mm, vmstat: remove zone and node double accounting by approximating retries
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
b2e18757
MG
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
ee814fe2
JW
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
241994ed
JW
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
ee814fe2
JW
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
1da177e4
LT
111};
112
1da177e4
LT
113#ifdef ARCH_HAS_PREFETCH
114#define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127#ifdef ARCH_HAS_PREFETCHW
128#define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137#else
138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139#endif
140
141/*
142 * From 0 .. 100. Higher means more swappy.
143 */
144int vm_swappiness = 60;
d0480be4
WSH
145/*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149unsigned long vm_total_pages;
1da177e4
LT
150
151static LIST_HEAD(shrinker_list);
152static DECLARE_RWSEM(shrinker_rwsem);
153
c255a458 154#ifdef CONFIG_MEMCG
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
f16015fb 157 return !sc->target_mem_cgroup;
89b5fae5 158}
97c9341f
TH
159
160/**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173static bool sane_reclaim(struct scan_control *sc)
174{
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
181 return true;
182#endif
183 return false;
184}
91a45470 185#else
89b5fae5
JW
186static bool global_reclaim(struct scan_control *sc)
187{
188 return true;
189}
97c9341f
TH
190
191static bool sane_reclaim(struct scan_control *sc)
192{
193 return true;
194}
91a45470
KH
195#endif
196
599d0c95
MG
197unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
198{
199 unsigned long nr;
200
201 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
202 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
203 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
204
205 if (get_nr_swap_pages() > 0)
599d0c95
MG
206 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
207 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
208 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
209
210 return nr;
211}
212
599d0c95 213bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 214{
599d0c95
MG
215 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
216 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
217}
218
23047a96 219unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 220{
c3c787e8 221 if (!mem_cgroup_disabled())
4d7dcca2 222 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 223
599d0c95 224 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
225}
226
1da177e4 227/*
1d3d4437 228 * Add a shrinker callback to be called from the vm.
1da177e4 229 */
1d3d4437 230int register_shrinker(struct shrinker *shrinker)
1da177e4 231{
1d3d4437
GC
232 size_t size = sizeof(*shrinker->nr_deferred);
233
1d3d4437
GC
234 if (shrinker->flags & SHRINKER_NUMA_AWARE)
235 size *= nr_node_ids;
236
237 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
238 if (!shrinker->nr_deferred)
239 return -ENOMEM;
240
8e1f936b
RR
241 down_write(&shrinker_rwsem);
242 list_add_tail(&shrinker->list, &shrinker_list);
243 up_write(&shrinker_rwsem);
1d3d4437 244 return 0;
1da177e4 245}
8e1f936b 246EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
247
248/*
249 * Remove one
250 */
8e1f936b 251void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
252{
253 down_write(&shrinker_rwsem);
254 list_del(&shrinker->list);
255 up_write(&shrinker_rwsem);
ae393321 256 kfree(shrinker->nr_deferred);
1da177e4 257}
8e1f936b 258EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
259
260#define SHRINK_BATCH 128
1d3d4437 261
cb731d6c
VD
262static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
263 struct shrinker *shrinker,
264 unsigned long nr_scanned,
265 unsigned long nr_eligible)
1d3d4437
GC
266{
267 unsigned long freed = 0;
268 unsigned long long delta;
269 long total_scan;
d5bc5fd3 270 long freeable;
1d3d4437
GC
271 long nr;
272 long new_nr;
273 int nid = shrinkctl->nid;
274 long batch_size = shrinker->batch ? shrinker->batch
275 : SHRINK_BATCH;
276
d5bc5fd3
VD
277 freeable = shrinker->count_objects(shrinker, shrinkctl);
278 if (freeable == 0)
1d3d4437
GC
279 return 0;
280
281 /*
282 * copy the current shrinker scan count into a local variable
283 * and zero it so that other concurrent shrinker invocations
284 * don't also do this scanning work.
285 */
286 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
287
288 total_scan = nr;
6b4f7799 289 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 290 delta *= freeable;
6b4f7799 291 do_div(delta, nr_eligible + 1);
1d3d4437
GC
292 total_scan += delta;
293 if (total_scan < 0) {
8612c663 294 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 295 shrinker->scan_objects, total_scan);
d5bc5fd3 296 total_scan = freeable;
1d3d4437
GC
297 }
298
299 /*
300 * We need to avoid excessive windup on filesystem shrinkers
301 * due to large numbers of GFP_NOFS allocations causing the
302 * shrinkers to return -1 all the time. This results in a large
303 * nr being built up so when a shrink that can do some work
304 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 305 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
306 * memory.
307 *
308 * Hence only allow the shrinker to scan the entire cache when
309 * a large delta change is calculated directly.
310 */
d5bc5fd3
VD
311 if (delta < freeable / 4)
312 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
313
314 /*
315 * Avoid risking looping forever due to too large nr value:
316 * never try to free more than twice the estimate number of
317 * freeable entries.
318 */
d5bc5fd3
VD
319 if (total_scan > freeable * 2)
320 total_scan = freeable * 2;
1d3d4437
GC
321
322 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
323 nr_scanned, nr_eligible,
324 freeable, delta, total_scan);
1d3d4437 325
0b1fb40a
VD
326 /*
327 * Normally, we should not scan less than batch_size objects in one
328 * pass to avoid too frequent shrinker calls, but if the slab has less
329 * than batch_size objects in total and we are really tight on memory,
330 * we will try to reclaim all available objects, otherwise we can end
331 * up failing allocations although there are plenty of reclaimable
332 * objects spread over several slabs with usage less than the
333 * batch_size.
334 *
335 * We detect the "tight on memory" situations by looking at the total
336 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 337 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
338 * scanning at high prio and therefore should try to reclaim as much as
339 * possible.
340 */
341 while (total_scan >= batch_size ||
d5bc5fd3 342 total_scan >= freeable) {
a0b02131 343 unsigned long ret;
0b1fb40a 344 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 345
0b1fb40a 346 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
347 ret = shrinker->scan_objects(shrinker, shrinkctl);
348 if (ret == SHRINK_STOP)
349 break;
350 freed += ret;
1d3d4437 351
0b1fb40a
VD
352 count_vm_events(SLABS_SCANNED, nr_to_scan);
353 total_scan -= nr_to_scan;
1d3d4437
GC
354
355 cond_resched();
356 }
357
358 /*
359 * move the unused scan count back into the shrinker in a
360 * manner that handles concurrent updates. If we exhausted the
361 * scan, there is no need to do an update.
362 */
363 if (total_scan > 0)
364 new_nr = atomic_long_add_return(total_scan,
365 &shrinker->nr_deferred[nid]);
366 else
367 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
368
df9024a8 369 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 370 return freed;
1495f230
YH
371}
372
6b4f7799 373/**
cb731d6c 374 * shrink_slab - shrink slab caches
6b4f7799
JW
375 * @gfp_mask: allocation context
376 * @nid: node whose slab caches to target
cb731d6c 377 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
378 * @nr_scanned: pressure numerator
379 * @nr_eligible: pressure denominator
1da177e4 380 *
6b4f7799 381 * Call the shrink functions to age shrinkable caches.
1da177e4 382 *
6b4f7799
JW
383 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
384 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 385 *
cb731d6c
VD
386 * @memcg specifies the memory cgroup to target. If it is not NULL,
387 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
388 * objects from the memory cgroup specified. Otherwise, only unaware
389 * shrinkers are called.
cb731d6c 390 *
6b4f7799
JW
391 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
392 * the available objects should be scanned. Page reclaim for example
393 * passes the number of pages scanned and the number of pages on the
394 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
395 * when it encountered mapped pages. The ratio is further biased by
396 * the ->seeks setting of the shrink function, which indicates the
397 * cost to recreate an object relative to that of an LRU page.
b15e0905 398 *
6b4f7799 399 * Returns the number of reclaimed slab objects.
1da177e4 400 */
cb731d6c
VD
401static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
402 struct mem_cgroup *memcg,
403 unsigned long nr_scanned,
404 unsigned long nr_eligible)
1da177e4
LT
405{
406 struct shrinker *shrinker;
24f7c6b9 407 unsigned long freed = 0;
1da177e4 408
0fc9f58a 409 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
410 return 0;
411
6b4f7799
JW
412 if (nr_scanned == 0)
413 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 414
f06590bd 415 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
416 /*
417 * If we would return 0, our callers would understand that we
418 * have nothing else to shrink and give up trying. By returning
419 * 1 we keep it going and assume we'll be able to shrink next
420 * time.
421 */
422 freed = 1;
f06590bd
MK
423 goto out;
424 }
1da177e4
LT
425
426 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
427 struct shrink_control sc = {
428 .gfp_mask = gfp_mask,
429 .nid = nid,
cb731d6c 430 .memcg = memcg,
6b4f7799 431 };
ec97097b 432
0fc9f58a
VD
433 /*
434 * If kernel memory accounting is disabled, we ignore
435 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
436 * passing NULL for memcg.
437 */
438 if (memcg_kmem_enabled() &&
439 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
440 continue;
441
6b4f7799
JW
442 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
443 sc.nid = 0;
1da177e4 444
cb731d6c 445 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 446 }
6b4f7799 447
1da177e4 448 up_read(&shrinker_rwsem);
f06590bd
MK
449out:
450 cond_resched();
24f7c6b9 451 return freed;
1da177e4
LT
452}
453
cb731d6c
VD
454void drop_slab_node(int nid)
455{
456 unsigned long freed;
457
458 do {
459 struct mem_cgroup *memcg = NULL;
460
461 freed = 0;
462 do {
463 freed += shrink_slab(GFP_KERNEL, nid, memcg,
464 1000, 1000);
465 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
466 } while (freed > 10);
467}
468
469void drop_slab(void)
470{
471 int nid;
472
473 for_each_online_node(nid)
474 drop_slab_node(nid);
475}
476
1da177e4
LT
477static inline int is_page_cache_freeable(struct page *page)
478{
ceddc3a5
JW
479 /*
480 * A freeable page cache page is referenced only by the caller
481 * that isolated the page, the page cache radix tree and
482 * optional buffer heads at page->private.
483 */
edcf4748 484 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
485}
486
703c2708 487static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 488{
930d9152 489 if (current->flags & PF_SWAPWRITE)
1da177e4 490 return 1;
703c2708 491 if (!inode_write_congested(inode))
1da177e4 492 return 1;
703c2708 493 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
494 return 1;
495 return 0;
496}
497
498/*
499 * We detected a synchronous write error writing a page out. Probably
500 * -ENOSPC. We need to propagate that into the address_space for a subsequent
501 * fsync(), msync() or close().
502 *
503 * The tricky part is that after writepage we cannot touch the mapping: nothing
504 * prevents it from being freed up. But we have a ref on the page and once
505 * that page is locked, the mapping is pinned.
506 *
507 * We're allowed to run sleeping lock_page() here because we know the caller has
508 * __GFP_FS.
509 */
510static void handle_write_error(struct address_space *mapping,
511 struct page *page, int error)
512{
7eaceacc 513 lock_page(page);
3e9f45bd
GC
514 if (page_mapping(page) == mapping)
515 mapping_set_error(mapping, error);
1da177e4
LT
516 unlock_page(page);
517}
518
04e62a29
CL
519/* possible outcome of pageout() */
520typedef enum {
521 /* failed to write page out, page is locked */
522 PAGE_KEEP,
523 /* move page to the active list, page is locked */
524 PAGE_ACTIVATE,
525 /* page has been sent to the disk successfully, page is unlocked */
526 PAGE_SUCCESS,
527 /* page is clean and locked */
528 PAGE_CLEAN,
529} pageout_t;
530
1da177e4 531/*
1742f19f
AM
532 * pageout is called by shrink_page_list() for each dirty page.
533 * Calls ->writepage().
1da177e4 534 */
c661b078 535static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 536 struct scan_control *sc)
1da177e4
LT
537{
538 /*
539 * If the page is dirty, only perform writeback if that write
540 * will be non-blocking. To prevent this allocation from being
541 * stalled by pagecache activity. But note that there may be
542 * stalls if we need to run get_block(). We could test
543 * PagePrivate for that.
544 *
8174202b 545 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
546 * this page's queue, we can perform writeback even if that
547 * will block.
548 *
549 * If the page is swapcache, write it back even if that would
550 * block, for some throttling. This happens by accident, because
551 * swap_backing_dev_info is bust: it doesn't reflect the
552 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
553 */
554 if (!is_page_cache_freeable(page))
555 return PAGE_KEEP;
556 if (!mapping) {
557 /*
558 * Some data journaling orphaned pages can have
559 * page->mapping == NULL while being dirty with clean buffers.
560 */
266cf658 561 if (page_has_private(page)) {
1da177e4
LT
562 if (try_to_free_buffers(page)) {
563 ClearPageDirty(page);
b1de0d13 564 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
565 return PAGE_CLEAN;
566 }
567 }
568 return PAGE_KEEP;
569 }
570 if (mapping->a_ops->writepage == NULL)
571 return PAGE_ACTIVATE;
703c2708 572 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
573 return PAGE_KEEP;
574
575 if (clear_page_dirty_for_io(page)) {
576 int res;
577 struct writeback_control wbc = {
578 .sync_mode = WB_SYNC_NONE,
579 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
580 .range_start = 0,
581 .range_end = LLONG_MAX,
1da177e4
LT
582 .for_reclaim = 1,
583 };
584
585 SetPageReclaim(page);
586 res = mapping->a_ops->writepage(page, &wbc);
587 if (res < 0)
588 handle_write_error(mapping, page, res);
994fc28c 589 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
590 ClearPageReclaim(page);
591 return PAGE_ACTIVATE;
592 }
c661b078 593
1da177e4
LT
594 if (!PageWriteback(page)) {
595 /* synchronous write or broken a_ops? */
596 ClearPageReclaim(page);
597 }
3aa23851 598 trace_mm_vmscan_writepage(page);
c4a25635 599 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
600 return PAGE_SUCCESS;
601 }
602
603 return PAGE_CLEAN;
604}
605
a649fd92 606/*
e286781d
NP
607 * Same as remove_mapping, but if the page is removed from the mapping, it
608 * gets returned with a refcount of 0.
a649fd92 609 */
a528910e
JW
610static int __remove_mapping(struct address_space *mapping, struct page *page,
611 bool reclaimed)
49d2e9cc 612{
c4843a75 613 unsigned long flags;
c4843a75 614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75 618 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 619 /*
0fd0e6b0
NP
620 * The non racy check for a busy page.
621 *
622 * Must be careful with the order of the tests. When someone has
623 * a ref to the page, it may be possible that they dirty it then
624 * drop the reference. So if PageDirty is tested before page_count
625 * here, then the following race may occur:
626 *
627 * get_user_pages(&page);
628 * [user mapping goes away]
629 * write_to(page);
630 * !PageDirty(page) [good]
631 * SetPageDirty(page);
632 * put_page(page);
633 * !page_count(page) [good, discard it]
634 *
635 * [oops, our write_to data is lost]
636 *
637 * Reversing the order of the tests ensures such a situation cannot
638 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 639 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
640 *
641 * Note that if SetPageDirty is always performed via set_page_dirty,
642 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 643 */
fe896d18 644 if (!page_ref_freeze(page, 2))
49d2e9cc 645 goto cannot_free;
e286781d
NP
646 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
647 if (unlikely(PageDirty(page))) {
fe896d18 648 page_ref_unfreeze(page, 2);
49d2e9cc 649 goto cannot_free;
e286781d 650 }
49d2e9cc
CL
651
652 if (PageSwapCache(page)) {
653 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 654 mem_cgroup_swapout(page, swap);
49d2e9cc 655 __delete_from_swap_cache(page);
c4843a75 656 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 657 swapcache_free(swap);
e286781d 658 } else {
6072d13c 659 void (*freepage)(struct page *);
a528910e 660 void *shadow = NULL;
6072d13c
LT
661
662 freepage = mapping->a_ops->freepage;
a528910e
JW
663 /*
664 * Remember a shadow entry for reclaimed file cache in
665 * order to detect refaults, thus thrashing, later on.
666 *
667 * But don't store shadows in an address space that is
668 * already exiting. This is not just an optizimation,
669 * inode reclaim needs to empty out the radix tree or
670 * the nodes are lost. Don't plant shadows behind its
671 * back.
f9fe48be
RZ
672 *
673 * We also don't store shadows for DAX mappings because the
674 * only page cache pages found in these are zero pages
675 * covering holes, and because we don't want to mix DAX
676 * exceptional entries and shadow exceptional entries in the
677 * same page_tree.
a528910e
JW
678 */
679 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 680 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 681 shadow = workingset_eviction(mapping, page);
62cccb8c 682 __delete_from_page_cache(page, shadow);
c4843a75 683 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
684
685 if (freepage != NULL)
686 freepage(page);
49d2e9cc
CL
687 }
688
49d2e9cc
CL
689 return 1;
690
691cannot_free:
c4843a75 692 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
693 return 0;
694}
695
e286781d
NP
696/*
697 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
698 * someone else has a ref on the page, abort and return 0. If it was
699 * successfully detached, return 1. Assumes the caller has a single ref on
700 * this page.
701 */
702int remove_mapping(struct address_space *mapping, struct page *page)
703{
a528910e 704 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
705 /*
706 * Unfreezing the refcount with 1 rather than 2 effectively
707 * drops the pagecache ref for us without requiring another
708 * atomic operation.
709 */
fe896d18 710 page_ref_unfreeze(page, 1);
e286781d
NP
711 return 1;
712 }
713 return 0;
714}
715
894bc310
LS
716/**
717 * putback_lru_page - put previously isolated page onto appropriate LRU list
718 * @page: page to be put back to appropriate lru list
719 *
720 * Add previously isolated @page to appropriate LRU list.
721 * Page may still be unevictable for other reasons.
722 *
723 * lru_lock must not be held, interrupts must be enabled.
724 */
894bc310
LS
725void putback_lru_page(struct page *page)
726{
0ec3b74c 727 bool is_unevictable;
bbfd28ee 728 int was_unevictable = PageUnevictable(page);
894bc310 729
309381fe 730 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
731
732redo:
733 ClearPageUnevictable(page);
734
39b5f29a 735 if (page_evictable(page)) {
894bc310
LS
736 /*
737 * For evictable pages, we can use the cache.
738 * In event of a race, worst case is we end up with an
739 * unevictable page on [in]active list.
740 * We know how to handle that.
741 */
0ec3b74c 742 is_unevictable = false;
c53954a0 743 lru_cache_add(page);
894bc310
LS
744 } else {
745 /*
746 * Put unevictable pages directly on zone's unevictable
747 * list.
748 */
0ec3b74c 749 is_unevictable = true;
894bc310 750 add_page_to_unevictable_list(page);
6a7b9548 751 /*
21ee9f39
MK
752 * When racing with an mlock or AS_UNEVICTABLE clearing
753 * (page is unlocked) make sure that if the other thread
754 * does not observe our setting of PG_lru and fails
24513264 755 * isolation/check_move_unevictable_pages,
21ee9f39 756 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
757 * the page back to the evictable list.
758 *
21ee9f39 759 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
760 */
761 smp_mb();
894bc310 762 }
894bc310
LS
763
764 /*
765 * page's status can change while we move it among lru. If an evictable
766 * page is on unevictable list, it never be freed. To avoid that,
767 * check after we added it to the list, again.
768 */
0ec3b74c 769 if (is_unevictable && page_evictable(page)) {
894bc310
LS
770 if (!isolate_lru_page(page)) {
771 put_page(page);
772 goto redo;
773 }
774 /* This means someone else dropped this page from LRU
775 * So, it will be freed or putback to LRU again. There is
776 * nothing to do here.
777 */
778 }
779
0ec3b74c 780 if (was_unevictable && !is_unevictable)
bbfd28ee 781 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 782 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
783 count_vm_event(UNEVICTABLE_PGCULLED);
784
894bc310
LS
785 put_page(page); /* drop ref from isolate */
786}
787
dfc8d636
JW
788enum page_references {
789 PAGEREF_RECLAIM,
790 PAGEREF_RECLAIM_CLEAN,
64574746 791 PAGEREF_KEEP,
dfc8d636
JW
792 PAGEREF_ACTIVATE,
793};
794
795static enum page_references page_check_references(struct page *page,
796 struct scan_control *sc)
797{
64574746 798 int referenced_ptes, referenced_page;
dfc8d636 799 unsigned long vm_flags;
dfc8d636 800
c3ac9a8a
JW
801 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
802 &vm_flags);
64574746 803 referenced_page = TestClearPageReferenced(page);
dfc8d636 804
dfc8d636
JW
805 /*
806 * Mlock lost the isolation race with us. Let try_to_unmap()
807 * move the page to the unevictable list.
808 */
809 if (vm_flags & VM_LOCKED)
810 return PAGEREF_RECLAIM;
811
64574746 812 if (referenced_ptes) {
e4898273 813 if (PageSwapBacked(page))
64574746
JW
814 return PAGEREF_ACTIVATE;
815 /*
816 * All mapped pages start out with page table
817 * references from the instantiating fault, so we need
818 * to look twice if a mapped file page is used more
819 * than once.
820 *
821 * Mark it and spare it for another trip around the
822 * inactive list. Another page table reference will
823 * lead to its activation.
824 *
825 * Note: the mark is set for activated pages as well
826 * so that recently deactivated but used pages are
827 * quickly recovered.
828 */
829 SetPageReferenced(page);
830
34dbc67a 831 if (referenced_page || referenced_ptes > 1)
64574746
JW
832 return PAGEREF_ACTIVATE;
833
c909e993
KK
834 /*
835 * Activate file-backed executable pages after first usage.
836 */
837 if (vm_flags & VM_EXEC)
838 return PAGEREF_ACTIVATE;
839
64574746
JW
840 return PAGEREF_KEEP;
841 }
dfc8d636
JW
842
843 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 844 if (referenced_page && !PageSwapBacked(page))
64574746
JW
845 return PAGEREF_RECLAIM_CLEAN;
846
847 return PAGEREF_RECLAIM;
dfc8d636
JW
848}
849
e2be15f6
MG
850/* Check if a page is dirty or under writeback */
851static void page_check_dirty_writeback(struct page *page,
852 bool *dirty, bool *writeback)
853{
b4597226
MG
854 struct address_space *mapping;
855
e2be15f6
MG
856 /*
857 * Anonymous pages are not handled by flushers and must be written
858 * from reclaim context. Do not stall reclaim based on them
859 */
860 if (!page_is_file_cache(page)) {
861 *dirty = false;
862 *writeback = false;
863 return;
864 }
865
866 /* By default assume that the page flags are accurate */
867 *dirty = PageDirty(page);
868 *writeback = PageWriteback(page);
b4597226
MG
869
870 /* Verify dirty/writeback state if the filesystem supports it */
871 if (!page_has_private(page))
872 return;
873
874 mapping = page_mapping(page);
875 if (mapping && mapping->a_ops->is_dirty_writeback)
876 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
877}
878
1da177e4 879/*
1742f19f 880 * shrink_page_list() returns the number of reclaimed pages
1da177e4 881 */
1742f19f 882static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 883 struct pglist_data *pgdat,
f84f6e2b 884 struct scan_control *sc,
02c6de8d 885 enum ttu_flags ttu_flags,
8e950282 886 unsigned long *ret_nr_dirty,
d43006d5 887 unsigned long *ret_nr_unqueued_dirty,
8e950282 888 unsigned long *ret_nr_congested,
02c6de8d 889 unsigned long *ret_nr_writeback,
b1a6f21e 890 unsigned long *ret_nr_immediate,
02c6de8d 891 bool force_reclaim)
1da177e4
LT
892{
893 LIST_HEAD(ret_pages);
abe4c3b5 894 LIST_HEAD(free_pages);
1da177e4 895 int pgactivate = 0;
d43006d5 896 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
897 unsigned long nr_dirty = 0;
898 unsigned long nr_congested = 0;
05ff5137 899 unsigned long nr_reclaimed = 0;
92df3a72 900 unsigned long nr_writeback = 0;
b1a6f21e 901 unsigned long nr_immediate = 0;
1da177e4
LT
902
903 cond_resched();
904
1da177e4
LT
905 while (!list_empty(page_list)) {
906 struct address_space *mapping;
907 struct page *page;
908 int may_enter_fs;
02c6de8d 909 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 910 bool dirty, writeback;
854e9ed0
MK
911 bool lazyfree = false;
912 int ret = SWAP_SUCCESS;
1da177e4
LT
913
914 cond_resched();
915
916 page = lru_to_page(page_list);
917 list_del(&page->lru);
918
529ae9aa 919 if (!trylock_page(page))
1da177e4
LT
920 goto keep;
921
309381fe 922 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
923
924 sc->nr_scanned++;
80e43426 925
39b5f29a 926 if (unlikely(!page_evictable(page)))
b291f000 927 goto cull_mlocked;
894bc310 928
a6dc60f8 929 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
930 goto keep_locked;
931
1da177e4
LT
932 /* Double the slab pressure for mapped and swapcache pages */
933 if (page_mapped(page) || PageSwapCache(page))
934 sc->nr_scanned++;
935
c661b078
AW
936 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
937 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
938
e2be15f6
MG
939 /*
940 * The number of dirty pages determines if a zone is marked
941 * reclaim_congested which affects wait_iff_congested. kswapd
942 * will stall and start writing pages if the tail of the LRU
943 * is all dirty unqueued pages.
944 */
945 page_check_dirty_writeback(page, &dirty, &writeback);
946 if (dirty || writeback)
947 nr_dirty++;
948
949 if (dirty && !writeback)
950 nr_unqueued_dirty++;
951
d04e8acd
MG
952 /*
953 * Treat this page as congested if the underlying BDI is or if
954 * pages are cycling through the LRU so quickly that the
955 * pages marked for immediate reclaim are making it to the
956 * end of the LRU a second time.
957 */
e2be15f6 958 mapping = page_mapping(page);
1da58ee2 959 if (((dirty || writeback) && mapping &&
703c2708 960 inode_write_congested(mapping->host)) ||
d04e8acd 961 (writeback && PageReclaim(page)))
e2be15f6
MG
962 nr_congested++;
963
283aba9f
MG
964 /*
965 * If a page at the tail of the LRU is under writeback, there
966 * are three cases to consider.
967 *
968 * 1) If reclaim is encountering an excessive number of pages
969 * under writeback and this page is both under writeback and
970 * PageReclaim then it indicates that pages are being queued
971 * for IO but are being recycled through the LRU before the
972 * IO can complete. Waiting on the page itself risks an
973 * indefinite stall if it is impossible to writeback the
974 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
975 * note that the LRU is being scanned too quickly and the
976 * caller can stall after page list has been processed.
283aba9f 977 *
97c9341f 978 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
979 * not marked for immediate reclaim, or the caller does not
980 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
981 * not to fs). In this case mark the page for immediate
97c9341f 982 * reclaim and continue scanning.
283aba9f 983 *
ecf5fc6e
MH
984 * Require may_enter_fs because we would wait on fs, which
985 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
986 * enter reclaim, and deadlock if it waits on a page for
987 * which it is needed to do the write (loop masks off
988 * __GFP_IO|__GFP_FS for this reason); but more thought
989 * would probably show more reasons.
990 *
7fadc820 991 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
992 * PageReclaim. memcg does not have any dirty pages
993 * throttling so we could easily OOM just because too many
994 * pages are in writeback and there is nothing else to
995 * reclaim. Wait for the writeback to complete.
996 */
c661b078 997 if (PageWriteback(page)) {
283aba9f
MG
998 /* Case 1 above */
999 if (current_is_kswapd() &&
1000 PageReclaim(page) &&
599d0c95 1001 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1002 nr_immediate++;
1003 goto keep_locked;
283aba9f
MG
1004
1005 /* Case 2 above */
97c9341f 1006 } else if (sane_reclaim(sc) ||
ecf5fc6e 1007 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1008 /*
1009 * This is slightly racy - end_page_writeback()
1010 * might have just cleared PageReclaim, then
1011 * setting PageReclaim here end up interpreted
1012 * as PageReadahead - but that does not matter
1013 * enough to care. What we do want is for this
1014 * page to have PageReclaim set next time memcg
1015 * reclaim reaches the tests above, so it will
1016 * then wait_on_page_writeback() to avoid OOM;
1017 * and it's also appropriate in global reclaim.
1018 */
1019 SetPageReclaim(page);
e62e384e 1020 nr_writeback++;
c3b94f44 1021 goto keep_locked;
283aba9f
MG
1022
1023 /* Case 3 above */
1024 } else {
7fadc820 1025 unlock_page(page);
283aba9f 1026 wait_on_page_writeback(page);
7fadc820
HD
1027 /* then go back and try same page again */
1028 list_add_tail(&page->lru, page_list);
1029 continue;
e62e384e 1030 }
c661b078 1031 }
1da177e4 1032
02c6de8d
MK
1033 if (!force_reclaim)
1034 references = page_check_references(page, sc);
1035
dfc8d636
JW
1036 switch (references) {
1037 case PAGEREF_ACTIVATE:
1da177e4 1038 goto activate_locked;
64574746
JW
1039 case PAGEREF_KEEP:
1040 goto keep_locked;
dfc8d636
JW
1041 case PAGEREF_RECLAIM:
1042 case PAGEREF_RECLAIM_CLEAN:
1043 ; /* try to reclaim the page below */
1044 }
1da177e4 1045
1da177e4
LT
1046 /*
1047 * Anonymous process memory has backing store?
1048 * Try to allocate it some swap space here.
1049 */
b291f000 1050 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1051 if (!(sc->gfp_mask & __GFP_IO))
1052 goto keep_locked;
5bc7b8ac 1053 if (!add_to_swap(page, page_list))
1da177e4 1054 goto activate_locked;
854e9ed0 1055 lazyfree = true;
63eb6b93 1056 may_enter_fs = 1;
1da177e4 1057
e2be15f6
MG
1058 /* Adding to swap updated mapping */
1059 mapping = page_mapping(page);
7751b2da
KS
1060 } else if (unlikely(PageTransHuge(page))) {
1061 /* Split file THP */
1062 if (split_huge_page_to_list(page, page_list))
1063 goto keep_locked;
e2be15f6 1064 }
1da177e4 1065
7751b2da
KS
1066 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1067
1da177e4
LT
1068 /*
1069 * The page is mapped into the page tables of one or more
1070 * processes. Try to unmap it here.
1071 */
1072 if (page_mapped(page) && mapping) {
854e9ed0
MK
1073 switch (ret = try_to_unmap(page, lazyfree ?
1074 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1075 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1076 case SWAP_FAIL:
1077 goto activate_locked;
1078 case SWAP_AGAIN:
1079 goto keep_locked;
b291f000
NP
1080 case SWAP_MLOCK:
1081 goto cull_mlocked;
854e9ed0
MK
1082 case SWAP_LZFREE:
1083 goto lazyfree;
1da177e4
LT
1084 case SWAP_SUCCESS:
1085 ; /* try to free the page below */
1086 }
1087 }
1088
1089 if (PageDirty(page)) {
ee72886d
MG
1090 /*
1091 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1092 * avoid risk of stack overflow but only writeback
1093 * if many dirty pages have been encountered.
ee72886d 1094 */
f84f6e2b 1095 if (page_is_file_cache(page) &&
9e3b2f8c 1096 (!current_is_kswapd() ||
599d0c95 1097 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1098 /*
1099 * Immediately reclaim when written back.
1100 * Similar in principal to deactivate_page()
1101 * except we already have the page isolated
1102 * and know it's dirty
1103 */
c4a25635 1104 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1105 SetPageReclaim(page);
1106
ee72886d
MG
1107 goto keep_locked;
1108 }
1109
dfc8d636 1110 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1111 goto keep_locked;
4dd4b920 1112 if (!may_enter_fs)
1da177e4 1113 goto keep_locked;
52a8363e 1114 if (!sc->may_writepage)
1da177e4
LT
1115 goto keep_locked;
1116
d950c947
MG
1117 /*
1118 * Page is dirty. Flush the TLB if a writable entry
1119 * potentially exists to avoid CPU writes after IO
1120 * starts and then write it out here.
1121 */
1122 try_to_unmap_flush_dirty();
7d3579e8 1123 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1124 case PAGE_KEEP:
1125 goto keep_locked;
1126 case PAGE_ACTIVATE:
1127 goto activate_locked;
1128 case PAGE_SUCCESS:
7d3579e8 1129 if (PageWriteback(page))
41ac1999 1130 goto keep;
7d3579e8 1131 if (PageDirty(page))
1da177e4 1132 goto keep;
7d3579e8 1133
1da177e4
LT
1134 /*
1135 * A synchronous write - probably a ramdisk. Go
1136 * ahead and try to reclaim the page.
1137 */
529ae9aa 1138 if (!trylock_page(page))
1da177e4
LT
1139 goto keep;
1140 if (PageDirty(page) || PageWriteback(page))
1141 goto keep_locked;
1142 mapping = page_mapping(page);
1143 case PAGE_CLEAN:
1144 ; /* try to free the page below */
1145 }
1146 }
1147
1148 /*
1149 * If the page has buffers, try to free the buffer mappings
1150 * associated with this page. If we succeed we try to free
1151 * the page as well.
1152 *
1153 * We do this even if the page is PageDirty().
1154 * try_to_release_page() does not perform I/O, but it is
1155 * possible for a page to have PageDirty set, but it is actually
1156 * clean (all its buffers are clean). This happens if the
1157 * buffers were written out directly, with submit_bh(). ext3
894bc310 1158 * will do this, as well as the blockdev mapping.
1da177e4
LT
1159 * try_to_release_page() will discover that cleanness and will
1160 * drop the buffers and mark the page clean - it can be freed.
1161 *
1162 * Rarely, pages can have buffers and no ->mapping. These are
1163 * the pages which were not successfully invalidated in
1164 * truncate_complete_page(). We try to drop those buffers here
1165 * and if that worked, and the page is no longer mapped into
1166 * process address space (page_count == 1) it can be freed.
1167 * Otherwise, leave the page on the LRU so it is swappable.
1168 */
266cf658 1169 if (page_has_private(page)) {
1da177e4
LT
1170 if (!try_to_release_page(page, sc->gfp_mask))
1171 goto activate_locked;
e286781d
NP
1172 if (!mapping && page_count(page) == 1) {
1173 unlock_page(page);
1174 if (put_page_testzero(page))
1175 goto free_it;
1176 else {
1177 /*
1178 * rare race with speculative reference.
1179 * the speculative reference will free
1180 * this page shortly, so we may
1181 * increment nr_reclaimed here (and
1182 * leave it off the LRU).
1183 */
1184 nr_reclaimed++;
1185 continue;
1186 }
1187 }
1da177e4
LT
1188 }
1189
854e9ed0 1190lazyfree:
a528910e 1191 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1192 goto keep_locked;
1da177e4 1193
a978d6f5
NP
1194 /*
1195 * At this point, we have no other references and there is
1196 * no way to pick any more up (removed from LRU, removed
1197 * from pagecache). Can use non-atomic bitops now (and
1198 * we obviously don't have to worry about waking up a process
1199 * waiting on the page lock, because there are no references.
1200 */
48c935ad 1201 __ClearPageLocked(page);
e286781d 1202free_it:
854e9ed0
MK
1203 if (ret == SWAP_LZFREE)
1204 count_vm_event(PGLAZYFREED);
1205
05ff5137 1206 nr_reclaimed++;
abe4c3b5
MG
1207
1208 /*
1209 * Is there need to periodically free_page_list? It would
1210 * appear not as the counts should be low
1211 */
1212 list_add(&page->lru, &free_pages);
1da177e4
LT
1213 continue;
1214
b291f000 1215cull_mlocked:
63d6c5ad
HD
1216 if (PageSwapCache(page))
1217 try_to_free_swap(page);
b291f000 1218 unlock_page(page);
c54839a7 1219 list_add(&page->lru, &ret_pages);
b291f000
NP
1220 continue;
1221
1da177e4 1222activate_locked:
68a22394 1223 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1224 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1225 try_to_free_swap(page);
309381fe 1226 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1227 SetPageActive(page);
1228 pgactivate++;
1229keep_locked:
1230 unlock_page(page);
1231keep:
1232 list_add(&page->lru, &ret_pages);
309381fe 1233 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1234 }
abe4c3b5 1235
747db954 1236 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1237 try_to_unmap_flush();
b745bc85 1238 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1239
1da177e4 1240 list_splice(&ret_pages, page_list);
f8891e5e 1241 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1242
8e950282
MG
1243 *ret_nr_dirty += nr_dirty;
1244 *ret_nr_congested += nr_congested;
d43006d5 1245 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1246 *ret_nr_writeback += nr_writeback;
b1a6f21e 1247 *ret_nr_immediate += nr_immediate;
05ff5137 1248 return nr_reclaimed;
1da177e4
LT
1249}
1250
02c6de8d
MK
1251unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1252 struct list_head *page_list)
1253{
1254 struct scan_control sc = {
1255 .gfp_mask = GFP_KERNEL,
1256 .priority = DEF_PRIORITY,
1257 .may_unmap = 1,
1258 };
8e950282 1259 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1260 struct page *page, *next;
1261 LIST_HEAD(clean_pages);
1262
1263 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1264 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1265 !__PageMovable(page)) {
02c6de8d
MK
1266 ClearPageActive(page);
1267 list_move(&page->lru, &clean_pages);
1268 }
1269 }
1270
599d0c95 1271 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
8e950282
MG
1272 TTU_UNMAP|TTU_IGNORE_ACCESS,
1273 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1274 list_splice(&clean_pages, page_list);
599d0c95 1275 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1276 return ret;
1277}
1278
5ad333eb
AW
1279/*
1280 * Attempt to remove the specified page from its LRU. Only take this page
1281 * if it is of the appropriate PageActive status. Pages which are being
1282 * freed elsewhere are also ignored.
1283 *
1284 * page: page to consider
1285 * mode: one of the LRU isolation modes defined above
1286 *
1287 * returns 0 on success, -ve errno on failure.
1288 */
f3fd4a61 1289int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1290{
1291 int ret = -EINVAL;
1292
1293 /* Only take pages on the LRU. */
1294 if (!PageLRU(page))
1295 return ret;
1296
e46a2879
MK
1297 /* Compaction should not handle unevictable pages but CMA can do so */
1298 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1299 return ret;
1300
5ad333eb 1301 ret = -EBUSY;
08e552c6 1302
c8244935
MG
1303 /*
1304 * To minimise LRU disruption, the caller can indicate that it only
1305 * wants to isolate pages it will be able to operate on without
1306 * blocking - clean pages for the most part.
1307 *
1308 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1309 * is used by reclaim when it is cannot write to backing storage
1310 *
1311 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1312 * that it is possible to migrate without blocking
1313 */
1314 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1315 /* All the caller can do on PageWriteback is block */
1316 if (PageWriteback(page))
1317 return ret;
1318
1319 if (PageDirty(page)) {
1320 struct address_space *mapping;
1321
1322 /* ISOLATE_CLEAN means only clean pages */
1323 if (mode & ISOLATE_CLEAN)
1324 return ret;
1325
1326 /*
1327 * Only pages without mappings or that have a
1328 * ->migratepage callback are possible to migrate
1329 * without blocking
1330 */
1331 mapping = page_mapping(page);
1332 if (mapping && !mapping->a_ops->migratepage)
1333 return ret;
1334 }
1335 }
39deaf85 1336
f80c0673
MK
1337 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1338 return ret;
1339
5ad333eb
AW
1340 if (likely(get_page_unless_zero(page))) {
1341 /*
1342 * Be careful not to clear PageLRU until after we're
1343 * sure the page is not being freed elsewhere -- the
1344 * page release code relies on it.
1345 */
1346 ClearPageLRU(page);
1347 ret = 0;
1348 }
1349
1350 return ret;
1351}
1352
1da177e4 1353/*
a52633d8 1354 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1355 * shrink the lists perform better by taking out a batch of pages
1356 * and working on them outside the LRU lock.
1357 *
1358 * For pagecache intensive workloads, this function is the hottest
1359 * spot in the kernel (apart from copy_*_user functions).
1360 *
1361 * Appropriate locks must be held before calling this function.
1362 *
1363 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1364 * @lruvec: The LRU vector to pull pages from.
1da177e4 1365 * @dst: The temp list to put pages on to.
f626012d 1366 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1367 * @sc: The scan_control struct for this reclaim session
5ad333eb 1368 * @mode: One of the LRU isolation modes
3cb99451 1369 * @lru: LRU list id for isolating
1da177e4
LT
1370 *
1371 * returns how many pages were moved onto *@dst.
1372 */
69e05944 1373static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1374 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1375 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1376 isolate_mode_t mode, enum lru_list lru)
1da177e4 1377{
75b00af7 1378 struct list_head *src = &lruvec->lists[lru];
69e05944 1379 unsigned long nr_taken = 0;
599d0c95 1380 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1381 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
599d0c95 1382 unsigned long scan, nr_pages;
b2e18757 1383 LIST_HEAD(pages_skipped);
1da177e4 1384
0b802f10
VD
1385 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1386 !list_empty(src); scan++) {
5ad333eb 1387 struct page *page;
5ad333eb 1388
1da177e4
LT
1389 page = lru_to_page(src);
1390 prefetchw_prev_lru_page(page, src, flags);
1391
309381fe 1392 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1393
b2e18757
MG
1394 if (page_zonenum(page) > sc->reclaim_idx) {
1395 list_move(&page->lru, &pages_skipped);
7cc30fcf 1396 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1397 continue;
1398 }
1399
f3fd4a61 1400 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1401 case 0:
599d0c95
MG
1402 nr_pages = hpage_nr_pages(page);
1403 nr_taken += nr_pages;
1404 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1405 list_move(&page->lru, dst);
5ad333eb
AW
1406 break;
1407
1408 case -EBUSY:
1409 /* else it is being freed elsewhere */
1410 list_move(&page->lru, src);
1411 continue;
46453a6e 1412
5ad333eb
AW
1413 default:
1414 BUG();
1415 }
1da177e4
LT
1416 }
1417
b2e18757
MG
1418 /*
1419 * Splice any skipped pages to the start of the LRU list. Note that
1420 * this disrupts the LRU order when reclaiming for lower zones but
1421 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1422 * scanning would soon rescan the same pages to skip and put the
1423 * system at risk of premature OOM.
1424 */
7cc30fcf
MG
1425 if (!list_empty(&pages_skipped)) {
1426 int zid;
1427
b2e18757 1428 list_splice(&pages_skipped, src);
7cc30fcf
MG
1429 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1430 if (!nr_skipped[zid])
1431 continue;
1432
1433 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1434 }
1435 }
f626012d 1436 *nr_scanned = scan;
e5146b12 1437 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
75b00af7 1438 nr_taken, mode, is_file_lru(lru));
599d0c95
MG
1439 for (scan = 0; scan < MAX_NR_ZONES; scan++) {
1440 nr_pages = nr_zone_taken[scan];
1441 if (!nr_pages)
1442 continue;
1443
1444 update_lru_size(lruvec, lru, scan, -nr_pages);
1445 }
1da177e4
LT
1446 return nr_taken;
1447}
1448
62695a84
NP
1449/**
1450 * isolate_lru_page - tries to isolate a page from its LRU list
1451 * @page: page to isolate from its LRU list
1452 *
1453 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1454 * vmstat statistic corresponding to whatever LRU list the page was on.
1455 *
1456 * Returns 0 if the page was removed from an LRU list.
1457 * Returns -EBUSY if the page was not on an LRU list.
1458 *
1459 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1460 * the active list, it will have PageActive set. If it was found on
1461 * the unevictable list, it will have the PageUnevictable bit set. That flag
1462 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1463 *
1464 * The vmstat statistic corresponding to the list on which the page was
1465 * found will be decremented.
1466 *
1467 * Restrictions:
1468 * (1) Must be called with an elevated refcount on the page. This is a
1469 * fundamentnal difference from isolate_lru_pages (which is called
1470 * without a stable reference).
1471 * (2) the lru_lock must not be held.
1472 * (3) interrupts must be enabled.
1473 */
1474int isolate_lru_page(struct page *page)
1475{
1476 int ret = -EBUSY;
1477
309381fe 1478 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1479 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1480
62695a84
NP
1481 if (PageLRU(page)) {
1482 struct zone *zone = page_zone(page);
fa9add64 1483 struct lruvec *lruvec;
62695a84 1484
a52633d8 1485 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1486 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1487 if (PageLRU(page)) {
894bc310 1488 int lru = page_lru(page);
0c917313 1489 get_page(page);
62695a84 1490 ClearPageLRU(page);
fa9add64
HD
1491 del_page_from_lru_list(page, lruvec, lru);
1492 ret = 0;
62695a84 1493 }
a52633d8 1494 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1495 }
1496 return ret;
1497}
1498
35cd7815 1499/*
d37dd5dc
FW
1500 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1501 * then get resheduled. When there are massive number of tasks doing page
1502 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1503 * the LRU list will go small and be scanned faster than necessary, leading to
1504 * unnecessary swapping, thrashing and OOM.
35cd7815 1505 */
599d0c95 1506static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1507 struct scan_control *sc)
1508{
1509 unsigned long inactive, isolated;
1510
1511 if (current_is_kswapd())
1512 return 0;
1513
97c9341f 1514 if (!sane_reclaim(sc))
35cd7815
RR
1515 return 0;
1516
1517 if (file) {
599d0c95
MG
1518 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1519 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1520 } else {
599d0c95
MG
1521 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1522 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1523 }
1524
3cf23841
FW
1525 /*
1526 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1527 * won't get blocked by normal direct-reclaimers, forming a circular
1528 * deadlock.
1529 */
d0164adc 1530 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1531 inactive >>= 3;
1532
35cd7815
RR
1533 return isolated > inactive;
1534}
1535
66635629 1536static noinline_for_stack void
75b00af7 1537putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1538{
27ac81d8 1539 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1540 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1541 LIST_HEAD(pages_to_free);
66635629 1542
66635629
MG
1543 /*
1544 * Put back any unfreeable pages.
1545 */
66635629 1546 while (!list_empty(page_list)) {
3f79768f 1547 struct page *page = lru_to_page(page_list);
66635629 1548 int lru;
3f79768f 1549
309381fe 1550 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1551 list_del(&page->lru);
39b5f29a 1552 if (unlikely(!page_evictable(page))) {
599d0c95 1553 spin_unlock_irq(&pgdat->lru_lock);
66635629 1554 putback_lru_page(page);
599d0c95 1555 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1556 continue;
1557 }
fa9add64 1558
599d0c95 1559 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1560
7a608572 1561 SetPageLRU(page);
66635629 1562 lru = page_lru(page);
fa9add64
HD
1563 add_page_to_lru_list(page, lruvec, lru);
1564
66635629
MG
1565 if (is_active_lru(lru)) {
1566 int file = is_file_lru(lru);
9992af10
RR
1567 int numpages = hpage_nr_pages(page);
1568 reclaim_stat->recent_rotated[file] += numpages;
66635629 1569 }
2bcf8879
HD
1570 if (put_page_testzero(page)) {
1571 __ClearPageLRU(page);
1572 __ClearPageActive(page);
fa9add64 1573 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1574
1575 if (unlikely(PageCompound(page))) {
599d0c95 1576 spin_unlock_irq(&pgdat->lru_lock);
747db954 1577 mem_cgroup_uncharge(page);
2bcf8879 1578 (*get_compound_page_dtor(page))(page);
599d0c95 1579 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1580 } else
1581 list_add(&page->lru, &pages_to_free);
66635629
MG
1582 }
1583 }
66635629 1584
3f79768f
HD
1585 /*
1586 * To save our caller's stack, now use input list for pages to free.
1587 */
1588 list_splice(&pages_to_free, page_list);
66635629
MG
1589}
1590
399ba0b9
N
1591/*
1592 * If a kernel thread (such as nfsd for loop-back mounts) services
1593 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1594 * In that case we should only throttle if the backing device it is
1595 * writing to is congested. In other cases it is safe to throttle.
1596 */
1597static int current_may_throttle(void)
1598{
1599 return !(current->flags & PF_LESS_THROTTLE) ||
1600 current->backing_dev_info == NULL ||
1601 bdi_write_congested(current->backing_dev_info);
1602}
1603
1da177e4 1604/*
b2e18757 1605 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1606 * of reclaimed pages
1da177e4 1607 */
66635629 1608static noinline_for_stack unsigned long
1a93be0e 1609shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1610 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1611{
1612 LIST_HEAD(page_list);
e247dbce 1613 unsigned long nr_scanned;
05ff5137 1614 unsigned long nr_reclaimed = 0;
e247dbce 1615 unsigned long nr_taken;
8e950282
MG
1616 unsigned long nr_dirty = 0;
1617 unsigned long nr_congested = 0;
e2be15f6 1618 unsigned long nr_unqueued_dirty = 0;
92df3a72 1619 unsigned long nr_writeback = 0;
b1a6f21e 1620 unsigned long nr_immediate = 0;
f3fd4a61 1621 isolate_mode_t isolate_mode = 0;
3cb99451 1622 int file = is_file_lru(lru);
599d0c95 1623 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1625
599d0c95 1626 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1627 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1628
1629 /* We are about to die and free our memory. Return now. */
1630 if (fatal_signal_pending(current))
1631 return SWAP_CLUSTER_MAX;
1632 }
1633
1da177e4 1634 lru_add_drain();
f80c0673
MK
1635
1636 if (!sc->may_unmap)
61317289 1637 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1638 if (!sc->may_writepage)
61317289 1639 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1640
599d0c95 1641 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1642
5dc35979
KK
1643 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1644 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1645
599d0c95 1646 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1647 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1648
89b5fae5 1649 if (global_reclaim(sc)) {
599d0c95 1650 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1651 if (current_is_kswapd())
599d0c95 1652 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1653 else
599d0c95 1654 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1655 }
599d0c95 1656 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1657
d563c050 1658 if (nr_taken == 0)
66635629 1659 return 0;
5ad333eb 1660
599d0c95 1661 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
8e950282
MG
1662 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1663 &nr_writeback, &nr_immediate,
1664 false);
c661b078 1665
599d0c95 1666 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1667
904249aa
YH
1668 if (global_reclaim(sc)) {
1669 if (current_is_kswapd())
599d0c95 1670 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1671 else
599d0c95 1672 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1673 }
a74609fa 1674
27ac81d8 1675 putback_inactive_pages(lruvec, &page_list);
3f79768f 1676
599d0c95 1677 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1678
599d0c95 1679 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1680
747db954 1681 mem_cgroup_uncharge_list(&page_list);
b745bc85 1682 free_hot_cold_page_list(&page_list, true);
e11da5b4 1683
92df3a72
MG
1684 /*
1685 * If reclaim is isolating dirty pages under writeback, it implies
1686 * that the long-lived page allocation rate is exceeding the page
1687 * laundering rate. Either the global limits are not being effective
1688 * at throttling processes due to the page distribution throughout
1689 * zones or there is heavy usage of a slow backing device. The
1690 * only option is to throttle from reclaim context which is not ideal
1691 * as there is no guarantee the dirtying process is throttled in the
1692 * same way balance_dirty_pages() manages.
1693 *
8e950282
MG
1694 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1695 * of pages under pages flagged for immediate reclaim and stall if any
1696 * are encountered in the nr_immediate check below.
92df3a72 1697 */
918fc718 1698 if (nr_writeback && nr_writeback == nr_taken)
599d0c95 1699 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1700
d43006d5 1701 /*
97c9341f
TH
1702 * Legacy memcg will stall in page writeback so avoid forcibly
1703 * stalling here.
d43006d5 1704 */
97c9341f 1705 if (sane_reclaim(sc)) {
8e950282
MG
1706 /*
1707 * Tag a zone as congested if all the dirty pages scanned were
1708 * backed by a congested BDI and wait_iff_congested will stall.
1709 */
1710 if (nr_dirty && nr_dirty == nr_congested)
599d0c95 1711 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1712
b1a6f21e
MG
1713 /*
1714 * If dirty pages are scanned that are not queued for IO, it
1715 * implies that flushers are not keeping up. In this case, flag
599d0c95 1716 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1717 * reclaim context.
b1a6f21e
MG
1718 */
1719 if (nr_unqueued_dirty == nr_taken)
599d0c95 1720 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1721
1722 /*
b738d764
LT
1723 * If kswapd scans pages marked marked for immediate
1724 * reclaim and under writeback (nr_immediate), it implies
1725 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1726 * they are written so also forcibly stall.
1727 */
b738d764 1728 if (nr_immediate && current_may_throttle())
b1a6f21e 1729 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1730 }
d43006d5 1731
8e950282
MG
1732 /*
1733 * Stall direct reclaim for IO completions if underlying BDIs or zone
1734 * is congested. Allow kswapd to continue until it starts encountering
1735 * unqueued dirty pages or cycling through the LRU too quickly.
1736 */
399ba0b9
N
1737 if (!sc->hibernation_mode && !current_is_kswapd() &&
1738 current_may_throttle())
599d0c95 1739 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1740
599d0c95
MG
1741 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1742 nr_scanned, nr_reclaimed,
ba5e9579 1743 sc->priority, file);
05ff5137 1744 return nr_reclaimed;
1da177e4
LT
1745}
1746
1747/*
1748 * This moves pages from the active list to the inactive list.
1749 *
1750 * We move them the other way if the page is referenced by one or more
1751 * processes, from rmap.
1752 *
1753 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1754 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1755 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1756 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1757 * this, so instead we remove the pages from the LRU while processing them.
1758 * It is safe to rely on PG_active against the non-LRU pages in here because
1759 * nobody will play with that bit on a non-LRU page.
1760 *
0139aa7b 1761 * The downside is that we have to touch page->_refcount against each page.
1da177e4
LT
1762 * But we had to alter page->flags anyway.
1763 */
1cfb419b 1764
fa9add64 1765static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1766 struct list_head *list,
2bcf8879 1767 struct list_head *pages_to_free,
3eb4140f
WF
1768 enum lru_list lru)
1769{
599d0c95 1770 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1771 unsigned long pgmoved = 0;
3eb4140f 1772 struct page *page;
fa9add64 1773 int nr_pages;
3eb4140f 1774
3eb4140f
WF
1775 while (!list_empty(list)) {
1776 page = lru_to_page(list);
599d0c95 1777 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1778
309381fe 1779 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1780 SetPageLRU(page);
1781
fa9add64 1782 nr_pages = hpage_nr_pages(page);
599d0c95 1783 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1784 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1785 pgmoved += nr_pages;
3eb4140f 1786
2bcf8879
HD
1787 if (put_page_testzero(page)) {
1788 __ClearPageLRU(page);
1789 __ClearPageActive(page);
fa9add64 1790 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1791
1792 if (unlikely(PageCompound(page))) {
599d0c95 1793 spin_unlock_irq(&pgdat->lru_lock);
747db954 1794 mem_cgroup_uncharge(page);
2bcf8879 1795 (*get_compound_page_dtor(page))(page);
599d0c95 1796 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1797 } else
1798 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1799 }
1800 }
9d5e6a9f 1801
3eb4140f
WF
1802 if (!is_active_lru(lru))
1803 __count_vm_events(PGDEACTIVATE, pgmoved);
1804}
1cfb419b 1805
f626012d 1806static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1807 struct lruvec *lruvec,
f16015fb 1808 struct scan_control *sc,
9e3b2f8c 1809 enum lru_list lru)
1da177e4 1810{
44c241f1 1811 unsigned long nr_taken;
f626012d 1812 unsigned long nr_scanned;
6fe6b7e3 1813 unsigned long vm_flags;
1da177e4 1814 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1815 LIST_HEAD(l_active);
b69408e8 1816 LIST_HEAD(l_inactive);
1da177e4 1817 struct page *page;
1a93be0e 1818 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1819 unsigned long nr_rotated = 0;
f3fd4a61 1820 isolate_mode_t isolate_mode = 0;
3cb99451 1821 int file = is_file_lru(lru);
599d0c95 1822 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1823
1824 lru_add_drain();
f80c0673
MK
1825
1826 if (!sc->may_unmap)
61317289 1827 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1828 if (!sc->may_writepage)
61317289 1829 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1830
599d0c95 1831 spin_lock_irq(&pgdat->lru_lock);
925b7673 1832
5dc35979
KK
1833 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1834 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1835
599d0c95 1836 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1837 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1838
9d5e6a9f 1839 if (global_reclaim(sc))
599d0c95
MG
1840 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1841 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1842
599d0c95 1843 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1844
1da177e4
LT
1845 while (!list_empty(&l_hold)) {
1846 cond_resched();
1847 page = lru_to_page(&l_hold);
1848 list_del(&page->lru);
7e9cd484 1849
39b5f29a 1850 if (unlikely(!page_evictable(page))) {
894bc310
LS
1851 putback_lru_page(page);
1852 continue;
1853 }
1854
cc715d99
MG
1855 if (unlikely(buffer_heads_over_limit)) {
1856 if (page_has_private(page) && trylock_page(page)) {
1857 if (page_has_private(page))
1858 try_to_release_page(page, 0);
1859 unlock_page(page);
1860 }
1861 }
1862
c3ac9a8a
JW
1863 if (page_referenced(page, 0, sc->target_mem_cgroup,
1864 &vm_flags)) {
9992af10 1865 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1866 /*
1867 * Identify referenced, file-backed active pages and
1868 * give them one more trip around the active list. So
1869 * that executable code get better chances to stay in
1870 * memory under moderate memory pressure. Anon pages
1871 * are not likely to be evicted by use-once streaming
1872 * IO, plus JVM can create lots of anon VM_EXEC pages,
1873 * so we ignore them here.
1874 */
41e20983 1875 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1876 list_add(&page->lru, &l_active);
1877 continue;
1878 }
1879 }
7e9cd484 1880
5205e56e 1881 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1882 list_add(&page->lru, &l_inactive);
1883 }
1884
b555749a 1885 /*
8cab4754 1886 * Move pages back to the lru list.
b555749a 1887 */
599d0c95 1888 spin_lock_irq(&pgdat->lru_lock);
556adecb 1889 /*
8cab4754
WF
1890 * Count referenced pages from currently used mappings as rotated,
1891 * even though only some of them are actually re-activated. This
1892 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1893 * get_scan_count.
7e9cd484 1894 */
b7c46d15 1895 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1896
fa9add64
HD
1897 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1898 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1899 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1900 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1901
747db954 1902 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1903 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1904}
1905
59dc76b0
RR
1906/*
1907 * The inactive anon list should be small enough that the VM never has
1908 * to do too much work.
14797e23 1909 *
59dc76b0
RR
1910 * The inactive file list should be small enough to leave most memory
1911 * to the established workingset on the scan-resistant active list,
1912 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 1913 *
59dc76b0
RR
1914 * Both inactive lists should also be large enough that each inactive
1915 * page has a chance to be referenced again before it is reclaimed.
56e49d21 1916 *
59dc76b0
RR
1917 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1918 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1919 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 1920 *
59dc76b0
RR
1921 * total target max
1922 * memory ratio inactive
1923 * -------------------------------------
1924 * 10MB 1 5MB
1925 * 100MB 1 50MB
1926 * 1GB 3 250MB
1927 * 10GB 10 0.9GB
1928 * 100GB 31 3GB
1929 * 1TB 101 10GB
1930 * 10TB 320 32GB
56e49d21 1931 */
59dc76b0 1932static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
56e49d21 1933{
59dc76b0 1934 unsigned long inactive_ratio;
e3790144
JW
1935 unsigned long inactive;
1936 unsigned long active;
59dc76b0 1937 unsigned long gb;
e3790144 1938
59dc76b0
RR
1939 /*
1940 * If we don't have swap space, anonymous page deactivation
1941 * is pointless.
1942 */
1943 if (!file && !total_swap_pages)
1944 return false;
56e49d21 1945
59dc76b0
RR
1946 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1947 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 1948
59dc76b0
RR
1949 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1950 if (gb)
1951 inactive_ratio = int_sqrt(10 * gb);
b39415b2 1952 else
59dc76b0
RR
1953 inactive_ratio = 1;
1954
1955 return inactive * inactive_ratio < active;
b39415b2
RR
1956}
1957
4f98a2fe 1958static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1959 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1960{
b39415b2 1961 if (is_active_lru(lru)) {
59dc76b0 1962 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1a93be0e 1963 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1964 return 0;
1965 }
1966
1a93be0e 1967 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1968}
1969
9a265114
JW
1970enum scan_balance {
1971 SCAN_EQUAL,
1972 SCAN_FRACT,
1973 SCAN_ANON,
1974 SCAN_FILE,
1975};
1976
4f98a2fe
RR
1977/*
1978 * Determine how aggressively the anon and file LRU lists should be
1979 * scanned. The relative value of each set of LRU lists is determined
1980 * by looking at the fraction of the pages scanned we did rotate back
1981 * onto the active list instead of evict.
1982 *
be7bd59d
WL
1983 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1984 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1985 */
33377678 1986static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1987 struct scan_control *sc, unsigned long *nr,
1988 unsigned long *lru_pages)
4f98a2fe 1989{
33377678 1990 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1991 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1992 u64 fraction[2];
1993 u64 denominator = 0; /* gcc */
599d0c95 1994 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 1995 unsigned long anon_prio, file_prio;
9a265114 1996 enum scan_balance scan_balance;
0bf1457f 1997 unsigned long anon, file;
9a265114 1998 bool force_scan = false;
4f98a2fe 1999 unsigned long ap, fp;
4111304d 2000 enum lru_list lru;
6f04f48d
SS
2001 bool some_scanned;
2002 int pass;
246e87a9 2003
f11c0ca5
JW
2004 /*
2005 * If the zone or memcg is small, nr[l] can be 0. This
2006 * results in no scanning on this priority and a potential
2007 * priority drop. Global direct reclaim can go to the next
2008 * zone and tends to have no problems. Global kswapd is for
2009 * zone balancing and it needs to scan a minimum amount. When
2010 * reclaiming for a memcg, a priority drop can cause high
2011 * latencies, so it's better to scan a minimum amount there as
2012 * well.
2013 */
90cbc250 2014 if (current_is_kswapd()) {
599d0c95 2015 if (!pgdat_reclaimable(pgdat))
90cbc250 2016 force_scan = true;
eb01aaab 2017 if (!mem_cgroup_online(memcg))
90cbc250
VD
2018 force_scan = true;
2019 }
89b5fae5 2020 if (!global_reclaim(sc))
a4d3e9e7 2021 force_scan = true;
76a33fc3
SL
2022
2023 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2024 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2025 scan_balance = SCAN_FILE;
76a33fc3
SL
2026 goto out;
2027 }
4f98a2fe 2028
10316b31
JW
2029 /*
2030 * Global reclaim will swap to prevent OOM even with no
2031 * swappiness, but memcg users want to use this knob to
2032 * disable swapping for individual groups completely when
2033 * using the memory controller's swap limit feature would be
2034 * too expensive.
2035 */
02695175 2036 if (!global_reclaim(sc) && !swappiness) {
9a265114 2037 scan_balance = SCAN_FILE;
10316b31
JW
2038 goto out;
2039 }
2040
2041 /*
2042 * Do not apply any pressure balancing cleverness when the
2043 * system is close to OOM, scan both anon and file equally
2044 * (unless the swappiness setting disagrees with swapping).
2045 */
02695175 2046 if (!sc->priority && swappiness) {
9a265114 2047 scan_balance = SCAN_EQUAL;
10316b31
JW
2048 goto out;
2049 }
2050
62376251
JW
2051 /*
2052 * Prevent the reclaimer from falling into the cache trap: as
2053 * cache pages start out inactive, every cache fault will tip
2054 * the scan balance towards the file LRU. And as the file LRU
2055 * shrinks, so does the window for rotation from references.
2056 * This means we have a runaway feedback loop where a tiny
2057 * thrashing file LRU becomes infinitely more attractive than
2058 * anon pages. Try to detect this based on file LRU size.
2059 */
2060 if (global_reclaim(sc)) {
599d0c95
MG
2061 unsigned long pgdatfile;
2062 unsigned long pgdatfree;
2063 int z;
2064 unsigned long total_high_wmark = 0;
2ab051e1 2065
599d0c95
MG
2066 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2067 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2068 node_page_state(pgdat, NR_INACTIVE_FILE);
2069
2070 for (z = 0; z < MAX_NR_ZONES; z++) {
2071 struct zone *zone = &pgdat->node_zones[z];
2072 if (!populated_zone(zone))
2073 continue;
2074
2075 total_high_wmark += high_wmark_pages(zone);
2076 }
62376251 2077
599d0c95 2078 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2079 scan_balance = SCAN_ANON;
2080 goto out;
2081 }
2082 }
2083
7c5bd705 2084 /*
316bda0e
VD
2085 * If there is enough inactive page cache, i.e. if the size of the
2086 * inactive list is greater than that of the active list *and* the
2087 * inactive list actually has some pages to scan on this priority, we
2088 * do not reclaim anything from the anonymous working set right now.
2089 * Without the second condition we could end up never scanning an
2090 * lruvec even if it has plenty of old anonymous pages unless the
2091 * system is under heavy pressure.
7c5bd705 2092 */
59dc76b0 2093 if (!inactive_list_is_low(lruvec, true) &&
23047a96 2094 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2095 scan_balance = SCAN_FILE;
7c5bd705
JW
2096 goto out;
2097 }
2098
9a265114
JW
2099 scan_balance = SCAN_FRACT;
2100
58c37f6e
KM
2101 /*
2102 * With swappiness at 100, anonymous and file have the same priority.
2103 * This scanning priority is essentially the inverse of IO cost.
2104 */
02695175 2105 anon_prio = swappiness;
75b00af7 2106 file_prio = 200 - anon_prio;
58c37f6e 2107
4f98a2fe
RR
2108 /*
2109 * OK, so we have swap space and a fair amount of page cache
2110 * pages. We use the recently rotated / recently scanned
2111 * ratios to determine how valuable each cache is.
2112 *
2113 * Because workloads change over time (and to avoid overflow)
2114 * we keep these statistics as a floating average, which ends
2115 * up weighing recent references more than old ones.
2116 *
2117 * anon in [0], file in [1]
2118 */
2ab051e1 2119
23047a96
JW
2120 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2121 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2122 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2123 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2124
599d0c95 2125 spin_lock_irq(&pgdat->lru_lock);
6e901571 2126 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2127 reclaim_stat->recent_scanned[0] /= 2;
2128 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2129 }
2130
6e901571 2131 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2132 reclaim_stat->recent_scanned[1] /= 2;
2133 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2134 }
2135
4f98a2fe 2136 /*
00d8089c
RR
2137 * The amount of pressure on anon vs file pages is inversely
2138 * proportional to the fraction of recently scanned pages on
2139 * each list that were recently referenced and in active use.
4f98a2fe 2140 */
fe35004f 2141 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2142 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2143
fe35004f 2144 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2145 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2146 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2147
76a33fc3
SL
2148 fraction[0] = ap;
2149 fraction[1] = fp;
2150 denominator = ap + fp + 1;
2151out:
6f04f48d
SS
2152 some_scanned = false;
2153 /* Only use force_scan on second pass. */
2154 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2155 *lru_pages = 0;
6f04f48d
SS
2156 for_each_evictable_lru(lru) {
2157 int file = is_file_lru(lru);
2158 unsigned long size;
2159 unsigned long scan;
6e08a369 2160
23047a96 2161 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2162 scan = size >> sc->priority;
9a265114 2163
6f04f48d
SS
2164 if (!scan && pass && force_scan)
2165 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2166
6f04f48d
SS
2167 switch (scan_balance) {
2168 case SCAN_EQUAL:
2169 /* Scan lists relative to size */
2170 break;
2171 case SCAN_FRACT:
2172 /*
2173 * Scan types proportional to swappiness and
2174 * their relative recent reclaim efficiency.
2175 */
2176 scan = div64_u64(scan * fraction[file],
2177 denominator);
2178 break;
2179 case SCAN_FILE:
2180 case SCAN_ANON:
2181 /* Scan one type exclusively */
6b4f7799
JW
2182 if ((scan_balance == SCAN_FILE) != file) {
2183 size = 0;
6f04f48d 2184 scan = 0;
6b4f7799 2185 }
6f04f48d
SS
2186 break;
2187 default:
2188 /* Look ma, no brain */
2189 BUG();
2190 }
6b4f7799
JW
2191
2192 *lru_pages += size;
6f04f48d 2193 nr[lru] = scan;
6b4f7799 2194
9a265114 2195 /*
6f04f48d
SS
2196 * Skip the second pass and don't force_scan,
2197 * if we found something to scan.
9a265114 2198 */
6f04f48d 2199 some_scanned |= !!scan;
9a265114 2200 }
76a33fc3 2201 }
6e08a369 2202}
4f98a2fe 2203
72b252ae
MG
2204#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2205static void init_tlb_ubc(void)
2206{
2207 /*
2208 * This deliberately does not clear the cpumask as it's expensive
2209 * and unnecessary. If there happens to be data in there then the
2210 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2211 * then will be cleared.
2212 */
2213 current->tlb_ubc.flush_required = false;
2214}
2215#else
2216static inline void init_tlb_ubc(void)
2217{
2218}
2219#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2220
9b4f98cd 2221/*
a9dd0a83 2222 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2223 */
a9dd0a83 2224static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2225 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2226{
ef8f2327 2227 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2228 unsigned long nr[NR_LRU_LISTS];
e82e0561 2229 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2230 unsigned long nr_to_scan;
2231 enum lru_list lru;
2232 unsigned long nr_reclaimed = 0;
2233 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2234 struct blk_plug plug;
1a501907 2235 bool scan_adjusted;
9b4f98cd 2236
33377678 2237 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2238
e82e0561
MG
2239 /* Record the original scan target for proportional adjustments later */
2240 memcpy(targets, nr, sizeof(nr));
2241
1a501907
MG
2242 /*
2243 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2244 * event that can occur when there is little memory pressure e.g.
2245 * multiple streaming readers/writers. Hence, we do not abort scanning
2246 * when the requested number of pages are reclaimed when scanning at
2247 * DEF_PRIORITY on the assumption that the fact we are direct
2248 * reclaiming implies that kswapd is not keeping up and it is best to
2249 * do a batch of work at once. For memcg reclaim one check is made to
2250 * abort proportional reclaim if either the file or anon lru has already
2251 * dropped to zero at the first pass.
2252 */
2253 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2254 sc->priority == DEF_PRIORITY);
2255
72b252ae
MG
2256 init_tlb_ubc();
2257
9b4f98cd
JW
2258 blk_start_plug(&plug);
2259 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2260 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2261 unsigned long nr_anon, nr_file, percentage;
2262 unsigned long nr_scanned;
2263
9b4f98cd
JW
2264 for_each_evictable_lru(lru) {
2265 if (nr[lru]) {
2266 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2267 nr[lru] -= nr_to_scan;
2268
2269 nr_reclaimed += shrink_list(lru, nr_to_scan,
2270 lruvec, sc);
2271 }
2272 }
e82e0561
MG
2273
2274 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2275 continue;
2276
e82e0561
MG
2277 /*
2278 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2279 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2280 * proportionally what was requested by get_scan_count(). We
2281 * stop reclaiming one LRU and reduce the amount scanning
2282 * proportional to the original scan target.
2283 */
2284 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2285 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2286
1a501907
MG
2287 /*
2288 * It's just vindictive to attack the larger once the smaller
2289 * has gone to zero. And given the way we stop scanning the
2290 * smaller below, this makes sure that we only make one nudge
2291 * towards proportionality once we've got nr_to_reclaim.
2292 */
2293 if (!nr_file || !nr_anon)
2294 break;
2295
e82e0561
MG
2296 if (nr_file > nr_anon) {
2297 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2298 targets[LRU_ACTIVE_ANON] + 1;
2299 lru = LRU_BASE;
2300 percentage = nr_anon * 100 / scan_target;
2301 } else {
2302 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2303 targets[LRU_ACTIVE_FILE] + 1;
2304 lru = LRU_FILE;
2305 percentage = nr_file * 100 / scan_target;
2306 }
2307
2308 /* Stop scanning the smaller of the LRU */
2309 nr[lru] = 0;
2310 nr[lru + LRU_ACTIVE] = 0;
2311
2312 /*
2313 * Recalculate the other LRU scan count based on its original
2314 * scan target and the percentage scanning already complete
2315 */
2316 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2317 nr_scanned = targets[lru] - nr[lru];
2318 nr[lru] = targets[lru] * (100 - percentage) / 100;
2319 nr[lru] -= min(nr[lru], nr_scanned);
2320
2321 lru += LRU_ACTIVE;
2322 nr_scanned = targets[lru] - nr[lru];
2323 nr[lru] = targets[lru] * (100 - percentage) / 100;
2324 nr[lru] -= min(nr[lru], nr_scanned);
2325
2326 scan_adjusted = true;
9b4f98cd
JW
2327 }
2328 blk_finish_plug(&plug);
2329 sc->nr_reclaimed += nr_reclaimed;
2330
2331 /*
2332 * Even if we did not try to evict anon pages at all, we want to
2333 * rebalance the anon lru active/inactive ratio.
2334 */
59dc76b0 2335 if (inactive_list_is_low(lruvec, false))
9b4f98cd
JW
2336 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2337 sc, LRU_ACTIVE_ANON);
2338
2339 throttle_vm_writeout(sc->gfp_mask);
2340}
2341
23b9da55 2342/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2343static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2344{
d84da3f9 2345 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2346 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2347 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2348 return true;
2349
2350 return false;
2351}
2352
3e7d3449 2353/*
23b9da55
MG
2354 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2355 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2356 * true if more pages should be reclaimed such that when the page allocator
2357 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2358 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2359 */
a9dd0a83 2360static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2361 unsigned long nr_reclaimed,
2362 unsigned long nr_scanned,
2363 struct scan_control *sc)
2364{
2365 unsigned long pages_for_compaction;
2366 unsigned long inactive_lru_pages;
a9dd0a83 2367 int z;
3e7d3449
MG
2368
2369 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2370 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2371 return false;
2372
2876592f
MG
2373 /* Consider stopping depending on scan and reclaim activity */
2374 if (sc->gfp_mask & __GFP_REPEAT) {
2375 /*
2376 * For __GFP_REPEAT allocations, stop reclaiming if the
2377 * full LRU list has been scanned and we are still failing
2378 * to reclaim pages. This full LRU scan is potentially
2379 * expensive but a __GFP_REPEAT caller really wants to succeed
2380 */
2381 if (!nr_reclaimed && !nr_scanned)
2382 return false;
2383 } else {
2384 /*
2385 * For non-__GFP_REPEAT allocations which can presumably
2386 * fail without consequence, stop if we failed to reclaim
2387 * any pages from the last SWAP_CLUSTER_MAX number of
2388 * pages that were scanned. This will return to the
2389 * caller faster at the risk reclaim/compaction and
2390 * the resulting allocation attempt fails
2391 */
2392 if (!nr_reclaimed)
2393 return false;
2394 }
3e7d3449
MG
2395
2396 /*
2397 * If we have not reclaimed enough pages for compaction and the
2398 * inactive lists are large enough, continue reclaiming
2399 */
2400 pages_for_compaction = (2UL << sc->order);
a9dd0a83 2401 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2402 if (get_nr_swap_pages() > 0)
a9dd0a83 2403 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2404 if (sc->nr_reclaimed < pages_for_compaction &&
2405 inactive_lru_pages > pages_for_compaction)
2406 return true;
2407
2408 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2409 for (z = 0; z <= sc->reclaim_idx; z++) {
2410 struct zone *zone = &pgdat->node_zones[z];
2411 if (!populated_zone(zone))
2412 continue;
2413
2414 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2415 case COMPACT_PARTIAL:
2416 case COMPACT_CONTINUE:
2417 return false;
2418 default:
2419 /* check next zone */
2420 ;
2421 }
3e7d3449 2422 }
a9dd0a83 2423 return true;
3e7d3449
MG
2424}
2425
970a39a3 2426static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2427{
cb731d6c 2428 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2429 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2430 bool reclaimable = false;
1da177e4 2431
9b4f98cd
JW
2432 do {
2433 struct mem_cgroup *root = sc->target_mem_cgroup;
2434 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2435 .pgdat = pgdat,
9b4f98cd
JW
2436 .priority = sc->priority,
2437 };
a9dd0a83 2438 unsigned long node_lru_pages = 0;
694fbc0f 2439 struct mem_cgroup *memcg;
3e7d3449 2440
9b4f98cd
JW
2441 nr_reclaimed = sc->nr_reclaimed;
2442 nr_scanned = sc->nr_scanned;
1da177e4 2443
694fbc0f
AM
2444 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2445 do {
6b4f7799 2446 unsigned long lru_pages;
8e8ae645 2447 unsigned long reclaimed;
cb731d6c 2448 unsigned long scanned;
5660048c 2449
241994ed
JW
2450 if (mem_cgroup_low(root, memcg)) {
2451 if (!sc->may_thrash)
2452 continue;
2453 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2454 }
2455
8e8ae645 2456 reclaimed = sc->nr_reclaimed;
cb731d6c 2457 scanned = sc->nr_scanned;
f9be23d6 2458
a9dd0a83
MG
2459 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2460 node_lru_pages += lru_pages;
f16015fb 2461
b2e18757 2462 if (!global_reclaim(sc))
a9dd0a83 2463 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2464 memcg, sc->nr_scanned - scanned,
2465 lru_pages);
2466
8e8ae645
JW
2467 /* Record the group's reclaim efficiency */
2468 vmpressure(sc->gfp_mask, memcg, false,
2469 sc->nr_scanned - scanned,
2470 sc->nr_reclaimed - reclaimed);
2471
9b4f98cd 2472 /*
a394cb8e
MH
2473 * Direct reclaim and kswapd have to scan all memory
2474 * cgroups to fulfill the overall scan target for the
a9dd0a83 2475 * node.
a394cb8e
MH
2476 *
2477 * Limit reclaim, on the other hand, only cares about
2478 * nr_to_reclaim pages to be reclaimed and it will
2479 * retry with decreasing priority if one round over the
2480 * whole hierarchy is not sufficient.
9b4f98cd 2481 */
a394cb8e
MH
2482 if (!global_reclaim(sc) &&
2483 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2484 mem_cgroup_iter_break(root, memcg);
2485 break;
2486 }
241994ed 2487 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2488
6b4f7799
JW
2489 /*
2490 * Shrink the slab caches in the same proportion that
2491 * the eligible LRU pages were scanned.
2492 */
b2e18757 2493 if (global_reclaim(sc))
a9dd0a83 2494 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2495 sc->nr_scanned - nr_scanned,
a9dd0a83 2496 node_lru_pages);
cb731d6c
VD
2497
2498 if (reclaim_state) {
2499 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2500 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2501 }
2502
8e8ae645
JW
2503 /* Record the subtree's reclaim efficiency */
2504 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2505 sc->nr_scanned - nr_scanned,
2506 sc->nr_reclaimed - nr_reclaimed);
2507
2344d7e4
JW
2508 if (sc->nr_reclaimed - nr_reclaimed)
2509 reclaimable = true;
2510
a9dd0a83 2511 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2512 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2513
2514 return reclaimable;
f16015fb
JW
2515}
2516
53853e2d
VB
2517/*
2518 * Returns true if compaction should go ahead for a high-order request, or
2519 * the high-order allocation would succeed without compaction.
2520 */
4f588331 2521static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2522{
31483b6a 2523 unsigned long watermark;
fe4b1b24
MG
2524 bool watermark_ok;
2525
fe4b1b24
MG
2526 /*
2527 * Compaction takes time to run and there are potentially other
2528 * callers using the pages just freed. Continue reclaiming until
2529 * there is a buffer of free pages available to give compaction
2530 * a reasonable chance of completing and allocating the page
2531 */
4f588331
MG
2532 watermark = high_wmark_pages(zone) + (2UL << sc->order);
2533 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2534
2535 /*
2536 * If compaction is deferred, reclaim up to a point where
2537 * compaction will have a chance of success when re-enabled
2538 */
4f588331 2539 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2540 return watermark_ok;
2541
53853e2d
VB
2542 /*
2543 * If compaction is not ready to start and allocation is not likely
2544 * to succeed without it, then keep reclaiming.
2545 */
4f588331 2546 if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
fe4b1b24
MG
2547 return false;
2548
2549 return watermark_ok;
2550}
2551
1da177e4
LT
2552/*
2553 * This is the direct reclaim path, for page-allocating processes. We only
2554 * try to reclaim pages from zones which will satisfy the caller's allocation
2555 * request.
2556 *
1da177e4
LT
2557 * If a zone is deemed to be full of pinned pages then just give it a light
2558 * scan then give up on it.
2559 */
0a0337e0 2560static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2561{
dd1a239f 2562 struct zoneref *z;
54a6eb5c 2563 struct zone *zone;
0608f43d
AM
2564 unsigned long nr_soft_reclaimed;
2565 unsigned long nr_soft_scanned;
619d0d76 2566 gfp_t orig_mask;
79dafcdc 2567 pg_data_t *last_pgdat = NULL;
1cfb419b 2568
cc715d99
MG
2569 /*
2570 * If the number of buffer_heads in the machine exceeds the maximum
2571 * allowed level, force direct reclaim to scan the highmem zone as
2572 * highmem pages could be pinning lowmem pages storing buffer_heads
2573 */
619d0d76 2574 orig_mask = sc->gfp_mask;
b2e18757 2575 if (buffer_heads_over_limit) {
cc715d99 2576 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2577 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2578 }
cc715d99 2579
d4debc66 2580 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2581 sc->reclaim_idx, sc->nodemask) {
f3fe6512 2582 if (!populated_zone(zone))
1da177e4 2583 continue;
6b4f7799 2584
1cfb419b
KH
2585 /*
2586 * Take care memory controller reclaiming has small influence
2587 * to global LRU.
2588 */
89b5fae5 2589 if (global_reclaim(sc)) {
344736f2
VD
2590 if (!cpuset_zone_allowed(zone,
2591 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2592 continue;
65ec02cb 2593
6e543d57 2594 if (sc->priority != DEF_PRIORITY &&
599d0c95 2595 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2596 continue; /* Let kswapd poll it */
0b06496a
JW
2597
2598 /*
2599 * If we already have plenty of memory free for
2600 * compaction in this zone, don't free any more.
2601 * Even though compaction is invoked for any
2602 * non-zero order, only frequent costly order
2603 * reclamation is disruptive enough to become a
2604 * noticeable problem, like transparent huge
2605 * page allocations.
2606 */
2607 if (IS_ENABLED(CONFIG_COMPACTION) &&
2608 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2609 compaction_ready(zone, sc)) {
0b06496a
JW
2610 sc->compaction_ready = true;
2611 continue;
e0887c19 2612 }
0b06496a 2613
79dafcdc
MG
2614 /*
2615 * Shrink each node in the zonelist once. If the
2616 * zonelist is ordered by zone (not the default) then a
2617 * node may be shrunk multiple times but in that case
2618 * the user prefers lower zones being preserved.
2619 */
2620 if (zone->zone_pgdat == last_pgdat)
2621 continue;
2622
0608f43d
AM
2623 /*
2624 * This steals pages from memory cgroups over softlimit
2625 * and returns the number of reclaimed pages and
2626 * scanned pages. This works for global memory pressure
2627 * and balancing, not for a memcg's limit.
2628 */
2629 nr_soft_scanned = 0;
ef8f2327 2630 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2631 sc->order, sc->gfp_mask,
2632 &nr_soft_scanned);
2633 sc->nr_reclaimed += nr_soft_reclaimed;
2634 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2635 /* need some check for avoid more shrink_zone() */
1cfb419b 2636 }
408d8544 2637
79dafcdc
MG
2638 /* See comment about same check for global reclaim above */
2639 if (zone->zone_pgdat == last_pgdat)
2640 continue;
2641 last_pgdat = zone->zone_pgdat;
970a39a3 2642 shrink_node(zone->zone_pgdat, sc);
1da177e4 2643 }
e0c23279 2644
619d0d76
WY
2645 /*
2646 * Restore to original mask to avoid the impact on the caller if we
2647 * promoted it to __GFP_HIGHMEM.
2648 */
2649 sc->gfp_mask = orig_mask;
1da177e4 2650}
4f98a2fe 2651
1da177e4
LT
2652/*
2653 * This is the main entry point to direct page reclaim.
2654 *
2655 * If a full scan of the inactive list fails to free enough memory then we
2656 * are "out of memory" and something needs to be killed.
2657 *
2658 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2659 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2660 * caller can't do much about. We kick the writeback threads and take explicit
2661 * naps in the hope that some of these pages can be written. But if the
2662 * allocating task holds filesystem locks which prevent writeout this might not
2663 * work, and the allocation attempt will fail.
a41f24ea
NA
2664 *
2665 * returns: 0, if no pages reclaimed
2666 * else, the number of pages reclaimed
1da177e4 2667 */
dac1d27b 2668static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2669 struct scan_control *sc)
1da177e4 2670{
241994ed 2671 int initial_priority = sc->priority;
69e05944 2672 unsigned long total_scanned = 0;
22fba335 2673 unsigned long writeback_threshold;
241994ed 2674retry:
873b4771
KK
2675 delayacct_freepages_start();
2676
89b5fae5 2677 if (global_reclaim(sc))
7cc30fcf 2678 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2679
9e3b2f8c 2680 do {
70ddf637
AV
2681 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2682 sc->priority);
66e1707b 2683 sc->nr_scanned = 0;
0a0337e0 2684 shrink_zones(zonelist, sc);
c6a8a8c5 2685
66e1707b 2686 total_scanned += sc->nr_scanned;
bb21c7ce 2687 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2688 break;
2689
2690 if (sc->compaction_ready)
2691 break;
1da177e4 2692
0e50ce3b
MK
2693 /*
2694 * If we're getting trouble reclaiming, start doing
2695 * writepage even in laptop mode.
2696 */
2697 if (sc->priority < DEF_PRIORITY - 2)
2698 sc->may_writepage = 1;
2699
1da177e4
LT
2700 /*
2701 * Try to write back as many pages as we just scanned. This
2702 * tends to cause slow streaming writers to write data to the
2703 * disk smoothly, at the dirtying rate, which is nice. But
2704 * that's undesirable in laptop mode, where we *want* lumpy
2705 * writeout. So in laptop mode, write out the whole world.
2706 */
22fba335
KM
2707 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2708 if (total_scanned > writeback_threshold) {
0e175a18
CW
2709 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2710 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2711 sc->may_writepage = 1;
1da177e4 2712 }
0b06496a 2713 } while (--sc->priority >= 0);
bb21c7ce 2714
873b4771
KK
2715 delayacct_freepages_end();
2716
bb21c7ce
KM
2717 if (sc->nr_reclaimed)
2718 return sc->nr_reclaimed;
2719
0cee34fd 2720 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2721 if (sc->compaction_ready)
7335084d
MG
2722 return 1;
2723
241994ed
JW
2724 /* Untapped cgroup reserves? Don't OOM, retry. */
2725 if (!sc->may_thrash) {
2726 sc->priority = initial_priority;
2727 sc->may_thrash = 1;
2728 goto retry;
2729 }
2730
bb21c7ce 2731 return 0;
1da177e4
LT
2732}
2733
5515061d
MG
2734static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2735{
2736 struct zone *zone;
2737 unsigned long pfmemalloc_reserve = 0;
2738 unsigned long free_pages = 0;
2739 int i;
2740 bool wmark_ok;
2741
2742 for (i = 0; i <= ZONE_NORMAL; i++) {
2743 zone = &pgdat->node_zones[i];
f012a84a 2744 if (!populated_zone(zone) ||
599d0c95 2745 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2746 continue;
2747
5515061d
MG
2748 pfmemalloc_reserve += min_wmark_pages(zone);
2749 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2750 }
2751
675becce
MG
2752 /* If there are no reserves (unexpected config) then do not throttle */
2753 if (!pfmemalloc_reserve)
2754 return true;
2755
5515061d
MG
2756 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2757
2758 /* kswapd must be awake if processes are being throttled */
2759 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2760 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2761 (enum zone_type)ZONE_NORMAL);
2762 wake_up_interruptible(&pgdat->kswapd_wait);
2763 }
2764
2765 return wmark_ok;
2766}
2767
2768/*
2769 * Throttle direct reclaimers if backing storage is backed by the network
2770 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2771 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2772 * when the low watermark is reached.
2773 *
2774 * Returns true if a fatal signal was delivered during throttling. If this
2775 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2776 */
50694c28 2777static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2778 nodemask_t *nodemask)
2779{
675becce 2780 struct zoneref *z;
5515061d 2781 struct zone *zone;
675becce 2782 pg_data_t *pgdat = NULL;
5515061d
MG
2783
2784 /*
2785 * Kernel threads should not be throttled as they may be indirectly
2786 * responsible for cleaning pages necessary for reclaim to make forward
2787 * progress. kjournald for example may enter direct reclaim while
2788 * committing a transaction where throttling it could forcing other
2789 * processes to block on log_wait_commit().
2790 */
2791 if (current->flags & PF_KTHREAD)
50694c28
MG
2792 goto out;
2793
2794 /*
2795 * If a fatal signal is pending, this process should not throttle.
2796 * It should return quickly so it can exit and free its memory
2797 */
2798 if (fatal_signal_pending(current))
2799 goto out;
5515061d 2800
675becce
MG
2801 /*
2802 * Check if the pfmemalloc reserves are ok by finding the first node
2803 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2804 * GFP_KERNEL will be required for allocating network buffers when
2805 * swapping over the network so ZONE_HIGHMEM is unusable.
2806 *
2807 * Throttling is based on the first usable node and throttled processes
2808 * wait on a queue until kswapd makes progress and wakes them. There
2809 * is an affinity then between processes waking up and where reclaim
2810 * progress has been made assuming the process wakes on the same node.
2811 * More importantly, processes running on remote nodes will not compete
2812 * for remote pfmemalloc reserves and processes on different nodes
2813 * should make reasonable progress.
2814 */
2815 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2816 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2817 if (zone_idx(zone) > ZONE_NORMAL)
2818 continue;
2819
2820 /* Throttle based on the first usable node */
2821 pgdat = zone->zone_pgdat;
2822 if (pfmemalloc_watermark_ok(pgdat))
2823 goto out;
2824 break;
2825 }
2826
2827 /* If no zone was usable by the allocation flags then do not throttle */
2828 if (!pgdat)
50694c28 2829 goto out;
5515061d 2830
68243e76
MG
2831 /* Account for the throttling */
2832 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2833
5515061d
MG
2834 /*
2835 * If the caller cannot enter the filesystem, it's possible that it
2836 * is due to the caller holding an FS lock or performing a journal
2837 * transaction in the case of a filesystem like ext[3|4]. In this case,
2838 * it is not safe to block on pfmemalloc_wait as kswapd could be
2839 * blocked waiting on the same lock. Instead, throttle for up to a
2840 * second before continuing.
2841 */
2842 if (!(gfp_mask & __GFP_FS)) {
2843 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2844 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2845
2846 goto check_pending;
5515061d
MG
2847 }
2848
2849 /* Throttle until kswapd wakes the process */
2850 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2851 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2852
2853check_pending:
2854 if (fatal_signal_pending(current))
2855 return true;
2856
2857out:
2858 return false;
5515061d
MG
2859}
2860
dac1d27b 2861unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2862 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2863{
33906bc5 2864 unsigned long nr_reclaimed;
66e1707b 2865 struct scan_control sc = {
ee814fe2 2866 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2867 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2868 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2869 .order = order,
2870 .nodemask = nodemask,
2871 .priority = DEF_PRIORITY,
66e1707b 2872 .may_writepage = !laptop_mode,
a6dc60f8 2873 .may_unmap = 1,
2e2e4259 2874 .may_swap = 1,
66e1707b
BS
2875 };
2876
5515061d 2877 /*
50694c28
MG
2878 * Do not enter reclaim if fatal signal was delivered while throttled.
2879 * 1 is returned so that the page allocator does not OOM kill at this
2880 * point.
5515061d 2881 */
50694c28 2882 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2883 return 1;
2884
33906bc5
MG
2885 trace_mm_vmscan_direct_reclaim_begin(order,
2886 sc.may_writepage,
e5146b12
MG
2887 gfp_mask,
2888 sc.reclaim_idx);
33906bc5 2889
3115cd91 2890 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2891
2892 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2893
2894 return nr_reclaimed;
66e1707b
BS
2895}
2896
c255a458 2897#ifdef CONFIG_MEMCG
66e1707b 2898
a9dd0a83 2899unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2900 gfp_t gfp_mask, bool noswap,
ef8f2327 2901 pg_data_t *pgdat,
0ae5e89c 2902 unsigned long *nr_scanned)
4e416953
BS
2903{
2904 struct scan_control sc = {
b8f5c566 2905 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2906 .target_mem_cgroup = memcg,
4e416953
BS
2907 .may_writepage = !laptop_mode,
2908 .may_unmap = 1,
b2e18757 2909 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 2910 .may_swap = !noswap,
4e416953 2911 };
6b4f7799 2912 unsigned long lru_pages;
0ae5e89c 2913
4e416953
BS
2914 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2915 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2916
9e3b2f8c 2917 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 2918 sc.may_writepage,
e5146b12
MG
2919 sc.gfp_mask,
2920 sc.reclaim_idx);
bdce6d9e 2921
4e416953
BS
2922 /*
2923 * NOTE: Although we can get the priority field, using it
2924 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 2925 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
2926 * will pick up pages from other mem cgroup's as well. We hack
2927 * the priority and make it zero.
2928 */
ef8f2327 2929 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
2930
2931 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2932
0ae5e89c 2933 *nr_scanned = sc.nr_scanned;
4e416953
BS
2934 return sc.nr_reclaimed;
2935}
2936
72835c86 2937unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2938 unsigned long nr_pages,
a7885eb8 2939 gfp_t gfp_mask,
b70a2a21 2940 bool may_swap)
66e1707b 2941{
4e416953 2942 struct zonelist *zonelist;
bdce6d9e 2943 unsigned long nr_reclaimed;
889976db 2944 int nid;
66e1707b 2945 struct scan_control sc = {
b70a2a21 2946 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2947 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2948 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 2949 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
2950 .target_mem_cgroup = memcg,
2951 .priority = DEF_PRIORITY,
2952 .may_writepage = !laptop_mode,
2953 .may_unmap = 1,
b70a2a21 2954 .may_swap = may_swap,
a09ed5e0 2955 };
66e1707b 2956
889976db
YH
2957 /*
2958 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2959 * take care of from where we get pages. So the node where we start the
2960 * scan does not need to be the current node.
2961 */
72835c86 2962 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2963
2964 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2965
2966 trace_mm_vmscan_memcg_reclaim_begin(0,
2967 sc.may_writepage,
e5146b12
MG
2968 sc.gfp_mask,
2969 sc.reclaim_idx);
bdce6d9e 2970
3115cd91 2971 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2972
2973 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2974
2975 return nr_reclaimed;
66e1707b
BS
2976}
2977#endif
2978
1d82de61 2979static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 2980 struct scan_control *sc)
f16015fb 2981{
b95a2f2d 2982 struct mem_cgroup *memcg;
f16015fb 2983
b95a2f2d
JW
2984 if (!total_swap_pages)
2985 return;
2986
2987 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2988 do {
ef8f2327 2989 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 2990
59dc76b0 2991 if (inactive_list_is_low(lruvec, false))
1a93be0e 2992 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2993 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2994
2995 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2996 } while (memcg);
f16015fb
JW
2997}
2998
31483b6a 2999static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3000{
31483b6a 3001 unsigned long mark = high_wmark_pages(zone);
60cefed4 3002
6256c6b4
MG
3003 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3004 return false;
3005
3006 /*
3007 * If any eligible zone is balanced then the node is not considered
3008 * to be congested or dirty
3009 */
3010 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3011 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3012
3013 return true;
60cefed4
JW
3014}
3015
5515061d
MG
3016/*
3017 * Prepare kswapd for sleeping. This verifies that there are no processes
3018 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3019 *
3020 * Returns true if kswapd is ready to sleep
3021 */
d9f21d42 3022static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3023{
1d82de61
MG
3024 int i;
3025
5515061d 3026 /*
9e5e3661
VB
3027 * The throttled processes are normally woken up in balance_pgdat() as
3028 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3029 * race between when kswapd checks the watermarks and a process gets
3030 * throttled. There is also a potential race if processes get
3031 * throttled, kswapd wakes, a large process exits thereby balancing the
3032 * zones, which causes kswapd to exit balance_pgdat() before reaching
3033 * the wake up checks. If kswapd is going to sleep, no process should
3034 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3035 * the wake up is premature, processes will wake kswapd and get
3036 * throttled again. The difference from wake ups in balance_pgdat() is
3037 * that here we are under prepare_to_wait().
5515061d 3038 */
9e5e3661
VB
3039 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3040 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3041
1d82de61
MG
3042 for (i = 0; i <= classzone_idx; i++) {
3043 struct zone *zone = pgdat->node_zones + i;
3044
3045 if (!populated_zone(zone))
3046 continue;
3047
38087d9b
MG
3048 if (!zone_balanced(zone, order, classzone_idx))
3049 return false;
1d82de61
MG
3050 }
3051
38087d9b 3052 return true;
f50de2d3
MG
3053}
3054
75485363 3055/*
1d82de61
MG
3056 * kswapd shrinks a node of pages that are at or below the highest usable
3057 * zone that is currently unbalanced.
b8e83b94
MG
3058 *
3059 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3060 * reclaim or if the lack of progress was due to pages under writeback.
3061 * This is used to determine if the scanning priority needs to be raised.
75485363 3062 */
1d82de61 3063static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3064 struct scan_control *sc)
75485363 3065{
1d82de61
MG
3066 struct zone *zone;
3067 int z;
75485363 3068
1d82de61
MG
3069 /* Reclaim a number of pages proportional to the number of zones */
3070 sc->nr_to_reclaim = 0;
970a39a3 3071 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61
MG
3072 zone = pgdat->node_zones + z;
3073 if (!populated_zone(zone))
3074 continue;
7c954f6d 3075
1d82de61
MG
3076 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3077 }
7c954f6d
MG
3078
3079 /*
1d82de61
MG
3080 * Historically care was taken to put equal pressure on all zones but
3081 * now pressure is applied based on node LRU order.
7c954f6d 3082 */
970a39a3 3083 shrink_node(pgdat, sc);
283aba9f 3084
7c954f6d 3085 /*
1d82de61
MG
3086 * Fragmentation may mean that the system cannot be rebalanced for
3087 * high-order allocations. If twice the allocation size has been
3088 * reclaimed then recheck watermarks only at order-0 to prevent
3089 * excessive reclaim. Assume that a process requested a high-order
3090 * can direct reclaim/compact.
7c954f6d 3091 */
1d82de61
MG
3092 if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3093 sc->order = 0;
7c954f6d 3094
b8e83b94 3095 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3096}
3097
1da177e4 3098/*
1d82de61
MG
3099 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3100 * that are eligible for use by the caller until at least one zone is
3101 * balanced.
1da177e4 3102 *
1d82de61 3103 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3104 *
3105 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3106 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3107 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3108 * or lower is eligible for reclaim until at least one usable zone is
3109 * balanced.
1da177e4 3110 */
accf6242 3111static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3112{
1da177e4 3113 int i;
0608f43d
AM
3114 unsigned long nr_soft_reclaimed;
3115 unsigned long nr_soft_scanned;
1d82de61 3116 struct zone *zone;
179e9639
AM
3117 struct scan_control sc = {
3118 .gfp_mask = GFP_KERNEL,
ee814fe2 3119 .order = order,
b8e83b94 3120 .priority = DEF_PRIORITY,
ee814fe2 3121 .may_writepage = !laptop_mode,
a6dc60f8 3122 .may_unmap = 1,
2e2e4259 3123 .may_swap = 1,
179e9639 3124 };
f8891e5e 3125 count_vm_event(PAGEOUTRUN);
1da177e4 3126
9e3b2f8c 3127 do {
b8e83b94
MG
3128 bool raise_priority = true;
3129
3130 sc.nr_reclaimed = 0;
84c7a777 3131 sc.reclaim_idx = classzone_idx;
1da177e4 3132
86c79f6b 3133 /*
84c7a777
MG
3134 * If the number of buffer_heads exceeds the maximum allowed
3135 * then consider reclaiming from all zones. This has a dual
3136 * purpose -- on 64-bit systems it is expected that
3137 * buffer_heads are stripped during active rotation. On 32-bit
3138 * systems, highmem pages can pin lowmem memory and shrinking
3139 * buffers can relieve lowmem pressure. Reclaim may still not
3140 * go ahead if all eligible zones for the original allocation
3141 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3142 */
3143 if (buffer_heads_over_limit) {
3144 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3145 zone = pgdat->node_zones + i;
3146 if (!populated_zone(zone))
3147 continue;
cc715d99 3148
970a39a3 3149 sc.reclaim_idx = i;
e1dbeda6 3150 break;
1da177e4 3151 }
1da177e4 3152 }
dafcb73e 3153
86c79f6b
MG
3154 /*
3155 * Only reclaim if there are no eligible zones. Check from
3156 * high to low zone as allocations prefer higher zones.
3157 * Scanning from low to high zone would allow congestion to be
3158 * cleared during a very small window when a small low
3159 * zone was balanced even under extreme pressure when the
84c7a777
MG
3160 * overall node may be congested. Note that sc.reclaim_idx
3161 * is not used as buffer_heads_over_limit may have adjusted
3162 * it.
86c79f6b 3163 */
84c7a777 3164 for (i = classzone_idx; i >= 0; i--) {
86c79f6b
MG
3165 zone = pgdat->node_zones + i;
3166 if (!populated_zone(zone))
3167 continue;
3168
84c7a777 3169 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3170 goto out;
3171 }
e1dbeda6 3172
1d82de61
MG
3173 /*
3174 * Do some background aging of the anon list, to give
3175 * pages a chance to be referenced before reclaiming. All
3176 * pages are rotated regardless of classzone as this is
3177 * about consistent aging.
3178 */
ef8f2327 3179 age_active_anon(pgdat, &sc);
1d82de61 3180
b7ea3c41
MG
3181 /*
3182 * If we're getting trouble reclaiming, start doing writepage
3183 * even in laptop mode.
3184 */
1d82de61 3185 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
b7ea3c41
MG
3186 sc.may_writepage = 1;
3187
1d82de61
MG
3188 /* Call soft limit reclaim before calling shrink_node. */
3189 sc.nr_scanned = 0;
3190 nr_soft_scanned = 0;
ef8f2327 3191 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3192 sc.gfp_mask, &nr_soft_scanned);
3193 sc.nr_reclaimed += nr_soft_reclaimed;
3194
1da177e4 3195 /*
1d82de61
MG
3196 * There should be no need to raise the scanning priority if
3197 * enough pages are already being scanned that that high
3198 * watermark would be met at 100% efficiency.
1da177e4 3199 */
970a39a3 3200 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3201 raise_priority = false;
5515061d
MG
3202
3203 /*
3204 * If the low watermark is met there is no need for processes
3205 * to be throttled on pfmemalloc_wait as they should not be
3206 * able to safely make forward progress. Wake them
3207 */
3208 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3209 pfmemalloc_watermark_ok(pgdat))
cfc51155 3210 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3211
b8e83b94
MG
3212 /* Check if kswapd should be suspending */
3213 if (try_to_freeze() || kthread_should_stop())
3214 break;
8357376d 3215
73ce02e9 3216 /*
b8e83b94
MG
3217 * Raise priority if scanning rate is too low or there was no
3218 * progress in reclaiming pages
73ce02e9 3219 */
b8e83b94
MG
3220 if (raise_priority || !sc.nr_reclaimed)
3221 sc.priority--;
1d82de61 3222 } while (sc.priority >= 1);
1da177e4 3223
b8e83b94 3224out:
0abdee2b 3225 /*
1d82de61
MG
3226 * Return the order kswapd stopped reclaiming at as
3227 * prepare_kswapd_sleep() takes it into account. If another caller
3228 * entered the allocator slow path while kswapd was awake, order will
3229 * remain at the higher level.
0abdee2b 3230 */
1d82de61 3231 return sc.order;
1da177e4
LT
3232}
3233
38087d9b
MG
3234static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3235 unsigned int classzone_idx)
f0bc0a60
KM
3236{
3237 long remaining = 0;
3238 DEFINE_WAIT(wait);
3239
3240 if (freezing(current) || kthread_should_stop())
3241 return;
3242
3243 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3244
3245 /* Try to sleep for a short interval */
d9f21d42 3246 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3247 /*
3248 * Compaction records what page blocks it recently failed to
3249 * isolate pages from and skips them in the future scanning.
3250 * When kswapd is going to sleep, it is reasonable to assume
3251 * that pages and compaction may succeed so reset the cache.
3252 */
3253 reset_isolation_suitable(pgdat);
3254
3255 /*
3256 * We have freed the memory, now we should compact it to make
3257 * allocation of the requested order possible.
3258 */
38087d9b 3259 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3260
f0bc0a60 3261 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3262
3263 /*
3264 * If woken prematurely then reset kswapd_classzone_idx and
3265 * order. The values will either be from a wakeup request or
3266 * the previous request that slept prematurely.
3267 */
3268 if (remaining) {
3269 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3270 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3271 }
3272
f0bc0a60
KM
3273 finish_wait(&pgdat->kswapd_wait, &wait);
3274 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3275 }
3276
3277 /*
3278 * After a short sleep, check if it was a premature sleep. If not, then
3279 * go fully to sleep until explicitly woken up.
3280 */
d9f21d42
MG
3281 if (!remaining &&
3282 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3283 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3284
3285 /*
3286 * vmstat counters are not perfectly accurate and the estimated
3287 * value for counters such as NR_FREE_PAGES can deviate from the
3288 * true value by nr_online_cpus * threshold. To avoid the zone
3289 * watermarks being breached while under pressure, we reduce the
3290 * per-cpu vmstat threshold while kswapd is awake and restore
3291 * them before going back to sleep.
3292 */
3293 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3294
3295 if (!kthread_should_stop())
3296 schedule();
3297
f0bc0a60
KM
3298 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3299 } else {
3300 if (remaining)
3301 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3302 else
3303 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3304 }
3305 finish_wait(&pgdat->kswapd_wait, &wait);
3306}
3307
1da177e4
LT
3308/*
3309 * The background pageout daemon, started as a kernel thread
4f98a2fe 3310 * from the init process.
1da177e4
LT
3311 *
3312 * This basically trickles out pages so that we have _some_
3313 * free memory available even if there is no other activity
3314 * that frees anything up. This is needed for things like routing
3315 * etc, where we otherwise might have all activity going on in
3316 * asynchronous contexts that cannot page things out.
3317 *
3318 * If there are applications that are active memory-allocators
3319 * (most normal use), this basically shouldn't matter.
3320 */
3321static int kswapd(void *p)
3322{
38087d9b 3323 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3324 pg_data_t *pgdat = (pg_data_t*)p;
3325 struct task_struct *tsk = current;
f0bc0a60 3326
1da177e4
LT
3327 struct reclaim_state reclaim_state = {
3328 .reclaimed_slab = 0,
3329 };
a70f7302 3330 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3331
cf40bd16
NP
3332 lockdep_set_current_reclaim_state(GFP_KERNEL);
3333
174596a0 3334 if (!cpumask_empty(cpumask))
c5f59f08 3335 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3336 current->reclaim_state = &reclaim_state;
3337
3338 /*
3339 * Tell the memory management that we're a "memory allocator",
3340 * and that if we need more memory we should get access to it
3341 * regardless (see "__alloc_pages()"). "kswapd" should
3342 * never get caught in the normal page freeing logic.
3343 *
3344 * (Kswapd normally doesn't need memory anyway, but sometimes
3345 * you need a small amount of memory in order to be able to
3346 * page out something else, and this flag essentially protects
3347 * us from recursively trying to free more memory as we're
3348 * trying to free the first piece of memory in the first place).
3349 */
930d9152 3350 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3351 set_freezable();
1da177e4 3352
38087d9b
MG
3353 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3354 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3355 for ( ; ; ) {
6f6313d4 3356 bool ret;
3e1d1d28 3357
38087d9b
MG
3358kswapd_try_sleep:
3359 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3360 classzone_idx);
215ddd66 3361
38087d9b
MG
3362 /* Read the new order and classzone_idx */
3363 alloc_order = reclaim_order = pgdat->kswapd_order;
3364 classzone_idx = pgdat->kswapd_classzone_idx;
3365 pgdat->kswapd_order = 0;
3366 pgdat->kswapd_classzone_idx = 0;
1da177e4 3367
8fe23e05
DR
3368 ret = try_to_freeze();
3369 if (kthread_should_stop())
3370 break;
3371
3372 /*
3373 * We can speed up thawing tasks if we don't call balance_pgdat
3374 * after returning from the refrigerator
3375 */
38087d9b
MG
3376 if (ret)
3377 continue;
3378
3379 /*
3380 * Reclaim begins at the requested order but if a high-order
3381 * reclaim fails then kswapd falls back to reclaiming for
3382 * order-0. If that happens, kswapd will consider sleeping
3383 * for the order it finished reclaiming at (reclaim_order)
3384 * but kcompactd is woken to compact for the original
3385 * request (alloc_order).
3386 */
e5146b12
MG
3387 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3388 alloc_order);
38087d9b
MG
3389 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3390 if (reclaim_order < alloc_order)
3391 goto kswapd_try_sleep;
1d82de61 3392
38087d9b
MG
3393 alloc_order = reclaim_order = pgdat->kswapd_order;
3394 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3395 }
b0a8cc58 3396
71abdc15 3397 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3398 current->reclaim_state = NULL;
71abdc15
JW
3399 lockdep_clear_current_reclaim_state();
3400
1da177e4
LT
3401 return 0;
3402}
3403
3404/*
3405 * A zone is low on free memory, so wake its kswapd task to service it.
3406 */
99504748 3407void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3408{
3409 pg_data_t *pgdat;
e1a55637 3410 int z;
1da177e4 3411
f3fe6512 3412 if (!populated_zone(zone))
1da177e4
LT
3413 return;
3414
344736f2 3415 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3416 return;
88f5acf8 3417 pgdat = zone->zone_pgdat;
38087d9b
MG
3418 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3419 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3420 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3421 return;
e1a55637
MG
3422
3423 /* Only wake kswapd if all zones are unbalanced */
3424 for (z = 0; z <= classzone_idx; z++) {
3425 zone = pgdat->node_zones + z;
3426 if (!populated_zone(zone))
3427 continue;
3428
3429 if (zone_balanced(zone, order, classzone_idx))
3430 return;
3431 }
88f5acf8
MG
3432
3433 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3434 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3435}
3436
c6f37f12 3437#ifdef CONFIG_HIBERNATION
1da177e4 3438/*
7b51755c 3439 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3440 * freed pages.
3441 *
3442 * Rather than trying to age LRUs the aim is to preserve the overall
3443 * LRU order by reclaiming preferentially
3444 * inactive > active > active referenced > active mapped
1da177e4 3445 */
7b51755c 3446unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3447{
d6277db4 3448 struct reclaim_state reclaim_state;
d6277db4 3449 struct scan_control sc = {
ee814fe2 3450 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3451 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3452 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3453 .priority = DEF_PRIORITY,
d6277db4 3454 .may_writepage = 1,
ee814fe2
JW
3455 .may_unmap = 1,
3456 .may_swap = 1,
7b51755c 3457 .hibernation_mode = 1,
1da177e4 3458 };
a09ed5e0 3459 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3460 struct task_struct *p = current;
3461 unsigned long nr_reclaimed;
1da177e4 3462
7b51755c
KM
3463 p->flags |= PF_MEMALLOC;
3464 lockdep_set_current_reclaim_state(sc.gfp_mask);
3465 reclaim_state.reclaimed_slab = 0;
3466 p->reclaim_state = &reclaim_state;
d6277db4 3467
3115cd91 3468 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3469
7b51755c
KM
3470 p->reclaim_state = NULL;
3471 lockdep_clear_current_reclaim_state();
3472 p->flags &= ~PF_MEMALLOC;
d6277db4 3473
7b51755c 3474 return nr_reclaimed;
1da177e4 3475}
c6f37f12 3476#endif /* CONFIG_HIBERNATION */
1da177e4 3477
1da177e4
LT
3478/* It's optimal to keep kswapds on the same CPUs as their memory, but
3479 not required for correctness. So if the last cpu in a node goes
3480 away, we get changed to run anywhere: as the first one comes back,
3481 restore their cpu bindings. */
fcb35a9b
GKH
3482static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3483 void *hcpu)
1da177e4 3484{
58c0a4a7 3485 int nid;
1da177e4 3486
8bb78442 3487 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3488 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3489 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3490 const struct cpumask *mask;
3491
3492 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3493
3e597945 3494 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3495 /* One of our CPUs online: restore mask */
c5f59f08 3496 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3497 }
3498 }
3499 return NOTIFY_OK;
3500}
1da177e4 3501
3218ae14
YG
3502/*
3503 * This kswapd start function will be called by init and node-hot-add.
3504 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3505 */
3506int kswapd_run(int nid)
3507{
3508 pg_data_t *pgdat = NODE_DATA(nid);
3509 int ret = 0;
3510
3511 if (pgdat->kswapd)
3512 return 0;
3513
3514 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3515 if (IS_ERR(pgdat->kswapd)) {
3516 /* failure at boot is fatal */
3517 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3518 pr_err("Failed to start kswapd on node %d\n", nid);
3519 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3520 pgdat->kswapd = NULL;
3218ae14
YG
3521 }
3522 return ret;
3523}
3524
8fe23e05 3525/*
d8adde17 3526 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3527 * hold mem_hotplug_begin/end().
8fe23e05
DR
3528 */
3529void kswapd_stop(int nid)
3530{
3531 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3532
d8adde17 3533 if (kswapd) {
8fe23e05 3534 kthread_stop(kswapd);
d8adde17
JL
3535 NODE_DATA(nid)->kswapd = NULL;
3536 }
8fe23e05
DR
3537}
3538
1da177e4
LT
3539static int __init kswapd_init(void)
3540{
3218ae14 3541 int nid;
69e05944 3542
1da177e4 3543 swap_setup();
48fb2e24 3544 for_each_node_state(nid, N_MEMORY)
3218ae14 3545 kswapd_run(nid);
1da177e4
LT
3546 hotcpu_notifier(cpu_callback, 0);
3547 return 0;
3548}
3549
3550module_init(kswapd_init)
9eeff239
CL
3551
3552#ifdef CONFIG_NUMA
3553/*
a5f5f91d 3554 * Node reclaim mode
9eeff239 3555 *
a5f5f91d 3556 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3557 * the watermarks.
9eeff239 3558 */
a5f5f91d 3559int node_reclaim_mode __read_mostly;
9eeff239 3560
1b2ffb78 3561#define RECLAIM_OFF 0
7d03431c 3562#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3563#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3564#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3565
a92f7126 3566/*
a5f5f91d 3567 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3568 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3569 * a zone.
3570 */
a5f5f91d 3571#define NODE_RECLAIM_PRIORITY 4
a92f7126 3572
9614634f 3573/*
a5f5f91d 3574 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3575 * occur.
3576 */
3577int sysctl_min_unmapped_ratio = 1;
3578
0ff38490
CL
3579/*
3580 * If the number of slab pages in a zone grows beyond this percentage then
3581 * slab reclaim needs to occur.
3582 */
3583int sysctl_min_slab_ratio = 5;
3584
11fb9989 3585static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3586{
11fb9989
MG
3587 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3588 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3589 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3590
3591 /*
3592 * It's possible for there to be more file mapped pages than
3593 * accounted for by the pages on the file LRU lists because
3594 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3595 */
3596 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3597}
3598
3599/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3600static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3601{
d031a157
AM
3602 unsigned long nr_pagecache_reclaimable;
3603 unsigned long delta = 0;
90afa5de
MG
3604
3605 /*
95bbc0c7 3606 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3607 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3608 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3609 * a better estimate
3610 */
a5f5f91d
MG
3611 if (node_reclaim_mode & RECLAIM_UNMAP)
3612 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3613 else
a5f5f91d 3614 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3615
3616 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3617 if (!(node_reclaim_mode & RECLAIM_WRITE))
3618 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3619
3620 /* Watch for any possible underflows due to delta */
3621 if (unlikely(delta > nr_pagecache_reclaimable))
3622 delta = nr_pagecache_reclaimable;
3623
3624 return nr_pagecache_reclaimable - delta;
3625}
3626
9eeff239 3627/*
a5f5f91d 3628 * Try to free up some pages from this node through reclaim.
9eeff239 3629 */
a5f5f91d 3630static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3631{
7fb2d46d 3632 /* Minimum pages needed in order to stay on node */
69e05944 3633 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3634 struct task_struct *p = current;
3635 struct reclaim_state reclaim_state;
a5f5f91d 3636 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3637 struct scan_control sc = {
62b726c1 3638 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3639 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3640 .order = order,
a5f5f91d
MG
3641 .priority = NODE_RECLAIM_PRIORITY,
3642 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3643 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3644 .may_swap = 1,
a5f5f91d 3645 .reclaim_idx = classzone_idx,
179e9639 3646 };
9eeff239 3647
9eeff239 3648 cond_resched();
d4f7796e 3649 /*
95bbc0c7 3650 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3651 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3652 * and RECLAIM_UNMAP.
d4f7796e
CL
3653 */
3654 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3655 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3656 reclaim_state.reclaimed_slab = 0;
3657 p->reclaim_state = &reclaim_state;
c84db23c 3658
a5f5f91d 3659 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3660 /*
3661 * Free memory by calling shrink zone with increasing
3662 * priorities until we have enough memory freed.
3663 */
0ff38490 3664 do {
970a39a3 3665 shrink_node(pgdat, &sc);
9e3b2f8c 3666 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3667 }
c84db23c 3668
9eeff239 3669 p->reclaim_state = NULL;
d4f7796e 3670 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3671 lockdep_clear_current_reclaim_state();
a79311c1 3672 return sc.nr_reclaimed >= nr_pages;
9eeff239 3673}
179e9639 3674
a5f5f91d 3675int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3676{
d773ed6b 3677 int ret;
179e9639
AM
3678
3679 /*
a5f5f91d 3680 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3681 * slab pages if we are over the defined limits.
34aa1330 3682 *
9614634f
CL
3683 * A small portion of unmapped file backed pages is needed for
3684 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3685 * thrown out if the node is overallocated. So we do not reclaim
3686 * if less than a specified percentage of the node is used by
9614634f 3687 * unmapped file backed pages.
179e9639 3688 */
a5f5f91d
MG
3689 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3690 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3691 return NODE_RECLAIM_FULL;
179e9639 3692
a5f5f91d
MG
3693 if (!pgdat_reclaimable(pgdat))
3694 return NODE_RECLAIM_FULL;
d773ed6b 3695
179e9639 3696 /*
d773ed6b 3697 * Do not scan if the allocation should not be delayed.
179e9639 3698 */
d0164adc 3699 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3700 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3701
3702 /*
a5f5f91d 3703 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3704 * have associated processors. This will favor the local processor
3705 * over remote processors and spread off node memory allocations
3706 * as wide as possible.
3707 */
a5f5f91d
MG
3708 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3709 return NODE_RECLAIM_NOSCAN;
d773ed6b 3710
a5f5f91d
MG
3711 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3712 return NODE_RECLAIM_NOSCAN;
fa5e084e 3713
a5f5f91d
MG
3714 ret = __node_reclaim(pgdat, gfp_mask, order);
3715 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3716
24cf7251
MG
3717 if (!ret)
3718 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3719
d773ed6b 3720 return ret;
179e9639 3721}
9eeff239 3722#endif
894bc310 3723
894bc310
LS
3724/*
3725 * page_evictable - test whether a page is evictable
3726 * @page: the page to test
894bc310
LS
3727 *
3728 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3729 * lists vs unevictable list.
894bc310
LS
3730 *
3731 * Reasons page might not be evictable:
ba9ddf49 3732 * (1) page's mapping marked unevictable
b291f000 3733 * (2) page is part of an mlocked VMA
ba9ddf49 3734 *
894bc310 3735 */
39b5f29a 3736int page_evictable(struct page *page)
894bc310 3737{
39b5f29a 3738 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3739}
89e004ea 3740
85046579 3741#ifdef CONFIG_SHMEM
89e004ea 3742/**
24513264
HD
3743 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3744 * @pages: array of pages to check
3745 * @nr_pages: number of pages to check
89e004ea 3746 *
24513264 3747 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3748 *
3749 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3750 */
24513264 3751void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3752{
925b7673 3753 struct lruvec *lruvec;
24513264
HD
3754 struct zone *zone = NULL;
3755 int pgscanned = 0;
3756 int pgrescued = 0;
3757 int i;
89e004ea 3758
24513264
HD
3759 for (i = 0; i < nr_pages; i++) {
3760 struct page *page = pages[i];
3761 struct zone *pagezone;
89e004ea 3762
24513264
HD
3763 pgscanned++;
3764 pagezone = page_zone(page);
3765 if (pagezone != zone) {
3766 if (zone)
a52633d8 3767 spin_unlock_irq(zone_lru_lock(zone));
24513264 3768 zone = pagezone;
a52633d8 3769 spin_lock_irq(zone_lru_lock(zone));
24513264 3770 }
599d0c95 3771 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
89e004ea 3772
24513264
HD
3773 if (!PageLRU(page) || !PageUnevictable(page))
3774 continue;
89e004ea 3775
39b5f29a 3776 if (page_evictable(page)) {
24513264
HD
3777 enum lru_list lru = page_lru_base_type(page);
3778
309381fe 3779 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3780 ClearPageUnevictable(page);
fa9add64
HD
3781 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3782 add_page_to_lru_list(page, lruvec, lru);
24513264 3783 pgrescued++;
89e004ea 3784 }
24513264 3785 }
89e004ea 3786
24513264
HD
3787 if (zone) {
3788 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3789 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
a52633d8 3790 spin_unlock_irq(zone_lru_lock(zone));
89e004ea 3791 }
89e004ea 3792}
85046579 3793#endif /* CONFIG_SHMEM */
This page took 1.257019 seconds and 5 git commands to generate.