Bluetooth: Fix adding discoverable to adv instance flags
[deliverable/linux.git] / net / bluetooth / hci_request.c
CommitLineData
0857dd3b
JH
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
b1a8917c
JH
24#include <asm/unaligned.h>
25
0857dd3b
JH
26#include <net/bluetooth/bluetooth.h>
27#include <net/bluetooth/hci_core.h>
f2252570 28#include <net/bluetooth/mgmt.h>
0857dd3b
JH
29
30#include "smp.h"
31#include "hci_request.h"
32
be91cd05
JH
33#define HCI_REQ_DONE 0
34#define HCI_REQ_PEND 1
35#define HCI_REQ_CANCELED 2
36
0857dd3b
JH
37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38{
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42}
43
e6214487
JH
44static int req_run(struct hci_request *req, hci_req_complete_t complete,
45 hci_req_complete_skb_t complete_skb)
0857dd3b
JH
46{
47 struct hci_dev *hdev = req->hdev;
48 struct sk_buff *skb;
49 unsigned long flags;
50
51 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
52
53 /* If an error occurred during request building, remove all HCI
54 * commands queued on the HCI request queue.
55 */
56 if (req->err) {
57 skb_queue_purge(&req->cmd_q);
58 return req->err;
59 }
60
61 /* Do not allow empty requests */
62 if (skb_queue_empty(&req->cmd_q))
63 return -ENODATA;
64
65 skb = skb_peek_tail(&req->cmd_q);
44d27137
JH
66 if (complete) {
67 bt_cb(skb)->hci.req_complete = complete;
68 } else if (complete_skb) {
69 bt_cb(skb)->hci.req_complete_skb = complete_skb;
70 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
71 }
0857dd3b
JH
72
73 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
74 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
75 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
76
77 queue_work(hdev->workqueue, &hdev->cmd_work);
78
79 return 0;
80}
81
e6214487
JH
82int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
83{
84 return req_run(req, complete, NULL);
85}
86
87int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
88{
89 return req_run(req, NULL, complete);
90}
91
be91cd05
JH
92static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
93 struct sk_buff *skb)
94{
95 BT_DBG("%s result 0x%2.2x", hdev->name, result);
96
97 if (hdev->req_status == HCI_REQ_PEND) {
98 hdev->req_result = result;
99 hdev->req_status = HCI_REQ_DONE;
100 if (skb)
101 hdev->req_skb = skb_get(skb);
102 wake_up_interruptible(&hdev->req_wait_q);
103 }
104}
105
b504430c 106void hci_req_sync_cancel(struct hci_dev *hdev, int err)
be91cd05
JH
107{
108 BT_DBG("%s err 0x%2.2x", hdev->name, err);
109
110 if (hdev->req_status == HCI_REQ_PEND) {
111 hdev->req_result = err;
112 hdev->req_status = HCI_REQ_CANCELED;
113 wake_up_interruptible(&hdev->req_wait_q);
114 }
115}
116
117struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
118 const void *param, u8 event, u32 timeout)
119{
120 DECLARE_WAITQUEUE(wait, current);
121 struct hci_request req;
122 struct sk_buff *skb;
123 int err = 0;
124
125 BT_DBG("%s", hdev->name);
126
127 hci_req_init(&req, hdev);
128
129 hci_req_add_ev(&req, opcode, plen, param, event);
130
131 hdev->req_status = HCI_REQ_PEND;
132
133 add_wait_queue(&hdev->req_wait_q, &wait);
134 set_current_state(TASK_INTERRUPTIBLE);
135
136 err = hci_req_run_skb(&req, hci_req_sync_complete);
137 if (err < 0) {
138 remove_wait_queue(&hdev->req_wait_q, &wait);
139 set_current_state(TASK_RUNNING);
140 return ERR_PTR(err);
141 }
142
143 schedule_timeout(timeout);
144
145 remove_wait_queue(&hdev->req_wait_q, &wait);
146
147 if (signal_pending(current))
148 return ERR_PTR(-EINTR);
149
150 switch (hdev->req_status) {
151 case HCI_REQ_DONE:
152 err = -bt_to_errno(hdev->req_result);
153 break;
154
155 case HCI_REQ_CANCELED:
156 err = -hdev->req_result;
157 break;
158
159 default:
160 err = -ETIMEDOUT;
161 break;
162 }
163
164 hdev->req_status = hdev->req_result = 0;
165 skb = hdev->req_skb;
166 hdev->req_skb = NULL;
167
168 BT_DBG("%s end: err %d", hdev->name, err);
169
170 if (err < 0) {
171 kfree_skb(skb);
172 return ERR_PTR(err);
173 }
174
175 if (!skb)
176 return ERR_PTR(-ENODATA);
177
178 return skb;
179}
180EXPORT_SYMBOL(__hci_cmd_sync_ev);
181
182struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
183 const void *param, u32 timeout)
184{
185 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
186}
187EXPORT_SYMBOL(__hci_cmd_sync);
188
189/* Execute request and wait for completion. */
a1d01db1
JH
190int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
191 unsigned long opt),
4ebeee2d 192 unsigned long opt, u32 timeout, u8 *hci_status)
be91cd05
JH
193{
194 struct hci_request req;
195 DECLARE_WAITQUEUE(wait, current);
196 int err = 0;
197
198 BT_DBG("%s start", hdev->name);
199
200 hci_req_init(&req, hdev);
201
202 hdev->req_status = HCI_REQ_PEND;
203
a1d01db1
JH
204 err = func(&req, opt);
205 if (err) {
206 if (hci_status)
207 *hci_status = HCI_ERROR_UNSPECIFIED;
208 return err;
209 }
be91cd05
JH
210
211 add_wait_queue(&hdev->req_wait_q, &wait);
212 set_current_state(TASK_INTERRUPTIBLE);
213
214 err = hci_req_run_skb(&req, hci_req_sync_complete);
215 if (err < 0) {
216 hdev->req_status = 0;
217
218 remove_wait_queue(&hdev->req_wait_q, &wait);
219 set_current_state(TASK_RUNNING);
220
221 /* ENODATA means the HCI request command queue is empty.
222 * This can happen when a request with conditionals doesn't
223 * trigger any commands to be sent. This is normal behavior
224 * and should not trigger an error return.
225 */
568f44f6
JH
226 if (err == -ENODATA) {
227 if (hci_status)
228 *hci_status = 0;
be91cd05 229 return 0;
568f44f6
JH
230 }
231
232 if (hci_status)
233 *hci_status = HCI_ERROR_UNSPECIFIED;
be91cd05
JH
234
235 return err;
236 }
237
238 schedule_timeout(timeout);
239
240 remove_wait_queue(&hdev->req_wait_q, &wait);
241
242 if (signal_pending(current))
243 return -EINTR;
244
245 switch (hdev->req_status) {
246 case HCI_REQ_DONE:
247 err = -bt_to_errno(hdev->req_result);
4ebeee2d
JH
248 if (hci_status)
249 *hci_status = hdev->req_result;
be91cd05
JH
250 break;
251
252 case HCI_REQ_CANCELED:
253 err = -hdev->req_result;
4ebeee2d
JH
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
be91cd05
JH
256 break;
257
258 default:
259 err = -ETIMEDOUT;
4ebeee2d
JH
260 if (hci_status)
261 *hci_status = HCI_ERROR_UNSPECIFIED;
be91cd05
JH
262 break;
263 }
264
265 hdev->req_status = hdev->req_result = 0;
266
267 BT_DBG("%s end: err %d", hdev->name, err);
268
269 return err;
270}
271
a1d01db1
JH
272int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
273 unsigned long opt),
4ebeee2d 274 unsigned long opt, u32 timeout, u8 *hci_status)
be91cd05
JH
275{
276 int ret;
277
278 if (!test_bit(HCI_UP, &hdev->flags))
279 return -ENETDOWN;
280
281 /* Serialize all requests */
b504430c 282 hci_req_sync_lock(hdev);
4ebeee2d 283 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
b504430c 284 hci_req_sync_unlock(hdev);
be91cd05
JH
285
286 return ret;
287}
288
0857dd3b
JH
289struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
290 const void *param)
291{
292 int len = HCI_COMMAND_HDR_SIZE + plen;
293 struct hci_command_hdr *hdr;
294 struct sk_buff *skb;
295
296 skb = bt_skb_alloc(len, GFP_ATOMIC);
297 if (!skb)
298 return NULL;
299
300 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
301 hdr->opcode = cpu_to_le16(opcode);
302 hdr->plen = plen;
303
304 if (plen)
305 memcpy(skb_put(skb, plen), param, plen);
306
307 BT_DBG("skb len %d", skb->len);
308
d79f34e3
MH
309 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
310 hci_skb_opcode(skb) = opcode;
0857dd3b
JH
311
312 return skb;
313}
314
315/* Queue a command to an asynchronous HCI request */
316void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
317 const void *param, u8 event)
318{
319 struct hci_dev *hdev = req->hdev;
320 struct sk_buff *skb;
321
322 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
323
324 /* If an error occurred during request building, there is no point in
325 * queueing the HCI command. We can simply return.
326 */
327 if (req->err)
328 return;
329
330 skb = hci_prepare_cmd(hdev, opcode, plen, param);
331 if (!skb) {
332 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
333 hdev->name, opcode);
334 req->err = -ENOMEM;
335 return;
336 }
337
338 if (skb_queue_empty(&req->cmd_q))
44d27137 339 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
0857dd3b 340
242c0ebd 341 bt_cb(skb)->hci.req_event = event;
0857dd3b
JH
342
343 skb_queue_tail(&req->cmd_q, skb);
344}
345
346void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
347 const void *param)
348{
349 hci_req_add_ev(req, opcode, plen, param, 0);
350}
351
bf943cbf
JH
352void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
353{
354 struct hci_dev *hdev = req->hdev;
355 struct hci_cp_write_page_scan_activity acp;
356 u8 type;
357
358 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
359 return;
360
361 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
362 return;
363
364 if (enable) {
365 type = PAGE_SCAN_TYPE_INTERLACED;
366
367 /* 160 msec page scan interval */
368 acp.interval = cpu_to_le16(0x0100);
369 } else {
370 type = PAGE_SCAN_TYPE_STANDARD; /* default */
371
372 /* default 1.28 sec page scan */
373 acp.interval = cpu_to_le16(0x0800);
374 }
375
376 acp.window = cpu_to_le16(0x0012);
377
378 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
379 __cpu_to_le16(hdev->page_scan_window) != acp.window)
380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
381 sizeof(acp), &acp);
382
383 if (hdev->page_scan_type != type)
384 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
385}
386
196a5e97
JH
387/* This function controls the background scanning based on hdev->pend_le_conns
388 * list. If there are pending LE connection we start the background scanning,
389 * otherwise we stop it.
390 *
391 * This function requires the caller holds hdev->lock.
392 */
393static void __hci_update_background_scan(struct hci_request *req)
394{
395 struct hci_dev *hdev = req->hdev;
396
397 if (!test_bit(HCI_UP, &hdev->flags) ||
398 test_bit(HCI_INIT, &hdev->flags) ||
399 hci_dev_test_flag(hdev, HCI_SETUP) ||
400 hci_dev_test_flag(hdev, HCI_CONFIG) ||
401 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
402 hci_dev_test_flag(hdev, HCI_UNREGISTER))
403 return;
404
405 /* No point in doing scanning if LE support hasn't been enabled */
406 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
407 return;
408
409 /* If discovery is active don't interfere with it */
410 if (hdev->discovery.state != DISCOVERY_STOPPED)
411 return;
412
413 /* Reset RSSI and UUID filters when starting background scanning
414 * since these filters are meant for service discovery only.
415 *
416 * The Start Discovery and Start Service Discovery operations
417 * ensure to set proper values for RSSI threshold and UUID
418 * filter list. So it is safe to just reset them here.
419 */
420 hci_discovery_filter_clear(hdev);
421
422 if (list_empty(&hdev->pend_le_conns) &&
423 list_empty(&hdev->pend_le_reports)) {
424 /* If there is no pending LE connections or devices
425 * to be scanned for, we should stop the background
426 * scanning.
427 */
428
429 /* If controller is not scanning we are done. */
430 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
431 return;
432
433 hci_req_add_le_scan_disable(req);
434
435 BT_DBG("%s stopping background scanning", hdev->name);
436 } else {
437 /* If there is at least one pending LE connection, we should
438 * keep the background scan running.
439 */
440
441 /* If controller is connecting, we should not start scanning
442 * since some controllers are not able to scan and connect at
443 * the same time.
444 */
445 if (hci_lookup_le_connect(hdev))
446 return;
447
448 /* If controller is currently scanning, we stop it to ensure we
449 * don't miss any advertising (due to duplicates filter).
450 */
451 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
452 hci_req_add_le_scan_disable(req);
453
454 hci_req_add_le_passive_scan(req);
455
456 BT_DBG("%s starting background scanning", hdev->name);
457 }
458}
459
00cf5040
JH
460void __hci_req_update_name(struct hci_request *req)
461{
462 struct hci_dev *hdev = req->hdev;
463 struct hci_cp_write_local_name cp;
464
465 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
466
467 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
468}
469
b1a8917c
JH
470#define PNP_INFO_SVCLASS_ID 0x1200
471
472static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
473{
474 u8 *ptr = data, *uuids_start = NULL;
475 struct bt_uuid *uuid;
476
477 if (len < 4)
478 return ptr;
479
480 list_for_each_entry(uuid, &hdev->uuids, list) {
481 u16 uuid16;
482
483 if (uuid->size != 16)
484 continue;
485
486 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
487 if (uuid16 < 0x1100)
488 continue;
489
490 if (uuid16 == PNP_INFO_SVCLASS_ID)
491 continue;
492
493 if (!uuids_start) {
494 uuids_start = ptr;
495 uuids_start[0] = 1;
496 uuids_start[1] = EIR_UUID16_ALL;
497 ptr += 2;
498 }
499
500 /* Stop if not enough space to put next UUID */
501 if ((ptr - data) + sizeof(u16) > len) {
502 uuids_start[1] = EIR_UUID16_SOME;
503 break;
504 }
505
506 *ptr++ = (uuid16 & 0x00ff);
507 *ptr++ = (uuid16 & 0xff00) >> 8;
508 uuids_start[0] += sizeof(uuid16);
509 }
510
511 return ptr;
512}
513
514static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
515{
516 u8 *ptr = data, *uuids_start = NULL;
517 struct bt_uuid *uuid;
518
519 if (len < 6)
520 return ptr;
521
522 list_for_each_entry(uuid, &hdev->uuids, list) {
523 if (uuid->size != 32)
524 continue;
525
526 if (!uuids_start) {
527 uuids_start = ptr;
528 uuids_start[0] = 1;
529 uuids_start[1] = EIR_UUID32_ALL;
530 ptr += 2;
531 }
532
533 /* Stop if not enough space to put next UUID */
534 if ((ptr - data) + sizeof(u32) > len) {
535 uuids_start[1] = EIR_UUID32_SOME;
536 break;
537 }
538
539 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
540 ptr += sizeof(u32);
541 uuids_start[0] += sizeof(u32);
542 }
543
544 return ptr;
545}
546
547static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
548{
549 u8 *ptr = data, *uuids_start = NULL;
550 struct bt_uuid *uuid;
551
552 if (len < 18)
553 return ptr;
554
555 list_for_each_entry(uuid, &hdev->uuids, list) {
556 if (uuid->size != 128)
557 continue;
558
559 if (!uuids_start) {
560 uuids_start = ptr;
561 uuids_start[0] = 1;
562 uuids_start[1] = EIR_UUID128_ALL;
563 ptr += 2;
564 }
565
566 /* Stop if not enough space to put next UUID */
567 if ((ptr - data) + 16 > len) {
568 uuids_start[1] = EIR_UUID128_SOME;
569 break;
570 }
571
572 memcpy(ptr, uuid->uuid, 16);
573 ptr += 16;
574 uuids_start[0] += 16;
575 }
576
577 return ptr;
578}
579
580static void create_eir(struct hci_dev *hdev, u8 *data)
581{
582 u8 *ptr = data;
583 size_t name_len;
584
585 name_len = strlen(hdev->dev_name);
586
587 if (name_len > 0) {
588 /* EIR Data type */
589 if (name_len > 48) {
590 name_len = 48;
591 ptr[1] = EIR_NAME_SHORT;
592 } else
593 ptr[1] = EIR_NAME_COMPLETE;
594
595 /* EIR Data length */
596 ptr[0] = name_len + 1;
597
598 memcpy(ptr + 2, hdev->dev_name, name_len);
599
600 ptr += (name_len + 2);
601 }
602
603 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
604 ptr[0] = 2;
605 ptr[1] = EIR_TX_POWER;
606 ptr[2] = (u8) hdev->inq_tx_power;
607
608 ptr += 3;
609 }
610
611 if (hdev->devid_source > 0) {
612 ptr[0] = 9;
613 ptr[1] = EIR_DEVICE_ID;
614
615 put_unaligned_le16(hdev->devid_source, ptr + 2);
616 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
617 put_unaligned_le16(hdev->devid_product, ptr + 6);
618 put_unaligned_le16(hdev->devid_version, ptr + 8);
619
620 ptr += 10;
621 }
622
623 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
625 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
626}
627
628void __hci_req_update_eir(struct hci_request *req)
629{
630 struct hci_dev *hdev = req->hdev;
631 struct hci_cp_write_eir cp;
632
633 if (!hdev_is_powered(hdev))
634 return;
635
636 if (!lmp_ext_inq_capable(hdev))
637 return;
638
639 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
640 return;
641
642 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
643 return;
644
645 memset(&cp, 0, sizeof(cp));
646
647 create_eir(hdev, cp.data);
648
649 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
650 return;
651
652 memcpy(hdev->eir, cp.data, sizeof(cp.data));
653
654 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
655}
656
0857dd3b
JH
657void hci_req_add_le_scan_disable(struct hci_request *req)
658{
659 struct hci_cp_le_set_scan_enable cp;
660
661 memset(&cp, 0, sizeof(cp));
662 cp.enable = LE_SCAN_DISABLE;
663 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
664}
665
666static void add_to_white_list(struct hci_request *req,
667 struct hci_conn_params *params)
668{
669 struct hci_cp_le_add_to_white_list cp;
670
671 cp.bdaddr_type = params->addr_type;
672 bacpy(&cp.bdaddr, &params->addr);
673
674 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
675}
676
677static u8 update_white_list(struct hci_request *req)
678{
679 struct hci_dev *hdev = req->hdev;
680 struct hci_conn_params *params;
681 struct bdaddr_list *b;
682 uint8_t white_list_entries = 0;
683
684 /* Go through the current white list programmed into the
685 * controller one by one and check if that address is still
686 * in the list of pending connections or list of devices to
687 * report. If not present in either list, then queue the
688 * command to remove it from the controller.
689 */
690 list_for_each_entry(b, &hdev->le_white_list, list) {
cff10ce7
JH
691 /* If the device is neither in pend_le_conns nor
692 * pend_le_reports then remove it from the whitelist.
693 */
694 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
695 &b->bdaddr, b->bdaddr_type) &&
696 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
697 &b->bdaddr, b->bdaddr_type)) {
698 struct hci_cp_le_del_from_white_list cp;
699
700 cp.bdaddr_type = b->bdaddr_type;
701 bacpy(&cp.bdaddr, &b->bdaddr);
0857dd3b 702
cff10ce7
JH
703 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
704 sizeof(cp), &cp);
0857dd3b
JH
705 continue;
706 }
707
cff10ce7
JH
708 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
709 /* White list can not be used with RPAs */
710 return 0x00;
711 }
0857dd3b 712
cff10ce7 713 white_list_entries++;
0857dd3b
JH
714 }
715
716 /* Since all no longer valid white list entries have been
717 * removed, walk through the list of pending connections
718 * and ensure that any new device gets programmed into
719 * the controller.
720 *
721 * If the list of the devices is larger than the list of
722 * available white list entries in the controller, then
723 * just abort and return filer policy value to not use the
724 * white list.
725 */
726 list_for_each_entry(params, &hdev->pend_le_conns, action) {
727 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
728 &params->addr, params->addr_type))
729 continue;
730
731 if (white_list_entries >= hdev->le_white_list_size) {
732 /* Select filter policy to accept all advertising */
733 return 0x00;
734 }
735
736 if (hci_find_irk_by_addr(hdev, &params->addr,
737 params->addr_type)) {
738 /* White list can not be used with RPAs */
739 return 0x00;
740 }
741
742 white_list_entries++;
743 add_to_white_list(req, params);
744 }
745
746 /* After adding all new pending connections, walk through
747 * the list of pending reports and also add these to the
748 * white list if there is still space.
749 */
750 list_for_each_entry(params, &hdev->pend_le_reports, action) {
751 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
752 &params->addr, params->addr_type))
753 continue;
754
755 if (white_list_entries >= hdev->le_white_list_size) {
756 /* Select filter policy to accept all advertising */
757 return 0x00;
758 }
759
760 if (hci_find_irk_by_addr(hdev, &params->addr,
761 params->addr_type)) {
762 /* White list can not be used with RPAs */
763 return 0x00;
764 }
765
766 white_list_entries++;
767 add_to_white_list(req, params);
768 }
769
770 /* Select filter policy to use white list */
771 return 0x01;
772}
773
774void hci_req_add_le_passive_scan(struct hci_request *req)
775{
776 struct hci_cp_le_set_scan_param param_cp;
777 struct hci_cp_le_set_scan_enable enable_cp;
778 struct hci_dev *hdev = req->hdev;
779 u8 own_addr_type;
780 u8 filter_policy;
781
782 /* Set require_privacy to false since no SCAN_REQ are send
783 * during passive scanning. Not using an non-resolvable address
784 * here is important so that peer devices using direct
785 * advertising with our address will be correctly reported
786 * by the controller.
787 */
788 if (hci_update_random_address(req, false, &own_addr_type))
789 return;
790
791 /* Adding or removing entries from the white list must
792 * happen before enabling scanning. The controller does
793 * not allow white list modification while scanning.
794 */
795 filter_policy = update_white_list(req);
796
797 /* When the controller is using random resolvable addresses and
798 * with that having LE privacy enabled, then controllers with
799 * Extended Scanner Filter Policies support can now enable support
800 * for handling directed advertising.
801 *
802 * So instead of using filter polices 0x00 (no whitelist)
803 * and 0x01 (whitelist enabled) use the new filter policies
804 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
805 */
d7a5a11d 806 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
0857dd3b
JH
807 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
808 filter_policy |= 0x02;
809
810 memset(&param_cp, 0, sizeof(param_cp));
811 param_cp.type = LE_SCAN_PASSIVE;
812 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
813 param_cp.window = cpu_to_le16(hdev->le_scan_window);
814 param_cp.own_address_type = own_addr_type;
815 param_cp.filter_policy = filter_policy;
816 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
817 &param_cp);
818
819 memset(&enable_cp, 0, sizeof(enable_cp));
820 enable_cp.enable = LE_SCAN_ENABLE;
821 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
822 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
823 &enable_cp);
824}
825
f2252570
JH
826static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
827{
cab054ab 828 u8 instance = hdev->cur_adv_instance;
f2252570
JH
829 struct adv_info *adv_instance;
830
831 /* Ignore instance 0 */
832 if (instance == 0x00)
833 return 0;
834
835 adv_instance = hci_find_adv_instance(hdev, instance);
836 if (!adv_instance)
837 return 0;
838
839 /* TODO: Take into account the "appearance" and "local-name" flags here.
840 * These are currently being ignored as they are not supported.
841 */
842 return adv_instance->scan_rsp_len;
843}
844
845void __hci_req_disable_advertising(struct hci_request *req)
846{
847 u8 enable = 0x00;
848
849 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
850}
851
852static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
853{
854 u32 flags;
855 struct adv_info *adv_instance;
856
857 if (instance == 0x00) {
858 /* Instance 0 always manages the "Tx Power" and "Flags"
859 * fields
860 */
861 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
862
863 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
864 * corresponds to the "connectable" instance flag.
865 */
866 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
867 flags |= MGMT_ADV_FLAG_CONNECTABLE;
868
d43efbd0
JH
869 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
870 flags |= MGMT_ADV_FLAG_DISCOV;
871
f2252570
JH
872 return flags;
873 }
874
875 adv_instance = hci_find_adv_instance(hdev, instance);
876
877 /* Return 0 when we got an invalid instance identifier. */
878 if (!adv_instance)
879 return 0;
880
881 return adv_instance->flags;
882}
883
884void __hci_req_enable_advertising(struct hci_request *req)
885{
886 struct hci_dev *hdev = req->hdev;
887 struct hci_cp_le_set_adv_param cp;
888 u8 own_addr_type, enable = 0x01;
889 bool connectable;
f2252570
JH
890 u32 flags;
891
892 if (hci_conn_num(hdev, LE_LINK) > 0)
893 return;
894
895 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
896 __hci_req_disable_advertising(req);
897
898 /* Clear the HCI_LE_ADV bit temporarily so that the
899 * hci_update_random_address knows that it's safe to go ahead
900 * and write a new random address. The flag will be set back on
901 * as soon as the SET_ADV_ENABLE HCI command completes.
902 */
903 hci_dev_clear_flag(hdev, HCI_LE_ADV);
904
cab054ab 905 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
f2252570
JH
906
907 /* If the "connectable" instance flag was not set, then choose between
908 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
909 */
910 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
911 mgmt_get_connectable(hdev);
912
913 /* Set require_privacy to true only when non-connectable
914 * advertising is used. In that case it is fine to use a
915 * non-resolvable private address.
916 */
917 if (hci_update_random_address(req, !connectable, &own_addr_type) < 0)
918 return;
919
920 memset(&cp, 0, sizeof(cp));
921 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
922 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
923
924 if (connectable)
925 cp.type = LE_ADV_IND;
926 else if (get_cur_adv_instance_scan_rsp_len(hdev))
927 cp.type = LE_ADV_SCAN_IND;
928 else
929 cp.type = LE_ADV_NONCONN_IND;
930
931 cp.own_address_type = own_addr_type;
932 cp.channel_map = hdev->le_adv_channel_map;
933
934 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
935
936 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
937}
938
939static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
940{
941 u8 ad_len = 0;
942 size_t name_len;
943
944 name_len = strlen(hdev->dev_name);
945 if (name_len > 0) {
946 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
947
948 if (name_len > max_len) {
949 name_len = max_len;
950 ptr[1] = EIR_NAME_SHORT;
951 } else
952 ptr[1] = EIR_NAME_COMPLETE;
953
954 ptr[0] = name_len + 1;
955
956 memcpy(ptr + 2, hdev->dev_name, name_len);
957
958 ad_len += (name_len + 2);
959 ptr += (name_len + 2);
960 }
961
962 return ad_len;
963}
964
965static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
966 u8 *ptr)
967{
968 struct adv_info *adv_instance;
969
970 adv_instance = hci_find_adv_instance(hdev, instance);
971 if (!adv_instance)
972 return 0;
973
974 /* TODO: Set the appropriate entries based on advertising instance flags
975 * here once flags other than 0 are supported.
976 */
977 memcpy(ptr, adv_instance->scan_rsp_data,
978 adv_instance->scan_rsp_len);
979
980 return adv_instance->scan_rsp_len;
981}
982
cab054ab 983void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
f2252570
JH
984{
985 struct hci_dev *hdev = req->hdev;
986 struct hci_cp_le_set_scan_rsp_data cp;
987 u8 len;
988
989 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
990 return;
991
992 memset(&cp, 0, sizeof(cp));
993
994 if (instance)
995 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
996 else
997 len = create_default_scan_rsp_data(hdev, cp.data);
998
999 if (hdev->scan_rsp_data_len == len &&
1000 !memcmp(cp.data, hdev->scan_rsp_data, len))
1001 return;
1002
1003 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1004 hdev->scan_rsp_data_len = len;
1005
1006 cp.length = len;
1007
1008 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1009}
1010
f2252570
JH
1011static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1012{
1013 struct adv_info *adv_instance = NULL;
1014 u8 ad_len = 0, flags = 0;
1015 u32 instance_flags;
1016
1017 /* Return 0 when the current instance identifier is invalid. */
1018 if (instance) {
1019 adv_instance = hci_find_adv_instance(hdev, instance);
1020 if (!adv_instance)
1021 return 0;
1022 }
1023
1024 instance_flags = get_adv_instance_flags(hdev, instance);
1025
1026 /* The Add Advertising command allows userspace to set both the general
1027 * and limited discoverable flags.
1028 */
1029 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1030 flags |= LE_AD_GENERAL;
1031
1032 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1033 flags |= LE_AD_LIMITED;
1034
1035 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1036 /* If a discovery flag wasn't provided, simply use the global
1037 * settings.
1038 */
1039 if (!flags)
1040 flags |= mgmt_get_adv_discov_flags(hdev);
1041
1042 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1043 flags |= LE_AD_NO_BREDR;
1044
1045 /* If flags would still be empty, then there is no need to
1046 * include the "Flags" AD field".
1047 */
1048 if (flags) {
1049 ptr[0] = 0x02;
1050 ptr[1] = EIR_FLAGS;
1051 ptr[2] = flags;
1052
1053 ad_len += 3;
1054 ptr += 3;
1055 }
1056 }
1057
1058 if (adv_instance) {
1059 memcpy(ptr, adv_instance->adv_data,
1060 adv_instance->adv_data_len);
1061 ad_len += adv_instance->adv_data_len;
1062 ptr += adv_instance->adv_data_len;
1063 }
1064
1065 /* Provide Tx Power only if we can provide a valid value for it */
1066 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1067 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1068 ptr[0] = 0x02;
1069 ptr[1] = EIR_TX_POWER;
1070 ptr[2] = (u8)hdev->adv_tx_power;
1071
1072 ad_len += 3;
1073 ptr += 3;
1074 }
1075
1076 return ad_len;
1077}
1078
cab054ab 1079void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
f2252570
JH
1080{
1081 struct hci_dev *hdev = req->hdev;
1082 struct hci_cp_le_set_adv_data cp;
1083 u8 len;
1084
1085 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1086 return;
1087
1088 memset(&cp, 0, sizeof(cp));
1089
1090 len = create_instance_adv_data(hdev, instance, cp.data);
1091
1092 /* There's nothing to do if the data hasn't changed */
1093 if (hdev->adv_data_len == len &&
1094 memcmp(cp.data, hdev->adv_data, len) == 0)
1095 return;
1096
1097 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1098 hdev->adv_data_len = len;
1099
1100 cp.length = len;
1101
1102 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1103}
1104
cab054ab 1105int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
f2252570
JH
1106{
1107 struct hci_request req;
1108
1109 hci_req_init(&req, hdev);
1110 __hci_req_update_adv_data(&req, instance);
1111
1112 return hci_req_run(&req, NULL);
1113}
1114
1115static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1116{
1117 BT_DBG("%s status %u", hdev->name, status);
1118}
1119
1120void hci_req_reenable_advertising(struct hci_dev *hdev)
1121{
1122 struct hci_request req;
f2252570
JH
1123
1124 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
17fd08ff 1125 list_empty(&hdev->adv_instances))
f2252570
JH
1126 return;
1127
f2252570
JH
1128 hci_req_init(&req, hdev);
1129
cab054ab
JH
1130 if (hdev->cur_adv_instance) {
1131 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1132 true);
f2252570 1133 } else {
cab054ab
JH
1134 __hci_req_update_adv_data(&req, 0x00);
1135 __hci_req_update_scan_rsp_data(&req, 0x00);
f2252570
JH
1136 __hci_req_enable_advertising(&req);
1137 }
1138
1139 hci_req_run(&req, adv_enable_complete);
1140}
1141
1142static void adv_timeout_expire(struct work_struct *work)
1143{
1144 struct hci_dev *hdev = container_of(work, struct hci_dev,
1145 adv_instance_expire.work);
1146
1147 struct hci_request req;
1148 u8 instance;
1149
1150 BT_DBG("%s", hdev->name);
1151
1152 hci_dev_lock(hdev);
1153
1154 hdev->adv_instance_timeout = 0;
1155
cab054ab 1156 instance = hdev->cur_adv_instance;
f2252570
JH
1157 if (instance == 0x00)
1158 goto unlock;
1159
1160 hci_req_init(&req, hdev);
1161
1162 hci_req_clear_adv_instance(hdev, &req, instance, false);
1163
1164 if (list_empty(&hdev->adv_instances))
1165 __hci_req_disable_advertising(&req);
1166
550a8ca7 1167 hci_req_run(&req, NULL);
f2252570
JH
1168
1169unlock:
1170 hci_dev_unlock(hdev);
1171}
1172
1173int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1174 bool force)
1175{
1176 struct hci_dev *hdev = req->hdev;
1177 struct adv_info *adv_instance = NULL;
1178 u16 timeout;
1179
1180 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
17fd08ff 1181 list_empty(&hdev->adv_instances))
f2252570
JH
1182 return -EPERM;
1183
1184 if (hdev->adv_instance_timeout)
1185 return -EBUSY;
1186
1187 adv_instance = hci_find_adv_instance(hdev, instance);
1188 if (!adv_instance)
1189 return -ENOENT;
1190
1191 /* A zero timeout means unlimited advertising. As long as there is
1192 * only one instance, duration should be ignored. We still set a timeout
1193 * in case further instances are being added later on.
1194 *
1195 * If the remaining lifetime of the instance is more than the duration
1196 * then the timeout corresponds to the duration, otherwise it will be
1197 * reduced to the remaining instance lifetime.
1198 */
1199 if (adv_instance->timeout == 0 ||
1200 adv_instance->duration <= adv_instance->remaining_time)
1201 timeout = adv_instance->duration;
1202 else
1203 timeout = adv_instance->remaining_time;
1204
1205 /* The remaining time is being reduced unless the instance is being
1206 * advertised without time limit.
1207 */
1208 if (adv_instance->timeout)
1209 adv_instance->remaining_time =
1210 adv_instance->remaining_time - timeout;
1211
1212 hdev->adv_instance_timeout = timeout;
1213 queue_delayed_work(hdev->req_workqueue,
1214 &hdev->adv_instance_expire,
1215 msecs_to_jiffies(timeout * 1000));
1216
1217 /* If we're just re-scheduling the same instance again then do not
1218 * execute any HCI commands. This happens when a single instance is
1219 * being advertised.
1220 */
1221 if (!force && hdev->cur_adv_instance == instance &&
1222 hci_dev_test_flag(hdev, HCI_LE_ADV))
1223 return 0;
1224
1225 hdev->cur_adv_instance = instance;
cab054ab
JH
1226 __hci_req_update_adv_data(req, instance);
1227 __hci_req_update_scan_rsp_data(req, instance);
f2252570
JH
1228 __hci_req_enable_advertising(req);
1229
1230 return 0;
1231}
1232
1233static void cancel_adv_timeout(struct hci_dev *hdev)
1234{
1235 if (hdev->adv_instance_timeout) {
1236 hdev->adv_instance_timeout = 0;
1237 cancel_delayed_work(&hdev->adv_instance_expire);
1238 }
1239}
1240
1241/* For a single instance:
1242 * - force == true: The instance will be removed even when its remaining
1243 * lifetime is not zero.
1244 * - force == false: the instance will be deactivated but kept stored unless
1245 * the remaining lifetime is zero.
1246 *
1247 * For instance == 0x00:
1248 * - force == true: All instances will be removed regardless of their timeout
1249 * setting.
1250 * - force == false: Only instances that have a timeout will be removed.
1251 */
1252void hci_req_clear_adv_instance(struct hci_dev *hdev, struct hci_request *req,
1253 u8 instance, bool force)
1254{
1255 struct adv_info *adv_instance, *n, *next_instance = NULL;
1256 int err;
1257 u8 rem_inst;
1258
1259 /* Cancel any timeout concerning the removed instance(s). */
1260 if (!instance || hdev->cur_adv_instance == instance)
1261 cancel_adv_timeout(hdev);
1262
1263 /* Get the next instance to advertise BEFORE we remove
1264 * the current one. This can be the same instance again
1265 * if there is only one instance.
1266 */
1267 if (instance && hdev->cur_adv_instance == instance)
1268 next_instance = hci_get_next_instance(hdev, instance);
1269
1270 if (instance == 0x00) {
1271 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1272 list) {
1273 if (!(force || adv_instance->timeout))
1274 continue;
1275
1276 rem_inst = adv_instance->instance;
1277 err = hci_remove_adv_instance(hdev, rem_inst);
1278 if (!err)
1279 mgmt_advertising_removed(NULL, hdev, rem_inst);
1280 }
f2252570
JH
1281 } else {
1282 adv_instance = hci_find_adv_instance(hdev, instance);
1283
1284 if (force || (adv_instance && adv_instance->timeout &&
1285 !adv_instance->remaining_time)) {
1286 /* Don't advertise a removed instance. */
1287 if (next_instance &&
1288 next_instance->instance == instance)
1289 next_instance = NULL;
1290
1291 err = hci_remove_adv_instance(hdev, instance);
1292 if (!err)
1293 mgmt_advertising_removed(NULL, hdev, instance);
1294 }
1295 }
1296
f2252570
JH
1297 if (!req || !hdev_is_powered(hdev) ||
1298 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1299 return;
1300
1301 if (next_instance)
1302 __hci_req_schedule_adv_instance(req, next_instance->instance,
1303 false);
1304}
1305
0857dd3b
JH
1306static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1307{
1308 struct hci_dev *hdev = req->hdev;
1309
1310 /* If we're advertising or initiating an LE connection we can't
1311 * go ahead and change the random address at this time. This is
1312 * because the eventual initiator address used for the
1313 * subsequently created connection will be undefined (some
1314 * controllers use the new address and others the one we had
1315 * when the operation started).
1316 *
1317 * In this kind of scenario skip the update and let the random
1318 * address be updated at the next cycle.
1319 */
d7a5a11d 1320 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
e7d9ab73 1321 hci_lookup_le_connect(hdev)) {
0857dd3b 1322 BT_DBG("Deferring random address update");
a1536da2 1323 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
0857dd3b
JH
1324 return;
1325 }
1326
1327 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1328}
1329
1330int hci_update_random_address(struct hci_request *req, bool require_privacy,
1331 u8 *own_addr_type)
1332{
1333 struct hci_dev *hdev = req->hdev;
1334 int err;
1335
1336 /* If privacy is enabled use a resolvable private address. If
1337 * current RPA has expired or there is something else than
1338 * the current RPA in use, then generate a new one.
1339 */
d7a5a11d 1340 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) {
0857dd3b
JH
1341 int to;
1342
1343 *own_addr_type = ADDR_LE_DEV_RANDOM;
1344
a69d8927 1345 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
0857dd3b
JH
1346 !bacmp(&hdev->random_addr, &hdev->rpa))
1347 return 0;
1348
1349 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1350 if (err < 0) {
1351 BT_ERR("%s failed to generate new RPA", hdev->name);
1352 return err;
1353 }
1354
1355 set_random_addr(req, &hdev->rpa);
1356
1357 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1358 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1359
1360 return 0;
1361 }
1362
1363 /* In case of required privacy without resolvable private address,
1364 * use an non-resolvable private address. This is useful for active
1365 * scanning and non-connectable advertising.
1366 */
1367 if (require_privacy) {
1368 bdaddr_t nrpa;
1369
1370 while (true) {
1371 /* The non-resolvable private address is generated
1372 * from random six bytes with the two most significant
1373 * bits cleared.
1374 */
1375 get_random_bytes(&nrpa, 6);
1376 nrpa.b[5] &= 0x3f;
1377
1378 /* The non-resolvable private address shall not be
1379 * equal to the public address.
1380 */
1381 if (bacmp(&hdev->bdaddr, &nrpa))
1382 break;
1383 }
1384
1385 *own_addr_type = ADDR_LE_DEV_RANDOM;
1386 set_random_addr(req, &nrpa);
1387 return 0;
1388 }
1389
1390 /* If forcing static address is in use or there is no public
1391 * address use the static address as random address (but skip
1392 * the HCI command if the current random address is already the
1393 * static one.
50b5b952
MH
1394 *
1395 * In case BR/EDR has been disabled on a dual-mode controller
1396 * and a static address has been configured, then use that
1397 * address instead of the public BR/EDR address.
0857dd3b 1398 */
b7cb93e5 1399 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
50b5b952 1400 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
d7a5a11d 1401 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
50b5b952 1402 bacmp(&hdev->static_addr, BDADDR_ANY))) {
0857dd3b
JH
1403 *own_addr_type = ADDR_LE_DEV_RANDOM;
1404 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1405 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1406 &hdev->static_addr);
1407 return 0;
1408 }
1409
1410 /* Neither privacy nor static address is being used so use a
1411 * public address.
1412 */
1413 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1414
1415 return 0;
1416}
2cf22218 1417
405a2611
JH
1418static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1419{
1420 struct bdaddr_list *b;
1421
1422 list_for_each_entry(b, &hdev->whitelist, list) {
1423 struct hci_conn *conn;
1424
1425 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1426 if (!conn)
1427 return true;
1428
1429 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1430 return true;
1431 }
1432
1433 return false;
1434}
1435
01b1cb87 1436void __hci_req_update_scan(struct hci_request *req)
405a2611
JH
1437{
1438 struct hci_dev *hdev = req->hdev;
1439 u8 scan;
1440
d7a5a11d 1441 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
405a2611
JH
1442 return;
1443
1444 if (!hdev_is_powered(hdev))
1445 return;
1446
1447 if (mgmt_powering_down(hdev))
1448 return;
1449
d7a5a11d 1450 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
405a2611
JH
1451 disconnected_whitelist_entries(hdev))
1452 scan = SCAN_PAGE;
1453 else
1454 scan = SCAN_DISABLED;
1455
d7a5a11d 1456 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
405a2611
JH
1457 scan |= SCAN_INQUIRY;
1458
01b1cb87
JH
1459 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1460 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1461 return;
1462
405a2611
JH
1463 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1464}
1465
01b1cb87 1466static int update_scan(struct hci_request *req, unsigned long opt)
405a2611 1467{
01b1cb87
JH
1468 hci_dev_lock(req->hdev);
1469 __hci_req_update_scan(req);
1470 hci_dev_unlock(req->hdev);
1471 return 0;
1472}
405a2611 1473
01b1cb87
JH
1474static void scan_update_work(struct work_struct *work)
1475{
1476 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1477
1478 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
405a2611
JH
1479}
1480
53c0ba74
JH
1481static int connectable_update(struct hci_request *req, unsigned long opt)
1482{
1483 struct hci_dev *hdev = req->hdev;
1484
1485 hci_dev_lock(hdev);
1486
1487 __hci_req_update_scan(req);
1488
1489 /* If BR/EDR is not enabled and we disable advertising as a
1490 * by-product of disabling connectable, we need to update the
1491 * advertising flags.
1492 */
1493 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
cab054ab 1494 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
53c0ba74
JH
1495
1496 /* Update the advertising parameters if necessary */
1497 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
17fd08ff 1498 !list_empty(&hdev->adv_instances))
53c0ba74
JH
1499 __hci_req_enable_advertising(req);
1500
1501 __hci_update_background_scan(req);
1502
1503 hci_dev_unlock(hdev);
1504
1505 return 0;
1506}
1507
1508static void connectable_update_work(struct work_struct *work)
1509{
1510 struct hci_dev *hdev = container_of(work, struct hci_dev,
1511 connectable_update);
1512 u8 status;
1513
1514 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1515 mgmt_set_connectable_complete(hdev, status);
1516}
1517
14bf5eac
JH
1518static u8 get_service_classes(struct hci_dev *hdev)
1519{
1520 struct bt_uuid *uuid;
1521 u8 val = 0;
1522
1523 list_for_each_entry(uuid, &hdev->uuids, list)
1524 val |= uuid->svc_hint;
1525
1526 return val;
1527}
1528
1529void __hci_req_update_class(struct hci_request *req)
1530{
1531 struct hci_dev *hdev = req->hdev;
1532 u8 cod[3];
1533
1534 BT_DBG("%s", hdev->name);
1535
1536 if (!hdev_is_powered(hdev))
1537 return;
1538
1539 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1540 return;
1541
1542 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1543 return;
1544
1545 cod[0] = hdev->minor_class;
1546 cod[1] = hdev->major_class;
1547 cod[2] = get_service_classes(hdev);
1548
1549 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1550 cod[1] |= 0x20;
1551
1552 if (memcmp(cod, hdev->dev_class, 3) == 0)
1553 return;
1554
1555 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1556}
1557
aed1a885
JH
1558static void write_iac(struct hci_request *req)
1559{
1560 struct hci_dev *hdev = req->hdev;
1561 struct hci_cp_write_current_iac_lap cp;
1562
1563 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1564 return;
1565
1566 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1567 /* Limited discoverable mode */
1568 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1569 cp.iac_lap[0] = 0x00; /* LIAC */
1570 cp.iac_lap[1] = 0x8b;
1571 cp.iac_lap[2] = 0x9e;
1572 cp.iac_lap[3] = 0x33; /* GIAC */
1573 cp.iac_lap[4] = 0x8b;
1574 cp.iac_lap[5] = 0x9e;
1575 } else {
1576 /* General discoverable mode */
1577 cp.num_iac = 1;
1578 cp.iac_lap[0] = 0x33; /* GIAC */
1579 cp.iac_lap[1] = 0x8b;
1580 cp.iac_lap[2] = 0x9e;
1581 }
1582
1583 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1584 (cp.num_iac * 3) + 1, &cp);
1585}
1586
1587static int discoverable_update(struct hci_request *req, unsigned long opt)
1588{
1589 struct hci_dev *hdev = req->hdev;
1590
1591 hci_dev_lock(hdev);
1592
1593 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1594 write_iac(req);
1595 __hci_req_update_scan(req);
1596 __hci_req_update_class(req);
1597 }
1598
1599 /* Advertising instances don't use the global discoverable setting, so
1600 * only update AD if advertising was enabled using Set Advertising.
1601 */
1602 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
cab054ab 1603 __hci_req_update_adv_data(req, 0x00);
aed1a885
JH
1604
1605 hci_dev_unlock(hdev);
1606
1607 return 0;
1608}
1609
1610static void discoverable_update_work(struct work_struct *work)
1611{
1612 struct hci_dev *hdev = container_of(work, struct hci_dev,
1613 discoverable_update);
1614 u8 status;
1615
1616 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1617 mgmt_set_discoverable_complete(hdev, status);
1618}
1619
dcc0f0d9
JH
1620void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1621 u8 reason)
1622{
1623 switch (conn->state) {
1624 case BT_CONNECTED:
1625 case BT_CONFIG:
1626 if (conn->type == AMP_LINK) {
1627 struct hci_cp_disconn_phy_link cp;
1628
1629 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1630 cp.reason = reason;
1631 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1632 &cp);
1633 } else {
1634 struct hci_cp_disconnect dc;
1635
1636 dc.handle = cpu_to_le16(conn->handle);
1637 dc.reason = reason;
1638 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1639 }
1640
1641 conn->state = BT_DISCONN;
1642
1643 break;
1644 case BT_CONNECT:
1645 if (conn->type == LE_LINK) {
1646 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1647 break;
1648 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1649 0, NULL);
1650 } else if (conn->type == ACL_LINK) {
1651 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1652 break;
1653 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1654 6, &conn->dst);
1655 }
1656 break;
1657 case BT_CONNECT2:
1658 if (conn->type == ACL_LINK) {
1659 struct hci_cp_reject_conn_req rej;
1660
1661 bacpy(&rej.bdaddr, &conn->dst);
1662 rej.reason = reason;
1663
1664 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1665 sizeof(rej), &rej);
1666 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1667 struct hci_cp_reject_sync_conn_req rej;
1668
1669 bacpy(&rej.bdaddr, &conn->dst);
1670
1671 /* SCO rejection has its own limited set of
1672 * allowed error values (0x0D-0x0F) which isn't
1673 * compatible with most values passed to this
1674 * function. To be safe hard-code one of the
1675 * values that's suitable for SCO.
1676 */
1677 rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;
1678
1679 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1680 sizeof(rej), &rej);
1681 }
1682 break;
1683 default:
1684 conn->state = BT_CLOSED;
1685 break;
1686 }
1687}
1688
1689static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1690{
1691 if (status)
1692 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1693}
1694
1695int hci_abort_conn(struct hci_conn *conn, u8 reason)
1696{
1697 struct hci_request req;
1698 int err;
1699
1700 hci_req_init(&req, conn->hdev);
1701
1702 __hci_abort_conn(&req, conn, reason);
1703
1704 err = hci_req_run(&req, abort_conn_complete);
1705 if (err && err != -ENODATA) {
1706 BT_ERR("Failed to run HCI request: err %d", err);
1707 return err;
1708 }
1709
1710 return 0;
1711}
5fc16cc4 1712
a1d01db1 1713static int update_bg_scan(struct hci_request *req, unsigned long opt)
2e93e53b
JH
1714{
1715 hci_dev_lock(req->hdev);
1716 __hci_update_background_scan(req);
1717 hci_dev_unlock(req->hdev);
a1d01db1 1718 return 0;
2e93e53b
JH
1719}
1720
1721static void bg_scan_update(struct work_struct *work)
1722{
1723 struct hci_dev *hdev = container_of(work, struct hci_dev,
1724 bg_scan_update);
84235d22
JH
1725 struct hci_conn *conn;
1726 u8 status;
1727 int err;
1728
1729 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1730 if (!err)
1731 return;
1732
1733 hci_dev_lock(hdev);
1734
1735 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1736 if (conn)
1737 hci_le_conn_failed(conn, status);
2e93e53b 1738
84235d22 1739 hci_dev_unlock(hdev);
2e93e53b
JH
1740}
1741
f4a2cb4d 1742static int le_scan_disable(struct hci_request *req, unsigned long opt)
7c1fbed2 1743{
f4a2cb4d
JH
1744 hci_req_add_le_scan_disable(req);
1745 return 0;
7c1fbed2
JH
1746}
1747
f4a2cb4d 1748static int bredr_inquiry(struct hci_request *req, unsigned long opt)
7c1fbed2 1749{
f4a2cb4d 1750 u8 length = opt;
78b781ca
JH
1751 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1752 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
7c1fbed2 1753 struct hci_cp_inquiry cp;
7c1fbed2 1754
f4a2cb4d 1755 BT_DBG("%s", req->hdev->name);
7c1fbed2 1756
f4a2cb4d
JH
1757 hci_dev_lock(req->hdev);
1758 hci_inquiry_cache_flush(req->hdev);
1759 hci_dev_unlock(req->hdev);
7c1fbed2 1760
f4a2cb4d 1761 memset(&cp, 0, sizeof(cp));
78b781ca
JH
1762
1763 if (req->hdev->discovery.limited)
1764 memcpy(&cp.lap, liac, sizeof(cp.lap));
1765 else
1766 memcpy(&cp.lap, giac, sizeof(cp.lap));
1767
f4a2cb4d 1768 cp.length = length;
7c1fbed2 1769
f4a2cb4d 1770 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
7c1fbed2 1771
a1d01db1 1772 return 0;
7c1fbed2
JH
1773}
1774
1775static void le_scan_disable_work(struct work_struct *work)
1776{
1777 struct hci_dev *hdev = container_of(work, struct hci_dev,
1778 le_scan_disable.work);
1779 u8 status;
7c1fbed2
JH
1780
1781 BT_DBG("%s", hdev->name);
1782
f4a2cb4d
JH
1783 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1784 return;
1785
7c1fbed2
JH
1786 cancel_delayed_work(&hdev->le_scan_restart);
1787
f4a2cb4d
JH
1788 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1789 if (status) {
1790 BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1791 return;
1792 }
1793
1794 hdev->discovery.scan_start = 0;
1795
1796 /* If we were running LE only scan, change discovery state. If
1797 * we were running both LE and BR/EDR inquiry simultaneously,
1798 * and BR/EDR inquiry is already finished, stop discovery,
1799 * otherwise BR/EDR inquiry will stop discovery when finished.
1800 * If we will resolve remote device name, do not change
1801 * discovery state.
1802 */
1803
1804 if (hdev->discovery.type == DISCOV_TYPE_LE)
1805 goto discov_stopped;
1806
1807 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
7c1fbed2
JH
1808 return;
1809
f4a2cb4d
JH
1810 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1811 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1812 hdev->discovery.state != DISCOVERY_RESOLVING)
1813 goto discov_stopped;
1814
1815 return;
1816 }
1817
1818 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1819 HCI_CMD_TIMEOUT, &status);
1820 if (status) {
1821 BT_ERR("Inquiry failed: status 0x%02x", status);
1822 goto discov_stopped;
1823 }
1824
1825 return;
1826
1827discov_stopped:
1828 hci_dev_lock(hdev);
1829 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1830 hci_dev_unlock(hdev);
7c1fbed2
JH
1831}
1832
3dfe5905
JH
1833static int le_scan_restart(struct hci_request *req, unsigned long opt)
1834{
1835 struct hci_dev *hdev = req->hdev;
1836 struct hci_cp_le_set_scan_enable cp;
1837
1838 /* If controller is not scanning we are done. */
1839 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1840 return 0;
1841
1842 hci_req_add_le_scan_disable(req);
1843
1844 memset(&cp, 0, sizeof(cp));
1845 cp.enable = LE_SCAN_ENABLE;
1846 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1847 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1848
1849 return 0;
1850}
1851
1852static void le_scan_restart_work(struct work_struct *work)
7c1fbed2 1853{
3dfe5905
JH
1854 struct hci_dev *hdev = container_of(work, struct hci_dev,
1855 le_scan_restart.work);
7c1fbed2 1856 unsigned long timeout, duration, scan_start, now;
3dfe5905 1857 u8 status;
7c1fbed2
JH
1858
1859 BT_DBG("%s", hdev->name);
1860
3dfe5905 1861 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
7c1fbed2
JH
1862 if (status) {
1863 BT_ERR("Failed to restart LE scan: status %d", status);
1864 return;
1865 }
1866
1867 hci_dev_lock(hdev);
1868
1869 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1870 !hdev->discovery.scan_start)
1871 goto unlock;
1872
1873 /* When the scan was started, hdev->le_scan_disable has been queued
1874 * after duration from scan_start. During scan restart this job
1875 * has been canceled, and we need to queue it again after proper
1876 * timeout, to make sure that scan does not run indefinitely.
1877 */
1878 duration = hdev->discovery.scan_duration;
1879 scan_start = hdev->discovery.scan_start;
1880 now = jiffies;
1881 if (now - scan_start <= duration) {
1882 int elapsed;
1883
1884 if (now >= scan_start)
1885 elapsed = now - scan_start;
1886 else
1887 elapsed = ULONG_MAX - scan_start + now;
1888
1889 timeout = duration - elapsed;
1890 } else {
1891 timeout = 0;
1892 }
1893
1894 queue_delayed_work(hdev->req_workqueue,
1895 &hdev->le_scan_disable, timeout);
1896
1897unlock:
1898 hci_dev_unlock(hdev);
1899}
1900
e68f072b
JH
1901static void disable_advertising(struct hci_request *req)
1902{
1903 u8 enable = 0x00;
1904
1905 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1906}
1907
1908static int active_scan(struct hci_request *req, unsigned long opt)
1909{
1910 uint16_t interval = opt;
1911 struct hci_dev *hdev = req->hdev;
1912 struct hci_cp_le_set_scan_param param_cp;
1913 struct hci_cp_le_set_scan_enable enable_cp;
1914 u8 own_addr_type;
1915 int err;
1916
1917 BT_DBG("%s", hdev->name);
1918
1919 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1920 hci_dev_lock(hdev);
1921
1922 /* Don't let discovery abort an outgoing connection attempt
1923 * that's using directed advertising.
1924 */
1925 if (hci_lookup_le_connect(hdev)) {
1926 hci_dev_unlock(hdev);
1927 return -EBUSY;
1928 }
1929
1930 cancel_adv_timeout(hdev);
1931 hci_dev_unlock(hdev);
1932
1933 disable_advertising(req);
1934 }
1935
1936 /* If controller is scanning, it means the background scanning is
1937 * running. Thus, we should temporarily stop it in order to set the
1938 * discovery scanning parameters.
1939 */
1940 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1941 hci_req_add_le_scan_disable(req);
1942
1943 /* All active scans will be done with either a resolvable private
1944 * address (when privacy feature has been enabled) or non-resolvable
1945 * private address.
1946 */
1947 err = hci_update_random_address(req, true, &own_addr_type);
1948 if (err < 0)
1949 own_addr_type = ADDR_LE_DEV_PUBLIC;
1950
1951 memset(&param_cp, 0, sizeof(param_cp));
1952 param_cp.type = LE_SCAN_ACTIVE;
1953 param_cp.interval = cpu_to_le16(interval);
1954 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
1955 param_cp.own_address_type = own_addr_type;
1956
1957 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
1958 &param_cp);
1959
1960 memset(&enable_cp, 0, sizeof(enable_cp));
1961 enable_cp.enable = LE_SCAN_ENABLE;
1962 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1963
1964 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
1965 &enable_cp);
1966
1967 return 0;
1968}
1969
1970static int interleaved_discov(struct hci_request *req, unsigned long opt)
1971{
1972 int err;
1973
1974 BT_DBG("%s", req->hdev->name);
1975
1976 err = active_scan(req, opt);
1977 if (err)
1978 return err;
1979
7df26b56 1980 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
e68f072b
JH
1981}
1982
1983static void start_discovery(struct hci_dev *hdev, u8 *status)
1984{
1985 unsigned long timeout;
1986
1987 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
1988
1989 switch (hdev->discovery.type) {
1990 case DISCOV_TYPE_BREDR:
1991 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
7df26b56
JH
1992 hci_req_sync(hdev, bredr_inquiry,
1993 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
e68f072b
JH
1994 status);
1995 return;
1996 case DISCOV_TYPE_INTERLEAVED:
1997 /* When running simultaneous discovery, the LE scanning time
1998 * should occupy the whole discovery time sine BR/EDR inquiry
1999 * and LE scanning are scheduled by the controller.
2000 *
2001 * For interleaving discovery in comparison, BR/EDR inquiry
2002 * and LE scanning are done sequentially with separate
2003 * timeouts.
2004 */
2005 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2006 &hdev->quirks)) {
2007 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2008 /* During simultaneous discovery, we double LE scan
2009 * interval. We must leave some time for the controller
2010 * to do BR/EDR inquiry.
2011 */
2012 hci_req_sync(hdev, interleaved_discov,
2013 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2014 status);
2015 break;
2016 }
2017
2018 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2019 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2020 HCI_CMD_TIMEOUT, status);
2021 break;
2022 case DISCOV_TYPE_LE:
2023 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2024 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2025 HCI_CMD_TIMEOUT, status);
2026 break;
2027 default:
2028 *status = HCI_ERROR_UNSPECIFIED;
2029 return;
2030 }
2031
2032 if (*status)
2033 return;
2034
2035 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2036
2037 /* When service discovery is used and the controller has a
2038 * strict duplicate filter, it is important to remember the
2039 * start and duration of the scan. This is required for
2040 * restarting scanning during the discovery phase.
2041 */
2042 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2043 hdev->discovery.result_filtering) {
2044 hdev->discovery.scan_start = jiffies;
2045 hdev->discovery.scan_duration = timeout;
2046 }
2047
2048 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2049 timeout);
2050}
2051
2154d3f4
JH
2052bool hci_req_stop_discovery(struct hci_request *req)
2053{
2054 struct hci_dev *hdev = req->hdev;
2055 struct discovery_state *d = &hdev->discovery;
2056 struct hci_cp_remote_name_req_cancel cp;
2057 struct inquiry_entry *e;
2058 bool ret = false;
2059
2060 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2061
2062 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2063 if (test_bit(HCI_INQUIRY, &hdev->flags))
2064 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2065
2066 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2067 cancel_delayed_work(&hdev->le_scan_disable);
2068 hci_req_add_le_scan_disable(req);
2069 }
2070
2071 ret = true;
2072 } else {
2073 /* Passive scanning */
2074 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2075 hci_req_add_le_scan_disable(req);
2076 ret = true;
2077 }
2078 }
2079
2080 /* No further actions needed for LE-only discovery */
2081 if (d->type == DISCOV_TYPE_LE)
2082 return ret;
2083
2084 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2085 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2086 NAME_PENDING);
2087 if (!e)
2088 return ret;
2089
2090 bacpy(&cp.bdaddr, &e->data.bdaddr);
2091 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2092 &cp);
2093 ret = true;
2094 }
2095
2096 return ret;
2097}
2098
2099static int stop_discovery(struct hci_request *req, unsigned long opt)
2100{
2101 hci_dev_lock(req->hdev);
2102 hci_req_stop_discovery(req);
2103 hci_dev_unlock(req->hdev);
2104
2105 return 0;
2106}
2107
e68f072b
JH
2108static void discov_update(struct work_struct *work)
2109{
2110 struct hci_dev *hdev = container_of(work, struct hci_dev,
2111 discov_update);
2112 u8 status = 0;
2113
2114 switch (hdev->discovery.state) {
2115 case DISCOVERY_STARTING:
2116 start_discovery(hdev, &status);
2117 mgmt_start_discovery_complete(hdev, status);
2118 if (status)
2119 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2120 else
2121 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2122 break;
2154d3f4
JH
2123 case DISCOVERY_STOPPING:
2124 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2125 mgmt_stop_discovery_complete(hdev, status);
2126 if (!status)
2127 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2128 break;
e68f072b
JH
2129 case DISCOVERY_STOPPED:
2130 default:
2131 return;
2132 }
2133}
2134
c366f555
JH
2135static void discov_off(struct work_struct *work)
2136{
2137 struct hci_dev *hdev = container_of(work, struct hci_dev,
2138 discov_off.work);
2139
2140 BT_DBG("%s", hdev->name);
2141
2142 hci_dev_lock(hdev);
2143
2144 /* When discoverable timeout triggers, then just make sure
2145 * the limited discoverable flag is cleared. Even in the case
2146 * of a timeout triggered from general discoverable, it is
2147 * safe to unconditionally clear the flag.
2148 */
2149 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2150 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2151 hdev->discov_timeout = 0;
2152
2153 hci_dev_unlock(hdev);
2154
2155 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2156 mgmt_new_settings(hdev);
2157}
2158
2ff13894
JH
2159static int powered_update_hci(struct hci_request *req, unsigned long opt)
2160{
2161 struct hci_dev *hdev = req->hdev;
2ff13894
JH
2162 u8 link_sec;
2163
2164 hci_dev_lock(hdev);
2165
2166 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2167 !lmp_host_ssp_capable(hdev)) {
2168 u8 mode = 0x01;
2169
2170 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2171
2172 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2173 u8 support = 0x01;
2174
2175 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2176 sizeof(support), &support);
2177 }
2178 }
2179
2180 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2181 lmp_bredr_capable(hdev)) {
2182 struct hci_cp_write_le_host_supported cp;
2183
2184 cp.le = 0x01;
2185 cp.simul = 0x00;
2186
2187 /* Check first if we already have the right
2188 * host state (host features set)
2189 */
2190 if (cp.le != lmp_host_le_capable(hdev) ||
2191 cp.simul != lmp_host_le_br_capable(hdev))
2192 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2193 sizeof(cp), &cp);
2194 }
2195
d6b7e2cd 2196 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2ff13894
JH
2197 /* Make sure the controller has a good default for
2198 * advertising data. This also applies to the case
2199 * where BR/EDR was toggled during the AUTO_OFF phase.
2200 */
d6b7e2cd
JH
2201 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2202 list_empty(&hdev->adv_instances)) {
2203 __hci_req_update_adv_data(req, 0x00);
2204 __hci_req_update_scan_rsp_data(req, 0x00);
2205
2206 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2207 __hci_req_enable_advertising(req);
2208 } else if (!list_empty(&hdev->adv_instances)) {
2209 struct adv_info *adv_instance;
2ff13894 2210
2ff13894
JH
2211 adv_instance = list_first_entry(&hdev->adv_instances,
2212 struct adv_info, list);
2ff13894 2213 __hci_req_schedule_adv_instance(req,
d6b7e2cd 2214 adv_instance->instance,
2ff13894 2215 true);
d6b7e2cd 2216 }
2ff13894
JH
2217 }
2218
2219 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2220 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2221 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2222 sizeof(link_sec), &link_sec);
2223
2224 if (lmp_bredr_capable(hdev)) {
2225 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2226 __hci_req_write_fast_connectable(req, true);
2227 else
2228 __hci_req_write_fast_connectable(req, false);
2229 __hci_req_update_scan(req);
2230 __hci_req_update_class(req);
2231 __hci_req_update_name(req);
2232 __hci_req_update_eir(req);
2233 }
2234
2235 hci_dev_unlock(hdev);
2236 return 0;
2237}
2238
2239int __hci_req_hci_power_on(struct hci_dev *hdev)
2240{
2241 /* Register the available SMP channels (BR/EDR and LE) only when
2242 * successfully powering on the controller. This late
2243 * registration is required so that LE SMP can clearly decide if
2244 * the public address or static address is used.
2245 */
2246 smp_register(hdev);
2247
2248 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2249 NULL);
2250}
2251
5fc16cc4
JH
2252void hci_request_setup(struct hci_dev *hdev)
2253{
e68f072b 2254 INIT_WORK(&hdev->discov_update, discov_update);
2e93e53b 2255 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
01b1cb87 2256 INIT_WORK(&hdev->scan_update, scan_update_work);
53c0ba74 2257 INIT_WORK(&hdev->connectable_update, connectable_update_work);
aed1a885 2258 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
c366f555 2259 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
7c1fbed2
JH
2260 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2261 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
f2252570 2262 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
5fc16cc4
JH
2263}
2264
2265void hci_request_cancel_all(struct hci_dev *hdev)
2266{
7df0f73e
JH
2267 hci_req_sync_cancel(hdev, ENODEV);
2268
e68f072b 2269 cancel_work_sync(&hdev->discov_update);
2e93e53b 2270 cancel_work_sync(&hdev->bg_scan_update);
01b1cb87 2271 cancel_work_sync(&hdev->scan_update);
53c0ba74 2272 cancel_work_sync(&hdev->connectable_update);
aed1a885 2273 cancel_work_sync(&hdev->discoverable_update);
c366f555 2274 cancel_delayed_work_sync(&hdev->discov_off);
7c1fbed2
JH
2275 cancel_delayed_work_sync(&hdev->le_scan_disable);
2276 cancel_delayed_work_sync(&hdev->le_scan_restart);
f2252570
JH
2277
2278 if (hdev->adv_instance_timeout) {
2279 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2280 hdev->adv_instance_timeout = 0;
2281 }
5fc16cc4 2282}
This page took 0.17402 seconds and 5 git commands to generate.