[PATCH] vmscan: notice slab shrinking
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
66 /* How many pages shrink_cache() should reclaim */
67 int nr_to_reclaim;
68
69 /* Ask shrink_caches, or shrink_zone to scan at this priority */
70 unsigned int priority;
71
72 /* This context's GFP mask */
73 unsigned int gfp_mask;
74
75 int may_writepage;
76
77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 * In this context, it doesn't matter that we scan the
80 * whole list at once. */
81 int swap_cluster_max;
82};
83
84/*
85 * The list of shrinker callbacks used by to apply pressure to
86 * ageable caches.
87 */
88struct shrinker {
89 shrinker_t shrinker;
90 struct list_head list;
91 int seeks; /* seeks to recreate an obj */
92 long nr; /* objs pending delete */
93};
94
95#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97#ifdef ARCH_HAS_PREFETCH
98#define prefetch_prev_lru_page(_page, _base, _field) \
99 do { \
100 if ((_page)->lru.prev != _base) { \
101 struct page *prev; \
102 \
103 prev = lru_to_page(&(_page->lru)); \
104 prefetch(&prev->_field); \
105 } \
106 } while (0)
107#else
108#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109#endif
110
111#ifdef ARCH_HAS_PREFETCHW
112#define prefetchw_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetchw(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125/*
126 * From 0 .. 100. Higher means more swappy.
127 */
128int vm_swappiness = 60;
129static long total_memory;
130
131static LIST_HEAD(shrinker_list);
132static DECLARE_RWSEM(shrinker_rwsem);
133
134/*
135 * Add a shrinker callback to be called from the vm
136 */
137struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138{
139 struct shrinker *shrinker;
140
141 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142 if (shrinker) {
143 shrinker->shrinker = theshrinker;
144 shrinker->seeks = seeks;
145 shrinker->nr = 0;
146 down_write(&shrinker_rwsem);
147 list_add_tail(&shrinker->list, &shrinker_list);
148 up_write(&shrinker_rwsem);
149 }
150 return shrinker;
151}
152EXPORT_SYMBOL(set_shrinker);
153
154/*
155 * Remove one
156 */
157void remove_shrinker(struct shrinker *shrinker)
158{
159 down_write(&shrinker_rwsem);
160 list_del(&shrinker->list);
161 up_write(&shrinker_rwsem);
162 kfree(shrinker);
163}
164EXPORT_SYMBOL(remove_shrinker);
165
166#define SHRINK_BATCH 128
167/*
168 * Call the shrink functions to age shrinkable caches
169 *
170 * Here we assume it costs one seek to replace a lru page and that it also
171 * takes a seek to recreate a cache object. With this in mind we age equal
172 * percentages of the lru and ageable caches. This should balance the seeks
173 * generated by these structures.
174 *
175 * If the vm encounted mapped pages on the LRU it increase the pressure on
176 * slab to avoid swapping.
177 *
178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179 *
180 * `lru_pages' represents the number of on-LRU pages in all the zones which
181 * are eligible for the caller's allocation attempt. It is used for balancing
182 * slab reclaim versus page reclaim.
b15e0905 183 *
184 * Returns the number of slab objects which we shrunk.
1da177e4
LT
185 */
186static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
187 unsigned long lru_pages)
188{
189 struct shrinker *shrinker;
b15e0905 190 int ret = 0;
1da177e4
LT
191
192 if (scanned == 0)
193 scanned = SWAP_CLUSTER_MAX;
194
195 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 196 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
197
198 list_for_each_entry(shrinker, &shrinker_list, list) {
199 unsigned long long delta;
200 unsigned long total_scan;
201
202 delta = (4 * scanned) / shrinker->seeks;
203 delta *= (*shrinker->shrinker)(0, gfp_mask);
204 do_div(delta, lru_pages + 1);
205 shrinker->nr += delta;
206 if (shrinker->nr < 0)
207 shrinker->nr = LONG_MAX; /* It wrapped! */
208
209 total_scan = shrinker->nr;
210 shrinker->nr = 0;
211
212 while (total_scan >= SHRINK_BATCH) {
213 long this_scan = SHRINK_BATCH;
214 int shrink_ret;
b15e0905 215 int nr_before;
1da177e4 216
b15e0905 217 nr_before = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
218 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
219 if (shrink_ret == -1)
220 break;
b15e0905 221 if (shrink_ret < nr_before)
222 ret += nr_before - shrink_ret;
1da177e4
LT
223 mod_page_state(slabs_scanned, this_scan);
224 total_scan -= this_scan;
225
226 cond_resched();
227 }
228
229 shrinker->nr += total_scan;
230 }
231 up_read(&shrinker_rwsem);
b15e0905 232 return ret;
1da177e4
LT
233}
234
235/* Called without lock on whether page is mapped, so answer is unstable */
236static inline int page_mapping_inuse(struct page *page)
237{
238 struct address_space *mapping;
239
240 /* Page is in somebody's page tables. */
241 if (page_mapped(page))
242 return 1;
243
244 /* Be more reluctant to reclaim swapcache than pagecache */
245 if (PageSwapCache(page))
246 return 1;
247
248 mapping = page_mapping(page);
249 if (!mapping)
250 return 0;
251
252 /* File is mmap'd by somebody? */
253 return mapping_mapped(mapping);
254}
255
256static inline int is_page_cache_freeable(struct page *page)
257{
258 return page_count(page) - !!PagePrivate(page) == 2;
259}
260
261static int may_write_to_queue(struct backing_dev_info *bdi)
262{
263 if (current_is_kswapd())
264 return 1;
265 if (current_is_pdflush()) /* This is unlikely, but why not... */
266 return 1;
267 if (!bdi_write_congested(bdi))
268 return 1;
269 if (bdi == current->backing_dev_info)
270 return 1;
271 return 0;
272}
273
274/*
275 * We detected a synchronous write error writing a page out. Probably
276 * -ENOSPC. We need to propagate that into the address_space for a subsequent
277 * fsync(), msync() or close().
278 *
279 * The tricky part is that after writepage we cannot touch the mapping: nothing
280 * prevents it from being freed up. But we have a ref on the page and once
281 * that page is locked, the mapping is pinned.
282 *
283 * We're allowed to run sleeping lock_page() here because we know the caller has
284 * __GFP_FS.
285 */
286static void handle_write_error(struct address_space *mapping,
287 struct page *page, int error)
288{
289 lock_page(page);
290 if (page_mapping(page) == mapping) {
291 if (error == -ENOSPC)
292 set_bit(AS_ENOSPC, &mapping->flags);
293 else
294 set_bit(AS_EIO, &mapping->flags);
295 }
296 unlock_page(page);
297}
298
299/*
300 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
301 */
302static pageout_t pageout(struct page *page, struct address_space *mapping)
303{
304 /*
305 * If the page is dirty, only perform writeback if that write
306 * will be non-blocking. To prevent this allocation from being
307 * stalled by pagecache activity. But note that there may be
308 * stalls if we need to run get_block(). We could test
309 * PagePrivate for that.
310 *
311 * If this process is currently in generic_file_write() against
312 * this page's queue, we can perform writeback even if that
313 * will block.
314 *
315 * If the page is swapcache, write it back even if that would
316 * block, for some throttling. This happens by accident, because
317 * swap_backing_dev_info is bust: it doesn't reflect the
318 * congestion state of the swapdevs. Easy to fix, if needed.
319 * See swapfile.c:page_queue_congested().
320 */
321 if (!is_page_cache_freeable(page))
322 return PAGE_KEEP;
323 if (!mapping) {
324 /*
325 * Some data journaling orphaned pages can have
326 * page->mapping == NULL while being dirty with clean buffers.
327 */
323aca6c 328 if (PagePrivate(page)) {
1da177e4
LT
329 if (try_to_free_buffers(page)) {
330 ClearPageDirty(page);
331 printk("%s: orphaned page\n", __FUNCTION__);
332 return PAGE_CLEAN;
333 }
334 }
335 return PAGE_KEEP;
336 }
337 if (mapping->a_ops->writepage == NULL)
338 return PAGE_ACTIVATE;
339 if (!may_write_to_queue(mapping->backing_dev_info))
340 return PAGE_KEEP;
341
342 if (clear_page_dirty_for_io(page)) {
343 int res;
344 struct writeback_control wbc = {
345 .sync_mode = WB_SYNC_NONE,
346 .nr_to_write = SWAP_CLUSTER_MAX,
347 .nonblocking = 1,
348 .for_reclaim = 1,
349 };
350
351 SetPageReclaim(page);
352 res = mapping->a_ops->writepage(page, &wbc);
353 if (res < 0)
354 handle_write_error(mapping, page, res);
355 if (res == WRITEPAGE_ACTIVATE) {
356 ClearPageReclaim(page);
357 return PAGE_ACTIVATE;
358 }
359 if (!PageWriteback(page)) {
360 /* synchronous write or broken a_ops? */
361 ClearPageReclaim(page);
362 }
363
364 return PAGE_SUCCESS;
365 }
366
367 return PAGE_CLEAN;
368}
369
370/*
371 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
372 */
373static int shrink_list(struct list_head *page_list, struct scan_control *sc)
374{
375 LIST_HEAD(ret_pages);
376 struct pagevec freed_pvec;
377 int pgactivate = 0;
378 int reclaimed = 0;
379
380 cond_resched();
381
382 pagevec_init(&freed_pvec, 1);
383 while (!list_empty(page_list)) {
384 struct address_space *mapping;
385 struct page *page;
386 int may_enter_fs;
387 int referenced;
388
389 cond_resched();
390
391 page = lru_to_page(page_list);
392 list_del(&page->lru);
393
394 if (TestSetPageLocked(page))
395 goto keep;
396
397 BUG_ON(PageActive(page));
398
399 sc->nr_scanned++;
400 /* Double the slab pressure for mapped and swapcache pages */
401 if (page_mapped(page) || PageSwapCache(page))
402 sc->nr_scanned++;
403
404 if (PageWriteback(page))
405 goto keep_locked;
406
407 referenced = page_referenced(page, 1, sc->priority <= 0);
408 /* In active use or really unfreeable? Activate it. */
409 if (referenced && page_mapping_inuse(page))
410 goto activate_locked;
411
412#ifdef CONFIG_SWAP
413 /*
414 * Anonymous process memory has backing store?
415 * Try to allocate it some swap space here.
416 */
417 if (PageAnon(page) && !PageSwapCache(page)) {
418 if (!add_to_swap(page))
419 goto activate_locked;
420 }
421#endif /* CONFIG_SWAP */
422
423 mapping = page_mapping(page);
424 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
425 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
426
427 /*
428 * The page is mapped into the page tables of one or more
429 * processes. Try to unmap it here.
430 */
431 if (page_mapped(page) && mapping) {
432 switch (try_to_unmap(page)) {
433 case SWAP_FAIL:
434 goto activate_locked;
435 case SWAP_AGAIN:
436 goto keep_locked;
437 case SWAP_SUCCESS:
438 ; /* try to free the page below */
439 }
440 }
441
442 if (PageDirty(page)) {
443 if (referenced)
444 goto keep_locked;
445 if (!may_enter_fs)
446 goto keep_locked;
447 if (laptop_mode && !sc->may_writepage)
448 goto keep_locked;
449
450 /* Page is dirty, try to write it out here */
451 switch(pageout(page, mapping)) {
452 case PAGE_KEEP:
453 goto keep_locked;
454 case PAGE_ACTIVATE:
455 goto activate_locked;
456 case PAGE_SUCCESS:
457 if (PageWriteback(page) || PageDirty(page))
458 goto keep;
459 /*
460 * A synchronous write - probably a ramdisk. Go
461 * ahead and try to reclaim the page.
462 */
463 if (TestSetPageLocked(page))
464 goto keep;
465 if (PageDirty(page) || PageWriteback(page))
466 goto keep_locked;
467 mapping = page_mapping(page);
468 case PAGE_CLEAN:
469 ; /* try to free the page below */
470 }
471 }
472
473 /*
474 * If the page has buffers, try to free the buffer mappings
475 * associated with this page. If we succeed we try to free
476 * the page as well.
477 *
478 * We do this even if the page is PageDirty().
479 * try_to_release_page() does not perform I/O, but it is
480 * possible for a page to have PageDirty set, but it is actually
481 * clean (all its buffers are clean). This happens if the
482 * buffers were written out directly, with submit_bh(). ext3
483 * will do this, as well as the blockdev mapping.
484 * try_to_release_page() will discover that cleanness and will
485 * drop the buffers and mark the page clean - it can be freed.
486 *
487 * Rarely, pages can have buffers and no ->mapping. These are
488 * the pages which were not successfully invalidated in
489 * truncate_complete_page(). We try to drop those buffers here
490 * and if that worked, and the page is no longer mapped into
491 * process address space (page_count == 1) it can be freed.
492 * Otherwise, leave the page on the LRU so it is swappable.
493 */
494 if (PagePrivate(page)) {
495 if (!try_to_release_page(page, sc->gfp_mask))
496 goto activate_locked;
497 if (!mapping && page_count(page) == 1)
498 goto free_it;
499 }
500
501 if (!mapping)
502 goto keep_locked; /* truncate got there first */
503
504 write_lock_irq(&mapping->tree_lock);
505
506 /*
507 * The non-racy check for busy page. It is critical to check
508 * PageDirty _after_ making sure that the page is freeable and
509 * not in use by anybody. (pagecache + us == 2)
510 */
511 if (page_count(page) != 2 || PageDirty(page)) {
512 write_unlock_irq(&mapping->tree_lock);
513 goto keep_locked;
514 }
515
516#ifdef CONFIG_SWAP
517 if (PageSwapCache(page)) {
518 swp_entry_t swap = { .val = page->private };
519 __delete_from_swap_cache(page);
520 write_unlock_irq(&mapping->tree_lock);
521 swap_free(swap);
522 __put_page(page); /* The pagecache ref */
523 goto free_it;
524 }
525#endif /* CONFIG_SWAP */
526
527 __remove_from_page_cache(page);
528 write_unlock_irq(&mapping->tree_lock);
529 __put_page(page);
530
531free_it:
532 unlock_page(page);
533 reclaimed++;
534 if (!pagevec_add(&freed_pvec, page))
535 __pagevec_release_nonlru(&freed_pvec);
536 continue;
537
538activate_locked:
539 SetPageActive(page);
540 pgactivate++;
541keep_locked:
542 unlock_page(page);
543keep:
544 list_add(&page->lru, &ret_pages);
545 BUG_ON(PageLRU(page));
546 }
547 list_splice(&ret_pages, page_list);
548 if (pagevec_count(&freed_pvec))
549 __pagevec_release_nonlru(&freed_pvec);
550 mod_page_state(pgactivate, pgactivate);
551 sc->nr_reclaimed += reclaimed;
552 return reclaimed;
553}
554
555/*
556 * zone->lru_lock is heavily contended. Some of the functions that
557 * shrink the lists perform better by taking out a batch of pages
558 * and working on them outside the LRU lock.
559 *
560 * For pagecache intensive workloads, this function is the hottest
561 * spot in the kernel (apart from copy_*_user functions).
562 *
563 * Appropriate locks must be held before calling this function.
564 *
565 * @nr_to_scan: The number of pages to look through on the list.
566 * @src: The LRU list to pull pages off.
567 * @dst: The temp list to put pages on to.
568 * @scanned: The number of pages that were scanned.
569 *
570 * returns how many pages were moved onto *@dst.
571 */
572static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
573 struct list_head *dst, int *scanned)
574{
575 int nr_taken = 0;
576 struct page *page;
577 int scan = 0;
578
579 while (scan++ < nr_to_scan && !list_empty(src)) {
580 page = lru_to_page(src);
581 prefetchw_prev_lru_page(page, src, flags);
582
583 if (!TestClearPageLRU(page))
584 BUG();
585 list_del(&page->lru);
586 if (get_page_testone(page)) {
587 /*
588 * It is being freed elsewhere
589 */
590 __put_page(page);
591 SetPageLRU(page);
592 list_add(&page->lru, src);
593 continue;
594 } else {
595 list_add(&page->lru, dst);
596 nr_taken++;
597 }
598 }
599
600 *scanned = scan;
601 return nr_taken;
602}
603
604/*
605 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
606 */
607static void shrink_cache(struct zone *zone, struct scan_control *sc)
608{
609 LIST_HEAD(page_list);
610 struct pagevec pvec;
611 int max_scan = sc->nr_to_scan;
612
613 pagevec_init(&pvec, 1);
614
615 lru_add_drain();
616 spin_lock_irq(&zone->lru_lock);
617 while (max_scan > 0) {
618 struct page *page;
619 int nr_taken;
620 int nr_scan;
621 int nr_freed;
622
623 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
624 &zone->inactive_list,
625 &page_list, &nr_scan);
626 zone->nr_inactive -= nr_taken;
627 zone->pages_scanned += nr_scan;
628 spin_unlock_irq(&zone->lru_lock);
629
630 if (nr_taken == 0)
631 goto done;
632
633 max_scan -= nr_scan;
634 if (current_is_kswapd())
635 mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
636 else
637 mod_page_state_zone(zone, pgscan_direct, nr_scan);
638 nr_freed = shrink_list(&page_list, sc);
639 if (current_is_kswapd())
640 mod_page_state(kswapd_steal, nr_freed);
641 mod_page_state_zone(zone, pgsteal, nr_freed);
642 sc->nr_to_reclaim -= nr_freed;
643
644 spin_lock_irq(&zone->lru_lock);
645 /*
646 * Put back any unfreeable pages.
647 */
648 while (!list_empty(&page_list)) {
649 page = lru_to_page(&page_list);
650 if (TestSetPageLRU(page))
651 BUG();
652 list_del(&page->lru);
653 if (PageActive(page))
654 add_page_to_active_list(zone, page);
655 else
656 add_page_to_inactive_list(zone, page);
657 if (!pagevec_add(&pvec, page)) {
658 spin_unlock_irq(&zone->lru_lock);
659 __pagevec_release(&pvec);
660 spin_lock_irq(&zone->lru_lock);
661 }
662 }
663 }
664 spin_unlock_irq(&zone->lru_lock);
665done:
666 pagevec_release(&pvec);
667}
668
669/*
670 * This moves pages from the active list to the inactive list.
671 *
672 * We move them the other way if the page is referenced by one or more
673 * processes, from rmap.
674 *
675 * If the pages are mostly unmapped, the processing is fast and it is
676 * appropriate to hold zone->lru_lock across the whole operation. But if
677 * the pages are mapped, the processing is slow (page_referenced()) so we
678 * should drop zone->lru_lock around each page. It's impossible to balance
679 * this, so instead we remove the pages from the LRU while processing them.
680 * It is safe to rely on PG_active against the non-LRU pages in here because
681 * nobody will play with that bit on a non-LRU page.
682 *
683 * The downside is that we have to touch page->_count against each page.
684 * But we had to alter page->flags anyway.
685 */
686static void
687refill_inactive_zone(struct zone *zone, struct scan_control *sc)
688{
689 int pgmoved;
690 int pgdeactivate = 0;
691 int pgscanned;
692 int nr_pages = sc->nr_to_scan;
693 LIST_HEAD(l_hold); /* The pages which were snipped off */
694 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
695 LIST_HEAD(l_active); /* Pages to go onto the active_list */
696 struct page *page;
697 struct pagevec pvec;
698 int reclaim_mapped = 0;
699 long mapped_ratio;
700 long distress;
701 long swap_tendency;
702
703 lru_add_drain();
704 spin_lock_irq(&zone->lru_lock);
705 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
706 &l_hold, &pgscanned);
707 zone->pages_scanned += pgscanned;
708 zone->nr_active -= pgmoved;
709 spin_unlock_irq(&zone->lru_lock);
710
711 /*
712 * `distress' is a measure of how much trouble we're having reclaiming
713 * pages. 0 -> no problems. 100 -> great trouble.
714 */
715 distress = 100 >> zone->prev_priority;
716
717 /*
718 * The point of this algorithm is to decide when to start reclaiming
719 * mapped memory instead of just pagecache. Work out how much memory
720 * is mapped.
721 */
722 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
723
724 /*
725 * Now decide how much we really want to unmap some pages. The mapped
726 * ratio is downgraded - just because there's a lot of mapped memory
727 * doesn't necessarily mean that page reclaim isn't succeeding.
728 *
729 * The distress ratio is important - we don't want to start going oom.
730 *
731 * A 100% value of vm_swappiness overrides this algorithm altogether.
732 */
733 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
734
735 /*
736 * Now use this metric to decide whether to start moving mapped memory
737 * onto the inactive list.
738 */
739 if (swap_tendency >= 100)
740 reclaim_mapped = 1;
741
742 while (!list_empty(&l_hold)) {
743 cond_resched();
744 page = lru_to_page(&l_hold);
745 list_del(&page->lru);
746 if (page_mapped(page)) {
747 if (!reclaim_mapped ||
748 (total_swap_pages == 0 && PageAnon(page)) ||
749 page_referenced(page, 0, sc->priority <= 0)) {
750 list_add(&page->lru, &l_active);
751 continue;
752 }
753 }
754 list_add(&page->lru, &l_inactive);
755 }
756
757 pagevec_init(&pvec, 1);
758 pgmoved = 0;
759 spin_lock_irq(&zone->lru_lock);
760 while (!list_empty(&l_inactive)) {
761 page = lru_to_page(&l_inactive);
762 prefetchw_prev_lru_page(page, &l_inactive, flags);
763 if (TestSetPageLRU(page))
764 BUG();
765 if (!TestClearPageActive(page))
766 BUG();
767 list_move(&page->lru, &zone->inactive_list);
768 pgmoved++;
769 if (!pagevec_add(&pvec, page)) {
770 zone->nr_inactive += pgmoved;
771 spin_unlock_irq(&zone->lru_lock);
772 pgdeactivate += pgmoved;
773 pgmoved = 0;
774 if (buffer_heads_over_limit)
775 pagevec_strip(&pvec);
776 __pagevec_release(&pvec);
777 spin_lock_irq(&zone->lru_lock);
778 }
779 }
780 zone->nr_inactive += pgmoved;
781 pgdeactivate += pgmoved;
782 if (buffer_heads_over_limit) {
783 spin_unlock_irq(&zone->lru_lock);
784 pagevec_strip(&pvec);
785 spin_lock_irq(&zone->lru_lock);
786 }
787
788 pgmoved = 0;
789 while (!list_empty(&l_active)) {
790 page = lru_to_page(&l_active);
791 prefetchw_prev_lru_page(page, &l_active, flags);
792 if (TestSetPageLRU(page))
793 BUG();
794 BUG_ON(!PageActive(page));
795 list_move(&page->lru, &zone->active_list);
796 pgmoved++;
797 if (!pagevec_add(&pvec, page)) {
798 zone->nr_active += pgmoved;
799 pgmoved = 0;
800 spin_unlock_irq(&zone->lru_lock);
801 __pagevec_release(&pvec);
802 spin_lock_irq(&zone->lru_lock);
803 }
804 }
805 zone->nr_active += pgmoved;
806 spin_unlock_irq(&zone->lru_lock);
807 pagevec_release(&pvec);
808
809 mod_page_state_zone(zone, pgrefill, pgscanned);
810 mod_page_state(pgdeactivate, pgdeactivate);
811}
812
813/*
814 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
815 */
816static void
817shrink_zone(struct zone *zone, struct scan_control *sc)
818{
819 unsigned long nr_active;
820 unsigned long nr_inactive;
821
822 /*
823 * Add one to `nr_to_scan' just to make sure that the kernel will
824 * slowly sift through the active list.
825 */
826 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
827 nr_active = zone->nr_scan_active;
828 if (nr_active >= sc->swap_cluster_max)
829 zone->nr_scan_active = 0;
830 else
831 nr_active = 0;
832
833 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
834 nr_inactive = zone->nr_scan_inactive;
835 if (nr_inactive >= sc->swap_cluster_max)
836 zone->nr_scan_inactive = 0;
837 else
838 nr_inactive = 0;
839
840 sc->nr_to_reclaim = sc->swap_cluster_max;
841
842 while (nr_active || nr_inactive) {
843 if (nr_active) {
844 sc->nr_to_scan = min(nr_active,
845 (unsigned long)sc->swap_cluster_max);
846 nr_active -= sc->nr_to_scan;
847 refill_inactive_zone(zone, sc);
848 }
849
850 if (nr_inactive) {
851 sc->nr_to_scan = min(nr_inactive,
852 (unsigned long)sc->swap_cluster_max);
853 nr_inactive -= sc->nr_to_scan;
854 shrink_cache(zone, sc);
855 if (sc->nr_to_reclaim <= 0)
856 break;
857 }
858 }
859
860 throttle_vm_writeout();
861}
862
863/*
864 * This is the direct reclaim path, for page-allocating processes. We only
865 * try to reclaim pages from zones which will satisfy the caller's allocation
866 * request.
867 *
868 * We reclaim from a zone even if that zone is over pages_high. Because:
869 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
870 * allocation or
871 * b) The zones may be over pages_high but they must go *over* pages_high to
872 * satisfy the `incremental min' zone defense algorithm.
873 *
874 * Returns the number of reclaimed pages.
875 *
876 * If a zone is deemed to be full of pinned pages then just give it a light
877 * scan then give up on it.
878 */
879static void
880shrink_caches(struct zone **zones, struct scan_control *sc)
881{
882 int i;
883
884 for (i = 0; zones[i] != NULL; i++) {
885 struct zone *zone = zones[i];
886
887 if (zone->present_pages == 0)
888 continue;
889
890 if (!cpuset_zone_allowed(zone))
891 continue;
892
893 zone->temp_priority = sc->priority;
894 if (zone->prev_priority > sc->priority)
895 zone->prev_priority = sc->priority;
896
897 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
898 continue; /* Let kswapd poll it */
899
900 shrink_zone(zone, sc);
901 }
902}
903
904/*
905 * This is the main entry point to direct page reclaim.
906 *
907 * If a full scan of the inactive list fails to free enough memory then we
908 * are "out of memory" and something needs to be killed.
909 *
910 * If the caller is !__GFP_FS then the probability of a failure is reasonably
911 * high - the zone may be full of dirty or under-writeback pages, which this
912 * caller can't do much about. We kick pdflush and take explicit naps in the
913 * hope that some of these pages can be written. But if the allocating task
914 * holds filesystem locks which prevent writeout this might not work, and the
915 * allocation attempt will fail.
916 */
917int try_to_free_pages(struct zone **zones,
918 unsigned int gfp_mask, unsigned int order)
919{
920 int priority;
921 int ret = 0;
922 int total_scanned = 0, total_reclaimed = 0;
923 struct reclaim_state *reclaim_state = current->reclaim_state;
924 struct scan_control sc;
925 unsigned long lru_pages = 0;
926 int i;
927
928 sc.gfp_mask = gfp_mask;
929 sc.may_writepage = 0;
930
931 inc_page_state(allocstall);
932
933 for (i = 0; zones[i] != NULL; i++) {
934 struct zone *zone = zones[i];
935
936 if (!cpuset_zone_allowed(zone))
937 continue;
938
939 zone->temp_priority = DEF_PRIORITY;
940 lru_pages += zone->nr_active + zone->nr_inactive;
941 }
942
943 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
944 sc.nr_mapped = read_page_state(nr_mapped);
945 sc.nr_scanned = 0;
946 sc.nr_reclaimed = 0;
947 sc.priority = priority;
948 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
949 shrink_caches(zones, &sc);
950 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
951 if (reclaim_state) {
952 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
953 reclaim_state->reclaimed_slab = 0;
954 }
955 total_scanned += sc.nr_scanned;
956 total_reclaimed += sc.nr_reclaimed;
957 if (total_reclaimed >= sc.swap_cluster_max) {
958 ret = 1;
959 goto out;
960 }
961
962 /*
963 * Try to write back as many pages as we just scanned. This
964 * tends to cause slow streaming writers to write data to the
965 * disk smoothly, at the dirtying rate, which is nice. But
966 * that's undesirable in laptop mode, where we *want* lumpy
967 * writeout. So in laptop mode, write out the whole world.
968 */
969 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
970 wakeup_bdflush(laptop_mode ? 0 : total_scanned);
971 sc.may_writepage = 1;
972 }
973
974 /* Take a nap, wait for some writeback to complete */
975 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
976 blk_congestion_wait(WRITE, HZ/10);
977 }
978out:
979 for (i = 0; zones[i] != 0; i++) {
980 struct zone *zone = zones[i];
981
982 if (!cpuset_zone_allowed(zone))
983 continue;
984
985 zone->prev_priority = zone->temp_priority;
986 }
987 return ret;
988}
989
990/*
991 * For kswapd, balance_pgdat() will work across all this node's zones until
992 * they are all at pages_high.
993 *
994 * If `nr_pages' is non-zero then it is the number of pages which are to be
995 * reclaimed, regardless of the zone occupancies. This is a software suspend
996 * special.
997 *
998 * Returns the number of pages which were actually freed.
999 *
1000 * There is special handling here for zones which are full of pinned pages.
1001 * This can happen if the pages are all mlocked, or if they are all used by
1002 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1003 * What we do is to detect the case where all pages in the zone have been
1004 * scanned twice and there has been zero successful reclaim. Mark the zone as
1005 * dead and from now on, only perform a short scan. Basically we're polling
1006 * the zone for when the problem goes away.
1007 *
1008 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1009 * zones which have free_pages > pages_high, but once a zone is found to have
1010 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1011 * of the number of free pages in the lower zones. This interoperates with
1012 * the page allocator fallback scheme to ensure that aging of pages is balanced
1013 * across the zones.
1014 */
1015static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1016{
1017 int to_free = nr_pages;
1018 int all_zones_ok;
1019 int priority;
1020 int i;
1021 int total_scanned, total_reclaimed;
1022 struct reclaim_state *reclaim_state = current->reclaim_state;
1023 struct scan_control sc;
1024
1025loop_again:
1026 total_scanned = 0;
1027 total_reclaimed = 0;
1028 sc.gfp_mask = GFP_KERNEL;
1029 sc.may_writepage = 0;
1030 sc.nr_mapped = read_page_state(nr_mapped);
1031
1032 inc_page_state(pageoutrun);
1033
1034 for (i = 0; i < pgdat->nr_zones; i++) {
1035 struct zone *zone = pgdat->node_zones + i;
1036
1037 zone->temp_priority = DEF_PRIORITY;
1038 }
1039
1040 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1041 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1042 unsigned long lru_pages = 0;
1043
1044 all_zones_ok = 1;
1045
1046 if (nr_pages == 0) {
1047 /*
1048 * Scan in the highmem->dma direction for the highest
1049 * zone which needs scanning
1050 */
1051 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1052 struct zone *zone = pgdat->node_zones + i;
1053
1054 if (zone->present_pages == 0)
1055 continue;
1056
1057 if (zone->all_unreclaimable &&
1058 priority != DEF_PRIORITY)
1059 continue;
1060
1061 if (!zone_watermark_ok(zone, order,
1062 zone->pages_high, 0, 0, 0)) {
1063 end_zone = i;
1064 goto scan;
1065 }
1066 }
1067 goto out;
1068 } else {
1069 end_zone = pgdat->nr_zones - 1;
1070 }
1071scan:
1072 for (i = 0; i <= end_zone; i++) {
1073 struct zone *zone = pgdat->node_zones + i;
1074
1075 lru_pages += zone->nr_active + zone->nr_inactive;
1076 }
1077
1078 /*
1079 * Now scan the zone in the dma->highmem direction, stopping
1080 * at the last zone which needs scanning.
1081 *
1082 * We do this because the page allocator works in the opposite
1083 * direction. This prevents the page allocator from allocating
1084 * pages behind kswapd's direction of progress, which would
1085 * cause too much scanning of the lower zones.
1086 */
1087 for (i = 0; i <= end_zone; i++) {
1088 struct zone *zone = pgdat->node_zones + i;
b15e0905 1089 int nr_slab;
1da177e4
LT
1090
1091 if (zone->present_pages == 0)
1092 continue;
1093
1094 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1095 continue;
1096
1097 if (nr_pages == 0) { /* Not software suspend */
1098 if (!zone_watermark_ok(zone, order,
1099 zone->pages_high, end_zone, 0, 0))
1100 all_zones_ok = 0;
1101 }
1102 zone->temp_priority = priority;
1103 if (zone->prev_priority > priority)
1104 zone->prev_priority = priority;
1105 sc.nr_scanned = 0;
1106 sc.nr_reclaimed = 0;
1107 sc.priority = priority;
1108 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1109 shrink_zone(zone, &sc);
1110 reclaim_state->reclaimed_slab = 0;
b15e0905 1111 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1112 lru_pages);
1da177e4
LT
1113 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1114 total_reclaimed += sc.nr_reclaimed;
1115 total_scanned += sc.nr_scanned;
1116 if (zone->all_unreclaimable)
1117 continue;
b15e0905 1118 if (nr_slab == 0 && zone->pages_scanned >=
1119 (zone->nr_active + zone->nr_inactive) * 4)
1da177e4
LT
1120 zone->all_unreclaimable = 1;
1121 /*
1122 * If we've done a decent amount of scanning and
1123 * the reclaim ratio is low, start doing writepage
1124 * even in laptop mode
1125 */
1126 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1127 total_scanned > total_reclaimed+total_reclaimed/2)
1128 sc.may_writepage = 1;
1129 }
1130 if (nr_pages && to_free > total_reclaimed)
1131 continue; /* swsusp: need to do more work */
1132 if (all_zones_ok)
1133 break; /* kswapd: all done */
1134 /*
1135 * OK, kswapd is getting into trouble. Take a nap, then take
1136 * another pass across the zones.
1137 */
1138 if (total_scanned && priority < DEF_PRIORITY - 2)
1139 blk_congestion_wait(WRITE, HZ/10);
1140
1141 /*
1142 * We do this so kswapd doesn't build up large priorities for
1143 * example when it is freeing in parallel with allocators. It
1144 * matches the direct reclaim path behaviour in terms of impact
1145 * on zone->*_priority.
1146 */
1147 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1148 break;
1149 }
1150out:
1151 for (i = 0; i < pgdat->nr_zones; i++) {
1152 struct zone *zone = pgdat->node_zones + i;
1153
1154 zone->prev_priority = zone->temp_priority;
1155 }
1156 if (!all_zones_ok) {
1157 cond_resched();
1158 goto loop_again;
1159 }
1160
1161 return total_reclaimed;
1162}
1163
1164/*
1165 * The background pageout daemon, started as a kernel thread
1166 * from the init process.
1167 *
1168 * This basically trickles out pages so that we have _some_
1169 * free memory available even if there is no other activity
1170 * that frees anything up. This is needed for things like routing
1171 * etc, where we otherwise might have all activity going on in
1172 * asynchronous contexts that cannot page things out.
1173 *
1174 * If there are applications that are active memory-allocators
1175 * (most normal use), this basically shouldn't matter.
1176 */
1177static int kswapd(void *p)
1178{
1179 unsigned long order;
1180 pg_data_t *pgdat = (pg_data_t*)p;
1181 struct task_struct *tsk = current;
1182 DEFINE_WAIT(wait);
1183 struct reclaim_state reclaim_state = {
1184 .reclaimed_slab = 0,
1185 };
1186 cpumask_t cpumask;
1187
1188 daemonize("kswapd%d", pgdat->node_id);
1189 cpumask = node_to_cpumask(pgdat->node_id);
1190 if (!cpus_empty(cpumask))
1191 set_cpus_allowed(tsk, cpumask);
1192 current->reclaim_state = &reclaim_state;
1193
1194 /*
1195 * Tell the memory management that we're a "memory allocator",
1196 * and that if we need more memory we should get access to it
1197 * regardless (see "__alloc_pages()"). "kswapd" should
1198 * never get caught in the normal page freeing logic.
1199 *
1200 * (Kswapd normally doesn't need memory anyway, but sometimes
1201 * you need a small amount of memory in order to be able to
1202 * page out something else, and this flag essentially protects
1203 * us from recursively trying to free more memory as we're
1204 * trying to free the first piece of memory in the first place).
1205 */
1206 tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1207
1208 order = 0;
1209 for ( ; ; ) {
1210 unsigned long new_order;
1211 if (current->flags & PF_FREEZE)
1212 refrigerator(PF_FREEZE);
1213
1214 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1215 new_order = pgdat->kswapd_max_order;
1216 pgdat->kswapd_max_order = 0;
1217 if (order < new_order) {
1218 /*
1219 * Don't sleep if someone wants a larger 'order'
1220 * allocation
1221 */
1222 order = new_order;
1223 } else {
1224 schedule();
1225 order = pgdat->kswapd_max_order;
1226 }
1227 finish_wait(&pgdat->kswapd_wait, &wait);
1228
1229 balance_pgdat(pgdat, 0, order);
1230 }
1231 return 0;
1232}
1233
1234/*
1235 * A zone is low on free memory, so wake its kswapd task to service it.
1236 */
1237void wakeup_kswapd(struct zone *zone, int order)
1238{
1239 pg_data_t *pgdat;
1240
1241 if (zone->present_pages == 0)
1242 return;
1243
1244 pgdat = zone->zone_pgdat;
1245 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0))
1246 return;
1247 if (pgdat->kswapd_max_order < order)
1248 pgdat->kswapd_max_order = order;
1249 if (!cpuset_zone_allowed(zone))
1250 return;
1251 if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1252 return;
1253 wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1254}
1255
1256#ifdef CONFIG_PM
1257/*
1258 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1259 * pages.
1260 */
1261int shrink_all_memory(int nr_pages)
1262{
1263 pg_data_t *pgdat;
1264 int nr_to_free = nr_pages;
1265 int ret = 0;
1266 struct reclaim_state reclaim_state = {
1267 .reclaimed_slab = 0,
1268 };
1269
1270 current->reclaim_state = &reclaim_state;
1271 for_each_pgdat(pgdat) {
1272 int freed;
1273 freed = balance_pgdat(pgdat, nr_to_free, 0);
1274 ret += freed;
1275 nr_to_free -= freed;
1276 if (nr_to_free <= 0)
1277 break;
1278 }
1279 current->reclaim_state = NULL;
1280 return ret;
1281}
1282#endif
1283
1284#ifdef CONFIG_HOTPLUG_CPU
1285/* It's optimal to keep kswapds on the same CPUs as their memory, but
1286 not required for correctness. So if the last cpu in a node goes
1287 away, we get changed to run anywhere: as the first one comes back,
1288 restore their cpu bindings. */
1289static int __devinit cpu_callback(struct notifier_block *nfb,
1290 unsigned long action,
1291 void *hcpu)
1292{
1293 pg_data_t *pgdat;
1294 cpumask_t mask;
1295
1296 if (action == CPU_ONLINE) {
1297 for_each_pgdat(pgdat) {
1298 mask = node_to_cpumask(pgdat->node_id);
1299 if (any_online_cpu(mask) != NR_CPUS)
1300 /* One of our CPUs online: restore mask */
1301 set_cpus_allowed(pgdat->kswapd, mask);
1302 }
1303 }
1304 return NOTIFY_OK;
1305}
1306#endif /* CONFIG_HOTPLUG_CPU */
1307
1308static int __init kswapd_init(void)
1309{
1310 pg_data_t *pgdat;
1311 swap_setup();
1312 for_each_pgdat(pgdat)
1313 pgdat->kswapd
1314 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1315 total_memory = nr_free_pagecache_pages();
1316 hotcpu_notifier(cpu_callback, 0);
1317 return 0;
1318}
1319
1320module_init(kswapd_init)
This page took 0.102832 seconds and 5 git commands to generate.