Merge tag 'iommu-updates-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4
LT
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
5acbbd42 131#include <linux/pci.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
e687ad60 140#include <linux/netfilter_ingress.h>
6ae23ad3 141#include <linux/sctp.h>
1da177e4 142
342709ef
PE
143#include "net-sysfs.h"
144
d565b0a1
HX
145/* Instead of increasing this, you should create a hash table. */
146#define MAX_GRO_SKBS 8
147
5d38a079
HX
148/* This should be increased if a protocol with a bigger head is added. */
149#define GRO_MAX_HEAD (MAX_HEADER + 128)
150
1da177e4 151static DEFINE_SPINLOCK(ptype_lock);
62532da9 152static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
153struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154struct list_head ptype_all __read_mostly; /* Taps */
62532da9 155static struct list_head offload_base __read_mostly;
1da177e4 156
ae78dbfa 157static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
158static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
ae78dbfa 161
1da177e4 162/*
7562f876 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
164 * semaphore.
165 *
c6d14c84 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
7562f876 169 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
1da177e4 181DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
182EXPORT_SYMBOL(dev_base_lock);
183
af12fa6e
ET
184/* protects napi_hash addition/deletion and napi_gen_id */
185static DEFINE_SPINLOCK(napi_hash_lock);
186
52bd2d62 187static unsigned int napi_gen_id = NR_CPUS;
6180d9de 188static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 189
18afa4b0 190static seqcount_t devnet_rename_seq;
c91f6df2 191
4e985ada
TG
192static inline void dev_base_seq_inc(struct net *net)
193{
194 while (++net->dev_base_seq == 0);
195}
196
881d966b 197static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 198{
95c96174
ED
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
e36fa2f7 209static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
210{
211#ifdef CONFIG_RPS
e36fa2f7 212 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
213#endif
214}
215
e36fa2f7 216static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
ce286d32 223/* Device list insertion */
53759be9 224static void list_netdevice(struct net_device *dev)
ce286d32 225{
c346dca1 226 struct net *net = dev_net(dev);
ce286d32
EB
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
c6d14c84 231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
ce286d32 235 write_unlock_bh(&dev_base_lock);
4e985ada
TG
236
237 dev_base_seq_inc(net);
ce286d32
EB
238}
239
fb699dfd
ED
240/* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
ce286d32
EB
243static void unlist_netdevice(struct net_device *dev)
244{
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
c6d14c84 249 list_del_rcu(&dev->dev_list);
72c9528b 250 hlist_del_rcu(&dev->name_hlist);
fb699dfd 251 hlist_del_rcu(&dev->index_hlist);
ce286d32 252 write_unlock_bh(&dev_base_lock);
4e985ada
TG
253
254 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
255}
256
1da177e4
LT
257/*
258 * Our notifier list
259 */
260
f07d5b94 261static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
262
263/*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
bea3348e 267
9958da05 268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 269EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 270
cf508b12 271#ifdef CONFIG_LOCKDEP
723e98b7 272/*
c773e847 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
274 * according to dev->type
275 */
276static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 292
36cbd3dc 293static const char *const netdev_lock_name[] =
723e98b7
JP
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
309
310static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 311static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
312
313static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314{
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322}
323
cf508b12
DM
324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
723e98b7
JP
326{
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332}
cf508b12
DM
333
334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335{
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342}
723e98b7 343#else
cf508b12
DM
344static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346{
347}
348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
349{
350}
351#endif
1da177e4
LT
352
353/*******************************************************************************
354
355 Protocol management and registration routines
356
357*******************************************************************************/
358
1da177e4
LT
359/*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
c07b68e8
ED
375static inline struct list_head *ptype_head(const struct packet_type *pt)
376{
377 if (pt->type == htons(ETH_P_ALL))
7866a621 378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 379 else
7866a621
SN
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
382}
383
1da177e4
LT
384/**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
4ec93edb 392 * This call does not sleep therefore it can not
1da177e4
LT
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397void dev_add_pack(struct packet_type *pt)
398{
c07b68e8 399 struct list_head *head = ptype_head(pt);
1da177e4 400
c07b68e8
ED
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
1da177e4 404}
d1b19dff 405EXPORT_SYMBOL(dev_add_pack);
1da177e4 406
1da177e4
LT
407/**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
4ec93edb 414 * returns.
1da177e4
LT
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420void __dev_remove_pack(struct packet_type *pt)
421{
c07b68e8 422 struct list_head *head = ptype_head(pt);
1da177e4
LT
423 struct packet_type *pt1;
424
c07b68e8 425 spin_lock(&ptype_lock);
1da177e4
LT
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
7b6cd1ce 434 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 435out:
c07b68e8 436 spin_unlock(&ptype_lock);
1da177e4 437}
d1b19dff
ED
438EXPORT_SYMBOL(__dev_remove_pack);
439
1da177e4
LT
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
4ec93edb 455
1da177e4
LT
456 synchronize_net();
457}
d1b19dff 458EXPORT_SYMBOL(dev_remove_pack);
1da177e4 459
62532da9
VY
460
461/**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473void dev_add_offload(struct packet_offload *po)
474{
bdef7de4 475 struct packet_offload *elem;
62532da9
VY
476
477 spin_lock(&offload_lock);
bdef7de4
DM
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
483 spin_unlock(&offload_lock);
484}
485EXPORT_SYMBOL(dev_add_offload);
486
487/**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
1d143d9f 500static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
501{
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
c53aa505 505 spin_lock(&offload_lock);
62532da9
VY
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515out:
c53aa505 516 spin_unlock(&offload_lock);
62532da9 517}
62532da9
VY
518
519/**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531void dev_remove_offload(struct packet_offload *po)
532{
533 __dev_remove_offload(po);
534
535 synchronize_net();
536}
537EXPORT_SYMBOL(dev_remove_offload);
538
1da177e4
LT
539/******************************************************************************
540
541 Device Boot-time Settings Routines
542
543*******************************************************************************/
544
545/* Boot time configuration table */
546static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548/**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557static int netdev_boot_setup_add(char *name, struct ifmap *map)
558{
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 566 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573}
574
575/**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584int netdev_boot_setup_check(struct net_device *dev)
585{
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 591 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600}
d1b19dff 601EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
602
603
604/**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614unsigned long netdev_boot_base(const char *prefix, int unit)
615{
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
881d966b 626 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633}
634
635/*
636 * Saves at boot time configured settings for any netdevice.
637 */
638int __init netdev_boot_setup(char *str)
639{
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660}
661
662__setup("netdev=", netdev_boot_setup);
663
664/*******************************************************************************
665
666 Device Interface Subroutines
667
668*******************************************************************************/
669
a54acb3a
ND
670/**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678int dev_get_iflink(const struct net_device *dev)
679{
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
7a66bbc9 683 return dev->ifindex;
a54acb3a
ND
684}
685EXPORT_SYMBOL(dev_get_iflink);
686
fc4099f1
PS
687/**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697{
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710}
711EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
1da177e4
LT
713/**
714 * __dev_get_by_name - find a device by its name
c4ea43c5 715 * @net: the applicable net namespace
1da177e4
LT
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
881d966b 725struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 726{
0bd8d536
ED
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 729
b67bfe0d 730 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
0bd8d536 733
1da177e4
LT
734 return NULL;
735}
d1b19dff 736EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 737
72c9528b
ED
738/**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751{
72c9528b
ED
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
b67bfe0d 755 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
1da177e4
LT
763/**
764 * dev_get_by_name - find a device by its name
c4ea43c5 765 * @net: the applicable net namespace
1da177e4
LT
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
881d966b 775struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
776{
777 struct net_device *dev;
778
72c9528b
ED
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
781 if (dev)
782 dev_hold(dev);
72c9528b 783 rcu_read_unlock();
1da177e4
LT
784 return dev;
785}
d1b19dff 786EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
787
788/**
789 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 790 * @net: the applicable net namespace
1da177e4
LT
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
881d966b 800struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 801{
0bd8d536
ED
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 804
b67bfe0d 805 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
806 if (dev->ifindex == ifindex)
807 return dev;
0bd8d536 808
1da177e4
LT
809 return NULL;
810}
d1b19dff 811EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 812
fb699dfd
ED
813/**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825{
fb699dfd
ED
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
b67bfe0d 829 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(dev_get_by_index_rcu);
836
1da177e4
LT
837
838/**
839 * dev_get_by_index - find a device by its ifindex
c4ea43c5 840 * @net: the applicable net namespace
1da177e4
LT
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
881d966b 849struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
850{
851 struct net_device *dev;
852
fb699dfd
ED
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
855 if (dev)
856 dev_hold(dev);
fb699dfd 857 rcu_read_unlock();
1da177e4
LT
858 return dev;
859}
d1b19dff 860EXPORT_SYMBOL(dev_get_by_index);
1da177e4 861
5dbe7c17
NS
862/**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872int netdev_get_name(struct net *net, char *name, int ifindex)
873{
874 struct net_device *dev;
875 unsigned int seq;
876
877retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894}
895
1da177e4 896/**
941666c2 897 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 898 * @net: the applicable net namespace
1da177e4
LT
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
941666c2 905 * The returned device has not had its ref count increased
1da177e4
LT
906 * and the caller must therefore be careful about locking
907 *
1da177e4
LT
908 */
909
941666c2
ED
910struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
1da177e4
LT
912{
913 struct net_device *dev;
914
941666c2 915 for_each_netdev_rcu(net, dev)
1da177e4
LT
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
918 return dev;
919
920 return NULL;
1da177e4 921}
941666c2 922EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 923
881d966b 924struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
925{
926 struct net_device *dev;
927
4e9cac2b 928 ASSERT_RTNL();
881d966b 929 for_each_netdev(net, dev)
4e9cac2b 930 if (dev->type == type)
7562f876
PE
931 return dev;
932
933 return NULL;
4e9cac2b 934}
4e9cac2b
PM
935EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
881d966b 937struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 938{
99fe3c39 939 struct net_device *dev, *ret = NULL;
4e9cac2b 940
99fe3c39
ED
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
1da177e4 950}
1da177e4
LT
951EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953/**
6c555490 954 * __dev_get_by_flags - find any device with given flags
c4ea43c5 955 * @net: the applicable net namespace
1da177e4
LT
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 960 * is not found or a pointer to the device. Must be called inside
6c555490 961 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
962 */
963
6c555490
WC
964struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
1da177e4 966{
7562f876 967 struct net_device *dev, *ret;
1da177e4 968
6c555490
WC
969 ASSERT_RTNL();
970
7562f876 971 ret = NULL;
6c555490 972 for_each_netdev(net, dev) {
1da177e4 973 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 974 ret = dev;
1da177e4
LT
975 break;
976 }
977 }
7562f876 978 return ret;
1da177e4 979}
6c555490 980EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
981
982/**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
c7fa9d18
DM
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
1da177e4 989 */
95f050bf 990bool dev_valid_name(const char *name)
1da177e4 991{
c7fa9d18 992 if (*name == '\0')
95f050bf 993 return false;
b6fe17d6 994 if (strlen(name) >= IFNAMSIZ)
95f050bf 995 return false;
c7fa9d18 996 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 997 return false;
c7fa9d18
DM
998
999 while (*name) {
a4176a93 1000 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1001 return false;
c7fa9d18
DM
1002 name++;
1003 }
95f050bf 1004 return true;
1da177e4 1005}
d1b19dff 1006EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1007
1008/**
b267b179
EB
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1da177e4 1011 * @name: name format string
b267b179 1012 * @buf: scratch buffer and result name string
1da177e4
LT
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1021 */
1022
b267b179 1023static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1024{
1025 int i = 0;
1da177e4
LT
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1028 unsigned long *inuse;
1da177e4
LT
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
cfcabdcc 1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1043 if (!inuse)
1044 return -ENOMEM;
1045
881d966b 1046 for_each_netdev(net, d) {
1da177e4
LT
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1053 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
d9031024
OP
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1064 if (!__dev_get_by_name(net, buf))
1da177e4 1065 return i;
1da177e4
LT
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072}
1073
b267b179
EB
1074/**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088int dev_alloc_name(struct net_device *dev, const char *name)
1089{
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
c346dca1
YH
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
b267b179
EB
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100}
d1b19dff 1101EXPORT_SYMBOL(dev_alloc_name);
b267b179 1102
828de4f6
G
1103static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
d9031024 1106{
828de4f6
G
1107 char buf[IFNAMSIZ];
1108 int ret;
8ce6cebc 1109
828de4f6
G
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114}
1115
1116static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119{
1120 BUG_ON(!net);
8ce6cebc 1121
d9031024
OP
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1c5cae81 1125 if (strchr(name, '%'))
828de4f6 1126 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
8ce6cebc
DL
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1131
1132 return 0;
1133}
1da177e4
LT
1134
1135/**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
cf04a4c7 1143int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1144{
238fa362 1145 unsigned char old_assign_type;
fcc5a03a 1146 char oldname[IFNAMSIZ];
1da177e4 1147 int err = 0;
fcc5a03a 1148 int ret;
881d966b 1149 struct net *net;
1da177e4
LT
1150
1151 ASSERT_RTNL();
c346dca1 1152 BUG_ON(!dev_net(dev));
1da177e4 1153
c346dca1 1154 net = dev_net(dev);
1da177e4
LT
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1161 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1162 return 0;
c91f6df2 1163 }
c8d90dca 1164
fcc5a03a
HX
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
828de4f6 1167 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1168 if (err < 0) {
30e6c9fa 1169 write_seqcount_end(&devnet_rename_seq);
d9031024 1170 return err;
c91f6df2 1171 }
1da177e4 1172
6fe82a39
VF
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
238fa362
TG
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
fcc5a03a 1179rollback:
a1b3f594
EB
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1183 dev->name_assign_type = old_assign_type;
30e6c9fa 1184 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1185 return ret;
dcc99773 1186 }
7f988eab 1187
30e6c9fa 1188 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1189
5bb025fa
VF
1190 netdev_adjacent_rename_links(dev, oldname);
1191
7f988eab 1192 write_lock_bh(&dev_base_lock);
372b2312 1193 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1200 write_unlock_bh(&dev_base_lock);
1201
056925ab 1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
91e9c07b
ED
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
fcc5a03a 1208 err = ret;
30e6c9fa 1209 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1210 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1211 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1214 goto rollback;
91e9c07b 1215 } else {
7b6cd1ce 1216 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1217 dev->name, ret);
fcc5a03a
HX
1218 }
1219 }
1da177e4
LT
1220
1221 return err;
1222}
1223
0b815a1a
SH
1224/**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
f0db275a 1228 * @len: limit of bytes to copy from info
0b815a1a
SH
1229 *
1230 * Set ifalias for a device,
1231 */
1232int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233{
7364e445
AK
1234 char *new_ifalias;
1235
0b815a1a
SH
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
96ca4a2c 1241 if (!len) {
388dfc2d
SK
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
96ca4a2c
OH
1244 return 0;
1245 }
1246
7364e445
AK
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
0b815a1a 1249 return -ENOMEM;
7364e445 1250 dev->ifalias = new_ifalias;
0b815a1a
SH
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254}
1255
1256
d8a33ac4 1257/**
3041a069 1258 * netdev_features_change - device changes features
d8a33ac4
SH
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263void netdev_features_change(struct net_device *dev)
1264{
056925ab 1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1266}
1267EXPORT_SYMBOL(netdev_features_change);
1268
1da177e4
LT
1269/**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277void netdev_state_change(struct net_device *dev)
1278{
1279 if (dev->flags & IFF_UP) {
54951194
LP
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
7f294054 1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1286 }
1287}
d1b19dff 1288EXPORT_SYMBOL(netdev_state_change);
1da177e4 1289
ee89bab1
AW
1290/**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1301{
ee89bab1
AW
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
c1da4ac7 1305}
ee89bab1 1306EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1307
bd380811 1308static int __dev_open(struct net_device *dev)
1da177e4 1309{
d314774c 1310 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1311 int ret;
1da177e4 1312
e46b66bc
BH
1313 ASSERT_RTNL();
1314
1da177e4
LT
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
ca99ca14
NH
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
66b5552f 1322 netpoll_poll_disable(dev);
ca99ca14 1323
3b8bcfd5
JB
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1da177e4 1329 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1330
d314774c
SH
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
bada339b 1333
d314774c
SH
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1da177e4 1336
66b5552f 1337 netpoll_poll_enable(dev);
ca99ca14 1338
bada339b
JG
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1da177e4 1342 dev->flags |= IFF_UP;
4417da66 1343 dev_set_rx_mode(dev);
1da177e4 1344 dev_activate(dev);
7bf23575 1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1346 }
bada339b 1347
1da177e4
LT
1348 return ret;
1349}
1350
1351/**
bd380811
PM
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1da177e4 1354 *
bd380811
PM
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1da177e4 1362 */
bd380811
PM
1363int dev_open(struct net_device *dev)
1364{
1365 int ret;
1366
bd380811
PM
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
bd380811
PM
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
7f294054 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378}
1379EXPORT_SYMBOL(dev_open);
1380
44345724 1381static int __dev_close_many(struct list_head *head)
1da177e4 1382{
44345724 1383 struct net_device *dev;
e46b66bc 1384
bd380811 1385 ASSERT_RTNL();
9d5010db
DM
1386 might_sleep();
1387
5cde2829 1388 list_for_each_entry(dev, head, close_list) {
3f4df206 1389 /* Temporarily disable netpoll until the interface is down */
66b5552f 1390 netpoll_poll_disable(dev);
3f4df206 1391
44345724 1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1393
44345724 1394 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1395
44345724
OP
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
4e857c58 1402 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1403 }
1da177e4 1404
44345724 1405 dev_deactivate_many(head);
d8b2a4d2 1406
5cde2829 1407 list_for_each_entry(dev, head, close_list) {
44345724 1408 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1409
44345724
OP
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
44345724 1420 dev->flags &= ~IFF_UP;
66b5552f 1421 netpoll_poll_enable(dev);
44345724
OP
1422 }
1423
1424 return 0;
1425}
1426
1427static int __dev_close(struct net_device *dev)
1428{
f87e6f47 1429 int retval;
44345724
OP
1430 LIST_HEAD(single);
1431
5cde2829 1432 list_add(&dev->close_list, &single);
f87e6f47
LT
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
ca99ca14 1435
f87e6f47 1436 return retval;
44345724
OP
1437}
1438
99c4a26a 1439int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1440{
1441 struct net_device *dev, *tmp;
1da177e4 1442
5cde2829
EB
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1445 if (!(dev->flags & IFF_UP))
5cde2829 1446 list_del_init(&dev->close_list);
44345724
OP
1447
1448 __dev_close_many(head);
1da177e4 1449
5cde2829 1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1453 if (unlink)
1454 list_del_init(&dev->close_list);
44345724 1455 }
bd380811
PM
1456
1457 return 0;
1458}
99c4a26a 1459EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1460
1461/**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470int dev_close(struct net_device *dev)
1471{
e14a5993
ED
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1da177e4 1474
5cde2829 1475 list_add(&dev->close_list, &single);
99c4a26a 1476 dev_close_many(&single, true);
e14a5993
ED
1477 list_del(&single);
1478 }
da6e378b 1479 return 0;
1da177e4 1480}
d1b19dff 1481EXPORT_SYMBOL(dev_close);
1da177e4
LT
1482
1483
0187bdfb
BH
1484/**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492void dev_disable_lro(struct net_device *dev)
1493{
fbe168ba
MK
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
529d0489 1496
bc5787c6
MM
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
27660515 1499
22d5969f
MM
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
0187bdfb
BH
1505}
1506EXPORT_SYMBOL(dev_disable_lro);
1507
351638e7
JP
1508static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510{
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515}
0187bdfb 1516
881d966b
EB
1517static int dev_boot_phase = 1;
1518
1da177e4
LT
1519/**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
4ec93edb 1529 * to the new notifier to allow device to have a race free
1da177e4
LT
1530 * view of the network device list.
1531 */
1532
1533int register_netdevice_notifier(struct notifier_block *nb)
1534{
1535 struct net_device *dev;
fcc5a03a 1536 struct net_device *last;
881d966b 1537 struct net *net;
1da177e4
LT
1538 int err;
1539
1540 rtnl_lock();
f07d5b94 1541 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1542 if (err)
1543 goto unlock;
881d966b
EB
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
351638e7 1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1da177e4 1555
351638e7 1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1557 }
1da177e4 1558 }
fcc5a03a
HX
1559
1560unlock:
1da177e4
LT
1561 rtnl_unlock();
1562 return err;
fcc5a03a
HX
1563
1564rollback:
1565 last = dev;
881d966b
EB
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
8f891489 1569 goto outroll;
fcc5a03a 1570
881d966b 1571 if (dev->flags & IFF_UP) {
351638e7
JP
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1575 }
351638e7 1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1577 }
fcc5a03a 1578 }
c67625a1 1579
8f891489 1580outroll:
c67625a1 1581 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1582 goto unlock;
1da177e4 1583}
d1b19dff 1584EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1585
1586/**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
7d3d43da
EB
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1da177e4
LT
1598 */
1599
1600int unregister_netdevice_notifier(struct notifier_block *nb)
1601{
7d3d43da
EB
1602 struct net_device *dev;
1603 struct net *net;
9f514950
HX
1604 int err;
1605
1606 rtnl_lock();
f07d5b94 1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
351638e7
JP
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1617 }
351638e7 1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1619 }
1620 }
1621unlock:
9f514950
HX
1622 rtnl_unlock();
1623 return err;
1da177e4 1624}
d1b19dff 1625EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1626
351638e7
JP
1627/**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1d143d9f 1637static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
351638e7
JP
1640{
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644}
351638e7 1645
1da177e4
LT
1646/**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
c4ea43c5 1649 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1650 *
1651 * Call all network notifier blocks. Parameters and return value
f07d5b94 1652 * are as for raw_notifier_call_chain().
1da177e4
LT
1653 */
1654
ad7379d4 1655int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1656{
351638e7
JP
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1660}
edf947f1 1661EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1662
1cf51900 1663#ifdef CONFIG_NET_INGRESS
4577139b
DB
1664static struct static_key ingress_needed __read_mostly;
1665
1666void net_inc_ingress_queue(void)
1667{
1668 static_key_slow_inc(&ingress_needed);
1669}
1670EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672void net_dec_ingress_queue(void)
1673{
1674 static_key_slow_dec(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677#endif
1678
1f211a1b
DB
1679#ifdef CONFIG_NET_EGRESS
1680static struct static_key egress_needed __read_mostly;
1681
1682void net_inc_egress_queue(void)
1683{
1684 static_key_slow_inc(&egress_needed);
1685}
1686EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688void net_dec_egress_queue(void)
1689{
1690 static_key_slow_dec(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693#endif
1694
c5905afb 1695static struct static_key netstamp_needed __read_mostly;
b90e5794 1696#ifdef HAVE_JUMP_LABEL
c5905afb 1697/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1698 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1699 * static_key_slow_dec() calls.
b90e5794
ED
1700 */
1701static atomic_t netstamp_needed_deferred;
1702#endif
1da177e4
LT
1703
1704void net_enable_timestamp(void)
1705{
b90e5794
ED
1706#ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
c5905afb 1711 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1712 return;
1713 }
1714#endif
c5905afb 1715 static_key_slow_inc(&netstamp_needed);
1da177e4 1716}
d1b19dff 1717EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1718
1719void net_disable_timestamp(void)
1720{
b90e5794
ED
1721#ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726#endif
c5905afb 1727 static_key_slow_dec(&netstamp_needed);
1da177e4 1728}
d1b19dff 1729EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1730
3b098e2d 1731static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1732{
588f0330 1733 skb->tstamp.tv64 = 0;
c5905afb 1734 if (static_key_false(&netstamp_needed))
a61bbcf2 1735 __net_timestamp(skb);
1da177e4
LT
1736}
1737
588f0330 1738#define net_timestamp_check(COND, SKB) \
c5905afb 1739 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
3b098e2d 1743
f4b05d27 1744bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1745{
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762}
1ee481fb 1763EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1764
a0265d28
HX
1765int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766{
bbbf2df0
WB
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
08b4b8ea 1775 skb->priority = 0;
a0265d28 1776 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1778
1779 return 0;
1780}
1781EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
44540960
AB
1783/**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
6ec82562 1791 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802{
a0265d28 1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1804}
1805EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
71d9dec2
CG
1807static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810{
1080e512
MT
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
71d9dec2
CG
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815}
1816
7866a621
SN
1817static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
fbcb2170
JP
1819 struct net_device *orig_dev,
1820 __be16 type,
7866a621
SN
1821 struct list_head *ptype_list)
1822{
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
fbcb2170 1829 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833}
1834
c0de08d0
EL
1835static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836{
a3d744e9 1837 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846}
1847
1da177e4
LT
1848/*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
74b20582 1853void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1854{
1855 struct packet_type *ptype;
71d9dec2
CG
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
7866a621 1858 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1859
1da177e4 1860 rcu_read_lock();
7866a621
SN
1861again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
7866a621
SN
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
71d9dec2 1868
7866a621
SN
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1da177e4 1874
7866a621
SN
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
70978182 1879
7866a621 1880 net_timestamp_set(skb2);
1da177e4 1881
7866a621
SN
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1da177e4 1894 }
7866a621
SN
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1da177e4 1904 }
7866a621 1905out_unlock:
71d9dec2
CG
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1908 rcu_read_unlock();
1909}
74b20582 1910EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1911
2c53040f
BH
1912/**
1913 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1914 * @dev: Network device
1915 * @txq: number of queues available
1916 *
1917 * If real_num_tx_queues is changed the tc mappings may no longer be
1918 * valid. To resolve this verify the tc mapping remains valid and if
1919 * not NULL the mapping. With no priorities mapping to this
1920 * offset/count pair it will no longer be used. In the worst case TC0
1921 * is invalid nothing can be done so disable priority mappings. If is
1922 * expected that drivers will fix this mapping if they can before
1923 * calling netif_set_real_num_tx_queues.
1924 */
bb134d22 1925static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1926{
1927 int i;
1928 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1929
1930 /* If TC0 is invalidated disable TC mapping */
1931 if (tc->offset + tc->count > txq) {
7b6cd1ce 1932 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1933 dev->num_tc = 0;
1934 return;
1935 }
1936
1937 /* Invalidated prio to tc mappings set to TC0 */
1938 for (i = 1; i < TC_BITMASK + 1; i++) {
1939 int q = netdev_get_prio_tc_map(dev, i);
1940
1941 tc = &dev->tc_to_txq[q];
1942 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1943 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1944 i, q);
4f57c087
JF
1945 netdev_set_prio_tc_map(dev, i, 0);
1946 }
1947 }
1948}
1949
537c00de
AD
1950#ifdef CONFIG_XPS
1951static DEFINE_MUTEX(xps_map_mutex);
1952#define xmap_dereference(P) \
1953 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1954
10cdc3f3
AD
1955static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1956 int cpu, u16 index)
537c00de 1957{
10cdc3f3
AD
1958 struct xps_map *map = NULL;
1959 int pos;
537c00de 1960
10cdc3f3
AD
1961 if (dev_maps)
1962 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1963
10cdc3f3
AD
1964 for (pos = 0; map && pos < map->len; pos++) {
1965 if (map->queues[pos] == index) {
537c00de
AD
1966 if (map->len > 1) {
1967 map->queues[pos] = map->queues[--map->len];
1968 } else {
10cdc3f3 1969 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1970 kfree_rcu(map, rcu);
1971 map = NULL;
1972 }
10cdc3f3 1973 break;
537c00de 1974 }
537c00de
AD
1975 }
1976
10cdc3f3
AD
1977 return map;
1978}
1979
024e9679 1980static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1981{
1982 struct xps_dev_maps *dev_maps;
024e9679 1983 int cpu, i;
10cdc3f3
AD
1984 bool active = false;
1985
1986 mutex_lock(&xps_map_mutex);
1987 dev_maps = xmap_dereference(dev->xps_maps);
1988
1989 if (!dev_maps)
1990 goto out_no_maps;
1991
1992 for_each_possible_cpu(cpu) {
024e9679
AD
1993 for (i = index; i < dev->num_tx_queues; i++) {
1994 if (!remove_xps_queue(dev_maps, cpu, i))
1995 break;
1996 }
1997 if (i == dev->num_tx_queues)
10cdc3f3
AD
1998 active = true;
1999 }
2000
2001 if (!active) {
537c00de
AD
2002 RCU_INIT_POINTER(dev->xps_maps, NULL);
2003 kfree_rcu(dev_maps, rcu);
2004 }
2005
024e9679
AD
2006 for (i = index; i < dev->num_tx_queues; i++)
2007 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2008 NUMA_NO_NODE);
2009
537c00de
AD
2010out_no_maps:
2011 mutex_unlock(&xps_map_mutex);
2012}
2013
01c5f864
AD
2014static struct xps_map *expand_xps_map(struct xps_map *map,
2015 int cpu, u16 index)
2016{
2017 struct xps_map *new_map;
2018 int alloc_len = XPS_MIN_MAP_ALLOC;
2019 int i, pos;
2020
2021 for (pos = 0; map && pos < map->len; pos++) {
2022 if (map->queues[pos] != index)
2023 continue;
2024 return map;
2025 }
2026
2027 /* Need to add queue to this CPU's existing map */
2028 if (map) {
2029 if (pos < map->alloc_len)
2030 return map;
2031
2032 alloc_len = map->alloc_len * 2;
2033 }
2034
2035 /* Need to allocate new map to store queue on this CPU's map */
2036 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2037 cpu_to_node(cpu));
2038 if (!new_map)
2039 return NULL;
2040
2041 for (i = 0; i < pos; i++)
2042 new_map->queues[i] = map->queues[i];
2043 new_map->alloc_len = alloc_len;
2044 new_map->len = pos;
2045
2046 return new_map;
2047}
2048
3573540c
MT
2049int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2050 u16 index)
537c00de 2051{
01c5f864 2052 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2053 struct xps_map *map, *new_map;
537c00de 2054 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2055 int cpu, numa_node_id = -2;
2056 bool active = false;
537c00de
AD
2057
2058 mutex_lock(&xps_map_mutex);
2059
2060 dev_maps = xmap_dereference(dev->xps_maps);
2061
01c5f864
AD
2062 /* allocate memory for queue storage */
2063 for_each_online_cpu(cpu) {
2064 if (!cpumask_test_cpu(cpu, mask))
2065 continue;
2066
2067 if (!new_dev_maps)
2068 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2069 if (!new_dev_maps) {
2070 mutex_unlock(&xps_map_mutex);
01c5f864 2071 return -ENOMEM;
2bb60cb9 2072 }
01c5f864
AD
2073
2074 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2075 NULL;
2076
2077 map = expand_xps_map(map, cpu, index);
2078 if (!map)
2079 goto error;
2080
2081 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2082 }
2083
2084 if (!new_dev_maps)
2085 goto out_no_new_maps;
2086
537c00de 2087 for_each_possible_cpu(cpu) {
01c5f864
AD
2088 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2089 /* add queue to CPU maps */
2090 int pos = 0;
2091
2092 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2093 while ((pos < map->len) && (map->queues[pos] != index))
2094 pos++;
2095
2096 if (pos == map->len)
2097 map->queues[map->len++] = index;
537c00de 2098#ifdef CONFIG_NUMA
537c00de
AD
2099 if (numa_node_id == -2)
2100 numa_node_id = cpu_to_node(cpu);
2101 else if (numa_node_id != cpu_to_node(cpu))
2102 numa_node_id = -1;
537c00de 2103#endif
01c5f864
AD
2104 } else if (dev_maps) {
2105 /* fill in the new device map from the old device map */
2106 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2107 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2108 }
01c5f864 2109
537c00de
AD
2110 }
2111
01c5f864
AD
2112 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2113
537c00de 2114 /* Cleanup old maps */
01c5f864
AD
2115 if (dev_maps) {
2116 for_each_possible_cpu(cpu) {
2117 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2118 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2119 if (map && map != new_map)
2120 kfree_rcu(map, rcu);
2121 }
537c00de 2122
01c5f864 2123 kfree_rcu(dev_maps, rcu);
537c00de
AD
2124 }
2125
01c5f864
AD
2126 dev_maps = new_dev_maps;
2127 active = true;
537c00de 2128
01c5f864
AD
2129out_no_new_maps:
2130 /* update Tx queue numa node */
537c00de
AD
2131 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2132 (numa_node_id >= 0) ? numa_node_id :
2133 NUMA_NO_NODE);
2134
01c5f864
AD
2135 if (!dev_maps)
2136 goto out_no_maps;
2137
2138 /* removes queue from unused CPUs */
2139 for_each_possible_cpu(cpu) {
2140 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2141 continue;
2142
2143 if (remove_xps_queue(dev_maps, cpu, index))
2144 active = true;
2145 }
2146
2147 /* free map if not active */
2148 if (!active) {
2149 RCU_INIT_POINTER(dev->xps_maps, NULL);
2150 kfree_rcu(dev_maps, rcu);
2151 }
2152
2153out_no_maps:
537c00de
AD
2154 mutex_unlock(&xps_map_mutex);
2155
2156 return 0;
2157error:
01c5f864
AD
2158 /* remove any maps that we added */
2159 for_each_possible_cpu(cpu) {
2160 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2161 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2162 NULL;
2163 if (new_map && new_map != map)
2164 kfree(new_map);
2165 }
2166
537c00de
AD
2167 mutex_unlock(&xps_map_mutex);
2168
537c00de
AD
2169 kfree(new_dev_maps);
2170 return -ENOMEM;
2171}
2172EXPORT_SYMBOL(netif_set_xps_queue);
2173
2174#endif
f0796d5c
JF
2175/*
2176 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2177 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2178 */
e6484930 2179int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2180{
1d24eb48
TH
2181 int rc;
2182
e6484930
TH
2183 if (txq < 1 || txq > dev->num_tx_queues)
2184 return -EINVAL;
f0796d5c 2185
5c56580b
BH
2186 if (dev->reg_state == NETREG_REGISTERED ||
2187 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2188 ASSERT_RTNL();
2189
1d24eb48
TH
2190 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2191 txq);
bf264145
TH
2192 if (rc)
2193 return rc;
2194
4f57c087
JF
2195 if (dev->num_tc)
2196 netif_setup_tc(dev, txq);
2197
024e9679 2198 if (txq < dev->real_num_tx_queues) {
e6484930 2199 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2200#ifdef CONFIG_XPS
2201 netif_reset_xps_queues_gt(dev, txq);
2202#endif
2203 }
f0796d5c 2204 }
e6484930
TH
2205
2206 dev->real_num_tx_queues = txq;
2207 return 0;
f0796d5c
JF
2208}
2209EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2210
a953be53 2211#ifdef CONFIG_SYSFS
62fe0b40
BH
2212/**
2213 * netif_set_real_num_rx_queues - set actual number of RX queues used
2214 * @dev: Network device
2215 * @rxq: Actual number of RX queues
2216 *
2217 * This must be called either with the rtnl_lock held or before
2218 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2219 * negative error code. If called before registration, it always
2220 * succeeds.
62fe0b40
BH
2221 */
2222int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2223{
2224 int rc;
2225
bd25fa7b
TH
2226 if (rxq < 1 || rxq > dev->num_rx_queues)
2227 return -EINVAL;
2228
62fe0b40
BH
2229 if (dev->reg_state == NETREG_REGISTERED) {
2230 ASSERT_RTNL();
2231
62fe0b40
BH
2232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2233 rxq);
2234 if (rc)
2235 return rc;
62fe0b40
BH
2236 }
2237
2238 dev->real_num_rx_queues = rxq;
2239 return 0;
2240}
2241EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2242#endif
2243
2c53040f
BH
2244/**
2245 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2246 *
2247 * This routine should set an upper limit on the number of RSS queues
2248 * used by default by multiqueue devices.
2249 */
a55b138b 2250int netif_get_num_default_rss_queues(void)
16917b87
YM
2251{
2252 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2253}
2254EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2255
def82a1d 2256static inline void __netif_reschedule(struct Qdisc *q)
56079431 2257{
def82a1d
JP
2258 struct softnet_data *sd;
2259 unsigned long flags;
56079431 2260
def82a1d 2261 local_irq_save(flags);
903ceff7 2262 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2263 q->next_sched = NULL;
2264 *sd->output_queue_tailp = q;
2265 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
2268}
2269
2270void __netif_schedule(struct Qdisc *q)
2271{
2272 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2273 __netif_reschedule(q);
56079431
DV
2274}
2275EXPORT_SYMBOL(__netif_schedule);
2276
e6247027
ED
2277struct dev_kfree_skb_cb {
2278 enum skb_free_reason reason;
2279};
2280
2281static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2282{
e6247027
ED
2283 return (struct dev_kfree_skb_cb *)skb->cb;
2284}
2285
46e5da40
JF
2286void netif_schedule_queue(struct netdev_queue *txq)
2287{
2288 rcu_read_lock();
2289 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2290 struct Qdisc *q = rcu_dereference(txq->qdisc);
2291
2292 __netif_schedule(q);
2293 }
2294 rcu_read_unlock();
2295}
2296EXPORT_SYMBOL(netif_schedule_queue);
2297
2298/**
2299 * netif_wake_subqueue - allow sending packets on subqueue
2300 * @dev: network device
2301 * @queue_index: sub queue index
2302 *
2303 * Resume individual transmit queue of a device with multiple transmit queues.
2304 */
2305void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2306{
2307 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2308
2309 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2310 struct Qdisc *q;
2311
2312 rcu_read_lock();
2313 q = rcu_dereference(txq->qdisc);
2314 __netif_schedule(q);
2315 rcu_read_unlock();
2316 }
2317}
2318EXPORT_SYMBOL(netif_wake_subqueue);
2319
2320void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2321{
2322 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2323 struct Qdisc *q;
2324
2325 rcu_read_lock();
2326 q = rcu_dereference(dev_queue->qdisc);
2327 __netif_schedule(q);
2328 rcu_read_unlock();
2329 }
2330}
2331EXPORT_SYMBOL(netif_tx_wake_queue);
2332
e6247027 2333void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2334{
e6247027 2335 unsigned long flags;
56079431 2336
e6247027
ED
2337 if (likely(atomic_read(&skb->users) == 1)) {
2338 smp_rmb();
2339 atomic_set(&skb->users, 0);
2340 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2341 return;
bea3348e 2342 }
e6247027
ED
2343 get_kfree_skb_cb(skb)->reason = reason;
2344 local_irq_save(flags);
2345 skb->next = __this_cpu_read(softnet_data.completion_queue);
2346 __this_cpu_write(softnet_data.completion_queue, skb);
2347 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2348 local_irq_restore(flags);
56079431 2349}
e6247027 2350EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2351
e6247027 2352void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2353{
2354 if (in_irq() || irqs_disabled())
e6247027 2355 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2356 else
2357 dev_kfree_skb(skb);
2358}
e6247027 2359EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2360
2361
bea3348e
SH
2362/**
2363 * netif_device_detach - mark device as removed
2364 * @dev: network device
2365 *
2366 * Mark device as removed from system and therefore no longer available.
2367 */
56079431
DV
2368void netif_device_detach(struct net_device *dev)
2369{
2370 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2371 netif_running(dev)) {
d543103a 2372 netif_tx_stop_all_queues(dev);
56079431
DV
2373 }
2374}
2375EXPORT_SYMBOL(netif_device_detach);
2376
bea3348e
SH
2377/**
2378 * netif_device_attach - mark device as attached
2379 * @dev: network device
2380 *
2381 * Mark device as attached from system and restart if needed.
2382 */
56079431
DV
2383void netif_device_attach(struct net_device *dev)
2384{
2385 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2386 netif_running(dev)) {
d543103a 2387 netif_tx_wake_all_queues(dev);
4ec93edb 2388 __netdev_watchdog_up(dev);
56079431
DV
2389 }
2390}
2391EXPORT_SYMBOL(netif_device_attach);
2392
5605c762
JP
2393/*
2394 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2395 * to be used as a distribution range.
2396 */
2397u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2398 unsigned int num_tx_queues)
2399{
2400 u32 hash;
2401 u16 qoffset = 0;
2402 u16 qcount = num_tx_queues;
2403
2404 if (skb_rx_queue_recorded(skb)) {
2405 hash = skb_get_rx_queue(skb);
2406 while (unlikely(hash >= num_tx_queues))
2407 hash -= num_tx_queues;
2408 return hash;
2409 }
2410
2411 if (dev->num_tc) {
2412 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2413 qoffset = dev->tc_to_txq[tc].offset;
2414 qcount = dev->tc_to_txq[tc].count;
2415 }
2416
2417 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2418}
2419EXPORT_SYMBOL(__skb_tx_hash);
2420
36c92474
BH
2421static void skb_warn_bad_offload(const struct sk_buff *skb)
2422{
65e9d2fa 2423 static const netdev_features_t null_features = 0;
36c92474 2424 struct net_device *dev = skb->dev;
88ad4175 2425 const char *name = "";
36c92474 2426
c846ad9b
BG
2427 if (!net_ratelimit())
2428 return;
2429
88ad4175
BM
2430 if (dev) {
2431 if (dev->dev.parent)
2432 name = dev_driver_string(dev->dev.parent);
2433 else
2434 name = netdev_name(dev);
2435 }
36c92474
BH
2436 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2437 "gso_type=%d ip_summed=%d\n",
88ad4175 2438 name, dev ? &dev->features : &null_features,
65e9d2fa 2439 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2440 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2441 skb_shinfo(skb)->gso_type, skb->ip_summed);
2442}
2443
1da177e4
LT
2444/*
2445 * Invalidate hardware checksum when packet is to be mangled, and
2446 * complete checksum manually on outgoing path.
2447 */
84fa7933 2448int skb_checksum_help(struct sk_buff *skb)
1da177e4 2449{
d3bc23e7 2450 __wsum csum;
663ead3b 2451 int ret = 0, offset;
1da177e4 2452
84fa7933 2453 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2454 goto out_set_summed;
2455
2456 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2457 skb_warn_bad_offload(skb);
2458 return -EINVAL;
1da177e4
LT
2459 }
2460
cef401de
ED
2461 /* Before computing a checksum, we should make sure no frag could
2462 * be modified by an external entity : checksum could be wrong.
2463 */
2464 if (skb_has_shared_frag(skb)) {
2465 ret = __skb_linearize(skb);
2466 if (ret)
2467 goto out;
2468 }
2469
55508d60 2470 offset = skb_checksum_start_offset(skb);
a030847e
HX
2471 BUG_ON(offset >= skb_headlen(skb));
2472 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2473
2474 offset += skb->csum_offset;
2475 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2476
2477 if (skb_cloned(skb) &&
2478 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2479 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2480 if (ret)
2481 goto out;
2482 }
2483
a030847e 2484 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2485out_set_summed:
1da177e4 2486 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2487out:
1da177e4
LT
2488 return ret;
2489}
d1b19dff 2490EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2491
6ae23ad3
TH
2492/* skb_csum_offload_check - Driver helper function to determine if a device
2493 * with limited checksum offload capabilities is able to offload the checksum
2494 * for a given packet.
2495 *
2496 * Arguments:
2497 * skb - sk_buff for the packet in question
2498 * spec - contains the description of what device can offload
2499 * csum_encapped - returns true if the checksum being offloaded is
2500 * encpasulated. That is it is checksum for the transport header
2501 * in the inner headers.
2502 * checksum_help - when set indicates that helper function should
2503 * call skb_checksum_help if offload checks fail
2504 *
2505 * Returns:
2506 * true: Packet has passed the checksum checks and should be offloadable to
2507 * the device (a driver may still need to check for additional
2508 * restrictions of its device)
2509 * false: Checksum is not offloadable. If checksum_help was set then
2510 * skb_checksum_help was called to resolve checksum for non-GSO
2511 * packets and when IP protocol is not SCTP
2512 */
2513bool __skb_csum_offload_chk(struct sk_buff *skb,
2514 const struct skb_csum_offl_spec *spec,
2515 bool *csum_encapped,
2516 bool csum_help)
2517{
2518 struct iphdr *iph;
2519 struct ipv6hdr *ipv6;
2520 void *nhdr;
2521 int protocol;
2522 u8 ip_proto;
2523
2524 if (skb->protocol == htons(ETH_P_8021Q) ||
2525 skb->protocol == htons(ETH_P_8021AD)) {
2526 if (!spec->vlan_okay)
2527 goto need_help;
2528 }
2529
2530 /* We check whether the checksum refers to a transport layer checksum in
2531 * the outermost header or an encapsulated transport layer checksum that
2532 * corresponds to the inner headers of the skb. If the checksum is for
2533 * something else in the packet we need help.
2534 */
2535 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2536 /* Non-encapsulated checksum */
2537 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2538 nhdr = skb_network_header(skb);
2539 *csum_encapped = false;
2540 if (spec->no_not_encapped)
2541 goto need_help;
2542 } else if (skb->encapsulation && spec->encap_okay &&
2543 skb_checksum_start_offset(skb) ==
2544 skb_inner_transport_offset(skb)) {
2545 /* Encapsulated checksum */
2546 *csum_encapped = true;
2547 switch (skb->inner_protocol_type) {
2548 case ENCAP_TYPE_ETHER:
2549 protocol = eproto_to_ipproto(skb->inner_protocol);
2550 break;
2551 case ENCAP_TYPE_IPPROTO:
2552 protocol = skb->inner_protocol;
2553 break;
2554 }
2555 nhdr = skb_inner_network_header(skb);
2556 } else {
2557 goto need_help;
2558 }
2559
2560 switch (protocol) {
2561 case IPPROTO_IP:
2562 if (!spec->ipv4_okay)
2563 goto need_help;
2564 iph = nhdr;
2565 ip_proto = iph->protocol;
2566 if (iph->ihl != 5 && !spec->ip_options_okay)
2567 goto need_help;
2568 break;
2569 case IPPROTO_IPV6:
2570 if (!spec->ipv6_okay)
2571 goto need_help;
2572 if (spec->no_encapped_ipv6 && *csum_encapped)
2573 goto need_help;
2574 ipv6 = nhdr;
2575 nhdr += sizeof(*ipv6);
2576 ip_proto = ipv6->nexthdr;
2577 break;
2578 default:
2579 goto need_help;
2580 }
2581
2582ip_proto_again:
2583 switch (ip_proto) {
2584 case IPPROTO_TCP:
2585 if (!spec->tcp_okay ||
2586 skb->csum_offset != offsetof(struct tcphdr, check))
2587 goto need_help;
2588 break;
2589 case IPPROTO_UDP:
2590 if (!spec->udp_okay ||
2591 skb->csum_offset != offsetof(struct udphdr, check))
2592 goto need_help;
2593 break;
2594 case IPPROTO_SCTP:
2595 if (!spec->sctp_okay ||
2596 skb->csum_offset != offsetof(struct sctphdr, checksum))
2597 goto cant_help;
2598 break;
2599 case NEXTHDR_HOP:
2600 case NEXTHDR_ROUTING:
2601 case NEXTHDR_DEST: {
2602 u8 *opthdr = nhdr;
2603
2604 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2605 goto need_help;
2606
2607 ip_proto = opthdr[0];
2608 nhdr += (opthdr[1] + 1) << 3;
2609
2610 goto ip_proto_again;
2611 }
2612 default:
2613 goto need_help;
2614 }
2615
2616 /* Passed the tests for offloading checksum */
2617 return true;
2618
2619need_help:
2620 if (csum_help && !skb_shinfo(skb)->gso_size)
2621 skb_checksum_help(skb);
2622cant_help:
2623 return false;
2624}
2625EXPORT_SYMBOL(__skb_csum_offload_chk);
2626
53d6471c 2627__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2628{
252e3346 2629 __be16 type = skb->protocol;
f6a78bfc 2630
19acc327
PS
2631 /* Tunnel gso handlers can set protocol to ethernet. */
2632 if (type == htons(ETH_P_TEB)) {
2633 struct ethhdr *eth;
2634
2635 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2636 return 0;
2637
2638 eth = (struct ethhdr *)skb_mac_header(skb);
2639 type = eth->h_proto;
2640 }
2641
d4bcef3f 2642 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2643}
2644
2645/**
2646 * skb_mac_gso_segment - mac layer segmentation handler.
2647 * @skb: buffer to segment
2648 * @features: features for the output path (see dev->features)
2649 */
2650struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2651 netdev_features_t features)
2652{
2653 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2654 struct packet_offload *ptype;
53d6471c
VY
2655 int vlan_depth = skb->mac_len;
2656 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2657
2658 if (unlikely(!type))
2659 return ERR_PTR(-EINVAL);
2660
53d6471c 2661 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2662
2663 rcu_read_lock();
22061d80 2664 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2665 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2666 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2667 break;
2668 }
2669 }
2670 rcu_read_unlock();
2671
98e399f8 2672 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2673
f6a78bfc
HX
2674 return segs;
2675}
05e8ef4a
PS
2676EXPORT_SYMBOL(skb_mac_gso_segment);
2677
2678
2679/* openvswitch calls this on rx path, so we need a different check.
2680 */
2681static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2682{
2683 if (tx_path)
2684 return skb->ip_summed != CHECKSUM_PARTIAL;
2685 else
2686 return skb->ip_summed == CHECKSUM_NONE;
2687}
2688
2689/**
2690 * __skb_gso_segment - Perform segmentation on skb.
2691 * @skb: buffer to segment
2692 * @features: features for the output path (see dev->features)
2693 * @tx_path: whether it is called in TX path
2694 *
2695 * This function segments the given skb and returns a list of segments.
2696 *
2697 * It may return NULL if the skb requires no segmentation. This is
2698 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2699 *
2700 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2701 */
2702struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2703 netdev_features_t features, bool tx_path)
2704{
2705 if (unlikely(skb_needs_check(skb, tx_path))) {
2706 int err;
2707
2708 skb_warn_bad_offload(skb);
2709
a40e0a66 2710 err = skb_cow_head(skb, 0);
2711 if (err < 0)
05e8ef4a
PS
2712 return ERR_PTR(err);
2713 }
2714
802ab55a
AD
2715 /* Only report GSO partial support if it will enable us to
2716 * support segmentation on this frame without needing additional
2717 * work.
2718 */
2719 if (features & NETIF_F_GSO_PARTIAL) {
2720 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2721 struct net_device *dev = skb->dev;
2722
2723 partial_features |= dev->features & dev->gso_partial_features;
2724 if (!skb_gso_ok(skb, features | partial_features))
2725 features &= ~NETIF_F_GSO_PARTIAL;
2726 }
2727
9207f9d4
KK
2728 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2729 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2730
68c33163 2731 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2732 SKB_GSO_CB(skb)->encap_level = 0;
2733
05e8ef4a
PS
2734 skb_reset_mac_header(skb);
2735 skb_reset_mac_len(skb);
2736
2737 return skb_mac_gso_segment(skb, features);
2738}
12b0004d 2739EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2740
fb286bb2
HX
2741/* Take action when hardware reception checksum errors are detected. */
2742#ifdef CONFIG_BUG
2743void netdev_rx_csum_fault(struct net_device *dev)
2744{
2745 if (net_ratelimit()) {
7b6cd1ce 2746 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2747 dump_stack();
2748 }
2749}
2750EXPORT_SYMBOL(netdev_rx_csum_fault);
2751#endif
2752
1da177e4
LT
2753/* Actually, we should eliminate this check as soon as we know, that:
2754 * 1. IOMMU is present and allows to map all the memory.
2755 * 2. No high memory really exists on this machine.
2756 */
2757
c1e756bf 2758static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2759{
3d3a8533 2760#ifdef CONFIG_HIGHMEM
1da177e4 2761 int i;
5acbbd42 2762 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2765 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2766 return 1;
ea2ab693 2767 }
5acbbd42 2768 }
1da177e4 2769
5acbbd42
FT
2770 if (PCI_DMA_BUS_IS_PHYS) {
2771 struct device *pdev = dev->dev.parent;
1da177e4 2772
9092c658
ED
2773 if (!pdev)
2774 return 0;
5acbbd42 2775 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2777 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2778 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2779 return 1;
2780 }
2781 }
3d3a8533 2782#endif
1da177e4
LT
2783 return 0;
2784}
1da177e4 2785
3b392ddb
SH
2786/* If MPLS offload request, verify we are testing hardware MPLS features
2787 * instead of standard features for the netdev.
2788 */
d0edc7bf 2789#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2790static netdev_features_t net_mpls_features(struct sk_buff *skb,
2791 netdev_features_t features,
2792 __be16 type)
2793{
25cd9ba0 2794 if (eth_p_mpls(type))
3b392ddb
SH
2795 features &= skb->dev->mpls_features;
2796
2797 return features;
2798}
2799#else
2800static netdev_features_t net_mpls_features(struct sk_buff *skb,
2801 netdev_features_t features,
2802 __be16 type)
2803{
2804 return features;
2805}
2806#endif
2807
c8f44aff 2808static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2809 netdev_features_t features)
f01a5236 2810{
53d6471c 2811 int tmp;
3b392ddb
SH
2812 __be16 type;
2813
2814 type = skb_network_protocol(skb, &tmp);
2815 features = net_mpls_features(skb, features, type);
53d6471c 2816
c0d680e5 2817 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2818 !can_checksum_protocol(features, type)) {
996e8021 2819 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2820 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2821 features &= ~NETIF_F_SG;
2822 }
2823
2824 return features;
2825}
2826
e38f3025
TM
2827netdev_features_t passthru_features_check(struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2830{
2831 return features;
2832}
2833EXPORT_SYMBOL(passthru_features_check);
2834
8cb65d00
TM
2835static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2836 struct net_device *dev,
2837 netdev_features_t features)
2838{
2839 return vlan_features_check(skb, features);
2840}
2841
cbc53e08
AD
2842static netdev_features_t gso_features_check(const struct sk_buff *skb,
2843 struct net_device *dev,
2844 netdev_features_t features)
2845{
2846 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2847
2848 if (gso_segs > dev->gso_max_segs)
2849 return features & ~NETIF_F_GSO_MASK;
2850
802ab55a
AD
2851 /* Support for GSO partial features requires software
2852 * intervention before we can actually process the packets
2853 * so we need to strip support for any partial features now
2854 * and we can pull them back in after we have partially
2855 * segmented the frame.
2856 */
2857 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2858 features &= ~dev->gso_partial_features;
2859
2860 /* Make sure to clear the IPv4 ID mangling feature if the
2861 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2862 */
2863 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2864 struct iphdr *iph = skb->encapsulation ?
2865 inner_ip_hdr(skb) : ip_hdr(skb);
2866
2867 if (!(iph->frag_off & htons(IP_DF)))
2868 features &= ~NETIF_F_TSO_MANGLEID;
2869 }
2870
2871 return features;
2872}
2873
c1e756bf 2874netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2875{
5f35227e 2876 struct net_device *dev = skb->dev;
fcbeb976 2877 netdev_features_t features = dev->features;
58e998c6 2878
cbc53e08
AD
2879 if (skb_is_gso(skb))
2880 features = gso_features_check(skb, dev, features);
30b678d8 2881
5f35227e
JG
2882 /* If encapsulation offload request, verify we are testing
2883 * hardware encapsulation features instead of standard
2884 * features for the netdev
2885 */
2886 if (skb->encapsulation)
2887 features &= dev->hw_enc_features;
2888
f5a7fb88
TM
2889 if (skb_vlan_tagged(skb))
2890 features = netdev_intersect_features(features,
2891 dev->vlan_features |
2892 NETIF_F_HW_VLAN_CTAG_TX |
2893 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2894
5f35227e
JG
2895 if (dev->netdev_ops->ndo_features_check)
2896 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2897 features);
8cb65d00
TM
2898 else
2899 features &= dflt_features_check(skb, dev, features);
5f35227e 2900
c1e756bf 2901 return harmonize_features(skb, features);
58e998c6 2902}
c1e756bf 2903EXPORT_SYMBOL(netif_skb_features);
58e998c6 2904
2ea25513 2905static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2906 struct netdev_queue *txq, bool more)
f6a78bfc 2907{
2ea25513
DM
2908 unsigned int len;
2909 int rc;
00829823 2910
7866a621 2911 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2912 dev_queue_xmit_nit(skb, dev);
fc741216 2913
2ea25513
DM
2914 len = skb->len;
2915 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2916 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2917 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2918
2ea25513
DM
2919 return rc;
2920}
7b9c6090 2921
8dcda22a
DM
2922struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2923 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2924{
2925 struct sk_buff *skb = first;
2926 int rc = NETDEV_TX_OK;
7b9c6090 2927
7f2e870f
DM
2928 while (skb) {
2929 struct sk_buff *next = skb->next;
fc70fb64 2930
7f2e870f 2931 skb->next = NULL;
95f6b3dd 2932 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2933 if (unlikely(!dev_xmit_complete(rc))) {
2934 skb->next = next;
2935 goto out;
2936 }
6afff0ca 2937
7f2e870f
DM
2938 skb = next;
2939 if (netif_xmit_stopped(txq) && skb) {
2940 rc = NETDEV_TX_BUSY;
2941 break;
9ccb8975 2942 }
7f2e870f 2943 }
9ccb8975 2944
7f2e870f
DM
2945out:
2946 *ret = rc;
2947 return skb;
2948}
b40863c6 2949
1ff0dc94
ED
2950static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2951 netdev_features_t features)
f6a78bfc 2952{
df8a39de 2953 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2954 !vlan_hw_offload_capable(features, skb->vlan_proto))
2955 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2956 return skb;
2957}
f6a78bfc 2958
55a93b3e 2959static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2960{
2961 netdev_features_t features;
f6a78bfc 2962
eae3f88e
DM
2963 features = netif_skb_features(skb);
2964 skb = validate_xmit_vlan(skb, features);
2965 if (unlikely(!skb))
2966 goto out_null;
7b9c6090 2967
8b86a61d 2968 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2969 struct sk_buff *segs;
2970
2971 segs = skb_gso_segment(skb, features);
cecda693 2972 if (IS_ERR(segs)) {
af6dabc9 2973 goto out_kfree_skb;
cecda693
JW
2974 } else if (segs) {
2975 consume_skb(skb);
2976 skb = segs;
f6a78bfc 2977 }
eae3f88e
DM
2978 } else {
2979 if (skb_needs_linearize(skb, features) &&
2980 __skb_linearize(skb))
2981 goto out_kfree_skb;
4ec93edb 2982
eae3f88e
DM
2983 /* If packet is not checksummed and device does not
2984 * support checksumming for this protocol, complete
2985 * checksumming here.
2986 */
2987 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 if (skb->encapsulation)
2989 skb_set_inner_transport_header(skb,
2990 skb_checksum_start_offset(skb));
2991 else
2992 skb_set_transport_header(skb,
2993 skb_checksum_start_offset(skb));
a188222b 2994 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2995 skb_checksum_help(skb))
2996 goto out_kfree_skb;
7b9c6090 2997 }
0c772159 2998 }
7b9c6090 2999
eae3f88e 3000 return skb;
fc70fb64 3001
f6a78bfc
HX
3002out_kfree_skb:
3003 kfree_skb(skb);
eae3f88e 3004out_null:
d21fd63e 3005 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3006 return NULL;
3007}
6afff0ca 3008
55a93b3e
ED
3009struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010{
3011 struct sk_buff *next, *head = NULL, *tail;
3012
bec3cfdc 3013 for (; skb != NULL; skb = next) {
55a93b3e
ED
3014 next = skb->next;
3015 skb->next = NULL;
bec3cfdc
ED
3016
3017 /* in case skb wont be segmented, point to itself */
3018 skb->prev = skb;
3019
55a93b3e 3020 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3021 if (!skb)
3022 continue;
55a93b3e 3023
bec3cfdc
ED
3024 if (!head)
3025 head = skb;
3026 else
3027 tail->next = skb;
3028 /* If skb was segmented, skb->prev points to
3029 * the last segment. If not, it still contains skb.
3030 */
3031 tail = skb->prev;
55a93b3e
ED
3032 }
3033 return head;
f6a78bfc
HX
3034}
3035
1def9238
ED
3036static void qdisc_pkt_len_init(struct sk_buff *skb)
3037{
3038 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3039
3040 qdisc_skb_cb(skb)->pkt_len = skb->len;
3041
3042 /* To get more precise estimation of bytes sent on wire,
3043 * we add to pkt_len the headers size of all segments
3044 */
3045 if (shinfo->gso_size) {
757b8b1d 3046 unsigned int hdr_len;
15e5a030 3047 u16 gso_segs = shinfo->gso_segs;
1def9238 3048
757b8b1d
ED
3049 /* mac layer + network layer */
3050 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3051
3052 /* + transport layer */
1def9238
ED
3053 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3054 hdr_len += tcp_hdrlen(skb);
3055 else
3056 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3057
3058 if (shinfo->gso_type & SKB_GSO_DODGY)
3059 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3060 shinfo->gso_size);
3061
3062 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3063 }
3064}
3065
bbd8a0d3
KK
3066static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3067 struct net_device *dev,
3068 struct netdev_queue *txq)
3069{
3070 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 3071 bool contended;
bbd8a0d3
KK
3072 int rc;
3073
a2da570d 3074 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3075 /*
3076 * Heuristic to force contended enqueues to serialize on a
3077 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
3078 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3079 * often and dequeue packets faster.
79640a4c 3080 */
a2da570d 3081 contended = qdisc_is_running(q);
79640a4c
ED
3082 if (unlikely(contended))
3083 spin_lock(&q->busylock);
3084
bbd8a0d3
KK
3085 spin_lock(root_lock);
3086 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3087 kfree_skb(skb);
3088 rc = NET_XMIT_DROP;
3089 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3090 qdisc_run_begin(q)) {
bbd8a0d3
KK
3091 /*
3092 * This is a work-conserving queue; there are no old skbs
3093 * waiting to be sent out; and the qdisc is not running -
3094 * xmit the skb directly.
3095 */
bfe0d029 3096
bfe0d029
ED
3097 qdisc_bstats_update(q, skb);
3098
55a93b3e 3099 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3100 if (unlikely(contended)) {
3101 spin_unlock(&q->busylock);
3102 contended = false;
3103 }
bbd8a0d3 3104 __qdisc_run(q);
79640a4c 3105 } else
bc135b23 3106 qdisc_run_end(q);
bbd8a0d3
KK
3107
3108 rc = NET_XMIT_SUCCESS;
3109 } else {
a2da570d 3110 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
3111 if (qdisc_run_begin(q)) {
3112 if (unlikely(contended)) {
3113 spin_unlock(&q->busylock);
3114 contended = false;
3115 }
3116 __qdisc_run(q);
3117 }
bbd8a0d3
KK
3118 }
3119 spin_unlock(root_lock);
79640a4c
ED
3120 if (unlikely(contended))
3121 spin_unlock(&q->busylock);
bbd8a0d3
KK
3122 return rc;
3123}
3124
86f8515f 3125#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3126static void skb_update_prio(struct sk_buff *skb)
3127{
6977a79d 3128 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3129
91c68ce2 3130 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3131 unsigned int prioidx =
3132 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3133
3134 if (prioidx < map->priomap_len)
3135 skb->priority = map->priomap[prioidx];
3136 }
5bc1421e
NH
3137}
3138#else
3139#define skb_update_prio(skb)
3140#endif
3141
f60e5990 3142DEFINE_PER_CPU(int, xmit_recursion);
3143EXPORT_SYMBOL(xmit_recursion);
3144
11a766ce 3145#define RECURSION_LIMIT 10
745e20f1 3146
95603e22
MM
3147/**
3148 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3149 * @net: network namespace this loopback is happening in
3150 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3151 * @skb: buffer to transmit
3152 */
0c4b51f0 3153int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3154{
3155 skb_reset_mac_header(skb);
3156 __skb_pull(skb, skb_network_offset(skb));
3157 skb->pkt_type = PACKET_LOOPBACK;
3158 skb->ip_summed = CHECKSUM_UNNECESSARY;
3159 WARN_ON(!skb_dst(skb));
3160 skb_dst_force(skb);
3161 netif_rx_ni(skb);
3162 return 0;
3163}
3164EXPORT_SYMBOL(dev_loopback_xmit);
3165
1f211a1b
DB
3166#ifdef CONFIG_NET_EGRESS
3167static struct sk_buff *
3168sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169{
3170 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171 struct tcf_result cl_res;
3172
3173 if (!cl)
3174 return skb;
3175
3176 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177 * earlier by the caller.
3178 */
3179 qdisc_bstats_cpu_update(cl->q, skb);
3180
3181 switch (tc_classify(skb, cl, &cl_res, false)) {
3182 case TC_ACT_OK:
3183 case TC_ACT_RECLASSIFY:
3184 skb->tc_index = TC_H_MIN(cl_res.classid);
3185 break;
3186 case TC_ACT_SHOT:
3187 qdisc_qstats_cpu_drop(cl->q);
3188 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3189 kfree_skb(skb);
3190 return NULL;
1f211a1b
DB
3191 case TC_ACT_STOLEN:
3192 case TC_ACT_QUEUED:
3193 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3194 consume_skb(skb);
1f211a1b
DB
3195 return NULL;
3196 case TC_ACT_REDIRECT:
3197 /* No need to push/pop skb's mac_header here on egress! */
3198 skb_do_redirect(skb);
3199 *ret = NET_XMIT_SUCCESS;
3200 return NULL;
3201 default:
3202 break;
3203 }
3204
3205 return skb;
3206}
3207#endif /* CONFIG_NET_EGRESS */
3208
638b2a69
JP
3209static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210{
3211#ifdef CONFIG_XPS
3212 struct xps_dev_maps *dev_maps;
3213 struct xps_map *map;
3214 int queue_index = -1;
3215
3216 rcu_read_lock();
3217 dev_maps = rcu_dereference(dev->xps_maps);
3218 if (dev_maps) {
3219 map = rcu_dereference(
3220 dev_maps->cpu_map[skb->sender_cpu - 1]);
3221 if (map) {
3222 if (map->len == 1)
3223 queue_index = map->queues[0];
3224 else
3225 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226 map->len)];
3227 if (unlikely(queue_index >= dev->real_num_tx_queues))
3228 queue_index = -1;
3229 }
3230 }
3231 rcu_read_unlock();
3232
3233 return queue_index;
3234#else
3235 return -1;
3236#endif
3237}
3238
3239static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240{
3241 struct sock *sk = skb->sk;
3242 int queue_index = sk_tx_queue_get(sk);
3243
3244 if (queue_index < 0 || skb->ooo_okay ||
3245 queue_index >= dev->real_num_tx_queues) {
3246 int new_index = get_xps_queue(dev, skb);
3247 if (new_index < 0)
3248 new_index = skb_tx_hash(dev, skb);
3249
3250 if (queue_index != new_index && sk &&
004a5d01 3251 sk_fullsock(sk) &&
638b2a69
JP
3252 rcu_access_pointer(sk->sk_dst_cache))
3253 sk_tx_queue_set(sk, new_index);
3254
3255 queue_index = new_index;
3256 }
3257
3258 return queue_index;
3259}
3260
3261struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262 struct sk_buff *skb,
3263 void *accel_priv)
3264{
3265 int queue_index = 0;
3266
3267#ifdef CONFIG_XPS
52bd2d62
ED
3268 u32 sender_cpu = skb->sender_cpu - 1;
3269
3270 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3271 skb->sender_cpu = raw_smp_processor_id() + 1;
3272#endif
3273
3274 if (dev->real_num_tx_queues != 1) {
3275 const struct net_device_ops *ops = dev->netdev_ops;
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 __netdev_pick_tx);
3279 else
3280 queue_index = __netdev_pick_tx(dev, skb);
3281
3282 if (!accel_priv)
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3284 }
3285
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3288}
3289
d29f749e 3290/**
9d08dd3d 3291 * __dev_queue_xmit - transmit a buffer
d29f749e 3292 * @skb: buffer to transmit
9d08dd3d 3293 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3294 *
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3298 *
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3302 *
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3306 * be positive.
3307 *
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3311 *
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3314 * --BLG
3315 */
0a59f3a9 3316static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3317{
3318 struct net_device *dev = skb->dev;
dc2b4847 3319 struct netdev_queue *txq;
1da177e4
LT
3320 struct Qdisc *q;
3321 int rc = -ENOMEM;
3322
6d1ccff6
ED
3323 skb_reset_mac_header(skb);
3324
e7fd2885
WB
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
4ec93edb
YH
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
1da177e4 3330 */
4ec93edb 3331 rcu_read_lock_bh();
1da177e4 3332
5bc1421e
NH
3333 skb_update_prio(skb);
3334
1f211a1b
DB
3335 qdisc_pkt_len_init(skb);
3336#ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338# ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3341 if (!skb)
3342 goto out;
3343 }
3344# endif
3345#endif
02875878
ED
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3348 */
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 skb_dst_drop(skb);
3351 else
3352 skb_dst_force(skb);
3353
0c4f691f
SF
3354#ifdef CONFIG_NET_SWITCHDEV
3355 /* Don't forward if offload device already forwarded */
3356 if (skb->offload_fwd_mark &&
3357 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3358 consume_skb(skb);
3359 rc = NET_XMIT_SUCCESS;
3360 goto out;
3361 }
3362#endif
3363
f663dd9a 3364 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3365 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3366
cf66ba58 3367 trace_net_dev_queue(skb);
1da177e4 3368 if (q->enqueue) {
bbd8a0d3 3369 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3370 goto out;
1da177e4
LT
3371 }
3372
3373 /* The device has no queue. Common case for software devices:
3374 loopback, all the sorts of tunnels...
3375
932ff279
HX
3376 Really, it is unlikely that netif_tx_lock protection is necessary
3377 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3378 counters.)
3379 However, it is possible, that they rely on protection
3380 made by us here.
3381
3382 Check this and shot the lock. It is not prone from deadlocks.
3383 Either shot noqueue qdisc, it is even simpler 8)
3384 */
3385 if (dev->flags & IFF_UP) {
3386 int cpu = smp_processor_id(); /* ok because BHs are off */
3387
c773e847 3388 if (txq->xmit_lock_owner != cpu) {
1da177e4 3389
745e20f1
ED
3390 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3391 goto recursion_alert;
3392
1f59533f
JDB
3393 skb = validate_xmit_skb(skb, dev);
3394 if (!skb)
d21fd63e 3395 goto out;
1f59533f 3396
c773e847 3397 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3398
73466498 3399 if (!netif_xmit_stopped(txq)) {
745e20f1 3400 __this_cpu_inc(xmit_recursion);
ce93718f 3401 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3402 __this_cpu_dec(xmit_recursion);
572a9d7b 3403 if (dev_xmit_complete(rc)) {
c773e847 3404 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3405 goto out;
3406 }
3407 }
c773e847 3408 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3409 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3410 dev->name);
1da177e4
LT
3411 } else {
3412 /* Recursion is detected! It is possible,
745e20f1
ED
3413 * unfortunately
3414 */
3415recursion_alert:
e87cc472
JP
3416 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3417 dev->name);
1da177e4
LT
3418 }
3419 }
3420
3421 rc = -ENETDOWN;
d4828d85 3422 rcu_read_unlock_bh();
1da177e4 3423
015f0688 3424 atomic_long_inc(&dev->tx_dropped);
1f59533f 3425 kfree_skb_list(skb);
1da177e4
LT
3426 return rc;
3427out:
d4828d85 3428 rcu_read_unlock_bh();
1da177e4
LT
3429 return rc;
3430}
f663dd9a 3431
2b4aa3ce 3432int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3433{
3434 return __dev_queue_xmit(skb, NULL);
3435}
2b4aa3ce 3436EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3437
f663dd9a
JW
3438int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3439{
3440 return __dev_queue_xmit(skb, accel_priv);
3441}
3442EXPORT_SYMBOL(dev_queue_xmit_accel);
3443
1da177e4
LT
3444
3445/*=======================================================================
3446 Receiver routines
3447 =======================================================================*/
3448
6b2bedc3 3449int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3450EXPORT_SYMBOL(netdev_max_backlog);
3451
3b098e2d 3452int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3453int netdev_budget __read_mostly = 300;
3454int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3455
eecfd7c4
ED
3456/* Called with irq disabled */
3457static inline void ____napi_schedule(struct softnet_data *sd,
3458 struct napi_struct *napi)
3459{
3460 list_add_tail(&napi->poll_list, &sd->poll_list);
3461 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3462}
3463
bfb564e7
KK
3464#ifdef CONFIG_RPS
3465
3466/* One global table that all flow-based protocols share. */
6e3f7faf 3467struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3468EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3469u32 rps_cpu_mask __read_mostly;
3470EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3471
c5905afb 3472struct static_key rps_needed __read_mostly;
3df97ba8 3473EXPORT_SYMBOL(rps_needed);
adc9300e 3474
c445477d
BH
3475static struct rps_dev_flow *
3476set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3477 struct rps_dev_flow *rflow, u16 next_cpu)
3478{
a31196b0 3479 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3480#ifdef CONFIG_RFS_ACCEL
3481 struct netdev_rx_queue *rxqueue;
3482 struct rps_dev_flow_table *flow_table;
3483 struct rps_dev_flow *old_rflow;
3484 u32 flow_id;
3485 u16 rxq_index;
3486 int rc;
3487
3488 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3489 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3490 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3491 goto out;
3492 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3493 if (rxq_index == skb_get_rx_queue(skb))
3494 goto out;
3495
3496 rxqueue = dev->_rx + rxq_index;
3497 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3498 if (!flow_table)
3499 goto out;
61b905da 3500 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3501 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3502 rxq_index, flow_id);
3503 if (rc < 0)
3504 goto out;
3505 old_rflow = rflow;
3506 rflow = &flow_table->flows[flow_id];
c445477d
BH
3507 rflow->filter = rc;
3508 if (old_rflow->filter == rflow->filter)
3509 old_rflow->filter = RPS_NO_FILTER;
3510 out:
3511#endif
3512 rflow->last_qtail =
09994d1b 3513 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3514 }
3515
09994d1b 3516 rflow->cpu = next_cpu;
c445477d
BH
3517 return rflow;
3518}
3519
bfb564e7
KK
3520/*
3521 * get_rps_cpu is called from netif_receive_skb and returns the target
3522 * CPU from the RPS map of the receiving queue for a given skb.
3523 * rcu_read_lock must be held on entry.
3524 */
3525static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3526 struct rps_dev_flow **rflowp)
3527{
567e4b79
ED
3528 const struct rps_sock_flow_table *sock_flow_table;
3529 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3530 struct rps_dev_flow_table *flow_table;
567e4b79 3531 struct rps_map *map;
bfb564e7 3532 int cpu = -1;
567e4b79 3533 u32 tcpu;
61b905da 3534 u32 hash;
bfb564e7
KK
3535
3536 if (skb_rx_queue_recorded(skb)) {
3537 u16 index = skb_get_rx_queue(skb);
567e4b79 3538
62fe0b40
BH
3539 if (unlikely(index >= dev->real_num_rx_queues)) {
3540 WARN_ONCE(dev->real_num_rx_queues > 1,
3541 "%s received packet on queue %u, but number "
3542 "of RX queues is %u\n",
3543 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3544 goto done;
3545 }
567e4b79
ED
3546 rxqueue += index;
3547 }
bfb564e7 3548
567e4b79
ED
3549 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3550
3551 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3552 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3553 if (!flow_table && !map)
bfb564e7
KK
3554 goto done;
3555
2d47b459 3556 skb_reset_network_header(skb);
61b905da
TH
3557 hash = skb_get_hash(skb);
3558 if (!hash)
bfb564e7
KK
3559 goto done;
3560
fec5e652
TH
3561 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3562 if (flow_table && sock_flow_table) {
fec5e652 3563 struct rps_dev_flow *rflow;
567e4b79
ED
3564 u32 next_cpu;
3565 u32 ident;
3566
3567 /* First check into global flow table if there is a match */
3568 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3569 if ((ident ^ hash) & ~rps_cpu_mask)
3570 goto try_rps;
fec5e652 3571
567e4b79
ED
3572 next_cpu = ident & rps_cpu_mask;
3573
3574 /* OK, now we know there is a match,
3575 * we can look at the local (per receive queue) flow table
3576 */
61b905da 3577 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3578 tcpu = rflow->cpu;
3579
fec5e652
TH
3580 /*
3581 * If the desired CPU (where last recvmsg was done) is
3582 * different from current CPU (one in the rx-queue flow
3583 * table entry), switch if one of the following holds:
a31196b0 3584 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3585 * - Current CPU is offline.
3586 * - The current CPU's queue tail has advanced beyond the
3587 * last packet that was enqueued using this table entry.
3588 * This guarantees that all previous packets for the flow
3589 * have been dequeued, thus preserving in order delivery.
3590 */
3591 if (unlikely(tcpu != next_cpu) &&
a31196b0 3592 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3593 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3594 rflow->last_qtail)) >= 0)) {
3595 tcpu = next_cpu;
c445477d 3596 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3597 }
c445477d 3598
a31196b0 3599 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3600 *rflowp = rflow;
3601 cpu = tcpu;
3602 goto done;
3603 }
3604 }
3605
567e4b79
ED
3606try_rps:
3607
0a9627f2 3608 if (map) {
8fc54f68 3609 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3610 if (cpu_online(tcpu)) {
3611 cpu = tcpu;
3612 goto done;
3613 }
3614 }
3615
3616done:
0a9627f2
TH
3617 return cpu;
3618}
3619
c445477d
BH
3620#ifdef CONFIG_RFS_ACCEL
3621
3622/**
3623 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3624 * @dev: Device on which the filter was set
3625 * @rxq_index: RX queue index
3626 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3627 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3628 *
3629 * Drivers that implement ndo_rx_flow_steer() should periodically call
3630 * this function for each installed filter and remove the filters for
3631 * which it returns %true.
3632 */
3633bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3634 u32 flow_id, u16 filter_id)
3635{
3636 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3637 struct rps_dev_flow_table *flow_table;
3638 struct rps_dev_flow *rflow;
3639 bool expire = true;
a31196b0 3640 unsigned int cpu;
c445477d
BH
3641
3642 rcu_read_lock();
3643 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3644 if (flow_table && flow_id <= flow_table->mask) {
3645 rflow = &flow_table->flows[flow_id];
3646 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3647 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3648 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3649 rflow->last_qtail) <
3650 (int)(10 * flow_table->mask)))
3651 expire = false;
3652 }
3653 rcu_read_unlock();
3654 return expire;
3655}
3656EXPORT_SYMBOL(rps_may_expire_flow);
3657
3658#endif /* CONFIG_RFS_ACCEL */
3659
0a9627f2 3660/* Called from hardirq (IPI) context */
e36fa2f7 3661static void rps_trigger_softirq(void *data)
0a9627f2 3662{
e36fa2f7
ED
3663 struct softnet_data *sd = data;
3664
eecfd7c4 3665 ____napi_schedule(sd, &sd->backlog);
dee42870 3666 sd->received_rps++;
0a9627f2 3667}
e36fa2f7 3668
fec5e652 3669#endif /* CONFIG_RPS */
0a9627f2 3670
e36fa2f7
ED
3671/*
3672 * Check if this softnet_data structure is another cpu one
3673 * If yes, queue it to our IPI list and return 1
3674 * If no, return 0
3675 */
3676static int rps_ipi_queued(struct softnet_data *sd)
3677{
3678#ifdef CONFIG_RPS
903ceff7 3679 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3680
3681 if (sd != mysd) {
3682 sd->rps_ipi_next = mysd->rps_ipi_list;
3683 mysd->rps_ipi_list = sd;
3684
3685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3686 return 1;
3687 }
3688#endif /* CONFIG_RPS */
3689 return 0;
3690}
3691
99bbc707
WB
3692#ifdef CONFIG_NET_FLOW_LIMIT
3693int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3694#endif
3695
3696static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3697{
3698#ifdef CONFIG_NET_FLOW_LIMIT
3699 struct sd_flow_limit *fl;
3700 struct softnet_data *sd;
3701 unsigned int old_flow, new_flow;
3702
3703 if (qlen < (netdev_max_backlog >> 1))
3704 return false;
3705
903ceff7 3706 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3707
3708 rcu_read_lock();
3709 fl = rcu_dereference(sd->flow_limit);
3710 if (fl) {
3958afa1 3711 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3712 old_flow = fl->history[fl->history_head];
3713 fl->history[fl->history_head] = new_flow;
3714
3715 fl->history_head++;
3716 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3717
3718 if (likely(fl->buckets[old_flow]))
3719 fl->buckets[old_flow]--;
3720
3721 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3722 fl->count++;
3723 rcu_read_unlock();
3724 return true;
3725 }
3726 }
3727 rcu_read_unlock();
3728#endif
3729 return false;
3730}
3731
0a9627f2
TH
3732/*
3733 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3734 * queue (may be a remote CPU queue).
3735 */
fec5e652
TH
3736static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3737 unsigned int *qtail)
0a9627f2 3738{
e36fa2f7 3739 struct softnet_data *sd;
0a9627f2 3740 unsigned long flags;
99bbc707 3741 unsigned int qlen;
0a9627f2 3742
e36fa2f7 3743 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3744
3745 local_irq_save(flags);
0a9627f2 3746
e36fa2f7 3747 rps_lock(sd);
e9e4dd32
JA
3748 if (!netif_running(skb->dev))
3749 goto drop;
99bbc707
WB
3750 qlen = skb_queue_len(&sd->input_pkt_queue);
3751 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3752 if (qlen) {
0a9627f2 3753enqueue:
e36fa2f7 3754 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3755 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3756 rps_unlock(sd);
152102c7 3757 local_irq_restore(flags);
0a9627f2
TH
3758 return NET_RX_SUCCESS;
3759 }
3760
ebda37c2
ED
3761 /* Schedule NAPI for backlog device
3762 * We can use non atomic operation since we own the queue lock
3763 */
3764 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3765 if (!rps_ipi_queued(sd))
eecfd7c4 3766 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3767 }
3768 goto enqueue;
3769 }
3770
e9e4dd32 3771drop:
dee42870 3772 sd->dropped++;
e36fa2f7 3773 rps_unlock(sd);
0a9627f2 3774
0a9627f2
TH
3775 local_irq_restore(flags);
3776
caf586e5 3777 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3778 kfree_skb(skb);
3779 return NET_RX_DROP;
3780}
1da177e4 3781
ae78dbfa 3782static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3783{
b0e28f1e 3784 int ret;
1da177e4 3785
588f0330 3786 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3787
cf66ba58 3788 trace_netif_rx(skb);
df334545 3789#ifdef CONFIG_RPS
c5905afb 3790 if (static_key_false(&rps_needed)) {
fec5e652 3791 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3792 int cpu;
3793
cece1945 3794 preempt_disable();
b0e28f1e 3795 rcu_read_lock();
fec5e652
TH
3796
3797 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3798 if (cpu < 0)
3799 cpu = smp_processor_id();
fec5e652
TH
3800
3801 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3802
b0e28f1e 3803 rcu_read_unlock();
cece1945 3804 preempt_enable();
adc9300e
ED
3805 } else
3806#endif
fec5e652
TH
3807 {
3808 unsigned int qtail;
3809 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3810 put_cpu();
3811 }
b0e28f1e 3812 return ret;
1da177e4 3813}
ae78dbfa
BH
3814
3815/**
3816 * netif_rx - post buffer to the network code
3817 * @skb: buffer to post
3818 *
3819 * This function receives a packet from a device driver and queues it for
3820 * the upper (protocol) levels to process. It always succeeds. The buffer
3821 * may be dropped during processing for congestion control or by the
3822 * protocol layers.
3823 *
3824 * return values:
3825 * NET_RX_SUCCESS (no congestion)
3826 * NET_RX_DROP (packet was dropped)
3827 *
3828 */
3829
3830int netif_rx(struct sk_buff *skb)
3831{
3832 trace_netif_rx_entry(skb);
3833
3834 return netif_rx_internal(skb);
3835}
d1b19dff 3836EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3837
3838int netif_rx_ni(struct sk_buff *skb)
3839{
3840 int err;
3841
ae78dbfa
BH
3842 trace_netif_rx_ni_entry(skb);
3843
1da177e4 3844 preempt_disable();
ae78dbfa 3845 err = netif_rx_internal(skb);
1da177e4
LT
3846 if (local_softirq_pending())
3847 do_softirq();
3848 preempt_enable();
3849
3850 return err;
3851}
1da177e4
LT
3852EXPORT_SYMBOL(netif_rx_ni);
3853
1da177e4
LT
3854static void net_tx_action(struct softirq_action *h)
3855{
903ceff7 3856 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3857
3858 if (sd->completion_queue) {
3859 struct sk_buff *clist;
3860
3861 local_irq_disable();
3862 clist = sd->completion_queue;
3863 sd->completion_queue = NULL;
3864 local_irq_enable();
3865
3866 while (clist) {
3867 struct sk_buff *skb = clist;
3868 clist = clist->next;
3869
547b792c 3870 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3871 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3872 trace_consume_skb(skb);
3873 else
3874 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3875
3876 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3877 __kfree_skb(skb);
3878 else
3879 __kfree_skb_defer(skb);
1da177e4 3880 }
15fad714
JDB
3881
3882 __kfree_skb_flush();
1da177e4
LT
3883 }
3884
3885 if (sd->output_queue) {
37437bb2 3886 struct Qdisc *head;
1da177e4
LT
3887
3888 local_irq_disable();
3889 head = sd->output_queue;
3890 sd->output_queue = NULL;
a9cbd588 3891 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3892 local_irq_enable();
3893
3894 while (head) {
37437bb2
DM
3895 struct Qdisc *q = head;
3896 spinlock_t *root_lock;
3897
1da177e4
LT
3898 head = head->next_sched;
3899
5fb66229 3900 root_lock = qdisc_lock(q);
37437bb2 3901 if (spin_trylock(root_lock)) {
4e857c58 3902 smp_mb__before_atomic();
def82a1d
JP
3903 clear_bit(__QDISC_STATE_SCHED,
3904 &q->state);
37437bb2
DM
3905 qdisc_run(q);
3906 spin_unlock(root_lock);
1da177e4 3907 } else {
195648bb 3908 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3909 &q->state)) {
195648bb 3910 __netif_reschedule(q);
e8a83e10 3911 } else {
4e857c58 3912 smp_mb__before_atomic();
e8a83e10
JP
3913 clear_bit(__QDISC_STATE_SCHED,
3914 &q->state);
3915 }
1da177e4
LT
3916 }
3917 }
3918 }
3919}
3920
ab95bfe0
JP
3921#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3922 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3923/* This hook is defined here for ATM LANE */
3924int (*br_fdb_test_addr_hook)(struct net_device *dev,
3925 unsigned char *addr) __read_mostly;
4fb019a0 3926EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3927#endif
1da177e4 3928
1f211a1b
DB
3929static inline struct sk_buff *
3930sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3931 struct net_device *orig_dev)
f697c3e8 3932{
e7582bab 3933#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3934 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3935 struct tcf_result cl_res;
24824a09 3936
c9e99fd0
DB
3937 /* If there's at least one ingress present somewhere (so
3938 * we get here via enabled static key), remaining devices
3939 * that are not configured with an ingress qdisc will bail
d2788d34 3940 * out here.
c9e99fd0 3941 */
d2788d34 3942 if (!cl)
4577139b 3943 return skb;
f697c3e8
HX
3944 if (*pt_prev) {
3945 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3946 *pt_prev = NULL;
1da177e4
LT
3947 }
3948
3365495c 3949 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3950 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3951 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3952
3b3ae880 3953 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3954 case TC_ACT_OK:
3955 case TC_ACT_RECLASSIFY:
3956 skb->tc_index = TC_H_MIN(cl_res.classid);
3957 break;
3958 case TC_ACT_SHOT:
24ea591d 3959 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3960 kfree_skb(skb);
3961 return NULL;
d2788d34
DB
3962 case TC_ACT_STOLEN:
3963 case TC_ACT_QUEUED:
8a3a4c6e 3964 consume_skb(skb);
d2788d34 3965 return NULL;
27b29f63
AS
3966 case TC_ACT_REDIRECT:
3967 /* skb_mac_header check was done by cls/act_bpf, so
3968 * we can safely push the L2 header back before
3969 * redirecting to another netdev
3970 */
3971 __skb_push(skb, skb->mac_len);
3972 skb_do_redirect(skb);
3973 return NULL;
d2788d34
DB
3974 default:
3975 break;
f697c3e8 3976 }
e7582bab 3977#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3978 return skb;
3979}
1da177e4 3980
ab95bfe0
JP
3981/**
3982 * netdev_rx_handler_register - register receive handler
3983 * @dev: device to register a handler for
3984 * @rx_handler: receive handler to register
93e2c32b 3985 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3986 *
e227867f 3987 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3988 * called from __netif_receive_skb. A negative errno code is returned
3989 * on a failure.
3990 *
3991 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3992 *
3993 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3994 */
3995int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3996 rx_handler_func_t *rx_handler,
3997 void *rx_handler_data)
ab95bfe0
JP
3998{
3999 ASSERT_RTNL();
4000
4001 if (dev->rx_handler)
4002 return -EBUSY;
4003
00cfec37 4004 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4005 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4006 rcu_assign_pointer(dev->rx_handler, rx_handler);
4007
4008 return 0;
4009}
4010EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4011
4012/**
4013 * netdev_rx_handler_unregister - unregister receive handler
4014 * @dev: device to unregister a handler from
4015 *
166ec369 4016 * Unregister a receive handler from a device.
ab95bfe0
JP
4017 *
4018 * The caller must hold the rtnl_mutex.
4019 */
4020void netdev_rx_handler_unregister(struct net_device *dev)
4021{
4022
4023 ASSERT_RTNL();
a9b3cd7f 4024 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4025 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4026 * section has a guarantee to see a non NULL rx_handler_data
4027 * as well.
4028 */
4029 synchronize_net();
a9b3cd7f 4030 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4031}
4032EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4033
b4b9e355
MG
4034/*
4035 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4036 * the special handling of PFMEMALLOC skbs.
4037 */
4038static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4039{
4040 switch (skb->protocol) {
2b8837ae
JP
4041 case htons(ETH_P_ARP):
4042 case htons(ETH_P_IP):
4043 case htons(ETH_P_IPV6):
4044 case htons(ETH_P_8021Q):
4045 case htons(ETH_P_8021AD):
b4b9e355
MG
4046 return true;
4047 default:
4048 return false;
4049 }
4050}
4051
e687ad60
PN
4052static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4053 int *ret, struct net_device *orig_dev)
4054{
e7582bab 4055#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4056 if (nf_hook_ingress_active(skb)) {
4057 if (*pt_prev) {
4058 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4059 *pt_prev = NULL;
4060 }
4061
4062 return nf_hook_ingress(skb);
4063 }
e7582bab 4064#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4065 return 0;
4066}
e687ad60 4067
9754e293 4068static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4069{
4070 struct packet_type *ptype, *pt_prev;
ab95bfe0 4071 rx_handler_func_t *rx_handler;
f2ccd8fa 4072 struct net_device *orig_dev;
8a4eb573 4073 bool deliver_exact = false;
1da177e4 4074 int ret = NET_RX_DROP;
252e3346 4075 __be16 type;
1da177e4 4076
588f0330 4077 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4078
cf66ba58 4079 trace_netif_receive_skb(skb);
9b22ea56 4080
cc9bd5ce 4081 orig_dev = skb->dev;
8f903c70 4082
c1d2bbe1 4083 skb_reset_network_header(skb);
fda55eca
ED
4084 if (!skb_transport_header_was_set(skb))
4085 skb_reset_transport_header(skb);
0b5c9db1 4086 skb_reset_mac_len(skb);
1da177e4
LT
4087
4088 pt_prev = NULL;
4089
63d8ea7f 4090another_round:
b6858177 4091 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4092
4093 __this_cpu_inc(softnet_data.processed);
4094
8ad227ff
PM
4095 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4096 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4097 skb = skb_vlan_untag(skb);
bcc6d479 4098 if (unlikely(!skb))
2c17d27c 4099 goto out;
bcc6d479
JP
4100 }
4101
1da177e4
LT
4102#ifdef CONFIG_NET_CLS_ACT
4103 if (skb->tc_verd & TC_NCLS) {
4104 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4105 goto ncls;
4106 }
4107#endif
4108
9754e293 4109 if (pfmemalloc)
b4b9e355
MG
4110 goto skip_taps;
4111
1da177e4 4112 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4113 if (pt_prev)
4114 ret = deliver_skb(skb, pt_prev, orig_dev);
4115 pt_prev = ptype;
4116 }
4117
4118 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4119 if (pt_prev)
4120 ret = deliver_skb(skb, pt_prev, orig_dev);
4121 pt_prev = ptype;
1da177e4
LT
4122 }
4123
b4b9e355 4124skip_taps:
1cf51900 4125#ifdef CONFIG_NET_INGRESS
4577139b 4126 if (static_key_false(&ingress_needed)) {
1f211a1b 4127 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4128 if (!skb)
2c17d27c 4129 goto out;
e687ad60
PN
4130
4131 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4132 goto out;
4577139b 4133 }
1cf51900
PN
4134#endif
4135#ifdef CONFIG_NET_CLS_ACT
4577139b 4136 skb->tc_verd = 0;
1da177e4
LT
4137ncls:
4138#endif
9754e293 4139 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4140 goto drop;
4141
df8a39de 4142 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4143 if (pt_prev) {
4144 ret = deliver_skb(skb, pt_prev, orig_dev);
4145 pt_prev = NULL;
4146 }
48cc32d3 4147 if (vlan_do_receive(&skb))
2425717b
JF
4148 goto another_round;
4149 else if (unlikely(!skb))
2c17d27c 4150 goto out;
2425717b
JF
4151 }
4152
48cc32d3 4153 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4154 if (rx_handler) {
4155 if (pt_prev) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4157 pt_prev = NULL;
4158 }
8a4eb573
JP
4159 switch (rx_handler(&skb)) {
4160 case RX_HANDLER_CONSUMED:
3bc1b1ad 4161 ret = NET_RX_SUCCESS;
2c17d27c 4162 goto out;
8a4eb573 4163 case RX_HANDLER_ANOTHER:
63d8ea7f 4164 goto another_round;
8a4eb573
JP
4165 case RX_HANDLER_EXACT:
4166 deliver_exact = true;
4167 case RX_HANDLER_PASS:
4168 break;
4169 default:
4170 BUG();
4171 }
ab95bfe0 4172 }
1da177e4 4173
df8a39de
JP
4174 if (unlikely(skb_vlan_tag_present(skb))) {
4175 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4176 skb->pkt_type = PACKET_OTHERHOST;
4177 /* Note: we might in the future use prio bits
4178 * and set skb->priority like in vlan_do_receive()
4179 * For the time being, just ignore Priority Code Point
4180 */
4181 skb->vlan_tci = 0;
4182 }
48cc32d3 4183
7866a621
SN
4184 type = skb->protocol;
4185
63d8ea7f 4186 /* deliver only exact match when indicated */
7866a621
SN
4187 if (likely(!deliver_exact)) {
4188 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189 &ptype_base[ntohs(type) &
4190 PTYPE_HASH_MASK]);
4191 }
1f3c8804 4192
7866a621
SN
4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 &orig_dev->ptype_specific);
4195
4196 if (unlikely(skb->dev != orig_dev)) {
4197 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4198 &skb->dev->ptype_specific);
1da177e4
LT
4199 }
4200
4201 if (pt_prev) {
1080e512 4202 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4203 goto drop;
1080e512
MT
4204 else
4205 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4206 } else {
b4b9e355 4207drop:
6e7333d3
JW
4208 if (!deliver_exact)
4209 atomic_long_inc(&skb->dev->rx_dropped);
4210 else
4211 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4212 kfree_skb(skb);
4213 /* Jamal, now you will not able to escape explaining
4214 * me how you were going to use this. :-)
4215 */
4216 ret = NET_RX_DROP;
4217 }
4218
2c17d27c 4219out:
9754e293
DM
4220 return ret;
4221}
4222
4223static int __netif_receive_skb(struct sk_buff *skb)
4224{
4225 int ret;
4226
4227 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4228 unsigned long pflags = current->flags;
4229
4230 /*
4231 * PFMEMALLOC skbs are special, they should
4232 * - be delivered to SOCK_MEMALLOC sockets only
4233 * - stay away from userspace
4234 * - have bounded memory usage
4235 *
4236 * Use PF_MEMALLOC as this saves us from propagating the allocation
4237 * context down to all allocation sites.
4238 */
4239 current->flags |= PF_MEMALLOC;
4240 ret = __netif_receive_skb_core(skb, true);
4241 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4242 } else
4243 ret = __netif_receive_skb_core(skb, false);
4244
1da177e4
LT
4245 return ret;
4246}
0a9627f2 4247
ae78dbfa 4248static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4249{
2c17d27c
JA
4250 int ret;
4251
588f0330 4252 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4253
c1f19b51
RC
4254 if (skb_defer_rx_timestamp(skb))
4255 return NET_RX_SUCCESS;
4256
2c17d27c
JA
4257 rcu_read_lock();
4258
df334545 4259#ifdef CONFIG_RPS
c5905afb 4260 if (static_key_false(&rps_needed)) {
3b098e2d 4261 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4262 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4263
3b098e2d
ED
4264 if (cpu >= 0) {
4265 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4266 rcu_read_unlock();
adc9300e 4267 return ret;
3b098e2d 4268 }
fec5e652 4269 }
1e94d72f 4270#endif
2c17d27c
JA
4271 ret = __netif_receive_skb(skb);
4272 rcu_read_unlock();
4273 return ret;
0a9627f2 4274}
ae78dbfa
BH
4275
4276/**
4277 * netif_receive_skb - process receive buffer from network
4278 * @skb: buffer to process
4279 *
4280 * netif_receive_skb() is the main receive data processing function.
4281 * It always succeeds. The buffer may be dropped during processing
4282 * for congestion control or by the protocol layers.
4283 *
4284 * This function may only be called from softirq context and interrupts
4285 * should be enabled.
4286 *
4287 * Return values (usually ignored):
4288 * NET_RX_SUCCESS: no congestion
4289 * NET_RX_DROP: packet was dropped
4290 */
04eb4489 4291int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4292{
4293 trace_netif_receive_skb_entry(skb);
4294
4295 return netif_receive_skb_internal(skb);
4296}
04eb4489 4297EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4298
88751275
ED
4299/* Network device is going away, flush any packets still pending
4300 * Called with irqs disabled.
4301 */
152102c7 4302static void flush_backlog(void *arg)
6e583ce5 4303{
152102c7 4304 struct net_device *dev = arg;
903ceff7 4305 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4306 struct sk_buff *skb, *tmp;
4307
e36fa2f7 4308 rps_lock(sd);
6e7676c1 4309 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4310 if (skb->dev == dev) {
e36fa2f7 4311 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4312 kfree_skb(skb);
76cc8b13 4313 input_queue_head_incr(sd);
6e583ce5 4314 }
6e7676c1 4315 }
e36fa2f7 4316 rps_unlock(sd);
6e7676c1
CG
4317
4318 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4319 if (skb->dev == dev) {
4320 __skb_unlink(skb, &sd->process_queue);
4321 kfree_skb(skb);
76cc8b13 4322 input_queue_head_incr(sd);
6e7676c1
CG
4323 }
4324 }
6e583ce5
SH
4325}
4326
d565b0a1
HX
4327static int napi_gro_complete(struct sk_buff *skb)
4328{
22061d80 4329 struct packet_offload *ptype;
d565b0a1 4330 __be16 type = skb->protocol;
22061d80 4331 struct list_head *head = &offload_base;
d565b0a1
HX
4332 int err = -ENOENT;
4333
c3c7c254
ED
4334 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4335
fc59f9a3
HX
4336 if (NAPI_GRO_CB(skb)->count == 1) {
4337 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4338 goto out;
fc59f9a3 4339 }
d565b0a1
HX
4340
4341 rcu_read_lock();
4342 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4343 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4344 continue;
4345
299603e8 4346 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4347 break;
4348 }
4349 rcu_read_unlock();
4350
4351 if (err) {
4352 WARN_ON(&ptype->list == head);
4353 kfree_skb(skb);
4354 return NET_RX_SUCCESS;
4355 }
4356
4357out:
ae78dbfa 4358 return netif_receive_skb_internal(skb);
d565b0a1
HX
4359}
4360
2e71a6f8
ED
4361/* napi->gro_list contains packets ordered by age.
4362 * youngest packets at the head of it.
4363 * Complete skbs in reverse order to reduce latencies.
4364 */
4365void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4366{
2e71a6f8 4367 struct sk_buff *skb, *prev = NULL;
d565b0a1 4368
2e71a6f8
ED
4369 /* scan list and build reverse chain */
4370 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4371 skb->prev = prev;
4372 prev = skb;
4373 }
4374
4375 for (skb = prev; skb; skb = prev) {
d565b0a1 4376 skb->next = NULL;
2e71a6f8
ED
4377
4378 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4379 return;
4380
4381 prev = skb->prev;
d565b0a1 4382 napi_gro_complete(skb);
2e71a6f8 4383 napi->gro_count--;
d565b0a1
HX
4384 }
4385
4386 napi->gro_list = NULL;
4387}
86cac58b 4388EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4389
89c5fa33
ED
4390static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4391{
4392 struct sk_buff *p;
4393 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4394 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4395
4396 for (p = napi->gro_list; p; p = p->next) {
4397 unsigned long diffs;
4398
0b4cec8c
TH
4399 NAPI_GRO_CB(p)->flush = 0;
4400
4401 if (hash != skb_get_hash_raw(p)) {
4402 NAPI_GRO_CB(p)->same_flow = 0;
4403 continue;
4404 }
4405
89c5fa33
ED
4406 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4407 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4408 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4409 if (maclen == ETH_HLEN)
4410 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4411 skb_mac_header(skb));
89c5fa33
ED
4412 else if (!diffs)
4413 diffs = memcmp(skb_mac_header(p),
a50e233c 4414 skb_mac_header(skb),
89c5fa33
ED
4415 maclen);
4416 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4417 }
4418}
4419
299603e8
JC
4420static void skb_gro_reset_offset(struct sk_buff *skb)
4421{
4422 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4423 const skb_frag_t *frag0 = &pinfo->frags[0];
4424
4425 NAPI_GRO_CB(skb)->data_offset = 0;
4426 NAPI_GRO_CB(skb)->frag0 = NULL;
4427 NAPI_GRO_CB(skb)->frag0_len = 0;
4428
4429 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4430 pinfo->nr_frags &&
4431 !PageHighMem(skb_frag_page(frag0))) {
4432 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4433 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4434 }
4435}
4436
a50e233c
ED
4437static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4438{
4439 struct skb_shared_info *pinfo = skb_shinfo(skb);
4440
4441 BUG_ON(skb->end - skb->tail < grow);
4442
4443 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4444
4445 skb->data_len -= grow;
4446 skb->tail += grow;
4447
4448 pinfo->frags[0].page_offset += grow;
4449 skb_frag_size_sub(&pinfo->frags[0], grow);
4450
4451 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4452 skb_frag_unref(skb, 0);
4453 memmove(pinfo->frags, pinfo->frags + 1,
4454 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4455 }
4456}
4457
bb728820 4458static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4459{
4460 struct sk_buff **pp = NULL;
22061d80 4461 struct packet_offload *ptype;
d565b0a1 4462 __be16 type = skb->protocol;
22061d80 4463 struct list_head *head = &offload_base;
0da2afd5 4464 int same_flow;
5b252f0c 4465 enum gro_result ret;
a50e233c 4466 int grow;
d565b0a1 4467
9c62a68d 4468 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4469 goto normal;
4470
5a212329 4471 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4472 goto normal;
4473
89c5fa33
ED
4474 gro_list_prepare(napi, skb);
4475
d565b0a1
HX
4476 rcu_read_lock();
4477 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4478 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4479 continue;
4480
86911732 4481 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4482 skb_reset_mac_len(skb);
d565b0a1
HX
4483 NAPI_GRO_CB(skb)->same_flow = 0;
4484 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4485 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4486 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4487 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4488 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4489 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4490
662880f4
TH
4491 /* Setup for GRO checksum validation */
4492 switch (skb->ip_summed) {
4493 case CHECKSUM_COMPLETE:
4494 NAPI_GRO_CB(skb)->csum = skb->csum;
4495 NAPI_GRO_CB(skb)->csum_valid = 1;
4496 NAPI_GRO_CB(skb)->csum_cnt = 0;
4497 break;
4498 case CHECKSUM_UNNECESSARY:
4499 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4500 NAPI_GRO_CB(skb)->csum_valid = 0;
4501 break;
4502 default:
4503 NAPI_GRO_CB(skb)->csum_cnt = 0;
4504 NAPI_GRO_CB(skb)->csum_valid = 0;
4505 }
d565b0a1 4506
f191a1d1 4507 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4508 break;
4509 }
4510 rcu_read_unlock();
4511
4512 if (&ptype->list == head)
4513 goto normal;
4514
0da2afd5 4515 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4516 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4517
d565b0a1
HX
4518 if (pp) {
4519 struct sk_buff *nskb = *pp;
4520
4521 *pp = nskb->next;
4522 nskb->next = NULL;
4523 napi_gro_complete(nskb);
4ae5544f 4524 napi->gro_count--;
d565b0a1
HX
4525 }
4526
0da2afd5 4527 if (same_flow)
d565b0a1
HX
4528 goto ok;
4529
600adc18 4530 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4531 goto normal;
d565b0a1 4532
600adc18
ED
4533 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4534 struct sk_buff *nskb = napi->gro_list;
4535
4536 /* locate the end of the list to select the 'oldest' flow */
4537 while (nskb->next) {
4538 pp = &nskb->next;
4539 nskb = *pp;
4540 }
4541 *pp = NULL;
4542 nskb->next = NULL;
4543 napi_gro_complete(nskb);
4544 } else {
4545 napi->gro_count++;
4546 }
d565b0a1 4547 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4548 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4549 NAPI_GRO_CB(skb)->last = skb;
86911732 4550 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4551 skb->next = napi->gro_list;
4552 napi->gro_list = skb;
5d0d9be8 4553 ret = GRO_HELD;
d565b0a1 4554
ad0f9904 4555pull:
a50e233c
ED
4556 grow = skb_gro_offset(skb) - skb_headlen(skb);
4557 if (grow > 0)
4558 gro_pull_from_frag0(skb, grow);
d565b0a1 4559ok:
5d0d9be8 4560 return ret;
d565b0a1
HX
4561
4562normal:
ad0f9904
HX
4563 ret = GRO_NORMAL;
4564 goto pull;
5d38a079 4565}
96e93eab 4566
bf5a755f
JC
4567struct packet_offload *gro_find_receive_by_type(__be16 type)
4568{
4569 struct list_head *offload_head = &offload_base;
4570 struct packet_offload *ptype;
4571
4572 list_for_each_entry_rcu(ptype, offload_head, list) {
4573 if (ptype->type != type || !ptype->callbacks.gro_receive)
4574 continue;
4575 return ptype;
4576 }
4577 return NULL;
4578}
e27a2f83 4579EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4580
4581struct packet_offload *gro_find_complete_by_type(__be16 type)
4582{
4583 struct list_head *offload_head = &offload_base;
4584 struct packet_offload *ptype;
4585
4586 list_for_each_entry_rcu(ptype, offload_head, list) {
4587 if (ptype->type != type || !ptype->callbacks.gro_complete)
4588 continue;
4589 return ptype;
4590 }
4591 return NULL;
4592}
e27a2f83 4593EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4594
bb728820 4595static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4596{
5d0d9be8
HX
4597 switch (ret) {
4598 case GRO_NORMAL:
ae78dbfa 4599 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4600 ret = GRO_DROP;
4601 break;
5d38a079 4602
5d0d9be8 4603 case GRO_DROP:
5d38a079
HX
4604 kfree_skb(skb);
4605 break;
5b252f0c 4606
daa86548 4607 case GRO_MERGED_FREE:
ce87fc6c
JG
4608 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4609 skb_dst_drop(skb);
d7e8883c 4610 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4611 } else {
d7e8883c 4612 __kfree_skb(skb);
ce87fc6c 4613 }
daa86548
ED
4614 break;
4615
5b252f0c
BH
4616 case GRO_HELD:
4617 case GRO_MERGED:
4618 break;
5d38a079
HX
4619 }
4620
c7c4b3b6 4621 return ret;
5d0d9be8 4622}
5d0d9be8 4623
c7c4b3b6 4624gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4625{
93f93a44 4626 skb_mark_napi_id(skb, napi);
ae78dbfa 4627 trace_napi_gro_receive_entry(skb);
86911732 4628
a50e233c
ED
4629 skb_gro_reset_offset(skb);
4630
89c5fa33 4631 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4632}
4633EXPORT_SYMBOL(napi_gro_receive);
4634
d0c2b0d2 4635static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4636{
93a35f59
ED
4637 if (unlikely(skb->pfmemalloc)) {
4638 consume_skb(skb);
4639 return;
4640 }
96e93eab 4641 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4642 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4643 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4644 skb->vlan_tci = 0;
66c46d74 4645 skb->dev = napi->dev;
6d152e23 4646 skb->skb_iif = 0;
c3caf119
JC
4647 skb->encapsulation = 0;
4648 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4649 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4650
4651 napi->skb = skb;
4652}
96e93eab 4653
76620aaf 4654struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4655{
5d38a079 4656 struct sk_buff *skb = napi->skb;
5d38a079
HX
4657
4658 if (!skb) {
fd11a83d 4659 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4660 if (skb) {
4661 napi->skb = skb;
4662 skb_mark_napi_id(skb, napi);
4663 }
80595d59 4664 }
96e93eab
HX
4665 return skb;
4666}
76620aaf 4667EXPORT_SYMBOL(napi_get_frags);
96e93eab 4668
a50e233c
ED
4669static gro_result_t napi_frags_finish(struct napi_struct *napi,
4670 struct sk_buff *skb,
4671 gro_result_t ret)
96e93eab 4672{
5d0d9be8
HX
4673 switch (ret) {
4674 case GRO_NORMAL:
a50e233c
ED
4675 case GRO_HELD:
4676 __skb_push(skb, ETH_HLEN);
4677 skb->protocol = eth_type_trans(skb, skb->dev);
4678 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4679 ret = GRO_DROP;
86911732 4680 break;
5d38a079 4681
5d0d9be8 4682 case GRO_DROP:
5d0d9be8
HX
4683 case GRO_MERGED_FREE:
4684 napi_reuse_skb(napi, skb);
4685 break;
5b252f0c
BH
4686
4687 case GRO_MERGED:
4688 break;
5d0d9be8 4689 }
5d38a079 4690
c7c4b3b6 4691 return ret;
5d38a079 4692}
5d0d9be8 4693
a50e233c
ED
4694/* Upper GRO stack assumes network header starts at gro_offset=0
4695 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4696 * We copy ethernet header into skb->data to have a common layout.
4697 */
4adb9c4a 4698static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4699{
4700 struct sk_buff *skb = napi->skb;
a50e233c
ED
4701 const struct ethhdr *eth;
4702 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4703
4704 napi->skb = NULL;
4705
a50e233c
ED
4706 skb_reset_mac_header(skb);
4707 skb_gro_reset_offset(skb);
4708
4709 eth = skb_gro_header_fast(skb, 0);
4710 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4711 eth = skb_gro_header_slow(skb, hlen, 0);
4712 if (unlikely(!eth)) {
4da46ceb
AC
4713 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4714 __func__, napi->dev->name);
a50e233c
ED
4715 napi_reuse_skb(napi, skb);
4716 return NULL;
4717 }
4718 } else {
4719 gro_pull_from_frag0(skb, hlen);
4720 NAPI_GRO_CB(skb)->frag0 += hlen;
4721 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4722 }
a50e233c
ED
4723 __skb_pull(skb, hlen);
4724
4725 /*
4726 * This works because the only protocols we care about don't require
4727 * special handling.
4728 * We'll fix it up properly in napi_frags_finish()
4729 */
4730 skb->protocol = eth->h_proto;
76620aaf 4731
76620aaf
HX
4732 return skb;
4733}
76620aaf 4734
c7c4b3b6 4735gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4736{
76620aaf 4737 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4738
4739 if (!skb)
c7c4b3b6 4740 return GRO_DROP;
5d0d9be8 4741
ae78dbfa
BH
4742 trace_napi_gro_frags_entry(skb);
4743
89c5fa33 4744 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4745}
5d38a079
HX
4746EXPORT_SYMBOL(napi_gro_frags);
4747
573e8fca
TH
4748/* Compute the checksum from gro_offset and return the folded value
4749 * after adding in any pseudo checksum.
4750 */
4751__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4752{
4753 __wsum wsum;
4754 __sum16 sum;
4755
4756 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4757
4758 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4759 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4760 if (likely(!sum)) {
4761 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4762 !skb->csum_complete_sw)
4763 netdev_rx_csum_fault(skb->dev);
4764 }
4765
4766 NAPI_GRO_CB(skb)->csum = wsum;
4767 NAPI_GRO_CB(skb)->csum_valid = 1;
4768
4769 return sum;
4770}
4771EXPORT_SYMBOL(__skb_gro_checksum_complete);
4772
e326bed2 4773/*
855abcf0 4774 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4775 * Note: called with local irq disabled, but exits with local irq enabled.
4776 */
4777static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4778{
4779#ifdef CONFIG_RPS
4780 struct softnet_data *remsd = sd->rps_ipi_list;
4781
4782 if (remsd) {
4783 sd->rps_ipi_list = NULL;
4784
4785 local_irq_enable();
4786
4787 /* Send pending IPI's to kick RPS processing on remote cpus. */
4788 while (remsd) {
4789 struct softnet_data *next = remsd->rps_ipi_next;
4790
4791 if (cpu_online(remsd->cpu))
c46fff2a 4792 smp_call_function_single_async(remsd->cpu,
fce8ad15 4793 &remsd->csd);
e326bed2
ED
4794 remsd = next;
4795 }
4796 } else
4797#endif
4798 local_irq_enable();
4799}
4800
d75b1ade
ED
4801static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4802{
4803#ifdef CONFIG_RPS
4804 return sd->rps_ipi_list != NULL;
4805#else
4806 return false;
4807#endif
4808}
4809
bea3348e 4810static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4811{
4812 int work = 0;
eecfd7c4 4813 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4814
e326bed2
ED
4815 /* Check if we have pending ipi, its better to send them now,
4816 * not waiting net_rx_action() end.
4817 */
d75b1ade 4818 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4819 local_irq_disable();
4820 net_rps_action_and_irq_enable(sd);
4821 }
d75b1ade 4822
bea3348e 4823 napi->weight = weight_p;
6e7676c1 4824 local_irq_disable();
11ef7a89 4825 while (1) {
1da177e4 4826 struct sk_buff *skb;
6e7676c1
CG
4827
4828 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4829 rcu_read_lock();
6e7676c1
CG
4830 local_irq_enable();
4831 __netif_receive_skb(skb);
2c17d27c 4832 rcu_read_unlock();
6e7676c1 4833 local_irq_disable();
76cc8b13
TH
4834 input_queue_head_incr(sd);
4835 if (++work >= quota) {
4836 local_irq_enable();
4837 return work;
4838 }
6e7676c1 4839 }
1da177e4 4840
e36fa2f7 4841 rps_lock(sd);
11ef7a89 4842 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4843 /*
4844 * Inline a custom version of __napi_complete().
4845 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4846 * and NAPI_STATE_SCHED is the only possible flag set
4847 * on backlog.
4848 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4849 * and we dont need an smp_mb() memory barrier.
4850 */
eecfd7c4 4851 napi->state = 0;
11ef7a89 4852 rps_unlock(sd);
eecfd7c4 4853
11ef7a89 4854 break;
bea3348e 4855 }
11ef7a89
TH
4856
4857 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4858 &sd->process_queue);
e36fa2f7 4859 rps_unlock(sd);
6e7676c1
CG
4860 }
4861 local_irq_enable();
1da177e4 4862
bea3348e
SH
4863 return work;
4864}
1da177e4 4865
bea3348e
SH
4866/**
4867 * __napi_schedule - schedule for receive
c4ea43c5 4868 * @n: entry to schedule
bea3348e 4869 *
bc9ad166
ED
4870 * The entry's receive function will be scheduled to run.
4871 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4872 */
b5606c2d 4873void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4874{
4875 unsigned long flags;
1da177e4 4876
bea3348e 4877 local_irq_save(flags);
903ceff7 4878 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4879 local_irq_restore(flags);
1da177e4 4880}
bea3348e
SH
4881EXPORT_SYMBOL(__napi_schedule);
4882
bc9ad166
ED
4883/**
4884 * __napi_schedule_irqoff - schedule for receive
4885 * @n: entry to schedule
4886 *
4887 * Variant of __napi_schedule() assuming hard irqs are masked
4888 */
4889void __napi_schedule_irqoff(struct napi_struct *n)
4890{
4891 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4892}
4893EXPORT_SYMBOL(__napi_schedule_irqoff);
4894
d565b0a1
HX
4895void __napi_complete(struct napi_struct *n)
4896{
4897 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4898
d75b1ade 4899 list_del_init(&n->poll_list);
4e857c58 4900 smp_mb__before_atomic();
d565b0a1
HX
4901 clear_bit(NAPI_STATE_SCHED, &n->state);
4902}
4903EXPORT_SYMBOL(__napi_complete);
4904
3b47d303 4905void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4906{
4907 unsigned long flags;
4908
4909 /*
4910 * don't let napi dequeue from the cpu poll list
4911 * just in case its running on a different cpu
4912 */
4913 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4914 return;
4915
3b47d303
ED
4916 if (n->gro_list) {
4917 unsigned long timeout = 0;
d75b1ade 4918
3b47d303
ED
4919 if (work_done)
4920 timeout = n->dev->gro_flush_timeout;
4921
4922 if (timeout)
4923 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4924 HRTIMER_MODE_REL_PINNED);
4925 else
4926 napi_gro_flush(n, false);
4927 }
d75b1ade
ED
4928 if (likely(list_empty(&n->poll_list))) {
4929 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4930 } else {
4931 /* If n->poll_list is not empty, we need to mask irqs */
4932 local_irq_save(flags);
4933 __napi_complete(n);
4934 local_irq_restore(flags);
4935 }
d565b0a1 4936}
3b47d303 4937EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4938
af12fa6e 4939/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4940static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4941{
4942 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4943 struct napi_struct *napi;
4944
4945 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4946 if (napi->napi_id == napi_id)
4947 return napi;
4948
4949 return NULL;
4950}
02d62e86
ED
4951
4952#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4953#define BUSY_POLL_BUDGET 8
02d62e86
ED
4954bool sk_busy_loop(struct sock *sk, int nonblock)
4955{
4956 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4957 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4958 struct napi_struct *napi;
4959 int rc = false;
4960
2a028ecb 4961 rcu_read_lock();
02d62e86
ED
4962
4963 napi = napi_by_id(sk->sk_napi_id);
4964 if (!napi)
4965 goto out;
4966
ce6aea93
ED
4967 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4968 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4969
4970 do {
ce6aea93 4971 rc = 0;
2a028ecb 4972 local_bh_disable();
ce6aea93
ED
4973 if (busy_poll) {
4974 rc = busy_poll(napi);
4975 } else if (napi_schedule_prep(napi)) {
4976 void *have = netpoll_poll_lock(napi);
4977
4978 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4979 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4980 trace_napi_poll(napi);
4981 if (rc == BUSY_POLL_BUDGET) {
4982 napi_complete_done(napi, rc);
4983 napi_schedule(napi);
4984 }
4985 }
4986 netpoll_poll_unlock(have);
4987 }
2a028ecb 4988 if (rc > 0)
02a1d6e7
ED
4989 __NET_ADD_STATS(sock_net(sk),
4990 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4991 local_bh_enable();
02d62e86
ED
4992
4993 if (rc == LL_FLUSH_FAILED)
4994 break; /* permanent failure */
4995
02d62e86 4996 cpu_relax();
02d62e86
ED
4997 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4998 !need_resched() && !busy_loop_timeout(end_time));
4999
5000 rc = !skb_queue_empty(&sk->sk_receive_queue);
5001out:
2a028ecb 5002 rcu_read_unlock();
02d62e86
ED
5003 return rc;
5004}
5005EXPORT_SYMBOL(sk_busy_loop);
5006
5007#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5008
5009void napi_hash_add(struct napi_struct *napi)
5010{
d64b5e85
ED
5011 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5012 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5013 return;
af12fa6e 5014
52bd2d62 5015 spin_lock(&napi_hash_lock);
af12fa6e 5016
52bd2d62
ED
5017 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5018 do {
5019 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5020 napi_gen_id = NR_CPUS + 1;
5021 } while (napi_by_id(napi_gen_id));
5022 napi->napi_id = napi_gen_id;
af12fa6e 5023
52bd2d62
ED
5024 hlist_add_head_rcu(&napi->napi_hash_node,
5025 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5026
52bd2d62 5027 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5028}
5029EXPORT_SYMBOL_GPL(napi_hash_add);
5030
5031/* Warning : caller is responsible to make sure rcu grace period
5032 * is respected before freeing memory containing @napi
5033 */
34cbe27e 5034bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5035{
34cbe27e
ED
5036 bool rcu_sync_needed = false;
5037
af12fa6e
ET
5038 spin_lock(&napi_hash_lock);
5039
34cbe27e
ED
5040 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5041 rcu_sync_needed = true;
af12fa6e 5042 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5043 }
af12fa6e 5044 spin_unlock(&napi_hash_lock);
34cbe27e 5045 return rcu_sync_needed;
af12fa6e
ET
5046}
5047EXPORT_SYMBOL_GPL(napi_hash_del);
5048
3b47d303
ED
5049static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5050{
5051 struct napi_struct *napi;
5052
5053 napi = container_of(timer, struct napi_struct, timer);
5054 if (napi->gro_list)
5055 napi_schedule(napi);
5056
5057 return HRTIMER_NORESTART;
5058}
5059
d565b0a1
HX
5060void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5061 int (*poll)(struct napi_struct *, int), int weight)
5062{
5063 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5064 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5065 napi->timer.function = napi_watchdog;
4ae5544f 5066 napi->gro_count = 0;
d565b0a1 5067 napi->gro_list = NULL;
5d38a079 5068 napi->skb = NULL;
d565b0a1 5069 napi->poll = poll;
82dc3c63
ED
5070 if (weight > NAPI_POLL_WEIGHT)
5071 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5072 weight, dev->name);
d565b0a1
HX
5073 napi->weight = weight;
5074 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5075 napi->dev = dev;
5d38a079 5076#ifdef CONFIG_NETPOLL
d565b0a1
HX
5077 spin_lock_init(&napi->poll_lock);
5078 napi->poll_owner = -1;
5079#endif
5080 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5081 napi_hash_add(napi);
d565b0a1
HX
5082}
5083EXPORT_SYMBOL(netif_napi_add);
5084
3b47d303
ED
5085void napi_disable(struct napi_struct *n)
5086{
5087 might_sleep();
5088 set_bit(NAPI_STATE_DISABLE, &n->state);
5089
5090 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5091 msleep(1);
2d8bff12
NH
5092 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5093 msleep(1);
3b47d303
ED
5094
5095 hrtimer_cancel(&n->timer);
5096
5097 clear_bit(NAPI_STATE_DISABLE, &n->state);
5098}
5099EXPORT_SYMBOL(napi_disable);
5100
93d05d4a 5101/* Must be called in process context */
d565b0a1
HX
5102void netif_napi_del(struct napi_struct *napi)
5103{
93d05d4a
ED
5104 might_sleep();
5105 if (napi_hash_del(napi))
5106 synchronize_net();
d7b06636 5107 list_del_init(&napi->dev_list);
76620aaf 5108 napi_free_frags(napi);
d565b0a1 5109
289dccbe 5110 kfree_skb_list(napi->gro_list);
d565b0a1 5111 napi->gro_list = NULL;
4ae5544f 5112 napi->gro_count = 0;
d565b0a1
HX
5113}
5114EXPORT_SYMBOL(netif_napi_del);
5115
726ce70e
HX
5116static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5117{
5118 void *have;
5119 int work, weight;
5120
5121 list_del_init(&n->poll_list);
5122
5123 have = netpoll_poll_lock(n);
5124
5125 weight = n->weight;
5126
5127 /* This NAPI_STATE_SCHED test is for avoiding a race
5128 * with netpoll's poll_napi(). Only the entity which
5129 * obtains the lock and sees NAPI_STATE_SCHED set will
5130 * actually make the ->poll() call. Therefore we avoid
5131 * accidentally calling ->poll() when NAPI is not scheduled.
5132 */
5133 work = 0;
5134 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5135 work = n->poll(n, weight);
5136 trace_napi_poll(n);
5137 }
5138
5139 WARN_ON_ONCE(work > weight);
5140
5141 if (likely(work < weight))
5142 goto out_unlock;
5143
5144 /* Drivers must not modify the NAPI state if they
5145 * consume the entire weight. In such cases this code
5146 * still "owns" the NAPI instance and therefore can
5147 * move the instance around on the list at-will.
5148 */
5149 if (unlikely(napi_disable_pending(n))) {
5150 napi_complete(n);
5151 goto out_unlock;
5152 }
5153
5154 if (n->gro_list) {
5155 /* flush too old packets
5156 * If HZ < 1000, flush all packets.
5157 */
5158 napi_gro_flush(n, HZ >= 1000);
5159 }
5160
001ce546
HX
5161 /* Some drivers may have called napi_schedule
5162 * prior to exhausting their budget.
5163 */
5164 if (unlikely(!list_empty(&n->poll_list))) {
5165 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5166 n->dev ? n->dev->name : "backlog");
5167 goto out_unlock;
5168 }
5169
726ce70e
HX
5170 list_add_tail(&n->poll_list, repoll);
5171
5172out_unlock:
5173 netpoll_poll_unlock(have);
5174
5175 return work;
5176}
5177
1da177e4
LT
5178static void net_rx_action(struct softirq_action *h)
5179{
903ceff7 5180 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5181 unsigned long time_limit = jiffies + 2;
51b0bded 5182 int budget = netdev_budget;
d75b1ade
ED
5183 LIST_HEAD(list);
5184 LIST_HEAD(repoll);
53fb95d3 5185
1da177e4 5186 local_irq_disable();
d75b1ade
ED
5187 list_splice_init(&sd->poll_list, &list);
5188 local_irq_enable();
1da177e4 5189
ceb8d5bf 5190 for (;;) {
bea3348e 5191 struct napi_struct *n;
1da177e4 5192
ceb8d5bf
HX
5193 if (list_empty(&list)) {
5194 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5195 return;
5196 break;
5197 }
5198
6bd373eb
HX
5199 n = list_first_entry(&list, struct napi_struct, poll_list);
5200 budget -= napi_poll(n, &repoll);
5201
d75b1ade 5202 /* If softirq window is exhausted then punt.
24f8b238
SH
5203 * Allow this to run for 2 jiffies since which will allow
5204 * an average latency of 1.5/HZ.
bea3348e 5205 */
ceb8d5bf
HX
5206 if (unlikely(budget <= 0 ||
5207 time_after_eq(jiffies, time_limit))) {
5208 sd->time_squeeze++;
5209 break;
5210 }
1da177e4 5211 }
d75b1ade 5212
795bb1c0 5213 __kfree_skb_flush();
d75b1ade
ED
5214 local_irq_disable();
5215
5216 list_splice_tail_init(&sd->poll_list, &list);
5217 list_splice_tail(&repoll, &list);
5218 list_splice(&list, &sd->poll_list);
5219 if (!list_empty(&sd->poll_list))
5220 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5221
e326bed2 5222 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5223}
5224
aa9d8560 5225struct netdev_adjacent {
9ff162a8 5226 struct net_device *dev;
5d261913
VF
5227
5228 /* upper master flag, there can only be one master device per list */
9ff162a8 5229 bool master;
5d261913 5230
5d261913
VF
5231 /* counter for the number of times this device was added to us */
5232 u16 ref_nr;
5233
402dae96
VF
5234 /* private field for the users */
5235 void *private;
5236
9ff162a8
JP
5237 struct list_head list;
5238 struct rcu_head rcu;
9ff162a8
JP
5239};
5240
6ea29da1 5241static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5242 struct list_head *adj_list)
9ff162a8 5243{
5d261913 5244 struct netdev_adjacent *adj;
5d261913 5245
2f268f12 5246 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5247 if (adj->dev == adj_dev)
5248 return adj;
9ff162a8
JP
5249 }
5250 return NULL;
5251}
5252
5253/**
5254 * netdev_has_upper_dev - Check if device is linked to an upper device
5255 * @dev: device
5256 * @upper_dev: upper device to check
5257 *
5258 * Find out if a device is linked to specified upper device and return true
5259 * in case it is. Note that this checks only immediate upper device,
5260 * not through a complete stack of devices. The caller must hold the RTNL lock.
5261 */
5262bool netdev_has_upper_dev(struct net_device *dev,
5263 struct net_device *upper_dev)
5264{
5265 ASSERT_RTNL();
5266
6ea29da1 5267 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5268}
5269EXPORT_SYMBOL(netdev_has_upper_dev);
5270
5271/**
5272 * netdev_has_any_upper_dev - Check if device is linked to some device
5273 * @dev: device
5274 *
5275 * Find out if a device is linked to an upper device and return true in case
5276 * it is. The caller must hold the RTNL lock.
5277 */
1d143d9f 5278static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5279{
5280 ASSERT_RTNL();
5281
2f268f12 5282 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5283}
9ff162a8
JP
5284
5285/**
5286 * netdev_master_upper_dev_get - Get master upper device
5287 * @dev: device
5288 *
5289 * Find a master upper device and return pointer to it or NULL in case
5290 * it's not there. The caller must hold the RTNL lock.
5291 */
5292struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5293{
aa9d8560 5294 struct netdev_adjacent *upper;
9ff162a8
JP
5295
5296 ASSERT_RTNL();
5297
2f268f12 5298 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5299 return NULL;
5300
2f268f12 5301 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5302 struct netdev_adjacent, list);
9ff162a8
JP
5303 if (likely(upper->master))
5304 return upper->dev;
5305 return NULL;
5306}
5307EXPORT_SYMBOL(netdev_master_upper_dev_get);
5308
b6ccba4c
VF
5309void *netdev_adjacent_get_private(struct list_head *adj_list)
5310{
5311 struct netdev_adjacent *adj;
5312
5313 adj = list_entry(adj_list, struct netdev_adjacent, list);
5314
5315 return adj->private;
5316}
5317EXPORT_SYMBOL(netdev_adjacent_get_private);
5318
44a40855
VY
5319/**
5320 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5321 * @dev: device
5322 * @iter: list_head ** of the current position
5323 *
5324 * Gets the next device from the dev's upper list, starting from iter
5325 * position. The caller must hold RCU read lock.
5326 */
5327struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5328 struct list_head **iter)
5329{
5330 struct netdev_adjacent *upper;
5331
5332 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5333
5334 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5335
5336 if (&upper->list == &dev->adj_list.upper)
5337 return NULL;
5338
5339 *iter = &upper->list;
5340
5341 return upper->dev;
5342}
5343EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5344
31088a11
VF
5345/**
5346 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5347 * @dev: device
5348 * @iter: list_head ** of the current position
5349 *
5350 * Gets the next device from the dev's upper list, starting from iter
5351 * position. The caller must hold RCU read lock.
5352 */
2f268f12
VF
5353struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5354 struct list_head **iter)
48311f46
VF
5355{
5356 struct netdev_adjacent *upper;
5357
85328240 5358 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5359
5360 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5361
2f268f12 5362 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5363 return NULL;
5364
5365 *iter = &upper->list;
5366
5367 return upper->dev;
5368}
2f268f12 5369EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5370
31088a11
VF
5371/**
5372 * netdev_lower_get_next_private - Get the next ->private from the
5373 * lower neighbour list
5374 * @dev: device
5375 * @iter: list_head ** of the current position
5376 *
5377 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5378 * list, starting from iter position. The caller must hold either hold the
5379 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5380 * list will remain unchanged.
31088a11
VF
5381 */
5382void *netdev_lower_get_next_private(struct net_device *dev,
5383 struct list_head **iter)
5384{
5385 struct netdev_adjacent *lower;
5386
5387 lower = list_entry(*iter, struct netdev_adjacent, list);
5388
5389 if (&lower->list == &dev->adj_list.lower)
5390 return NULL;
5391
6859e7df 5392 *iter = lower->list.next;
31088a11
VF
5393
5394 return lower->private;
5395}
5396EXPORT_SYMBOL(netdev_lower_get_next_private);
5397
5398/**
5399 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5400 * lower neighbour list, RCU
5401 * variant
5402 * @dev: device
5403 * @iter: list_head ** of the current position
5404 *
5405 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5406 * list, starting from iter position. The caller must hold RCU read lock.
5407 */
5408void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5409 struct list_head **iter)
5410{
5411 struct netdev_adjacent *lower;
5412
5413 WARN_ON_ONCE(!rcu_read_lock_held());
5414
5415 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5416
5417 if (&lower->list == &dev->adj_list.lower)
5418 return NULL;
5419
6859e7df 5420 *iter = &lower->list;
31088a11
VF
5421
5422 return lower->private;
5423}
5424EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5425
4085ebe8
VY
5426/**
5427 * netdev_lower_get_next - Get the next device from the lower neighbour
5428 * list
5429 * @dev: device
5430 * @iter: list_head ** of the current position
5431 *
5432 * Gets the next netdev_adjacent from the dev's lower neighbour
5433 * list, starting from iter position. The caller must hold RTNL lock or
5434 * its own locking that guarantees that the neighbour lower
b469139e 5435 * list will remain unchanged.
4085ebe8
VY
5436 */
5437void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5438{
5439 struct netdev_adjacent *lower;
5440
cfdd28be 5441 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5442
5443 if (&lower->list == &dev->adj_list.lower)
5444 return NULL;
5445
cfdd28be 5446 *iter = lower->list.next;
4085ebe8
VY
5447
5448 return lower->dev;
5449}
5450EXPORT_SYMBOL(netdev_lower_get_next);
5451
e001bfad 5452/**
5453 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5454 * lower neighbour list, RCU
5455 * variant
5456 * @dev: device
5457 *
5458 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5459 * list. The caller must hold RCU read lock.
5460 */
5461void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5462{
5463 struct netdev_adjacent *lower;
5464
5465 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5466 struct netdev_adjacent, list);
5467 if (lower)
5468 return lower->private;
5469 return NULL;
5470}
5471EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5472
9ff162a8
JP
5473/**
5474 * netdev_master_upper_dev_get_rcu - Get master upper device
5475 * @dev: device
5476 *
5477 * Find a master upper device and return pointer to it or NULL in case
5478 * it's not there. The caller must hold the RCU read lock.
5479 */
5480struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5481{
aa9d8560 5482 struct netdev_adjacent *upper;
9ff162a8 5483
2f268f12 5484 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5485 struct netdev_adjacent, list);
9ff162a8
JP
5486 if (upper && likely(upper->master))
5487 return upper->dev;
5488 return NULL;
5489}
5490EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5491
0a59f3a9 5492static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5493 struct net_device *adj_dev,
5494 struct list_head *dev_list)
5495{
5496 char linkname[IFNAMSIZ+7];
5497 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5498 "upper_%s" : "lower_%s", adj_dev->name);
5499 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5500 linkname);
5501}
0a59f3a9 5502static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5503 char *name,
5504 struct list_head *dev_list)
5505{
5506 char linkname[IFNAMSIZ+7];
5507 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5508 "upper_%s" : "lower_%s", name);
5509 sysfs_remove_link(&(dev->dev.kobj), linkname);
5510}
5511
7ce64c79
AF
5512static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5513 struct net_device *adj_dev,
5514 struct list_head *dev_list)
5515{
5516 return (dev_list == &dev->adj_list.upper ||
5517 dev_list == &dev->adj_list.lower) &&
5518 net_eq(dev_net(dev), dev_net(adj_dev));
5519}
3ee32707 5520
5d261913
VF
5521static int __netdev_adjacent_dev_insert(struct net_device *dev,
5522 struct net_device *adj_dev,
7863c054 5523 struct list_head *dev_list,
402dae96 5524 void *private, bool master)
5d261913
VF
5525{
5526 struct netdev_adjacent *adj;
842d67a7 5527 int ret;
5d261913 5528
6ea29da1 5529 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5530
5531 if (adj) {
5d261913
VF
5532 adj->ref_nr++;
5533 return 0;
5534 }
5535
5536 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5537 if (!adj)
5538 return -ENOMEM;
5539
5540 adj->dev = adj_dev;
5541 adj->master = master;
5d261913 5542 adj->ref_nr = 1;
402dae96 5543 adj->private = private;
5d261913 5544 dev_hold(adj_dev);
2f268f12
VF
5545
5546 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5547 adj_dev->name, dev->name, adj_dev->name);
5d261913 5548
7ce64c79 5549 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5550 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5551 if (ret)
5552 goto free_adj;
5553 }
5554
7863c054 5555 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5556 if (master) {
5557 ret = sysfs_create_link(&(dev->dev.kobj),
5558 &(adj_dev->dev.kobj), "master");
5559 if (ret)
5831d66e 5560 goto remove_symlinks;
842d67a7 5561
7863c054 5562 list_add_rcu(&adj->list, dev_list);
842d67a7 5563 } else {
7863c054 5564 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5565 }
5d261913
VF
5566
5567 return 0;
842d67a7 5568
5831d66e 5569remove_symlinks:
7ce64c79 5570 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5571 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5572free_adj:
5573 kfree(adj);
974daef7 5574 dev_put(adj_dev);
842d67a7
VF
5575
5576 return ret;
5d261913
VF
5577}
5578
1d143d9f 5579static void __netdev_adjacent_dev_remove(struct net_device *dev,
5580 struct net_device *adj_dev,
5581 struct list_head *dev_list)
5d261913
VF
5582{
5583 struct netdev_adjacent *adj;
5584
6ea29da1 5585 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5586
2f268f12
VF
5587 if (!adj) {
5588 pr_err("tried to remove device %s from %s\n",
5589 dev->name, adj_dev->name);
5d261913 5590 BUG();
2f268f12 5591 }
5d261913
VF
5592
5593 if (adj->ref_nr > 1) {
2f268f12
VF
5594 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5595 adj->ref_nr-1);
5d261913
VF
5596 adj->ref_nr--;
5597 return;
5598 }
5599
842d67a7
VF
5600 if (adj->master)
5601 sysfs_remove_link(&(dev->dev.kobj), "master");
5602
7ce64c79 5603 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5604 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5605
5d261913 5606 list_del_rcu(&adj->list);
2f268f12
VF
5607 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5608 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5609 dev_put(adj_dev);
5610 kfree_rcu(adj, rcu);
5611}
5612
1d143d9f 5613static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5614 struct net_device *upper_dev,
5615 struct list_head *up_list,
5616 struct list_head *down_list,
5617 void *private, bool master)
5d261913
VF
5618{
5619 int ret;
5620
402dae96
VF
5621 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5622 master);
5d261913
VF
5623 if (ret)
5624 return ret;
5625
402dae96
VF
5626 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5627 false);
5d261913 5628 if (ret) {
2f268f12 5629 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5630 return ret;
5631 }
5632
5633 return 0;
5634}
5635
1d143d9f 5636static int __netdev_adjacent_dev_link(struct net_device *dev,
5637 struct net_device *upper_dev)
5d261913 5638{
2f268f12
VF
5639 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5640 &dev->all_adj_list.upper,
5641 &upper_dev->all_adj_list.lower,
402dae96 5642 NULL, false);
5d261913
VF
5643}
5644
1d143d9f 5645static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5646 struct net_device *upper_dev,
5647 struct list_head *up_list,
5648 struct list_head *down_list)
5d261913 5649{
2f268f12
VF
5650 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5651 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5652}
5653
1d143d9f 5654static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5655 struct net_device *upper_dev)
5d261913 5656{
2f268f12
VF
5657 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5658 &dev->all_adj_list.upper,
5659 &upper_dev->all_adj_list.lower);
5660}
5661
1d143d9f 5662static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5663 struct net_device *upper_dev,
5664 void *private, bool master)
2f268f12
VF
5665{
5666 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5667
5668 if (ret)
5669 return ret;
5670
5671 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5672 &dev->adj_list.upper,
5673 &upper_dev->adj_list.lower,
402dae96 5674 private, master);
2f268f12
VF
5675 if (ret) {
5676 __netdev_adjacent_dev_unlink(dev, upper_dev);
5677 return ret;
5678 }
5679
5680 return 0;
5d261913
VF
5681}
5682
1d143d9f 5683static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5684 struct net_device *upper_dev)
2f268f12
VF
5685{
5686 __netdev_adjacent_dev_unlink(dev, upper_dev);
5687 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5688 &dev->adj_list.upper,
5689 &upper_dev->adj_list.lower);
5690}
5d261913 5691
9ff162a8 5692static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5693 struct net_device *upper_dev, bool master,
29bf24af 5694 void *upper_priv, void *upper_info)
9ff162a8 5695{
0e4ead9d 5696 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5697 struct netdev_adjacent *i, *j, *to_i, *to_j;
5698 int ret = 0;
9ff162a8
JP
5699
5700 ASSERT_RTNL();
5701
5702 if (dev == upper_dev)
5703 return -EBUSY;
5704
5705 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5706 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5707 return -EBUSY;
5708
6ea29da1 5709 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5710 return -EEXIST;
5711
5712 if (master && netdev_master_upper_dev_get(dev))
5713 return -EBUSY;
5714
0e4ead9d
JP
5715 changeupper_info.upper_dev = upper_dev;
5716 changeupper_info.master = master;
5717 changeupper_info.linking = true;
29bf24af 5718 changeupper_info.upper_info = upper_info;
0e4ead9d 5719
573c7ba0
JP
5720 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5721 &changeupper_info.info);
5722 ret = notifier_to_errno(ret);
5723 if (ret)
5724 return ret;
5725
6dffb044 5726 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5727 master);
5d261913
VF
5728 if (ret)
5729 return ret;
9ff162a8 5730
5d261913 5731 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5732 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5733 * versa, and don't forget the devices itself. All of these
5734 * links are non-neighbours.
5735 */
2f268f12
VF
5736 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5737 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5738 pr_debug("Interlinking %s with %s, non-neighbour\n",
5739 i->dev->name, j->dev->name);
5d261913
VF
5740 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5741 if (ret)
5742 goto rollback_mesh;
5743 }
5744 }
5745
5746 /* add dev to every upper_dev's upper device */
2f268f12
VF
5747 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5748 pr_debug("linking %s's upper device %s with %s\n",
5749 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5750 ret = __netdev_adjacent_dev_link(dev, i->dev);
5751 if (ret)
5752 goto rollback_upper_mesh;
5753 }
5754
5755 /* add upper_dev to every dev's lower device */
2f268f12
VF
5756 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5757 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5758 i->dev->name, upper_dev->name);
5d261913
VF
5759 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5760 if (ret)
5761 goto rollback_lower_mesh;
5762 }
9ff162a8 5763
b03804e7
IS
5764 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5765 &changeupper_info.info);
5766 ret = notifier_to_errno(ret);
5767 if (ret)
5768 goto rollback_lower_mesh;
5769
9ff162a8 5770 return 0;
5d261913
VF
5771
5772rollback_lower_mesh:
5773 to_i = i;
2f268f12 5774 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5775 if (i == to_i)
5776 break;
5777 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5778 }
5779
5780 i = NULL;
5781
5782rollback_upper_mesh:
5783 to_i = i;
2f268f12 5784 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5785 if (i == to_i)
5786 break;
5787 __netdev_adjacent_dev_unlink(dev, i->dev);
5788 }
5789
5790 i = j = NULL;
5791
5792rollback_mesh:
5793 to_i = i;
5794 to_j = j;
2f268f12
VF
5795 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5796 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5797 if (i == to_i && j == to_j)
5798 break;
5799 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5800 }
5801 if (i == to_i)
5802 break;
5803 }
5804
2f268f12 5805 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5806
5807 return ret;
9ff162a8
JP
5808}
5809
5810/**
5811 * netdev_upper_dev_link - Add a link to the upper device
5812 * @dev: device
5813 * @upper_dev: new upper device
5814 *
5815 * Adds a link to device which is upper to this one. The caller must hold
5816 * the RTNL lock. On a failure a negative errno code is returned.
5817 * On success the reference counts are adjusted and the function
5818 * returns zero.
5819 */
5820int netdev_upper_dev_link(struct net_device *dev,
5821 struct net_device *upper_dev)
5822{
29bf24af 5823 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5824}
5825EXPORT_SYMBOL(netdev_upper_dev_link);
5826
5827/**
5828 * netdev_master_upper_dev_link - Add a master link to the upper device
5829 * @dev: device
5830 * @upper_dev: new upper device
6dffb044 5831 * @upper_priv: upper device private
29bf24af 5832 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5833 *
5834 * Adds a link to device which is upper to this one. In this case, only
5835 * one master upper device can be linked, although other non-master devices
5836 * might be linked as well. The caller must hold the RTNL lock.
5837 * On a failure a negative errno code is returned. On success the reference
5838 * counts are adjusted and the function returns zero.
5839 */
5840int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5841 struct net_device *upper_dev,
29bf24af 5842 void *upper_priv, void *upper_info)
9ff162a8 5843{
29bf24af
JP
5844 return __netdev_upper_dev_link(dev, upper_dev, true,
5845 upper_priv, upper_info);
9ff162a8
JP
5846}
5847EXPORT_SYMBOL(netdev_master_upper_dev_link);
5848
5849/**
5850 * netdev_upper_dev_unlink - Removes a link to upper device
5851 * @dev: device
5852 * @upper_dev: new upper device
5853 *
5854 * Removes a link to device which is upper to this one. The caller must hold
5855 * the RTNL lock.
5856 */
5857void netdev_upper_dev_unlink(struct net_device *dev,
5858 struct net_device *upper_dev)
5859{
0e4ead9d 5860 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5861 struct netdev_adjacent *i, *j;
9ff162a8
JP
5862 ASSERT_RTNL();
5863
0e4ead9d
JP
5864 changeupper_info.upper_dev = upper_dev;
5865 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5866 changeupper_info.linking = false;
5867
573c7ba0
JP
5868 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5869 &changeupper_info.info);
5870
2f268f12 5871 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5872
5873 /* Here is the tricky part. We must remove all dev's lower
5874 * devices from all upper_dev's upper devices and vice
5875 * versa, to maintain the graph relationship.
5876 */
2f268f12
VF
5877 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5878 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5879 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5880
5881 /* remove also the devices itself from lower/upper device
5882 * list
5883 */
2f268f12 5884 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5885 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5886
2f268f12 5887 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5888 __netdev_adjacent_dev_unlink(dev, i->dev);
5889
0e4ead9d
JP
5890 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5891 &changeupper_info.info);
9ff162a8
JP
5892}
5893EXPORT_SYMBOL(netdev_upper_dev_unlink);
5894
61bd3857
MS
5895/**
5896 * netdev_bonding_info_change - Dispatch event about slave change
5897 * @dev: device
4a26e453 5898 * @bonding_info: info to dispatch
61bd3857
MS
5899 *
5900 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5901 * The caller must hold the RTNL lock.
5902 */
5903void netdev_bonding_info_change(struct net_device *dev,
5904 struct netdev_bonding_info *bonding_info)
5905{
5906 struct netdev_notifier_bonding_info info;
5907
5908 memcpy(&info.bonding_info, bonding_info,
5909 sizeof(struct netdev_bonding_info));
5910 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5911 &info.info);
5912}
5913EXPORT_SYMBOL(netdev_bonding_info_change);
5914
2ce1ee17 5915static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5916{
5917 struct netdev_adjacent *iter;
5918
5919 struct net *net = dev_net(dev);
5920
5921 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5922 if (!net_eq(net,dev_net(iter->dev)))
5923 continue;
5924 netdev_adjacent_sysfs_add(iter->dev, dev,
5925 &iter->dev->adj_list.lower);
5926 netdev_adjacent_sysfs_add(dev, iter->dev,
5927 &dev->adj_list.upper);
5928 }
5929
5930 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5931 if (!net_eq(net,dev_net(iter->dev)))
5932 continue;
5933 netdev_adjacent_sysfs_add(iter->dev, dev,
5934 &iter->dev->adj_list.upper);
5935 netdev_adjacent_sysfs_add(dev, iter->dev,
5936 &dev->adj_list.lower);
5937 }
5938}
5939
2ce1ee17 5940static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5941{
5942 struct netdev_adjacent *iter;
5943
5944 struct net *net = dev_net(dev);
5945
5946 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5947 if (!net_eq(net,dev_net(iter->dev)))
5948 continue;
5949 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5950 &iter->dev->adj_list.lower);
5951 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5952 &dev->adj_list.upper);
5953 }
5954
5955 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5956 if (!net_eq(net,dev_net(iter->dev)))
5957 continue;
5958 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5959 &iter->dev->adj_list.upper);
5960 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5961 &dev->adj_list.lower);
5962 }
5963}
5964
5bb025fa 5965void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5966{
5bb025fa 5967 struct netdev_adjacent *iter;
402dae96 5968
4c75431a
AF
5969 struct net *net = dev_net(dev);
5970
5bb025fa 5971 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5972 if (!net_eq(net,dev_net(iter->dev)))
5973 continue;
5bb025fa
VF
5974 netdev_adjacent_sysfs_del(iter->dev, oldname,
5975 &iter->dev->adj_list.lower);
5976 netdev_adjacent_sysfs_add(iter->dev, dev,
5977 &iter->dev->adj_list.lower);
5978 }
402dae96 5979
5bb025fa 5980 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5981 if (!net_eq(net,dev_net(iter->dev)))
5982 continue;
5bb025fa
VF
5983 netdev_adjacent_sysfs_del(iter->dev, oldname,
5984 &iter->dev->adj_list.upper);
5985 netdev_adjacent_sysfs_add(iter->dev, dev,
5986 &iter->dev->adj_list.upper);
5987 }
402dae96 5988}
402dae96
VF
5989
5990void *netdev_lower_dev_get_private(struct net_device *dev,
5991 struct net_device *lower_dev)
5992{
5993 struct netdev_adjacent *lower;
5994
5995 if (!lower_dev)
5996 return NULL;
6ea29da1 5997 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5998 if (!lower)
5999 return NULL;
6000
6001 return lower->private;
6002}
6003EXPORT_SYMBOL(netdev_lower_dev_get_private);
6004
4085ebe8
VY
6005
6006int dev_get_nest_level(struct net_device *dev,
b618aaa9 6007 bool (*type_check)(const struct net_device *dev))
4085ebe8
VY
6008{
6009 struct net_device *lower = NULL;
6010 struct list_head *iter;
6011 int max_nest = -1;
6012 int nest;
6013
6014 ASSERT_RTNL();
6015
6016 netdev_for_each_lower_dev(dev, lower, iter) {
6017 nest = dev_get_nest_level(lower, type_check);
6018 if (max_nest < nest)
6019 max_nest = nest;
6020 }
6021
6022 if (type_check(dev))
6023 max_nest++;
6024
6025 return max_nest;
6026}
6027EXPORT_SYMBOL(dev_get_nest_level);
6028
04d48266
JP
6029/**
6030 * netdev_lower_change - Dispatch event about lower device state change
6031 * @lower_dev: device
6032 * @lower_state_info: state to dispatch
6033 *
6034 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6035 * The caller must hold the RTNL lock.
6036 */
6037void netdev_lower_state_changed(struct net_device *lower_dev,
6038 void *lower_state_info)
6039{
6040 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6041
6042 ASSERT_RTNL();
6043 changelowerstate_info.lower_state_info = lower_state_info;
6044 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6045 &changelowerstate_info.info);
6046}
6047EXPORT_SYMBOL(netdev_lower_state_changed);
6048
b6c40d68
PM
6049static void dev_change_rx_flags(struct net_device *dev, int flags)
6050{
d314774c
SH
6051 const struct net_device_ops *ops = dev->netdev_ops;
6052
d2615bf4 6053 if (ops->ndo_change_rx_flags)
d314774c 6054 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6055}
6056
991fb3f7 6057static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6058{
b536db93 6059 unsigned int old_flags = dev->flags;
d04a48b0
EB
6060 kuid_t uid;
6061 kgid_t gid;
1da177e4 6062
24023451
PM
6063 ASSERT_RTNL();
6064
dad9b335
WC
6065 dev->flags |= IFF_PROMISC;
6066 dev->promiscuity += inc;
6067 if (dev->promiscuity == 0) {
6068 /*
6069 * Avoid overflow.
6070 * If inc causes overflow, untouch promisc and return error.
6071 */
6072 if (inc < 0)
6073 dev->flags &= ~IFF_PROMISC;
6074 else {
6075 dev->promiscuity -= inc;
7b6cd1ce
JP
6076 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6077 dev->name);
dad9b335
WC
6078 return -EOVERFLOW;
6079 }
6080 }
52609c0b 6081 if (dev->flags != old_flags) {
7b6cd1ce
JP
6082 pr_info("device %s %s promiscuous mode\n",
6083 dev->name,
6084 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6085 if (audit_enabled) {
6086 current_uid_gid(&uid, &gid);
7759db82
KHK
6087 audit_log(current->audit_context, GFP_ATOMIC,
6088 AUDIT_ANOM_PROMISCUOUS,
6089 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6090 dev->name, (dev->flags & IFF_PROMISC),
6091 (old_flags & IFF_PROMISC),
e1760bd5 6092 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6093 from_kuid(&init_user_ns, uid),
6094 from_kgid(&init_user_ns, gid),
7759db82 6095 audit_get_sessionid(current));
8192b0c4 6096 }
24023451 6097
b6c40d68 6098 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6099 }
991fb3f7
ND
6100 if (notify)
6101 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6102 return 0;
1da177e4
LT
6103}
6104
4417da66
PM
6105/**
6106 * dev_set_promiscuity - update promiscuity count on a device
6107 * @dev: device
6108 * @inc: modifier
6109 *
6110 * Add or remove promiscuity from a device. While the count in the device
6111 * remains above zero the interface remains promiscuous. Once it hits zero
6112 * the device reverts back to normal filtering operation. A negative inc
6113 * value is used to drop promiscuity on the device.
dad9b335 6114 * Return 0 if successful or a negative errno code on error.
4417da66 6115 */
dad9b335 6116int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6117{
b536db93 6118 unsigned int old_flags = dev->flags;
dad9b335 6119 int err;
4417da66 6120
991fb3f7 6121 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6122 if (err < 0)
dad9b335 6123 return err;
4417da66
PM
6124 if (dev->flags != old_flags)
6125 dev_set_rx_mode(dev);
dad9b335 6126 return err;
4417da66 6127}
d1b19dff 6128EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6129
991fb3f7 6130static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6131{
991fb3f7 6132 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6133
24023451
PM
6134 ASSERT_RTNL();
6135
1da177e4 6136 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6137 dev->allmulti += inc;
6138 if (dev->allmulti == 0) {
6139 /*
6140 * Avoid overflow.
6141 * If inc causes overflow, untouch allmulti and return error.
6142 */
6143 if (inc < 0)
6144 dev->flags &= ~IFF_ALLMULTI;
6145 else {
6146 dev->allmulti -= inc;
7b6cd1ce
JP
6147 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6148 dev->name);
dad9b335
WC
6149 return -EOVERFLOW;
6150 }
6151 }
24023451 6152 if (dev->flags ^ old_flags) {
b6c40d68 6153 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6154 dev_set_rx_mode(dev);
991fb3f7
ND
6155 if (notify)
6156 __dev_notify_flags(dev, old_flags,
6157 dev->gflags ^ old_gflags);
24023451 6158 }
dad9b335 6159 return 0;
4417da66 6160}
991fb3f7
ND
6161
6162/**
6163 * dev_set_allmulti - update allmulti count on a device
6164 * @dev: device
6165 * @inc: modifier
6166 *
6167 * Add or remove reception of all multicast frames to a device. While the
6168 * count in the device remains above zero the interface remains listening
6169 * to all interfaces. Once it hits zero the device reverts back to normal
6170 * filtering operation. A negative @inc value is used to drop the counter
6171 * when releasing a resource needing all multicasts.
6172 * Return 0 if successful or a negative errno code on error.
6173 */
6174
6175int dev_set_allmulti(struct net_device *dev, int inc)
6176{
6177 return __dev_set_allmulti(dev, inc, true);
6178}
d1b19dff 6179EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6180
6181/*
6182 * Upload unicast and multicast address lists to device and
6183 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6184 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6185 * are present.
6186 */
6187void __dev_set_rx_mode(struct net_device *dev)
6188{
d314774c
SH
6189 const struct net_device_ops *ops = dev->netdev_ops;
6190
4417da66
PM
6191 /* dev_open will call this function so the list will stay sane. */
6192 if (!(dev->flags&IFF_UP))
6193 return;
6194
6195 if (!netif_device_present(dev))
40b77c94 6196 return;
4417da66 6197
01789349 6198 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6199 /* Unicast addresses changes may only happen under the rtnl,
6200 * therefore calling __dev_set_promiscuity here is safe.
6201 */
32e7bfc4 6202 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6203 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6204 dev->uc_promisc = true;
32e7bfc4 6205 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6206 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6207 dev->uc_promisc = false;
4417da66 6208 }
4417da66 6209 }
01789349
JP
6210
6211 if (ops->ndo_set_rx_mode)
6212 ops->ndo_set_rx_mode(dev);
4417da66
PM
6213}
6214
6215void dev_set_rx_mode(struct net_device *dev)
6216{
b9e40857 6217 netif_addr_lock_bh(dev);
4417da66 6218 __dev_set_rx_mode(dev);
b9e40857 6219 netif_addr_unlock_bh(dev);
1da177e4
LT
6220}
6221
f0db275a
SH
6222/**
6223 * dev_get_flags - get flags reported to userspace
6224 * @dev: device
6225 *
6226 * Get the combination of flag bits exported through APIs to userspace.
6227 */
95c96174 6228unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6229{
95c96174 6230 unsigned int flags;
1da177e4
LT
6231
6232 flags = (dev->flags & ~(IFF_PROMISC |
6233 IFF_ALLMULTI |
b00055aa
SR
6234 IFF_RUNNING |
6235 IFF_LOWER_UP |
6236 IFF_DORMANT)) |
1da177e4
LT
6237 (dev->gflags & (IFF_PROMISC |
6238 IFF_ALLMULTI));
6239
b00055aa
SR
6240 if (netif_running(dev)) {
6241 if (netif_oper_up(dev))
6242 flags |= IFF_RUNNING;
6243 if (netif_carrier_ok(dev))
6244 flags |= IFF_LOWER_UP;
6245 if (netif_dormant(dev))
6246 flags |= IFF_DORMANT;
6247 }
1da177e4
LT
6248
6249 return flags;
6250}
d1b19dff 6251EXPORT_SYMBOL(dev_get_flags);
1da177e4 6252
bd380811 6253int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6254{
b536db93 6255 unsigned int old_flags = dev->flags;
bd380811 6256 int ret;
1da177e4 6257
24023451
PM
6258 ASSERT_RTNL();
6259
1da177e4
LT
6260 /*
6261 * Set the flags on our device.
6262 */
6263
6264 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6265 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6266 IFF_AUTOMEDIA)) |
6267 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6268 IFF_ALLMULTI));
6269
6270 /*
6271 * Load in the correct multicast list now the flags have changed.
6272 */
6273
b6c40d68
PM
6274 if ((old_flags ^ flags) & IFF_MULTICAST)
6275 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6276
4417da66 6277 dev_set_rx_mode(dev);
1da177e4
LT
6278
6279 /*
6280 * Have we downed the interface. We handle IFF_UP ourselves
6281 * according to user attempts to set it, rather than blindly
6282 * setting it.
6283 */
6284
6285 ret = 0;
d215d10f 6286 if ((old_flags ^ flags) & IFF_UP)
bd380811 6287 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6288
1da177e4 6289 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6290 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6291 unsigned int old_flags = dev->flags;
d1b19dff 6292
1da177e4 6293 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6294
6295 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6296 if (dev->flags != old_flags)
6297 dev_set_rx_mode(dev);
1da177e4
LT
6298 }
6299
6300 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6301 is important. Some (broken) drivers set IFF_PROMISC, when
6302 IFF_ALLMULTI is requested not asking us and not reporting.
6303 */
6304 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6305 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6306
1da177e4 6307 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6308 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6309 }
6310
bd380811
PM
6311 return ret;
6312}
6313
a528c219
ND
6314void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6315 unsigned int gchanges)
bd380811
PM
6316{
6317 unsigned int changes = dev->flags ^ old_flags;
6318
a528c219 6319 if (gchanges)
7f294054 6320 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6321
bd380811
PM
6322 if (changes & IFF_UP) {
6323 if (dev->flags & IFF_UP)
6324 call_netdevice_notifiers(NETDEV_UP, dev);
6325 else
6326 call_netdevice_notifiers(NETDEV_DOWN, dev);
6327 }
6328
6329 if (dev->flags & IFF_UP &&
be9efd36
JP
6330 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6331 struct netdev_notifier_change_info change_info;
6332
6333 change_info.flags_changed = changes;
6334 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6335 &change_info.info);
6336 }
bd380811
PM
6337}
6338
6339/**
6340 * dev_change_flags - change device settings
6341 * @dev: device
6342 * @flags: device state flags
6343 *
6344 * Change settings on device based state flags. The flags are
6345 * in the userspace exported format.
6346 */
b536db93 6347int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6348{
b536db93 6349 int ret;
991fb3f7 6350 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6351
6352 ret = __dev_change_flags(dev, flags);
6353 if (ret < 0)
6354 return ret;
6355
991fb3f7 6356 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6357 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6358 return ret;
6359}
d1b19dff 6360EXPORT_SYMBOL(dev_change_flags);
1da177e4 6361
2315dc91
VF
6362static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6363{
6364 const struct net_device_ops *ops = dev->netdev_ops;
6365
6366 if (ops->ndo_change_mtu)
6367 return ops->ndo_change_mtu(dev, new_mtu);
6368
6369 dev->mtu = new_mtu;
6370 return 0;
6371}
6372
f0db275a
SH
6373/**
6374 * dev_set_mtu - Change maximum transfer unit
6375 * @dev: device
6376 * @new_mtu: new transfer unit
6377 *
6378 * Change the maximum transfer size of the network device.
6379 */
1da177e4
LT
6380int dev_set_mtu(struct net_device *dev, int new_mtu)
6381{
2315dc91 6382 int err, orig_mtu;
1da177e4
LT
6383
6384 if (new_mtu == dev->mtu)
6385 return 0;
6386
6387 /* MTU must be positive. */
6388 if (new_mtu < 0)
6389 return -EINVAL;
6390
6391 if (!netif_device_present(dev))
6392 return -ENODEV;
6393
1d486bfb
VF
6394 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6395 err = notifier_to_errno(err);
6396 if (err)
6397 return err;
d314774c 6398
2315dc91
VF
6399 orig_mtu = dev->mtu;
6400 err = __dev_set_mtu(dev, new_mtu);
d314774c 6401
2315dc91
VF
6402 if (!err) {
6403 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6404 err = notifier_to_errno(err);
6405 if (err) {
6406 /* setting mtu back and notifying everyone again,
6407 * so that they have a chance to revert changes.
6408 */
6409 __dev_set_mtu(dev, orig_mtu);
6410 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6411 }
6412 }
1da177e4
LT
6413 return err;
6414}
d1b19dff 6415EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6416
cbda10fa
VD
6417/**
6418 * dev_set_group - Change group this device belongs to
6419 * @dev: device
6420 * @new_group: group this device should belong to
6421 */
6422void dev_set_group(struct net_device *dev, int new_group)
6423{
6424 dev->group = new_group;
6425}
6426EXPORT_SYMBOL(dev_set_group);
6427
f0db275a
SH
6428/**
6429 * dev_set_mac_address - Change Media Access Control Address
6430 * @dev: device
6431 * @sa: new address
6432 *
6433 * Change the hardware (MAC) address of the device
6434 */
1da177e4
LT
6435int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6436{
d314774c 6437 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6438 int err;
6439
d314774c 6440 if (!ops->ndo_set_mac_address)
1da177e4
LT
6441 return -EOPNOTSUPP;
6442 if (sa->sa_family != dev->type)
6443 return -EINVAL;
6444 if (!netif_device_present(dev))
6445 return -ENODEV;
d314774c 6446 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6447 if (err)
6448 return err;
fbdeca2d 6449 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6450 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6451 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6452 return 0;
1da177e4 6453}
d1b19dff 6454EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6455
4bf84c35
JP
6456/**
6457 * dev_change_carrier - Change device carrier
6458 * @dev: device
691b3b7e 6459 * @new_carrier: new value
4bf84c35
JP
6460 *
6461 * Change device carrier
6462 */
6463int dev_change_carrier(struct net_device *dev, bool new_carrier)
6464{
6465 const struct net_device_ops *ops = dev->netdev_ops;
6466
6467 if (!ops->ndo_change_carrier)
6468 return -EOPNOTSUPP;
6469 if (!netif_device_present(dev))
6470 return -ENODEV;
6471 return ops->ndo_change_carrier(dev, new_carrier);
6472}
6473EXPORT_SYMBOL(dev_change_carrier);
6474
66b52b0d
JP
6475/**
6476 * dev_get_phys_port_id - Get device physical port ID
6477 * @dev: device
6478 * @ppid: port ID
6479 *
6480 * Get device physical port ID
6481 */
6482int dev_get_phys_port_id(struct net_device *dev,
02637fce 6483 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6484{
6485 const struct net_device_ops *ops = dev->netdev_ops;
6486
6487 if (!ops->ndo_get_phys_port_id)
6488 return -EOPNOTSUPP;
6489 return ops->ndo_get_phys_port_id(dev, ppid);
6490}
6491EXPORT_SYMBOL(dev_get_phys_port_id);
6492
db24a904
DA
6493/**
6494 * dev_get_phys_port_name - Get device physical port name
6495 * @dev: device
6496 * @name: port name
ed49e650 6497 * @len: limit of bytes to copy to name
db24a904
DA
6498 *
6499 * Get device physical port name
6500 */
6501int dev_get_phys_port_name(struct net_device *dev,
6502 char *name, size_t len)
6503{
6504 const struct net_device_ops *ops = dev->netdev_ops;
6505
6506 if (!ops->ndo_get_phys_port_name)
6507 return -EOPNOTSUPP;
6508 return ops->ndo_get_phys_port_name(dev, name, len);
6509}
6510EXPORT_SYMBOL(dev_get_phys_port_name);
6511
d746d707
AK
6512/**
6513 * dev_change_proto_down - update protocol port state information
6514 * @dev: device
6515 * @proto_down: new value
6516 *
6517 * This info can be used by switch drivers to set the phys state of the
6518 * port.
6519 */
6520int dev_change_proto_down(struct net_device *dev, bool proto_down)
6521{
6522 const struct net_device_ops *ops = dev->netdev_ops;
6523
6524 if (!ops->ndo_change_proto_down)
6525 return -EOPNOTSUPP;
6526 if (!netif_device_present(dev))
6527 return -ENODEV;
6528 return ops->ndo_change_proto_down(dev, proto_down);
6529}
6530EXPORT_SYMBOL(dev_change_proto_down);
6531
1da177e4
LT
6532/**
6533 * dev_new_index - allocate an ifindex
c4ea43c5 6534 * @net: the applicable net namespace
1da177e4
LT
6535 *
6536 * Returns a suitable unique value for a new device interface
6537 * number. The caller must hold the rtnl semaphore or the
6538 * dev_base_lock to be sure it remains unique.
6539 */
881d966b 6540static int dev_new_index(struct net *net)
1da177e4 6541{
aa79e66e 6542 int ifindex = net->ifindex;
1da177e4
LT
6543 for (;;) {
6544 if (++ifindex <= 0)
6545 ifindex = 1;
881d966b 6546 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6547 return net->ifindex = ifindex;
1da177e4
LT
6548 }
6549}
6550
1da177e4 6551/* Delayed registration/unregisteration */
3b5b34fd 6552static LIST_HEAD(net_todo_list);
200b916f 6553DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6554
6f05f629 6555static void net_set_todo(struct net_device *dev)
1da177e4 6556{
1da177e4 6557 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6558 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6559}
6560
9b5e383c 6561static void rollback_registered_many(struct list_head *head)
93ee31f1 6562{
e93737b0 6563 struct net_device *dev, *tmp;
5cde2829 6564 LIST_HEAD(close_head);
9b5e383c 6565
93ee31f1
DL
6566 BUG_ON(dev_boot_phase);
6567 ASSERT_RTNL();
6568
e93737b0 6569 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6570 /* Some devices call without registering
e93737b0
KK
6571 * for initialization unwind. Remove those
6572 * devices and proceed with the remaining.
9b5e383c
ED
6573 */
6574 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6575 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6576 dev->name, dev);
93ee31f1 6577
9b5e383c 6578 WARN_ON(1);
e93737b0
KK
6579 list_del(&dev->unreg_list);
6580 continue;
9b5e383c 6581 }
449f4544 6582 dev->dismantle = true;
9b5e383c 6583 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6584 }
93ee31f1 6585
44345724 6586 /* If device is running, close it first. */
5cde2829
EB
6587 list_for_each_entry(dev, head, unreg_list)
6588 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6589 dev_close_many(&close_head, true);
93ee31f1 6590
44345724 6591 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6592 /* And unlink it from device chain. */
6593 unlist_netdevice(dev);
93ee31f1 6594
9b5e383c 6595 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6596 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6597 }
93ee31f1
DL
6598
6599 synchronize_net();
6600
9b5e383c 6601 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6602 struct sk_buff *skb = NULL;
6603
9b5e383c
ED
6604 /* Shutdown queueing discipline. */
6605 dev_shutdown(dev);
93ee31f1
DL
6606
6607
9b5e383c
ED
6608 /* Notify protocols, that we are about to destroy
6609 this device. They should clean all the things.
6610 */
6611 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6612
395eea6c
MB
6613 if (!dev->rtnl_link_ops ||
6614 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6615 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6616 GFP_KERNEL);
6617
9b5e383c
ED
6618 /*
6619 * Flush the unicast and multicast chains
6620 */
a748ee24 6621 dev_uc_flush(dev);
22bedad3 6622 dev_mc_flush(dev);
93ee31f1 6623
9b5e383c
ED
6624 if (dev->netdev_ops->ndo_uninit)
6625 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6626
395eea6c
MB
6627 if (skb)
6628 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6629
9ff162a8
JP
6630 /* Notifier chain MUST detach us all upper devices. */
6631 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6632
9b5e383c
ED
6633 /* Remove entries from kobject tree */
6634 netdev_unregister_kobject(dev);
024e9679
AD
6635#ifdef CONFIG_XPS
6636 /* Remove XPS queueing entries */
6637 netif_reset_xps_queues_gt(dev, 0);
6638#endif
9b5e383c 6639 }
93ee31f1 6640
850a545b 6641 synchronize_net();
395264d5 6642
a5ee1551 6643 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6644 dev_put(dev);
6645}
6646
6647static void rollback_registered(struct net_device *dev)
6648{
6649 LIST_HEAD(single);
6650
6651 list_add(&dev->unreg_list, &single);
6652 rollback_registered_many(&single);
ceaaec98 6653 list_del(&single);
93ee31f1
DL
6654}
6655
fd867d51
JW
6656static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6657 struct net_device *upper, netdev_features_t features)
6658{
6659 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6660 netdev_features_t feature;
5ba3f7d6 6661 int feature_bit;
fd867d51 6662
5ba3f7d6
JW
6663 for_each_netdev_feature(&upper_disables, feature_bit) {
6664 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6665 if (!(upper->wanted_features & feature)
6666 && (features & feature)) {
6667 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6668 &feature, upper->name);
6669 features &= ~feature;
6670 }
6671 }
6672
6673 return features;
6674}
6675
6676static void netdev_sync_lower_features(struct net_device *upper,
6677 struct net_device *lower, netdev_features_t features)
6678{
6679 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6680 netdev_features_t feature;
5ba3f7d6 6681 int feature_bit;
fd867d51 6682
5ba3f7d6
JW
6683 for_each_netdev_feature(&upper_disables, feature_bit) {
6684 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6685 if (!(features & feature) && (lower->features & feature)) {
6686 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6687 &feature, lower->name);
6688 lower->wanted_features &= ~feature;
6689 netdev_update_features(lower);
6690
6691 if (unlikely(lower->features & feature))
6692 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6693 &feature, lower->name);
6694 }
6695 }
6696}
6697
c8f44aff
MM
6698static netdev_features_t netdev_fix_features(struct net_device *dev,
6699 netdev_features_t features)
b63365a2 6700{
57422dc5
MM
6701 /* Fix illegal checksum combinations */
6702 if ((features & NETIF_F_HW_CSUM) &&
6703 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6704 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6705 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6706 }
6707
b63365a2 6708 /* TSO requires that SG is present as well. */
ea2d3688 6709 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6710 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6711 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6712 }
6713
ec5f0615
PS
6714 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6715 !(features & NETIF_F_IP_CSUM)) {
6716 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6717 features &= ~NETIF_F_TSO;
6718 features &= ~NETIF_F_TSO_ECN;
6719 }
6720
6721 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6722 !(features & NETIF_F_IPV6_CSUM)) {
6723 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6724 features &= ~NETIF_F_TSO6;
6725 }
6726
b1dc497b
AD
6727 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6728 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6729 features &= ~NETIF_F_TSO_MANGLEID;
6730
31d8b9e0
BH
6731 /* TSO ECN requires that TSO is present as well. */
6732 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6733 features &= ~NETIF_F_TSO_ECN;
6734
212b573f
MM
6735 /* Software GSO depends on SG. */
6736 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6737 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6738 features &= ~NETIF_F_GSO;
6739 }
6740
acd1130e 6741 /* UFO needs SG and checksumming */
b63365a2 6742 if (features & NETIF_F_UFO) {
79032644 6743 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6744 if (!(features & NETIF_F_HW_CSUM) &&
6745 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6746 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6747 netdev_dbg(dev,
acd1130e 6748 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6749 features &= ~NETIF_F_UFO;
6750 }
6751
6752 if (!(features & NETIF_F_SG)) {
6f404e44 6753 netdev_dbg(dev,
acd1130e 6754 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6755 features &= ~NETIF_F_UFO;
6756 }
6757 }
6758
802ab55a
AD
6759 /* GSO partial features require GSO partial be set */
6760 if ((features & dev->gso_partial_features) &&
6761 !(features & NETIF_F_GSO_PARTIAL)) {
6762 netdev_dbg(dev,
6763 "Dropping partially supported GSO features since no GSO partial.\n");
6764 features &= ~dev->gso_partial_features;
6765 }
6766
d0290214
JP
6767#ifdef CONFIG_NET_RX_BUSY_POLL
6768 if (dev->netdev_ops->ndo_busy_poll)
6769 features |= NETIF_F_BUSY_POLL;
6770 else
6771#endif
6772 features &= ~NETIF_F_BUSY_POLL;
6773
b63365a2
HX
6774 return features;
6775}
b63365a2 6776
6cb6a27c 6777int __netdev_update_features(struct net_device *dev)
5455c699 6778{
fd867d51 6779 struct net_device *upper, *lower;
c8f44aff 6780 netdev_features_t features;
fd867d51 6781 struct list_head *iter;
e7868a85 6782 int err = -1;
5455c699 6783
87267485
MM
6784 ASSERT_RTNL();
6785
5455c699
MM
6786 features = netdev_get_wanted_features(dev);
6787
6788 if (dev->netdev_ops->ndo_fix_features)
6789 features = dev->netdev_ops->ndo_fix_features(dev, features);
6790
6791 /* driver might be less strict about feature dependencies */
6792 features = netdev_fix_features(dev, features);
6793
fd867d51
JW
6794 /* some features can't be enabled if they're off an an upper device */
6795 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6796 features = netdev_sync_upper_features(dev, upper, features);
6797
5455c699 6798 if (dev->features == features)
e7868a85 6799 goto sync_lower;
5455c699 6800
c8f44aff
MM
6801 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6802 &dev->features, &features);
5455c699
MM
6803
6804 if (dev->netdev_ops->ndo_set_features)
6805 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6806 else
6807 err = 0;
5455c699 6808
6cb6a27c 6809 if (unlikely(err < 0)) {
5455c699 6810 netdev_err(dev,
c8f44aff
MM
6811 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6812 err, &features, &dev->features);
17b85d29
NA
6813 /* return non-0 since some features might have changed and
6814 * it's better to fire a spurious notification than miss it
6815 */
6816 return -1;
6cb6a27c
MM
6817 }
6818
e7868a85 6819sync_lower:
fd867d51
JW
6820 /* some features must be disabled on lower devices when disabled
6821 * on an upper device (think: bonding master or bridge)
6822 */
6823 netdev_for_each_lower_dev(dev, lower, iter)
6824 netdev_sync_lower_features(dev, lower, features);
6825
6cb6a27c
MM
6826 if (!err)
6827 dev->features = features;
6828
e7868a85 6829 return err < 0 ? 0 : 1;
6cb6a27c
MM
6830}
6831
afe12cc8
MM
6832/**
6833 * netdev_update_features - recalculate device features
6834 * @dev: the device to check
6835 *
6836 * Recalculate dev->features set and send notifications if it
6837 * has changed. Should be called after driver or hardware dependent
6838 * conditions might have changed that influence the features.
6839 */
6cb6a27c
MM
6840void netdev_update_features(struct net_device *dev)
6841{
6842 if (__netdev_update_features(dev))
6843 netdev_features_change(dev);
5455c699
MM
6844}
6845EXPORT_SYMBOL(netdev_update_features);
6846
afe12cc8
MM
6847/**
6848 * netdev_change_features - recalculate device features
6849 * @dev: the device to check
6850 *
6851 * Recalculate dev->features set and send notifications even
6852 * if they have not changed. Should be called instead of
6853 * netdev_update_features() if also dev->vlan_features might
6854 * have changed to allow the changes to be propagated to stacked
6855 * VLAN devices.
6856 */
6857void netdev_change_features(struct net_device *dev)
6858{
6859 __netdev_update_features(dev);
6860 netdev_features_change(dev);
6861}
6862EXPORT_SYMBOL(netdev_change_features);
6863
fc4a7489
PM
6864/**
6865 * netif_stacked_transfer_operstate - transfer operstate
6866 * @rootdev: the root or lower level device to transfer state from
6867 * @dev: the device to transfer operstate to
6868 *
6869 * Transfer operational state from root to device. This is normally
6870 * called when a stacking relationship exists between the root
6871 * device and the device(a leaf device).
6872 */
6873void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6874 struct net_device *dev)
6875{
6876 if (rootdev->operstate == IF_OPER_DORMANT)
6877 netif_dormant_on(dev);
6878 else
6879 netif_dormant_off(dev);
6880
6881 if (netif_carrier_ok(rootdev)) {
6882 if (!netif_carrier_ok(dev))
6883 netif_carrier_on(dev);
6884 } else {
6885 if (netif_carrier_ok(dev))
6886 netif_carrier_off(dev);
6887 }
6888}
6889EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6890
a953be53 6891#ifdef CONFIG_SYSFS
1b4bf461
ED
6892static int netif_alloc_rx_queues(struct net_device *dev)
6893{
1b4bf461 6894 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6895 struct netdev_rx_queue *rx;
10595902 6896 size_t sz = count * sizeof(*rx);
1b4bf461 6897
bd25fa7b 6898 BUG_ON(count < 1);
1b4bf461 6899
10595902
PG
6900 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6901 if (!rx) {
6902 rx = vzalloc(sz);
6903 if (!rx)
6904 return -ENOMEM;
6905 }
bd25fa7b
TH
6906 dev->_rx = rx;
6907
bd25fa7b 6908 for (i = 0; i < count; i++)
fe822240 6909 rx[i].dev = dev;
1b4bf461
ED
6910 return 0;
6911}
bf264145 6912#endif
1b4bf461 6913
aa942104
CG
6914static void netdev_init_one_queue(struct net_device *dev,
6915 struct netdev_queue *queue, void *_unused)
6916{
6917 /* Initialize queue lock */
6918 spin_lock_init(&queue->_xmit_lock);
6919 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6920 queue->xmit_lock_owner = -1;
b236da69 6921 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6922 queue->dev = dev;
114cf580
TH
6923#ifdef CONFIG_BQL
6924 dql_init(&queue->dql, HZ);
6925#endif
aa942104
CG
6926}
6927
60877a32
ED
6928static void netif_free_tx_queues(struct net_device *dev)
6929{
4cb28970 6930 kvfree(dev->_tx);
60877a32
ED
6931}
6932
e6484930
TH
6933static int netif_alloc_netdev_queues(struct net_device *dev)
6934{
6935 unsigned int count = dev->num_tx_queues;
6936 struct netdev_queue *tx;
60877a32 6937 size_t sz = count * sizeof(*tx);
e6484930 6938
d339727c
ED
6939 if (count < 1 || count > 0xffff)
6940 return -EINVAL;
62b5942a 6941
60877a32
ED
6942 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6943 if (!tx) {
6944 tx = vzalloc(sz);
6945 if (!tx)
6946 return -ENOMEM;
6947 }
e6484930 6948 dev->_tx = tx;
1d24eb48 6949
e6484930
TH
6950 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6951 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6952
6953 return 0;
e6484930
TH
6954}
6955
a2029240
DV
6956void netif_tx_stop_all_queues(struct net_device *dev)
6957{
6958 unsigned int i;
6959
6960 for (i = 0; i < dev->num_tx_queues; i++) {
6961 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6962 netif_tx_stop_queue(txq);
6963 }
6964}
6965EXPORT_SYMBOL(netif_tx_stop_all_queues);
6966
1da177e4
LT
6967/**
6968 * register_netdevice - register a network device
6969 * @dev: device to register
6970 *
6971 * Take a completed network device structure and add it to the kernel
6972 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6973 * chain. 0 is returned on success. A negative errno code is returned
6974 * on a failure to set up the device, or if the name is a duplicate.
6975 *
6976 * Callers must hold the rtnl semaphore. You may want
6977 * register_netdev() instead of this.
6978 *
6979 * BUGS:
6980 * The locking appears insufficient to guarantee two parallel registers
6981 * will not get the same name.
6982 */
6983
6984int register_netdevice(struct net_device *dev)
6985{
1da177e4 6986 int ret;
d314774c 6987 struct net *net = dev_net(dev);
1da177e4
LT
6988
6989 BUG_ON(dev_boot_phase);
6990 ASSERT_RTNL();
6991
b17a7c17
SH
6992 might_sleep();
6993
1da177e4
LT
6994 /* When net_device's are persistent, this will be fatal. */
6995 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6996 BUG_ON(!net);
1da177e4 6997
f1f28aa3 6998 spin_lock_init(&dev->addr_list_lock);
cf508b12 6999 netdev_set_addr_lockdep_class(dev);
1da177e4 7000
828de4f6 7001 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7002 if (ret < 0)
7003 goto out;
7004
1da177e4 7005 /* Init, if this function is available */
d314774c
SH
7006 if (dev->netdev_ops->ndo_init) {
7007 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7008 if (ret) {
7009 if (ret > 0)
7010 ret = -EIO;
90833aa4 7011 goto out;
1da177e4
LT
7012 }
7013 }
4ec93edb 7014
f646968f
PM
7015 if (((dev->hw_features | dev->features) &
7016 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7017 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7018 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7019 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7020 ret = -EINVAL;
7021 goto err_uninit;
7022 }
7023
9c7dafbf
PE
7024 ret = -EBUSY;
7025 if (!dev->ifindex)
7026 dev->ifindex = dev_new_index(net);
7027 else if (__dev_get_by_index(net, dev->ifindex))
7028 goto err_uninit;
7029
5455c699
MM
7030 /* Transfer changeable features to wanted_features and enable
7031 * software offloads (GSO and GRO).
7032 */
7033 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7034 dev->features |= NETIF_F_SOFT_FEATURES;
7035 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7036
cbc53e08 7037 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7038 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7039
7f348a60
AD
7040 /* If IPv4 TCP segmentation offload is supported we should also
7041 * allow the device to enable segmenting the frame with the option
7042 * of ignoring a static IP ID value. This doesn't enable the
7043 * feature itself but allows the user to enable it later.
7044 */
cbc53e08
AD
7045 if (dev->hw_features & NETIF_F_TSO)
7046 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7047 if (dev->vlan_features & NETIF_F_TSO)
7048 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7049 if (dev->mpls_features & NETIF_F_TSO)
7050 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7051 if (dev->hw_enc_features & NETIF_F_TSO)
7052 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7053
1180e7d6 7054 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7055 */
1180e7d6 7056 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7057
ee579677
PS
7058 /* Make NETIF_F_SG inheritable to tunnel devices.
7059 */
802ab55a 7060 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7061
0d89d203
SH
7062 /* Make NETIF_F_SG inheritable to MPLS.
7063 */
7064 dev->mpls_features |= NETIF_F_SG;
7065
7ffbe3fd
JB
7066 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7067 ret = notifier_to_errno(ret);
7068 if (ret)
7069 goto err_uninit;
7070
8b41d188 7071 ret = netdev_register_kobject(dev);
b17a7c17 7072 if (ret)
7ce1b0ed 7073 goto err_uninit;
b17a7c17
SH
7074 dev->reg_state = NETREG_REGISTERED;
7075
6cb6a27c 7076 __netdev_update_features(dev);
8e9b59b2 7077
1da177e4
LT
7078 /*
7079 * Default initial state at registry is that the
7080 * device is present.
7081 */
7082
7083 set_bit(__LINK_STATE_PRESENT, &dev->state);
7084
8f4cccbb
BH
7085 linkwatch_init_dev(dev);
7086
1da177e4 7087 dev_init_scheduler(dev);
1da177e4 7088 dev_hold(dev);
ce286d32 7089 list_netdevice(dev);
7bf23575 7090 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7091
948b337e
JP
7092 /* If the device has permanent device address, driver should
7093 * set dev_addr and also addr_assign_type should be set to
7094 * NET_ADDR_PERM (default value).
7095 */
7096 if (dev->addr_assign_type == NET_ADDR_PERM)
7097 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7098
1da177e4 7099 /* Notify protocols, that a new device appeared. */
056925ab 7100 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7101 ret = notifier_to_errno(ret);
93ee31f1
DL
7102 if (ret) {
7103 rollback_registered(dev);
7104 dev->reg_state = NETREG_UNREGISTERED;
7105 }
d90a909e
EB
7106 /*
7107 * Prevent userspace races by waiting until the network
7108 * device is fully setup before sending notifications.
7109 */
a2835763
PM
7110 if (!dev->rtnl_link_ops ||
7111 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7112 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7113
7114out:
7115 return ret;
7ce1b0ed
HX
7116
7117err_uninit:
d314774c
SH
7118 if (dev->netdev_ops->ndo_uninit)
7119 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7120 goto out;
1da177e4 7121}
d1b19dff 7122EXPORT_SYMBOL(register_netdevice);
1da177e4 7123
937f1ba5
BH
7124/**
7125 * init_dummy_netdev - init a dummy network device for NAPI
7126 * @dev: device to init
7127 *
7128 * This takes a network device structure and initialize the minimum
7129 * amount of fields so it can be used to schedule NAPI polls without
7130 * registering a full blown interface. This is to be used by drivers
7131 * that need to tie several hardware interfaces to a single NAPI
7132 * poll scheduler due to HW limitations.
7133 */
7134int init_dummy_netdev(struct net_device *dev)
7135{
7136 /* Clear everything. Note we don't initialize spinlocks
7137 * are they aren't supposed to be taken by any of the
7138 * NAPI code and this dummy netdev is supposed to be
7139 * only ever used for NAPI polls
7140 */
7141 memset(dev, 0, sizeof(struct net_device));
7142
7143 /* make sure we BUG if trying to hit standard
7144 * register/unregister code path
7145 */
7146 dev->reg_state = NETREG_DUMMY;
7147
937f1ba5
BH
7148 /* NAPI wants this */
7149 INIT_LIST_HEAD(&dev->napi_list);
7150
7151 /* a dummy interface is started by default */
7152 set_bit(__LINK_STATE_PRESENT, &dev->state);
7153 set_bit(__LINK_STATE_START, &dev->state);
7154
29b4433d
ED
7155 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7156 * because users of this 'device' dont need to change
7157 * its refcount.
7158 */
7159
937f1ba5
BH
7160 return 0;
7161}
7162EXPORT_SYMBOL_GPL(init_dummy_netdev);
7163
7164
1da177e4
LT
7165/**
7166 * register_netdev - register a network device
7167 * @dev: device to register
7168 *
7169 * Take a completed network device structure and add it to the kernel
7170 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7171 * chain. 0 is returned on success. A negative errno code is returned
7172 * on a failure to set up the device, or if the name is a duplicate.
7173 *
38b4da38 7174 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7175 * and expands the device name if you passed a format string to
7176 * alloc_netdev.
7177 */
7178int register_netdev(struct net_device *dev)
7179{
7180 int err;
7181
7182 rtnl_lock();
1da177e4 7183 err = register_netdevice(dev);
1da177e4
LT
7184 rtnl_unlock();
7185 return err;
7186}
7187EXPORT_SYMBOL(register_netdev);
7188
29b4433d
ED
7189int netdev_refcnt_read(const struct net_device *dev)
7190{
7191 int i, refcnt = 0;
7192
7193 for_each_possible_cpu(i)
7194 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7195 return refcnt;
7196}
7197EXPORT_SYMBOL(netdev_refcnt_read);
7198
2c53040f 7199/**
1da177e4 7200 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7201 * @dev: target net_device
1da177e4
LT
7202 *
7203 * This is called when unregistering network devices.
7204 *
7205 * Any protocol or device that holds a reference should register
7206 * for netdevice notification, and cleanup and put back the
7207 * reference if they receive an UNREGISTER event.
7208 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7209 * call dev_put.
1da177e4
LT
7210 */
7211static void netdev_wait_allrefs(struct net_device *dev)
7212{
7213 unsigned long rebroadcast_time, warning_time;
29b4433d 7214 int refcnt;
1da177e4 7215
e014debe
ED
7216 linkwatch_forget_dev(dev);
7217
1da177e4 7218 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7219 refcnt = netdev_refcnt_read(dev);
7220
7221 while (refcnt != 0) {
1da177e4 7222 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7223 rtnl_lock();
1da177e4
LT
7224
7225 /* Rebroadcast unregister notification */
056925ab 7226 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7227
748e2d93 7228 __rtnl_unlock();
0115e8e3 7229 rcu_barrier();
748e2d93
ED
7230 rtnl_lock();
7231
0115e8e3 7232 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7233 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7234 &dev->state)) {
7235 /* We must not have linkwatch events
7236 * pending on unregister. If this
7237 * happens, we simply run the queue
7238 * unscheduled, resulting in a noop
7239 * for this device.
7240 */
7241 linkwatch_run_queue();
7242 }
7243
6756ae4b 7244 __rtnl_unlock();
1da177e4
LT
7245
7246 rebroadcast_time = jiffies;
7247 }
7248
7249 msleep(250);
7250
29b4433d
ED
7251 refcnt = netdev_refcnt_read(dev);
7252
1da177e4 7253 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7254 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7255 dev->name, refcnt);
1da177e4
LT
7256 warning_time = jiffies;
7257 }
7258 }
7259}
7260
7261/* The sequence is:
7262 *
7263 * rtnl_lock();
7264 * ...
7265 * register_netdevice(x1);
7266 * register_netdevice(x2);
7267 * ...
7268 * unregister_netdevice(y1);
7269 * unregister_netdevice(y2);
7270 * ...
7271 * rtnl_unlock();
7272 * free_netdev(y1);
7273 * free_netdev(y2);
7274 *
58ec3b4d 7275 * We are invoked by rtnl_unlock().
1da177e4 7276 * This allows us to deal with problems:
b17a7c17 7277 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7278 * without deadlocking with linkwatch via keventd.
7279 * 2) Since we run with the RTNL semaphore not held, we can sleep
7280 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7281 *
7282 * We must not return until all unregister events added during
7283 * the interval the lock was held have been completed.
1da177e4 7284 */
1da177e4
LT
7285void netdev_run_todo(void)
7286{
626ab0e6 7287 struct list_head list;
1da177e4 7288
1da177e4 7289 /* Snapshot list, allow later requests */
626ab0e6 7290 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7291
7292 __rtnl_unlock();
626ab0e6 7293
0115e8e3
ED
7294
7295 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7296 if (!list_empty(&list))
7297 rcu_barrier();
7298
1da177e4
LT
7299 while (!list_empty(&list)) {
7300 struct net_device *dev
e5e26d75 7301 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7302 list_del(&dev->todo_list);
7303
748e2d93 7304 rtnl_lock();
0115e8e3 7305 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7306 __rtnl_unlock();
0115e8e3 7307
b17a7c17 7308 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7309 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7310 dev->name, dev->reg_state);
7311 dump_stack();
7312 continue;
7313 }
1da177e4 7314
b17a7c17 7315 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7316
b17a7c17 7317 netdev_wait_allrefs(dev);
1da177e4 7318
b17a7c17 7319 /* paranoia */
29b4433d 7320 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7321 BUG_ON(!list_empty(&dev->ptype_all));
7322 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7323 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7324 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7325 WARN_ON(dev->dn_ptr);
1da177e4 7326
b17a7c17
SH
7327 if (dev->destructor)
7328 dev->destructor(dev);
9093bbb2 7329
50624c93
EB
7330 /* Report a network device has been unregistered */
7331 rtnl_lock();
7332 dev_net(dev)->dev_unreg_count--;
7333 __rtnl_unlock();
7334 wake_up(&netdev_unregistering_wq);
7335
9093bbb2
SH
7336 /* Free network device */
7337 kobject_put(&dev->dev.kobj);
1da177e4 7338 }
1da177e4
LT
7339}
7340
9256645a
JW
7341/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7342 * all the same fields in the same order as net_device_stats, with only
7343 * the type differing, but rtnl_link_stats64 may have additional fields
7344 * at the end for newer counters.
3cfde79c 7345 */
77a1abf5
ED
7346void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7347 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7348{
7349#if BITS_PER_LONG == 64
9256645a 7350 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7351 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7352 /* zero out counters that only exist in rtnl_link_stats64 */
7353 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7354 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7355#else
9256645a 7356 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7357 const unsigned long *src = (const unsigned long *)netdev_stats;
7358 u64 *dst = (u64 *)stats64;
7359
9256645a 7360 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7361 for (i = 0; i < n; i++)
7362 dst[i] = src[i];
9256645a
JW
7363 /* zero out counters that only exist in rtnl_link_stats64 */
7364 memset((char *)stats64 + n * sizeof(u64), 0,
7365 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7366#endif
7367}
77a1abf5 7368EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7369
eeda3fd6
SH
7370/**
7371 * dev_get_stats - get network device statistics
7372 * @dev: device to get statistics from
28172739 7373 * @storage: place to store stats
eeda3fd6 7374 *
d7753516
BH
7375 * Get network statistics from device. Return @storage.
7376 * The device driver may provide its own method by setting
7377 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7378 * otherwise the internal statistics structure is used.
eeda3fd6 7379 */
d7753516
BH
7380struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7381 struct rtnl_link_stats64 *storage)
7004bf25 7382{
eeda3fd6
SH
7383 const struct net_device_ops *ops = dev->netdev_ops;
7384
28172739
ED
7385 if (ops->ndo_get_stats64) {
7386 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7387 ops->ndo_get_stats64(dev, storage);
7388 } else if (ops->ndo_get_stats) {
3cfde79c 7389 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7390 } else {
7391 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7392 }
caf586e5 7393 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7394 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7395 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7396 return storage;
c45d286e 7397}
eeda3fd6 7398EXPORT_SYMBOL(dev_get_stats);
c45d286e 7399
24824a09 7400struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7401{
24824a09 7402 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7403
24824a09
ED
7404#ifdef CONFIG_NET_CLS_ACT
7405 if (queue)
7406 return queue;
7407 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7408 if (!queue)
7409 return NULL;
7410 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7411 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7412 queue->qdisc_sleeping = &noop_qdisc;
7413 rcu_assign_pointer(dev->ingress_queue, queue);
7414#endif
7415 return queue;
bb949fbd
DM
7416}
7417
2c60db03
ED
7418static const struct ethtool_ops default_ethtool_ops;
7419
d07d7507
SG
7420void netdev_set_default_ethtool_ops(struct net_device *dev,
7421 const struct ethtool_ops *ops)
7422{
7423 if (dev->ethtool_ops == &default_ethtool_ops)
7424 dev->ethtool_ops = ops;
7425}
7426EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7427
74d332c1
ED
7428void netdev_freemem(struct net_device *dev)
7429{
7430 char *addr = (char *)dev - dev->padded;
7431
4cb28970 7432 kvfree(addr);
74d332c1
ED
7433}
7434
1da177e4 7435/**
36909ea4 7436 * alloc_netdev_mqs - allocate network device
c835a677
TG
7437 * @sizeof_priv: size of private data to allocate space for
7438 * @name: device name format string
7439 * @name_assign_type: origin of device name
7440 * @setup: callback to initialize device
7441 * @txqs: the number of TX subqueues to allocate
7442 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7443 *
7444 * Allocates a struct net_device with private data area for driver use
90e51adf 7445 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7446 * for each queue on the device.
1da177e4 7447 */
36909ea4 7448struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7449 unsigned char name_assign_type,
36909ea4
TH
7450 void (*setup)(struct net_device *),
7451 unsigned int txqs, unsigned int rxqs)
1da177e4 7452{
1da177e4 7453 struct net_device *dev;
7943986c 7454 size_t alloc_size;
1ce8e7b5 7455 struct net_device *p;
1da177e4 7456
b6fe17d6
SH
7457 BUG_ON(strlen(name) >= sizeof(dev->name));
7458
36909ea4 7459 if (txqs < 1) {
7b6cd1ce 7460 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7461 return NULL;
7462 }
7463
a953be53 7464#ifdef CONFIG_SYSFS
36909ea4 7465 if (rxqs < 1) {
7b6cd1ce 7466 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7467 return NULL;
7468 }
7469#endif
7470
fd2ea0a7 7471 alloc_size = sizeof(struct net_device);
d1643d24
AD
7472 if (sizeof_priv) {
7473 /* ensure 32-byte alignment of private area */
1ce8e7b5 7474 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7475 alloc_size += sizeof_priv;
7476 }
7477 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7478 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7479
74d332c1
ED
7480 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7481 if (!p)
7482 p = vzalloc(alloc_size);
62b5942a 7483 if (!p)
1da177e4 7484 return NULL;
1da177e4 7485
1ce8e7b5 7486 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7487 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7488
29b4433d
ED
7489 dev->pcpu_refcnt = alloc_percpu(int);
7490 if (!dev->pcpu_refcnt)
74d332c1 7491 goto free_dev;
ab9c73cc 7492
ab9c73cc 7493 if (dev_addr_init(dev))
29b4433d 7494 goto free_pcpu;
ab9c73cc 7495
22bedad3 7496 dev_mc_init(dev);
a748ee24 7497 dev_uc_init(dev);
ccffad25 7498
c346dca1 7499 dev_net_set(dev, &init_net);
1da177e4 7500
8d3bdbd5 7501 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7502 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7503
8d3bdbd5
DM
7504 INIT_LIST_HEAD(&dev->napi_list);
7505 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7506 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7507 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7508 INIT_LIST_HEAD(&dev->adj_list.upper);
7509 INIT_LIST_HEAD(&dev->adj_list.lower);
7510 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7511 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7512 INIT_LIST_HEAD(&dev->ptype_all);
7513 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7514 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7515 setup(dev);
7516
a813104d 7517 if (!dev->tx_queue_len) {
f84bb1ea 7518 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7519 dev->tx_queue_len = 1;
7520 }
906470c1 7521
36909ea4
TH
7522 dev->num_tx_queues = txqs;
7523 dev->real_num_tx_queues = txqs;
ed9af2e8 7524 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7525 goto free_all;
e8a0464c 7526
a953be53 7527#ifdef CONFIG_SYSFS
36909ea4
TH
7528 dev->num_rx_queues = rxqs;
7529 dev->real_num_rx_queues = rxqs;
fe822240 7530 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7531 goto free_all;
df334545 7532#endif
0a9627f2 7533
1da177e4 7534 strcpy(dev->name, name);
c835a677 7535 dev->name_assign_type = name_assign_type;
cbda10fa 7536 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7537 if (!dev->ethtool_ops)
7538 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7539
7540 nf_hook_ingress_init(dev);
7541
1da177e4 7542 return dev;
ab9c73cc 7543
8d3bdbd5
DM
7544free_all:
7545 free_netdev(dev);
7546 return NULL;
7547
29b4433d
ED
7548free_pcpu:
7549 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7550free_dev:
7551 netdev_freemem(dev);
ab9c73cc 7552 return NULL;
1da177e4 7553}
36909ea4 7554EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7555
7556/**
7557 * free_netdev - free network device
7558 * @dev: device
7559 *
4ec93edb
YH
7560 * This function does the last stage of destroying an allocated device
7561 * interface. The reference to the device object is released.
1da177e4 7562 * If this is the last reference then it will be freed.
93d05d4a 7563 * Must be called in process context.
1da177e4
LT
7564 */
7565void free_netdev(struct net_device *dev)
7566{
d565b0a1
HX
7567 struct napi_struct *p, *n;
7568
93d05d4a 7569 might_sleep();
60877a32 7570 netif_free_tx_queues(dev);
a953be53 7571#ifdef CONFIG_SYSFS
10595902 7572 kvfree(dev->_rx);
fe822240 7573#endif
e8a0464c 7574
33d480ce 7575 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7576
f001fde5
JP
7577 /* Flush device addresses */
7578 dev_addr_flush(dev);
7579
d565b0a1
HX
7580 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7581 netif_napi_del(p);
7582
29b4433d
ED
7583 free_percpu(dev->pcpu_refcnt);
7584 dev->pcpu_refcnt = NULL;
7585
3041a069 7586 /* Compatibility with error handling in drivers */
1da177e4 7587 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7588 netdev_freemem(dev);
1da177e4
LT
7589 return;
7590 }
7591
7592 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7593 dev->reg_state = NETREG_RELEASED;
7594
43cb76d9
GKH
7595 /* will free via device release */
7596 put_device(&dev->dev);
1da177e4 7597}
d1b19dff 7598EXPORT_SYMBOL(free_netdev);
4ec93edb 7599
f0db275a
SH
7600/**
7601 * synchronize_net - Synchronize with packet receive processing
7602 *
7603 * Wait for packets currently being received to be done.
7604 * Does not block later packets from starting.
7605 */
4ec93edb 7606void synchronize_net(void)
1da177e4
LT
7607{
7608 might_sleep();
be3fc413
ED
7609 if (rtnl_is_locked())
7610 synchronize_rcu_expedited();
7611 else
7612 synchronize_rcu();
1da177e4 7613}
d1b19dff 7614EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7615
7616/**
44a0873d 7617 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7618 * @dev: device
44a0873d 7619 * @head: list
6ebfbc06 7620 *
1da177e4 7621 * This function shuts down a device interface and removes it
d59b54b1 7622 * from the kernel tables.
44a0873d 7623 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7624 *
7625 * Callers must hold the rtnl semaphore. You may want
7626 * unregister_netdev() instead of this.
7627 */
7628
44a0873d 7629void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7630{
a6620712
HX
7631 ASSERT_RTNL();
7632
44a0873d 7633 if (head) {
9fdce099 7634 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7635 } else {
7636 rollback_registered(dev);
7637 /* Finish processing unregister after unlock */
7638 net_set_todo(dev);
7639 }
1da177e4 7640}
44a0873d 7641EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7642
9b5e383c
ED
7643/**
7644 * unregister_netdevice_many - unregister many devices
7645 * @head: list of devices
87757a91
ED
7646 *
7647 * Note: As most callers use a stack allocated list_head,
7648 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7649 */
7650void unregister_netdevice_many(struct list_head *head)
7651{
7652 struct net_device *dev;
7653
7654 if (!list_empty(head)) {
7655 rollback_registered_many(head);
7656 list_for_each_entry(dev, head, unreg_list)
7657 net_set_todo(dev);
87757a91 7658 list_del(head);
9b5e383c
ED
7659 }
7660}
63c8099d 7661EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7662
1da177e4
LT
7663/**
7664 * unregister_netdev - remove device from the kernel
7665 * @dev: device
7666 *
7667 * This function shuts down a device interface and removes it
d59b54b1 7668 * from the kernel tables.
1da177e4
LT
7669 *
7670 * This is just a wrapper for unregister_netdevice that takes
7671 * the rtnl semaphore. In general you want to use this and not
7672 * unregister_netdevice.
7673 */
7674void unregister_netdev(struct net_device *dev)
7675{
7676 rtnl_lock();
7677 unregister_netdevice(dev);
7678 rtnl_unlock();
7679}
1da177e4
LT
7680EXPORT_SYMBOL(unregister_netdev);
7681
ce286d32
EB
7682/**
7683 * dev_change_net_namespace - move device to different nethost namespace
7684 * @dev: device
7685 * @net: network namespace
7686 * @pat: If not NULL name pattern to try if the current device name
7687 * is already taken in the destination network namespace.
7688 *
7689 * This function shuts down a device interface and moves it
7690 * to a new network namespace. On success 0 is returned, on
7691 * a failure a netagive errno code is returned.
7692 *
7693 * Callers must hold the rtnl semaphore.
7694 */
7695
7696int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7697{
ce286d32
EB
7698 int err;
7699
7700 ASSERT_RTNL();
7701
7702 /* Don't allow namespace local devices to be moved. */
7703 err = -EINVAL;
7704 if (dev->features & NETIF_F_NETNS_LOCAL)
7705 goto out;
7706
7707 /* Ensure the device has been registrered */
ce286d32
EB
7708 if (dev->reg_state != NETREG_REGISTERED)
7709 goto out;
7710
7711 /* Get out if there is nothing todo */
7712 err = 0;
878628fb 7713 if (net_eq(dev_net(dev), net))
ce286d32
EB
7714 goto out;
7715
7716 /* Pick the destination device name, and ensure
7717 * we can use it in the destination network namespace.
7718 */
7719 err = -EEXIST;
d9031024 7720 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7721 /* We get here if we can't use the current device name */
7722 if (!pat)
7723 goto out;
828de4f6 7724 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7725 goto out;
7726 }
7727
7728 /*
7729 * And now a mini version of register_netdevice unregister_netdevice.
7730 */
7731
7732 /* If device is running close it first. */
9b772652 7733 dev_close(dev);
ce286d32
EB
7734
7735 /* And unlink it from device chain */
7736 err = -ENODEV;
7737 unlist_netdevice(dev);
7738
7739 synchronize_net();
7740
7741 /* Shutdown queueing discipline. */
7742 dev_shutdown(dev);
7743
7744 /* Notify protocols, that we are about to destroy
7745 this device. They should clean all the things.
3b27e105
DL
7746
7747 Note that dev->reg_state stays at NETREG_REGISTERED.
7748 This is wanted because this way 8021q and macvlan know
7749 the device is just moving and can keep their slaves up.
ce286d32
EB
7750 */
7751 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7752 rcu_barrier();
7753 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7754 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7755
7756 /*
7757 * Flush the unicast and multicast chains
7758 */
a748ee24 7759 dev_uc_flush(dev);
22bedad3 7760 dev_mc_flush(dev);
ce286d32 7761
4e66ae2e
SH
7762 /* Send a netdev-removed uevent to the old namespace */
7763 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7764 netdev_adjacent_del_links(dev);
4e66ae2e 7765
ce286d32 7766 /* Actually switch the network namespace */
c346dca1 7767 dev_net_set(dev, net);
ce286d32 7768
ce286d32 7769 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7770 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7771 dev->ifindex = dev_new_index(net);
ce286d32 7772
4e66ae2e
SH
7773 /* Send a netdev-add uevent to the new namespace */
7774 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7775 netdev_adjacent_add_links(dev);
4e66ae2e 7776
8b41d188 7777 /* Fixup kobjects */
a1b3f594 7778 err = device_rename(&dev->dev, dev->name);
8b41d188 7779 WARN_ON(err);
ce286d32
EB
7780
7781 /* Add the device back in the hashes */
7782 list_netdevice(dev);
7783
7784 /* Notify protocols, that a new device appeared. */
7785 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7786
d90a909e
EB
7787 /*
7788 * Prevent userspace races by waiting until the network
7789 * device is fully setup before sending notifications.
7790 */
7f294054 7791 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7792
ce286d32
EB
7793 synchronize_net();
7794 err = 0;
7795out:
7796 return err;
7797}
463d0183 7798EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7799
1da177e4
LT
7800static int dev_cpu_callback(struct notifier_block *nfb,
7801 unsigned long action,
7802 void *ocpu)
7803{
7804 struct sk_buff **list_skb;
1da177e4
LT
7805 struct sk_buff *skb;
7806 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7807 struct softnet_data *sd, *oldsd;
7808
8bb78442 7809 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7810 return NOTIFY_OK;
7811
7812 local_irq_disable();
7813 cpu = smp_processor_id();
7814 sd = &per_cpu(softnet_data, cpu);
7815 oldsd = &per_cpu(softnet_data, oldcpu);
7816
7817 /* Find end of our completion_queue. */
7818 list_skb = &sd->completion_queue;
7819 while (*list_skb)
7820 list_skb = &(*list_skb)->next;
7821 /* Append completion queue from offline CPU. */
7822 *list_skb = oldsd->completion_queue;
7823 oldsd->completion_queue = NULL;
7824
1da177e4 7825 /* Append output queue from offline CPU. */
a9cbd588
CG
7826 if (oldsd->output_queue) {
7827 *sd->output_queue_tailp = oldsd->output_queue;
7828 sd->output_queue_tailp = oldsd->output_queue_tailp;
7829 oldsd->output_queue = NULL;
7830 oldsd->output_queue_tailp = &oldsd->output_queue;
7831 }
ac64da0b
ED
7832 /* Append NAPI poll list from offline CPU, with one exception :
7833 * process_backlog() must be called by cpu owning percpu backlog.
7834 * We properly handle process_queue & input_pkt_queue later.
7835 */
7836 while (!list_empty(&oldsd->poll_list)) {
7837 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7838 struct napi_struct,
7839 poll_list);
7840
7841 list_del_init(&napi->poll_list);
7842 if (napi->poll == process_backlog)
7843 napi->state = 0;
7844 else
7845 ____napi_schedule(sd, napi);
264524d5 7846 }
1da177e4
LT
7847
7848 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7849 local_irq_enable();
7850
7851 /* Process offline CPU's input_pkt_queue */
76cc8b13 7852 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7853 netif_rx_ni(skb);
76cc8b13 7854 input_queue_head_incr(oldsd);
fec5e652 7855 }
ac64da0b 7856 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7857 netif_rx_ni(skb);
76cc8b13
TH
7858 input_queue_head_incr(oldsd);
7859 }
1da177e4
LT
7860
7861 return NOTIFY_OK;
7862}
1da177e4
LT
7863
7864
7f353bf2 7865/**
b63365a2
HX
7866 * netdev_increment_features - increment feature set by one
7867 * @all: current feature set
7868 * @one: new feature set
7869 * @mask: mask feature set
7f353bf2
HX
7870 *
7871 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7872 * @one to the master device with current feature set @all. Will not
7873 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7874 */
c8f44aff
MM
7875netdev_features_t netdev_increment_features(netdev_features_t all,
7876 netdev_features_t one, netdev_features_t mask)
b63365a2 7877{
c8cd0989 7878 if (mask & NETIF_F_HW_CSUM)
a188222b 7879 mask |= NETIF_F_CSUM_MASK;
1742f183 7880 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7881
a188222b 7882 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7883 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7884
1742f183 7885 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7886 if (all & NETIF_F_HW_CSUM)
7887 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7888
7889 return all;
7890}
b63365a2 7891EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7892
430f03cd 7893static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7894{
7895 int i;
7896 struct hlist_head *hash;
7897
7898 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7899 if (hash != NULL)
7900 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7901 INIT_HLIST_HEAD(&hash[i]);
7902
7903 return hash;
7904}
7905
881d966b 7906/* Initialize per network namespace state */
4665079c 7907static int __net_init netdev_init(struct net *net)
881d966b 7908{
734b6541
RM
7909 if (net != &init_net)
7910 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7911
30d97d35
PE
7912 net->dev_name_head = netdev_create_hash();
7913 if (net->dev_name_head == NULL)
7914 goto err_name;
881d966b 7915
30d97d35
PE
7916 net->dev_index_head = netdev_create_hash();
7917 if (net->dev_index_head == NULL)
7918 goto err_idx;
881d966b
EB
7919
7920 return 0;
30d97d35
PE
7921
7922err_idx:
7923 kfree(net->dev_name_head);
7924err_name:
7925 return -ENOMEM;
881d966b
EB
7926}
7927
f0db275a
SH
7928/**
7929 * netdev_drivername - network driver for the device
7930 * @dev: network device
f0db275a
SH
7931 *
7932 * Determine network driver for device.
7933 */
3019de12 7934const char *netdev_drivername(const struct net_device *dev)
6579e57b 7935{
cf04a4c7
SH
7936 const struct device_driver *driver;
7937 const struct device *parent;
3019de12 7938 const char *empty = "";
6579e57b
AV
7939
7940 parent = dev->dev.parent;
6579e57b 7941 if (!parent)
3019de12 7942 return empty;
6579e57b
AV
7943
7944 driver = parent->driver;
7945 if (driver && driver->name)
3019de12
DM
7946 return driver->name;
7947 return empty;
6579e57b
AV
7948}
7949
6ea754eb
JP
7950static void __netdev_printk(const char *level, const struct net_device *dev,
7951 struct va_format *vaf)
256df2f3 7952{
b004ff49 7953 if (dev && dev->dev.parent) {
6ea754eb
JP
7954 dev_printk_emit(level[1] - '0',
7955 dev->dev.parent,
7956 "%s %s %s%s: %pV",
7957 dev_driver_string(dev->dev.parent),
7958 dev_name(dev->dev.parent),
7959 netdev_name(dev), netdev_reg_state(dev),
7960 vaf);
b004ff49 7961 } else if (dev) {
6ea754eb
JP
7962 printk("%s%s%s: %pV",
7963 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7964 } else {
6ea754eb 7965 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7966 }
256df2f3
JP
7967}
7968
6ea754eb
JP
7969void netdev_printk(const char *level, const struct net_device *dev,
7970 const char *format, ...)
256df2f3
JP
7971{
7972 struct va_format vaf;
7973 va_list args;
256df2f3
JP
7974
7975 va_start(args, format);
7976
7977 vaf.fmt = format;
7978 vaf.va = &args;
7979
6ea754eb 7980 __netdev_printk(level, dev, &vaf);
b004ff49 7981
256df2f3 7982 va_end(args);
256df2f3
JP
7983}
7984EXPORT_SYMBOL(netdev_printk);
7985
7986#define define_netdev_printk_level(func, level) \
6ea754eb 7987void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7988{ \
256df2f3
JP
7989 struct va_format vaf; \
7990 va_list args; \
7991 \
7992 va_start(args, fmt); \
7993 \
7994 vaf.fmt = fmt; \
7995 vaf.va = &args; \
7996 \
6ea754eb 7997 __netdev_printk(level, dev, &vaf); \
b004ff49 7998 \
256df2f3 7999 va_end(args); \
256df2f3
JP
8000} \
8001EXPORT_SYMBOL(func);
8002
8003define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8004define_netdev_printk_level(netdev_alert, KERN_ALERT);
8005define_netdev_printk_level(netdev_crit, KERN_CRIT);
8006define_netdev_printk_level(netdev_err, KERN_ERR);
8007define_netdev_printk_level(netdev_warn, KERN_WARNING);
8008define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8009define_netdev_printk_level(netdev_info, KERN_INFO);
8010
4665079c 8011static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8012{
8013 kfree(net->dev_name_head);
8014 kfree(net->dev_index_head);
8015}
8016
022cbae6 8017static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8018 .init = netdev_init,
8019 .exit = netdev_exit,
8020};
8021
4665079c 8022static void __net_exit default_device_exit(struct net *net)
ce286d32 8023{
e008b5fc 8024 struct net_device *dev, *aux;
ce286d32 8025 /*
e008b5fc 8026 * Push all migratable network devices back to the
ce286d32
EB
8027 * initial network namespace
8028 */
8029 rtnl_lock();
e008b5fc 8030 for_each_netdev_safe(net, dev, aux) {
ce286d32 8031 int err;
aca51397 8032 char fb_name[IFNAMSIZ];
ce286d32
EB
8033
8034 /* Ignore unmoveable devices (i.e. loopback) */
8035 if (dev->features & NETIF_F_NETNS_LOCAL)
8036 continue;
8037
e008b5fc
EB
8038 /* Leave virtual devices for the generic cleanup */
8039 if (dev->rtnl_link_ops)
8040 continue;
d0c082ce 8041
25985edc 8042 /* Push remaining network devices to init_net */
aca51397
PE
8043 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8044 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8045 if (err) {
7b6cd1ce
JP
8046 pr_emerg("%s: failed to move %s to init_net: %d\n",
8047 __func__, dev->name, err);
aca51397 8048 BUG();
ce286d32
EB
8049 }
8050 }
8051 rtnl_unlock();
8052}
8053
50624c93
EB
8054static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8055{
8056 /* Return with the rtnl_lock held when there are no network
8057 * devices unregistering in any network namespace in net_list.
8058 */
8059 struct net *net;
8060 bool unregistering;
ff960a73 8061 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8062
ff960a73 8063 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8064 for (;;) {
50624c93
EB
8065 unregistering = false;
8066 rtnl_lock();
8067 list_for_each_entry(net, net_list, exit_list) {
8068 if (net->dev_unreg_count > 0) {
8069 unregistering = true;
8070 break;
8071 }
8072 }
8073 if (!unregistering)
8074 break;
8075 __rtnl_unlock();
ff960a73
PZ
8076
8077 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8078 }
ff960a73 8079 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8080}
8081
04dc7f6b
EB
8082static void __net_exit default_device_exit_batch(struct list_head *net_list)
8083{
8084 /* At exit all network devices most be removed from a network
b595076a 8085 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8086 * Do this across as many network namespaces as possible to
8087 * improve batching efficiency.
8088 */
8089 struct net_device *dev;
8090 struct net *net;
8091 LIST_HEAD(dev_kill_list);
8092
50624c93
EB
8093 /* To prevent network device cleanup code from dereferencing
8094 * loopback devices or network devices that have been freed
8095 * wait here for all pending unregistrations to complete,
8096 * before unregistring the loopback device and allowing the
8097 * network namespace be freed.
8098 *
8099 * The netdev todo list containing all network devices
8100 * unregistrations that happen in default_device_exit_batch
8101 * will run in the rtnl_unlock() at the end of
8102 * default_device_exit_batch.
8103 */
8104 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8105 list_for_each_entry(net, net_list, exit_list) {
8106 for_each_netdev_reverse(net, dev) {
b0ab2fab 8107 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8108 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8109 else
8110 unregister_netdevice_queue(dev, &dev_kill_list);
8111 }
8112 }
8113 unregister_netdevice_many(&dev_kill_list);
8114 rtnl_unlock();
8115}
8116
022cbae6 8117static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8118 .exit = default_device_exit,
04dc7f6b 8119 .exit_batch = default_device_exit_batch,
ce286d32
EB
8120};
8121
1da177e4
LT
8122/*
8123 * Initialize the DEV module. At boot time this walks the device list and
8124 * unhooks any devices that fail to initialise (normally hardware not
8125 * present) and leaves us with a valid list of present and active devices.
8126 *
8127 */
8128
8129/*
8130 * This is called single threaded during boot, so no need
8131 * to take the rtnl semaphore.
8132 */
8133static int __init net_dev_init(void)
8134{
8135 int i, rc = -ENOMEM;
8136
8137 BUG_ON(!dev_boot_phase);
8138
1da177e4
LT
8139 if (dev_proc_init())
8140 goto out;
8141
8b41d188 8142 if (netdev_kobject_init())
1da177e4
LT
8143 goto out;
8144
8145 INIT_LIST_HEAD(&ptype_all);
82d8a867 8146 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8147 INIT_LIST_HEAD(&ptype_base[i]);
8148
62532da9
VY
8149 INIT_LIST_HEAD(&offload_base);
8150
881d966b
EB
8151 if (register_pernet_subsys(&netdev_net_ops))
8152 goto out;
1da177e4
LT
8153
8154 /*
8155 * Initialise the packet receive queues.
8156 */
8157
6f912042 8158 for_each_possible_cpu(i) {
e36fa2f7 8159 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8160
e36fa2f7 8161 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8162 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8163 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8164 sd->output_queue_tailp = &sd->output_queue;
df334545 8165#ifdef CONFIG_RPS
e36fa2f7
ED
8166 sd->csd.func = rps_trigger_softirq;
8167 sd->csd.info = sd;
e36fa2f7 8168 sd->cpu = i;
1e94d72f 8169#endif
0a9627f2 8170
e36fa2f7
ED
8171 sd->backlog.poll = process_backlog;
8172 sd->backlog.weight = weight_p;
1da177e4
LT
8173 }
8174
1da177e4
LT
8175 dev_boot_phase = 0;
8176
505d4f73
EB
8177 /* The loopback device is special if any other network devices
8178 * is present in a network namespace the loopback device must
8179 * be present. Since we now dynamically allocate and free the
8180 * loopback device ensure this invariant is maintained by
8181 * keeping the loopback device as the first device on the
8182 * list of network devices. Ensuring the loopback devices
8183 * is the first device that appears and the last network device
8184 * that disappears.
8185 */
8186 if (register_pernet_device(&loopback_net_ops))
8187 goto out;
8188
8189 if (register_pernet_device(&default_device_ops))
8190 goto out;
8191
962cf36c
CM
8192 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8193 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8194
8195 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8196 dst_subsys_init();
1da177e4
LT
8197 rc = 0;
8198out:
8199 return rc;
8200}
8201
8202subsys_initcall(net_dev_init);
This page took 2.15047 seconds and 5 git commands to generate.