Merge branch 'tipc-next'
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
1da177e4 138
342709ef
PE
139#include "net-sysfs.h"
140
d565b0a1
HX
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
5d38a079
HX
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
1da177e4 147static DEFINE_SPINLOCK(ptype_lock);
62532da9 148static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
62532da9 151static struct list_head offload_base __read_mostly;
1da177e4 152
ae78dbfa 153static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
ae78dbfa 157
1da177e4 158/*
7562f876 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
160 * semaphore.
161 *
c6d14c84 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
7562f876 165 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
1da177e4 177DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
178EXPORT_SYMBOL(dev_base_lock);
179
af12fa6e
ET
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
18afa4b0 186static seqcount_t devnet_rename_seq;
c91f6df2 187
4e985ada
TG
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
881d966b 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 194{
95c96174
ED
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
08e9897d 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
198}
199
881d966b 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 201{
7c28bd0b 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
203}
204
e36fa2f7 205static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
206{
207#ifdef CONFIG_RPS
e36fa2f7 208 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
209#endif
210}
211
e36fa2f7 212static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
213{
214#ifdef CONFIG_RPS
e36fa2f7 215 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
216#endif
217}
218
ce286d32 219/* Device list insertion */
53759be9 220static void list_netdevice(struct net_device *dev)
ce286d32 221{
c346dca1 222 struct net *net = dev_net(dev);
ce286d32
EB
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
c6d14c84 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
ce286d32 231 write_unlock_bh(&dev_base_lock);
4e985ada
TG
232
233 dev_base_seq_inc(net);
ce286d32
EB
234}
235
fb699dfd
ED
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
ce286d32
EB
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
c6d14c84 245 list_del_rcu(&dev->dev_list);
72c9528b 246 hlist_del_rcu(&dev->name_hlist);
fb699dfd 247 hlist_del_rcu(&dev->index_hlist);
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
251}
252
1da177e4
LT
253/*
254 * Our notifier list
255 */
256
f07d5b94 257static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
bea3348e 263
9958da05 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 265EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 266
cf508b12 267#ifdef CONFIG_LOCKDEP
723e98b7 268/*
c773e847 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 288
36cbd3dc 289static const char *const netdev_lock_name[] =
723e98b7
JP
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
cf508b12
DM
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
723e98b7
JP
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
cf508b12
DM
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
723e98b7 339#else
cf508b12
DM
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
345{
346}
347#endif
1da177e4
LT
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
1da177e4
LT
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
c07b68e8
ED
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
7866a621 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 375 else
7866a621
SN
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
378}
379
1da177e4
LT
380/**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
4ec93edb 388 * This call does not sleep therefore it can not
1da177e4
LT
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
c07b68e8 395 struct list_head *head = ptype_head(pt);
1da177e4 396
c07b68e8
ED
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
1da177e4 400}
d1b19dff 401EXPORT_SYMBOL(dev_add_pack);
1da177e4 402
1da177e4
LT
403/**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
4ec93edb 410 * returns.
1da177e4
LT
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
c07b68e8 418 struct list_head *head = ptype_head(pt);
1da177e4
LT
419 struct packet_type *pt1;
420
c07b68e8 421 spin_lock(&ptype_lock);
1da177e4
LT
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
7b6cd1ce 430 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 431out:
c07b68e8 432 spin_unlock(&ptype_lock);
1da177e4 433}
d1b19dff
ED
434EXPORT_SYMBOL(__dev_remove_pack);
435
1da177e4
LT
436/**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450 __dev_remove_pack(pt);
4ec93edb 451
1da177e4
LT
452 synchronize_net();
453}
d1b19dff 454EXPORT_SYMBOL(dev_remove_pack);
1da177e4 455
62532da9
VY
456
457/**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
1d143d9f 492static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
493{
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
c53aa505 497 spin_lock(&offload_lock);
62532da9
VY
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507out:
c53aa505 508 spin_unlock(&offload_lock);
62532da9 509}
62532da9
VY
510
511/**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525 __dev_remove_offload(po);
526
527 synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
1da177e4
LT
531/******************************************************************************
532
533 Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 558 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 583 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592}
d1b19dff 593EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
594
595
596/**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
881d966b 618 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658 Device Interface Subroutines
659
660*******************************************************************************/
661
662/**
663 * __dev_get_by_name - find a device by its name
c4ea43c5 664 * @net: the applicable net namespace
1da177e4
LT
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
881d966b 674struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 675{
0bd8d536
ED
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 678
b67bfe0d 679 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
0bd8d536 682
1da177e4
LT
683 return NULL;
684}
d1b19dff 685EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 686
72c9528b
ED
687/**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700{
72c9528b
ED
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
b67bfe0d 704 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709}
710EXPORT_SYMBOL(dev_get_by_name_rcu);
711
1da177e4
LT
712/**
713 * dev_get_by_name - find a device by its name
c4ea43c5 714 * @net: the applicable net namespace
1da177e4
LT
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
881d966b 724struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
725{
726 struct net_device *dev;
727
72c9528b
ED
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
730 if (dev)
731 dev_hold(dev);
72c9528b 732 rcu_read_unlock();
1da177e4
LT
733 return dev;
734}
d1b19dff 735EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
736
737/**
738 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 739 * @net: the applicable net namespace
1da177e4
LT
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
881d966b 749struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 750{
0bd8d536
ED
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 753
b67bfe0d 754 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
755 if (dev->ifindex == ifindex)
756 return dev;
0bd8d536 757
1da177e4
LT
758 return NULL;
759}
d1b19dff 760EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 761
fb699dfd
ED
762/**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774{
fb699dfd
ED
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
b67bfe0d 778 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783}
784EXPORT_SYMBOL(dev_get_by_index_rcu);
785
1da177e4
LT
786
787/**
788 * dev_get_by_index - find a device by its ifindex
c4ea43c5 789 * @net: the applicable net namespace
1da177e4
LT
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
881d966b 798struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
799{
800 struct net_device *dev;
801
fb699dfd
ED
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
804 if (dev)
805 dev_hold(dev);
fb699dfd 806 rcu_read_unlock();
1da177e4
LT
807 return dev;
808}
d1b19dff 809EXPORT_SYMBOL(dev_get_by_index);
1da177e4 810
5dbe7c17
NS
811/**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821int netdev_get_name(struct net *net, char *name, int ifindex)
822{
823 struct net_device *dev;
824 unsigned int seq;
825
826retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843}
844
1da177e4 845/**
941666c2 846 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 847 * @net: the applicable net namespace
1da177e4
LT
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
941666c2 854 * The returned device has not had its ref count increased
1da177e4
LT
855 * and the caller must therefore be careful about locking
856 *
1da177e4
LT
857 */
858
941666c2
ED
859struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
1da177e4
LT
861{
862 struct net_device *dev;
863
941666c2 864 for_each_netdev_rcu(net, dev)
1da177e4
LT
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
867 return dev;
868
869 return NULL;
1da177e4 870}
941666c2 871EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 872
881d966b 873struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
874{
875 struct net_device *dev;
876
4e9cac2b 877 ASSERT_RTNL();
881d966b 878 for_each_netdev(net, dev)
4e9cac2b 879 if (dev->type == type)
7562f876
PE
880 return dev;
881
882 return NULL;
4e9cac2b 883}
4e9cac2b
PM
884EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
881d966b 886struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 887{
99fe3c39 888 struct net_device *dev, *ret = NULL;
4e9cac2b 889
99fe3c39
ED
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
1da177e4 899}
1da177e4
LT
900EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902/**
6c555490 903 * __dev_get_by_flags - find any device with given flags
c4ea43c5 904 * @net: the applicable net namespace
1da177e4
LT
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 909 * is not found or a pointer to the device. Must be called inside
6c555490 910 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
911 */
912
6c555490
WC
913struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
1da177e4 915{
7562f876 916 struct net_device *dev, *ret;
1da177e4 917
6c555490
WC
918 ASSERT_RTNL();
919
7562f876 920 ret = NULL;
6c555490 921 for_each_netdev(net, dev) {
1da177e4 922 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 923 ret = dev;
1da177e4
LT
924 break;
925 }
926 }
7562f876 927 return ret;
1da177e4 928}
6c555490 929EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
930
931/**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
c7fa9d18
DM
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
1da177e4 938 */
95f050bf 939bool dev_valid_name(const char *name)
1da177e4 940{
c7fa9d18 941 if (*name == '\0')
95f050bf 942 return false;
b6fe17d6 943 if (strlen(name) >= IFNAMSIZ)
95f050bf 944 return false;
c7fa9d18 945 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 946 return false;
c7fa9d18
DM
947
948 while (*name) {
949 if (*name == '/' || isspace(*name))
95f050bf 950 return false;
c7fa9d18
DM
951 name++;
952 }
95f050bf 953 return true;
1da177e4 954}
d1b19dff 955EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
956
957/**
b267b179
EB
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
1da177e4 960 * @name: name format string
b267b179 961 * @buf: scratch buffer and result name string
1da177e4
LT
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
970 */
971
b267b179 972static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
973{
974 int i = 0;
1da177e4
LT
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 977 unsigned long *inuse;
1da177e4
LT
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
cfcabdcc 991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
992 if (!inuse)
993 return -ENOMEM;
994
881d966b 995 for_each_netdev(net, d) {
1da177e4
LT
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1002 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
d9031024
OP
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1013 if (!__dev_get_by_name(net, buf))
1da177e4 1014 return i;
1da177e4
LT
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021}
1022
b267b179
EB
1023/**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037int dev_alloc_name(struct net_device *dev, const char *name)
1038{
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
c346dca1
YH
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
b267b179
EB
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049}
d1b19dff 1050EXPORT_SYMBOL(dev_alloc_name);
b267b179 1051
828de4f6
G
1052static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
d9031024 1055{
828de4f6
G
1056 char buf[IFNAMSIZ];
1057 int ret;
8ce6cebc 1058
828de4f6
G
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063}
1064
1065static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068{
1069 BUG_ON(!net);
8ce6cebc 1070
d9031024
OP
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1c5cae81 1074 if (strchr(name, '%'))
828de4f6 1075 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
8ce6cebc
DL
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1080
1081 return 0;
1082}
1da177e4
LT
1083
1084/**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
cf04a4c7 1092int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1093{
238fa362 1094 unsigned char old_assign_type;
fcc5a03a 1095 char oldname[IFNAMSIZ];
1da177e4 1096 int err = 0;
fcc5a03a 1097 int ret;
881d966b 1098 struct net *net;
1da177e4
LT
1099
1100 ASSERT_RTNL();
c346dca1 1101 BUG_ON(!dev_net(dev));
1da177e4 1102
c346dca1 1103 net = dev_net(dev);
1da177e4
LT
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
30e6c9fa 1107 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1110 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1111 return 0;
c91f6df2 1112 }
c8d90dca 1113
fcc5a03a
HX
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
828de4f6 1116 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1117 if (err < 0) {
30e6c9fa 1118 write_seqcount_end(&devnet_rename_seq);
d9031024 1119 return err;
c91f6df2 1120 }
1da177e4 1121
6fe82a39
VF
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
238fa362
TG
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
fcc5a03a 1128rollback:
a1b3f594
EB
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1132 dev->name_assign_type = old_assign_type;
30e6c9fa 1133 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1134 return ret;
dcc99773 1135 }
7f988eab 1136
30e6c9fa 1137 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1138
5bb025fa
VF
1139 netdev_adjacent_rename_links(dev, oldname);
1140
7f988eab 1141 write_lock_bh(&dev_base_lock);
372b2312 1142 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1149 write_unlock_bh(&dev_base_lock);
1150
056925ab 1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
91e9c07b
ED
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
fcc5a03a 1157 err = ret;
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1159 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1160 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1163 goto rollback;
91e9c07b 1164 } else {
7b6cd1ce 1165 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1166 dev->name, ret);
fcc5a03a
HX
1167 }
1168 }
1da177e4
LT
1169
1170 return err;
1171}
1172
0b815a1a
SH
1173/**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
f0db275a 1177 * @len: limit of bytes to copy from info
0b815a1a
SH
1178 *
1179 * Set ifalias for a device,
1180 */
1181int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182{
7364e445
AK
1183 char *new_ifalias;
1184
0b815a1a
SH
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
96ca4a2c 1190 if (!len) {
388dfc2d
SK
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
96ca4a2c
OH
1193 return 0;
1194 }
1195
7364e445
AK
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
0b815a1a 1198 return -ENOMEM;
7364e445 1199 dev->ifalias = new_ifalias;
0b815a1a
SH
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203}
1204
1205
d8a33ac4 1206/**
3041a069 1207 * netdev_features_change - device changes features
d8a33ac4
SH
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212void netdev_features_change(struct net_device *dev)
1213{
056925ab 1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1215}
1216EXPORT_SYMBOL(netdev_features_change);
1217
1da177e4
LT
1218/**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226void netdev_state_change(struct net_device *dev)
1227{
1228 if (dev->flags & IFF_UP) {
54951194
LP
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
7f294054 1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1235 }
1236}
d1b19dff 1237EXPORT_SYMBOL(netdev_state_change);
1da177e4 1238
ee89bab1
AW
1239/**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1250{
ee89bab1
AW
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
c1da4ac7 1254}
ee89bab1 1255EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1256
bd380811 1257static int __dev_open(struct net_device *dev)
1da177e4 1258{
d314774c 1259 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1260 int ret;
1da177e4 1261
e46b66bc
BH
1262 ASSERT_RTNL();
1263
1da177e4
LT
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
ca99ca14
NH
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
66b5552f 1271 netpoll_poll_disable(dev);
ca99ca14 1272
3b8bcfd5
JB
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1da177e4 1278 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1279
d314774c
SH
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
bada339b 1282
d314774c
SH
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1da177e4 1285
66b5552f 1286 netpoll_poll_enable(dev);
ca99ca14 1287
bada339b
JG
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1da177e4 1291 dev->flags |= IFF_UP;
4417da66 1292 dev_set_rx_mode(dev);
1da177e4 1293 dev_activate(dev);
7bf23575 1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1295 }
bada339b 1296
1da177e4
LT
1297 return ret;
1298}
1299
1300/**
bd380811
PM
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1da177e4 1303 *
bd380811
PM
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1da177e4 1311 */
bd380811
PM
1312int dev_open(struct net_device *dev)
1313{
1314 int ret;
1315
bd380811
PM
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
bd380811
PM
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
7f294054 1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327}
1328EXPORT_SYMBOL(dev_open);
1329
44345724 1330static int __dev_close_many(struct list_head *head)
1da177e4 1331{
44345724 1332 struct net_device *dev;
e46b66bc 1333
bd380811 1334 ASSERT_RTNL();
9d5010db
DM
1335 might_sleep();
1336
5cde2829 1337 list_for_each_entry(dev, head, close_list) {
3f4df206 1338 /* Temporarily disable netpoll until the interface is down */
66b5552f 1339 netpoll_poll_disable(dev);
3f4df206 1340
44345724 1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1342
44345724 1343 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1344
44345724
OP
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
4e857c58 1351 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1352 }
1da177e4 1353
44345724 1354 dev_deactivate_many(head);
d8b2a4d2 1355
5cde2829 1356 list_for_each_entry(dev, head, close_list) {
44345724 1357 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1358
44345724
OP
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
44345724 1369 dev->flags &= ~IFF_UP;
66b5552f 1370 netpoll_poll_enable(dev);
44345724
OP
1371 }
1372
1373 return 0;
1374}
1375
1376static int __dev_close(struct net_device *dev)
1377{
f87e6f47 1378 int retval;
44345724
OP
1379 LIST_HEAD(single);
1380
5cde2829 1381 list_add(&dev->close_list, &single);
f87e6f47
LT
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
ca99ca14 1384
f87e6f47 1385 return retval;
44345724
OP
1386}
1387
3fbd8758 1388static int dev_close_many(struct list_head *head)
44345724
OP
1389{
1390 struct net_device *dev, *tmp;
1da177e4 1391
5cde2829
EB
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1394 if (!(dev->flags & IFF_UP))
5cde2829 1395 list_del_init(&dev->close_list);
44345724
OP
1396
1397 __dev_close_many(head);
1da177e4 1398
5cde2829 1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1402 list_del_init(&dev->close_list);
44345724 1403 }
bd380811
PM
1404
1405 return 0;
1406}
1407
1408/**
1409 * dev_close - shutdown an interface.
1410 * @dev: device to shutdown
1411 *
1412 * This function moves an active device into down state. A
1413 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415 * chain.
1416 */
1417int dev_close(struct net_device *dev)
1418{
e14a5993
ED
1419 if (dev->flags & IFF_UP) {
1420 LIST_HEAD(single);
1da177e4 1421
5cde2829 1422 list_add(&dev->close_list, &single);
e14a5993
ED
1423 dev_close_many(&single);
1424 list_del(&single);
1425 }
da6e378b 1426 return 0;
1da177e4 1427}
d1b19dff 1428EXPORT_SYMBOL(dev_close);
1da177e4
LT
1429
1430
0187bdfb
BH
1431/**
1432 * dev_disable_lro - disable Large Receive Offload on a device
1433 * @dev: device
1434 *
1435 * Disable Large Receive Offload (LRO) on a net device. Must be
1436 * called under RTNL. This is needed if received packets may be
1437 * forwarded to another interface.
1438 */
1439void dev_disable_lro(struct net_device *dev)
1440{
fbe168ba
MK
1441 struct net_device *lower_dev;
1442 struct list_head *iter;
529d0489 1443
bc5787c6
MM
1444 dev->wanted_features &= ~NETIF_F_LRO;
1445 netdev_update_features(dev);
27660515 1446
22d5969f
MM
1447 if (unlikely(dev->features & NETIF_F_LRO))
1448 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1449
1450 netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 dev_disable_lro(lower_dev);
0187bdfb
BH
1452}
1453EXPORT_SYMBOL(dev_disable_lro);
1454
351638e7
JP
1455static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 struct net_device *dev)
1457{
1458 struct netdev_notifier_info info;
1459
1460 netdev_notifier_info_init(&info, dev);
1461 return nb->notifier_call(nb, val, &info);
1462}
0187bdfb 1463
881d966b
EB
1464static int dev_boot_phase = 1;
1465
1da177e4
LT
1466/**
1467 * register_netdevice_notifier - register a network notifier block
1468 * @nb: notifier
1469 *
1470 * Register a notifier to be called when network device events occur.
1471 * The notifier passed is linked into the kernel structures and must
1472 * not be reused until it has been unregistered. A negative errno code
1473 * is returned on a failure.
1474 *
1475 * When registered all registration and up events are replayed
4ec93edb 1476 * to the new notifier to allow device to have a race free
1da177e4
LT
1477 * view of the network device list.
1478 */
1479
1480int register_netdevice_notifier(struct notifier_block *nb)
1481{
1482 struct net_device *dev;
fcc5a03a 1483 struct net_device *last;
881d966b 1484 struct net *net;
1da177e4
LT
1485 int err;
1486
1487 rtnl_lock();
f07d5b94 1488 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1489 if (err)
1490 goto unlock;
881d966b
EB
1491 if (dev_boot_phase)
1492 goto unlock;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
351638e7 1495 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1496 err = notifier_to_errno(err);
1497 if (err)
1498 goto rollback;
1499
1500 if (!(dev->flags & IFF_UP))
1501 continue;
1da177e4 1502
351638e7 1503 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1504 }
1da177e4 1505 }
fcc5a03a
HX
1506
1507unlock:
1da177e4
LT
1508 rtnl_unlock();
1509 return err;
fcc5a03a
HX
1510
1511rollback:
1512 last = dev;
881d966b
EB
1513 for_each_net(net) {
1514 for_each_netdev(net, dev) {
1515 if (dev == last)
8f891489 1516 goto outroll;
fcc5a03a 1517
881d966b 1518 if (dev->flags & IFF_UP) {
351638e7
JP
1519 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 dev);
1521 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1522 }
351638e7 1523 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1524 }
fcc5a03a 1525 }
c67625a1 1526
8f891489 1527outroll:
c67625a1 1528 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1529 goto unlock;
1da177e4 1530}
d1b19dff 1531EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1532
1533/**
1534 * unregister_netdevice_notifier - unregister a network notifier block
1535 * @nb: notifier
1536 *
1537 * Unregister a notifier previously registered by
1538 * register_netdevice_notifier(). The notifier is unlinked into the
1539 * kernel structures and may then be reused. A negative errno code
1540 * is returned on a failure.
7d3d43da
EB
1541 *
1542 * After unregistering unregister and down device events are synthesized
1543 * for all devices on the device list to the removed notifier to remove
1544 * the need for special case cleanup code.
1da177e4
LT
1545 */
1546
1547int unregister_netdevice_notifier(struct notifier_block *nb)
1548{
7d3d43da
EB
1549 struct net_device *dev;
1550 struct net *net;
9f514950
HX
1551 int err;
1552
1553 rtnl_lock();
f07d5b94 1554 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1555 if (err)
1556 goto unlock;
1557
1558 for_each_net(net) {
1559 for_each_netdev(net, dev) {
1560 if (dev->flags & IFF_UP) {
351638e7
JP
1561 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 dev);
1563 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1564 }
351638e7 1565 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1566 }
1567 }
1568unlock:
9f514950
HX
1569 rtnl_unlock();
1570 return err;
1da177e4 1571}
d1b19dff 1572EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1573
351638e7
JP
1574/**
1575 * call_netdevice_notifiers_info - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 * @info: notifier information data
1579 *
1580 * Call all network notifier blocks. Parameters and return value
1581 * are as for raw_notifier_call_chain().
1582 */
1583
1d143d9f 1584static int call_netdevice_notifiers_info(unsigned long val,
1585 struct net_device *dev,
1586 struct netdev_notifier_info *info)
351638e7
JP
1587{
1588 ASSERT_RTNL();
1589 netdev_notifier_info_init(info, dev);
1590 return raw_notifier_call_chain(&netdev_chain, val, info);
1591}
351638e7 1592
1da177e4
LT
1593/**
1594 * call_netdevice_notifiers - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
c4ea43c5 1596 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1597 *
1598 * Call all network notifier blocks. Parameters and return value
f07d5b94 1599 * are as for raw_notifier_call_chain().
1da177e4
LT
1600 */
1601
ad7379d4 1602int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1603{
351638e7
JP
1604 struct netdev_notifier_info info;
1605
1606 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1607}
edf947f1 1608EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1609
c5905afb 1610static struct static_key netstamp_needed __read_mostly;
b90e5794 1611#ifdef HAVE_JUMP_LABEL
c5905afb 1612/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1613 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1614 * static_key_slow_dec() calls.
b90e5794
ED
1615 */
1616static atomic_t netstamp_needed_deferred;
1617#endif
1da177e4
LT
1618
1619void net_enable_timestamp(void)
1620{
b90e5794
ED
1621#ifdef HAVE_JUMP_LABEL
1622 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624 if (deferred) {
1625 while (--deferred)
c5905afb 1626 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1627 return;
1628 }
1629#endif
c5905afb 1630 static_key_slow_inc(&netstamp_needed);
1da177e4 1631}
d1b19dff 1632EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1633
1634void net_disable_timestamp(void)
1635{
b90e5794
ED
1636#ifdef HAVE_JUMP_LABEL
1637 if (in_interrupt()) {
1638 atomic_inc(&netstamp_needed_deferred);
1639 return;
1640 }
1641#endif
c5905afb 1642 static_key_slow_dec(&netstamp_needed);
1da177e4 1643}
d1b19dff 1644EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1645
3b098e2d 1646static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1647{
588f0330 1648 skb->tstamp.tv64 = 0;
c5905afb 1649 if (static_key_false(&netstamp_needed))
a61bbcf2 1650 __net_timestamp(skb);
1da177e4
LT
1651}
1652
588f0330 1653#define net_timestamp_check(COND, SKB) \
c5905afb 1654 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1655 if ((COND) && !(SKB)->tstamp.tv64) \
1656 __net_timestamp(SKB); \
1657 } \
3b098e2d 1658
1ee481fb 1659bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1660{
1661 unsigned int len;
1662
1663 if (!(dev->flags & IFF_UP))
1664 return false;
1665
1666 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 if (skb->len <= len)
1668 return true;
1669
1670 /* if TSO is enabled, we don't care about the length as the packet
1671 * could be forwarded without being segmented before
1672 */
1673 if (skb_is_gso(skb))
1674 return true;
1675
1676 return false;
1677}
1ee481fb 1678EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1679
a0265d28
HX
1680int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681{
1682 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 atomic_long_inc(&dev->rx_dropped);
1685 kfree_skb(skb);
1686 return NET_RX_DROP;
1687 }
1688 }
1689
1690 if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1694 }
1695
1696 skb_scrub_packet(skb, true);
1697 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1698 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1699
1700 return 0;
1701}
1702EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703
44540960
AB
1704/**
1705 * dev_forward_skb - loopback an skb to another netif
1706 *
1707 * @dev: destination network device
1708 * @skb: buffer to forward
1709 *
1710 * return values:
1711 * NET_RX_SUCCESS (no congestion)
6ec82562 1712 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1713 *
1714 * dev_forward_skb can be used for injecting an skb from the
1715 * start_xmit function of one device into the receive queue
1716 * of another device.
1717 *
1718 * The receiving device may be in another namespace, so
1719 * we have to clear all information in the skb that could
1720 * impact namespace isolation.
1721 */
1722int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723{
a0265d28 1724 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1725}
1726EXPORT_SYMBOL_GPL(dev_forward_skb);
1727
71d9dec2
CG
1728static inline int deliver_skb(struct sk_buff *skb,
1729 struct packet_type *pt_prev,
1730 struct net_device *orig_dev)
1731{
1080e512
MT
1732 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 return -ENOMEM;
71d9dec2
CG
1734 atomic_inc(&skb->users);
1735 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736}
1737
7866a621
SN
1738static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 struct packet_type **pt,
1740 struct net_device *dev, __be16 type,
1741 struct list_head *ptype_list)
1742{
1743 struct packet_type *ptype, *pt_prev = *pt;
1744
1745 list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 if (ptype->type != type)
1747 continue;
1748 if (pt_prev)
1749 deliver_skb(skb, pt_prev, dev);
1750 pt_prev = ptype;
1751 }
1752 *pt = pt_prev;
1753}
1754
c0de08d0
EL
1755static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756{
a3d744e9 1757 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1758 return false;
1759
1760 if (ptype->id_match)
1761 return ptype->id_match(ptype, skb->sk);
1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 return true;
1764
1765 return false;
1766}
1767
1da177e4
LT
1768/*
1769 * Support routine. Sends outgoing frames to any network
1770 * taps currently in use.
1771 */
1772
f6a78bfc 1773static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1774{
1775 struct packet_type *ptype;
71d9dec2
CG
1776 struct sk_buff *skb2 = NULL;
1777 struct packet_type *pt_prev = NULL;
7866a621 1778 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1779
1da177e4 1780 rcu_read_lock();
7866a621
SN
1781again:
1782 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1783 /* Never send packets back to the socket
1784 * they originated from - MvS (miquels@drinkel.ow.org)
1785 */
7866a621
SN
1786 if (skb_loop_sk(ptype, skb))
1787 continue;
71d9dec2 1788
7866a621
SN
1789 if (pt_prev) {
1790 deliver_skb(skb2, pt_prev, skb->dev);
1791 pt_prev = ptype;
1792 continue;
1793 }
1da177e4 1794
7866a621
SN
1795 /* need to clone skb, done only once */
1796 skb2 = skb_clone(skb, GFP_ATOMIC);
1797 if (!skb2)
1798 goto out_unlock;
70978182 1799
7866a621 1800 net_timestamp_set(skb2);
1da177e4 1801
7866a621
SN
1802 /* skb->nh should be correctly
1803 * set by sender, so that the second statement is
1804 * just protection against buggy protocols.
1805 */
1806 skb_reset_mac_header(skb2);
1807
1808 if (skb_network_header(skb2) < skb2->data ||
1809 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 ntohs(skb2->protocol),
1812 dev->name);
1813 skb_reset_network_header(skb2);
1da177e4 1814 }
7866a621
SN
1815
1816 skb2->transport_header = skb2->network_header;
1817 skb2->pkt_type = PACKET_OUTGOING;
1818 pt_prev = ptype;
1819 }
1820
1821 if (ptype_list == &ptype_all) {
1822 ptype_list = &dev->ptype_all;
1823 goto again;
1da177e4 1824 }
7866a621 1825out_unlock:
71d9dec2
CG
1826 if (pt_prev)
1827 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1828 rcu_read_unlock();
1829}
1830
2c53040f
BH
1831/**
1832 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1833 * @dev: Network device
1834 * @txq: number of queues available
1835 *
1836 * If real_num_tx_queues is changed the tc mappings may no longer be
1837 * valid. To resolve this verify the tc mapping remains valid and if
1838 * not NULL the mapping. With no priorities mapping to this
1839 * offset/count pair it will no longer be used. In the worst case TC0
1840 * is invalid nothing can be done so disable priority mappings. If is
1841 * expected that drivers will fix this mapping if they can before
1842 * calling netif_set_real_num_tx_queues.
1843 */
bb134d22 1844static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1845{
1846 int i;
1847 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848
1849 /* If TC0 is invalidated disable TC mapping */
1850 if (tc->offset + tc->count > txq) {
7b6cd1ce 1851 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1852 dev->num_tc = 0;
1853 return;
1854 }
1855
1856 /* Invalidated prio to tc mappings set to TC0 */
1857 for (i = 1; i < TC_BITMASK + 1; i++) {
1858 int q = netdev_get_prio_tc_map(dev, i);
1859
1860 tc = &dev->tc_to_txq[q];
1861 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1862 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 i, q);
4f57c087
JF
1864 netdev_set_prio_tc_map(dev, i, 0);
1865 }
1866 }
1867}
1868
537c00de
AD
1869#ifdef CONFIG_XPS
1870static DEFINE_MUTEX(xps_map_mutex);
1871#define xmap_dereference(P) \
1872 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873
10cdc3f3
AD
1874static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 int cpu, u16 index)
537c00de 1876{
10cdc3f3
AD
1877 struct xps_map *map = NULL;
1878 int pos;
537c00de 1879
10cdc3f3
AD
1880 if (dev_maps)
1881 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1882
10cdc3f3
AD
1883 for (pos = 0; map && pos < map->len; pos++) {
1884 if (map->queues[pos] == index) {
537c00de
AD
1885 if (map->len > 1) {
1886 map->queues[pos] = map->queues[--map->len];
1887 } else {
10cdc3f3 1888 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1889 kfree_rcu(map, rcu);
1890 map = NULL;
1891 }
10cdc3f3 1892 break;
537c00de 1893 }
537c00de
AD
1894 }
1895
10cdc3f3
AD
1896 return map;
1897}
1898
024e9679 1899static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1900{
1901 struct xps_dev_maps *dev_maps;
024e9679 1902 int cpu, i;
10cdc3f3
AD
1903 bool active = false;
1904
1905 mutex_lock(&xps_map_mutex);
1906 dev_maps = xmap_dereference(dev->xps_maps);
1907
1908 if (!dev_maps)
1909 goto out_no_maps;
1910
1911 for_each_possible_cpu(cpu) {
024e9679
AD
1912 for (i = index; i < dev->num_tx_queues; i++) {
1913 if (!remove_xps_queue(dev_maps, cpu, i))
1914 break;
1915 }
1916 if (i == dev->num_tx_queues)
10cdc3f3
AD
1917 active = true;
1918 }
1919
1920 if (!active) {
537c00de
AD
1921 RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 kfree_rcu(dev_maps, rcu);
1923 }
1924
024e9679
AD
1925 for (i = index; i < dev->num_tx_queues; i++)
1926 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 NUMA_NO_NODE);
1928
537c00de
AD
1929out_no_maps:
1930 mutex_unlock(&xps_map_mutex);
1931}
1932
01c5f864
AD
1933static struct xps_map *expand_xps_map(struct xps_map *map,
1934 int cpu, u16 index)
1935{
1936 struct xps_map *new_map;
1937 int alloc_len = XPS_MIN_MAP_ALLOC;
1938 int i, pos;
1939
1940 for (pos = 0; map && pos < map->len; pos++) {
1941 if (map->queues[pos] != index)
1942 continue;
1943 return map;
1944 }
1945
1946 /* Need to add queue to this CPU's existing map */
1947 if (map) {
1948 if (pos < map->alloc_len)
1949 return map;
1950
1951 alloc_len = map->alloc_len * 2;
1952 }
1953
1954 /* Need to allocate new map to store queue on this CPU's map */
1955 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 cpu_to_node(cpu));
1957 if (!new_map)
1958 return NULL;
1959
1960 for (i = 0; i < pos; i++)
1961 new_map->queues[i] = map->queues[i];
1962 new_map->alloc_len = alloc_len;
1963 new_map->len = pos;
1964
1965 return new_map;
1966}
1967
3573540c
MT
1968int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 u16 index)
537c00de 1970{
01c5f864 1971 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1972 struct xps_map *map, *new_map;
537c00de 1973 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1974 int cpu, numa_node_id = -2;
1975 bool active = false;
537c00de
AD
1976
1977 mutex_lock(&xps_map_mutex);
1978
1979 dev_maps = xmap_dereference(dev->xps_maps);
1980
01c5f864
AD
1981 /* allocate memory for queue storage */
1982 for_each_online_cpu(cpu) {
1983 if (!cpumask_test_cpu(cpu, mask))
1984 continue;
1985
1986 if (!new_dev_maps)
1987 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1988 if (!new_dev_maps) {
1989 mutex_unlock(&xps_map_mutex);
01c5f864 1990 return -ENOMEM;
2bb60cb9 1991 }
01c5f864
AD
1992
1993 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 NULL;
1995
1996 map = expand_xps_map(map, cpu, index);
1997 if (!map)
1998 goto error;
1999
2000 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 }
2002
2003 if (!new_dev_maps)
2004 goto out_no_new_maps;
2005
537c00de 2006 for_each_possible_cpu(cpu) {
01c5f864
AD
2007 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 /* add queue to CPU maps */
2009 int pos = 0;
2010
2011 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 while ((pos < map->len) && (map->queues[pos] != index))
2013 pos++;
2014
2015 if (pos == map->len)
2016 map->queues[map->len++] = index;
537c00de 2017#ifdef CONFIG_NUMA
537c00de
AD
2018 if (numa_node_id == -2)
2019 numa_node_id = cpu_to_node(cpu);
2020 else if (numa_node_id != cpu_to_node(cpu))
2021 numa_node_id = -1;
537c00de 2022#endif
01c5f864
AD
2023 } else if (dev_maps) {
2024 /* fill in the new device map from the old device map */
2025 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2027 }
01c5f864 2028
537c00de
AD
2029 }
2030
01c5f864
AD
2031 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032
537c00de 2033 /* Cleanup old maps */
01c5f864
AD
2034 if (dev_maps) {
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 if (map && map != new_map)
2039 kfree_rcu(map, rcu);
2040 }
537c00de 2041
01c5f864 2042 kfree_rcu(dev_maps, rcu);
537c00de
AD
2043 }
2044
01c5f864
AD
2045 dev_maps = new_dev_maps;
2046 active = true;
537c00de 2047
01c5f864
AD
2048out_no_new_maps:
2049 /* update Tx queue numa node */
537c00de
AD
2050 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 (numa_node_id >= 0) ? numa_node_id :
2052 NUMA_NO_NODE);
2053
01c5f864
AD
2054 if (!dev_maps)
2055 goto out_no_maps;
2056
2057 /* removes queue from unused CPUs */
2058 for_each_possible_cpu(cpu) {
2059 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 continue;
2061
2062 if (remove_xps_queue(dev_maps, cpu, index))
2063 active = true;
2064 }
2065
2066 /* free map if not active */
2067 if (!active) {
2068 RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 kfree_rcu(dev_maps, rcu);
2070 }
2071
2072out_no_maps:
537c00de
AD
2073 mutex_unlock(&xps_map_mutex);
2074
2075 return 0;
2076error:
01c5f864
AD
2077 /* remove any maps that we added */
2078 for_each_possible_cpu(cpu) {
2079 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 NULL;
2082 if (new_map && new_map != map)
2083 kfree(new_map);
2084 }
2085
537c00de
AD
2086 mutex_unlock(&xps_map_mutex);
2087
537c00de
AD
2088 kfree(new_dev_maps);
2089 return -ENOMEM;
2090}
2091EXPORT_SYMBOL(netif_set_xps_queue);
2092
2093#endif
f0796d5c
JF
2094/*
2095 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097 */
e6484930 2098int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2099{
1d24eb48
TH
2100 int rc;
2101
e6484930
TH
2102 if (txq < 1 || txq > dev->num_tx_queues)
2103 return -EINVAL;
f0796d5c 2104
5c56580b
BH
2105 if (dev->reg_state == NETREG_REGISTERED ||
2106 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2107 ASSERT_RTNL();
2108
1d24eb48
TH
2109 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 txq);
bf264145
TH
2111 if (rc)
2112 return rc;
2113
4f57c087
JF
2114 if (dev->num_tc)
2115 netif_setup_tc(dev, txq);
2116
024e9679 2117 if (txq < dev->real_num_tx_queues) {
e6484930 2118 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2119#ifdef CONFIG_XPS
2120 netif_reset_xps_queues_gt(dev, txq);
2121#endif
2122 }
f0796d5c 2123 }
e6484930
TH
2124
2125 dev->real_num_tx_queues = txq;
2126 return 0;
f0796d5c
JF
2127}
2128EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2129
a953be53 2130#ifdef CONFIG_SYSFS
62fe0b40
BH
2131/**
2132 * netif_set_real_num_rx_queues - set actual number of RX queues used
2133 * @dev: Network device
2134 * @rxq: Actual number of RX queues
2135 *
2136 * This must be called either with the rtnl_lock held or before
2137 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2138 * negative error code. If called before registration, it always
2139 * succeeds.
62fe0b40
BH
2140 */
2141int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142{
2143 int rc;
2144
bd25fa7b
TH
2145 if (rxq < 1 || rxq > dev->num_rx_queues)
2146 return -EINVAL;
2147
62fe0b40
BH
2148 if (dev->reg_state == NETREG_REGISTERED) {
2149 ASSERT_RTNL();
2150
62fe0b40
BH
2151 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 rxq);
2153 if (rc)
2154 return rc;
62fe0b40
BH
2155 }
2156
2157 dev->real_num_rx_queues = rxq;
2158 return 0;
2159}
2160EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161#endif
2162
2c53040f
BH
2163/**
2164 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2165 *
2166 * This routine should set an upper limit on the number of RSS queues
2167 * used by default by multiqueue devices.
2168 */
a55b138b 2169int netif_get_num_default_rss_queues(void)
16917b87
YM
2170{
2171 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172}
2173EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174
def82a1d 2175static inline void __netif_reschedule(struct Qdisc *q)
56079431 2176{
def82a1d
JP
2177 struct softnet_data *sd;
2178 unsigned long flags;
56079431 2179
def82a1d 2180 local_irq_save(flags);
903ceff7 2181 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2182 q->next_sched = NULL;
2183 *sd->output_queue_tailp = q;
2184 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2185 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 local_irq_restore(flags);
2187}
2188
2189void __netif_schedule(struct Qdisc *q)
2190{
2191 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 __netif_reschedule(q);
56079431
DV
2193}
2194EXPORT_SYMBOL(__netif_schedule);
2195
e6247027
ED
2196struct dev_kfree_skb_cb {
2197 enum skb_free_reason reason;
2198};
2199
2200static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2201{
e6247027
ED
2202 return (struct dev_kfree_skb_cb *)skb->cb;
2203}
2204
46e5da40
JF
2205void netif_schedule_queue(struct netdev_queue *txq)
2206{
2207 rcu_read_lock();
2208 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 struct Qdisc *q = rcu_dereference(txq->qdisc);
2210
2211 __netif_schedule(q);
2212 }
2213 rcu_read_unlock();
2214}
2215EXPORT_SYMBOL(netif_schedule_queue);
2216
2217/**
2218 * netif_wake_subqueue - allow sending packets on subqueue
2219 * @dev: network device
2220 * @queue_index: sub queue index
2221 *
2222 * Resume individual transmit queue of a device with multiple transmit queues.
2223 */
2224void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225{
2226 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227
2228 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 struct Qdisc *q;
2230
2231 rcu_read_lock();
2232 q = rcu_dereference(txq->qdisc);
2233 __netif_schedule(q);
2234 rcu_read_unlock();
2235 }
2236}
2237EXPORT_SYMBOL(netif_wake_subqueue);
2238
2239void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240{
2241 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 struct Qdisc *q;
2243
2244 rcu_read_lock();
2245 q = rcu_dereference(dev_queue->qdisc);
2246 __netif_schedule(q);
2247 rcu_read_unlock();
2248 }
2249}
2250EXPORT_SYMBOL(netif_tx_wake_queue);
2251
e6247027 2252void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2253{
e6247027 2254 unsigned long flags;
56079431 2255
e6247027
ED
2256 if (likely(atomic_read(&skb->users) == 1)) {
2257 smp_rmb();
2258 atomic_set(&skb->users, 0);
2259 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 return;
bea3348e 2261 }
e6247027
ED
2262 get_kfree_skb_cb(skb)->reason = reason;
2263 local_irq_save(flags);
2264 skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 __this_cpu_write(softnet_data.completion_queue, skb);
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
56079431 2268}
e6247027 2269EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2270
e6247027 2271void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2272{
2273 if (in_irq() || irqs_disabled())
e6247027 2274 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2275 else
2276 dev_kfree_skb(skb);
2277}
e6247027 2278EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2279
2280
bea3348e
SH
2281/**
2282 * netif_device_detach - mark device as removed
2283 * @dev: network device
2284 *
2285 * Mark device as removed from system and therefore no longer available.
2286 */
56079431
DV
2287void netif_device_detach(struct net_device *dev)
2288{
2289 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 netif_running(dev)) {
d543103a 2291 netif_tx_stop_all_queues(dev);
56079431
DV
2292 }
2293}
2294EXPORT_SYMBOL(netif_device_detach);
2295
bea3348e
SH
2296/**
2297 * netif_device_attach - mark device as attached
2298 * @dev: network device
2299 *
2300 * Mark device as attached from system and restart if needed.
2301 */
56079431
DV
2302void netif_device_attach(struct net_device *dev)
2303{
2304 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 netif_running(dev)) {
d543103a 2306 netif_tx_wake_all_queues(dev);
4ec93edb 2307 __netdev_watchdog_up(dev);
56079431
DV
2308 }
2309}
2310EXPORT_SYMBOL(netif_device_attach);
2311
36c92474
BH
2312static void skb_warn_bad_offload(const struct sk_buff *skb)
2313{
65e9d2fa 2314 static const netdev_features_t null_features = 0;
36c92474
BH
2315 struct net_device *dev = skb->dev;
2316 const char *driver = "";
2317
c846ad9b
BG
2318 if (!net_ratelimit())
2319 return;
2320
36c92474
BH
2321 if (dev && dev->dev.parent)
2322 driver = dev_driver_string(dev->dev.parent);
2323
2324 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2326 driver, dev ? &dev->features : &null_features,
2327 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2328 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 skb_shinfo(skb)->gso_type, skb->ip_summed);
2330}
2331
1da177e4
LT
2332/*
2333 * Invalidate hardware checksum when packet is to be mangled, and
2334 * complete checksum manually on outgoing path.
2335 */
84fa7933 2336int skb_checksum_help(struct sk_buff *skb)
1da177e4 2337{
d3bc23e7 2338 __wsum csum;
663ead3b 2339 int ret = 0, offset;
1da177e4 2340
84fa7933 2341 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2342 goto out_set_summed;
2343
2344 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2345 skb_warn_bad_offload(skb);
2346 return -EINVAL;
1da177e4
LT
2347 }
2348
cef401de
ED
2349 /* Before computing a checksum, we should make sure no frag could
2350 * be modified by an external entity : checksum could be wrong.
2351 */
2352 if (skb_has_shared_frag(skb)) {
2353 ret = __skb_linearize(skb);
2354 if (ret)
2355 goto out;
2356 }
2357
55508d60 2358 offset = skb_checksum_start_offset(skb);
a030847e
HX
2359 BUG_ON(offset >= skb_headlen(skb));
2360 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361
2362 offset += skb->csum_offset;
2363 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364
2365 if (skb_cloned(skb) &&
2366 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2367 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 if (ret)
2369 goto out;
2370 }
2371
a030847e 2372 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2373out_set_summed:
1da177e4 2374 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2375out:
1da177e4
LT
2376 return ret;
2377}
d1b19dff 2378EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2379
53d6471c 2380__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2381{
4b9b1cdf 2382 unsigned int vlan_depth = skb->mac_len;
252e3346 2383 __be16 type = skb->protocol;
f6a78bfc 2384
19acc327
PS
2385 /* Tunnel gso handlers can set protocol to ethernet. */
2386 if (type == htons(ETH_P_TEB)) {
2387 struct ethhdr *eth;
2388
2389 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2390 return 0;
2391
2392 eth = (struct ethhdr *)skb_mac_header(skb);
2393 type = eth->h_proto;
2394 }
2395
4b9b1cdf
NA
2396 /* if skb->protocol is 802.1Q/AD then the header should already be
2397 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2398 * ETH_HLEN otherwise
2399 */
2400 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2401 if (vlan_depth) {
80019d31 2402 if (WARN_ON(vlan_depth < VLAN_HLEN))
4b9b1cdf
NA
2403 return 0;
2404 vlan_depth -= VLAN_HLEN;
2405 } else {
2406 vlan_depth = ETH_HLEN;
2407 }
2408 do {
2409 struct vlan_hdr *vh;
2410
2411 if (unlikely(!pskb_may_pull(skb,
2412 vlan_depth + VLAN_HLEN)))
2413 return 0;
2414
2415 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2416 type = vh->h_vlan_encapsulated_proto;
2417 vlan_depth += VLAN_HLEN;
2418 } while (type == htons(ETH_P_8021Q) ||
2419 type == htons(ETH_P_8021AD));
7b9c6090
JG
2420 }
2421
53d6471c
VY
2422 *depth = vlan_depth;
2423
ec5f0615
PS
2424 return type;
2425}
2426
2427/**
2428 * skb_mac_gso_segment - mac layer segmentation handler.
2429 * @skb: buffer to segment
2430 * @features: features for the output path (see dev->features)
2431 */
2432struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2433 netdev_features_t features)
2434{
2435 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2436 struct packet_offload *ptype;
53d6471c
VY
2437 int vlan_depth = skb->mac_len;
2438 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2439
2440 if (unlikely(!type))
2441 return ERR_PTR(-EINVAL);
2442
53d6471c 2443 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2444
2445 rcu_read_lock();
22061d80 2446 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2447 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2448 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2449 break;
2450 }
2451 }
2452 rcu_read_unlock();
2453
98e399f8 2454 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2455
f6a78bfc
HX
2456 return segs;
2457}
05e8ef4a
PS
2458EXPORT_SYMBOL(skb_mac_gso_segment);
2459
2460
2461/* openvswitch calls this on rx path, so we need a different check.
2462 */
2463static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2464{
2465 if (tx_path)
2466 return skb->ip_summed != CHECKSUM_PARTIAL;
2467 else
2468 return skb->ip_summed == CHECKSUM_NONE;
2469}
2470
2471/**
2472 * __skb_gso_segment - Perform segmentation on skb.
2473 * @skb: buffer to segment
2474 * @features: features for the output path (see dev->features)
2475 * @tx_path: whether it is called in TX path
2476 *
2477 * This function segments the given skb and returns a list of segments.
2478 *
2479 * It may return NULL if the skb requires no segmentation. This is
2480 * only possible when GSO is used for verifying header integrity.
2481 */
2482struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2483 netdev_features_t features, bool tx_path)
2484{
2485 if (unlikely(skb_needs_check(skb, tx_path))) {
2486 int err;
2487
2488 skb_warn_bad_offload(skb);
2489
a40e0a66 2490 err = skb_cow_head(skb, 0);
2491 if (err < 0)
05e8ef4a
PS
2492 return ERR_PTR(err);
2493 }
2494
68c33163 2495 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2496 SKB_GSO_CB(skb)->encap_level = 0;
2497
05e8ef4a
PS
2498 skb_reset_mac_header(skb);
2499 skb_reset_mac_len(skb);
2500
2501 return skb_mac_gso_segment(skb, features);
2502}
12b0004d 2503EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2504
fb286bb2
HX
2505/* Take action when hardware reception checksum errors are detected. */
2506#ifdef CONFIG_BUG
2507void netdev_rx_csum_fault(struct net_device *dev)
2508{
2509 if (net_ratelimit()) {
7b6cd1ce 2510 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2511 dump_stack();
2512 }
2513}
2514EXPORT_SYMBOL(netdev_rx_csum_fault);
2515#endif
2516
1da177e4
LT
2517/* Actually, we should eliminate this check as soon as we know, that:
2518 * 1. IOMMU is present and allows to map all the memory.
2519 * 2. No high memory really exists on this machine.
2520 */
2521
c1e756bf 2522static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2523{
3d3a8533 2524#ifdef CONFIG_HIGHMEM
1da177e4 2525 int i;
5acbbd42 2526 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2527 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2528 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2529 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2530 return 1;
ea2ab693 2531 }
5acbbd42 2532 }
1da177e4 2533
5acbbd42
FT
2534 if (PCI_DMA_BUS_IS_PHYS) {
2535 struct device *pdev = dev->dev.parent;
1da177e4 2536
9092c658
ED
2537 if (!pdev)
2538 return 0;
5acbbd42 2539 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2540 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2541 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2542 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2543 return 1;
2544 }
2545 }
3d3a8533 2546#endif
1da177e4
LT
2547 return 0;
2548}
1da177e4 2549
3b392ddb
SH
2550/* If MPLS offload request, verify we are testing hardware MPLS features
2551 * instead of standard features for the netdev.
2552 */
d0edc7bf 2553#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2554static netdev_features_t net_mpls_features(struct sk_buff *skb,
2555 netdev_features_t features,
2556 __be16 type)
2557{
25cd9ba0 2558 if (eth_p_mpls(type))
3b392ddb
SH
2559 features &= skb->dev->mpls_features;
2560
2561 return features;
2562}
2563#else
2564static netdev_features_t net_mpls_features(struct sk_buff *skb,
2565 netdev_features_t features,
2566 __be16 type)
2567{
2568 return features;
2569}
2570#endif
2571
c8f44aff 2572static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2573 netdev_features_t features)
f01a5236 2574{
53d6471c 2575 int tmp;
3b392ddb
SH
2576 __be16 type;
2577
2578 type = skb_network_protocol(skb, &tmp);
2579 features = net_mpls_features(skb, features, type);
53d6471c 2580
c0d680e5 2581 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2582 !can_checksum_protocol(features, type)) {
f01a5236 2583 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2584 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2585 features &= ~NETIF_F_SG;
2586 }
2587
2588 return features;
2589}
2590
c1e756bf 2591netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2592{
5f35227e 2593 struct net_device *dev = skb->dev;
fcbeb976
ED
2594 netdev_features_t features = dev->features;
2595 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6
JG
2596 __be16 protocol = skb->protocol;
2597
fcbeb976 2598 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2599 features &= ~NETIF_F_GSO_MASK;
2600
5f35227e
JG
2601 /* If encapsulation offload request, verify we are testing
2602 * hardware encapsulation features instead of standard
2603 * features for the netdev
2604 */
2605 if (skb->encapsulation)
2606 features &= dev->hw_enc_features;
2607
df8a39de 2608 if (!skb_vlan_tag_present(skb)) {
796f2da8
TM
2609 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2610 protocol == htons(ETH_P_8021AD))) {
2611 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2612 protocol = veh->h_vlan_encapsulated_proto;
2613 } else {
5f35227e 2614 goto finalize;
796f2da8 2615 }
f01a5236 2616 }
58e998c6 2617
db115037 2618 features = netdev_intersect_features(features,
fcbeb976 2619 dev->vlan_features |
db115037
MK
2620 NETIF_F_HW_VLAN_CTAG_TX |
2621 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2622
cdbaa0bb 2623 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
db115037
MK
2624 features = netdev_intersect_features(features,
2625 NETIF_F_SG |
2626 NETIF_F_HIGHDMA |
2627 NETIF_F_FRAGLIST |
2628 NETIF_F_GEN_CSUM |
2629 NETIF_F_HW_VLAN_CTAG_TX |
2630 NETIF_F_HW_VLAN_STAG_TX);
cdbaa0bb 2631
5f35227e
JG
2632finalize:
2633 if (dev->netdev_ops->ndo_features_check)
2634 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2635 features);
2636
c1e756bf 2637 return harmonize_features(skb, features);
58e998c6 2638}
c1e756bf 2639EXPORT_SYMBOL(netif_skb_features);
58e998c6 2640
2ea25513 2641static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2642 struct netdev_queue *txq, bool more)
f6a78bfc 2643{
2ea25513
DM
2644 unsigned int len;
2645 int rc;
00829823 2646
7866a621 2647 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2648 dev_queue_xmit_nit(skb, dev);
fc741216 2649
2ea25513
DM
2650 len = skb->len;
2651 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2652 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2653 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2654
2ea25513
DM
2655 return rc;
2656}
7b9c6090 2657
8dcda22a
DM
2658struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2659 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2660{
2661 struct sk_buff *skb = first;
2662 int rc = NETDEV_TX_OK;
7b9c6090 2663
7f2e870f
DM
2664 while (skb) {
2665 struct sk_buff *next = skb->next;
fc70fb64 2666
7f2e870f 2667 skb->next = NULL;
95f6b3dd 2668 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2669 if (unlikely(!dev_xmit_complete(rc))) {
2670 skb->next = next;
2671 goto out;
2672 }
6afff0ca 2673
7f2e870f
DM
2674 skb = next;
2675 if (netif_xmit_stopped(txq) && skb) {
2676 rc = NETDEV_TX_BUSY;
2677 break;
9ccb8975 2678 }
7f2e870f 2679 }
9ccb8975 2680
7f2e870f
DM
2681out:
2682 *ret = rc;
2683 return skb;
2684}
b40863c6 2685
1ff0dc94
ED
2686static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2687 netdev_features_t features)
f6a78bfc 2688{
df8a39de 2689 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2690 !vlan_hw_offload_capable(features, skb->vlan_proto))
2691 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2692 return skb;
2693}
f6a78bfc 2694
55a93b3e 2695static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2696{
2697 netdev_features_t features;
f6a78bfc 2698
eae3f88e
DM
2699 if (skb->next)
2700 return skb;
068a2de5 2701
eae3f88e
DM
2702 features = netif_skb_features(skb);
2703 skb = validate_xmit_vlan(skb, features);
2704 if (unlikely(!skb))
2705 goto out_null;
7b9c6090 2706
04ffcb25 2707 if (netif_needs_gso(dev, skb, features)) {
ce93718f
DM
2708 struct sk_buff *segs;
2709
2710 segs = skb_gso_segment(skb, features);
cecda693 2711 if (IS_ERR(segs)) {
af6dabc9 2712 goto out_kfree_skb;
cecda693
JW
2713 } else if (segs) {
2714 consume_skb(skb);
2715 skb = segs;
f6a78bfc 2716 }
eae3f88e
DM
2717 } else {
2718 if (skb_needs_linearize(skb, features) &&
2719 __skb_linearize(skb))
2720 goto out_kfree_skb;
4ec93edb 2721
eae3f88e
DM
2722 /* If packet is not checksummed and device does not
2723 * support checksumming for this protocol, complete
2724 * checksumming here.
2725 */
2726 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2727 if (skb->encapsulation)
2728 skb_set_inner_transport_header(skb,
2729 skb_checksum_start_offset(skb));
2730 else
2731 skb_set_transport_header(skb,
2732 skb_checksum_start_offset(skb));
2733 if (!(features & NETIF_F_ALL_CSUM) &&
2734 skb_checksum_help(skb))
2735 goto out_kfree_skb;
7b9c6090 2736 }
0c772159 2737 }
7b9c6090 2738
eae3f88e 2739 return skb;
fc70fb64 2740
f6a78bfc
HX
2741out_kfree_skb:
2742 kfree_skb(skb);
eae3f88e
DM
2743out_null:
2744 return NULL;
2745}
6afff0ca 2746
55a93b3e
ED
2747struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2748{
2749 struct sk_buff *next, *head = NULL, *tail;
2750
bec3cfdc 2751 for (; skb != NULL; skb = next) {
55a93b3e
ED
2752 next = skb->next;
2753 skb->next = NULL;
bec3cfdc
ED
2754
2755 /* in case skb wont be segmented, point to itself */
2756 skb->prev = skb;
2757
55a93b3e 2758 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2759 if (!skb)
2760 continue;
55a93b3e 2761
bec3cfdc
ED
2762 if (!head)
2763 head = skb;
2764 else
2765 tail->next = skb;
2766 /* If skb was segmented, skb->prev points to
2767 * the last segment. If not, it still contains skb.
2768 */
2769 tail = skb->prev;
55a93b3e
ED
2770 }
2771 return head;
f6a78bfc
HX
2772}
2773
1def9238
ED
2774static void qdisc_pkt_len_init(struct sk_buff *skb)
2775{
2776 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2777
2778 qdisc_skb_cb(skb)->pkt_len = skb->len;
2779
2780 /* To get more precise estimation of bytes sent on wire,
2781 * we add to pkt_len the headers size of all segments
2782 */
2783 if (shinfo->gso_size) {
757b8b1d 2784 unsigned int hdr_len;
15e5a030 2785 u16 gso_segs = shinfo->gso_segs;
1def9238 2786
757b8b1d
ED
2787 /* mac layer + network layer */
2788 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2789
2790 /* + transport layer */
1def9238
ED
2791 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2792 hdr_len += tcp_hdrlen(skb);
2793 else
2794 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2795
2796 if (shinfo->gso_type & SKB_GSO_DODGY)
2797 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2798 shinfo->gso_size);
2799
2800 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2801 }
2802}
2803
bbd8a0d3
KK
2804static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2805 struct net_device *dev,
2806 struct netdev_queue *txq)
2807{
2808 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2809 bool contended;
bbd8a0d3
KK
2810 int rc;
2811
1def9238 2812 qdisc_pkt_len_init(skb);
a2da570d 2813 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2814 /*
2815 * Heuristic to force contended enqueues to serialize on a
2816 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2817 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2818 * often and dequeue packets faster.
79640a4c 2819 */
a2da570d 2820 contended = qdisc_is_running(q);
79640a4c
ED
2821 if (unlikely(contended))
2822 spin_lock(&q->busylock);
2823
bbd8a0d3
KK
2824 spin_lock(root_lock);
2825 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2826 kfree_skb(skb);
2827 rc = NET_XMIT_DROP;
2828 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2829 qdisc_run_begin(q)) {
bbd8a0d3
KK
2830 /*
2831 * This is a work-conserving queue; there are no old skbs
2832 * waiting to be sent out; and the qdisc is not running -
2833 * xmit the skb directly.
2834 */
bfe0d029 2835
bfe0d029
ED
2836 qdisc_bstats_update(q, skb);
2837
55a93b3e 2838 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2839 if (unlikely(contended)) {
2840 spin_unlock(&q->busylock);
2841 contended = false;
2842 }
bbd8a0d3 2843 __qdisc_run(q);
79640a4c 2844 } else
bc135b23 2845 qdisc_run_end(q);
bbd8a0d3
KK
2846
2847 rc = NET_XMIT_SUCCESS;
2848 } else {
a2da570d 2849 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2850 if (qdisc_run_begin(q)) {
2851 if (unlikely(contended)) {
2852 spin_unlock(&q->busylock);
2853 contended = false;
2854 }
2855 __qdisc_run(q);
2856 }
bbd8a0d3
KK
2857 }
2858 spin_unlock(root_lock);
79640a4c
ED
2859 if (unlikely(contended))
2860 spin_unlock(&q->busylock);
bbd8a0d3
KK
2861 return rc;
2862}
2863
86f8515f 2864#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2865static void skb_update_prio(struct sk_buff *skb)
2866{
6977a79d 2867 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2868
91c68ce2
ED
2869 if (!skb->priority && skb->sk && map) {
2870 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2871
2872 if (prioidx < map->priomap_len)
2873 skb->priority = map->priomap[prioidx];
2874 }
5bc1421e
NH
2875}
2876#else
2877#define skb_update_prio(skb)
2878#endif
2879
745e20f1 2880static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2881#define RECURSION_LIMIT 10
745e20f1 2882
95603e22
MM
2883/**
2884 * dev_loopback_xmit - loop back @skb
2885 * @skb: buffer to transmit
2886 */
2887int dev_loopback_xmit(struct sk_buff *skb)
2888{
2889 skb_reset_mac_header(skb);
2890 __skb_pull(skb, skb_network_offset(skb));
2891 skb->pkt_type = PACKET_LOOPBACK;
2892 skb->ip_summed = CHECKSUM_UNNECESSARY;
2893 WARN_ON(!skb_dst(skb));
2894 skb_dst_force(skb);
2895 netif_rx_ni(skb);
2896 return 0;
2897}
2898EXPORT_SYMBOL(dev_loopback_xmit);
2899
d29f749e 2900/**
9d08dd3d 2901 * __dev_queue_xmit - transmit a buffer
d29f749e 2902 * @skb: buffer to transmit
9d08dd3d 2903 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2904 *
2905 * Queue a buffer for transmission to a network device. The caller must
2906 * have set the device and priority and built the buffer before calling
2907 * this function. The function can be called from an interrupt.
2908 *
2909 * A negative errno code is returned on a failure. A success does not
2910 * guarantee the frame will be transmitted as it may be dropped due
2911 * to congestion or traffic shaping.
2912 *
2913 * -----------------------------------------------------------------------------------
2914 * I notice this method can also return errors from the queue disciplines,
2915 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2916 * be positive.
2917 *
2918 * Regardless of the return value, the skb is consumed, so it is currently
2919 * difficult to retry a send to this method. (You can bump the ref count
2920 * before sending to hold a reference for retry if you are careful.)
2921 *
2922 * When calling this method, interrupts MUST be enabled. This is because
2923 * the BH enable code must have IRQs enabled so that it will not deadlock.
2924 * --BLG
2925 */
0a59f3a9 2926static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2927{
2928 struct net_device *dev = skb->dev;
dc2b4847 2929 struct netdev_queue *txq;
1da177e4
LT
2930 struct Qdisc *q;
2931 int rc = -ENOMEM;
2932
6d1ccff6
ED
2933 skb_reset_mac_header(skb);
2934
e7fd2885
WB
2935 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2936 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2937
4ec93edb
YH
2938 /* Disable soft irqs for various locks below. Also
2939 * stops preemption for RCU.
1da177e4 2940 */
4ec93edb 2941 rcu_read_lock_bh();
1da177e4 2942
5bc1421e
NH
2943 skb_update_prio(skb);
2944
02875878
ED
2945 /* If device/qdisc don't need skb->dst, release it right now while
2946 * its hot in this cpu cache.
2947 */
2948 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2949 skb_dst_drop(skb);
2950 else
2951 skb_dst_force(skb);
2952
f663dd9a 2953 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2954 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2955
1da177e4 2956#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2957 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2958#endif
cf66ba58 2959 trace_net_dev_queue(skb);
1da177e4 2960 if (q->enqueue) {
bbd8a0d3 2961 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2962 goto out;
1da177e4
LT
2963 }
2964
2965 /* The device has no queue. Common case for software devices:
2966 loopback, all the sorts of tunnels...
2967
932ff279
HX
2968 Really, it is unlikely that netif_tx_lock protection is necessary
2969 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2970 counters.)
2971 However, it is possible, that they rely on protection
2972 made by us here.
2973
2974 Check this and shot the lock. It is not prone from deadlocks.
2975 Either shot noqueue qdisc, it is even simpler 8)
2976 */
2977 if (dev->flags & IFF_UP) {
2978 int cpu = smp_processor_id(); /* ok because BHs are off */
2979
c773e847 2980 if (txq->xmit_lock_owner != cpu) {
1da177e4 2981
745e20f1
ED
2982 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2983 goto recursion_alert;
2984
1f59533f
JDB
2985 skb = validate_xmit_skb(skb, dev);
2986 if (!skb)
2987 goto drop;
2988
c773e847 2989 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2990
73466498 2991 if (!netif_xmit_stopped(txq)) {
745e20f1 2992 __this_cpu_inc(xmit_recursion);
ce93718f 2993 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2994 __this_cpu_dec(xmit_recursion);
572a9d7b 2995 if (dev_xmit_complete(rc)) {
c773e847 2996 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2997 goto out;
2998 }
2999 }
c773e847 3000 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3001 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3002 dev->name);
1da177e4
LT
3003 } else {
3004 /* Recursion is detected! It is possible,
745e20f1
ED
3005 * unfortunately
3006 */
3007recursion_alert:
e87cc472
JP
3008 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3009 dev->name);
1da177e4
LT
3010 }
3011 }
3012
3013 rc = -ENETDOWN;
1f59533f 3014drop:
d4828d85 3015 rcu_read_unlock_bh();
1da177e4 3016
015f0688 3017 atomic_long_inc(&dev->tx_dropped);
1f59533f 3018 kfree_skb_list(skb);
1da177e4
LT
3019 return rc;
3020out:
d4828d85 3021 rcu_read_unlock_bh();
1da177e4
LT
3022 return rc;
3023}
f663dd9a
JW
3024
3025int dev_queue_xmit(struct sk_buff *skb)
3026{
3027 return __dev_queue_xmit(skb, NULL);
3028}
d1b19dff 3029EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3030
f663dd9a
JW
3031int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3032{
3033 return __dev_queue_xmit(skb, accel_priv);
3034}
3035EXPORT_SYMBOL(dev_queue_xmit_accel);
3036
1da177e4
LT
3037
3038/*=======================================================================
3039 Receiver routines
3040 =======================================================================*/
3041
6b2bedc3 3042int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3043EXPORT_SYMBOL(netdev_max_backlog);
3044
3b098e2d 3045int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3046int netdev_budget __read_mostly = 300;
3047int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3048
eecfd7c4
ED
3049/* Called with irq disabled */
3050static inline void ____napi_schedule(struct softnet_data *sd,
3051 struct napi_struct *napi)
3052{
3053 list_add_tail(&napi->poll_list, &sd->poll_list);
3054 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3055}
3056
bfb564e7
KK
3057#ifdef CONFIG_RPS
3058
3059/* One global table that all flow-based protocols share. */
6e3f7faf 3060struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
3061EXPORT_SYMBOL(rps_sock_flow_table);
3062
c5905afb 3063struct static_key rps_needed __read_mostly;
adc9300e 3064
c445477d
BH
3065static struct rps_dev_flow *
3066set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3067 struct rps_dev_flow *rflow, u16 next_cpu)
3068{
09994d1b 3069 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3070#ifdef CONFIG_RFS_ACCEL
3071 struct netdev_rx_queue *rxqueue;
3072 struct rps_dev_flow_table *flow_table;
3073 struct rps_dev_flow *old_rflow;
3074 u32 flow_id;
3075 u16 rxq_index;
3076 int rc;
3077
3078 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3079 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3080 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3081 goto out;
3082 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3083 if (rxq_index == skb_get_rx_queue(skb))
3084 goto out;
3085
3086 rxqueue = dev->_rx + rxq_index;
3087 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3088 if (!flow_table)
3089 goto out;
61b905da 3090 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3091 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3092 rxq_index, flow_id);
3093 if (rc < 0)
3094 goto out;
3095 old_rflow = rflow;
3096 rflow = &flow_table->flows[flow_id];
c445477d
BH
3097 rflow->filter = rc;
3098 if (old_rflow->filter == rflow->filter)
3099 old_rflow->filter = RPS_NO_FILTER;
3100 out:
3101#endif
3102 rflow->last_qtail =
09994d1b 3103 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3104 }
3105
09994d1b 3106 rflow->cpu = next_cpu;
c445477d
BH
3107 return rflow;
3108}
3109
bfb564e7
KK
3110/*
3111 * get_rps_cpu is called from netif_receive_skb and returns the target
3112 * CPU from the RPS map of the receiving queue for a given skb.
3113 * rcu_read_lock must be held on entry.
3114 */
3115static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3116 struct rps_dev_flow **rflowp)
3117{
3118 struct netdev_rx_queue *rxqueue;
6e3f7faf 3119 struct rps_map *map;
bfb564e7
KK
3120 struct rps_dev_flow_table *flow_table;
3121 struct rps_sock_flow_table *sock_flow_table;
3122 int cpu = -1;
3123 u16 tcpu;
61b905da 3124 u32 hash;
bfb564e7
KK
3125
3126 if (skb_rx_queue_recorded(skb)) {
3127 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
3128 if (unlikely(index >= dev->real_num_rx_queues)) {
3129 WARN_ONCE(dev->real_num_rx_queues > 1,
3130 "%s received packet on queue %u, but number "
3131 "of RX queues is %u\n",
3132 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3133 goto done;
3134 }
3135 rxqueue = dev->_rx + index;
3136 } else
3137 rxqueue = dev->_rx;
3138
6e3f7faf
ED
3139 map = rcu_dereference(rxqueue->rps_map);
3140 if (map) {
85875236 3141 if (map->len == 1 &&
33d480ce 3142 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3143 tcpu = map->cpus[0];
3144 if (cpu_online(tcpu))
3145 cpu = tcpu;
3146 goto done;
3147 }
33d480ce 3148 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3149 goto done;
6febfca9 3150 }
bfb564e7 3151
2d47b459 3152 skb_reset_network_header(skb);
61b905da
TH
3153 hash = skb_get_hash(skb);
3154 if (!hash)
bfb564e7
KK
3155 goto done;
3156
fec5e652
TH
3157 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3158 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3159 if (flow_table && sock_flow_table) {
3160 u16 next_cpu;
3161 struct rps_dev_flow *rflow;
3162
61b905da 3163 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3164 tcpu = rflow->cpu;
3165
61b905da 3166 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
fec5e652
TH
3167
3168 /*
3169 * If the desired CPU (where last recvmsg was done) is
3170 * different from current CPU (one in the rx-queue flow
3171 * table entry), switch if one of the following holds:
3172 * - Current CPU is unset (equal to RPS_NO_CPU).
3173 * - Current CPU is offline.
3174 * - The current CPU's queue tail has advanced beyond the
3175 * last packet that was enqueued using this table entry.
3176 * This guarantees that all previous packets for the flow
3177 * have been dequeued, thus preserving in order delivery.
3178 */
3179 if (unlikely(tcpu != next_cpu) &&
3180 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3181 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3182 rflow->last_qtail)) >= 0)) {
3183 tcpu = next_cpu;
c445477d 3184 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3185 }
c445477d 3186
fec5e652
TH
3187 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3188 *rflowp = rflow;
3189 cpu = tcpu;
3190 goto done;
3191 }
3192 }
3193
0a9627f2 3194 if (map) {
8fc54f68 3195 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3196 if (cpu_online(tcpu)) {
3197 cpu = tcpu;
3198 goto done;
3199 }
3200 }
3201
3202done:
0a9627f2
TH
3203 return cpu;
3204}
3205
c445477d
BH
3206#ifdef CONFIG_RFS_ACCEL
3207
3208/**
3209 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3210 * @dev: Device on which the filter was set
3211 * @rxq_index: RX queue index
3212 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3213 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3214 *
3215 * Drivers that implement ndo_rx_flow_steer() should periodically call
3216 * this function for each installed filter and remove the filters for
3217 * which it returns %true.
3218 */
3219bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3220 u32 flow_id, u16 filter_id)
3221{
3222 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3223 struct rps_dev_flow_table *flow_table;
3224 struct rps_dev_flow *rflow;
3225 bool expire = true;
3226 int cpu;
3227
3228 rcu_read_lock();
3229 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3230 if (flow_table && flow_id <= flow_table->mask) {
3231 rflow = &flow_table->flows[flow_id];
3232 cpu = ACCESS_ONCE(rflow->cpu);
3233 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3234 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3235 rflow->last_qtail) <
3236 (int)(10 * flow_table->mask)))
3237 expire = false;
3238 }
3239 rcu_read_unlock();
3240 return expire;
3241}
3242EXPORT_SYMBOL(rps_may_expire_flow);
3243
3244#endif /* CONFIG_RFS_ACCEL */
3245
0a9627f2 3246/* Called from hardirq (IPI) context */
e36fa2f7 3247static void rps_trigger_softirq(void *data)
0a9627f2 3248{
e36fa2f7
ED
3249 struct softnet_data *sd = data;
3250
eecfd7c4 3251 ____napi_schedule(sd, &sd->backlog);
dee42870 3252 sd->received_rps++;
0a9627f2 3253}
e36fa2f7 3254
fec5e652 3255#endif /* CONFIG_RPS */
0a9627f2 3256
e36fa2f7
ED
3257/*
3258 * Check if this softnet_data structure is another cpu one
3259 * If yes, queue it to our IPI list and return 1
3260 * If no, return 0
3261 */
3262static int rps_ipi_queued(struct softnet_data *sd)
3263{
3264#ifdef CONFIG_RPS
903ceff7 3265 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3266
3267 if (sd != mysd) {
3268 sd->rps_ipi_next = mysd->rps_ipi_list;
3269 mysd->rps_ipi_list = sd;
3270
3271 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3272 return 1;
3273 }
3274#endif /* CONFIG_RPS */
3275 return 0;
3276}
3277
99bbc707
WB
3278#ifdef CONFIG_NET_FLOW_LIMIT
3279int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3280#endif
3281
3282static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3283{
3284#ifdef CONFIG_NET_FLOW_LIMIT
3285 struct sd_flow_limit *fl;
3286 struct softnet_data *sd;
3287 unsigned int old_flow, new_flow;
3288
3289 if (qlen < (netdev_max_backlog >> 1))
3290 return false;
3291
903ceff7 3292 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3293
3294 rcu_read_lock();
3295 fl = rcu_dereference(sd->flow_limit);
3296 if (fl) {
3958afa1 3297 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3298 old_flow = fl->history[fl->history_head];
3299 fl->history[fl->history_head] = new_flow;
3300
3301 fl->history_head++;
3302 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3303
3304 if (likely(fl->buckets[old_flow]))
3305 fl->buckets[old_flow]--;
3306
3307 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3308 fl->count++;
3309 rcu_read_unlock();
3310 return true;
3311 }
3312 }
3313 rcu_read_unlock();
3314#endif
3315 return false;
3316}
3317
0a9627f2
TH
3318/*
3319 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3320 * queue (may be a remote CPU queue).
3321 */
fec5e652
TH
3322static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3323 unsigned int *qtail)
0a9627f2 3324{
e36fa2f7 3325 struct softnet_data *sd;
0a9627f2 3326 unsigned long flags;
99bbc707 3327 unsigned int qlen;
0a9627f2 3328
e36fa2f7 3329 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3330
3331 local_irq_save(flags);
0a9627f2 3332
e36fa2f7 3333 rps_lock(sd);
99bbc707
WB
3334 qlen = skb_queue_len(&sd->input_pkt_queue);
3335 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3336 if (qlen) {
0a9627f2 3337enqueue:
e36fa2f7 3338 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3339 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3340 rps_unlock(sd);
152102c7 3341 local_irq_restore(flags);
0a9627f2
TH
3342 return NET_RX_SUCCESS;
3343 }
3344
ebda37c2
ED
3345 /* Schedule NAPI for backlog device
3346 * We can use non atomic operation since we own the queue lock
3347 */
3348 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3349 if (!rps_ipi_queued(sd))
eecfd7c4 3350 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3351 }
3352 goto enqueue;
3353 }
3354
dee42870 3355 sd->dropped++;
e36fa2f7 3356 rps_unlock(sd);
0a9627f2 3357
0a9627f2
TH
3358 local_irq_restore(flags);
3359
caf586e5 3360 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3361 kfree_skb(skb);
3362 return NET_RX_DROP;
3363}
1da177e4 3364
ae78dbfa 3365static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3366{
b0e28f1e 3367 int ret;
1da177e4 3368
588f0330 3369 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3370
cf66ba58 3371 trace_netif_rx(skb);
df334545 3372#ifdef CONFIG_RPS
c5905afb 3373 if (static_key_false(&rps_needed)) {
fec5e652 3374 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3375 int cpu;
3376
cece1945 3377 preempt_disable();
b0e28f1e 3378 rcu_read_lock();
fec5e652
TH
3379
3380 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3381 if (cpu < 0)
3382 cpu = smp_processor_id();
fec5e652
TH
3383
3384 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3385
b0e28f1e 3386 rcu_read_unlock();
cece1945 3387 preempt_enable();
adc9300e
ED
3388 } else
3389#endif
fec5e652
TH
3390 {
3391 unsigned int qtail;
3392 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3393 put_cpu();
3394 }
b0e28f1e 3395 return ret;
1da177e4 3396}
ae78dbfa
BH
3397
3398/**
3399 * netif_rx - post buffer to the network code
3400 * @skb: buffer to post
3401 *
3402 * This function receives a packet from a device driver and queues it for
3403 * the upper (protocol) levels to process. It always succeeds. The buffer
3404 * may be dropped during processing for congestion control or by the
3405 * protocol layers.
3406 *
3407 * return values:
3408 * NET_RX_SUCCESS (no congestion)
3409 * NET_RX_DROP (packet was dropped)
3410 *
3411 */
3412
3413int netif_rx(struct sk_buff *skb)
3414{
3415 trace_netif_rx_entry(skb);
3416
3417 return netif_rx_internal(skb);
3418}
d1b19dff 3419EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3420
3421int netif_rx_ni(struct sk_buff *skb)
3422{
3423 int err;
3424
ae78dbfa
BH
3425 trace_netif_rx_ni_entry(skb);
3426
1da177e4 3427 preempt_disable();
ae78dbfa 3428 err = netif_rx_internal(skb);
1da177e4
LT
3429 if (local_softirq_pending())
3430 do_softirq();
3431 preempt_enable();
3432
3433 return err;
3434}
1da177e4
LT
3435EXPORT_SYMBOL(netif_rx_ni);
3436
1da177e4
LT
3437static void net_tx_action(struct softirq_action *h)
3438{
903ceff7 3439 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3440
3441 if (sd->completion_queue) {
3442 struct sk_buff *clist;
3443
3444 local_irq_disable();
3445 clist = sd->completion_queue;
3446 sd->completion_queue = NULL;
3447 local_irq_enable();
3448
3449 while (clist) {
3450 struct sk_buff *skb = clist;
3451 clist = clist->next;
3452
547b792c 3453 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3454 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3455 trace_consume_skb(skb);
3456 else
3457 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3458 __kfree_skb(skb);
3459 }
3460 }
3461
3462 if (sd->output_queue) {
37437bb2 3463 struct Qdisc *head;
1da177e4
LT
3464
3465 local_irq_disable();
3466 head = sd->output_queue;
3467 sd->output_queue = NULL;
a9cbd588 3468 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3469 local_irq_enable();
3470
3471 while (head) {
37437bb2
DM
3472 struct Qdisc *q = head;
3473 spinlock_t *root_lock;
3474
1da177e4
LT
3475 head = head->next_sched;
3476
5fb66229 3477 root_lock = qdisc_lock(q);
37437bb2 3478 if (spin_trylock(root_lock)) {
4e857c58 3479 smp_mb__before_atomic();
def82a1d
JP
3480 clear_bit(__QDISC_STATE_SCHED,
3481 &q->state);
37437bb2
DM
3482 qdisc_run(q);
3483 spin_unlock(root_lock);
1da177e4 3484 } else {
195648bb 3485 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3486 &q->state)) {
195648bb 3487 __netif_reschedule(q);
e8a83e10 3488 } else {
4e857c58 3489 smp_mb__before_atomic();
e8a83e10
JP
3490 clear_bit(__QDISC_STATE_SCHED,
3491 &q->state);
3492 }
1da177e4
LT
3493 }
3494 }
3495 }
3496}
3497
ab95bfe0
JP
3498#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3499 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3500/* This hook is defined here for ATM LANE */
3501int (*br_fdb_test_addr_hook)(struct net_device *dev,
3502 unsigned char *addr) __read_mostly;
4fb019a0 3503EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3504#endif
1da177e4 3505
1da177e4
LT
3506#ifdef CONFIG_NET_CLS_ACT
3507/* TODO: Maybe we should just force sch_ingress to be compiled in
3508 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3509 * a compare and 2 stores extra right now if we dont have it on
3510 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3511 * NOTE: This doesn't stop any functionality; if you dont have
3512 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3513 *
3514 */
24824a09 3515static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3516{
1da177e4 3517 struct net_device *dev = skb->dev;
f697c3e8 3518 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3519 int result = TC_ACT_OK;
3520 struct Qdisc *q;
4ec93edb 3521
de384830 3522 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3523 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3524 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3525 return TC_ACT_SHOT;
3526 }
1da177e4 3527
f697c3e8
HX
3528 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3529 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3530
46e5da40 3531 q = rcu_dereference(rxq->qdisc);
8d50b53d 3532 if (q != &noop_qdisc) {
83874000 3533 spin_lock(qdisc_lock(q));
a9312ae8
DM
3534 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3535 result = qdisc_enqueue_root(skb, q);
83874000
DM
3536 spin_unlock(qdisc_lock(q));
3537 }
f697c3e8
HX
3538
3539 return result;
3540}
86e65da9 3541
f697c3e8
HX
3542static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3543 struct packet_type **pt_prev,
3544 int *ret, struct net_device *orig_dev)
3545{
24824a09
ED
3546 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3547
46e5da40 3548 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
f697c3e8 3549 goto out;
1da177e4 3550
f697c3e8
HX
3551 if (*pt_prev) {
3552 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3553 *pt_prev = NULL;
1da177e4
LT
3554 }
3555
24824a09 3556 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3557 case TC_ACT_SHOT:
3558 case TC_ACT_STOLEN:
3559 kfree_skb(skb);
3560 return NULL;
3561 }
3562
3563out:
3564 skb->tc_verd = 0;
3565 return skb;
1da177e4
LT
3566}
3567#endif
3568
ab95bfe0
JP
3569/**
3570 * netdev_rx_handler_register - register receive handler
3571 * @dev: device to register a handler for
3572 * @rx_handler: receive handler to register
93e2c32b 3573 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3574 *
e227867f 3575 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3576 * called from __netif_receive_skb. A negative errno code is returned
3577 * on a failure.
3578 *
3579 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3580 *
3581 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3582 */
3583int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3584 rx_handler_func_t *rx_handler,
3585 void *rx_handler_data)
ab95bfe0
JP
3586{
3587 ASSERT_RTNL();
3588
3589 if (dev->rx_handler)
3590 return -EBUSY;
3591
00cfec37 3592 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3593 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3594 rcu_assign_pointer(dev->rx_handler, rx_handler);
3595
3596 return 0;
3597}
3598EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3599
3600/**
3601 * netdev_rx_handler_unregister - unregister receive handler
3602 * @dev: device to unregister a handler from
3603 *
166ec369 3604 * Unregister a receive handler from a device.
ab95bfe0
JP
3605 *
3606 * The caller must hold the rtnl_mutex.
3607 */
3608void netdev_rx_handler_unregister(struct net_device *dev)
3609{
3610
3611 ASSERT_RTNL();
a9b3cd7f 3612 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3613 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3614 * section has a guarantee to see a non NULL rx_handler_data
3615 * as well.
3616 */
3617 synchronize_net();
a9b3cd7f 3618 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3619}
3620EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3621
b4b9e355
MG
3622/*
3623 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3624 * the special handling of PFMEMALLOC skbs.
3625 */
3626static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3627{
3628 switch (skb->protocol) {
2b8837ae
JP
3629 case htons(ETH_P_ARP):
3630 case htons(ETH_P_IP):
3631 case htons(ETH_P_IPV6):
3632 case htons(ETH_P_8021Q):
3633 case htons(ETH_P_8021AD):
b4b9e355
MG
3634 return true;
3635 default:
3636 return false;
3637 }
3638}
3639
9754e293 3640static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3641{
3642 struct packet_type *ptype, *pt_prev;
ab95bfe0 3643 rx_handler_func_t *rx_handler;
f2ccd8fa 3644 struct net_device *orig_dev;
8a4eb573 3645 bool deliver_exact = false;
1da177e4 3646 int ret = NET_RX_DROP;
252e3346 3647 __be16 type;
1da177e4 3648
588f0330 3649 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3650
cf66ba58 3651 trace_netif_receive_skb(skb);
9b22ea56 3652
cc9bd5ce 3653 orig_dev = skb->dev;
8f903c70 3654
c1d2bbe1 3655 skb_reset_network_header(skb);
fda55eca
ED
3656 if (!skb_transport_header_was_set(skb))
3657 skb_reset_transport_header(skb);
0b5c9db1 3658 skb_reset_mac_len(skb);
1da177e4
LT
3659
3660 pt_prev = NULL;
3661
3662 rcu_read_lock();
3663
63d8ea7f 3664another_round:
b6858177 3665 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3666
3667 __this_cpu_inc(softnet_data.processed);
3668
8ad227ff
PM
3669 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3670 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3671 skb = skb_vlan_untag(skb);
bcc6d479 3672 if (unlikely(!skb))
b4b9e355 3673 goto unlock;
bcc6d479
JP
3674 }
3675
1da177e4
LT
3676#ifdef CONFIG_NET_CLS_ACT
3677 if (skb->tc_verd & TC_NCLS) {
3678 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3679 goto ncls;
3680 }
3681#endif
3682
9754e293 3683 if (pfmemalloc)
b4b9e355
MG
3684 goto skip_taps;
3685
1da177e4 3686 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3687 if (pt_prev)
3688 ret = deliver_skb(skb, pt_prev, orig_dev);
3689 pt_prev = ptype;
3690 }
3691
3692 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3693 if (pt_prev)
3694 ret = deliver_skb(skb, pt_prev, orig_dev);
3695 pt_prev = ptype;
1da177e4
LT
3696 }
3697
b4b9e355 3698skip_taps:
1da177e4 3699#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3700 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3701 if (!skb)
b4b9e355 3702 goto unlock;
1da177e4
LT
3703ncls:
3704#endif
3705
9754e293 3706 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3707 goto drop;
3708
df8a39de 3709 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3710 if (pt_prev) {
3711 ret = deliver_skb(skb, pt_prev, orig_dev);
3712 pt_prev = NULL;
3713 }
48cc32d3 3714 if (vlan_do_receive(&skb))
2425717b
JF
3715 goto another_round;
3716 else if (unlikely(!skb))
b4b9e355 3717 goto unlock;
2425717b
JF
3718 }
3719
48cc32d3 3720 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3721 if (rx_handler) {
3722 if (pt_prev) {
3723 ret = deliver_skb(skb, pt_prev, orig_dev);
3724 pt_prev = NULL;
3725 }
8a4eb573
JP
3726 switch (rx_handler(&skb)) {
3727 case RX_HANDLER_CONSUMED:
3bc1b1ad 3728 ret = NET_RX_SUCCESS;
b4b9e355 3729 goto unlock;
8a4eb573 3730 case RX_HANDLER_ANOTHER:
63d8ea7f 3731 goto another_round;
8a4eb573
JP
3732 case RX_HANDLER_EXACT:
3733 deliver_exact = true;
3734 case RX_HANDLER_PASS:
3735 break;
3736 default:
3737 BUG();
3738 }
ab95bfe0 3739 }
1da177e4 3740
df8a39de
JP
3741 if (unlikely(skb_vlan_tag_present(skb))) {
3742 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3743 skb->pkt_type = PACKET_OTHERHOST;
3744 /* Note: we might in the future use prio bits
3745 * and set skb->priority like in vlan_do_receive()
3746 * For the time being, just ignore Priority Code Point
3747 */
3748 skb->vlan_tci = 0;
3749 }
48cc32d3 3750
7866a621
SN
3751 type = skb->protocol;
3752
63d8ea7f 3753 /* deliver only exact match when indicated */
7866a621
SN
3754 if (likely(!deliver_exact)) {
3755 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3756 &ptype_base[ntohs(type) &
3757 PTYPE_HASH_MASK]);
3758 }
1f3c8804 3759
7866a621
SN
3760 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3761 &orig_dev->ptype_specific);
3762
3763 if (unlikely(skb->dev != orig_dev)) {
3764 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3765 &skb->dev->ptype_specific);
1da177e4
LT
3766 }
3767
3768 if (pt_prev) {
1080e512 3769 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3770 goto drop;
1080e512
MT
3771 else
3772 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3773 } else {
b4b9e355 3774drop:
caf586e5 3775 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3776 kfree_skb(skb);
3777 /* Jamal, now you will not able to escape explaining
3778 * me how you were going to use this. :-)
3779 */
3780 ret = NET_RX_DROP;
3781 }
3782
b4b9e355 3783unlock:
1da177e4 3784 rcu_read_unlock();
9754e293
DM
3785 return ret;
3786}
3787
3788static int __netif_receive_skb(struct sk_buff *skb)
3789{
3790 int ret;
3791
3792 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3793 unsigned long pflags = current->flags;
3794
3795 /*
3796 * PFMEMALLOC skbs are special, they should
3797 * - be delivered to SOCK_MEMALLOC sockets only
3798 * - stay away from userspace
3799 * - have bounded memory usage
3800 *
3801 * Use PF_MEMALLOC as this saves us from propagating the allocation
3802 * context down to all allocation sites.
3803 */
3804 current->flags |= PF_MEMALLOC;
3805 ret = __netif_receive_skb_core(skb, true);
3806 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3807 } else
3808 ret = __netif_receive_skb_core(skb, false);
3809
1da177e4
LT
3810 return ret;
3811}
0a9627f2 3812
ae78dbfa 3813static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3814{
588f0330 3815 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3816
c1f19b51
RC
3817 if (skb_defer_rx_timestamp(skb))
3818 return NET_RX_SUCCESS;
3819
df334545 3820#ifdef CONFIG_RPS
c5905afb 3821 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3822 struct rps_dev_flow voidflow, *rflow = &voidflow;
3823 int cpu, ret;
fec5e652 3824
3b098e2d
ED
3825 rcu_read_lock();
3826
3827 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3828
3b098e2d
ED
3829 if (cpu >= 0) {
3830 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3831 rcu_read_unlock();
adc9300e 3832 return ret;
3b098e2d 3833 }
adc9300e 3834 rcu_read_unlock();
fec5e652 3835 }
1e94d72f 3836#endif
adc9300e 3837 return __netif_receive_skb(skb);
0a9627f2 3838}
ae78dbfa
BH
3839
3840/**
3841 * netif_receive_skb - process receive buffer from network
3842 * @skb: buffer to process
3843 *
3844 * netif_receive_skb() is the main receive data processing function.
3845 * It always succeeds. The buffer may be dropped during processing
3846 * for congestion control or by the protocol layers.
3847 *
3848 * This function may only be called from softirq context and interrupts
3849 * should be enabled.
3850 *
3851 * Return values (usually ignored):
3852 * NET_RX_SUCCESS: no congestion
3853 * NET_RX_DROP: packet was dropped
3854 */
3855int netif_receive_skb(struct sk_buff *skb)
3856{
3857 trace_netif_receive_skb_entry(skb);
3858
3859 return netif_receive_skb_internal(skb);
3860}
d1b19dff 3861EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3862
88751275
ED
3863/* Network device is going away, flush any packets still pending
3864 * Called with irqs disabled.
3865 */
152102c7 3866static void flush_backlog(void *arg)
6e583ce5 3867{
152102c7 3868 struct net_device *dev = arg;
903ceff7 3869 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
3870 struct sk_buff *skb, *tmp;
3871
e36fa2f7 3872 rps_lock(sd);
6e7676c1 3873 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3874 if (skb->dev == dev) {
e36fa2f7 3875 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3876 kfree_skb(skb);
76cc8b13 3877 input_queue_head_incr(sd);
6e583ce5 3878 }
6e7676c1 3879 }
e36fa2f7 3880 rps_unlock(sd);
6e7676c1
CG
3881
3882 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3883 if (skb->dev == dev) {
3884 __skb_unlink(skb, &sd->process_queue);
3885 kfree_skb(skb);
76cc8b13 3886 input_queue_head_incr(sd);
6e7676c1
CG
3887 }
3888 }
6e583ce5
SH
3889}
3890
d565b0a1
HX
3891static int napi_gro_complete(struct sk_buff *skb)
3892{
22061d80 3893 struct packet_offload *ptype;
d565b0a1 3894 __be16 type = skb->protocol;
22061d80 3895 struct list_head *head = &offload_base;
d565b0a1
HX
3896 int err = -ENOENT;
3897
c3c7c254
ED
3898 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3899
fc59f9a3
HX
3900 if (NAPI_GRO_CB(skb)->count == 1) {
3901 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3902 goto out;
fc59f9a3 3903 }
d565b0a1
HX
3904
3905 rcu_read_lock();
3906 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3907 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3908 continue;
3909
299603e8 3910 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3911 break;
3912 }
3913 rcu_read_unlock();
3914
3915 if (err) {
3916 WARN_ON(&ptype->list == head);
3917 kfree_skb(skb);
3918 return NET_RX_SUCCESS;
3919 }
3920
3921out:
ae78dbfa 3922 return netif_receive_skb_internal(skb);
d565b0a1
HX
3923}
3924
2e71a6f8
ED
3925/* napi->gro_list contains packets ordered by age.
3926 * youngest packets at the head of it.
3927 * Complete skbs in reverse order to reduce latencies.
3928 */
3929void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3930{
2e71a6f8 3931 struct sk_buff *skb, *prev = NULL;
d565b0a1 3932
2e71a6f8
ED
3933 /* scan list and build reverse chain */
3934 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3935 skb->prev = prev;
3936 prev = skb;
3937 }
3938
3939 for (skb = prev; skb; skb = prev) {
d565b0a1 3940 skb->next = NULL;
2e71a6f8
ED
3941
3942 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3943 return;
3944
3945 prev = skb->prev;
d565b0a1 3946 napi_gro_complete(skb);
2e71a6f8 3947 napi->gro_count--;
d565b0a1
HX
3948 }
3949
3950 napi->gro_list = NULL;
3951}
86cac58b 3952EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3953
89c5fa33
ED
3954static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3955{
3956 struct sk_buff *p;
3957 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3958 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3959
3960 for (p = napi->gro_list; p; p = p->next) {
3961 unsigned long diffs;
3962
0b4cec8c
TH
3963 NAPI_GRO_CB(p)->flush = 0;
3964
3965 if (hash != skb_get_hash_raw(p)) {
3966 NAPI_GRO_CB(p)->same_flow = 0;
3967 continue;
3968 }
3969
89c5fa33
ED
3970 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3971 diffs |= p->vlan_tci ^ skb->vlan_tci;
3972 if (maclen == ETH_HLEN)
3973 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3974 skb_mac_header(skb));
89c5fa33
ED
3975 else if (!diffs)
3976 diffs = memcmp(skb_mac_header(p),
a50e233c 3977 skb_mac_header(skb),
89c5fa33
ED
3978 maclen);
3979 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3980 }
3981}
3982
299603e8
JC
3983static void skb_gro_reset_offset(struct sk_buff *skb)
3984{
3985 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3986 const skb_frag_t *frag0 = &pinfo->frags[0];
3987
3988 NAPI_GRO_CB(skb)->data_offset = 0;
3989 NAPI_GRO_CB(skb)->frag0 = NULL;
3990 NAPI_GRO_CB(skb)->frag0_len = 0;
3991
3992 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3993 pinfo->nr_frags &&
3994 !PageHighMem(skb_frag_page(frag0))) {
3995 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3996 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3997 }
3998}
3999
a50e233c
ED
4000static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4001{
4002 struct skb_shared_info *pinfo = skb_shinfo(skb);
4003
4004 BUG_ON(skb->end - skb->tail < grow);
4005
4006 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4007
4008 skb->data_len -= grow;
4009 skb->tail += grow;
4010
4011 pinfo->frags[0].page_offset += grow;
4012 skb_frag_size_sub(&pinfo->frags[0], grow);
4013
4014 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4015 skb_frag_unref(skb, 0);
4016 memmove(pinfo->frags, pinfo->frags + 1,
4017 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4018 }
4019}
4020
bb728820 4021static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4022{
4023 struct sk_buff **pp = NULL;
22061d80 4024 struct packet_offload *ptype;
d565b0a1 4025 __be16 type = skb->protocol;
22061d80 4026 struct list_head *head = &offload_base;
0da2afd5 4027 int same_flow;
5b252f0c 4028 enum gro_result ret;
a50e233c 4029 int grow;
d565b0a1 4030
9c62a68d 4031 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4032 goto normal;
4033
5a212329 4034 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4035 goto normal;
4036
89c5fa33
ED
4037 gro_list_prepare(napi, skb);
4038
d565b0a1
HX
4039 rcu_read_lock();
4040 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4041 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4042 continue;
4043
86911732 4044 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4045 skb_reset_mac_len(skb);
d565b0a1
HX
4046 NAPI_GRO_CB(skb)->same_flow = 0;
4047 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4048 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4049 NAPI_GRO_CB(skb)->udp_mark = 0;
d565b0a1 4050
662880f4
TH
4051 /* Setup for GRO checksum validation */
4052 switch (skb->ip_summed) {
4053 case CHECKSUM_COMPLETE:
4054 NAPI_GRO_CB(skb)->csum = skb->csum;
4055 NAPI_GRO_CB(skb)->csum_valid = 1;
4056 NAPI_GRO_CB(skb)->csum_cnt = 0;
4057 break;
4058 case CHECKSUM_UNNECESSARY:
4059 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4060 NAPI_GRO_CB(skb)->csum_valid = 0;
4061 break;
4062 default:
4063 NAPI_GRO_CB(skb)->csum_cnt = 0;
4064 NAPI_GRO_CB(skb)->csum_valid = 0;
4065 }
d565b0a1 4066
f191a1d1 4067 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4068 break;
4069 }
4070 rcu_read_unlock();
4071
4072 if (&ptype->list == head)
4073 goto normal;
4074
0da2afd5 4075 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4076 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4077
d565b0a1
HX
4078 if (pp) {
4079 struct sk_buff *nskb = *pp;
4080
4081 *pp = nskb->next;
4082 nskb->next = NULL;
4083 napi_gro_complete(nskb);
4ae5544f 4084 napi->gro_count--;
d565b0a1
HX
4085 }
4086
0da2afd5 4087 if (same_flow)
d565b0a1
HX
4088 goto ok;
4089
600adc18 4090 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4091 goto normal;
d565b0a1 4092
600adc18
ED
4093 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4094 struct sk_buff *nskb = napi->gro_list;
4095
4096 /* locate the end of the list to select the 'oldest' flow */
4097 while (nskb->next) {
4098 pp = &nskb->next;
4099 nskb = *pp;
4100 }
4101 *pp = NULL;
4102 nskb->next = NULL;
4103 napi_gro_complete(nskb);
4104 } else {
4105 napi->gro_count++;
4106 }
d565b0a1 4107 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4108 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4109 NAPI_GRO_CB(skb)->last = skb;
86911732 4110 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4111 skb->next = napi->gro_list;
4112 napi->gro_list = skb;
5d0d9be8 4113 ret = GRO_HELD;
d565b0a1 4114
ad0f9904 4115pull:
a50e233c
ED
4116 grow = skb_gro_offset(skb) - skb_headlen(skb);
4117 if (grow > 0)
4118 gro_pull_from_frag0(skb, grow);
d565b0a1 4119ok:
5d0d9be8 4120 return ret;
d565b0a1
HX
4121
4122normal:
ad0f9904
HX
4123 ret = GRO_NORMAL;
4124 goto pull;
5d38a079 4125}
96e93eab 4126
bf5a755f
JC
4127struct packet_offload *gro_find_receive_by_type(__be16 type)
4128{
4129 struct list_head *offload_head = &offload_base;
4130 struct packet_offload *ptype;
4131
4132 list_for_each_entry_rcu(ptype, offload_head, list) {
4133 if (ptype->type != type || !ptype->callbacks.gro_receive)
4134 continue;
4135 return ptype;
4136 }
4137 return NULL;
4138}
e27a2f83 4139EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4140
4141struct packet_offload *gro_find_complete_by_type(__be16 type)
4142{
4143 struct list_head *offload_head = &offload_base;
4144 struct packet_offload *ptype;
4145
4146 list_for_each_entry_rcu(ptype, offload_head, list) {
4147 if (ptype->type != type || !ptype->callbacks.gro_complete)
4148 continue;
4149 return ptype;
4150 }
4151 return NULL;
4152}
e27a2f83 4153EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4154
bb728820 4155static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4156{
5d0d9be8
HX
4157 switch (ret) {
4158 case GRO_NORMAL:
ae78dbfa 4159 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4160 ret = GRO_DROP;
4161 break;
5d38a079 4162
5d0d9be8 4163 case GRO_DROP:
5d38a079
HX
4164 kfree_skb(skb);
4165 break;
5b252f0c 4166
daa86548 4167 case GRO_MERGED_FREE:
d7e8883c
ED
4168 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4169 kmem_cache_free(skbuff_head_cache, skb);
4170 else
4171 __kfree_skb(skb);
daa86548
ED
4172 break;
4173
5b252f0c
BH
4174 case GRO_HELD:
4175 case GRO_MERGED:
4176 break;
5d38a079
HX
4177 }
4178
c7c4b3b6 4179 return ret;
5d0d9be8 4180}
5d0d9be8 4181
c7c4b3b6 4182gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4183{
ae78dbfa 4184 trace_napi_gro_receive_entry(skb);
86911732 4185
a50e233c
ED
4186 skb_gro_reset_offset(skb);
4187
89c5fa33 4188 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4189}
4190EXPORT_SYMBOL(napi_gro_receive);
4191
d0c2b0d2 4192static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4193{
93a35f59
ED
4194 if (unlikely(skb->pfmemalloc)) {
4195 consume_skb(skb);
4196 return;
4197 }
96e93eab 4198 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4199 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4200 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4201 skb->vlan_tci = 0;
66c46d74 4202 skb->dev = napi->dev;
6d152e23 4203 skb->skb_iif = 0;
c3caf119
JC
4204 skb->encapsulation = 0;
4205 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4206 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4207
4208 napi->skb = skb;
4209}
96e93eab 4210
76620aaf 4211struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4212{
5d38a079 4213 struct sk_buff *skb = napi->skb;
5d38a079
HX
4214
4215 if (!skb) {
fd11a83d 4216 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4217 napi->skb = skb;
80595d59 4218 }
96e93eab
HX
4219 return skb;
4220}
76620aaf 4221EXPORT_SYMBOL(napi_get_frags);
96e93eab 4222
a50e233c
ED
4223static gro_result_t napi_frags_finish(struct napi_struct *napi,
4224 struct sk_buff *skb,
4225 gro_result_t ret)
96e93eab 4226{
5d0d9be8
HX
4227 switch (ret) {
4228 case GRO_NORMAL:
a50e233c
ED
4229 case GRO_HELD:
4230 __skb_push(skb, ETH_HLEN);
4231 skb->protocol = eth_type_trans(skb, skb->dev);
4232 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4233 ret = GRO_DROP;
86911732 4234 break;
5d38a079 4235
5d0d9be8 4236 case GRO_DROP:
5d0d9be8
HX
4237 case GRO_MERGED_FREE:
4238 napi_reuse_skb(napi, skb);
4239 break;
5b252f0c
BH
4240
4241 case GRO_MERGED:
4242 break;
5d0d9be8 4243 }
5d38a079 4244
c7c4b3b6 4245 return ret;
5d38a079 4246}
5d0d9be8 4247
a50e233c
ED
4248/* Upper GRO stack assumes network header starts at gro_offset=0
4249 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4250 * We copy ethernet header into skb->data to have a common layout.
4251 */
4adb9c4a 4252static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4253{
4254 struct sk_buff *skb = napi->skb;
a50e233c
ED
4255 const struct ethhdr *eth;
4256 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4257
4258 napi->skb = NULL;
4259
a50e233c
ED
4260 skb_reset_mac_header(skb);
4261 skb_gro_reset_offset(skb);
4262
4263 eth = skb_gro_header_fast(skb, 0);
4264 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4265 eth = skb_gro_header_slow(skb, hlen, 0);
4266 if (unlikely(!eth)) {
4267 napi_reuse_skb(napi, skb);
4268 return NULL;
4269 }
4270 } else {
4271 gro_pull_from_frag0(skb, hlen);
4272 NAPI_GRO_CB(skb)->frag0 += hlen;
4273 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4274 }
a50e233c
ED
4275 __skb_pull(skb, hlen);
4276
4277 /*
4278 * This works because the only protocols we care about don't require
4279 * special handling.
4280 * We'll fix it up properly in napi_frags_finish()
4281 */
4282 skb->protocol = eth->h_proto;
76620aaf 4283
76620aaf
HX
4284 return skb;
4285}
76620aaf 4286
c7c4b3b6 4287gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4288{
76620aaf 4289 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4290
4291 if (!skb)
c7c4b3b6 4292 return GRO_DROP;
5d0d9be8 4293
ae78dbfa
BH
4294 trace_napi_gro_frags_entry(skb);
4295
89c5fa33 4296 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4297}
5d38a079
HX
4298EXPORT_SYMBOL(napi_gro_frags);
4299
573e8fca
TH
4300/* Compute the checksum from gro_offset and return the folded value
4301 * after adding in any pseudo checksum.
4302 */
4303__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4304{
4305 __wsum wsum;
4306 __sum16 sum;
4307
4308 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4309
4310 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4311 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4312 if (likely(!sum)) {
4313 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4314 !skb->csum_complete_sw)
4315 netdev_rx_csum_fault(skb->dev);
4316 }
4317
4318 NAPI_GRO_CB(skb)->csum = wsum;
4319 NAPI_GRO_CB(skb)->csum_valid = 1;
4320
4321 return sum;
4322}
4323EXPORT_SYMBOL(__skb_gro_checksum_complete);
4324
e326bed2 4325/*
855abcf0 4326 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4327 * Note: called with local irq disabled, but exits with local irq enabled.
4328 */
4329static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4330{
4331#ifdef CONFIG_RPS
4332 struct softnet_data *remsd = sd->rps_ipi_list;
4333
4334 if (remsd) {
4335 sd->rps_ipi_list = NULL;
4336
4337 local_irq_enable();
4338
4339 /* Send pending IPI's to kick RPS processing on remote cpus. */
4340 while (remsd) {
4341 struct softnet_data *next = remsd->rps_ipi_next;
4342
4343 if (cpu_online(remsd->cpu))
c46fff2a 4344 smp_call_function_single_async(remsd->cpu,
fce8ad15 4345 &remsd->csd);
e326bed2
ED
4346 remsd = next;
4347 }
4348 } else
4349#endif
4350 local_irq_enable();
4351}
4352
d75b1ade
ED
4353static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4354{
4355#ifdef CONFIG_RPS
4356 return sd->rps_ipi_list != NULL;
4357#else
4358 return false;
4359#endif
4360}
4361
bea3348e 4362static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4363{
4364 int work = 0;
eecfd7c4 4365 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4366
e326bed2
ED
4367 /* Check if we have pending ipi, its better to send them now,
4368 * not waiting net_rx_action() end.
4369 */
d75b1ade 4370 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4371 local_irq_disable();
4372 net_rps_action_and_irq_enable(sd);
4373 }
d75b1ade 4374
bea3348e 4375 napi->weight = weight_p;
6e7676c1 4376 local_irq_disable();
11ef7a89 4377 while (1) {
1da177e4 4378 struct sk_buff *skb;
6e7676c1
CG
4379
4380 while ((skb = __skb_dequeue(&sd->process_queue))) {
4381 local_irq_enable();
4382 __netif_receive_skb(skb);
6e7676c1 4383 local_irq_disable();
76cc8b13
TH
4384 input_queue_head_incr(sd);
4385 if (++work >= quota) {
4386 local_irq_enable();
4387 return work;
4388 }
6e7676c1 4389 }
1da177e4 4390
e36fa2f7 4391 rps_lock(sd);
11ef7a89 4392 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4393 /*
4394 * Inline a custom version of __napi_complete().
4395 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4396 * and NAPI_STATE_SCHED is the only possible flag set
4397 * on backlog.
4398 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4399 * and we dont need an smp_mb() memory barrier.
4400 */
eecfd7c4 4401 napi->state = 0;
11ef7a89 4402 rps_unlock(sd);
eecfd7c4 4403
11ef7a89 4404 break;
bea3348e 4405 }
11ef7a89
TH
4406
4407 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4408 &sd->process_queue);
e36fa2f7 4409 rps_unlock(sd);
6e7676c1
CG
4410 }
4411 local_irq_enable();
1da177e4 4412
bea3348e
SH
4413 return work;
4414}
1da177e4 4415
bea3348e
SH
4416/**
4417 * __napi_schedule - schedule for receive
c4ea43c5 4418 * @n: entry to schedule
bea3348e 4419 *
bc9ad166
ED
4420 * The entry's receive function will be scheduled to run.
4421 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4422 */
b5606c2d 4423void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4424{
4425 unsigned long flags;
1da177e4 4426
bea3348e 4427 local_irq_save(flags);
903ceff7 4428 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4429 local_irq_restore(flags);
1da177e4 4430}
bea3348e
SH
4431EXPORT_SYMBOL(__napi_schedule);
4432
bc9ad166
ED
4433/**
4434 * __napi_schedule_irqoff - schedule for receive
4435 * @n: entry to schedule
4436 *
4437 * Variant of __napi_schedule() assuming hard irqs are masked
4438 */
4439void __napi_schedule_irqoff(struct napi_struct *n)
4440{
4441 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4442}
4443EXPORT_SYMBOL(__napi_schedule_irqoff);
4444
d565b0a1
HX
4445void __napi_complete(struct napi_struct *n)
4446{
4447 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4448
d75b1ade 4449 list_del_init(&n->poll_list);
4e857c58 4450 smp_mb__before_atomic();
d565b0a1
HX
4451 clear_bit(NAPI_STATE_SCHED, &n->state);
4452}
4453EXPORT_SYMBOL(__napi_complete);
4454
3b47d303 4455void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4456{
4457 unsigned long flags;
4458
4459 /*
4460 * don't let napi dequeue from the cpu poll list
4461 * just in case its running on a different cpu
4462 */
4463 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4464 return;
4465
3b47d303
ED
4466 if (n->gro_list) {
4467 unsigned long timeout = 0;
d75b1ade 4468
3b47d303
ED
4469 if (work_done)
4470 timeout = n->dev->gro_flush_timeout;
4471
4472 if (timeout)
4473 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4474 HRTIMER_MODE_REL_PINNED);
4475 else
4476 napi_gro_flush(n, false);
4477 }
d75b1ade
ED
4478 if (likely(list_empty(&n->poll_list))) {
4479 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4480 } else {
4481 /* If n->poll_list is not empty, we need to mask irqs */
4482 local_irq_save(flags);
4483 __napi_complete(n);
4484 local_irq_restore(flags);
4485 }
d565b0a1 4486}
3b47d303 4487EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4488
af12fa6e
ET
4489/* must be called under rcu_read_lock(), as we dont take a reference */
4490struct napi_struct *napi_by_id(unsigned int napi_id)
4491{
4492 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4493 struct napi_struct *napi;
4494
4495 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4496 if (napi->napi_id == napi_id)
4497 return napi;
4498
4499 return NULL;
4500}
4501EXPORT_SYMBOL_GPL(napi_by_id);
4502
4503void napi_hash_add(struct napi_struct *napi)
4504{
4505 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4506
4507 spin_lock(&napi_hash_lock);
4508
4509 /* 0 is not a valid id, we also skip an id that is taken
4510 * we expect both events to be extremely rare
4511 */
4512 napi->napi_id = 0;
4513 while (!napi->napi_id) {
4514 napi->napi_id = ++napi_gen_id;
4515 if (napi_by_id(napi->napi_id))
4516 napi->napi_id = 0;
4517 }
4518
4519 hlist_add_head_rcu(&napi->napi_hash_node,
4520 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4521
4522 spin_unlock(&napi_hash_lock);
4523 }
4524}
4525EXPORT_SYMBOL_GPL(napi_hash_add);
4526
4527/* Warning : caller is responsible to make sure rcu grace period
4528 * is respected before freeing memory containing @napi
4529 */
4530void napi_hash_del(struct napi_struct *napi)
4531{
4532 spin_lock(&napi_hash_lock);
4533
4534 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4535 hlist_del_rcu(&napi->napi_hash_node);
4536
4537 spin_unlock(&napi_hash_lock);
4538}
4539EXPORT_SYMBOL_GPL(napi_hash_del);
4540
3b47d303
ED
4541static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4542{
4543 struct napi_struct *napi;
4544
4545 napi = container_of(timer, struct napi_struct, timer);
4546 if (napi->gro_list)
4547 napi_schedule(napi);
4548
4549 return HRTIMER_NORESTART;
4550}
4551
d565b0a1
HX
4552void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4553 int (*poll)(struct napi_struct *, int), int weight)
4554{
4555 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4556 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4557 napi->timer.function = napi_watchdog;
4ae5544f 4558 napi->gro_count = 0;
d565b0a1 4559 napi->gro_list = NULL;
5d38a079 4560 napi->skb = NULL;
d565b0a1 4561 napi->poll = poll;
82dc3c63
ED
4562 if (weight > NAPI_POLL_WEIGHT)
4563 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4564 weight, dev->name);
d565b0a1
HX
4565 napi->weight = weight;
4566 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4567 napi->dev = dev;
5d38a079 4568#ifdef CONFIG_NETPOLL
d565b0a1
HX
4569 spin_lock_init(&napi->poll_lock);
4570 napi->poll_owner = -1;
4571#endif
4572 set_bit(NAPI_STATE_SCHED, &napi->state);
4573}
4574EXPORT_SYMBOL(netif_napi_add);
4575
3b47d303
ED
4576void napi_disable(struct napi_struct *n)
4577{
4578 might_sleep();
4579 set_bit(NAPI_STATE_DISABLE, &n->state);
4580
4581 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4582 msleep(1);
4583
4584 hrtimer_cancel(&n->timer);
4585
4586 clear_bit(NAPI_STATE_DISABLE, &n->state);
4587}
4588EXPORT_SYMBOL(napi_disable);
4589
d565b0a1
HX
4590void netif_napi_del(struct napi_struct *napi)
4591{
d7b06636 4592 list_del_init(&napi->dev_list);
76620aaf 4593 napi_free_frags(napi);
d565b0a1 4594
289dccbe 4595 kfree_skb_list(napi->gro_list);
d565b0a1 4596 napi->gro_list = NULL;
4ae5544f 4597 napi->gro_count = 0;
d565b0a1
HX
4598}
4599EXPORT_SYMBOL(netif_napi_del);
4600
726ce70e
HX
4601static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4602{
4603 void *have;
4604 int work, weight;
4605
4606 list_del_init(&n->poll_list);
4607
4608 have = netpoll_poll_lock(n);
4609
4610 weight = n->weight;
4611
4612 /* This NAPI_STATE_SCHED test is for avoiding a race
4613 * with netpoll's poll_napi(). Only the entity which
4614 * obtains the lock and sees NAPI_STATE_SCHED set will
4615 * actually make the ->poll() call. Therefore we avoid
4616 * accidentally calling ->poll() when NAPI is not scheduled.
4617 */
4618 work = 0;
4619 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4620 work = n->poll(n, weight);
4621 trace_napi_poll(n);
4622 }
4623
4624 WARN_ON_ONCE(work > weight);
4625
4626 if (likely(work < weight))
4627 goto out_unlock;
4628
4629 /* Drivers must not modify the NAPI state if they
4630 * consume the entire weight. In such cases this code
4631 * still "owns" the NAPI instance and therefore can
4632 * move the instance around on the list at-will.
4633 */
4634 if (unlikely(napi_disable_pending(n))) {
4635 napi_complete(n);
4636 goto out_unlock;
4637 }
4638
4639 if (n->gro_list) {
4640 /* flush too old packets
4641 * If HZ < 1000, flush all packets.
4642 */
4643 napi_gro_flush(n, HZ >= 1000);
4644 }
4645
001ce546
HX
4646 /* Some drivers may have called napi_schedule
4647 * prior to exhausting their budget.
4648 */
4649 if (unlikely(!list_empty(&n->poll_list))) {
4650 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4651 n->dev ? n->dev->name : "backlog");
4652 goto out_unlock;
4653 }
4654
726ce70e
HX
4655 list_add_tail(&n->poll_list, repoll);
4656
4657out_unlock:
4658 netpoll_poll_unlock(have);
4659
4660 return work;
4661}
4662
1da177e4
LT
4663static void net_rx_action(struct softirq_action *h)
4664{
903ceff7 4665 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4666 unsigned long time_limit = jiffies + 2;
51b0bded 4667 int budget = netdev_budget;
d75b1ade
ED
4668 LIST_HEAD(list);
4669 LIST_HEAD(repoll);
53fb95d3 4670
1da177e4 4671 local_irq_disable();
d75b1ade
ED
4672 list_splice_init(&sd->poll_list, &list);
4673 local_irq_enable();
1da177e4 4674
ceb8d5bf 4675 for (;;) {
bea3348e 4676 struct napi_struct *n;
1da177e4 4677
ceb8d5bf
HX
4678 if (list_empty(&list)) {
4679 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4680 return;
4681 break;
4682 }
4683
6bd373eb
HX
4684 n = list_first_entry(&list, struct napi_struct, poll_list);
4685 budget -= napi_poll(n, &repoll);
4686
d75b1ade 4687 /* If softirq window is exhausted then punt.
24f8b238
SH
4688 * Allow this to run for 2 jiffies since which will allow
4689 * an average latency of 1.5/HZ.
bea3348e 4690 */
ceb8d5bf
HX
4691 if (unlikely(budget <= 0 ||
4692 time_after_eq(jiffies, time_limit))) {
4693 sd->time_squeeze++;
4694 break;
4695 }
1da177e4 4696 }
d75b1ade 4697
d75b1ade
ED
4698 local_irq_disable();
4699
4700 list_splice_tail_init(&sd->poll_list, &list);
4701 list_splice_tail(&repoll, &list);
4702 list_splice(&list, &sd->poll_list);
4703 if (!list_empty(&sd->poll_list))
4704 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4705
e326bed2 4706 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4707}
4708
aa9d8560 4709struct netdev_adjacent {
9ff162a8 4710 struct net_device *dev;
5d261913
VF
4711
4712 /* upper master flag, there can only be one master device per list */
9ff162a8 4713 bool master;
5d261913 4714
5d261913
VF
4715 /* counter for the number of times this device was added to us */
4716 u16 ref_nr;
4717
402dae96
VF
4718 /* private field for the users */
4719 void *private;
4720
9ff162a8
JP
4721 struct list_head list;
4722 struct rcu_head rcu;
9ff162a8
JP
4723};
4724
5d261913
VF
4725static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4726 struct net_device *adj_dev,
2f268f12 4727 struct list_head *adj_list)
9ff162a8 4728{
5d261913 4729 struct netdev_adjacent *adj;
5d261913 4730
2f268f12 4731 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4732 if (adj->dev == adj_dev)
4733 return adj;
9ff162a8
JP
4734 }
4735 return NULL;
4736}
4737
4738/**
4739 * netdev_has_upper_dev - Check if device is linked to an upper device
4740 * @dev: device
4741 * @upper_dev: upper device to check
4742 *
4743 * Find out if a device is linked to specified upper device and return true
4744 * in case it is. Note that this checks only immediate upper device,
4745 * not through a complete stack of devices. The caller must hold the RTNL lock.
4746 */
4747bool netdev_has_upper_dev(struct net_device *dev,
4748 struct net_device *upper_dev)
4749{
4750 ASSERT_RTNL();
4751
2f268f12 4752 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4753}
4754EXPORT_SYMBOL(netdev_has_upper_dev);
4755
4756/**
4757 * netdev_has_any_upper_dev - Check if device is linked to some device
4758 * @dev: device
4759 *
4760 * Find out if a device is linked to an upper device and return true in case
4761 * it is. The caller must hold the RTNL lock.
4762 */
1d143d9f 4763static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4764{
4765 ASSERT_RTNL();
4766
2f268f12 4767 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4768}
9ff162a8
JP
4769
4770/**
4771 * netdev_master_upper_dev_get - Get master upper device
4772 * @dev: device
4773 *
4774 * Find a master upper device and return pointer to it or NULL in case
4775 * it's not there. The caller must hold the RTNL lock.
4776 */
4777struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4778{
aa9d8560 4779 struct netdev_adjacent *upper;
9ff162a8
JP
4780
4781 ASSERT_RTNL();
4782
2f268f12 4783 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4784 return NULL;
4785
2f268f12 4786 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4787 struct netdev_adjacent, list);
9ff162a8
JP
4788 if (likely(upper->master))
4789 return upper->dev;
4790 return NULL;
4791}
4792EXPORT_SYMBOL(netdev_master_upper_dev_get);
4793
b6ccba4c
VF
4794void *netdev_adjacent_get_private(struct list_head *adj_list)
4795{
4796 struct netdev_adjacent *adj;
4797
4798 adj = list_entry(adj_list, struct netdev_adjacent, list);
4799
4800 return adj->private;
4801}
4802EXPORT_SYMBOL(netdev_adjacent_get_private);
4803
44a40855
VY
4804/**
4805 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4806 * @dev: device
4807 * @iter: list_head ** of the current position
4808 *
4809 * Gets the next device from the dev's upper list, starting from iter
4810 * position. The caller must hold RCU read lock.
4811 */
4812struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4813 struct list_head **iter)
4814{
4815 struct netdev_adjacent *upper;
4816
4817 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4818
4819 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4820
4821 if (&upper->list == &dev->adj_list.upper)
4822 return NULL;
4823
4824 *iter = &upper->list;
4825
4826 return upper->dev;
4827}
4828EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4829
31088a11
VF
4830/**
4831 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4832 * @dev: device
4833 * @iter: list_head ** of the current position
4834 *
4835 * Gets the next device from the dev's upper list, starting from iter
4836 * position. The caller must hold RCU read lock.
4837 */
2f268f12
VF
4838struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4839 struct list_head **iter)
48311f46
VF
4840{
4841 struct netdev_adjacent *upper;
4842
85328240 4843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4844
4845 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4846
2f268f12 4847 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4848 return NULL;
4849
4850 *iter = &upper->list;
4851
4852 return upper->dev;
4853}
2f268f12 4854EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4855
31088a11
VF
4856/**
4857 * netdev_lower_get_next_private - Get the next ->private from the
4858 * lower neighbour list
4859 * @dev: device
4860 * @iter: list_head ** of the current position
4861 *
4862 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4863 * list, starting from iter position. The caller must hold either hold the
4864 * RTNL lock or its own locking that guarantees that the neighbour lower
4865 * list will remain unchainged.
4866 */
4867void *netdev_lower_get_next_private(struct net_device *dev,
4868 struct list_head **iter)
4869{
4870 struct netdev_adjacent *lower;
4871
4872 lower = list_entry(*iter, struct netdev_adjacent, list);
4873
4874 if (&lower->list == &dev->adj_list.lower)
4875 return NULL;
4876
6859e7df 4877 *iter = lower->list.next;
31088a11
VF
4878
4879 return lower->private;
4880}
4881EXPORT_SYMBOL(netdev_lower_get_next_private);
4882
4883/**
4884 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4885 * lower neighbour list, RCU
4886 * variant
4887 * @dev: device
4888 * @iter: list_head ** of the current position
4889 *
4890 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4891 * list, starting from iter position. The caller must hold RCU read lock.
4892 */
4893void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4894 struct list_head **iter)
4895{
4896 struct netdev_adjacent *lower;
4897
4898 WARN_ON_ONCE(!rcu_read_lock_held());
4899
4900 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4901
4902 if (&lower->list == &dev->adj_list.lower)
4903 return NULL;
4904
6859e7df 4905 *iter = &lower->list;
31088a11
VF
4906
4907 return lower->private;
4908}
4909EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4910
4085ebe8
VY
4911/**
4912 * netdev_lower_get_next - Get the next device from the lower neighbour
4913 * list
4914 * @dev: device
4915 * @iter: list_head ** of the current position
4916 *
4917 * Gets the next netdev_adjacent from the dev's lower neighbour
4918 * list, starting from iter position. The caller must hold RTNL lock or
4919 * its own locking that guarantees that the neighbour lower
4920 * list will remain unchainged.
4921 */
4922void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4923{
4924 struct netdev_adjacent *lower;
4925
4926 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4927
4928 if (&lower->list == &dev->adj_list.lower)
4929 return NULL;
4930
4931 *iter = &lower->list;
4932
4933 return lower->dev;
4934}
4935EXPORT_SYMBOL(netdev_lower_get_next);
4936
e001bfad 4937/**
4938 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4939 * lower neighbour list, RCU
4940 * variant
4941 * @dev: device
4942 *
4943 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4944 * list. The caller must hold RCU read lock.
4945 */
4946void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4947{
4948 struct netdev_adjacent *lower;
4949
4950 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4951 struct netdev_adjacent, list);
4952 if (lower)
4953 return lower->private;
4954 return NULL;
4955}
4956EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4957
9ff162a8
JP
4958/**
4959 * netdev_master_upper_dev_get_rcu - Get master upper device
4960 * @dev: device
4961 *
4962 * Find a master upper device and return pointer to it or NULL in case
4963 * it's not there. The caller must hold the RCU read lock.
4964 */
4965struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4966{
aa9d8560 4967 struct netdev_adjacent *upper;
9ff162a8 4968
2f268f12 4969 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4970 struct netdev_adjacent, list);
9ff162a8
JP
4971 if (upper && likely(upper->master))
4972 return upper->dev;
4973 return NULL;
4974}
4975EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4976
0a59f3a9 4977static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4978 struct net_device *adj_dev,
4979 struct list_head *dev_list)
4980{
4981 char linkname[IFNAMSIZ+7];
4982 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4983 "upper_%s" : "lower_%s", adj_dev->name);
4984 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4985 linkname);
4986}
0a59f3a9 4987static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4988 char *name,
4989 struct list_head *dev_list)
4990{
4991 char linkname[IFNAMSIZ+7];
4992 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4993 "upper_%s" : "lower_%s", name);
4994 sysfs_remove_link(&(dev->dev.kobj), linkname);
4995}
4996
7ce64c79
AF
4997static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4998 struct net_device *adj_dev,
4999 struct list_head *dev_list)
5000{
5001 return (dev_list == &dev->adj_list.upper ||
5002 dev_list == &dev->adj_list.lower) &&
5003 net_eq(dev_net(dev), dev_net(adj_dev));
5004}
3ee32707 5005
5d261913
VF
5006static int __netdev_adjacent_dev_insert(struct net_device *dev,
5007 struct net_device *adj_dev,
7863c054 5008 struct list_head *dev_list,
402dae96 5009 void *private, bool master)
5d261913
VF
5010{
5011 struct netdev_adjacent *adj;
842d67a7 5012 int ret;
5d261913 5013
7863c054 5014 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
5015
5016 if (adj) {
5d261913
VF
5017 adj->ref_nr++;
5018 return 0;
5019 }
5020
5021 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5022 if (!adj)
5023 return -ENOMEM;
5024
5025 adj->dev = adj_dev;
5026 adj->master = master;
5d261913 5027 adj->ref_nr = 1;
402dae96 5028 adj->private = private;
5d261913 5029 dev_hold(adj_dev);
2f268f12
VF
5030
5031 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5032 adj_dev->name, dev->name, adj_dev->name);
5d261913 5033
7ce64c79 5034 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5035 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5036 if (ret)
5037 goto free_adj;
5038 }
5039
7863c054 5040 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5041 if (master) {
5042 ret = sysfs_create_link(&(dev->dev.kobj),
5043 &(adj_dev->dev.kobj), "master");
5044 if (ret)
5831d66e 5045 goto remove_symlinks;
842d67a7 5046
7863c054 5047 list_add_rcu(&adj->list, dev_list);
842d67a7 5048 } else {
7863c054 5049 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5050 }
5d261913
VF
5051
5052 return 0;
842d67a7 5053
5831d66e 5054remove_symlinks:
7ce64c79 5055 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5056 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5057free_adj:
5058 kfree(adj);
974daef7 5059 dev_put(adj_dev);
842d67a7
VF
5060
5061 return ret;
5d261913
VF
5062}
5063
1d143d9f 5064static void __netdev_adjacent_dev_remove(struct net_device *dev,
5065 struct net_device *adj_dev,
5066 struct list_head *dev_list)
5d261913
VF
5067{
5068 struct netdev_adjacent *adj;
5069
7863c054 5070 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5071
2f268f12
VF
5072 if (!adj) {
5073 pr_err("tried to remove device %s from %s\n",
5074 dev->name, adj_dev->name);
5d261913 5075 BUG();
2f268f12 5076 }
5d261913
VF
5077
5078 if (adj->ref_nr > 1) {
2f268f12
VF
5079 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5080 adj->ref_nr-1);
5d261913
VF
5081 adj->ref_nr--;
5082 return;
5083 }
5084
842d67a7
VF
5085 if (adj->master)
5086 sysfs_remove_link(&(dev->dev.kobj), "master");
5087
7ce64c79 5088 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5089 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5090
5d261913 5091 list_del_rcu(&adj->list);
2f268f12
VF
5092 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5093 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5094 dev_put(adj_dev);
5095 kfree_rcu(adj, rcu);
5096}
5097
1d143d9f 5098static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5099 struct net_device *upper_dev,
5100 struct list_head *up_list,
5101 struct list_head *down_list,
5102 void *private, bool master)
5d261913
VF
5103{
5104 int ret;
5105
402dae96
VF
5106 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5107 master);
5d261913
VF
5108 if (ret)
5109 return ret;
5110
402dae96
VF
5111 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5112 false);
5d261913 5113 if (ret) {
2f268f12 5114 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5115 return ret;
5116 }
5117
5118 return 0;
5119}
5120
1d143d9f 5121static int __netdev_adjacent_dev_link(struct net_device *dev,
5122 struct net_device *upper_dev)
5d261913 5123{
2f268f12
VF
5124 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5125 &dev->all_adj_list.upper,
5126 &upper_dev->all_adj_list.lower,
402dae96 5127 NULL, false);
5d261913
VF
5128}
5129
1d143d9f 5130static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5131 struct net_device *upper_dev,
5132 struct list_head *up_list,
5133 struct list_head *down_list)
5d261913 5134{
2f268f12
VF
5135 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5136 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5137}
5138
1d143d9f 5139static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5140 struct net_device *upper_dev)
5d261913 5141{
2f268f12
VF
5142 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5143 &dev->all_adj_list.upper,
5144 &upper_dev->all_adj_list.lower);
5145}
5146
1d143d9f 5147static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5148 struct net_device *upper_dev,
5149 void *private, bool master)
2f268f12
VF
5150{
5151 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5152
5153 if (ret)
5154 return ret;
5155
5156 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5157 &dev->adj_list.upper,
5158 &upper_dev->adj_list.lower,
402dae96 5159 private, master);
2f268f12
VF
5160 if (ret) {
5161 __netdev_adjacent_dev_unlink(dev, upper_dev);
5162 return ret;
5163 }
5164
5165 return 0;
5d261913
VF
5166}
5167
1d143d9f 5168static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5169 struct net_device *upper_dev)
2f268f12
VF
5170{
5171 __netdev_adjacent_dev_unlink(dev, upper_dev);
5172 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5173 &dev->adj_list.upper,
5174 &upper_dev->adj_list.lower);
5175}
5d261913 5176
9ff162a8 5177static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5178 struct net_device *upper_dev, bool master,
5179 void *private)
9ff162a8 5180{
5d261913
VF
5181 struct netdev_adjacent *i, *j, *to_i, *to_j;
5182 int ret = 0;
9ff162a8
JP
5183
5184 ASSERT_RTNL();
5185
5186 if (dev == upper_dev)
5187 return -EBUSY;
5188
5189 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5190 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5191 return -EBUSY;
5192
2f268f12 5193 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5194 return -EEXIST;
5195
5196 if (master && netdev_master_upper_dev_get(dev))
5197 return -EBUSY;
5198
402dae96
VF
5199 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5200 master);
5d261913
VF
5201 if (ret)
5202 return ret;
9ff162a8 5203
5d261913 5204 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5205 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5206 * versa, and don't forget the devices itself. All of these
5207 * links are non-neighbours.
5208 */
2f268f12
VF
5209 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5210 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5211 pr_debug("Interlinking %s with %s, non-neighbour\n",
5212 i->dev->name, j->dev->name);
5d261913
VF
5213 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5214 if (ret)
5215 goto rollback_mesh;
5216 }
5217 }
5218
5219 /* add dev to every upper_dev's upper device */
2f268f12
VF
5220 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5221 pr_debug("linking %s's upper device %s with %s\n",
5222 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5223 ret = __netdev_adjacent_dev_link(dev, i->dev);
5224 if (ret)
5225 goto rollback_upper_mesh;
5226 }
5227
5228 /* add upper_dev to every dev's lower device */
2f268f12
VF
5229 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5230 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5231 i->dev->name, upper_dev->name);
5d261913
VF
5232 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5233 if (ret)
5234 goto rollback_lower_mesh;
5235 }
9ff162a8 5236
42e52bf9 5237 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5238 return 0;
5d261913
VF
5239
5240rollback_lower_mesh:
5241 to_i = i;
2f268f12 5242 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5243 if (i == to_i)
5244 break;
5245 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5246 }
5247
5248 i = NULL;
5249
5250rollback_upper_mesh:
5251 to_i = i;
2f268f12 5252 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5253 if (i == to_i)
5254 break;
5255 __netdev_adjacent_dev_unlink(dev, i->dev);
5256 }
5257
5258 i = j = NULL;
5259
5260rollback_mesh:
5261 to_i = i;
5262 to_j = j;
2f268f12
VF
5263 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5264 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5265 if (i == to_i && j == to_j)
5266 break;
5267 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5268 }
5269 if (i == to_i)
5270 break;
5271 }
5272
2f268f12 5273 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5274
5275 return ret;
9ff162a8
JP
5276}
5277
5278/**
5279 * netdev_upper_dev_link - Add a link to the upper device
5280 * @dev: device
5281 * @upper_dev: new upper device
5282 *
5283 * Adds a link to device which is upper to this one. The caller must hold
5284 * the RTNL lock. On a failure a negative errno code is returned.
5285 * On success the reference counts are adjusted and the function
5286 * returns zero.
5287 */
5288int netdev_upper_dev_link(struct net_device *dev,
5289 struct net_device *upper_dev)
5290{
402dae96 5291 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5292}
5293EXPORT_SYMBOL(netdev_upper_dev_link);
5294
5295/**
5296 * netdev_master_upper_dev_link - Add a master link to the upper device
5297 * @dev: device
5298 * @upper_dev: new upper device
5299 *
5300 * Adds a link to device which is upper to this one. In this case, only
5301 * one master upper device can be linked, although other non-master devices
5302 * might be linked as well. The caller must hold the RTNL lock.
5303 * On a failure a negative errno code is returned. On success the reference
5304 * counts are adjusted and the function returns zero.
5305 */
5306int netdev_master_upper_dev_link(struct net_device *dev,
5307 struct net_device *upper_dev)
5308{
402dae96 5309 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5310}
5311EXPORT_SYMBOL(netdev_master_upper_dev_link);
5312
402dae96
VF
5313int netdev_master_upper_dev_link_private(struct net_device *dev,
5314 struct net_device *upper_dev,
5315 void *private)
5316{
5317 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5318}
5319EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5320
9ff162a8
JP
5321/**
5322 * netdev_upper_dev_unlink - Removes a link to upper device
5323 * @dev: device
5324 * @upper_dev: new upper device
5325 *
5326 * Removes a link to device which is upper to this one. The caller must hold
5327 * the RTNL lock.
5328 */
5329void netdev_upper_dev_unlink(struct net_device *dev,
5330 struct net_device *upper_dev)
5331{
5d261913 5332 struct netdev_adjacent *i, *j;
9ff162a8
JP
5333 ASSERT_RTNL();
5334
2f268f12 5335 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5336
5337 /* Here is the tricky part. We must remove all dev's lower
5338 * devices from all upper_dev's upper devices and vice
5339 * versa, to maintain the graph relationship.
5340 */
2f268f12
VF
5341 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5342 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5343 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5344
5345 /* remove also the devices itself from lower/upper device
5346 * list
5347 */
2f268f12 5348 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5349 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5350
2f268f12 5351 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5352 __netdev_adjacent_dev_unlink(dev, i->dev);
5353
42e52bf9 5354 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5355}
5356EXPORT_SYMBOL(netdev_upper_dev_unlink);
5357
4c75431a
AF
5358void netdev_adjacent_add_links(struct net_device *dev)
5359{
5360 struct netdev_adjacent *iter;
5361
5362 struct net *net = dev_net(dev);
5363
5364 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5365 if (!net_eq(net,dev_net(iter->dev)))
5366 continue;
5367 netdev_adjacent_sysfs_add(iter->dev, dev,
5368 &iter->dev->adj_list.lower);
5369 netdev_adjacent_sysfs_add(dev, iter->dev,
5370 &dev->adj_list.upper);
5371 }
5372
5373 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5374 if (!net_eq(net,dev_net(iter->dev)))
5375 continue;
5376 netdev_adjacent_sysfs_add(iter->dev, dev,
5377 &iter->dev->adj_list.upper);
5378 netdev_adjacent_sysfs_add(dev, iter->dev,
5379 &dev->adj_list.lower);
5380 }
5381}
5382
5383void netdev_adjacent_del_links(struct net_device *dev)
5384{
5385 struct netdev_adjacent *iter;
5386
5387 struct net *net = dev_net(dev);
5388
5389 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5390 if (!net_eq(net,dev_net(iter->dev)))
5391 continue;
5392 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5393 &iter->dev->adj_list.lower);
5394 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5395 &dev->adj_list.upper);
5396 }
5397
5398 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5399 if (!net_eq(net,dev_net(iter->dev)))
5400 continue;
5401 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5402 &iter->dev->adj_list.upper);
5403 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5404 &dev->adj_list.lower);
5405 }
5406}
5407
5bb025fa 5408void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5409{
5bb025fa 5410 struct netdev_adjacent *iter;
402dae96 5411
4c75431a
AF
5412 struct net *net = dev_net(dev);
5413
5bb025fa 5414 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5415 if (!net_eq(net,dev_net(iter->dev)))
5416 continue;
5bb025fa
VF
5417 netdev_adjacent_sysfs_del(iter->dev, oldname,
5418 &iter->dev->adj_list.lower);
5419 netdev_adjacent_sysfs_add(iter->dev, dev,
5420 &iter->dev->adj_list.lower);
5421 }
402dae96 5422
5bb025fa 5423 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5424 if (!net_eq(net,dev_net(iter->dev)))
5425 continue;
5bb025fa
VF
5426 netdev_adjacent_sysfs_del(iter->dev, oldname,
5427 &iter->dev->adj_list.upper);
5428 netdev_adjacent_sysfs_add(iter->dev, dev,
5429 &iter->dev->adj_list.upper);
5430 }
402dae96 5431}
402dae96
VF
5432
5433void *netdev_lower_dev_get_private(struct net_device *dev,
5434 struct net_device *lower_dev)
5435{
5436 struct netdev_adjacent *lower;
5437
5438 if (!lower_dev)
5439 return NULL;
5440 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5441 if (!lower)
5442 return NULL;
5443
5444 return lower->private;
5445}
5446EXPORT_SYMBOL(netdev_lower_dev_get_private);
5447
4085ebe8
VY
5448
5449int dev_get_nest_level(struct net_device *dev,
5450 bool (*type_check)(struct net_device *dev))
5451{
5452 struct net_device *lower = NULL;
5453 struct list_head *iter;
5454 int max_nest = -1;
5455 int nest;
5456
5457 ASSERT_RTNL();
5458
5459 netdev_for_each_lower_dev(dev, lower, iter) {
5460 nest = dev_get_nest_level(lower, type_check);
5461 if (max_nest < nest)
5462 max_nest = nest;
5463 }
5464
5465 if (type_check(dev))
5466 max_nest++;
5467
5468 return max_nest;
5469}
5470EXPORT_SYMBOL(dev_get_nest_level);
5471
b6c40d68
PM
5472static void dev_change_rx_flags(struct net_device *dev, int flags)
5473{
d314774c
SH
5474 const struct net_device_ops *ops = dev->netdev_ops;
5475
d2615bf4 5476 if (ops->ndo_change_rx_flags)
d314774c 5477 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5478}
5479
991fb3f7 5480static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5481{
b536db93 5482 unsigned int old_flags = dev->flags;
d04a48b0
EB
5483 kuid_t uid;
5484 kgid_t gid;
1da177e4 5485
24023451
PM
5486 ASSERT_RTNL();
5487
dad9b335
WC
5488 dev->flags |= IFF_PROMISC;
5489 dev->promiscuity += inc;
5490 if (dev->promiscuity == 0) {
5491 /*
5492 * Avoid overflow.
5493 * If inc causes overflow, untouch promisc and return error.
5494 */
5495 if (inc < 0)
5496 dev->flags &= ~IFF_PROMISC;
5497 else {
5498 dev->promiscuity -= inc;
7b6cd1ce
JP
5499 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5500 dev->name);
dad9b335
WC
5501 return -EOVERFLOW;
5502 }
5503 }
52609c0b 5504 if (dev->flags != old_flags) {
7b6cd1ce
JP
5505 pr_info("device %s %s promiscuous mode\n",
5506 dev->name,
5507 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5508 if (audit_enabled) {
5509 current_uid_gid(&uid, &gid);
7759db82
KHK
5510 audit_log(current->audit_context, GFP_ATOMIC,
5511 AUDIT_ANOM_PROMISCUOUS,
5512 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5513 dev->name, (dev->flags & IFF_PROMISC),
5514 (old_flags & IFF_PROMISC),
e1760bd5 5515 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5516 from_kuid(&init_user_ns, uid),
5517 from_kgid(&init_user_ns, gid),
7759db82 5518 audit_get_sessionid(current));
8192b0c4 5519 }
24023451 5520
b6c40d68 5521 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5522 }
991fb3f7
ND
5523 if (notify)
5524 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5525 return 0;
1da177e4
LT
5526}
5527
4417da66
PM
5528/**
5529 * dev_set_promiscuity - update promiscuity count on a device
5530 * @dev: device
5531 * @inc: modifier
5532 *
5533 * Add or remove promiscuity from a device. While the count in the device
5534 * remains above zero the interface remains promiscuous. Once it hits zero
5535 * the device reverts back to normal filtering operation. A negative inc
5536 * value is used to drop promiscuity on the device.
dad9b335 5537 * Return 0 if successful or a negative errno code on error.
4417da66 5538 */
dad9b335 5539int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5540{
b536db93 5541 unsigned int old_flags = dev->flags;
dad9b335 5542 int err;
4417da66 5543
991fb3f7 5544 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5545 if (err < 0)
dad9b335 5546 return err;
4417da66
PM
5547 if (dev->flags != old_flags)
5548 dev_set_rx_mode(dev);
dad9b335 5549 return err;
4417da66 5550}
d1b19dff 5551EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5552
991fb3f7 5553static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5554{
991fb3f7 5555 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5556
24023451
PM
5557 ASSERT_RTNL();
5558
1da177e4 5559 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5560 dev->allmulti += inc;
5561 if (dev->allmulti == 0) {
5562 /*
5563 * Avoid overflow.
5564 * If inc causes overflow, untouch allmulti and return error.
5565 */
5566 if (inc < 0)
5567 dev->flags &= ~IFF_ALLMULTI;
5568 else {
5569 dev->allmulti -= inc;
7b6cd1ce
JP
5570 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5571 dev->name);
dad9b335
WC
5572 return -EOVERFLOW;
5573 }
5574 }
24023451 5575 if (dev->flags ^ old_flags) {
b6c40d68 5576 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5577 dev_set_rx_mode(dev);
991fb3f7
ND
5578 if (notify)
5579 __dev_notify_flags(dev, old_flags,
5580 dev->gflags ^ old_gflags);
24023451 5581 }
dad9b335 5582 return 0;
4417da66 5583}
991fb3f7
ND
5584
5585/**
5586 * dev_set_allmulti - update allmulti count on a device
5587 * @dev: device
5588 * @inc: modifier
5589 *
5590 * Add or remove reception of all multicast frames to a device. While the
5591 * count in the device remains above zero the interface remains listening
5592 * to all interfaces. Once it hits zero the device reverts back to normal
5593 * filtering operation. A negative @inc value is used to drop the counter
5594 * when releasing a resource needing all multicasts.
5595 * Return 0 if successful or a negative errno code on error.
5596 */
5597
5598int dev_set_allmulti(struct net_device *dev, int inc)
5599{
5600 return __dev_set_allmulti(dev, inc, true);
5601}
d1b19dff 5602EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5603
5604/*
5605 * Upload unicast and multicast address lists to device and
5606 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5607 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5608 * are present.
5609 */
5610void __dev_set_rx_mode(struct net_device *dev)
5611{
d314774c
SH
5612 const struct net_device_ops *ops = dev->netdev_ops;
5613
4417da66
PM
5614 /* dev_open will call this function so the list will stay sane. */
5615 if (!(dev->flags&IFF_UP))
5616 return;
5617
5618 if (!netif_device_present(dev))
40b77c94 5619 return;
4417da66 5620
01789349 5621 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5622 /* Unicast addresses changes may only happen under the rtnl,
5623 * therefore calling __dev_set_promiscuity here is safe.
5624 */
32e7bfc4 5625 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5626 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5627 dev->uc_promisc = true;
32e7bfc4 5628 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5629 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5630 dev->uc_promisc = false;
4417da66 5631 }
4417da66 5632 }
01789349
JP
5633
5634 if (ops->ndo_set_rx_mode)
5635 ops->ndo_set_rx_mode(dev);
4417da66
PM
5636}
5637
5638void dev_set_rx_mode(struct net_device *dev)
5639{
b9e40857 5640 netif_addr_lock_bh(dev);
4417da66 5641 __dev_set_rx_mode(dev);
b9e40857 5642 netif_addr_unlock_bh(dev);
1da177e4
LT
5643}
5644
f0db275a
SH
5645/**
5646 * dev_get_flags - get flags reported to userspace
5647 * @dev: device
5648 *
5649 * Get the combination of flag bits exported through APIs to userspace.
5650 */
95c96174 5651unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5652{
95c96174 5653 unsigned int flags;
1da177e4
LT
5654
5655 flags = (dev->flags & ~(IFF_PROMISC |
5656 IFF_ALLMULTI |
b00055aa
SR
5657 IFF_RUNNING |
5658 IFF_LOWER_UP |
5659 IFF_DORMANT)) |
1da177e4
LT
5660 (dev->gflags & (IFF_PROMISC |
5661 IFF_ALLMULTI));
5662
b00055aa
SR
5663 if (netif_running(dev)) {
5664 if (netif_oper_up(dev))
5665 flags |= IFF_RUNNING;
5666 if (netif_carrier_ok(dev))
5667 flags |= IFF_LOWER_UP;
5668 if (netif_dormant(dev))
5669 flags |= IFF_DORMANT;
5670 }
1da177e4
LT
5671
5672 return flags;
5673}
d1b19dff 5674EXPORT_SYMBOL(dev_get_flags);
1da177e4 5675
bd380811 5676int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5677{
b536db93 5678 unsigned int old_flags = dev->flags;
bd380811 5679 int ret;
1da177e4 5680
24023451
PM
5681 ASSERT_RTNL();
5682
1da177e4
LT
5683 /*
5684 * Set the flags on our device.
5685 */
5686
5687 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5688 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5689 IFF_AUTOMEDIA)) |
5690 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5691 IFF_ALLMULTI));
5692
5693 /*
5694 * Load in the correct multicast list now the flags have changed.
5695 */
5696
b6c40d68
PM
5697 if ((old_flags ^ flags) & IFF_MULTICAST)
5698 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5699
4417da66 5700 dev_set_rx_mode(dev);
1da177e4
LT
5701
5702 /*
5703 * Have we downed the interface. We handle IFF_UP ourselves
5704 * according to user attempts to set it, rather than blindly
5705 * setting it.
5706 */
5707
5708 ret = 0;
d215d10f 5709 if ((old_flags ^ flags) & IFF_UP)
bd380811 5710 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5711
1da177e4 5712 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5713 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5714 unsigned int old_flags = dev->flags;
d1b19dff 5715
1da177e4 5716 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5717
5718 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5719 if (dev->flags != old_flags)
5720 dev_set_rx_mode(dev);
1da177e4
LT
5721 }
5722
5723 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5724 is important. Some (broken) drivers set IFF_PROMISC, when
5725 IFF_ALLMULTI is requested not asking us and not reporting.
5726 */
5727 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5728 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5729
1da177e4 5730 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5731 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5732 }
5733
bd380811
PM
5734 return ret;
5735}
5736
a528c219
ND
5737void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5738 unsigned int gchanges)
bd380811
PM
5739{
5740 unsigned int changes = dev->flags ^ old_flags;
5741
a528c219 5742 if (gchanges)
7f294054 5743 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5744
bd380811
PM
5745 if (changes & IFF_UP) {
5746 if (dev->flags & IFF_UP)
5747 call_netdevice_notifiers(NETDEV_UP, dev);
5748 else
5749 call_netdevice_notifiers(NETDEV_DOWN, dev);
5750 }
5751
5752 if (dev->flags & IFF_UP &&
be9efd36
JP
5753 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5754 struct netdev_notifier_change_info change_info;
5755
5756 change_info.flags_changed = changes;
5757 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5758 &change_info.info);
5759 }
bd380811
PM
5760}
5761
5762/**
5763 * dev_change_flags - change device settings
5764 * @dev: device
5765 * @flags: device state flags
5766 *
5767 * Change settings on device based state flags. The flags are
5768 * in the userspace exported format.
5769 */
b536db93 5770int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5771{
b536db93 5772 int ret;
991fb3f7 5773 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5774
5775 ret = __dev_change_flags(dev, flags);
5776 if (ret < 0)
5777 return ret;
5778
991fb3f7 5779 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5780 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5781 return ret;
5782}
d1b19dff 5783EXPORT_SYMBOL(dev_change_flags);
1da177e4 5784
2315dc91
VF
5785static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5786{
5787 const struct net_device_ops *ops = dev->netdev_ops;
5788
5789 if (ops->ndo_change_mtu)
5790 return ops->ndo_change_mtu(dev, new_mtu);
5791
5792 dev->mtu = new_mtu;
5793 return 0;
5794}
5795
f0db275a
SH
5796/**
5797 * dev_set_mtu - Change maximum transfer unit
5798 * @dev: device
5799 * @new_mtu: new transfer unit
5800 *
5801 * Change the maximum transfer size of the network device.
5802 */
1da177e4
LT
5803int dev_set_mtu(struct net_device *dev, int new_mtu)
5804{
2315dc91 5805 int err, orig_mtu;
1da177e4
LT
5806
5807 if (new_mtu == dev->mtu)
5808 return 0;
5809
5810 /* MTU must be positive. */
5811 if (new_mtu < 0)
5812 return -EINVAL;
5813
5814 if (!netif_device_present(dev))
5815 return -ENODEV;
5816
1d486bfb
VF
5817 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5818 err = notifier_to_errno(err);
5819 if (err)
5820 return err;
d314774c 5821
2315dc91
VF
5822 orig_mtu = dev->mtu;
5823 err = __dev_set_mtu(dev, new_mtu);
d314774c 5824
2315dc91
VF
5825 if (!err) {
5826 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5827 err = notifier_to_errno(err);
5828 if (err) {
5829 /* setting mtu back and notifying everyone again,
5830 * so that they have a chance to revert changes.
5831 */
5832 __dev_set_mtu(dev, orig_mtu);
5833 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5834 }
5835 }
1da177e4
LT
5836 return err;
5837}
d1b19dff 5838EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5839
cbda10fa
VD
5840/**
5841 * dev_set_group - Change group this device belongs to
5842 * @dev: device
5843 * @new_group: group this device should belong to
5844 */
5845void dev_set_group(struct net_device *dev, int new_group)
5846{
5847 dev->group = new_group;
5848}
5849EXPORT_SYMBOL(dev_set_group);
5850
f0db275a
SH
5851/**
5852 * dev_set_mac_address - Change Media Access Control Address
5853 * @dev: device
5854 * @sa: new address
5855 *
5856 * Change the hardware (MAC) address of the device
5857 */
1da177e4
LT
5858int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5859{
d314774c 5860 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5861 int err;
5862
d314774c 5863 if (!ops->ndo_set_mac_address)
1da177e4
LT
5864 return -EOPNOTSUPP;
5865 if (sa->sa_family != dev->type)
5866 return -EINVAL;
5867 if (!netif_device_present(dev))
5868 return -ENODEV;
d314774c 5869 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5870 if (err)
5871 return err;
fbdeca2d 5872 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5873 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5874 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5875 return 0;
1da177e4 5876}
d1b19dff 5877EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5878
4bf84c35
JP
5879/**
5880 * dev_change_carrier - Change device carrier
5881 * @dev: device
691b3b7e 5882 * @new_carrier: new value
4bf84c35
JP
5883 *
5884 * Change device carrier
5885 */
5886int dev_change_carrier(struct net_device *dev, bool new_carrier)
5887{
5888 const struct net_device_ops *ops = dev->netdev_ops;
5889
5890 if (!ops->ndo_change_carrier)
5891 return -EOPNOTSUPP;
5892 if (!netif_device_present(dev))
5893 return -ENODEV;
5894 return ops->ndo_change_carrier(dev, new_carrier);
5895}
5896EXPORT_SYMBOL(dev_change_carrier);
5897
66b52b0d
JP
5898/**
5899 * dev_get_phys_port_id - Get device physical port ID
5900 * @dev: device
5901 * @ppid: port ID
5902 *
5903 * Get device physical port ID
5904 */
5905int dev_get_phys_port_id(struct net_device *dev,
02637fce 5906 struct netdev_phys_item_id *ppid)
66b52b0d
JP
5907{
5908 const struct net_device_ops *ops = dev->netdev_ops;
5909
5910 if (!ops->ndo_get_phys_port_id)
5911 return -EOPNOTSUPP;
5912 return ops->ndo_get_phys_port_id(dev, ppid);
5913}
5914EXPORT_SYMBOL(dev_get_phys_port_id);
5915
1da177e4
LT
5916/**
5917 * dev_new_index - allocate an ifindex
c4ea43c5 5918 * @net: the applicable net namespace
1da177e4
LT
5919 *
5920 * Returns a suitable unique value for a new device interface
5921 * number. The caller must hold the rtnl semaphore or the
5922 * dev_base_lock to be sure it remains unique.
5923 */
881d966b 5924static int dev_new_index(struct net *net)
1da177e4 5925{
aa79e66e 5926 int ifindex = net->ifindex;
1da177e4
LT
5927 for (;;) {
5928 if (++ifindex <= 0)
5929 ifindex = 1;
881d966b 5930 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5931 return net->ifindex = ifindex;
1da177e4
LT
5932 }
5933}
5934
1da177e4 5935/* Delayed registration/unregisteration */
3b5b34fd 5936static LIST_HEAD(net_todo_list);
200b916f 5937DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5938
6f05f629 5939static void net_set_todo(struct net_device *dev)
1da177e4 5940{
1da177e4 5941 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5942 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5943}
5944
9b5e383c 5945static void rollback_registered_many(struct list_head *head)
93ee31f1 5946{
e93737b0 5947 struct net_device *dev, *tmp;
5cde2829 5948 LIST_HEAD(close_head);
9b5e383c 5949
93ee31f1
DL
5950 BUG_ON(dev_boot_phase);
5951 ASSERT_RTNL();
5952
e93737b0 5953 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5954 /* Some devices call without registering
e93737b0
KK
5955 * for initialization unwind. Remove those
5956 * devices and proceed with the remaining.
9b5e383c
ED
5957 */
5958 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5959 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5960 dev->name, dev);
93ee31f1 5961
9b5e383c 5962 WARN_ON(1);
e93737b0
KK
5963 list_del(&dev->unreg_list);
5964 continue;
9b5e383c 5965 }
449f4544 5966 dev->dismantle = true;
9b5e383c 5967 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5968 }
93ee31f1 5969
44345724 5970 /* If device is running, close it first. */
5cde2829
EB
5971 list_for_each_entry(dev, head, unreg_list)
5972 list_add_tail(&dev->close_list, &close_head);
5973 dev_close_many(&close_head);
93ee31f1 5974
44345724 5975 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5976 /* And unlink it from device chain. */
5977 unlist_netdevice(dev);
93ee31f1 5978
9b5e383c
ED
5979 dev->reg_state = NETREG_UNREGISTERING;
5980 }
93ee31f1
DL
5981
5982 synchronize_net();
5983
9b5e383c 5984 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
5985 struct sk_buff *skb = NULL;
5986
9b5e383c
ED
5987 /* Shutdown queueing discipline. */
5988 dev_shutdown(dev);
93ee31f1
DL
5989
5990
9b5e383c
ED
5991 /* Notify protocols, that we are about to destroy
5992 this device. They should clean all the things.
5993 */
5994 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5995
395eea6c
MB
5996 if (!dev->rtnl_link_ops ||
5997 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5998 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5999 GFP_KERNEL);
6000
9b5e383c
ED
6001 /*
6002 * Flush the unicast and multicast chains
6003 */
a748ee24 6004 dev_uc_flush(dev);
22bedad3 6005 dev_mc_flush(dev);
93ee31f1 6006
9b5e383c
ED
6007 if (dev->netdev_ops->ndo_uninit)
6008 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6009
395eea6c
MB
6010 if (skb)
6011 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6012
9ff162a8
JP
6013 /* Notifier chain MUST detach us all upper devices. */
6014 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6015
9b5e383c
ED
6016 /* Remove entries from kobject tree */
6017 netdev_unregister_kobject(dev);
024e9679
AD
6018#ifdef CONFIG_XPS
6019 /* Remove XPS queueing entries */
6020 netif_reset_xps_queues_gt(dev, 0);
6021#endif
9b5e383c 6022 }
93ee31f1 6023
850a545b 6024 synchronize_net();
395264d5 6025
a5ee1551 6026 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6027 dev_put(dev);
6028}
6029
6030static void rollback_registered(struct net_device *dev)
6031{
6032 LIST_HEAD(single);
6033
6034 list_add(&dev->unreg_list, &single);
6035 rollback_registered_many(&single);
ceaaec98 6036 list_del(&single);
93ee31f1
DL
6037}
6038
c8f44aff
MM
6039static netdev_features_t netdev_fix_features(struct net_device *dev,
6040 netdev_features_t features)
b63365a2 6041{
57422dc5
MM
6042 /* Fix illegal checksum combinations */
6043 if ((features & NETIF_F_HW_CSUM) &&
6044 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6045 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6046 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6047 }
6048
b63365a2 6049 /* TSO requires that SG is present as well. */
ea2d3688 6050 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6051 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6052 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6053 }
6054
ec5f0615
PS
6055 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6056 !(features & NETIF_F_IP_CSUM)) {
6057 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6058 features &= ~NETIF_F_TSO;
6059 features &= ~NETIF_F_TSO_ECN;
6060 }
6061
6062 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6063 !(features & NETIF_F_IPV6_CSUM)) {
6064 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6065 features &= ~NETIF_F_TSO6;
6066 }
6067
31d8b9e0
BH
6068 /* TSO ECN requires that TSO is present as well. */
6069 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6070 features &= ~NETIF_F_TSO_ECN;
6071
212b573f
MM
6072 /* Software GSO depends on SG. */
6073 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6074 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6075 features &= ~NETIF_F_GSO;
6076 }
6077
acd1130e 6078 /* UFO needs SG and checksumming */
b63365a2 6079 if (features & NETIF_F_UFO) {
79032644
MM
6080 /* maybe split UFO into V4 and V6? */
6081 if (!((features & NETIF_F_GEN_CSUM) ||
6082 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6083 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6084 netdev_dbg(dev,
acd1130e 6085 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6086 features &= ~NETIF_F_UFO;
6087 }
6088
6089 if (!(features & NETIF_F_SG)) {
6f404e44 6090 netdev_dbg(dev,
acd1130e 6091 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6092 features &= ~NETIF_F_UFO;
6093 }
6094 }
6095
d0290214
JP
6096#ifdef CONFIG_NET_RX_BUSY_POLL
6097 if (dev->netdev_ops->ndo_busy_poll)
6098 features |= NETIF_F_BUSY_POLL;
6099 else
6100#endif
6101 features &= ~NETIF_F_BUSY_POLL;
6102
b63365a2
HX
6103 return features;
6104}
b63365a2 6105
6cb6a27c 6106int __netdev_update_features(struct net_device *dev)
5455c699 6107{
c8f44aff 6108 netdev_features_t features;
5455c699
MM
6109 int err = 0;
6110
87267485
MM
6111 ASSERT_RTNL();
6112
5455c699
MM
6113 features = netdev_get_wanted_features(dev);
6114
6115 if (dev->netdev_ops->ndo_fix_features)
6116 features = dev->netdev_ops->ndo_fix_features(dev, features);
6117
6118 /* driver might be less strict about feature dependencies */
6119 features = netdev_fix_features(dev, features);
6120
6121 if (dev->features == features)
6cb6a27c 6122 return 0;
5455c699 6123
c8f44aff
MM
6124 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6125 &dev->features, &features);
5455c699
MM
6126
6127 if (dev->netdev_ops->ndo_set_features)
6128 err = dev->netdev_ops->ndo_set_features(dev, features);
6129
6cb6a27c 6130 if (unlikely(err < 0)) {
5455c699 6131 netdev_err(dev,
c8f44aff
MM
6132 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6133 err, &features, &dev->features);
6cb6a27c
MM
6134 return -1;
6135 }
6136
6137 if (!err)
6138 dev->features = features;
6139
6140 return 1;
6141}
6142
afe12cc8
MM
6143/**
6144 * netdev_update_features - recalculate device features
6145 * @dev: the device to check
6146 *
6147 * Recalculate dev->features set and send notifications if it
6148 * has changed. Should be called after driver or hardware dependent
6149 * conditions might have changed that influence the features.
6150 */
6cb6a27c
MM
6151void netdev_update_features(struct net_device *dev)
6152{
6153 if (__netdev_update_features(dev))
6154 netdev_features_change(dev);
5455c699
MM
6155}
6156EXPORT_SYMBOL(netdev_update_features);
6157
afe12cc8
MM
6158/**
6159 * netdev_change_features - recalculate device features
6160 * @dev: the device to check
6161 *
6162 * Recalculate dev->features set and send notifications even
6163 * if they have not changed. Should be called instead of
6164 * netdev_update_features() if also dev->vlan_features might
6165 * have changed to allow the changes to be propagated to stacked
6166 * VLAN devices.
6167 */
6168void netdev_change_features(struct net_device *dev)
6169{
6170 __netdev_update_features(dev);
6171 netdev_features_change(dev);
6172}
6173EXPORT_SYMBOL(netdev_change_features);
6174
fc4a7489
PM
6175/**
6176 * netif_stacked_transfer_operstate - transfer operstate
6177 * @rootdev: the root or lower level device to transfer state from
6178 * @dev: the device to transfer operstate to
6179 *
6180 * Transfer operational state from root to device. This is normally
6181 * called when a stacking relationship exists between the root
6182 * device and the device(a leaf device).
6183 */
6184void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6185 struct net_device *dev)
6186{
6187 if (rootdev->operstate == IF_OPER_DORMANT)
6188 netif_dormant_on(dev);
6189 else
6190 netif_dormant_off(dev);
6191
6192 if (netif_carrier_ok(rootdev)) {
6193 if (!netif_carrier_ok(dev))
6194 netif_carrier_on(dev);
6195 } else {
6196 if (netif_carrier_ok(dev))
6197 netif_carrier_off(dev);
6198 }
6199}
6200EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6201
a953be53 6202#ifdef CONFIG_SYSFS
1b4bf461
ED
6203static int netif_alloc_rx_queues(struct net_device *dev)
6204{
1b4bf461 6205 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6206 struct netdev_rx_queue *rx;
10595902 6207 size_t sz = count * sizeof(*rx);
1b4bf461 6208
bd25fa7b 6209 BUG_ON(count < 1);
1b4bf461 6210
10595902
PG
6211 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6212 if (!rx) {
6213 rx = vzalloc(sz);
6214 if (!rx)
6215 return -ENOMEM;
6216 }
bd25fa7b
TH
6217 dev->_rx = rx;
6218
bd25fa7b 6219 for (i = 0; i < count; i++)
fe822240 6220 rx[i].dev = dev;
1b4bf461
ED
6221 return 0;
6222}
bf264145 6223#endif
1b4bf461 6224
aa942104
CG
6225static void netdev_init_one_queue(struct net_device *dev,
6226 struct netdev_queue *queue, void *_unused)
6227{
6228 /* Initialize queue lock */
6229 spin_lock_init(&queue->_xmit_lock);
6230 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6231 queue->xmit_lock_owner = -1;
b236da69 6232 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6233 queue->dev = dev;
114cf580
TH
6234#ifdef CONFIG_BQL
6235 dql_init(&queue->dql, HZ);
6236#endif
aa942104
CG
6237}
6238
60877a32
ED
6239static void netif_free_tx_queues(struct net_device *dev)
6240{
4cb28970 6241 kvfree(dev->_tx);
60877a32
ED
6242}
6243
e6484930
TH
6244static int netif_alloc_netdev_queues(struct net_device *dev)
6245{
6246 unsigned int count = dev->num_tx_queues;
6247 struct netdev_queue *tx;
60877a32 6248 size_t sz = count * sizeof(*tx);
e6484930 6249
60877a32 6250 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6251
60877a32
ED
6252 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6253 if (!tx) {
6254 tx = vzalloc(sz);
6255 if (!tx)
6256 return -ENOMEM;
6257 }
e6484930 6258 dev->_tx = tx;
1d24eb48 6259
e6484930
TH
6260 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6261 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6262
6263 return 0;
e6484930
TH
6264}
6265
1da177e4
LT
6266/**
6267 * register_netdevice - register a network device
6268 * @dev: device to register
6269 *
6270 * Take a completed network device structure and add it to the kernel
6271 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6272 * chain. 0 is returned on success. A negative errno code is returned
6273 * on a failure to set up the device, or if the name is a duplicate.
6274 *
6275 * Callers must hold the rtnl semaphore. You may want
6276 * register_netdev() instead of this.
6277 *
6278 * BUGS:
6279 * The locking appears insufficient to guarantee two parallel registers
6280 * will not get the same name.
6281 */
6282
6283int register_netdevice(struct net_device *dev)
6284{
1da177e4 6285 int ret;
d314774c 6286 struct net *net = dev_net(dev);
1da177e4
LT
6287
6288 BUG_ON(dev_boot_phase);
6289 ASSERT_RTNL();
6290
b17a7c17
SH
6291 might_sleep();
6292
1da177e4
LT
6293 /* When net_device's are persistent, this will be fatal. */
6294 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6295 BUG_ON(!net);
1da177e4 6296
f1f28aa3 6297 spin_lock_init(&dev->addr_list_lock);
cf508b12 6298 netdev_set_addr_lockdep_class(dev);
1da177e4 6299
1da177e4
LT
6300 dev->iflink = -1;
6301
828de4f6 6302 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6303 if (ret < 0)
6304 goto out;
6305
1da177e4 6306 /* Init, if this function is available */
d314774c
SH
6307 if (dev->netdev_ops->ndo_init) {
6308 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6309 if (ret) {
6310 if (ret > 0)
6311 ret = -EIO;
90833aa4 6312 goto out;
1da177e4
LT
6313 }
6314 }
4ec93edb 6315
f646968f
PM
6316 if (((dev->hw_features | dev->features) &
6317 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6318 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6319 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6320 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6321 ret = -EINVAL;
6322 goto err_uninit;
6323 }
6324
9c7dafbf
PE
6325 ret = -EBUSY;
6326 if (!dev->ifindex)
6327 dev->ifindex = dev_new_index(net);
6328 else if (__dev_get_by_index(net, dev->ifindex))
6329 goto err_uninit;
6330
1da177e4
LT
6331 if (dev->iflink == -1)
6332 dev->iflink = dev->ifindex;
6333
5455c699
MM
6334 /* Transfer changeable features to wanted_features and enable
6335 * software offloads (GSO and GRO).
6336 */
6337 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6338 dev->features |= NETIF_F_SOFT_FEATURES;
6339 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6340
34324dc2
MM
6341 if (!(dev->flags & IFF_LOOPBACK)) {
6342 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6343 }
6344
1180e7d6 6345 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6346 */
1180e7d6 6347 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6348
ee579677
PS
6349 /* Make NETIF_F_SG inheritable to tunnel devices.
6350 */
6351 dev->hw_enc_features |= NETIF_F_SG;
6352
0d89d203
SH
6353 /* Make NETIF_F_SG inheritable to MPLS.
6354 */
6355 dev->mpls_features |= NETIF_F_SG;
6356
7ffbe3fd
JB
6357 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6358 ret = notifier_to_errno(ret);
6359 if (ret)
6360 goto err_uninit;
6361
8b41d188 6362 ret = netdev_register_kobject(dev);
b17a7c17 6363 if (ret)
7ce1b0ed 6364 goto err_uninit;
b17a7c17
SH
6365 dev->reg_state = NETREG_REGISTERED;
6366
6cb6a27c 6367 __netdev_update_features(dev);
8e9b59b2 6368
1da177e4
LT
6369 /*
6370 * Default initial state at registry is that the
6371 * device is present.
6372 */
6373
6374 set_bit(__LINK_STATE_PRESENT, &dev->state);
6375
8f4cccbb
BH
6376 linkwatch_init_dev(dev);
6377
1da177e4 6378 dev_init_scheduler(dev);
1da177e4 6379 dev_hold(dev);
ce286d32 6380 list_netdevice(dev);
7bf23575 6381 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6382
948b337e
JP
6383 /* If the device has permanent device address, driver should
6384 * set dev_addr and also addr_assign_type should be set to
6385 * NET_ADDR_PERM (default value).
6386 */
6387 if (dev->addr_assign_type == NET_ADDR_PERM)
6388 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6389
1da177e4 6390 /* Notify protocols, that a new device appeared. */
056925ab 6391 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6392 ret = notifier_to_errno(ret);
93ee31f1
DL
6393 if (ret) {
6394 rollback_registered(dev);
6395 dev->reg_state = NETREG_UNREGISTERED;
6396 }
d90a909e
EB
6397 /*
6398 * Prevent userspace races by waiting until the network
6399 * device is fully setup before sending notifications.
6400 */
a2835763
PM
6401 if (!dev->rtnl_link_ops ||
6402 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6403 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6404
6405out:
6406 return ret;
7ce1b0ed
HX
6407
6408err_uninit:
d314774c
SH
6409 if (dev->netdev_ops->ndo_uninit)
6410 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6411 goto out;
1da177e4 6412}
d1b19dff 6413EXPORT_SYMBOL(register_netdevice);
1da177e4 6414
937f1ba5
BH
6415/**
6416 * init_dummy_netdev - init a dummy network device for NAPI
6417 * @dev: device to init
6418 *
6419 * This takes a network device structure and initialize the minimum
6420 * amount of fields so it can be used to schedule NAPI polls without
6421 * registering a full blown interface. This is to be used by drivers
6422 * that need to tie several hardware interfaces to a single NAPI
6423 * poll scheduler due to HW limitations.
6424 */
6425int init_dummy_netdev(struct net_device *dev)
6426{
6427 /* Clear everything. Note we don't initialize spinlocks
6428 * are they aren't supposed to be taken by any of the
6429 * NAPI code and this dummy netdev is supposed to be
6430 * only ever used for NAPI polls
6431 */
6432 memset(dev, 0, sizeof(struct net_device));
6433
6434 /* make sure we BUG if trying to hit standard
6435 * register/unregister code path
6436 */
6437 dev->reg_state = NETREG_DUMMY;
6438
937f1ba5
BH
6439 /* NAPI wants this */
6440 INIT_LIST_HEAD(&dev->napi_list);
6441
6442 /* a dummy interface is started by default */
6443 set_bit(__LINK_STATE_PRESENT, &dev->state);
6444 set_bit(__LINK_STATE_START, &dev->state);
6445
29b4433d
ED
6446 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6447 * because users of this 'device' dont need to change
6448 * its refcount.
6449 */
6450
937f1ba5
BH
6451 return 0;
6452}
6453EXPORT_SYMBOL_GPL(init_dummy_netdev);
6454
6455
1da177e4
LT
6456/**
6457 * register_netdev - register a network device
6458 * @dev: device to register
6459 *
6460 * Take a completed network device structure and add it to the kernel
6461 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6462 * chain. 0 is returned on success. A negative errno code is returned
6463 * on a failure to set up the device, or if the name is a duplicate.
6464 *
38b4da38 6465 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6466 * and expands the device name if you passed a format string to
6467 * alloc_netdev.
6468 */
6469int register_netdev(struct net_device *dev)
6470{
6471 int err;
6472
6473 rtnl_lock();
1da177e4 6474 err = register_netdevice(dev);
1da177e4
LT
6475 rtnl_unlock();
6476 return err;
6477}
6478EXPORT_SYMBOL(register_netdev);
6479
29b4433d
ED
6480int netdev_refcnt_read(const struct net_device *dev)
6481{
6482 int i, refcnt = 0;
6483
6484 for_each_possible_cpu(i)
6485 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6486 return refcnt;
6487}
6488EXPORT_SYMBOL(netdev_refcnt_read);
6489
2c53040f 6490/**
1da177e4 6491 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6492 * @dev: target net_device
1da177e4
LT
6493 *
6494 * This is called when unregistering network devices.
6495 *
6496 * Any protocol or device that holds a reference should register
6497 * for netdevice notification, and cleanup and put back the
6498 * reference if they receive an UNREGISTER event.
6499 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6500 * call dev_put.
1da177e4
LT
6501 */
6502static void netdev_wait_allrefs(struct net_device *dev)
6503{
6504 unsigned long rebroadcast_time, warning_time;
29b4433d 6505 int refcnt;
1da177e4 6506
e014debe
ED
6507 linkwatch_forget_dev(dev);
6508
1da177e4 6509 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6510 refcnt = netdev_refcnt_read(dev);
6511
6512 while (refcnt != 0) {
1da177e4 6513 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6514 rtnl_lock();
1da177e4
LT
6515
6516 /* Rebroadcast unregister notification */
056925ab 6517 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6518
748e2d93 6519 __rtnl_unlock();
0115e8e3 6520 rcu_barrier();
748e2d93
ED
6521 rtnl_lock();
6522
0115e8e3 6523 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6524 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6525 &dev->state)) {
6526 /* We must not have linkwatch events
6527 * pending on unregister. If this
6528 * happens, we simply run the queue
6529 * unscheduled, resulting in a noop
6530 * for this device.
6531 */
6532 linkwatch_run_queue();
6533 }
6534
6756ae4b 6535 __rtnl_unlock();
1da177e4
LT
6536
6537 rebroadcast_time = jiffies;
6538 }
6539
6540 msleep(250);
6541
29b4433d
ED
6542 refcnt = netdev_refcnt_read(dev);
6543
1da177e4 6544 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6545 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6546 dev->name, refcnt);
1da177e4
LT
6547 warning_time = jiffies;
6548 }
6549 }
6550}
6551
6552/* The sequence is:
6553 *
6554 * rtnl_lock();
6555 * ...
6556 * register_netdevice(x1);
6557 * register_netdevice(x2);
6558 * ...
6559 * unregister_netdevice(y1);
6560 * unregister_netdevice(y2);
6561 * ...
6562 * rtnl_unlock();
6563 * free_netdev(y1);
6564 * free_netdev(y2);
6565 *
58ec3b4d 6566 * We are invoked by rtnl_unlock().
1da177e4 6567 * This allows us to deal with problems:
b17a7c17 6568 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6569 * without deadlocking with linkwatch via keventd.
6570 * 2) Since we run with the RTNL semaphore not held, we can sleep
6571 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6572 *
6573 * We must not return until all unregister events added during
6574 * the interval the lock was held have been completed.
1da177e4 6575 */
1da177e4
LT
6576void netdev_run_todo(void)
6577{
626ab0e6 6578 struct list_head list;
1da177e4 6579
1da177e4 6580 /* Snapshot list, allow later requests */
626ab0e6 6581 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6582
6583 __rtnl_unlock();
626ab0e6 6584
0115e8e3
ED
6585
6586 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6587 if (!list_empty(&list))
6588 rcu_barrier();
6589
1da177e4
LT
6590 while (!list_empty(&list)) {
6591 struct net_device *dev
e5e26d75 6592 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6593 list_del(&dev->todo_list);
6594
748e2d93 6595 rtnl_lock();
0115e8e3 6596 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6597 __rtnl_unlock();
0115e8e3 6598
b17a7c17 6599 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6600 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6601 dev->name, dev->reg_state);
6602 dump_stack();
6603 continue;
6604 }
1da177e4 6605
b17a7c17 6606 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6607
152102c7 6608 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6609
b17a7c17 6610 netdev_wait_allrefs(dev);
1da177e4 6611
b17a7c17 6612 /* paranoia */
29b4433d 6613 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6614 BUG_ON(!list_empty(&dev->ptype_all));
6615 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6616 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6617 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6618 WARN_ON(dev->dn_ptr);
1da177e4 6619
b17a7c17
SH
6620 if (dev->destructor)
6621 dev->destructor(dev);
9093bbb2 6622
50624c93
EB
6623 /* Report a network device has been unregistered */
6624 rtnl_lock();
6625 dev_net(dev)->dev_unreg_count--;
6626 __rtnl_unlock();
6627 wake_up(&netdev_unregistering_wq);
6628
9093bbb2
SH
6629 /* Free network device */
6630 kobject_put(&dev->dev.kobj);
1da177e4 6631 }
1da177e4
LT
6632}
6633
3cfde79c
BH
6634/* Convert net_device_stats to rtnl_link_stats64. They have the same
6635 * fields in the same order, with only the type differing.
6636 */
77a1abf5
ED
6637void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6638 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6639{
6640#if BITS_PER_LONG == 64
77a1abf5
ED
6641 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6642 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6643#else
6644 size_t i, n = sizeof(*stats64) / sizeof(u64);
6645 const unsigned long *src = (const unsigned long *)netdev_stats;
6646 u64 *dst = (u64 *)stats64;
6647
6648 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6649 sizeof(*stats64) / sizeof(u64));
6650 for (i = 0; i < n; i++)
6651 dst[i] = src[i];
6652#endif
6653}
77a1abf5 6654EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6655
eeda3fd6
SH
6656/**
6657 * dev_get_stats - get network device statistics
6658 * @dev: device to get statistics from
28172739 6659 * @storage: place to store stats
eeda3fd6 6660 *
d7753516
BH
6661 * Get network statistics from device. Return @storage.
6662 * The device driver may provide its own method by setting
6663 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6664 * otherwise the internal statistics structure is used.
eeda3fd6 6665 */
d7753516
BH
6666struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6667 struct rtnl_link_stats64 *storage)
7004bf25 6668{
eeda3fd6
SH
6669 const struct net_device_ops *ops = dev->netdev_ops;
6670
28172739
ED
6671 if (ops->ndo_get_stats64) {
6672 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6673 ops->ndo_get_stats64(dev, storage);
6674 } else if (ops->ndo_get_stats) {
3cfde79c 6675 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6676 } else {
6677 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6678 }
caf586e5 6679 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6680 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6681 return storage;
c45d286e 6682}
eeda3fd6 6683EXPORT_SYMBOL(dev_get_stats);
c45d286e 6684
24824a09 6685struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6686{
24824a09 6687 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6688
24824a09
ED
6689#ifdef CONFIG_NET_CLS_ACT
6690 if (queue)
6691 return queue;
6692 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6693 if (!queue)
6694 return NULL;
6695 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6696 queue->qdisc = &noop_qdisc;
6697 queue->qdisc_sleeping = &noop_qdisc;
6698 rcu_assign_pointer(dev->ingress_queue, queue);
6699#endif
6700 return queue;
bb949fbd
DM
6701}
6702
2c60db03
ED
6703static const struct ethtool_ops default_ethtool_ops;
6704
d07d7507
SG
6705void netdev_set_default_ethtool_ops(struct net_device *dev,
6706 const struct ethtool_ops *ops)
6707{
6708 if (dev->ethtool_ops == &default_ethtool_ops)
6709 dev->ethtool_ops = ops;
6710}
6711EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6712
74d332c1
ED
6713void netdev_freemem(struct net_device *dev)
6714{
6715 char *addr = (char *)dev - dev->padded;
6716
4cb28970 6717 kvfree(addr);
74d332c1
ED
6718}
6719
1da177e4 6720/**
36909ea4 6721 * alloc_netdev_mqs - allocate network device
c835a677
TG
6722 * @sizeof_priv: size of private data to allocate space for
6723 * @name: device name format string
6724 * @name_assign_type: origin of device name
6725 * @setup: callback to initialize device
6726 * @txqs: the number of TX subqueues to allocate
6727 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6728 *
6729 * Allocates a struct net_device with private data area for driver use
90e51adf 6730 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6731 * for each queue on the device.
1da177e4 6732 */
36909ea4 6733struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6734 unsigned char name_assign_type,
36909ea4
TH
6735 void (*setup)(struct net_device *),
6736 unsigned int txqs, unsigned int rxqs)
1da177e4 6737{
1da177e4 6738 struct net_device *dev;
7943986c 6739 size_t alloc_size;
1ce8e7b5 6740 struct net_device *p;
1da177e4 6741
b6fe17d6
SH
6742 BUG_ON(strlen(name) >= sizeof(dev->name));
6743
36909ea4 6744 if (txqs < 1) {
7b6cd1ce 6745 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6746 return NULL;
6747 }
6748
a953be53 6749#ifdef CONFIG_SYSFS
36909ea4 6750 if (rxqs < 1) {
7b6cd1ce 6751 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6752 return NULL;
6753 }
6754#endif
6755
fd2ea0a7 6756 alloc_size = sizeof(struct net_device);
d1643d24
AD
6757 if (sizeof_priv) {
6758 /* ensure 32-byte alignment of private area */
1ce8e7b5 6759 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6760 alloc_size += sizeof_priv;
6761 }
6762 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6763 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6764
74d332c1
ED
6765 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6766 if (!p)
6767 p = vzalloc(alloc_size);
62b5942a 6768 if (!p)
1da177e4 6769 return NULL;
1da177e4 6770
1ce8e7b5 6771 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6772 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6773
29b4433d
ED
6774 dev->pcpu_refcnt = alloc_percpu(int);
6775 if (!dev->pcpu_refcnt)
74d332c1 6776 goto free_dev;
ab9c73cc 6777
ab9c73cc 6778 if (dev_addr_init(dev))
29b4433d 6779 goto free_pcpu;
ab9c73cc 6780
22bedad3 6781 dev_mc_init(dev);
a748ee24 6782 dev_uc_init(dev);
ccffad25 6783
c346dca1 6784 dev_net_set(dev, &init_net);
1da177e4 6785
8d3bdbd5 6786 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6787 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6788 dev->gso_min_segs = 0;
8d3bdbd5 6789
8d3bdbd5
DM
6790 INIT_LIST_HEAD(&dev->napi_list);
6791 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6792 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6793 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6794 INIT_LIST_HEAD(&dev->adj_list.upper);
6795 INIT_LIST_HEAD(&dev->adj_list.lower);
6796 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6797 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
6798 INIT_LIST_HEAD(&dev->ptype_all);
6799 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 6800 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
6801 setup(dev);
6802
36909ea4
TH
6803 dev->num_tx_queues = txqs;
6804 dev->real_num_tx_queues = txqs;
ed9af2e8 6805 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6806 goto free_all;
e8a0464c 6807
a953be53 6808#ifdef CONFIG_SYSFS
36909ea4
TH
6809 dev->num_rx_queues = rxqs;
6810 dev->real_num_rx_queues = rxqs;
fe822240 6811 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6812 goto free_all;
df334545 6813#endif
0a9627f2 6814
1da177e4 6815 strcpy(dev->name, name);
c835a677 6816 dev->name_assign_type = name_assign_type;
cbda10fa 6817 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6818 if (!dev->ethtool_ops)
6819 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6820 return dev;
ab9c73cc 6821
8d3bdbd5
DM
6822free_all:
6823 free_netdev(dev);
6824 return NULL;
6825
29b4433d
ED
6826free_pcpu:
6827 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6828free_dev:
6829 netdev_freemem(dev);
ab9c73cc 6830 return NULL;
1da177e4 6831}
36909ea4 6832EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6833
6834/**
6835 * free_netdev - free network device
6836 * @dev: device
6837 *
4ec93edb
YH
6838 * This function does the last stage of destroying an allocated device
6839 * interface. The reference to the device object is released.
1da177e4
LT
6840 * If this is the last reference then it will be freed.
6841 */
6842void free_netdev(struct net_device *dev)
6843{
d565b0a1
HX
6844 struct napi_struct *p, *n;
6845
f3005d7f
DL
6846 release_net(dev_net(dev));
6847
60877a32 6848 netif_free_tx_queues(dev);
a953be53 6849#ifdef CONFIG_SYSFS
10595902 6850 kvfree(dev->_rx);
fe822240 6851#endif
e8a0464c 6852
33d480ce 6853 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6854
f001fde5
JP
6855 /* Flush device addresses */
6856 dev_addr_flush(dev);
6857
d565b0a1
HX
6858 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6859 netif_napi_del(p);
6860
29b4433d
ED
6861 free_percpu(dev->pcpu_refcnt);
6862 dev->pcpu_refcnt = NULL;
6863
3041a069 6864 /* Compatibility with error handling in drivers */
1da177e4 6865 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6866 netdev_freemem(dev);
1da177e4
LT
6867 return;
6868 }
6869
6870 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6871 dev->reg_state = NETREG_RELEASED;
6872
43cb76d9
GKH
6873 /* will free via device release */
6874 put_device(&dev->dev);
1da177e4 6875}
d1b19dff 6876EXPORT_SYMBOL(free_netdev);
4ec93edb 6877
f0db275a
SH
6878/**
6879 * synchronize_net - Synchronize with packet receive processing
6880 *
6881 * Wait for packets currently being received to be done.
6882 * Does not block later packets from starting.
6883 */
4ec93edb 6884void synchronize_net(void)
1da177e4
LT
6885{
6886 might_sleep();
be3fc413
ED
6887 if (rtnl_is_locked())
6888 synchronize_rcu_expedited();
6889 else
6890 synchronize_rcu();
1da177e4 6891}
d1b19dff 6892EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6893
6894/**
44a0873d 6895 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6896 * @dev: device
44a0873d 6897 * @head: list
6ebfbc06 6898 *
1da177e4 6899 * This function shuts down a device interface and removes it
d59b54b1 6900 * from the kernel tables.
44a0873d 6901 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6902 *
6903 * Callers must hold the rtnl semaphore. You may want
6904 * unregister_netdev() instead of this.
6905 */
6906
44a0873d 6907void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6908{
a6620712
HX
6909 ASSERT_RTNL();
6910
44a0873d 6911 if (head) {
9fdce099 6912 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6913 } else {
6914 rollback_registered(dev);
6915 /* Finish processing unregister after unlock */
6916 net_set_todo(dev);
6917 }
1da177e4 6918}
44a0873d 6919EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6920
9b5e383c
ED
6921/**
6922 * unregister_netdevice_many - unregister many devices
6923 * @head: list of devices
87757a91
ED
6924 *
6925 * Note: As most callers use a stack allocated list_head,
6926 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6927 */
6928void unregister_netdevice_many(struct list_head *head)
6929{
6930 struct net_device *dev;
6931
6932 if (!list_empty(head)) {
6933 rollback_registered_many(head);
6934 list_for_each_entry(dev, head, unreg_list)
6935 net_set_todo(dev);
87757a91 6936 list_del(head);
9b5e383c
ED
6937 }
6938}
63c8099d 6939EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6940
1da177e4
LT
6941/**
6942 * unregister_netdev - remove device from the kernel
6943 * @dev: device
6944 *
6945 * This function shuts down a device interface and removes it
d59b54b1 6946 * from the kernel tables.
1da177e4
LT
6947 *
6948 * This is just a wrapper for unregister_netdevice that takes
6949 * the rtnl semaphore. In general you want to use this and not
6950 * unregister_netdevice.
6951 */
6952void unregister_netdev(struct net_device *dev)
6953{
6954 rtnl_lock();
6955 unregister_netdevice(dev);
6956 rtnl_unlock();
6957}
1da177e4
LT
6958EXPORT_SYMBOL(unregister_netdev);
6959
ce286d32
EB
6960/**
6961 * dev_change_net_namespace - move device to different nethost namespace
6962 * @dev: device
6963 * @net: network namespace
6964 * @pat: If not NULL name pattern to try if the current device name
6965 * is already taken in the destination network namespace.
6966 *
6967 * This function shuts down a device interface and moves it
6968 * to a new network namespace. On success 0 is returned, on
6969 * a failure a netagive errno code is returned.
6970 *
6971 * Callers must hold the rtnl semaphore.
6972 */
6973
6974int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6975{
ce286d32
EB
6976 int err;
6977
6978 ASSERT_RTNL();
6979
6980 /* Don't allow namespace local devices to be moved. */
6981 err = -EINVAL;
6982 if (dev->features & NETIF_F_NETNS_LOCAL)
6983 goto out;
6984
6985 /* Ensure the device has been registrered */
ce286d32
EB
6986 if (dev->reg_state != NETREG_REGISTERED)
6987 goto out;
6988
6989 /* Get out if there is nothing todo */
6990 err = 0;
878628fb 6991 if (net_eq(dev_net(dev), net))
ce286d32
EB
6992 goto out;
6993
6994 /* Pick the destination device name, and ensure
6995 * we can use it in the destination network namespace.
6996 */
6997 err = -EEXIST;
d9031024 6998 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6999 /* We get here if we can't use the current device name */
7000 if (!pat)
7001 goto out;
828de4f6 7002 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7003 goto out;
7004 }
7005
7006 /*
7007 * And now a mini version of register_netdevice unregister_netdevice.
7008 */
7009
7010 /* If device is running close it first. */
9b772652 7011 dev_close(dev);
ce286d32
EB
7012
7013 /* And unlink it from device chain */
7014 err = -ENODEV;
7015 unlist_netdevice(dev);
7016
7017 synchronize_net();
7018
7019 /* Shutdown queueing discipline. */
7020 dev_shutdown(dev);
7021
7022 /* Notify protocols, that we are about to destroy
7023 this device. They should clean all the things.
3b27e105
DL
7024
7025 Note that dev->reg_state stays at NETREG_REGISTERED.
7026 This is wanted because this way 8021q and macvlan know
7027 the device is just moving and can keep their slaves up.
ce286d32
EB
7028 */
7029 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7030 rcu_barrier();
7031 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7032 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7033
7034 /*
7035 * Flush the unicast and multicast chains
7036 */
a748ee24 7037 dev_uc_flush(dev);
22bedad3 7038 dev_mc_flush(dev);
ce286d32 7039
4e66ae2e
SH
7040 /* Send a netdev-removed uevent to the old namespace */
7041 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7042 netdev_adjacent_del_links(dev);
4e66ae2e 7043
ce286d32 7044 /* Actually switch the network namespace */
c346dca1 7045 dev_net_set(dev, net);
ce286d32 7046
ce286d32
EB
7047 /* If there is an ifindex conflict assign a new one */
7048 if (__dev_get_by_index(net, dev->ifindex)) {
7049 int iflink = (dev->iflink == dev->ifindex);
7050 dev->ifindex = dev_new_index(net);
7051 if (iflink)
7052 dev->iflink = dev->ifindex;
7053 }
7054
4e66ae2e
SH
7055 /* Send a netdev-add uevent to the new namespace */
7056 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7057 netdev_adjacent_add_links(dev);
4e66ae2e 7058
8b41d188 7059 /* Fixup kobjects */
a1b3f594 7060 err = device_rename(&dev->dev, dev->name);
8b41d188 7061 WARN_ON(err);
ce286d32
EB
7062
7063 /* Add the device back in the hashes */
7064 list_netdevice(dev);
7065
7066 /* Notify protocols, that a new device appeared. */
7067 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7068
d90a909e
EB
7069 /*
7070 * Prevent userspace races by waiting until the network
7071 * device is fully setup before sending notifications.
7072 */
7f294054 7073 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7074
ce286d32
EB
7075 synchronize_net();
7076 err = 0;
7077out:
7078 return err;
7079}
463d0183 7080EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7081
1da177e4
LT
7082static int dev_cpu_callback(struct notifier_block *nfb,
7083 unsigned long action,
7084 void *ocpu)
7085{
7086 struct sk_buff **list_skb;
1da177e4
LT
7087 struct sk_buff *skb;
7088 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7089 struct softnet_data *sd, *oldsd;
7090
8bb78442 7091 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7092 return NOTIFY_OK;
7093
7094 local_irq_disable();
7095 cpu = smp_processor_id();
7096 sd = &per_cpu(softnet_data, cpu);
7097 oldsd = &per_cpu(softnet_data, oldcpu);
7098
7099 /* Find end of our completion_queue. */
7100 list_skb = &sd->completion_queue;
7101 while (*list_skb)
7102 list_skb = &(*list_skb)->next;
7103 /* Append completion queue from offline CPU. */
7104 *list_skb = oldsd->completion_queue;
7105 oldsd->completion_queue = NULL;
7106
1da177e4 7107 /* Append output queue from offline CPU. */
a9cbd588
CG
7108 if (oldsd->output_queue) {
7109 *sd->output_queue_tailp = oldsd->output_queue;
7110 sd->output_queue_tailp = oldsd->output_queue_tailp;
7111 oldsd->output_queue = NULL;
7112 oldsd->output_queue_tailp = &oldsd->output_queue;
7113 }
ac64da0b
ED
7114 /* Append NAPI poll list from offline CPU, with one exception :
7115 * process_backlog() must be called by cpu owning percpu backlog.
7116 * We properly handle process_queue & input_pkt_queue later.
7117 */
7118 while (!list_empty(&oldsd->poll_list)) {
7119 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7120 struct napi_struct,
7121 poll_list);
7122
7123 list_del_init(&napi->poll_list);
7124 if (napi->poll == process_backlog)
7125 napi->state = 0;
7126 else
7127 ____napi_schedule(sd, napi);
264524d5 7128 }
1da177e4
LT
7129
7130 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7131 local_irq_enable();
7132
7133 /* Process offline CPU's input_pkt_queue */
76cc8b13 7134 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ae78dbfa 7135 netif_rx_internal(skb);
76cc8b13 7136 input_queue_head_incr(oldsd);
fec5e652 7137 }
ac64da0b 7138 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
ae78dbfa 7139 netif_rx_internal(skb);
76cc8b13
TH
7140 input_queue_head_incr(oldsd);
7141 }
1da177e4
LT
7142
7143 return NOTIFY_OK;
7144}
1da177e4
LT
7145
7146
7f353bf2 7147/**
b63365a2
HX
7148 * netdev_increment_features - increment feature set by one
7149 * @all: current feature set
7150 * @one: new feature set
7151 * @mask: mask feature set
7f353bf2
HX
7152 *
7153 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7154 * @one to the master device with current feature set @all. Will not
7155 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7156 */
c8f44aff
MM
7157netdev_features_t netdev_increment_features(netdev_features_t all,
7158 netdev_features_t one, netdev_features_t mask)
b63365a2 7159{
1742f183
MM
7160 if (mask & NETIF_F_GEN_CSUM)
7161 mask |= NETIF_F_ALL_CSUM;
7162 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7163
1742f183
MM
7164 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7165 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7166
1742f183
MM
7167 /* If one device supports hw checksumming, set for all. */
7168 if (all & NETIF_F_GEN_CSUM)
7169 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7170
7171 return all;
7172}
b63365a2 7173EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7174
430f03cd 7175static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7176{
7177 int i;
7178 struct hlist_head *hash;
7179
7180 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7181 if (hash != NULL)
7182 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7183 INIT_HLIST_HEAD(&hash[i]);
7184
7185 return hash;
7186}
7187
881d966b 7188/* Initialize per network namespace state */
4665079c 7189static int __net_init netdev_init(struct net *net)
881d966b 7190{
734b6541
RM
7191 if (net != &init_net)
7192 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7193
30d97d35
PE
7194 net->dev_name_head = netdev_create_hash();
7195 if (net->dev_name_head == NULL)
7196 goto err_name;
881d966b 7197
30d97d35
PE
7198 net->dev_index_head = netdev_create_hash();
7199 if (net->dev_index_head == NULL)
7200 goto err_idx;
881d966b
EB
7201
7202 return 0;
30d97d35
PE
7203
7204err_idx:
7205 kfree(net->dev_name_head);
7206err_name:
7207 return -ENOMEM;
881d966b
EB
7208}
7209
f0db275a
SH
7210/**
7211 * netdev_drivername - network driver for the device
7212 * @dev: network device
f0db275a
SH
7213 *
7214 * Determine network driver for device.
7215 */
3019de12 7216const char *netdev_drivername(const struct net_device *dev)
6579e57b 7217{
cf04a4c7
SH
7218 const struct device_driver *driver;
7219 const struct device *parent;
3019de12 7220 const char *empty = "";
6579e57b
AV
7221
7222 parent = dev->dev.parent;
6579e57b 7223 if (!parent)
3019de12 7224 return empty;
6579e57b
AV
7225
7226 driver = parent->driver;
7227 if (driver && driver->name)
3019de12
DM
7228 return driver->name;
7229 return empty;
6579e57b
AV
7230}
7231
6ea754eb
JP
7232static void __netdev_printk(const char *level, const struct net_device *dev,
7233 struct va_format *vaf)
256df2f3 7234{
b004ff49 7235 if (dev && dev->dev.parent) {
6ea754eb
JP
7236 dev_printk_emit(level[1] - '0',
7237 dev->dev.parent,
7238 "%s %s %s%s: %pV",
7239 dev_driver_string(dev->dev.parent),
7240 dev_name(dev->dev.parent),
7241 netdev_name(dev), netdev_reg_state(dev),
7242 vaf);
b004ff49 7243 } else if (dev) {
6ea754eb
JP
7244 printk("%s%s%s: %pV",
7245 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7246 } else {
6ea754eb 7247 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7248 }
256df2f3
JP
7249}
7250
6ea754eb
JP
7251void netdev_printk(const char *level, const struct net_device *dev,
7252 const char *format, ...)
256df2f3
JP
7253{
7254 struct va_format vaf;
7255 va_list args;
256df2f3
JP
7256
7257 va_start(args, format);
7258
7259 vaf.fmt = format;
7260 vaf.va = &args;
7261
6ea754eb 7262 __netdev_printk(level, dev, &vaf);
b004ff49 7263
256df2f3 7264 va_end(args);
256df2f3
JP
7265}
7266EXPORT_SYMBOL(netdev_printk);
7267
7268#define define_netdev_printk_level(func, level) \
6ea754eb 7269void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7270{ \
256df2f3
JP
7271 struct va_format vaf; \
7272 va_list args; \
7273 \
7274 va_start(args, fmt); \
7275 \
7276 vaf.fmt = fmt; \
7277 vaf.va = &args; \
7278 \
6ea754eb 7279 __netdev_printk(level, dev, &vaf); \
b004ff49 7280 \
256df2f3 7281 va_end(args); \
256df2f3
JP
7282} \
7283EXPORT_SYMBOL(func);
7284
7285define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7286define_netdev_printk_level(netdev_alert, KERN_ALERT);
7287define_netdev_printk_level(netdev_crit, KERN_CRIT);
7288define_netdev_printk_level(netdev_err, KERN_ERR);
7289define_netdev_printk_level(netdev_warn, KERN_WARNING);
7290define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7291define_netdev_printk_level(netdev_info, KERN_INFO);
7292
4665079c 7293static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7294{
7295 kfree(net->dev_name_head);
7296 kfree(net->dev_index_head);
7297}
7298
022cbae6 7299static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7300 .init = netdev_init,
7301 .exit = netdev_exit,
7302};
7303
4665079c 7304static void __net_exit default_device_exit(struct net *net)
ce286d32 7305{
e008b5fc 7306 struct net_device *dev, *aux;
ce286d32 7307 /*
e008b5fc 7308 * Push all migratable network devices back to the
ce286d32
EB
7309 * initial network namespace
7310 */
7311 rtnl_lock();
e008b5fc 7312 for_each_netdev_safe(net, dev, aux) {
ce286d32 7313 int err;
aca51397 7314 char fb_name[IFNAMSIZ];
ce286d32
EB
7315
7316 /* Ignore unmoveable devices (i.e. loopback) */
7317 if (dev->features & NETIF_F_NETNS_LOCAL)
7318 continue;
7319
e008b5fc
EB
7320 /* Leave virtual devices for the generic cleanup */
7321 if (dev->rtnl_link_ops)
7322 continue;
d0c082ce 7323
25985edc 7324 /* Push remaining network devices to init_net */
aca51397
PE
7325 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7326 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7327 if (err) {
7b6cd1ce
JP
7328 pr_emerg("%s: failed to move %s to init_net: %d\n",
7329 __func__, dev->name, err);
aca51397 7330 BUG();
ce286d32
EB
7331 }
7332 }
7333 rtnl_unlock();
7334}
7335
50624c93
EB
7336static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7337{
7338 /* Return with the rtnl_lock held when there are no network
7339 * devices unregistering in any network namespace in net_list.
7340 */
7341 struct net *net;
7342 bool unregistering;
ff960a73 7343 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7344
ff960a73 7345 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7346 for (;;) {
50624c93
EB
7347 unregistering = false;
7348 rtnl_lock();
7349 list_for_each_entry(net, net_list, exit_list) {
7350 if (net->dev_unreg_count > 0) {
7351 unregistering = true;
7352 break;
7353 }
7354 }
7355 if (!unregistering)
7356 break;
7357 __rtnl_unlock();
ff960a73
PZ
7358
7359 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7360 }
ff960a73 7361 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7362}
7363
04dc7f6b
EB
7364static void __net_exit default_device_exit_batch(struct list_head *net_list)
7365{
7366 /* At exit all network devices most be removed from a network
b595076a 7367 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7368 * Do this across as many network namespaces as possible to
7369 * improve batching efficiency.
7370 */
7371 struct net_device *dev;
7372 struct net *net;
7373 LIST_HEAD(dev_kill_list);
7374
50624c93
EB
7375 /* To prevent network device cleanup code from dereferencing
7376 * loopback devices or network devices that have been freed
7377 * wait here for all pending unregistrations to complete,
7378 * before unregistring the loopback device and allowing the
7379 * network namespace be freed.
7380 *
7381 * The netdev todo list containing all network devices
7382 * unregistrations that happen in default_device_exit_batch
7383 * will run in the rtnl_unlock() at the end of
7384 * default_device_exit_batch.
7385 */
7386 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7387 list_for_each_entry(net, net_list, exit_list) {
7388 for_each_netdev_reverse(net, dev) {
b0ab2fab 7389 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7390 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7391 else
7392 unregister_netdevice_queue(dev, &dev_kill_list);
7393 }
7394 }
7395 unregister_netdevice_many(&dev_kill_list);
7396 rtnl_unlock();
7397}
7398
022cbae6 7399static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7400 .exit = default_device_exit,
04dc7f6b 7401 .exit_batch = default_device_exit_batch,
ce286d32
EB
7402};
7403
1da177e4
LT
7404/*
7405 * Initialize the DEV module. At boot time this walks the device list and
7406 * unhooks any devices that fail to initialise (normally hardware not
7407 * present) and leaves us with a valid list of present and active devices.
7408 *
7409 */
7410
7411/*
7412 * This is called single threaded during boot, so no need
7413 * to take the rtnl semaphore.
7414 */
7415static int __init net_dev_init(void)
7416{
7417 int i, rc = -ENOMEM;
7418
7419 BUG_ON(!dev_boot_phase);
7420
1da177e4
LT
7421 if (dev_proc_init())
7422 goto out;
7423
8b41d188 7424 if (netdev_kobject_init())
1da177e4
LT
7425 goto out;
7426
7427 INIT_LIST_HEAD(&ptype_all);
82d8a867 7428 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7429 INIT_LIST_HEAD(&ptype_base[i]);
7430
62532da9
VY
7431 INIT_LIST_HEAD(&offload_base);
7432
881d966b
EB
7433 if (register_pernet_subsys(&netdev_net_ops))
7434 goto out;
1da177e4
LT
7435
7436 /*
7437 * Initialise the packet receive queues.
7438 */
7439
6f912042 7440 for_each_possible_cpu(i) {
e36fa2f7 7441 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7442
e36fa2f7 7443 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7444 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7445 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7446 sd->output_queue_tailp = &sd->output_queue;
df334545 7447#ifdef CONFIG_RPS
e36fa2f7
ED
7448 sd->csd.func = rps_trigger_softirq;
7449 sd->csd.info = sd;
e36fa2f7 7450 sd->cpu = i;
1e94d72f 7451#endif
0a9627f2 7452
e36fa2f7
ED
7453 sd->backlog.poll = process_backlog;
7454 sd->backlog.weight = weight_p;
1da177e4
LT
7455 }
7456
1da177e4
LT
7457 dev_boot_phase = 0;
7458
505d4f73
EB
7459 /* The loopback device is special if any other network devices
7460 * is present in a network namespace the loopback device must
7461 * be present. Since we now dynamically allocate and free the
7462 * loopback device ensure this invariant is maintained by
7463 * keeping the loopback device as the first device on the
7464 * list of network devices. Ensuring the loopback devices
7465 * is the first device that appears and the last network device
7466 * that disappears.
7467 */
7468 if (register_pernet_device(&loopback_net_ops))
7469 goto out;
7470
7471 if (register_pernet_device(&default_device_ops))
7472 goto out;
7473
962cf36c
CM
7474 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7475 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7476
7477 hotcpu_notifier(dev_cpu_callback, 0);
7478 dst_init();
1da177e4
LT
7479 rc = 0;
7480out:
7481 return rc;
7482}
7483
7484subsys_initcall(net_dev_init);
This page took 1.827403 seconds and 5 git commands to generate.