memory cgroup enhancements: implicit force_empty() at rmdir
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
1da177e4
LT
41
42#include <asm/tlbflush.h>
43#include <asm/div64.h>
44
45#include <linux/swapops.h>
46
0f8053a5
NP
47#include "internal.h"
48
1da177e4 49struct scan_control {
1da177e4
LT
50 /* Incremented by the number of inactive pages that were scanned */
51 unsigned long nr_scanned;
52
1da177e4 53 /* This context's GFP mask */
6daa0e28 54 gfp_t gfp_mask;
1da177e4
LT
55
56 int may_writepage;
57
f1fd1067
CL
58 /* Can pages be swapped as part of reclaim? */
59 int may_swap;
60
1da177e4
LT
61 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 * In this context, it doesn't matter that we scan the
64 * whole list at once. */
65 int swap_cluster_max;
d6277db4
RW
66
67 int swappiness;
408d8544
NP
68
69 int all_unreclaimable;
5ad333eb
AW
70
71 int order;
66e1707b 72
f1a9ee75
RR
73 /*
74 * Pages that have (or should have) IO pending. If we run into
75 * a lot of these, we're better off waiting a little for IO to
76 * finish rather than scanning more pages in the VM.
77 */
78 int nr_io_pages;
79
66e1707b
BS
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
83 /* Pluggable isolate pages callback */
84 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
85 unsigned long *scanned, int order, int mode,
86 struct zone *z, struct mem_cgroup *mem_cont,
87 int active);
1da177e4
LT
88};
89
1da177e4
LT
90#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
91
92#ifdef ARCH_HAS_PREFETCH
93#define prefetch_prev_lru_page(_page, _base, _field) \
94 do { \
95 if ((_page)->lru.prev != _base) { \
96 struct page *prev; \
97 \
98 prev = lru_to_page(&(_page->lru)); \
99 prefetch(&prev->_field); \
100 } \
101 } while (0)
102#else
103#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
104#endif
105
106#ifdef ARCH_HAS_PREFETCHW
107#define prefetchw_prev_lru_page(_page, _base, _field) \
108 do { \
109 if ((_page)->lru.prev != _base) { \
110 struct page *prev; \
111 \
112 prev = lru_to_page(&(_page->lru)); \
113 prefetchw(&prev->_field); \
114 } \
115 } while (0)
116#else
117#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
118#endif
119
120/*
121 * From 0 .. 100. Higher means more swappy.
122 */
123int vm_swappiness = 60;
bd1e22b8 124long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
125
126static LIST_HEAD(shrinker_list);
127static DECLARE_RWSEM(shrinker_rwsem);
128
129/*
130 * Add a shrinker callback to be called from the vm
131 */
8e1f936b 132void register_shrinker(struct shrinker *shrinker)
1da177e4 133{
8e1f936b
RR
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
1da177e4 138}
8e1f936b 139EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
140
141/*
142 * Remove one
143 */
8e1f936b 144void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
145{
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
1da177e4 149}
8e1f936b 150EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
151
152#define SHRINK_BATCH 128
153/*
154 * Call the shrink functions to age shrinkable caches
155 *
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
160 *
183ff22b 161 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
162 * slab to avoid swapping.
163 *
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 *
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
b15e0905 169 *
170 * Returns the number of slab objects which we shrunk.
1da177e4 171 */
69e05944
AM
172unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
1da177e4
LT
174{
175 struct shrinker *shrinker;
69e05944 176 unsigned long ret = 0;
1da177e4
LT
177
178 if (scanned == 0)
179 scanned = SWAP_CLUSTER_MAX;
180
181 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 182 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
183
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
8e1f936b 187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
188
189 delta = (4 * scanned) / shrinker->seeks;
ea164d73 190 delta *= max_pass;
1da177e4
LT
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
ea164d73
AA
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
195 __FUNCTION__, shrinker->nr);
196 shrinker->nr = max_pass;
197 }
198
199 /*
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
202 * freeable entries.
203 */
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
1da177e4
LT
206
207 total_scan = shrinker->nr;
208 shrinker->nr = 0;
209
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
212 int shrink_ret;
b15e0905 213 int nr_before;
1da177e4 214
8e1f936b
RR
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
217 if (shrink_ret == -1)
218 break;
b15e0905 219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
f8891e5e 221 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
222 total_scan -= this_scan;
223
224 cond_resched();
225 }
226
227 shrinker->nr += total_scan;
228 }
229 up_read(&shrinker_rwsem);
b15e0905 230 return ret;
1da177e4
LT
231}
232
233/* Called without lock on whether page is mapped, so answer is unstable */
234static inline int page_mapping_inuse(struct page *page)
235{
236 struct address_space *mapping;
237
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
240 return 1;
241
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
244 return 1;
245
246 mapping = page_mapping(page);
247 if (!mapping)
248 return 0;
249
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
252}
253
254static inline int is_page_cache_freeable(struct page *page)
255{
256 return page_count(page) - !!PagePrivate(page) == 2;
257}
258
259static int may_write_to_queue(struct backing_dev_info *bdi)
260{
930d9152 261 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
262 return 1;
263 if (!bdi_write_congested(bdi))
264 return 1;
265 if (bdi == current->backing_dev_info)
266 return 1;
267 return 0;
268}
269
270/*
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
274 *
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
278 *
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
281 */
282static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
284{
285 lock_page(page);
3e9f45bd
GC
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
1da177e4
LT
288 unlock_page(page);
289}
290
c661b078
AW
291/* Request for sync pageout. */
292enum pageout_io {
293 PAGEOUT_IO_ASYNC,
294 PAGEOUT_IO_SYNC,
295};
296
04e62a29
CL
297/* possible outcome of pageout() */
298typedef enum {
299 /* failed to write page out, page is locked */
300 PAGE_KEEP,
301 /* move page to the active list, page is locked */
302 PAGE_ACTIVATE,
303 /* page has been sent to the disk successfully, page is unlocked */
304 PAGE_SUCCESS,
305 /* page is clean and locked */
306 PAGE_CLEAN,
307} pageout_t;
308
1da177e4 309/*
1742f19f
AM
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
1da177e4 312 */
c661b078
AW
313static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
1da177e4
LT
315{
316 /*
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
322 *
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
326 *
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
332 */
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
336 /*
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
339 */
323aca6c 340 if (PagePrivate(page)) {
1da177e4
LT
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __FUNCTION__);
344 return PAGE_CLEAN;
345 }
346 }
347 return PAGE_KEEP;
348 }
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
353
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
359 .range_start = 0,
360 .range_end = LLONG_MAX,
1da177e4
LT
361 .nonblocking = 1,
362 .for_reclaim = 1,
363 };
364
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
367 if (res < 0)
368 handle_write_error(mapping, page, res);
994fc28c 369 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
372 }
c661b078
AW
373
374 /*
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
378 */
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
381
1da177e4
LT
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
385 }
e129b5c2 386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
387 return PAGE_SUCCESS;
388 }
389
390 return PAGE_CLEAN;
391}
392
a649fd92
AM
393/*
394 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
395 * someone else has a ref on the page, abort and return 0. If it was
396 * successfully detached, return 1. Assumes the caller has a single ref on
397 * this page.
398 */
b20a3503 399int remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 400{
28e4d965
NP
401 BUG_ON(!PageLocked(page));
402 BUG_ON(mapping != page_mapping(page));
49d2e9cc
CL
403
404 write_lock_irq(&mapping->tree_lock);
49d2e9cc 405 /*
0fd0e6b0
NP
406 * The non racy check for a busy page.
407 *
408 * Must be careful with the order of the tests. When someone has
409 * a ref to the page, it may be possible that they dirty it then
410 * drop the reference. So if PageDirty is tested before page_count
411 * here, then the following race may occur:
412 *
413 * get_user_pages(&page);
414 * [user mapping goes away]
415 * write_to(page);
416 * !PageDirty(page) [good]
417 * SetPageDirty(page);
418 * put_page(page);
419 * !page_count(page) [good, discard it]
420 *
421 * [oops, our write_to data is lost]
422 *
423 * Reversing the order of the tests ensures such a situation cannot
424 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
425 * load is not satisfied before that of page->_count.
426 *
427 * Note that if SetPageDirty is always performed via set_page_dirty,
428 * and thus under tree_lock, then this ordering is not required.
49d2e9cc
CL
429 */
430 if (unlikely(page_count(page) != 2))
431 goto cannot_free;
432 smp_rmb();
433 if (unlikely(PageDirty(page)))
434 goto cannot_free;
435
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
439 write_unlock_irq(&mapping->tree_lock);
440 swap_free(swap);
441 __put_page(page); /* The pagecache ref */
442 return 1;
443 }
444
445 __remove_from_page_cache(page);
446 write_unlock_irq(&mapping->tree_lock);
447 __put_page(page);
448 return 1;
449
450cannot_free:
451 write_unlock_irq(&mapping->tree_lock);
452 return 0;
453}
454
1da177e4 455/*
1742f19f 456 * shrink_page_list() returns the number of reclaimed pages
1da177e4 457 */
1742f19f 458static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
459 struct scan_control *sc,
460 enum pageout_io sync_writeback)
1da177e4
LT
461{
462 LIST_HEAD(ret_pages);
463 struct pagevec freed_pvec;
464 int pgactivate = 0;
05ff5137 465 unsigned long nr_reclaimed = 0;
1da177e4
LT
466
467 cond_resched();
468
469 pagevec_init(&freed_pvec, 1);
470 while (!list_empty(page_list)) {
471 struct address_space *mapping;
472 struct page *page;
473 int may_enter_fs;
474 int referenced;
475
476 cond_resched();
477
478 page = lru_to_page(page_list);
479 list_del(&page->lru);
480
481 if (TestSetPageLocked(page))
482 goto keep;
483
725d704e 484 VM_BUG_ON(PageActive(page));
1da177e4
LT
485
486 sc->nr_scanned++;
80e43426
CL
487
488 if (!sc->may_swap && page_mapped(page))
489 goto keep_locked;
490
1da177e4
LT
491 /* Double the slab pressure for mapped and swapcache pages */
492 if (page_mapped(page) || PageSwapCache(page))
493 sc->nr_scanned++;
494
c661b078
AW
495 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
496 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
497
498 if (PageWriteback(page)) {
499 /*
500 * Synchronous reclaim is performed in two passes,
501 * first an asynchronous pass over the list to
502 * start parallel writeback, and a second synchronous
503 * pass to wait for the IO to complete. Wait here
504 * for any page for which writeback has already
505 * started.
506 */
507 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
508 wait_on_page_writeback(page);
f1a9ee75
RR
509 else {
510 sc->nr_io_pages++;
c661b078 511 goto keep_locked;
f1a9ee75 512 }
c661b078 513 }
1da177e4 514
bed7161a 515 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 516 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
517 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
518 referenced && page_mapping_inuse(page))
1da177e4
LT
519 goto activate_locked;
520
521#ifdef CONFIG_SWAP
522 /*
523 * Anonymous process memory has backing store?
524 * Try to allocate it some swap space here.
525 */
6e5ef1a9 526 if (PageAnon(page) && !PageSwapCache(page))
1480a540 527 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 528 goto activate_locked;
1da177e4
LT
529#endif /* CONFIG_SWAP */
530
531 mapping = page_mapping(page);
1da177e4
LT
532
533 /*
534 * The page is mapped into the page tables of one or more
535 * processes. Try to unmap it here.
536 */
537 if (page_mapped(page) && mapping) {
a48d07af 538 switch (try_to_unmap(page, 0)) {
1da177e4
LT
539 case SWAP_FAIL:
540 goto activate_locked;
541 case SWAP_AGAIN:
542 goto keep_locked;
543 case SWAP_SUCCESS:
544 ; /* try to free the page below */
545 }
546 }
547
548 if (PageDirty(page)) {
5ad333eb 549 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 550 goto keep_locked;
f1a9ee75
RR
551 if (!may_enter_fs) {
552 sc->nr_io_pages++;
1da177e4 553 goto keep_locked;
f1a9ee75 554 }
52a8363e 555 if (!sc->may_writepage)
1da177e4
LT
556 goto keep_locked;
557
558 /* Page is dirty, try to write it out here */
c661b078 559 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
560 case PAGE_KEEP:
561 goto keep_locked;
562 case PAGE_ACTIVATE:
563 goto activate_locked;
564 case PAGE_SUCCESS:
f1a9ee75
RR
565 if (PageWriteback(page) || PageDirty(page)) {
566 sc->nr_io_pages++;
1da177e4 567 goto keep;
f1a9ee75 568 }
1da177e4
LT
569 /*
570 * A synchronous write - probably a ramdisk. Go
571 * ahead and try to reclaim the page.
572 */
573 if (TestSetPageLocked(page))
574 goto keep;
575 if (PageDirty(page) || PageWriteback(page))
576 goto keep_locked;
577 mapping = page_mapping(page);
578 case PAGE_CLEAN:
579 ; /* try to free the page below */
580 }
581 }
582
583 /*
584 * If the page has buffers, try to free the buffer mappings
585 * associated with this page. If we succeed we try to free
586 * the page as well.
587 *
588 * We do this even if the page is PageDirty().
589 * try_to_release_page() does not perform I/O, but it is
590 * possible for a page to have PageDirty set, but it is actually
591 * clean (all its buffers are clean). This happens if the
592 * buffers were written out directly, with submit_bh(). ext3
593 * will do this, as well as the blockdev mapping.
594 * try_to_release_page() will discover that cleanness and will
595 * drop the buffers and mark the page clean - it can be freed.
596 *
597 * Rarely, pages can have buffers and no ->mapping. These are
598 * the pages which were not successfully invalidated in
599 * truncate_complete_page(). We try to drop those buffers here
600 * and if that worked, and the page is no longer mapped into
601 * process address space (page_count == 1) it can be freed.
602 * Otherwise, leave the page on the LRU so it is swappable.
603 */
604 if (PagePrivate(page)) {
605 if (!try_to_release_page(page, sc->gfp_mask))
606 goto activate_locked;
607 if (!mapping && page_count(page) == 1)
608 goto free_it;
609 }
610
28e4d965 611 if (!mapping || !remove_mapping(mapping, page))
49d2e9cc 612 goto keep_locked;
1da177e4
LT
613
614free_it:
615 unlock_page(page);
05ff5137 616 nr_reclaimed++;
1da177e4
LT
617 if (!pagevec_add(&freed_pvec, page))
618 __pagevec_release_nonlru(&freed_pvec);
619 continue;
620
621activate_locked:
622 SetPageActive(page);
623 pgactivate++;
624keep_locked:
625 unlock_page(page);
626keep:
627 list_add(&page->lru, &ret_pages);
725d704e 628 VM_BUG_ON(PageLRU(page));
1da177e4
LT
629 }
630 list_splice(&ret_pages, page_list);
631 if (pagevec_count(&freed_pvec))
632 __pagevec_release_nonlru(&freed_pvec);
f8891e5e 633 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 634 return nr_reclaimed;
1da177e4
LT
635}
636
5ad333eb
AW
637/* LRU Isolation modes. */
638#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
639#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
640#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
641
642/*
643 * Attempt to remove the specified page from its LRU. Only take this page
644 * if it is of the appropriate PageActive status. Pages which are being
645 * freed elsewhere are also ignored.
646 *
647 * page: page to consider
648 * mode: one of the LRU isolation modes defined above
649 *
650 * returns 0 on success, -ve errno on failure.
651 */
66e1707b 652int __isolate_lru_page(struct page *page, int mode)
5ad333eb
AW
653{
654 int ret = -EINVAL;
655
656 /* Only take pages on the LRU. */
657 if (!PageLRU(page))
658 return ret;
659
660 /*
661 * When checking the active state, we need to be sure we are
662 * dealing with comparible boolean values. Take the logical not
663 * of each.
664 */
665 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
666 return ret;
667
668 ret = -EBUSY;
669 if (likely(get_page_unless_zero(page))) {
670 /*
671 * Be careful not to clear PageLRU until after we're
672 * sure the page is not being freed elsewhere -- the
673 * page release code relies on it.
674 */
675 ClearPageLRU(page);
676 ret = 0;
677 }
678
679 return ret;
680}
681
1da177e4
LT
682/*
683 * zone->lru_lock is heavily contended. Some of the functions that
684 * shrink the lists perform better by taking out a batch of pages
685 * and working on them outside the LRU lock.
686 *
687 * For pagecache intensive workloads, this function is the hottest
688 * spot in the kernel (apart from copy_*_user functions).
689 *
690 * Appropriate locks must be held before calling this function.
691 *
692 * @nr_to_scan: The number of pages to look through on the list.
693 * @src: The LRU list to pull pages off.
694 * @dst: The temp list to put pages on to.
695 * @scanned: The number of pages that were scanned.
5ad333eb
AW
696 * @order: The caller's attempted allocation order
697 * @mode: One of the LRU isolation modes
1da177e4
LT
698 *
699 * returns how many pages were moved onto *@dst.
700 */
69e05944
AM
701static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
702 struct list_head *src, struct list_head *dst,
5ad333eb 703 unsigned long *scanned, int order, int mode)
1da177e4 704{
69e05944 705 unsigned long nr_taken = 0;
c9b02d97 706 unsigned long scan;
1da177e4 707
c9b02d97 708 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
709 struct page *page;
710 unsigned long pfn;
711 unsigned long end_pfn;
712 unsigned long page_pfn;
713 int zone_id;
714
1da177e4
LT
715 page = lru_to_page(src);
716 prefetchw_prev_lru_page(page, src, flags);
717
725d704e 718 VM_BUG_ON(!PageLRU(page));
8d438f96 719
5ad333eb
AW
720 switch (__isolate_lru_page(page, mode)) {
721 case 0:
722 list_move(&page->lru, dst);
7c8ee9a8 723 nr_taken++;
5ad333eb
AW
724 break;
725
726 case -EBUSY:
727 /* else it is being freed elsewhere */
728 list_move(&page->lru, src);
729 continue;
46453a6e 730
5ad333eb
AW
731 default:
732 BUG();
733 }
734
735 if (!order)
736 continue;
737
738 /*
739 * Attempt to take all pages in the order aligned region
740 * surrounding the tag page. Only take those pages of
741 * the same active state as that tag page. We may safely
742 * round the target page pfn down to the requested order
743 * as the mem_map is guarenteed valid out to MAX_ORDER,
744 * where that page is in a different zone we will detect
745 * it from its zone id and abort this block scan.
746 */
747 zone_id = page_zone_id(page);
748 page_pfn = page_to_pfn(page);
749 pfn = page_pfn & ~((1 << order) - 1);
750 end_pfn = pfn + (1 << order);
751 for (; pfn < end_pfn; pfn++) {
752 struct page *cursor_page;
753
754 /* The target page is in the block, ignore it. */
755 if (unlikely(pfn == page_pfn))
756 continue;
757
758 /* Avoid holes within the zone. */
759 if (unlikely(!pfn_valid_within(pfn)))
760 break;
761
762 cursor_page = pfn_to_page(pfn);
763 /* Check that we have not crossed a zone boundary. */
764 if (unlikely(page_zone_id(cursor_page) != zone_id))
765 continue;
766 switch (__isolate_lru_page(cursor_page, mode)) {
767 case 0:
768 list_move(&cursor_page->lru, dst);
769 nr_taken++;
770 scan++;
771 break;
772
773 case -EBUSY:
774 /* else it is being freed elsewhere */
775 list_move(&cursor_page->lru, src);
776 default:
777 break;
778 }
779 }
1da177e4
LT
780 }
781
782 *scanned = scan;
783 return nr_taken;
784}
785
66e1707b
BS
786static unsigned long isolate_pages_global(unsigned long nr,
787 struct list_head *dst,
788 unsigned long *scanned, int order,
789 int mode, struct zone *z,
790 struct mem_cgroup *mem_cont,
791 int active)
792{
793 if (active)
794 return isolate_lru_pages(nr, &z->active_list, dst,
795 scanned, order, mode);
796 else
797 return isolate_lru_pages(nr, &z->inactive_list, dst,
798 scanned, order, mode);
799}
800
5ad333eb
AW
801/*
802 * clear_active_flags() is a helper for shrink_active_list(), clearing
803 * any active bits from the pages in the list.
804 */
805static unsigned long clear_active_flags(struct list_head *page_list)
806{
807 int nr_active = 0;
808 struct page *page;
809
810 list_for_each_entry(page, page_list, lru)
811 if (PageActive(page)) {
812 ClearPageActive(page);
813 nr_active++;
814 }
815
816 return nr_active;
817}
818
1da177e4 819/*
1742f19f
AM
820 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
821 * of reclaimed pages
1da177e4 822 */
1742f19f
AM
823static unsigned long shrink_inactive_list(unsigned long max_scan,
824 struct zone *zone, struct scan_control *sc)
1da177e4
LT
825{
826 LIST_HEAD(page_list);
827 struct pagevec pvec;
69e05944 828 unsigned long nr_scanned = 0;
05ff5137 829 unsigned long nr_reclaimed = 0;
1da177e4
LT
830
831 pagevec_init(&pvec, 1);
832
833 lru_add_drain();
834 spin_lock_irq(&zone->lru_lock);
69e05944 835 do {
1da177e4 836 struct page *page;
69e05944
AM
837 unsigned long nr_taken;
838 unsigned long nr_scan;
839 unsigned long nr_freed;
5ad333eb 840 unsigned long nr_active;
1da177e4 841
66e1707b 842 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
5ad333eb
AW
843 &page_list, &nr_scan, sc->order,
844 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
66e1707b
BS
845 ISOLATE_BOTH : ISOLATE_INACTIVE,
846 zone, sc->mem_cgroup, 0);
5ad333eb 847 nr_active = clear_active_flags(&page_list);
e9187bdc 848 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb
AW
849
850 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
851 __mod_zone_page_state(zone, NR_INACTIVE,
852 -(nr_taken - nr_active));
1da177e4
LT
853 zone->pages_scanned += nr_scan;
854 spin_unlock_irq(&zone->lru_lock);
855
69e05944 856 nr_scanned += nr_scan;
c661b078
AW
857 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
858
859 /*
860 * If we are direct reclaiming for contiguous pages and we do
861 * not reclaim everything in the list, try again and wait
862 * for IO to complete. This will stall high-order allocations
863 * but that should be acceptable to the caller
864 */
865 if (nr_freed < nr_taken && !current_is_kswapd() &&
866 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
867 congestion_wait(WRITE, HZ/10);
868
869 /*
870 * The attempt at page out may have made some
871 * of the pages active, mark them inactive again.
872 */
873 nr_active = clear_active_flags(&page_list);
874 count_vm_events(PGDEACTIVATE, nr_active);
875
876 nr_freed += shrink_page_list(&page_list, sc,
877 PAGEOUT_IO_SYNC);
878 }
879
05ff5137 880 nr_reclaimed += nr_freed;
a74609fa
NP
881 local_irq_disable();
882 if (current_is_kswapd()) {
f8891e5e
CL
883 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
884 __count_vm_events(KSWAPD_STEAL, nr_freed);
a74609fa 885 } else
f8891e5e 886 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
918d3f90 887 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 888
fb8d14e1
WF
889 if (nr_taken == 0)
890 goto done;
891
a74609fa 892 spin_lock(&zone->lru_lock);
1da177e4
LT
893 /*
894 * Put back any unfreeable pages.
895 */
896 while (!list_empty(&page_list)) {
897 page = lru_to_page(&page_list);
725d704e 898 VM_BUG_ON(PageLRU(page));
8d438f96 899 SetPageLRU(page);
1da177e4
LT
900 list_del(&page->lru);
901 if (PageActive(page))
902 add_page_to_active_list(zone, page);
903 else
904 add_page_to_inactive_list(zone, page);
905 if (!pagevec_add(&pvec, page)) {
906 spin_unlock_irq(&zone->lru_lock);
907 __pagevec_release(&pvec);
908 spin_lock_irq(&zone->lru_lock);
909 }
910 }
69e05944 911 } while (nr_scanned < max_scan);
fb8d14e1 912 spin_unlock(&zone->lru_lock);
1da177e4 913done:
fb8d14e1 914 local_irq_enable();
1da177e4 915 pagevec_release(&pvec);
05ff5137 916 return nr_reclaimed;
1da177e4
LT
917}
918
3bb1a852
MB
919/*
920 * We are about to scan this zone at a certain priority level. If that priority
921 * level is smaller (ie: more urgent) than the previous priority, then note
922 * that priority level within the zone. This is done so that when the next
923 * process comes in to scan this zone, it will immediately start out at this
924 * priority level rather than having to build up its own scanning priority.
925 * Here, this priority affects only the reclaim-mapped threshold.
926 */
927static inline void note_zone_scanning_priority(struct zone *zone, int priority)
928{
929 if (priority < zone->prev_priority)
930 zone->prev_priority = priority;
931}
932
4ff1ffb4
NP
933static inline int zone_is_near_oom(struct zone *zone)
934{
c8785385
CL
935 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
936 + zone_page_state(zone, NR_INACTIVE))*3;
4ff1ffb4
NP
937}
938
1da177e4
LT
939/*
940 * This moves pages from the active list to the inactive list.
941 *
942 * We move them the other way if the page is referenced by one or more
943 * processes, from rmap.
944 *
945 * If the pages are mostly unmapped, the processing is fast and it is
946 * appropriate to hold zone->lru_lock across the whole operation. But if
947 * the pages are mapped, the processing is slow (page_referenced()) so we
948 * should drop zone->lru_lock around each page. It's impossible to balance
949 * this, so instead we remove the pages from the LRU while processing them.
950 * It is safe to rely on PG_active against the non-LRU pages in here because
951 * nobody will play with that bit on a non-LRU page.
952 *
953 * The downside is that we have to touch page->_count against each page.
954 * But we had to alter page->flags anyway.
955 */
1742f19f 956static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
bbdb396a 957 struct scan_control *sc, int priority)
1da177e4 958{
69e05944 959 unsigned long pgmoved;
1da177e4 960 int pgdeactivate = 0;
69e05944 961 unsigned long pgscanned;
1da177e4
LT
962 LIST_HEAD(l_hold); /* The pages which were snipped off */
963 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
964 LIST_HEAD(l_active); /* Pages to go onto the active_list */
965 struct page *page;
966 struct pagevec pvec;
967 int reclaim_mapped = 0;
2903fb16 968
6e5ef1a9 969 if (sc->may_swap) {
2903fb16
CL
970 long mapped_ratio;
971 long distress;
972 long swap_tendency;
4106f83a 973 long imbalance;
2903fb16 974
4ff1ffb4
NP
975 if (zone_is_near_oom(zone))
976 goto force_reclaim_mapped;
977
2903fb16
CL
978 /*
979 * `distress' is a measure of how much trouble we're having
980 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
981 */
bbdb396a 982 distress = 100 >> min(zone->prev_priority, priority);
2903fb16
CL
983
984 /*
985 * The point of this algorithm is to decide when to start
986 * reclaiming mapped memory instead of just pagecache. Work out
987 * how much memory
988 * is mapped.
989 */
f3dbd344
CL
990 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
991 global_page_state(NR_ANON_PAGES)) * 100) /
bf02cf4b 992 vm_total_pages;
2903fb16
CL
993
994 /*
995 * Now decide how much we really want to unmap some pages. The
996 * mapped ratio is downgraded - just because there's a lot of
997 * mapped memory doesn't necessarily mean that page reclaim
998 * isn't succeeding.
999 *
1000 * The distress ratio is important - we don't want to start
1001 * going oom.
1002 *
1003 * A 100% value of vm_swappiness overrides this algorithm
1004 * altogether.
1005 */
d6277db4 1006 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
2903fb16 1007
4106f83a
AA
1008 /*
1009 * If there's huge imbalance between active and inactive
1010 * (think active 100 times larger than inactive) we should
1011 * become more permissive, or the system will take too much
1012 * cpu before it start swapping during memory pressure.
1013 * Distress is about avoiding early-oom, this is about
1014 * making swappiness graceful despite setting it to low
1015 * values.
1016 *
1017 * Avoid div by zero with nr_inactive+1, and max resulting
1018 * value is vm_total_pages.
1019 */
1020 imbalance = zone_page_state(zone, NR_ACTIVE);
1021 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1022
1023 /*
1024 * Reduce the effect of imbalance if swappiness is low,
1025 * this means for a swappiness very low, the imbalance
1026 * must be much higher than 100 for this logic to make
1027 * the difference.
1028 *
1029 * Max temporary value is vm_total_pages*100.
1030 */
1031 imbalance *= (vm_swappiness + 1);
1032 imbalance /= 100;
1033
1034 /*
1035 * If not much of the ram is mapped, makes the imbalance
1036 * less relevant, it's high priority we refill the inactive
1037 * list with mapped pages only in presence of high ratio of
1038 * mapped pages.
1039 *
1040 * Max temporary value is vm_total_pages*100.
1041 */
1042 imbalance *= mapped_ratio;
1043 imbalance /= 100;
1044
1045 /* apply imbalance feedback to swap_tendency */
1046 swap_tendency += imbalance;
1047
2903fb16
CL
1048 /*
1049 * Now use this metric to decide whether to start moving mapped
1050 * memory onto the inactive list.
1051 */
1052 if (swap_tendency >= 100)
4ff1ffb4 1053force_reclaim_mapped:
2903fb16
CL
1054 reclaim_mapped = 1;
1055 }
1da177e4
LT
1056
1057 lru_add_drain();
1058 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1059 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1060 ISOLATE_ACTIVE, zone,
1061 sc->mem_cgroup, 1);
1da177e4 1062 zone->pages_scanned += pgscanned;
c8785385 1063 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1da177e4
LT
1064 spin_unlock_irq(&zone->lru_lock);
1065
1da177e4
LT
1066 while (!list_empty(&l_hold)) {
1067 cond_resched();
1068 page = lru_to_page(&l_hold);
1069 list_del(&page->lru);
1070 if (page_mapped(page)) {
1071 if (!reclaim_mapped ||
1072 (total_swap_pages == 0 && PageAnon(page)) ||
bed7161a 1073 page_referenced(page, 0, sc->mem_cgroup)) {
1da177e4
LT
1074 list_add(&page->lru, &l_active);
1075 continue;
1076 }
1077 }
1078 list_add(&page->lru, &l_inactive);
1079 }
1080
1081 pagevec_init(&pvec, 1);
1082 pgmoved = 0;
1083 spin_lock_irq(&zone->lru_lock);
1084 while (!list_empty(&l_inactive)) {
1085 page = lru_to_page(&l_inactive);
1086 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1087 VM_BUG_ON(PageLRU(page));
8d438f96 1088 SetPageLRU(page);
725d704e 1089 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1090 ClearPageActive(page);
1091
1da177e4 1092 list_move(&page->lru, &zone->inactive_list);
66e1707b 1093 mem_cgroup_move_lists(page_get_page_cgroup(page), false);
1da177e4
LT
1094 pgmoved++;
1095 if (!pagevec_add(&pvec, page)) {
c8785385 1096 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1da177e4
LT
1097 spin_unlock_irq(&zone->lru_lock);
1098 pgdeactivate += pgmoved;
1099 pgmoved = 0;
1100 if (buffer_heads_over_limit)
1101 pagevec_strip(&pvec);
1102 __pagevec_release(&pvec);
1103 spin_lock_irq(&zone->lru_lock);
1104 }
1105 }
c8785385 1106 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1da177e4
LT
1107 pgdeactivate += pgmoved;
1108 if (buffer_heads_over_limit) {
1109 spin_unlock_irq(&zone->lru_lock);
1110 pagevec_strip(&pvec);
1111 spin_lock_irq(&zone->lru_lock);
1112 }
1113
1114 pgmoved = 0;
1115 while (!list_empty(&l_active)) {
1116 page = lru_to_page(&l_active);
1117 prefetchw_prev_lru_page(page, &l_active, flags);
725d704e 1118 VM_BUG_ON(PageLRU(page));
8d438f96 1119 SetPageLRU(page);
725d704e 1120 VM_BUG_ON(!PageActive(page));
1da177e4 1121 list_move(&page->lru, &zone->active_list);
66e1707b 1122 mem_cgroup_move_lists(page_get_page_cgroup(page), true);
1da177e4
LT
1123 pgmoved++;
1124 if (!pagevec_add(&pvec, page)) {
c8785385 1125 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1da177e4
LT
1126 pgmoved = 0;
1127 spin_unlock_irq(&zone->lru_lock);
1128 __pagevec_release(&pvec);
1129 spin_lock_irq(&zone->lru_lock);
1130 }
1131 }
c8785385 1132 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
a74609fa 1133
f8891e5e
CL
1134 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1135 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1136 spin_unlock_irq(&zone->lru_lock);
1da177e4 1137
a74609fa 1138 pagevec_release(&pvec);
1da177e4
LT
1139}
1140
1141/*
1142 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1143 */
05ff5137
AM
1144static unsigned long shrink_zone(int priority, struct zone *zone,
1145 struct scan_control *sc)
1da177e4
LT
1146{
1147 unsigned long nr_active;
1148 unsigned long nr_inactive;
8695949a 1149 unsigned long nr_to_scan;
05ff5137 1150 unsigned long nr_reclaimed = 0;
1da177e4
LT
1151
1152 /*
1153 * Add one to `nr_to_scan' just to make sure that the kernel will
1154 * slowly sift through the active list.
1155 */
c8785385
CL
1156 zone->nr_scan_active +=
1157 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1da177e4
LT
1158 nr_active = zone->nr_scan_active;
1159 if (nr_active >= sc->swap_cluster_max)
1160 zone->nr_scan_active = 0;
1161 else
1162 nr_active = 0;
1163
c8785385
CL
1164 zone->nr_scan_inactive +=
1165 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1da177e4
LT
1166 nr_inactive = zone->nr_scan_inactive;
1167 if (nr_inactive >= sc->swap_cluster_max)
1168 zone->nr_scan_inactive = 0;
1169 else
1170 nr_inactive = 0;
1171
1da177e4
LT
1172 while (nr_active || nr_inactive) {
1173 if (nr_active) {
8695949a 1174 nr_to_scan = min(nr_active,
1da177e4 1175 (unsigned long)sc->swap_cluster_max);
8695949a 1176 nr_active -= nr_to_scan;
bbdb396a 1177 shrink_active_list(nr_to_scan, zone, sc, priority);
1da177e4
LT
1178 }
1179
1180 if (nr_inactive) {
8695949a 1181 nr_to_scan = min(nr_inactive,
1da177e4 1182 (unsigned long)sc->swap_cluster_max);
8695949a 1183 nr_inactive -= nr_to_scan;
1742f19f
AM
1184 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1185 sc);
1da177e4
LT
1186 }
1187 }
1188
232ea4d6 1189 throttle_vm_writeout(sc->gfp_mask);
05ff5137 1190 return nr_reclaimed;
1da177e4
LT
1191}
1192
1193/*
1194 * This is the direct reclaim path, for page-allocating processes. We only
1195 * try to reclaim pages from zones which will satisfy the caller's allocation
1196 * request.
1197 *
1198 * We reclaim from a zone even if that zone is over pages_high. Because:
1199 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1200 * allocation or
1201 * b) The zones may be over pages_high but they must go *over* pages_high to
1202 * satisfy the `incremental min' zone defense algorithm.
1203 *
1204 * Returns the number of reclaimed pages.
1205 *
1206 * If a zone is deemed to be full of pinned pages then just give it a light
1207 * scan then give up on it.
1208 */
1742f19f 1209static unsigned long shrink_zones(int priority, struct zone **zones,
05ff5137 1210 struct scan_control *sc)
1da177e4 1211{
05ff5137 1212 unsigned long nr_reclaimed = 0;
1da177e4
LT
1213 int i;
1214
408d8544 1215 sc->all_unreclaimable = 1;
1da177e4
LT
1216 for (i = 0; zones[i] != NULL; i++) {
1217 struct zone *zone = zones[i];
1218
f3fe6512 1219 if (!populated_zone(zone))
1da177e4
LT
1220 continue;
1221
02a0e53d 1222 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4
LT
1223 continue;
1224
3bb1a852 1225 note_zone_scanning_priority(zone, priority);
1da177e4 1226
e815af95 1227 if (zone_is_all_unreclaimable(zone) && priority != DEF_PRIORITY)
1da177e4
LT
1228 continue; /* Let kswapd poll it */
1229
408d8544
NP
1230 sc->all_unreclaimable = 0;
1231
05ff5137 1232 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 1233 }
05ff5137 1234 return nr_reclaimed;
1da177e4
LT
1235}
1236
1237/*
1238 * This is the main entry point to direct page reclaim.
1239 *
1240 * If a full scan of the inactive list fails to free enough memory then we
1241 * are "out of memory" and something needs to be killed.
1242 *
1243 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1244 * high - the zone may be full of dirty or under-writeback pages, which this
1245 * caller can't do much about. We kick pdflush and take explicit naps in the
1246 * hope that some of these pages can be written. But if the allocating task
1247 * holds filesystem locks which prevent writeout this might not work, and the
1248 * allocation attempt will fail.
1249 */
66e1707b
BS
1250static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask,
1251 struct scan_control *sc)
1da177e4
LT
1252{
1253 int priority;
1254 int ret = 0;
69e05944 1255 unsigned long total_scanned = 0;
05ff5137 1256 unsigned long nr_reclaimed = 0;
1da177e4 1257 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4
LT
1258 unsigned long lru_pages = 0;
1259 int i;
1da177e4 1260
f8891e5e 1261 count_vm_event(ALLOCSTALL);
1da177e4
LT
1262
1263 for (i = 0; zones[i] != NULL; i++) {
1264 struct zone *zone = zones[i];
1265
02a0e53d 1266 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4
LT
1267 continue;
1268
c8785385
CL
1269 lru_pages += zone_page_state(zone, NR_ACTIVE)
1270 + zone_page_state(zone, NR_INACTIVE);
1da177e4
LT
1271 }
1272
1273 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1274 sc->nr_scanned = 0;
f1a9ee75 1275 sc->nr_io_pages = 0;
f7b7fd8f
RR
1276 if (!priority)
1277 disable_swap_token();
66e1707b
BS
1278 nr_reclaimed += shrink_zones(priority, zones, sc);
1279 /*
1280 * Don't shrink slabs when reclaiming memory from
1281 * over limit cgroups
1282 */
1283 if (sc->mem_cgroup == NULL)
1284 shrink_slab(sc->nr_scanned, gfp_mask, lru_pages);
1da177e4 1285 if (reclaim_state) {
05ff5137 1286 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4
LT
1287 reclaim_state->reclaimed_slab = 0;
1288 }
66e1707b
BS
1289 total_scanned += sc->nr_scanned;
1290 if (nr_reclaimed >= sc->swap_cluster_max) {
1da177e4
LT
1291 ret = 1;
1292 goto out;
1293 }
1294
1295 /*
1296 * Try to write back as many pages as we just scanned. This
1297 * tends to cause slow streaming writers to write data to the
1298 * disk smoothly, at the dirtying rate, which is nice. But
1299 * that's undesirable in laptop mode, where we *want* lumpy
1300 * writeout. So in laptop mode, write out the whole world.
1301 */
66e1707b
BS
1302 if (total_scanned > sc->swap_cluster_max +
1303 sc->swap_cluster_max / 2) {
687a21ce 1304 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1305 sc->may_writepage = 1;
1da177e4
LT
1306 }
1307
1308 /* Take a nap, wait for some writeback to complete */
f1a9ee75
RR
1309 if (sc->nr_scanned && priority < DEF_PRIORITY - 2 &&
1310 sc->nr_io_pages > sc->swap_cluster_max)
3fcfab16 1311 congestion_wait(WRITE, HZ/10);
1da177e4 1312 }
408d8544 1313 /* top priority shrink_caches still had more to do? don't OOM, then */
66e1707b 1314 if (!sc->all_unreclaimable && sc->mem_cgroup == NULL)
408d8544 1315 ret = 1;
1da177e4 1316out:
3bb1a852
MB
1317 /*
1318 * Now that we've scanned all the zones at this priority level, note
1319 * that level within the zone so that the next thread which performs
1320 * scanning of this zone will immediately start out at this priority
1321 * level. This affects only the decision whether or not to bring
1322 * mapped pages onto the inactive list.
1323 */
1324 if (priority < 0)
1325 priority = 0;
c80544dc 1326 for (i = 0; zones[i] != NULL; i++) {
1da177e4
LT
1327 struct zone *zone = zones[i];
1328
02a0e53d 1329 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4
LT
1330 continue;
1331
3bb1a852 1332 zone->prev_priority = priority;
1da177e4
LT
1333 }
1334 return ret;
1335}
1336
66e1707b
BS
1337unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1338{
1339 struct scan_control sc = {
1340 .gfp_mask = gfp_mask,
1341 .may_writepage = !laptop_mode,
1342 .swap_cluster_max = SWAP_CLUSTER_MAX,
1343 .may_swap = 1,
1344 .swappiness = vm_swappiness,
1345 .order = order,
1346 .mem_cgroup = NULL,
1347 .isolate_pages = isolate_pages_global,
1348 };
1349
1350 return do_try_to_free_pages(zones, gfp_mask, &sc);
1351}
1352
1353#ifdef CONFIG_CGROUP_MEM_CONT
1354
e1a1cd59
BS
1355unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1356 gfp_t gfp_mask)
66e1707b
BS
1357{
1358 struct scan_control sc = {
e1a1cd59 1359 .gfp_mask = gfp_mask,
66e1707b
BS
1360 .may_writepage = !laptop_mode,
1361 .may_swap = 1,
1362 .swap_cluster_max = SWAP_CLUSTER_MAX,
1363 .swappiness = vm_swappiness,
1364 .order = 0,
1365 .mem_cgroup = mem_cont,
1366 .isolate_pages = mem_cgroup_isolate_pages,
1367 };
66e1707b 1368 struct zone **zones;
e1a1cd59 1369 int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE);
66e1707b 1370
417eead3
KH
1371 zones = NODE_DATA(numa_node_id())->node_zonelists[target_zone].zones;
1372 if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))
1373 return 1;
66e1707b
BS
1374 return 0;
1375}
1376#endif
1377
1da177e4
LT
1378/*
1379 * For kswapd, balance_pgdat() will work across all this node's zones until
1380 * they are all at pages_high.
1381 *
1da177e4
LT
1382 * Returns the number of pages which were actually freed.
1383 *
1384 * There is special handling here for zones which are full of pinned pages.
1385 * This can happen if the pages are all mlocked, or if they are all used by
1386 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1387 * What we do is to detect the case where all pages in the zone have been
1388 * scanned twice and there has been zero successful reclaim. Mark the zone as
1389 * dead and from now on, only perform a short scan. Basically we're polling
1390 * the zone for when the problem goes away.
1391 *
1392 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1393 * zones which have free_pages > pages_high, but once a zone is found to have
1394 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1395 * of the number of free pages in the lower zones. This interoperates with
1396 * the page allocator fallback scheme to ensure that aging of pages is balanced
1397 * across the zones.
1398 */
d6277db4 1399static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1400{
1da177e4
LT
1401 int all_zones_ok;
1402 int priority;
1403 int i;
69e05944 1404 unsigned long total_scanned;
05ff5137 1405 unsigned long nr_reclaimed;
1da177e4 1406 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1407 struct scan_control sc = {
1408 .gfp_mask = GFP_KERNEL,
1409 .may_swap = 1,
d6277db4
RW
1410 .swap_cluster_max = SWAP_CLUSTER_MAX,
1411 .swappiness = vm_swappiness,
5ad333eb 1412 .order = order,
66e1707b
BS
1413 .mem_cgroup = NULL,
1414 .isolate_pages = isolate_pages_global,
179e9639 1415 };
3bb1a852
MB
1416 /*
1417 * temp_priority is used to remember the scanning priority at which
1418 * this zone was successfully refilled to free_pages == pages_high.
1419 */
1420 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1421
1422loop_again:
1423 total_scanned = 0;
05ff5137 1424 nr_reclaimed = 0;
c0bbbc73 1425 sc.may_writepage = !laptop_mode;
f8891e5e 1426 count_vm_event(PAGEOUTRUN);
1da177e4 1427
3bb1a852
MB
1428 for (i = 0; i < pgdat->nr_zones; i++)
1429 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1430
1431 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1432 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1433 unsigned long lru_pages = 0;
1434
f7b7fd8f
RR
1435 /* The swap token gets in the way of swapout... */
1436 if (!priority)
1437 disable_swap_token();
1438
f1a9ee75 1439 sc.nr_io_pages = 0;
1da177e4
LT
1440 all_zones_ok = 1;
1441
d6277db4
RW
1442 /*
1443 * Scan in the highmem->dma direction for the highest
1444 * zone which needs scanning
1445 */
1446 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1447 struct zone *zone = pgdat->node_zones + i;
1da177e4 1448
d6277db4
RW
1449 if (!populated_zone(zone))
1450 continue;
1da177e4 1451
e815af95
DR
1452 if (zone_is_all_unreclaimable(zone) &&
1453 priority != DEF_PRIORITY)
d6277db4 1454 continue;
1da177e4 1455
d6277db4
RW
1456 if (!zone_watermark_ok(zone, order, zone->pages_high,
1457 0, 0)) {
1458 end_zone = i;
e1dbeda6 1459 break;
1da177e4 1460 }
1da177e4 1461 }
e1dbeda6
AM
1462 if (i < 0)
1463 goto out;
1464
1da177e4
LT
1465 for (i = 0; i <= end_zone; i++) {
1466 struct zone *zone = pgdat->node_zones + i;
1467
c8785385
CL
1468 lru_pages += zone_page_state(zone, NR_ACTIVE)
1469 + zone_page_state(zone, NR_INACTIVE);
1da177e4
LT
1470 }
1471
1472 /*
1473 * Now scan the zone in the dma->highmem direction, stopping
1474 * at the last zone which needs scanning.
1475 *
1476 * We do this because the page allocator works in the opposite
1477 * direction. This prevents the page allocator from allocating
1478 * pages behind kswapd's direction of progress, which would
1479 * cause too much scanning of the lower zones.
1480 */
1481 for (i = 0; i <= end_zone; i++) {
1482 struct zone *zone = pgdat->node_zones + i;
b15e0905 1483 int nr_slab;
1da177e4 1484
f3fe6512 1485 if (!populated_zone(zone))
1da177e4
LT
1486 continue;
1487
e815af95
DR
1488 if (zone_is_all_unreclaimable(zone) &&
1489 priority != DEF_PRIORITY)
1da177e4
LT
1490 continue;
1491
d6277db4
RW
1492 if (!zone_watermark_ok(zone, order, zone->pages_high,
1493 end_zone, 0))
1494 all_zones_ok = 0;
3bb1a852 1495 temp_priority[i] = priority;
1da177e4 1496 sc.nr_scanned = 0;
3bb1a852 1497 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1498 /*
1499 * We put equal pressure on every zone, unless one
1500 * zone has way too many pages free already.
1501 */
1502 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1503 end_zone, 0))
1504 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1505 reclaim_state->reclaimed_slab = 0;
b15e0905 1506 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1507 lru_pages);
05ff5137 1508 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1509 total_scanned += sc.nr_scanned;
e815af95 1510 if (zone_is_all_unreclaimable(zone))
1da177e4 1511 continue;
b15e0905 1512 if (nr_slab == 0 && zone->pages_scanned >=
c8785385
CL
1513 (zone_page_state(zone, NR_ACTIVE)
1514 + zone_page_state(zone, NR_INACTIVE)) * 6)
e815af95
DR
1515 zone_set_flag(zone,
1516 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1517 /*
1518 * If we've done a decent amount of scanning and
1519 * the reclaim ratio is low, start doing writepage
1520 * even in laptop mode
1521 */
1522 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1523 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1524 sc.may_writepage = 1;
1525 }
1da177e4
LT
1526 if (all_zones_ok)
1527 break; /* kswapd: all done */
1528 /*
1529 * OK, kswapd is getting into trouble. Take a nap, then take
1530 * another pass across the zones.
1531 */
f1a9ee75
RR
1532 if (total_scanned && priority < DEF_PRIORITY - 2 &&
1533 sc.nr_io_pages > sc.swap_cluster_max)
3fcfab16 1534 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1535
1536 /*
1537 * We do this so kswapd doesn't build up large priorities for
1538 * example when it is freeing in parallel with allocators. It
1539 * matches the direct reclaim path behaviour in terms of impact
1540 * on zone->*_priority.
1541 */
d6277db4 1542 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1543 break;
1544 }
1545out:
3bb1a852
MB
1546 /*
1547 * Note within each zone the priority level at which this zone was
1548 * brought into a happy state. So that the next thread which scans this
1549 * zone will start out at that priority level.
1550 */
1da177e4
LT
1551 for (i = 0; i < pgdat->nr_zones; i++) {
1552 struct zone *zone = pgdat->node_zones + i;
1553
3bb1a852 1554 zone->prev_priority = temp_priority[i];
1da177e4
LT
1555 }
1556 if (!all_zones_ok) {
1557 cond_resched();
8357376d
RW
1558
1559 try_to_freeze();
1560
1da177e4
LT
1561 goto loop_again;
1562 }
1563
05ff5137 1564 return nr_reclaimed;
1da177e4
LT
1565}
1566
1567/*
1568 * The background pageout daemon, started as a kernel thread
1569 * from the init process.
1570 *
1571 * This basically trickles out pages so that we have _some_
1572 * free memory available even if there is no other activity
1573 * that frees anything up. This is needed for things like routing
1574 * etc, where we otherwise might have all activity going on in
1575 * asynchronous contexts that cannot page things out.
1576 *
1577 * If there are applications that are active memory-allocators
1578 * (most normal use), this basically shouldn't matter.
1579 */
1580static int kswapd(void *p)
1581{
1582 unsigned long order;
1583 pg_data_t *pgdat = (pg_data_t*)p;
1584 struct task_struct *tsk = current;
1585 DEFINE_WAIT(wait);
1586 struct reclaim_state reclaim_state = {
1587 .reclaimed_slab = 0,
1588 };
1589 cpumask_t cpumask;
1590
1da177e4
LT
1591 cpumask = node_to_cpumask(pgdat->node_id);
1592 if (!cpus_empty(cpumask))
1593 set_cpus_allowed(tsk, cpumask);
1594 current->reclaim_state = &reclaim_state;
1595
1596 /*
1597 * Tell the memory management that we're a "memory allocator",
1598 * and that if we need more memory we should get access to it
1599 * regardless (see "__alloc_pages()"). "kswapd" should
1600 * never get caught in the normal page freeing logic.
1601 *
1602 * (Kswapd normally doesn't need memory anyway, but sometimes
1603 * you need a small amount of memory in order to be able to
1604 * page out something else, and this flag essentially protects
1605 * us from recursively trying to free more memory as we're
1606 * trying to free the first piece of memory in the first place).
1607 */
930d9152 1608 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1609 set_freezable();
1da177e4
LT
1610
1611 order = 0;
1612 for ( ; ; ) {
1613 unsigned long new_order;
3e1d1d28 1614
1da177e4
LT
1615 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1616 new_order = pgdat->kswapd_max_order;
1617 pgdat->kswapd_max_order = 0;
1618 if (order < new_order) {
1619 /*
1620 * Don't sleep if someone wants a larger 'order'
1621 * allocation
1622 */
1623 order = new_order;
1624 } else {
b1296cc4
RW
1625 if (!freezing(current))
1626 schedule();
1627
1da177e4
LT
1628 order = pgdat->kswapd_max_order;
1629 }
1630 finish_wait(&pgdat->kswapd_wait, &wait);
1631
b1296cc4
RW
1632 if (!try_to_freeze()) {
1633 /* We can speed up thawing tasks if we don't call
1634 * balance_pgdat after returning from the refrigerator
1635 */
1636 balance_pgdat(pgdat, order);
1637 }
1da177e4
LT
1638 }
1639 return 0;
1640}
1641
1642/*
1643 * A zone is low on free memory, so wake its kswapd task to service it.
1644 */
1645void wakeup_kswapd(struct zone *zone, int order)
1646{
1647 pg_data_t *pgdat;
1648
f3fe6512 1649 if (!populated_zone(zone))
1da177e4
LT
1650 return;
1651
1652 pgdat = zone->zone_pgdat;
7fb1d9fc 1653 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1654 return;
1655 if (pgdat->kswapd_max_order < order)
1656 pgdat->kswapd_max_order = order;
02a0e53d 1657 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1658 return;
8d0986e2 1659 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1660 return;
8d0986e2 1661 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1662}
1663
1664#ifdef CONFIG_PM
1665/*
d6277db4
RW
1666 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1667 * from LRU lists system-wide, for given pass and priority, and returns the
1668 * number of reclaimed pages
1669 *
1670 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1671 */
e07aa05b
NC
1672static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1673 int pass, struct scan_control *sc)
d6277db4
RW
1674{
1675 struct zone *zone;
1676 unsigned long nr_to_scan, ret = 0;
1677
1678 for_each_zone(zone) {
1679
1680 if (!populated_zone(zone))
1681 continue;
1682
e815af95 1683 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
1684 continue;
1685
1686 /* For pass = 0 we don't shrink the active list */
1687 if (pass > 0) {
c8785385
CL
1688 zone->nr_scan_active +=
1689 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
d6277db4
RW
1690 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1691 zone->nr_scan_active = 0;
c8785385
CL
1692 nr_to_scan = min(nr_pages,
1693 zone_page_state(zone, NR_ACTIVE));
bbdb396a 1694 shrink_active_list(nr_to_scan, zone, sc, prio);
d6277db4
RW
1695 }
1696 }
1697
c8785385
CL
1698 zone->nr_scan_inactive +=
1699 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
d6277db4
RW
1700 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1701 zone->nr_scan_inactive = 0;
c8785385
CL
1702 nr_to_scan = min(nr_pages,
1703 zone_page_state(zone, NR_INACTIVE));
d6277db4
RW
1704 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1705 if (ret >= nr_pages)
1706 return ret;
1707 }
1708 }
1709
1710 return ret;
1711}
1712
76395d37
AM
1713static unsigned long count_lru_pages(void)
1714{
c8785385 1715 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
76395d37
AM
1716}
1717
d6277db4
RW
1718/*
1719 * Try to free `nr_pages' of memory, system-wide, and return the number of
1720 * freed pages.
1721 *
1722 * Rather than trying to age LRUs the aim is to preserve the overall
1723 * LRU order by reclaiming preferentially
1724 * inactive > active > active referenced > active mapped
1da177e4 1725 */
69e05944 1726unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 1727{
d6277db4 1728 unsigned long lru_pages, nr_slab;
69e05944 1729 unsigned long ret = 0;
d6277db4
RW
1730 int pass;
1731 struct reclaim_state reclaim_state;
d6277db4
RW
1732 struct scan_control sc = {
1733 .gfp_mask = GFP_KERNEL,
1734 .may_swap = 0,
1735 .swap_cluster_max = nr_pages,
1736 .may_writepage = 1,
1737 .swappiness = vm_swappiness,
66e1707b 1738 .isolate_pages = isolate_pages_global,
1da177e4
LT
1739 };
1740
1741 current->reclaim_state = &reclaim_state;
69e05944 1742
76395d37 1743 lru_pages = count_lru_pages();
972d1a7b 1744 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
1745 /* If slab caches are huge, it's better to hit them first */
1746 while (nr_slab >= lru_pages) {
1747 reclaim_state.reclaimed_slab = 0;
1748 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1749 if (!reclaim_state.reclaimed_slab)
1da177e4 1750 break;
d6277db4
RW
1751
1752 ret += reclaim_state.reclaimed_slab;
1753 if (ret >= nr_pages)
1754 goto out;
1755
1756 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 1757 }
d6277db4
RW
1758
1759 /*
1760 * We try to shrink LRUs in 5 passes:
1761 * 0 = Reclaim from inactive_list only
1762 * 1 = Reclaim from active list but don't reclaim mapped
1763 * 2 = 2nd pass of type 1
1764 * 3 = Reclaim mapped (normal reclaim)
1765 * 4 = 2nd pass of type 3
1766 */
1767 for (pass = 0; pass < 5; pass++) {
1768 int prio;
1769
d6277db4
RW
1770 /* Force reclaiming mapped pages in the passes #3 and #4 */
1771 if (pass > 2) {
1772 sc.may_swap = 1;
1773 sc.swappiness = 100;
1774 }
1775
1776 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1777 unsigned long nr_to_scan = nr_pages - ret;
1778
d6277db4 1779 sc.nr_scanned = 0;
d6277db4
RW
1780 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1781 if (ret >= nr_pages)
1782 goto out;
1783
1784 reclaim_state.reclaimed_slab = 0;
76395d37
AM
1785 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1786 count_lru_pages());
d6277db4
RW
1787 ret += reclaim_state.reclaimed_slab;
1788 if (ret >= nr_pages)
1789 goto out;
1790
1791 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 1792 congestion_wait(WRITE, HZ / 10);
d6277db4 1793 }
248a0301 1794 }
d6277db4
RW
1795
1796 /*
1797 * If ret = 0, we could not shrink LRUs, but there may be something
1798 * in slab caches
1799 */
76395d37 1800 if (!ret) {
d6277db4
RW
1801 do {
1802 reclaim_state.reclaimed_slab = 0;
76395d37 1803 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
d6277db4
RW
1804 ret += reclaim_state.reclaimed_slab;
1805 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 1806 }
d6277db4
RW
1807
1808out:
1da177e4 1809 current->reclaim_state = NULL;
d6277db4 1810
1da177e4
LT
1811 return ret;
1812}
1813#endif
1814
1da177e4
LT
1815/* It's optimal to keep kswapds on the same CPUs as their memory, but
1816 not required for correctness. So if the last cpu in a node goes
1817 away, we get changed to run anywhere: as the first one comes back,
1818 restore their cpu bindings. */
9c7b216d 1819static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 1820 unsigned long action, void *hcpu)
1da177e4
LT
1821{
1822 pg_data_t *pgdat;
1823 cpumask_t mask;
58c0a4a7 1824 int nid;
1da177e4 1825
8bb78442 1826 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7
YG
1827 for_each_node_state(nid, N_HIGH_MEMORY) {
1828 pgdat = NODE_DATA(nid);
1da177e4
LT
1829 mask = node_to_cpumask(pgdat->node_id);
1830 if (any_online_cpu(mask) != NR_CPUS)
1831 /* One of our CPUs online: restore mask */
1832 set_cpus_allowed(pgdat->kswapd, mask);
1833 }
1834 }
1835 return NOTIFY_OK;
1836}
1da177e4 1837
3218ae14
YG
1838/*
1839 * This kswapd start function will be called by init and node-hot-add.
1840 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1841 */
1842int kswapd_run(int nid)
1843{
1844 pg_data_t *pgdat = NODE_DATA(nid);
1845 int ret = 0;
1846
1847 if (pgdat->kswapd)
1848 return 0;
1849
1850 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1851 if (IS_ERR(pgdat->kswapd)) {
1852 /* failure at boot is fatal */
1853 BUG_ON(system_state == SYSTEM_BOOTING);
1854 printk("Failed to start kswapd on node %d\n",nid);
1855 ret = -1;
1856 }
1857 return ret;
1858}
1859
1da177e4
LT
1860static int __init kswapd_init(void)
1861{
3218ae14 1862 int nid;
69e05944 1863
1da177e4 1864 swap_setup();
9422ffba 1865 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 1866 kswapd_run(nid);
1da177e4
LT
1867 hotcpu_notifier(cpu_callback, 0);
1868 return 0;
1869}
1870
1871module_init(kswapd_init)
9eeff239
CL
1872
1873#ifdef CONFIG_NUMA
1874/*
1875 * Zone reclaim mode
1876 *
1877 * If non-zero call zone_reclaim when the number of free pages falls below
1878 * the watermarks.
9eeff239
CL
1879 */
1880int zone_reclaim_mode __read_mostly;
1881
1b2ffb78
CL
1882#define RECLAIM_OFF 0
1883#define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1884#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1885#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1886
a92f7126
CL
1887/*
1888 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1889 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1890 * a zone.
1891 */
1892#define ZONE_RECLAIM_PRIORITY 4
1893
9614634f
CL
1894/*
1895 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1896 * occur.
1897 */
1898int sysctl_min_unmapped_ratio = 1;
1899
0ff38490
CL
1900/*
1901 * If the number of slab pages in a zone grows beyond this percentage then
1902 * slab reclaim needs to occur.
1903 */
1904int sysctl_min_slab_ratio = 5;
1905
9eeff239
CL
1906/*
1907 * Try to free up some pages from this zone through reclaim.
1908 */
179e9639 1909static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 1910{
7fb2d46d 1911 /* Minimum pages needed in order to stay on node */
69e05944 1912 const unsigned long nr_pages = 1 << order;
9eeff239
CL
1913 struct task_struct *p = current;
1914 struct reclaim_state reclaim_state;
8695949a 1915 int priority;
05ff5137 1916 unsigned long nr_reclaimed = 0;
179e9639
AM
1917 struct scan_control sc = {
1918 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1919 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
1920 .swap_cluster_max = max_t(unsigned long, nr_pages,
1921 SWAP_CLUSTER_MAX),
179e9639 1922 .gfp_mask = gfp_mask,
d6277db4 1923 .swappiness = vm_swappiness,
66e1707b 1924 .isolate_pages = isolate_pages_global,
179e9639 1925 };
83e33a47 1926 unsigned long slab_reclaimable;
9eeff239
CL
1927
1928 disable_swap_token();
9eeff239 1929 cond_resched();
d4f7796e
CL
1930 /*
1931 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1932 * and we also need to be able to write out pages for RECLAIM_WRITE
1933 * and RECLAIM_SWAP.
1934 */
1935 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
1936 reclaim_state.reclaimed_slab = 0;
1937 p->reclaim_state = &reclaim_state;
c84db23c 1938
0ff38490
CL
1939 if (zone_page_state(zone, NR_FILE_PAGES) -
1940 zone_page_state(zone, NR_FILE_MAPPED) >
1941 zone->min_unmapped_pages) {
1942 /*
1943 * Free memory by calling shrink zone with increasing
1944 * priorities until we have enough memory freed.
1945 */
1946 priority = ZONE_RECLAIM_PRIORITY;
1947 do {
3bb1a852 1948 note_zone_scanning_priority(zone, priority);
0ff38490
CL
1949 nr_reclaimed += shrink_zone(priority, zone, &sc);
1950 priority--;
1951 } while (priority >= 0 && nr_reclaimed < nr_pages);
1952 }
c84db23c 1953
83e33a47
CL
1954 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1955 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 1956 /*
7fb2d46d 1957 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
1958 * many pages were freed in this zone. So we take the current
1959 * number of slab pages and shake the slab until it is reduced
1960 * by the same nr_pages that we used for reclaiming unmapped
1961 * pages.
2a16e3f4 1962 *
0ff38490
CL
1963 * Note that shrink_slab will free memory on all zones and may
1964 * take a long time.
2a16e3f4 1965 */
0ff38490 1966 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
1967 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1968 slab_reclaimable - nr_pages)
0ff38490 1969 ;
83e33a47
CL
1970
1971 /*
1972 * Update nr_reclaimed by the number of slab pages we
1973 * reclaimed from this zone.
1974 */
1975 nr_reclaimed += slab_reclaimable -
1976 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
1977 }
1978
9eeff239 1979 p->reclaim_state = NULL;
d4f7796e 1980 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
05ff5137 1981 return nr_reclaimed >= nr_pages;
9eeff239 1982}
179e9639
AM
1983
1984int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1985{
179e9639 1986 int node_id;
d773ed6b 1987 int ret;
179e9639
AM
1988
1989 /*
0ff38490
CL
1990 * Zone reclaim reclaims unmapped file backed pages and
1991 * slab pages if we are over the defined limits.
34aa1330 1992 *
9614634f
CL
1993 * A small portion of unmapped file backed pages is needed for
1994 * file I/O otherwise pages read by file I/O will be immediately
1995 * thrown out if the zone is overallocated. So we do not reclaim
1996 * if less than a specified percentage of the zone is used by
1997 * unmapped file backed pages.
179e9639 1998 */
34aa1330 1999 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2000 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2001 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2002 <= zone->min_slab_pages)
9614634f 2003 return 0;
179e9639 2004
d773ed6b
DR
2005 if (zone_is_all_unreclaimable(zone))
2006 return 0;
2007
179e9639 2008 /*
d773ed6b 2009 * Do not scan if the allocation should not be delayed.
179e9639 2010 */
d773ed6b 2011 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2012 return 0;
2013
2014 /*
2015 * Only run zone reclaim on the local zone or on zones that do not
2016 * have associated processors. This will favor the local processor
2017 * over remote processors and spread off node memory allocations
2018 * as wide as possible.
2019 */
89fa3024 2020 node_id = zone_to_nid(zone);
37c0708d 2021 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2022 return 0;
d773ed6b
DR
2023
2024 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2025 return 0;
2026 ret = __zone_reclaim(zone, gfp_mask, order);
2027 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2028
2029 return ret;
179e9639 2030}
9eeff239 2031#endif
This page took 0.609915 seconds and 5 git commands to generate.