 int scan;
e0f79b8f 1473
4f98a2fe
RR
1474 scan = zone_page_state(zone, NR_LRU_BASE + l);
1475 if (priority) {
1476 scan >>= priority;
1477 scan = (scan * percent[file]) / 100;
1478 }
e0f79b8f 1479 zone->lru[l].nr_scan += scan;
b69408e8 1480 nr[l] = zone->lru[l].nr_scan;
01dbe5c9 1481 if (nr[l] >= swap_cluster_max)
b69408e8
CL
1482 zone->lru[l].nr_scan = 0;
1483 else
1484 nr[l] = 0;
4f98a2fe
RR
1485 } else {
1486 /*
1487 * This reclaim occurs not because zone memory shortage
1488 * but because memory controller hits its limit.
1489 * Don't modify zone reclaim related data.
1490 */
1491 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1492 priority, l);
b69408e8 1493 }
1cfb419b 1494 }
1da177e4 1495
556adecb
RR
1496 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1497 nr[LRU_INACTIVE_FILE]) {
894bc310 1498 for_each_evictable_lru(l) {
b69408e8 1499 if (nr[l]) {
01dbe5c9 1500 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1501 nr[l] -= nr_to_scan;
1da177e4 1502
01dbe5c9
KM
1503 nr_reclaimed += shrink_list(l, nr_to_scan,
1504 zone, sc, priority);
b69408e8 1505 }
1da177e4 1506 }
a79311c1
RR
1507 /*
1508 * On large memory systems, scan >> priority can become
1509 * really large. This is fine for the starting priority;
1510 * we want to put equal scanning pressure on each zone.
1511 * However, if the VM has a harder time of freeing pages,
1512 * with multiple processes reclaiming pages, the total
1513 * freeing target can get unreasonably large.
1514 */
01dbe5c9 1515 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1516 priority < DEF_PRIORITY && !current_is_kswapd())
1517 break;
1da177e4
LT
1518 }
1519
01dbe5c9
KM
1520 sc->nr_reclaimed = nr_reclaimed;
1521
556adecb
RR
1522 /*
1523 * Even if we did not try to evict anon pages at all, we want to
1524 * rebalance the anon lru active/inactive ratio.
1525 */
14797e23 1526 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1527 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1528
232ea4d6 1529 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1530}
1531
1532/*
1533 * This is the direct reclaim path, for page-allocating processes. We only
1534 * try to reclaim pages from zones which will satisfy the caller's allocation
1535 * request.
1536 *
1537 * We reclaim from a zone even if that zone is over pages_high. Because:
1538 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1539 * allocation or
1540 * b) The zones may be over pages_high but they must go *over* pages_high to
1541 * satisfy the `incremental min' zone defense algorithm.
1542 *
1da177e4
LT
1543 * If a zone is deemed to be full of pinned pages then just give it a light
1544 * scan then give up on it.
1545 */
a79311c1 1546static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1547 struct scan_control *sc)
1da177e4 1548{
54a6eb5c 1549 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1550 struct zoneref *z;
54a6eb5c 1551 struct zone *zone;
1cfb419b 1552
408d8544 1553 sc->all_unreclaimable = 1;
54a6eb5c 1554 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1555 if (!populated_zone(zone))
1da177e4 1556 continue;
1cfb419b
KH
1557 /*
1558 * Take care memory controller reclaiming has small influence
1559 * to global LRU.
1560 */
1561 if (scan_global_lru(sc)) {
1562 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1563 continue;
1564 note_zone_scanning_priority(zone, priority);
1da177e4 1565
1cfb419b
KH
1566 if (zone_is_all_unreclaimable(zone) &&
1567 priority != DEF_PRIORITY)
1568 continue; /* Let kswapd poll it */
1569 sc->all_unreclaimable = 0;
1570 } else {
1571 /*
1572 * Ignore cpuset limitation here. We just want to reduce
1573 * # of used pages by us regardless of memory shortage.
1574 */
1575 sc->all_unreclaimable = 0;
1576 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1577 priority);
1578 }
408d8544 1579
a79311c1 1580 shrink_zone(priority, zone, sc);
1da177e4
LT
1581 }
1582}
4f98a2fe 1583
1da177e4
LT
1584/*
1585 * This is the main entry point to direct page reclaim.
1586 *
1587 * If a full scan of the inactive list fails to free enough memory then we
1588 * are "out of memory" and something needs to be killed.
1589 *
1590 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1591 * high - the zone may be full of dirty or under-writeback pages, which this
1592 * caller can't do much about. We kick pdflush and take explicit naps in the
1593 * hope that some of these pages can be written. But if the allocating task
1594 * holds filesystem locks which prevent writeout this might not work, and the
1595 * allocation attempt will fail.
a41f24ea
NA
1596 *
1597 * returns: 0, if no pages reclaimed
1598 * else, the number of pages reclaimed
1da177e4 1599 */
dac1d27b 1600static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1601 struct scan_control *sc)
1da177e4
LT
1602{
1603 int priority;
c700be3d 1604 unsigned long ret = 0;
69e05944 1605 unsigned long total_scanned = 0;
1da177e4 1606 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1607 unsigned long lru_pages = 0;
dd1a239f 1608 struct zoneref *z;
54a6eb5c 1609 struct zone *zone;
dd1a239f 1610 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1611
873b4771
KK
1612 delayacct_freepages_start();
1613
1cfb419b
KH
1614 if (scan_global_lru(sc))
1615 count_vm_event(ALLOCSTALL);
1616 /*
1617 * mem_cgroup will not do shrink_slab.
1618 */
1619 if (scan_global_lru(sc)) {
54a6eb5c 1620 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1621
1cfb419b
KH
1622 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1623 continue;
1da177e4 1624
4f98a2fe 1625 lru_pages += zone_lru_pages(zone);
1cfb419b 1626 }
1da177e4
LT
1627 }
1628
1629 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1630 sc->nr_scanned = 0;
f7b7fd8f
RR
1631 if (!priority)
1632 disable_swap_token();
a79311c1 1633 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1634 /*
1635 * Don't shrink slabs when reclaiming memory from
1636 * over limit cgroups
1637 */
91a45470 1638 if (scan_global_lru(sc)) {
dd1a239f 1639 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1640 if (reclaim_state) {
a79311c1 1641 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1642 reclaim_state->reclaimed_slab = 0;
1643 }
1da177e4 1644 }
66e1707b 1645 total_scanned += sc->nr_scanned;
a79311c1
RR
1646 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1647 ret = sc->nr_reclaimed;
1da177e4
LT
1648 goto out;
1649 }
1650
1651 /*
1652 * Try to write back as many pages as we just scanned. This
1653 * tends to cause slow streaming writers to write data to the
1654 * disk smoothly, at the dirtying rate, which is nice. But
1655 * that's undesirable in laptop mode, where we *want* lumpy
1656 * writeout. So in laptop mode, write out the whole world.
1657 */
66e1707b
BS
1658 if (total_scanned > sc->swap_cluster_max +
1659 sc->swap_cluster_max / 2) {
687a21ce 1660 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1661 sc->may_writepage = 1;
1da177e4
LT
1662 }
1663
1664 /* Take a nap, wait for some writeback to complete */
4dd4b920 1665 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1666 congestion_wait(WRITE, HZ/10);
1da177e4 1667 }
87547ee9 1668 /* top priority shrink_zones still had more to do? don't OOM, then */
91a45470 1669 if (!sc->all_unreclaimable && scan_global_lru(sc))
a79311c1 1670 ret = sc->nr_reclaimed;
1da177e4 1671out:
3bb1a852
MB
1672 /*
1673 * Now that we've scanned all the zones at this priority level, note
1674 * that level within the zone so that the next thread which performs
1675 * scanning of this zone will immediately start out at this priority
1676 * level. This affects only the decision whether or not to bring
1677 * mapped pages onto the inactive list.
1678 */
1679 if (priority < 0)
1680 priority = 0;
1da177e4 1681
1cfb419b 1682 if (scan_global_lru(sc)) {
54a6eb5c 1683 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1684
1685 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1686 continue;
1687
1688 zone->prev_priority = priority;
1689 }
1690 } else
1691 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1692
873b4771
KK
1693 delayacct_freepages_end();
1694
1da177e4
LT
1695 return ret;
1696}
1697
dac1d27b
MG
1698unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1699 gfp_t gfp_mask)
66e1707b
BS
1700{
1701 struct scan_control sc = {
1702 .gfp_mask = gfp_mask,
1703 .may_writepage = !laptop_mode,
1704 .swap_cluster_max = SWAP_CLUSTER_MAX,
1705 .may_swap = 1,
1706 .swappiness = vm_swappiness,
1707 .order = order,
1708 .mem_cgroup = NULL,
1709 .isolate_pages = isolate_pages_global,
1710 };
1711
dd1a239f 1712 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1713}
1714
00f0b825 1715#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1716
e1a1cd59 1717unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
8c7c6e34
KH
1718 gfp_t gfp_mask,
1719 bool noswap)
66e1707b
BS
1720{
1721 struct scan_control sc = {
66e1707b
BS
1722 .may_writepage = !laptop_mode,
1723 .may_swap = 1,
1724 .swap_cluster_max = SWAP_CLUSTER_MAX,
1725 .swappiness = vm_swappiness,
1726 .order = 0,
1727 .mem_cgroup = mem_cont,
1728 .isolate_pages = mem_cgroup_isolate_pages,
1729 };
dac1d27b 1730 struct zonelist *zonelist;
66e1707b 1731
8c7c6e34
KH
1732 if (noswap)
1733 sc.may_swap = 0;
1734
dd1a239f
MG
1735 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1736 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1737 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1738 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1739}
1740#endif
1741
1da177e4
LT
1742/*
1743 * For kswapd, balance_pgdat() will work across all this node's zones until
1744 * they are all at pages_high.
1745 *
1da177e4
LT
1746 * Returns the number of pages which were actually freed.
1747 *
1748 * There is special handling here for zones which are full of pinned pages.
1749 * This can happen if the pages are all mlocked, or if they are all used by
1750 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1751 * What we do is to detect the case where all pages in the zone have been
1752 * scanned twice and there has been zero successful reclaim. Mark the zone as
1753 * dead and from now on, only perform a short scan. Basically we're polling
1754 * the zone for when the problem goes away.
1755 *
1756 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1757 * zones which have free_pages > pages_high, but once a zone is found to have
1758 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1759 * of the number of free pages in the lower zones. This interoperates with
1760 * the page allocator fallback scheme to ensure that aging of pages is balanced
1761 * across the zones.
1762 */
d6277db4 1763static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1764{
1da177e4
LT
1765 int all_zones_ok;
1766 int priority;
1767 int i;
69e05944 1768 unsigned long total_scanned;
1da177e4 1769 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1770 struct scan_control sc = {
1771 .gfp_mask = GFP_KERNEL,
1772 .may_swap = 1,
d6277db4
RW
1773 .swap_cluster_max = SWAP_CLUSTER_MAX,
1774 .swappiness = vm_swappiness,
5ad333eb 1775 .order = order,
66e1707b
BS
1776 .mem_cgroup = NULL,
1777 .isolate_pages = isolate_pages_global,
179e9639 1778 };
3bb1a852
MB
1779 /*
1780 * temp_priority is used to remember the scanning priority at which
1781 * this zone was successfully refilled to free_pages == pages_high.
1782 */
1783 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1784
1785loop_again:
1786 total_scanned = 0;
a79311c1 1787 sc.nr_reclaimed = 0;
c0bbbc73 1788 sc.may_writepage = !laptop_mode;
f8891e5e 1789 count_vm_event(PAGEOUTRUN);
1da177e4 1790
3bb1a852
MB
1791 for (i = 0; i < pgdat->nr_zones; i++)
1792 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1793
1794 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1795 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1796 unsigned long lru_pages = 0;
1797
f7b7fd8f
RR
1798 /* The swap token gets in the way of swapout... */
1799 if (!priority)
1800 disable_swap_token();
1801
1da177e4
LT
1802 all_zones_ok = 1;
1803
d6277db4
RW
1804 /*
1805 * Scan in the highmem->dma direction for the highest
1806 * zone which needs scanning
1807 */
1808 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1809 struct zone *zone = pgdat->node_zones + i;
1da177e4 1810
d6277db4
RW
1811 if (!populated_zone(zone))
1812 continue;
1da177e4 1813
e815af95
DR
1814 if (zone_is_all_unreclaimable(zone) &&
1815 priority != DEF_PRIORITY)
d6277db4 1816 continue;
1da177e4 1817
556adecb
RR
1818 /*
1819 * Do some background aging of the anon list, to give
1820 * pages a chance to be referenced before reclaiming.
1821 */
14797e23 1822 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1823 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1824 &sc, priority, 0);
1825
d6277db4
RW
1826 if (!zone_watermark_ok(zone, order, zone->pages_high,
1827 0, 0)) {
1828 end_zone = i;
e1dbeda6 1829 break;
1da177e4 1830 }
1da177e4 1831 }
e1dbeda6
AM
1832 if (i < 0)
1833 goto out;
1834
1da177e4
LT
1835 for (i = 0; i <= end_zone; i++) {
1836 struct zone *zone = pgdat->node_zones + i;
1837
4f98a2fe 1838 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1839 }
1840
1841 /*
1842 * Now scan the zone in the dma->highmem direction, stopping
1843 * at the last zone which needs scanning.
1844 *
1845 * We do this because the page allocator works in the opposite
1846 * direction. This prevents the page allocator from allocating
1847 * pages behind kswapd's direction of progress, which would
1848 * cause too much scanning of the lower zones.
1849 */
1850 for (i = 0; i <= end_zone; i++) {
1851 struct zone *zone = pgdat->node_zones + i;
b15e0905 1852 int nr_slab;
1da177e4 1853
f3fe6512 1854 if (!populated_zone(zone))
1da177e4
LT
1855 continue;
1856
e815af95
DR
1857 if (zone_is_all_unreclaimable(zone) &&
1858 priority != DEF_PRIORITY)
1da177e4
LT
1859 continue;
1860
d6277db4
RW
1861 if (!zone_watermark_ok(zone, order, zone->pages_high,
1862 end_zone, 0))
1863 all_zones_ok = 0;
3bb1a852 1864 temp_priority[i] = priority;
1da177e4 1865 sc.nr_scanned = 0;
3bb1a852 1866 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1867 /*
1868 * We put equal pressure on every zone, unless one
1869 * zone has way too many pages free already.
1870 */
1871 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1872 end_zone, 0))
a79311c1 1873 shrink_zone(priority, zone, &sc);
1da177e4 1874 reclaim_state->reclaimed_slab = 0;
b15e0905 1875 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1876 lru_pages);
a79311c1 1877 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1878 total_scanned += sc.nr_scanned;
e815af95 1879 if (zone_is_all_unreclaimable(zone))
1da177e4 1880 continue;
b15e0905 1881 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1882 (zone_lru_pages(zone) * 6))
e815af95
DR
1883 zone_set_flag(zone,
1884 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1885 /*
1886 * If we've done a decent amount of scanning and
1887 * the reclaim ratio is low, start doing writepage
1888 * even in laptop mode
1889 */
1890 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1891 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1892 sc.may_writepage = 1;
1893 }
1da177e4
LT
1894 if (all_zones_ok)
1895 break; /* kswapd: all done */
1896 /*
1897 * OK, kswapd is getting into trouble. Take a nap, then take
1898 * another pass across the zones.
1899 */
4dd4b920 1900 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1901 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1902
1903 /*
1904 * We do this so kswapd doesn't build up large priorities for
1905 * example when it is freeing in parallel with allocators. It
1906 * matches the direct reclaim path behaviour in terms of impact
1907 * on zone->*_priority.
1908 */
a79311c1 1909 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1910 break;
1911 }
1912out:
3bb1a852
MB
1913 /*
1914 * Note within each zone the priority level at which this zone was
1915 * brought into a happy state. So that the next thread which scans this
1916 * zone will start out at that priority level.
1917 */
1da177e4
LT
1918 for (i = 0; i < pgdat->nr_zones; i++) {
1919 struct zone *zone = pgdat->node_zones + i;
1920
3bb1a852 1921 zone->prev_priority = temp_priority[i];
1da177e4
LT
1922 }
1923 if (!all_zones_ok) {
1924 cond_resched();
8357376d
RW
1925
1926 try_to_freeze();
1927
73ce02e9
KM
1928 /*
1929 * Fragmentation may mean that the system cannot be
1930 * rebalanced for high-order allocations in all zones.
1931 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1932 * it means the zones have been fully scanned and are still
1933 * not balanced. For high-order allocations, there is
1934 * little point trying all over again as kswapd may
1935 * infinite loop.
1936 *
1937 * Instead, recheck all watermarks at order-0 as they
1938 * are the most important. If watermarks are ok, kswapd will go
1939 * back to sleep. High-order users can still perform direct
1940 * reclaim if they wish.
1941 */
1942 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1943 order = sc.order = 0;
1944
1da177e4
LT
1945 goto loop_again;
1946 }
1947
a79311c1 1948 return sc.nr_reclaimed;
1da177e4
LT
1949}
1950
1951/*
1952 * The background pageout daemon, started as a kernel thread
4f98a2fe 1953 * from the init process.
1da177e4
LT
1954 *
1955 * This basically trickles out pages so that we have _some_
1956 * free memory available even if there is no other activity
1957 * that frees anything up. This is needed for things like routing
1958 * etc, where we otherwise might have all activity going on in
1959 * asynchronous contexts that cannot page things out.
1960 *
1961 * If there are applications that are active memory-allocators
1962 * (most normal use), this basically shouldn't matter.
1963 */
1964static int kswapd(void *p)
1965{
1966 unsigned long order;
1967 pg_data_t *pgdat = (pg_data_t*)p;
1968 struct task_struct *tsk = current;
1969 DEFINE_WAIT(wait);
1970 struct reclaim_state reclaim_state = {
1971 .reclaimed_slab = 0,
1972 };
c5f59f08 1973 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1974
174596a0 1975 if (!cpumask_empty(cpumask))
c5f59f08 1976 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1977 current->reclaim_state = &reclaim_state;
1978
1979 /*
1980 * Tell the memory management that we're a "memory allocator",
1981 * and that if we need more memory we should get access to it
1982 * regardless (see "__alloc_pages()"). "kswapd" should
1983 * never get caught in the normal page freeing logic.
1984 *
1985 * (Kswapd normally doesn't need memory anyway, but sometimes
1986 * you need a small amount of memory in order to be able to
1987 * page out something else, and this flag essentially protects
1988 * us from recursively trying to free more memory as we're
1989 * trying to free the first piece of memory in the first place).
1990 */
930d9152 1991 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1992 set_freezable();
1da177e4
LT
1993
1994 order = 0;
1995 for ( ; ; ) {
1996 unsigned long new_order;
3e1d1d28 1997
1da177e4
LT
1998 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1999 new_order = pgdat->kswapd_max_order;
2000 pgdat->kswapd_max_order = 0;
2001 if (order < new_order) {
2002 /*
2003 * Don't sleep if someone wants a larger 'order'
2004 * allocation
2005 */
2006 order = new_order;
2007 } else {
b1296cc4
RW
2008 if (!freezing(current))
2009 schedule();
2010
1da177e4
LT
2011 order = pgdat->kswapd_max_order;
2012 }
2013 finish_wait(&pgdat->kswapd_wait, &wait);
2014
b1296cc4
RW
2015 if (!try_to_freeze()) {
2016 /* We can speed up thawing tasks if we don't call
2017 * balance_pgdat after returning from the refrigerator
2018 */
2019 balance_pgdat(pgdat, order);
2020 }
1da177e4
LT
2021 }
2022 return 0;
2023}
2024
2025/*
2026 * A zone is low on free memory, so wake its kswapd task to service it.
2027 */
2028void wakeup_kswapd(struct zone *zone, int order)
2029{
2030 pg_data_t *pgdat;
2031
f3fe6512 2032 if (!populated_zone(zone))
1da177e4
LT
2033 return;
2034
2035 pgdat = zone->zone_pgdat;
7fb1d9fc 2036 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
2037 return;
2038 if (pgdat->kswapd_max_order < order)
2039 pgdat->kswapd_max_order = order;
02a0e53d 2040 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2041 return;
8d0986e2 2042 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2043 return;
8d0986e2 2044 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2045}
2046
4f98a2fe
RR
2047unsigned long global_lru_pages(void)
2048{
2049 return global_page_state(NR_ACTIVE_ANON)
2050 + global_page_state(NR_ACTIVE_FILE)
2051 + global_page_state(NR_INACTIVE_ANON)
2052 + global_page_state(NR_INACTIVE_FILE);
2053}
2054
1da177e4
LT
2055#ifdef CONFIG_PM
2056/*
d6277db4
RW
2057 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2058 * from LRU lists system-wide, for given pass and priority, and returns the
2059 * number of reclaimed pages
2060 *
2061 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2062 */
e07aa05b
NC
2063static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2064 int pass, struct scan_control *sc)
d6277db4
RW
2065{
2066 struct zone *zone;
2067 unsigned long nr_to_scan, ret = 0;
b69408e8 2068 enum lru_list l;
d6277db4
RW
2069
2070 for_each_zone(zone) {
2071
2072 if (!populated_zone(zone))
2073 continue;
2074
e815af95 2075 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2076 continue;
2077
894bc310
LS
2078 for_each_evictable_lru(l) {
2079 /* For pass = 0, we don't shrink the active list */
4f98a2fe
RR
2080 if (pass == 0 &&
2081 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
b69408e8
CL
2082 continue;
2083
2084 zone->lru[l].nr_scan +=
2085 (zone_page_state(zone, NR_LRU_BASE + l)
2086 >> prio) + 1;
2087 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2088 zone->lru[l].nr_scan = 0;
c8785385 2089 nr_to_scan = min(nr_pages,
b69408e8
CL
2090 zone_page_state(zone,
2091 NR_LRU_BASE + l));
2092 ret += shrink_list(l, nr_to_scan, zone,
2093 sc, prio);
2094 if (ret >= nr_pages)
2095 return ret;
d6277db4
RW
2096 }
2097 }
d6277db4
RW
2098 }
2099
2100 return ret;
2101}
2102
2103/*
2104 * Try to free `nr_pages' of memory, system-wide, and return the number of
2105 * freed pages.
2106 *
2107 * Rather than trying to age LRUs the aim is to preserve the overall
2108 * LRU order by reclaiming preferentially
2109 * inactive > active > active referenced > active mapped
1da177e4 2110 */
69e05944 2111unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2112{
d6277db4 2113 unsigned long lru_pages, nr_slab;
69e05944 2114 unsigned long ret = 0;
d6277db4
RW
2115 int pass;
2116 struct reclaim_state reclaim_state;
d6277db4
RW
2117 struct scan_control sc = {
2118 .gfp_mask = GFP_KERNEL,
2119 .may_swap = 0,
2120 .swap_cluster_max = nr_pages,
2121 .may_writepage = 1,
2122 .swappiness = vm_swappiness,
66e1707b 2123 .isolate_pages = isolate_pages_global,
1da177e4
LT
2124 };
2125
2126 current->reclaim_state = &reclaim_state;
69e05944 2127
4f98a2fe 2128 lru_pages = global_lru_pages();
972d1a7b 2129 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2130 /* If slab caches are huge, it's better to hit them first */
2131 while (nr_slab >= lru_pages) {
2132 reclaim_state.reclaimed_slab = 0;
2133 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2134 if (!reclaim_state.reclaimed_slab)
1da177e4 2135 break;
d6277db4
RW
2136
2137 ret += reclaim_state.reclaimed_slab;
2138 if (ret >= nr_pages)
2139 goto out;
2140
2141 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2142 }
d6277db4
RW
2143
2144 /*
2145 * We try to shrink LRUs in 5 passes:
2146 * 0 = Reclaim from inactive_list only
2147 * 1 = Reclaim from active list but don't reclaim mapped
2148 * 2 = 2nd pass of type 1
2149 * 3 = Reclaim mapped (normal reclaim)
2150 * 4 = 2nd pass of type 3
2151 */
2152 for (pass = 0; pass < 5; pass++) {
2153 int prio;
2154
d6277db4
RW
2155 /* Force reclaiming mapped pages in the passes #3 and #4 */
2156 if (pass > 2) {
2157 sc.may_swap = 1;
2158 sc.swappiness = 100;
2159 }
2160
2161 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2162 unsigned long nr_to_scan = nr_pages - ret;
2163
d6277db4 2164 sc.nr_scanned = 0;
d6277db4
RW
2165 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2166 if (ret >= nr_pages)
2167 goto out;
2168
2169 reclaim_state.reclaimed_slab = 0;
76395d37 2170 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2171 global_lru_pages());
d6277db4
RW
2172 ret += reclaim_state.reclaimed_slab;
2173 if (ret >= nr_pages)
2174 goto out;
2175
2176 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2177 congestion_wait(WRITE, HZ / 10);
d6277db4 2178 }
248a0301 2179 }
d6277db4
RW
2180
2181 /*
2182 * If ret = 0, we could not shrink LRUs, but there may be something
2183 * in slab caches
2184 */
76395d37 2185 if (!ret) {
d6277db4
RW
2186 do {
2187 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2188 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d6277db4
RW
2189 ret += reclaim_state.reclaimed_slab;
2190 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 2191 }
d6277db4
RW
2192
2193out:
1da177e4 2194 current->reclaim_state = NULL;
d6277db4 2195
1da177e4
LT
2196 return ret;
2197}
2198#endif
2199
1da177e4
LT
2200/* It's optimal to keep kswapds on the same CPUs as their memory, but
2201 not required for correctness. So if the last cpu in a node goes
2202 away, we get changed to run anywhere: as the first one comes back,
2203 restore their cpu bindings. */
9c7b216d 2204static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2205 unsigned long action, void *hcpu)
1da177e4 2206{
58c0a4a7 2207 int nid;
1da177e4 2208
8bb78442 2209 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2210 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
2211 pg_data_t *pgdat = NODE_DATA(nid);
2212 node_to_cpumask_ptr(mask, pgdat->node_id);
2213
3e597945 2214 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2215 /* One of our CPUs online: restore mask */
c5f59f08 2216 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2217 }
2218 }
2219 return NOTIFY_OK;
2220}
1da177e4 2221
3218ae14
YG
2222/*
2223 * This kswapd start function will be called by init and node-hot-add.
2224 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2225 */
2226int kswapd_run(int nid)
2227{
2228 pg_data_t *pgdat = NODE_DATA(nid);
2229 int ret = 0;
2230
2231 if (pgdat->kswapd)
2232 return 0;
2233
2234 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2235 if (IS_ERR(pgdat->kswapd)) {
2236 /* failure at boot is fatal */
2237 BUG_ON(system_state == SYSTEM_BOOTING);
2238 printk("Failed to start kswapd on node %d\n",nid);
2239 ret = -1;
2240 }
2241 return ret;
2242}
2243
1da177e4
LT
2244static int __init kswapd_init(void)
2245{
3218ae14 2246 int nid;
69e05944 2247
1da177e4 2248 swap_setup();
9422ffba 2249 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2250 kswapd_run(nid);
1da177e4
LT
2251 hotcpu_notifier(cpu_callback, 0);
2252 return 0;
2253}
2254
2255module_init(kswapd_init)
9eeff239
CL
2256
2257#ifdef CONFIG_NUMA
2258/*
2259 * Zone reclaim mode
2260 *
2261 * If non-zero call zone_reclaim when the number of free pages falls below
2262 * the watermarks.
9eeff239
CL
2263 */
2264int zone_reclaim_mode __read_mostly;
2265
1b2ffb78 2266#define RECLAIM_OFF 0
7d03431c 2267#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2268#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2269#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2270
a92f7126
CL
2271/*
2272 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2273 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2274 * a zone.
2275 */
2276#define ZONE_RECLAIM_PRIORITY 4
2277
9614634f
CL
2278/*
2279 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2280 * occur.
2281 */
2282int sysctl_min_unmapped_ratio = 1;
2283
0ff38490
CL
2284/*
2285 * If the number of slab pages in a zone grows beyond this percentage then
2286 * slab reclaim needs to occur.
2287 */
2288int sysctl_min_slab_ratio = 5;
2289
9eeff239
CL
2290/*
2291 * Try to free up some pages from this zone through reclaim.
2292 */
179e9639 2293static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2294{
7fb2d46d 2295 /* Minimum pages needed in order to stay on node */
69e05944 2296 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2297 struct task_struct *p = current;
2298 struct reclaim_state reclaim_state;
8695949a 2299 int priority;
179e9639
AM
2300 struct scan_control sc = {
2301 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2302 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
2303 .swap_cluster_max = max_t(unsigned long, nr_pages,
2304 SWAP_CLUSTER_MAX),
179e9639 2305 .gfp_mask = gfp_mask,
d6277db4 2306 .swappiness = vm_swappiness,
66e1707b 2307 .isolate_pages = isolate_pages_global,
179e9639 2308 };
83e33a47 2309 unsigned long slab_reclaimable;
9eeff239
CL
2310
2311 disable_swap_token();
9eeff239 2312 cond_resched();
d4f7796e
CL
2313 /*
2314 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2315 * and we also need to be able to write out pages for RECLAIM_WRITE
2316 * and RECLAIM_SWAP.
2317 */
2318 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2319 reclaim_state.reclaimed_slab = 0;
2320 p->reclaim_state = &reclaim_state;
c84db23c 2321
0ff38490
CL
2322 if (zone_page_state(zone, NR_FILE_PAGES) -
2323 zone_page_state(zone, NR_FILE_MAPPED) >
2324 zone->min_unmapped_pages) {
2325 /*
2326 * Free memory by calling shrink zone with increasing
2327 * priorities until we have enough memory freed.
2328 */
2329 priority = ZONE_RECLAIM_PRIORITY;
2330 do {
3bb1a852 2331 note_zone_scanning_priority(zone, priority);
a79311c1 2332 shrink_zone(priority, zone, &sc);
0ff38490 2333 priority--;
a79311c1 2334 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2335 }
c84db23c 2336
83e33a47
CL
2337 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2338 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2339 /*
7fb2d46d 2340 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2341 * many pages were freed in this zone. So we take the current
2342 * number of slab pages and shake the slab until it is reduced
2343 * by the same nr_pages that we used for reclaiming unmapped
2344 * pages.
2a16e3f4 2345 *
0ff38490
CL
2346 * Note that shrink_slab will free memory on all zones and may
2347 * take a long time.
2a16e3f4 2348 */
0ff38490 2349 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2350 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2351 slab_reclaimable - nr_pages)
0ff38490 2352 ;
83e33a47
CL
2353
2354 /*
2355 * Update nr_reclaimed by the number of slab pages we
2356 * reclaimed from this zone.
2357 */
a79311c1 2358 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2359 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2360 }
2361
9eeff239 2362 p->reclaim_state = NULL;
d4f7796e 2363 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2364 return sc.nr_reclaimed >= nr_pages;
9eeff239 2365}
179e9639
AM
2366
2367int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2368{
179e9639 2369 int node_id;
d773ed6b 2370 int ret;
179e9639
AM
2371
2372 /*
0ff38490
CL
2373 * Zone reclaim reclaims unmapped file backed pages and
2374 * slab pages if we are over the defined limits.
34aa1330 2375 *
9614634f
CL
2376 * A small portion of unmapped file backed pages is needed for
2377 * file I/O otherwise pages read by file I/O will be immediately
2378 * thrown out if the zone is overallocated. So we do not reclaim
2379 * if less than a specified percentage of the zone is used by
2380 * unmapped file backed pages.
179e9639 2381 */
34aa1330 2382 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2383 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2384 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2385 <= zone->min_slab_pages)
9614634f 2386 return 0;
179e9639 2387
d773ed6b
DR
2388 if (zone_is_all_unreclaimable(zone))
2389 return 0;
2390
179e9639 2391 /*
d773ed6b 2392 * Do not scan if the allocation should not be delayed.
179e9639 2393 */
d773ed6b 2394 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2395 return 0;
2396
2397 /*
2398 * Only run zone reclaim on the local zone or on zones that do not
2399 * have associated processors. This will favor the local processor
2400 * over remote processors and spread off node memory allocations
2401 * as wide as possible.
2402 */
89fa3024 2403 node_id = zone_to_nid(zone);
37c0708d 2404 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2405 return 0;
d773ed6b
DR
2406
2407 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2408 return 0;
2409 ret = __zone_reclaim(zone, gfp_mask, order);
2410 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2411
2412 return ret;
179e9639 2413}
9eeff239 2414#endif
894bc310
LS
2415
2416#ifdef CONFIG_UNEVICTABLE_LRU
2417/*
2418 * page_evictable - test whether a page is evictable
2419 * @page: the page to test
2420 * @vma: the VMA in which the page is or will be mapped, may be NULL
2421 *
2422 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2423 * lists vs unevictable list. The vma argument is !NULL when called from the
2424 * fault path to determine how to instantate a new page.
894bc310
LS
2425 *
2426 * Reasons page might not be evictable:
ba9ddf49 2427 * (1) page's mapping marked unevictable
b291f000 2428 * (2) page is part of an mlocked VMA
ba9ddf49 2429 *
894bc310
LS
2430 */
2431int page_evictable(struct page *page, struct vm_area_struct *vma)
2432{
2433
ba9ddf49
LS
2434 if (mapping_unevictable(page_mapping(page)))
2435 return 0;
2436
b291f000
NP
2437 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2438 return 0;
894bc310
LS
2439
2440 return 1;
2441}
89e004ea
LS
2442
2443/**
2444 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2445 * @page: page to check evictability and move to appropriate lru list
2446 * @zone: zone page is in
2447 *
2448 * Checks a page for evictability and moves the page to the appropriate
2449 * zone lru list.
2450 *
2451 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2452 * have PageUnevictable set.
2453 */
2454static void check_move_unevictable_page(struct page *page, struct zone *zone)
2455{
2456 VM_BUG_ON(PageActive(page));
2457
2458retry:
2459 ClearPageUnevictable(page);
2460 if (page_evictable(page, NULL)) {
2461 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2462
89e004ea
LS
2463 __dec_zone_state(zone, NR_UNEVICTABLE);
2464 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2465 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2466 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2467 __count_vm_event(UNEVICTABLE_PGRESCUED);
2468 } else {
2469 /*
2470 * rotate unevictable list
2471 */
2472 SetPageUnevictable(page);
2473 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2474 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2475 if (page_evictable(page, NULL))
2476 goto retry;
2477 }
2478}
2479
2480/**
2481 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2482 * @mapping: struct address_space to scan for evictable pages
2483 *
2484 * Scan all pages in mapping. Check unevictable pages for
2485 * evictability and move them to the appropriate zone lru list.
2486 */
2487void scan_mapping_unevictable_pages(struct address_space *mapping)
2488{
2489 pgoff_t next = 0;
2490 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2491 PAGE_CACHE_SHIFT;
2492 struct zone *zone;
2493 struct pagevec pvec;
2494
2495 if (mapping->nrpages == 0)
2496 return;
2497
2498 pagevec_init(&pvec, 0);
2499 while (next < end &&
2500 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2501 int i;
2502 int pg_scanned = 0;
2503
2504 zone = NULL;
2505
2506 for (i = 0; i < pagevec_count(&pvec); i++) {
2507 struct page *page = pvec.pages[i];
2508 pgoff_t page_index = page->index;
2509 struct zone *pagezone = page_zone(page);
2510
2511 pg_scanned++;
2512 if (page_index > next)
2513 next = page_index;
2514 next++;
2515
2516 if (pagezone != zone) {
2517 if (zone)
2518 spin_unlock_irq(&zone->lru_lock);
2519 zone = pagezone;
2520 spin_lock_irq(&zone->lru_lock);
2521 }
2522
2523 if (PageLRU(page) && PageUnevictable(page))
2524 check_move_unevictable_page(page, zone);
2525 }
2526 if (zone)
2527 spin_unlock_irq(&zone->lru_lock);
2528 pagevec_release(&pvec);
2529
2530 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2531 }
2532
2533}
af936a16
LS
2534
2535/**
2536 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2537 * @zone - zone of which to scan the unevictable list
2538 *
2539 * Scan @zone's unevictable LRU lists to check for pages that have become
2540 * evictable. Move those that have to @zone's inactive list where they
2541 * become candidates for reclaim, unless shrink_inactive_zone() decides
2542 * to reactivate them. Pages that are still unevictable are rotated
2543 * back onto @zone's unevictable list.
2544 */
2545#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2546static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2547{
2548 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2549 unsigned long scan;
2550 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2551
2552 while (nr_to_scan > 0) {
2553 unsigned long batch_size = min(nr_to_scan,
2554 SCAN_UNEVICTABLE_BATCH_SIZE);
2555
2556 spin_lock_irq(&zone->lru_lock);
2557 for (scan = 0; scan < batch_size; scan++) {
2558 struct page *page = lru_to_page(l_unevictable);
2559
2560 if (!trylock_page(page))
2561 continue;
2562
2563 prefetchw_prev_lru_page(page, l_unevictable, flags);
2564
2565 if (likely(PageLRU(page) && PageUnevictable(page)))
2566 check_move_unevictable_page(page, zone);
2567
2568 unlock_page(page);
2569 }
2570 spin_unlock_irq(&zone->lru_lock);
2571
2572 nr_to_scan -= batch_size;
2573 }
2574}
2575
2576
2577/**
2578 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2579 *
2580 * A really big hammer: scan all zones' unevictable LRU lists to check for
2581 * pages that have become evictable. Move those back to the zones'
2582 * inactive list where they become candidates for reclaim.
2583 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2584 * and we add swap to the system. As such, it runs in the context of a task
2585 * that has possibly/probably made some previously unevictable pages
2586 * evictable.
2587 */
ff30153b 2588static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2589{
2590 struct zone *zone;
2591
2592 for_each_zone(zone) {
2593 scan_zone_unevictable_pages(zone);
2594 }
2595}
2596
2597/*
2598 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2599 * all nodes' unevictable lists for evictable pages
2600 */
2601unsigned long scan_unevictable_pages;
2602
2603int scan_unevictable_handler(struct ctl_table *table, int write,
2604 struct file *file, void __user *buffer,
2605 size_t *length, loff_t *ppos)
2606{
2607 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2608
2609 if (write && *(unsigned long *)table->data)
2610 scan_all_zones_unevictable_pages();
2611
2612 scan_unevictable_pages = 0;
2613 return 0;
2614}
2615
2616/*
2617 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2618 * a specified node's per zone unevictable lists for evictable pages.
2619 */
2620
2621static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2622 struct sysdev_attribute *attr,
2623 char *buf)
2624{
2625 return sprintf(buf, "0\n"); /* always zero; should fit... */
2626}
2627
2628static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2629 struct sysdev_attribute *attr,
2630 const char *buf, size_t count)
2631{
2632 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2633 struct zone *zone;
2634 unsigned long res;
2635 unsigned long req = strict_strtoul(buf, 10, &res);
2636
2637 if (!req)
2638 return 1; /* zero is no-op */
2639
2640 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2641 if (!populated_zone(zone))
2642 continue;
2643 scan_zone_unevictable_pages(zone);
2644 }
2645 return 1;
2646}
2647
2648
2649static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2650 read_scan_unevictable_node,
2651 write_scan_unevictable_node);
2652
2653int scan_unevictable_register_node(struct node *node)
2654{
2655 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2656}
2657
2658void scan_unevictable_unregister_node(struct node *node)
2659{
2660 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2661}
2662
894bc310 2663#endif
This page took 0.567391 seconds and 5 git commands to generate.