mlx4: mlx4_en_low_latency_recv() called with BH disabled
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4 101#include <net/dst.h>
fc4099f1 102#include <net/dst_metadata.h>
1da177e4
LT
103#include <net/pkt_sched.h>
104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
5acbbd42 130#include <linux/pci.h>
caeda9b9 131#include <linux/inetdevice.h>
c445477d 132#include <linux/cpu_rmap.h>
c5905afb 133#include <linux/static_key.h>
af12fa6e 134#include <linux/hashtable.h>
60877a32 135#include <linux/vmalloc.h>
529d0489 136#include <linux/if_macvlan.h>
e7fd2885 137#include <linux/errqueue.h>
3b47d303 138#include <linux/hrtimer.h>
e687ad60 139#include <linux/netfilter_ingress.h>
1da177e4 140
342709ef
PE
141#include "net-sysfs.h"
142
d565b0a1
HX
143/* Instead of increasing this, you should create a hash table. */
144#define MAX_GRO_SKBS 8
145
5d38a079
HX
146/* This should be increased if a protocol with a bigger head is added. */
147#define GRO_MAX_HEAD (MAX_HEADER + 128)
148
1da177e4 149static DEFINE_SPINLOCK(ptype_lock);
62532da9 150static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
151struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152struct list_head ptype_all __read_mostly; /* Taps */
62532da9 153static struct list_head offload_base __read_mostly;
1da177e4 154
ae78dbfa 155static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
156static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
ae78dbfa 159
1da177e4 160/*
7562f876 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
162 * semaphore.
163 *
c6d14c84 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
7562f876 167 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
1da177e4 179DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
180EXPORT_SYMBOL(dev_base_lock);
181
af12fa6e
ET
182/* protects napi_hash addition/deletion and napi_gen_id */
183static DEFINE_SPINLOCK(napi_hash_lock);
184
52bd2d62 185static unsigned int napi_gen_id = NR_CPUS;
af12fa6e
ET
186static DEFINE_HASHTABLE(napi_hash, 8);
187
18afa4b0 188static seqcount_t devnet_rename_seq;
c91f6df2 189
4e985ada
TG
190static inline void dev_base_seq_inc(struct net *net)
191{
192 while (++net->dev_base_seq == 0);
193}
194
881d966b 195static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 196{
95c96174
ED
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
08e9897d 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
200}
201
881d966b 202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 203{
7c28bd0b 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
205}
206
e36fa2f7 207static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
208{
209#ifdef CONFIG_RPS
e36fa2f7 210 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
211#endif
212}
213
e36fa2f7 214static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
215{
216#ifdef CONFIG_RPS
e36fa2f7 217 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
218#endif
219}
220
ce286d32 221/* Device list insertion */
53759be9 222static void list_netdevice(struct net_device *dev)
ce286d32 223{
c346dca1 224 struct net *net = dev_net(dev);
ce286d32
EB
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
c6d14c84 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
ce286d32 233 write_unlock_bh(&dev_base_lock);
4e985ada
TG
234
235 dev_base_seq_inc(net);
ce286d32
EB
236}
237
fb699dfd
ED
238/* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
ce286d32
EB
241static void unlist_netdevice(struct net_device *dev)
242{
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
c6d14c84 247 list_del_rcu(&dev->dev_list);
72c9528b 248 hlist_del_rcu(&dev->name_hlist);
fb699dfd 249 hlist_del_rcu(&dev->index_hlist);
ce286d32 250 write_unlock_bh(&dev_base_lock);
4e985ada
TG
251
252 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
253}
254
1da177e4
LT
255/*
256 * Our notifier list
257 */
258
f07d5b94 259static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
260
261/*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
bea3348e 265
9958da05 266DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 267EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 268
cf508b12 269#ifdef CONFIG_LOCKDEP
723e98b7 270/*
c773e847 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
272 * according to dev->type
273 */
274static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 290
36cbd3dc 291static const char *const netdev_lock_name[] =
723e98b7
JP
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
307
308static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 309static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
310
311static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312{
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320}
321
cf508b12
DM
322static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
723e98b7
JP
324{
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330}
cf508b12
DM
331
332static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333{
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340}
723e98b7 341#else
cf508b12
DM
342static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344{
345}
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
347{
348}
349#endif
1da177e4
LT
350
351/*******************************************************************************
352
353 Protocol management and registration routines
354
355*******************************************************************************/
356
1da177e4
LT
357/*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
c07b68e8
ED
373static inline struct list_head *ptype_head(const struct packet_type *pt)
374{
375 if (pt->type == htons(ETH_P_ALL))
7866a621 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 377 else
7866a621
SN
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
380}
381
1da177e4
LT
382/**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
4ec93edb 390 * This call does not sleep therefore it can not
1da177e4
LT
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
395void dev_add_pack(struct packet_type *pt)
396{
c07b68e8 397 struct list_head *head = ptype_head(pt);
1da177e4 398
c07b68e8
ED
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
1da177e4 402}
d1b19dff 403EXPORT_SYMBOL(dev_add_pack);
1da177e4 404
1da177e4
LT
405/**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
4ec93edb 412 * returns.
1da177e4
LT
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
418void __dev_remove_pack(struct packet_type *pt)
419{
c07b68e8 420 struct list_head *head = ptype_head(pt);
1da177e4
LT
421 struct packet_type *pt1;
422
c07b68e8 423 spin_lock(&ptype_lock);
1da177e4
LT
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
7b6cd1ce 432 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 433out:
c07b68e8 434 spin_unlock(&ptype_lock);
1da177e4 435}
d1b19dff
ED
436EXPORT_SYMBOL(__dev_remove_pack);
437
1da177e4
LT
438/**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
450void dev_remove_pack(struct packet_type *pt)
451{
452 __dev_remove_pack(pt);
4ec93edb 453
1da177e4
LT
454 synchronize_net();
455}
d1b19dff 456EXPORT_SYMBOL(dev_remove_pack);
1da177e4 457
62532da9
VY
458
459/**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
471void dev_add_offload(struct packet_offload *po)
472{
bdef7de4 473 struct packet_offload *elem;
62532da9
VY
474
475 spin_lock(&offload_lock);
bdef7de4
DM
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
481 spin_unlock(&offload_lock);
482}
483EXPORT_SYMBOL(dev_add_offload);
484
485/**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
1d143d9f 498static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
499{
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
c53aa505 503 spin_lock(&offload_lock);
62532da9
VY
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513out:
c53aa505 514 spin_unlock(&offload_lock);
62532da9 515}
62532da9
VY
516
517/**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
529void dev_remove_offload(struct packet_offload *po)
530{
531 __dev_remove_offload(po);
532
533 synchronize_net();
534}
535EXPORT_SYMBOL(dev_remove_offload);
536
1da177e4
LT
537/******************************************************************************
538
539 Device Boot-time Settings Routines
540
541*******************************************************************************/
542
543/* Boot time configuration table */
544static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546/**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
555static int netdev_boot_setup_add(char *name, struct ifmap *map)
556{
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 564 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571}
572
573/**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
582int netdev_boot_setup_check(struct net_device *dev)
583{
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 589 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598}
d1b19dff 599EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
600
601
602/**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
612unsigned long netdev_boot_base(const char *prefix, int unit)
613{
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
881d966b 624 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631}
632
633/*
634 * Saves at boot time configured settings for any netdevice.
635 */
636int __init netdev_boot_setup(char *str)
637{
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658}
659
660__setup("netdev=", netdev_boot_setup);
661
662/*******************************************************************************
663
664 Device Interface Subroutines
665
666*******************************************************************************/
667
a54acb3a
ND
668/**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676int dev_get_iflink(const struct net_device *dev)
677{
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
7a66bbc9 681 return dev->ifindex;
a54acb3a
ND
682}
683EXPORT_SYMBOL(dev_get_iflink);
684
fc4099f1
PS
685/**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
694int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695{
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708}
709EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
1da177e4
LT
711/**
712 * __dev_get_by_name - find a device by its name
c4ea43c5 713 * @net: the applicable net namespace
1da177e4
LT
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
881d966b 723struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 724{
0bd8d536
ED
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 727
b67bfe0d 728 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
0bd8d536 731
1da177e4
LT
732 return NULL;
733}
d1b19dff 734EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 735
72c9528b
ED
736/**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
748struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749{
72c9528b
ED
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
b67bfe0d 753 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
1da177e4
LT
761/**
762 * dev_get_by_name - find a device by its name
c4ea43c5 763 * @net: the applicable net namespace
1da177e4
LT
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
881d966b 773struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
774{
775 struct net_device *dev;
776
72c9528b
ED
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
779 if (dev)
780 dev_hold(dev);
72c9528b 781 rcu_read_unlock();
1da177e4
LT
782 return dev;
783}
d1b19dff 784EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
785
786/**
787 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
881d966b 798struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 799{
0bd8d536
ED
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 802
b67bfe0d 803 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
804 if (dev->ifindex == ifindex)
805 return dev;
0bd8d536 806
1da177e4
LT
807 return NULL;
808}
d1b19dff 809EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 810
fb699dfd
ED
811/**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
822struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823{
fb699dfd
ED
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
b67bfe0d 827 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832}
833EXPORT_SYMBOL(dev_get_by_index_rcu);
834
1da177e4
LT
835
836/**
837 * dev_get_by_index - find a device by its ifindex
c4ea43c5 838 * @net: the applicable net namespace
1da177e4
LT
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
881d966b 847struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
848{
849 struct net_device *dev;
850
fb699dfd
ED
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
853 if (dev)
854 dev_hold(dev);
fb699dfd 855 rcu_read_unlock();
1da177e4
LT
856 return dev;
857}
d1b19dff 858EXPORT_SYMBOL(dev_get_by_index);
1da177e4 859
5dbe7c17
NS
860/**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
870int netdev_get_name(struct net *net, char *name, int ifindex)
871{
872 struct net_device *dev;
873 unsigned int seq;
874
875retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892}
893
1da177e4 894/**
941666c2 895 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 896 * @net: the applicable net namespace
1da177e4
LT
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
941666c2 903 * The returned device has not had its ref count increased
1da177e4
LT
904 * and the caller must therefore be careful about locking
905 *
1da177e4
LT
906 */
907
941666c2
ED
908struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
1da177e4
LT
910{
911 struct net_device *dev;
912
941666c2 913 for_each_netdev_rcu(net, dev)
1da177e4
LT
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
916 return dev;
917
918 return NULL;
1da177e4 919}
941666c2 920EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 921
881d966b 922struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
923{
924 struct net_device *dev;
925
4e9cac2b 926 ASSERT_RTNL();
881d966b 927 for_each_netdev(net, dev)
4e9cac2b 928 if (dev->type == type)
7562f876
PE
929 return dev;
930
931 return NULL;
4e9cac2b 932}
4e9cac2b
PM
933EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
881d966b 935struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 936{
99fe3c39 937 struct net_device *dev, *ret = NULL;
4e9cac2b 938
99fe3c39
ED
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
1da177e4 948}
1da177e4
LT
949EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951/**
6c555490 952 * __dev_get_by_flags - find any device with given flags
c4ea43c5 953 * @net: the applicable net namespace
1da177e4
LT
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 958 * is not found or a pointer to the device. Must be called inside
6c555490 959 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
960 */
961
6c555490
WC
962struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
1da177e4 964{
7562f876 965 struct net_device *dev, *ret;
1da177e4 966
6c555490
WC
967 ASSERT_RTNL();
968
7562f876 969 ret = NULL;
6c555490 970 for_each_netdev(net, dev) {
1da177e4 971 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 972 ret = dev;
1da177e4
LT
973 break;
974 }
975 }
7562f876 976 return ret;
1da177e4 977}
6c555490 978EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
979
980/**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
c7fa9d18
DM
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
1da177e4 987 */
95f050bf 988bool dev_valid_name(const char *name)
1da177e4 989{
c7fa9d18 990 if (*name == '\0')
95f050bf 991 return false;
b6fe17d6 992 if (strlen(name) >= IFNAMSIZ)
95f050bf 993 return false;
c7fa9d18 994 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 995 return false;
c7fa9d18
DM
996
997 while (*name) {
a4176a93 998 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 999 return false;
c7fa9d18
DM
1000 name++;
1001 }
95f050bf 1002 return true;
1da177e4 1003}
d1b19dff 1004EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1005
1006/**
b267b179
EB
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1da177e4 1009 * @name: name format string
b267b179 1010 * @buf: scratch buffer and result name string
1da177e4
LT
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1019 */
1020
b267b179 1021static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1022{
1023 int i = 0;
1da177e4
LT
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1026 unsigned long *inuse;
1da177e4
LT
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
cfcabdcc 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1041 if (!inuse)
1042 return -ENOMEM;
1043
881d966b 1044 for_each_netdev(net, d) {
1da177e4
LT
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1051 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
d9031024
OP
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1062 if (!__dev_get_by_name(net, buf))
1da177e4 1063 return i;
1da177e4
LT
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070}
1071
b267b179
EB
1072/**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086int dev_alloc_name(struct net_device *dev, const char *name)
1087{
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
c346dca1
YH
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
b267b179
EB
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098}
d1b19dff 1099EXPORT_SYMBOL(dev_alloc_name);
b267b179 1100
828de4f6
G
1101static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
d9031024 1104{
828de4f6
G
1105 char buf[IFNAMSIZ];
1106 int ret;
8ce6cebc 1107
828de4f6
G
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112}
1113
1114static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 BUG_ON(!net);
8ce6cebc 1119
d9031024
OP
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1c5cae81 1123 if (strchr(name, '%'))
828de4f6 1124 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
8ce6cebc
DL
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1129
1130 return 0;
1131}
1da177e4
LT
1132
1133/**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
cf04a4c7 1141int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1142{
238fa362 1143 unsigned char old_assign_type;
fcc5a03a 1144 char oldname[IFNAMSIZ];
1da177e4 1145 int err = 0;
fcc5a03a 1146 int ret;
881d966b 1147 struct net *net;
1da177e4
LT
1148
1149 ASSERT_RTNL();
c346dca1 1150 BUG_ON(!dev_net(dev));
1da177e4 1151
c346dca1 1152 net = dev_net(dev);
1da177e4
LT
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
30e6c9fa 1156 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1159 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1160 return 0;
c91f6df2 1161 }
c8d90dca 1162
fcc5a03a
HX
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
828de4f6 1165 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1166 if (err < 0) {
30e6c9fa 1167 write_seqcount_end(&devnet_rename_seq);
d9031024 1168 return err;
c91f6df2 1169 }
1da177e4 1170
6fe82a39
VF
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
238fa362
TG
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
fcc5a03a 1177rollback:
a1b3f594
EB
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1181 dev->name_assign_type = old_assign_type;
30e6c9fa 1182 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1183 return ret;
dcc99773 1184 }
7f988eab 1185
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1187
5bb025fa
VF
1188 netdev_adjacent_rename_links(dev, oldname);
1189
7f988eab 1190 write_lock_bh(&dev_base_lock);
372b2312 1191 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1198 write_unlock_bh(&dev_base_lock);
1199
056925ab 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
91e9c07b
ED
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
fcc5a03a 1206 err = ret;
30e6c9fa 1207 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1208 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1209 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1212 goto rollback;
91e9c07b 1213 } else {
7b6cd1ce 1214 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1215 dev->name, ret);
fcc5a03a
HX
1216 }
1217 }
1da177e4
LT
1218
1219 return err;
1220}
1221
0b815a1a
SH
1222/**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
f0db275a 1226 * @len: limit of bytes to copy from info
0b815a1a
SH
1227 *
1228 * Set ifalias for a device,
1229 */
1230int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231{
7364e445
AK
1232 char *new_ifalias;
1233
0b815a1a
SH
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
96ca4a2c 1239 if (!len) {
388dfc2d
SK
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
96ca4a2c
OH
1242 return 0;
1243 }
1244
7364e445
AK
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
0b815a1a 1247 return -ENOMEM;
7364e445 1248 dev->ifalias = new_ifalias;
0b815a1a
SH
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252}
1253
1254
d8a33ac4 1255/**
3041a069 1256 * netdev_features_change - device changes features
d8a33ac4
SH
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
1261void netdev_features_change(struct net_device *dev)
1262{
056925ab 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1264}
1265EXPORT_SYMBOL(netdev_features_change);
1266
1da177e4
LT
1267/**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
1275void netdev_state_change(struct net_device *dev)
1276{
1277 if (dev->flags & IFF_UP) {
54951194
LP
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
7f294054 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1284 }
1285}
d1b19dff 1286EXPORT_SYMBOL(netdev_state_change);
1da177e4 1287
ee89bab1
AW
1288/**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1299{
ee89bab1
AW
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
c1da4ac7 1303}
ee89bab1 1304EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1305
bd380811 1306static int __dev_open(struct net_device *dev)
1da177e4 1307{
d314774c 1308 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1309 int ret;
1da177e4 1310
e46b66bc
BH
1311 ASSERT_RTNL();
1312
1da177e4
LT
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
ca99ca14
NH
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
66b5552f 1320 netpoll_poll_disable(dev);
ca99ca14 1321
3b8bcfd5
JB
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1da177e4 1327 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1328
d314774c
SH
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
bada339b 1331
d314774c
SH
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1da177e4 1334
66b5552f 1335 netpoll_poll_enable(dev);
ca99ca14 1336
bada339b
JG
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1da177e4 1340 dev->flags |= IFF_UP;
4417da66 1341 dev_set_rx_mode(dev);
1da177e4 1342 dev_activate(dev);
7bf23575 1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1344 }
bada339b 1345
1da177e4
LT
1346 return ret;
1347}
1348
1349/**
bd380811
PM
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1da177e4 1352 *
bd380811
PM
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1da177e4 1360 */
bd380811
PM
1361int dev_open(struct net_device *dev)
1362{
1363 int ret;
1364
bd380811
PM
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
bd380811
PM
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
7f294054 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376}
1377EXPORT_SYMBOL(dev_open);
1378
44345724 1379static int __dev_close_many(struct list_head *head)
1da177e4 1380{
44345724 1381 struct net_device *dev;
e46b66bc 1382
bd380811 1383 ASSERT_RTNL();
9d5010db
DM
1384 might_sleep();
1385
5cde2829 1386 list_for_each_entry(dev, head, close_list) {
3f4df206 1387 /* Temporarily disable netpoll until the interface is down */
66b5552f 1388 netpoll_poll_disable(dev);
3f4df206 1389
44345724 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1391
44345724 1392 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1393
44345724
OP
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
4e857c58 1400 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1401 }
1da177e4 1402
44345724 1403 dev_deactivate_many(head);
d8b2a4d2 1404
5cde2829 1405 list_for_each_entry(dev, head, close_list) {
44345724 1406 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1407
44345724
OP
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
44345724 1418 dev->flags &= ~IFF_UP;
66b5552f 1419 netpoll_poll_enable(dev);
44345724
OP
1420 }
1421
1422 return 0;
1423}
1424
1425static int __dev_close(struct net_device *dev)
1426{
f87e6f47 1427 int retval;
44345724
OP
1428 LIST_HEAD(single);
1429
5cde2829 1430 list_add(&dev->close_list, &single);
f87e6f47
LT
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
ca99ca14 1433
f87e6f47 1434 return retval;
44345724
OP
1435}
1436
99c4a26a 1437int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1438{
1439 struct net_device *dev, *tmp;
1da177e4 1440
5cde2829
EB
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1443 if (!(dev->flags & IFF_UP))
5cde2829 1444 list_del_init(&dev->close_list);
44345724
OP
1445
1446 __dev_close_many(head);
1da177e4 1447
5cde2829 1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1451 if (unlink)
1452 list_del_init(&dev->close_list);
44345724 1453 }
bd380811
PM
1454
1455 return 0;
1456}
99c4a26a 1457EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1458
1459/**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
1468int dev_close(struct net_device *dev)
1469{
e14a5993
ED
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1da177e4 1472
5cde2829 1473 list_add(&dev->close_list, &single);
99c4a26a 1474 dev_close_many(&single, true);
e14a5993
ED
1475 list_del(&single);
1476 }
da6e378b 1477 return 0;
1da177e4 1478}
d1b19dff 1479EXPORT_SYMBOL(dev_close);
1da177e4
LT
1480
1481
0187bdfb
BH
1482/**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
1490void dev_disable_lro(struct net_device *dev)
1491{
fbe168ba
MK
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
529d0489 1494
bc5787c6
MM
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
27660515 1497
22d5969f
MM
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
0187bdfb
BH
1503}
1504EXPORT_SYMBOL(dev_disable_lro);
1505
351638e7
JP
1506static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508{
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513}
0187bdfb 1514
881d966b
EB
1515static int dev_boot_phase = 1;
1516
1da177e4
LT
1517/**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
4ec93edb 1527 * to the new notifier to allow device to have a race free
1da177e4
LT
1528 * view of the network device list.
1529 */
1530
1531int register_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
fcc5a03a 1534 struct net_device *last;
881d966b 1535 struct net *net;
1da177e4
LT
1536 int err;
1537
1538 rtnl_lock();
f07d5b94 1539 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1540 if (err)
1541 goto unlock;
881d966b
EB
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
351638e7 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1da177e4 1553
351638e7 1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1555 }
1da177e4 1556 }
fcc5a03a
HX
1557
1558unlock:
1da177e4
LT
1559 rtnl_unlock();
1560 return err;
fcc5a03a
HX
1561
1562rollback:
1563 last = dev;
881d966b
EB
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
8f891489 1567 goto outroll;
fcc5a03a 1568
881d966b 1569 if (dev->flags & IFF_UP) {
351638e7
JP
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1573 }
351638e7 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1575 }
fcc5a03a 1576 }
c67625a1 1577
8f891489 1578outroll:
c67625a1 1579 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1580 goto unlock;
1da177e4 1581}
d1b19dff 1582EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1583
1584/**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
7d3d43da
EB
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1da177e4
LT
1596 */
1597
1598int unregister_netdevice_notifier(struct notifier_block *nb)
1599{
7d3d43da
EB
1600 struct net_device *dev;
1601 struct net *net;
9f514950
HX
1602 int err;
1603
1604 rtnl_lock();
f07d5b94 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
351638e7
JP
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1615 }
351638e7 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1617 }
1618 }
1619unlock:
9f514950
HX
1620 rtnl_unlock();
1621 return err;
1da177e4 1622}
d1b19dff 1623EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1624
351638e7
JP
1625/**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
1d143d9f 1635static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
351638e7
JP
1638{
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642}
351638e7 1643
1da177e4
LT
1644/**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
c4ea43c5 1647 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1648 *
1649 * Call all network notifier blocks. Parameters and return value
f07d5b94 1650 * are as for raw_notifier_call_chain().
1da177e4
LT
1651 */
1652
ad7379d4 1653int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1654{
351638e7
JP
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1658}
edf947f1 1659EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1660
1cf51900 1661#ifdef CONFIG_NET_INGRESS
4577139b
DB
1662static struct static_key ingress_needed __read_mostly;
1663
1664void net_inc_ingress_queue(void)
1665{
1666 static_key_slow_inc(&ingress_needed);
1667}
1668EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670void net_dec_ingress_queue(void)
1671{
1672 static_key_slow_dec(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675#endif
1676
c5905afb 1677static struct static_key netstamp_needed __read_mostly;
b90e5794 1678#ifdef HAVE_JUMP_LABEL
c5905afb 1679/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1680 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1681 * static_key_slow_dec() calls.
b90e5794
ED
1682 */
1683static atomic_t netstamp_needed_deferred;
1684#endif
1da177e4
LT
1685
1686void net_enable_timestamp(void)
1687{
b90e5794
ED
1688#ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
c5905afb 1693 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1694 return;
1695 }
1696#endif
c5905afb 1697 static_key_slow_inc(&netstamp_needed);
1da177e4 1698}
d1b19dff 1699EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1700
1701void net_disable_timestamp(void)
1702{
b90e5794
ED
1703#ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708#endif
c5905afb 1709 static_key_slow_dec(&netstamp_needed);
1da177e4 1710}
d1b19dff 1711EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1712
3b098e2d 1713static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1714{
588f0330 1715 skb->tstamp.tv64 = 0;
c5905afb 1716 if (static_key_false(&netstamp_needed))
a61bbcf2 1717 __net_timestamp(skb);
1da177e4
LT
1718}
1719
588f0330 1720#define net_timestamp_check(COND, SKB) \
c5905afb 1721 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
3b098e2d 1725
1ee481fb 1726bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1727{
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744}
1ee481fb 1745EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1746
a0265d28
HX
1747int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748{
bbbf2df0
WB
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
08b4b8ea 1757 skb->priority = 0;
a0265d28 1758 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
44540960
AB
1765/**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
6ec82562 1773 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784{
a0265d28 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1786}
1787EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
71d9dec2
CG
1789static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792{
1080e512
MT
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
71d9dec2
CG
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797}
1798
7866a621
SN
1799static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
fbcb2170
JP
1801 struct net_device *orig_dev,
1802 __be16 type,
7866a621
SN
1803 struct list_head *ptype_list)
1804{
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
fbcb2170 1811 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815}
1816
c0de08d0
EL
1817static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818{
a3d744e9 1819 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828}
1829
1da177e4
LT
1830/*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
f6a78bfc 1835static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1836{
1837 struct packet_type *ptype;
71d9dec2
CG
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
7866a621 1840 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1841
1da177e4 1842 rcu_read_lock();
7866a621
SN
1843again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
7866a621
SN
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
71d9dec2 1850
7866a621
SN
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1da177e4 1856
7866a621
SN
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
70978182 1861
7866a621 1862 net_timestamp_set(skb2);
1da177e4 1863
7866a621
SN
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1da177e4 1876 }
7866a621
SN
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1da177e4 1886 }
7866a621 1887out_unlock:
71d9dec2
CG
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1890 rcu_read_unlock();
1891}
1892
2c53040f
BH
1893/**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
bb134d22 1906static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1907{
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
7b6cd1ce 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
4f57c087
JF
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929}
1930
537c00de
AD
1931#ifdef CONFIG_XPS
1932static DEFINE_MUTEX(xps_map_mutex);
1933#define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
10cdc3f3
AD
1936static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
537c00de 1938{
10cdc3f3
AD
1939 struct xps_map *map = NULL;
1940 int pos;
537c00de 1941
10cdc3f3
AD
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1944
10cdc3f3
AD
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
537c00de
AD
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
10cdc3f3 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
10cdc3f3 1954 break;
537c00de 1955 }
537c00de
AD
1956 }
1957
10cdc3f3
AD
1958 return map;
1959}
1960
024e9679 1961static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1962{
1963 struct xps_dev_maps *dev_maps;
024e9679 1964 int cpu, i;
10cdc3f3
AD
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
024e9679
AD
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
10cdc3f3
AD
1979 active = true;
1980 }
1981
1982 if (!active) {
537c00de
AD
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
024e9679
AD
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
537c00de
AD
1991out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993}
1994
01c5f864
AD
1995static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997{
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028}
2029
3573540c
MT
2030int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
537c00de 2032{
01c5f864 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2034 struct xps_map *map, *new_map;
537c00de 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
537c00de
AD
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
01c5f864
AD
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
01c5f864 2052 return -ENOMEM;
2bb60cb9 2053 }
01c5f864
AD
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
537c00de 2068 for_each_possible_cpu(cpu) {
01c5f864
AD
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
537c00de 2079#ifdef CONFIG_NUMA
537c00de
AD
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
537c00de 2084#endif
01c5f864
AD
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2089 }
01c5f864 2090
537c00de
AD
2091 }
2092
01c5f864
AD
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
537c00de 2095 /* Cleanup old maps */
01c5f864
AD
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
537c00de 2103
01c5f864 2104 kfree_rcu(dev_maps, rcu);
537c00de
AD
2105 }
2106
01c5f864
AD
2107 dev_maps = new_dev_maps;
2108 active = true;
537c00de 2109
01c5f864
AD
2110out_no_new_maps:
2111 /* update Tx queue numa node */
537c00de
AD
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
01c5f864
AD
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134out_no_maps:
537c00de
AD
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138error:
01c5f864
AD
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
537c00de
AD
2148 mutex_unlock(&xps_map_mutex);
2149
537c00de
AD
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152}
2153EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155#endif
f0796d5c
JF
2156/*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
e6484930 2160int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2161{
1d24eb48
TH
2162 int rc;
2163
e6484930
TH
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
f0796d5c 2166
5c56580b
BH
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2169 ASSERT_RTNL();
2170
1d24eb48
TH
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
bf264145
TH
2173 if (rc)
2174 return rc;
2175
4f57c087
JF
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
024e9679 2179 if (txq < dev->real_num_tx_queues) {
e6484930 2180 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2181#ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183#endif
2184 }
f0796d5c 2185 }
e6484930
TH
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
f0796d5c
JF
2189}
2190EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2191
a953be53 2192#ifdef CONFIG_SYSFS
62fe0b40
BH
2193/**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2200 * negative error code. If called before registration, it always
2201 * succeeds.
62fe0b40
BH
2202 */
2203int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204{
2205 int rc;
2206
bd25fa7b
TH
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
62fe0b40
BH
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
62fe0b40
BH
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
62fe0b40
BH
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221}
2222EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223#endif
2224
2c53040f
BH
2225/**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
a55b138b 2231int netif_get_num_default_rss_queues(void)
16917b87
YM
2232{
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234}
2235EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
def82a1d 2237static inline void __netif_reschedule(struct Qdisc *q)
56079431 2238{
def82a1d
JP
2239 struct softnet_data *sd;
2240 unsigned long flags;
56079431 2241
def82a1d 2242 local_irq_save(flags);
903ceff7 2243 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249}
2250
2251void __netif_schedule(struct Qdisc *q)
2252{
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
56079431
DV
2255}
2256EXPORT_SYMBOL(__netif_schedule);
2257
e6247027
ED
2258struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260};
2261
2262static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2263{
e6247027
ED
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265}
2266
46e5da40
JF
2267void netif_schedule_queue(struct netdev_queue *txq)
2268{
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276}
2277EXPORT_SYMBOL(netif_schedule_queue);
2278
2279/**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287{
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298}
2299EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302{
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311}
2312EXPORT_SYMBOL(netif_tx_wake_queue);
2313
e6247027 2314void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2315{
e6247027 2316 unsigned long flags;
56079431 2317
e6247027
ED
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
bea3348e 2323 }
e6247027
ED
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
56079431 2330}
e6247027 2331EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2332
e6247027 2333void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2334{
2335 if (in_irq() || irqs_disabled())
e6247027 2336 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2337 else
2338 dev_kfree_skb(skb);
2339}
e6247027 2340EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2341
2342
bea3348e
SH
2343/**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
56079431
DV
2349void netif_device_detach(struct net_device *dev)
2350{
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
d543103a 2353 netif_tx_stop_all_queues(dev);
56079431
DV
2354 }
2355}
2356EXPORT_SYMBOL(netif_device_detach);
2357
bea3348e
SH
2358/**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
56079431
DV
2364void netif_device_attach(struct net_device *dev)
2365{
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
d543103a 2368 netif_tx_wake_all_queues(dev);
4ec93edb 2369 __netdev_watchdog_up(dev);
56079431
DV
2370 }
2371}
2372EXPORT_SYMBOL(netif_device_attach);
2373
5605c762
JP
2374/*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380{
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399}
2400EXPORT_SYMBOL(__skb_tx_hash);
2401
36c92474
BH
2402static void skb_warn_bad_offload(const struct sk_buff *skb)
2403{
65e9d2fa 2404 static const netdev_features_t null_features = 0;
36c92474 2405 struct net_device *dev = skb->dev;
88ad4175 2406 const char *name = "";
36c92474 2407
c846ad9b
BG
2408 if (!net_ratelimit())
2409 return;
2410
88ad4175
BM
2411 if (dev) {
2412 if (dev->dev.parent)
2413 name = dev_driver_string(dev->dev.parent);
2414 else
2415 name = netdev_name(dev);
2416 }
36c92474
BH
2417 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418 "gso_type=%d ip_summed=%d\n",
88ad4175 2419 name, dev ? &dev->features : &null_features,
65e9d2fa 2420 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2421 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422 skb_shinfo(skb)->gso_type, skb->ip_summed);
2423}
2424
1da177e4
LT
2425/*
2426 * Invalidate hardware checksum when packet is to be mangled, and
2427 * complete checksum manually on outgoing path.
2428 */
84fa7933 2429int skb_checksum_help(struct sk_buff *skb)
1da177e4 2430{
d3bc23e7 2431 __wsum csum;
663ead3b 2432 int ret = 0, offset;
1da177e4 2433
84fa7933 2434 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2435 goto out_set_summed;
2436
2437 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2438 skb_warn_bad_offload(skb);
2439 return -EINVAL;
1da177e4
LT
2440 }
2441
cef401de
ED
2442 /* Before computing a checksum, we should make sure no frag could
2443 * be modified by an external entity : checksum could be wrong.
2444 */
2445 if (skb_has_shared_frag(skb)) {
2446 ret = __skb_linearize(skb);
2447 if (ret)
2448 goto out;
2449 }
2450
55508d60 2451 offset = skb_checksum_start_offset(skb);
a030847e
HX
2452 BUG_ON(offset >= skb_headlen(skb));
2453 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455 offset += skb->csum_offset;
2456 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458 if (skb_cloned(skb) &&
2459 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2460 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461 if (ret)
2462 goto out;
2463 }
2464
a030847e 2465 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2466out_set_summed:
1da177e4 2467 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2468out:
1da177e4
LT
2469 return ret;
2470}
d1b19dff 2471EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2472
53d6471c 2473__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2474{
252e3346 2475 __be16 type = skb->protocol;
f6a78bfc 2476
19acc327
PS
2477 /* Tunnel gso handlers can set protocol to ethernet. */
2478 if (type == htons(ETH_P_TEB)) {
2479 struct ethhdr *eth;
2480
2481 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482 return 0;
2483
2484 eth = (struct ethhdr *)skb_mac_header(skb);
2485 type = eth->h_proto;
2486 }
2487
d4bcef3f 2488 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2489}
2490
2491/**
2492 * skb_mac_gso_segment - mac layer segmentation handler.
2493 * @skb: buffer to segment
2494 * @features: features for the output path (see dev->features)
2495 */
2496struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497 netdev_features_t features)
2498{
2499 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500 struct packet_offload *ptype;
53d6471c
VY
2501 int vlan_depth = skb->mac_len;
2502 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2503
2504 if (unlikely(!type))
2505 return ERR_PTR(-EINVAL);
2506
53d6471c 2507 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2508
2509 rcu_read_lock();
22061d80 2510 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2511 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2512 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2513 break;
2514 }
2515 }
2516 rcu_read_unlock();
2517
98e399f8 2518 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2519
f6a78bfc
HX
2520 return segs;
2521}
05e8ef4a
PS
2522EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525/* openvswitch calls this on rx path, so we need a different check.
2526 */
2527static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528{
2529 if (tx_path)
2530 return skb->ip_summed != CHECKSUM_PARTIAL;
2531 else
2532 return skb->ip_summed == CHECKSUM_NONE;
2533}
2534
2535/**
2536 * __skb_gso_segment - Perform segmentation on skb.
2537 * @skb: buffer to segment
2538 * @features: features for the output path (see dev->features)
2539 * @tx_path: whether it is called in TX path
2540 *
2541 * This function segments the given skb and returns a list of segments.
2542 *
2543 * It may return NULL if the skb requires no segmentation. This is
2544 * only possible when GSO is used for verifying header integrity.
2545 */
2546struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2547 netdev_features_t features, bool tx_path)
2548{
2549 if (unlikely(skb_needs_check(skb, tx_path))) {
2550 int err;
2551
2552 skb_warn_bad_offload(skb);
2553
a40e0a66 2554 err = skb_cow_head(skb, 0);
2555 if (err < 0)
05e8ef4a
PS
2556 return ERR_PTR(err);
2557 }
2558
68c33163 2559 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2560 SKB_GSO_CB(skb)->encap_level = 0;
2561
05e8ef4a
PS
2562 skb_reset_mac_header(skb);
2563 skb_reset_mac_len(skb);
2564
2565 return skb_mac_gso_segment(skb, features);
2566}
12b0004d 2567EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2568
fb286bb2
HX
2569/* Take action when hardware reception checksum errors are detected. */
2570#ifdef CONFIG_BUG
2571void netdev_rx_csum_fault(struct net_device *dev)
2572{
2573 if (net_ratelimit()) {
7b6cd1ce 2574 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2575 dump_stack();
2576 }
2577}
2578EXPORT_SYMBOL(netdev_rx_csum_fault);
2579#endif
2580
1da177e4
LT
2581/* Actually, we should eliminate this check as soon as we know, that:
2582 * 1. IOMMU is present and allows to map all the memory.
2583 * 2. No high memory really exists on this machine.
2584 */
2585
c1e756bf 2586static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2587{
3d3a8533 2588#ifdef CONFIG_HIGHMEM
1da177e4 2589 int i;
5acbbd42 2590 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2594 return 1;
ea2ab693 2595 }
5acbbd42 2596 }
1da177e4 2597
5acbbd42
FT
2598 if (PCI_DMA_BUS_IS_PHYS) {
2599 struct device *pdev = dev->dev.parent;
1da177e4 2600
9092c658
ED
2601 if (!pdev)
2602 return 0;
5acbbd42 2603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2604 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2605 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2606 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2607 return 1;
2608 }
2609 }
3d3a8533 2610#endif
1da177e4
LT
2611 return 0;
2612}
1da177e4 2613
3b392ddb
SH
2614/* If MPLS offload request, verify we are testing hardware MPLS features
2615 * instead of standard features for the netdev.
2616 */
d0edc7bf 2617#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2618static netdev_features_t net_mpls_features(struct sk_buff *skb,
2619 netdev_features_t features,
2620 __be16 type)
2621{
25cd9ba0 2622 if (eth_p_mpls(type))
3b392ddb
SH
2623 features &= skb->dev->mpls_features;
2624
2625 return features;
2626}
2627#else
2628static netdev_features_t net_mpls_features(struct sk_buff *skb,
2629 netdev_features_t features,
2630 __be16 type)
2631{
2632 return features;
2633}
2634#endif
2635
c8f44aff 2636static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2637 netdev_features_t features)
f01a5236 2638{
53d6471c 2639 int tmp;
3b392ddb
SH
2640 __be16 type;
2641
2642 type = skb_network_protocol(skb, &tmp);
2643 features = net_mpls_features(skb, features, type);
53d6471c 2644
c0d680e5 2645 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2646 !can_checksum_protocol(features, type)) {
f01a5236 2647 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2648 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2649 features &= ~NETIF_F_SG;
2650 }
2651
2652 return features;
2653}
2654
e38f3025
TM
2655netdev_features_t passthru_features_check(struct sk_buff *skb,
2656 struct net_device *dev,
2657 netdev_features_t features)
2658{
2659 return features;
2660}
2661EXPORT_SYMBOL(passthru_features_check);
2662
8cb65d00
TM
2663static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2664 struct net_device *dev,
2665 netdev_features_t features)
2666{
2667 return vlan_features_check(skb, features);
2668}
2669
c1e756bf 2670netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2671{
5f35227e 2672 struct net_device *dev = skb->dev;
fcbeb976
ED
2673 netdev_features_t features = dev->features;
2674 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2675
fcbeb976 2676 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2677 features &= ~NETIF_F_GSO_MASK;
2678
5f35227e
JG
2679 /* If encapsulation offload request, verify we are testing
2680 * hardware encapsulation features instead of standard
2681 * features for the netdev
2682 */
2683 if (skb->encapsulation)
2684 features &= dev->hw_enc_features;
2685
f5a7fb88
TM
2686 if (skb_vlan_tagged(skb))
2687 features = netdev_intersect_features(features,
2688 dev->vlan_features |
2689 NETIF_F_HW_VLAN_CTAG_TX |
2690 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2691
5f35227e
JG
2692 if (dev->netdev_ops->ndo_features_check)
2693 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2694 features);
8cb65d00
TM
2695 else
2696 features &= dflt_features_check(skb, dev, features);
5f35227e 2697
c1e756bf 2698 return harmonize_features(skb, features);
58e998c6 2699}
c1e756bf 2700EXPORT_SYMBOL(netif_skb_features);
58e998c6 2701
2ea25513 2702static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2703 struct netdev_queue *txq, bool more)
f6a78bfc 2704{
2ea25513
DM
2705 unsigned int len;
2706 int rc;
00829823 2707
7866a621 2708 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2709 dev_queue_xmit_nit(skb, dev);
fc741216 2710
2ea25513
DM
2711 len = skb->len;
2712 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2713 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2714 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2715
2ea25513
DM
2716 return rc;
2717}
7b9c6090 2718
8dcda22a
DM
2719struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2720 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2721{
2722 struct sk_buff *skb = first;
2723 int rc = NETDEV_TX_OK;
7b9c6090 2724
7f2e870f
DM
2725 while (skb) {
2726 struct sk_buff *next = skb->next;
fc70fb64 2727
7f2e870f 2728 skb->next = NULL;
95f6b3dd 2729 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2730 if (unlikely(!dev_xmit_complete(rc))) {
2731 skb->next = next;
2732 goto out;
2733 }
6afff0ca 2734
7f2e870f
DM
2735 skb = next;
2736 if (netif_xmit_stopped(txq) && skb) {
2737 rc = NETDEV_TX_BUSY;
2738 break;
9ccb8975 2739 }
7f2e870f 2740 }
9ccb8975 2741
7f2e870f
DM
2742out:
2743 *ret = rc;
2744 return skb;
2745}
b40863c6 2746
1ff0dc94
ED
2747static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2748 netdev_features_t features)
f6a78bfc 2749{
df8a39de 2750 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2751 !vlan_hw_offload_capable(features, skb->vlan_proto))
2752 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2753 return skb;
2754}
f6a78bfc 2755
55a93b3e 2756static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2757{
2758 netdev_features_t features;
f6a78bfc 2759
eae3f88e
DM
2760 if (skb->next)
2761 return skb;
068a2de5 2762
eae3f88e
DM
2763 features = netif_skb_features(skb);
2764 skb = validate_xmit_vlan(skb, features);
2765 if (unlikely(!skb))
2766 goto out_null;
7b9c6090 2767
8b86a61d 2768 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2769 struct sk_buff *segs;
2770
2771 segs = skb_gso_segment(skb, features);
cecda693 2772 if (IS_ERR(segs)) {
af6dabc9 2773 goto out_kfree_skb;
cecda693
JW
2774 } else if (segs) {
2775 consume_skb(skb);
2776 skb = segs;
f6a78bfc 2777 }
eae3f88e
DM
2778 } else {
2779 if (skb_needs_linearize(skb, features) &&
2780 __skb_linearize(skb))
2781 goto out_kfree_skb;
4ec93edb 2782
eae3f88e
DM
2783 /* If packet is not checksummed and device does not
2784 * support checksumming for this protocol, complete
2785 * checksumming here.
2786 */
2787 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2788 if (skb->encapsulation)
2789 skb_set_inner_transport_header(skb,
2790 skb_checksum_start_offset(skb));
2791 else
2792 skb_set_transport_header(skb,
2793 skb_checksum_start_offset(skb));
2794 if (!(features & NETIF_F_ALL_CSUM) &&
2795 skb_checksum_help(skb))
2796 goto out_kfree_skb;
7b9c6090 2797 }
0c772159 2798 }
7b9c6090 2799
eae3f88e 2800 return skb;
fc70fb64 2801
f6a78bfc
HX
2802out_kfree_skb:
2803 kfree_skb(skb);
eae3f88e
DM
2804out_null:
2805 return NULL;
2806}
6afff0ca 2807
55a93b3e
ED
2808struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2809{
2810 struct sk_buff *next, *head = NULL, *tail;
2811
bec3cfdc 2812 for (; skb != NULL; skb = next) {
55a93b3e
ED
2813 next = skb->next;
2814 skb->next = NULL;
bec3cfdc
ED
2815
2816 /* in case skb wont be segmented, point to itself */
2817 skb->prev = skb;
2818
55a93b3e 2819 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2820 if (!skb)
2821 continue;
55a93b3e 2822
bec3cfdc
ED
2823 if (!head)
2824 head = skb;
2825 else
2826 tail->next = skb;
2827 /* If skb was segmented, skb->prev points to
2828 * the last segment. If not, it still contains skb.
2829 */
2830 tail = skb->prev;
55a93b3e
ED
2831 }
2832 return head;
f6a78bfc
HX
2833}
2834
1def9238
ED
2835static void qdisc_pkt_len_init(struct sk_buff *skb)
2836{
2837 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2838
2839 qdisc_skb_cb(skb)->pkt_len = skb->len;
2840
2841 /* To get more precise estimation of bytes sent on wire,
2842 * we add to pkt_len the headers size of all segments
2843 */
2844 if (shinfo->gso_size) {
757b8b1d 2845 unsigned int hdr_len;
15e5a030 2846 u16 gso_segs = shinfo->gso_segs;
1def9238 2847
757b8b1d
ED
2848 /* mac layer + network layer */
2849 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2850
2851 /* + transport layer */
1def9238
ED
2852 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2853 hdr_len += tcp_hdrlen(skb);
2854 else
2855 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2856
2857 if (shinfo->gso_type & SKB_GSO_DODGY)
2858 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2859 shinfo->gso_size);
2860
2861 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2862 }
2863}
2864
bbd8a0d3
KK
2865static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2866 struct net_device *dev,
2867 struct netdev_queue *txq)
2868{
2869 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2870 bool contended;
bbd8a0d3
KK
2871 int rc;
2872
1def9238 2873 qdisc_pkt_len_init(skb);
a2da570d 2874 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2875 /*
2876 * Heuristic to force contended enqueues to serialize on a
2877 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2878 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2879 * often and dequeue packets faster.
79640a4c 2880 */
a2da570d 2881 contended = qdisc_is_running(q);
79640a4c
ED
2882 if (unlikely(contended))
2883 spin_lock(&q->busylock);
2884
bbd8a0d3
KK
2885 spin_lock(root_lock);
2886 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2887 kfree_skb(skb);
2888 rc = NET_XMIT_DROP;
2889 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2890 qdisc_run_begin(q)) {
bbd8a0d3
KK
2891 /*
2892 * This is a work-conserving queue; there are no old skbs
2893 * waiting to be sent out; and the qdisc is not running -
2894 * xmit the skb directly.
2895 */
bfe0d029 2896
bfe0d029
ED
2897 qdisc_bstats_update(q, skb);
2898
55a93b3e 2899 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2900 if (unlikely(contended)) {
2901 spin_unlock(&q->busylock);
2902 contended = false;
2903 }
bbd8a0d3 2904 __qdisc_run(q);
79640a4c 2905 } else
bc135b23 2906 qdisc_run_end(q);
bbd8a0d3
KK
2907
2908 rc = NET_XMIT_SUCCESS;
2909 } else {
a2da570d 2910 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2911 if (qdisc_run_begin(q)) {
2912 if (unlikely(contended)) {
2913 spin_unlock(&q->busylock);
2914 contended = false;
2915 }
2916 __qdisc_run(q);
2917 }
bbd8a0d3
KK
2918 }
2919 spin_unlock(root_lock);
79640a4c
ED
2920 if (unlikely(contended))
2921 spin_unlock(&q->busylock);
bbd8a0d3
KK
2922 return rc;
2923}
2924
86f8515f 2925#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2926static void skb_update_prio(struct sk_buff *skb)
2927{
6977a79d 2928 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2929
91c68ce2
ED
2930 if (!skb->priority && skb->sk && map) {
2931 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2932
2933 if (prioidx < map->priomap_len)
2934 skb->priority = map->priomap[prioidx];
2935 }
5bc1421e
NH
2936}
2937#else
2938#define skb_update_prio(skb)
2939#endif
2940
f60e5990 2941DEFINE_PER_CPU(int, xmit_recursion);
2942EXPORT_SYMBOL(xmit_recursion);
2943
11a766ce 2944#define RECURSION_LIMIT 10
745e20f1 2945
95603e22
MM
2946/**
2947 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
2948 * @net: network namespace this loopback is happening in
2949 * @sk: sk needed to be a netfilter okfn
95603e22
MM
2950 * @skb: buffer to transmit
2951 */
0c4b51f0 2952int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
2953{
2954 skb_reset_mac_header(skb);
2955 __skb_pull(skb, skb_network_offset(skb));
2956 skb->pkt_type = PACKET_LOOPBACK;
2957 skb->ip_summed = CHECKSUM_UNNECESSARY;
2958 WARN_ON(!skb_dst(skb));
2959 skb_dst_force(skb);
2960 netif_rx_ni(skb);
2961 return 0;
2962}
2963EXPORT_SYMBOL(dev_loopback_xmit);
2964
638b2a69
JP
2965static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2966{
2967#ifdef CONFIG_XPS
2968 struct xps_dev_maps *dev_maps;
2969 struct xps_map *map;
2970 int queue_index = -1;
2971
2972 rcu_read_lock();
2973 dev_maps = rcu_dereference(dev->xps_maps);
2974 if (dev_maps) {
2975 map = rcu_dereference(
2976 dev_maps->cpu_map[skb->sender_cpu - 1]);
2977 if (map) {
2978 if (map->len == 1)
2979 queue_index = map->queues[0];
2980 else
2981 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2982 map->len)];
2983 if (unlikely(queue_index >= dev->real_num_tx_queues))
2984 queue_index = -1;
2985 }
2986 }
2987 rcu_read_unlock();
2988
2989 return queue_index;
2990#else
2991 return -1;
2992#endif
2993}
2994
2995static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2996{
2997 struct sock *sk = skb->sk;
2998 int queue_index = sk_tx_queue_get(sk);
2999
3000 if (queue_index < 0 || skb->ooo_okay ||
3001 queue_index >= dev->real_num_tx_queues) {
3002 int new_index = get_xps_queue(dev, skb);
3003 if (new_index < 0)
3004 new_index = skb_tx_hash(dev, skb);
3005
3006 if (queue_index != new_index && sk &&
004a5d01 3007 sk_fullsock(sk) &&
638b2a69
JP
3008 rcu_access_pointer(sk->sk_dst_cache))
3009 sk_tx_queue_set(sk, new_index);
3010
3011 queue_index = new_index;
3012 }
3013
3014 return queue_index;
3015}
3016
3017struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3018 struct sk_buff *skb,
3019 void *accel_priv)
3020{
3021 int queue_index = 0;
3022
3023#ifdef CONFIG_XPS
52bd2d62
ED
3024 u32 sender_cpu = skb->sender_cpu - 1;
3025
3026 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3027 skb->sender_cpu = raw_smp_processor_id() + 1;
3028#endif
3029
3030 if (dev->real_num_tx_queues != 1) {
3031 const struct net_device_ops *ops = dev->netdev_ops;
3032 if (ops->ndo_select_queue)
3033 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3034 __netdev_pick_tx);
3035 else
3036 queue_index = __netdev_pick_tx(dev, skb);
3037
3038 if (!accel_priv)
3039 queue_index = netdev_cap_txqueue(dev, queue_index);
3040 }
3041
3042 skb_set_queue_mapping(skb, queue_index);
3043 return netdev_get_tx_queue(dev, queue_index);
3044}
3045
d29f749e 3046/**
9d08dd3d 3047 * __dev_queue_xmit - transmit a buffer
d29f749e 3048 * @skb: buffer to transmit
9d08dd3d 3049 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3050 *
3051 * Queue a buffer for transmission to a network device. The caller must
3052 * have set the device and priority and built the buffer before calling
3053 * this function. The function can be called from an interrupt.
3054 *
3055 * A negative errno code is returned on a failure. A success does not
3056 * guarantee the frame will be transmitted as it may be dropped due
3057 * to congestion or traffic shaping.
3058 *
3059 * -----------------------------------------------------------------------------------
3060 * I notice this method can also return errors from the queue disciplines,
3061 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3062 * be positive.
3063 *
3064 * Regardless of the return value, the skb is consumed, so it is currently
3065 * difficult to retry a send to this method. (You can bump the ref count
3066 * before sending to hold a reference for retry if you are careful.)
3067 *
3068 * When calling this method, interrupts MUST be enabled. This is because
3069 * the BH enable code must have IRQs enabled so that it will not deadlock.
3070 * --BLG
3071 */
0a59f3a9 3072static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3073{
3074 struct net_device *dev = skb->dev;
dc2b4847 3075 struct netdev_queue *txq;
1da177e4
LT
3076 struct Qdisc *q;
3077 int rc = -ENOMEM;
3078
6d1ccff6
ED
3079 skb_reset_mac_header(skb);
3080
e7fd2885
WB
3081 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3082 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3083
4ec93edb
YH
3084 /* Disable soft irqs for various locks below. Also
3085 * stops preemption for RCU.
1da177e4 3086 */
4ec93edb 3087 rcu_read_lock_bh();
1da177e4 3088
5bc1421e
NH
3089 skb_update_prio(skb);
3090
02875878
ED
3091 /* If device/qdisc don't need skb->dst, release it right now while
3092 * its hot in this cpu cache.
3093 */
3094 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3095 skb_dst_drop(skb);
3096 else
3097 skb_dst_force(skb);
3098
0c4f691f
SF
3099#ifdef CONFIG_NET_SWITCHDEV
3100 /* Don't forward if offload device already forwarded */
3101 if (skb->offload_fwd_mark &&
3102 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3103 consume_skb(skb);
3104 rc = NET_XMIT_SUCCESS;
3105 goto out;
3106 }
3107#endif
3108
f663dd9a 3109 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3110 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3111
1da177e4 3112#ifdef CONFIG_NET_CLS_ACT
d1b19dff 3113 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 3114#endif
cf66ba58 3115 trace_net_dev_queue(skb);
1da177e4 3116 if (q->enqueue) {
bbd8a0d3 3117 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3118 goto out;
1da177e4
LT
3119 }
3120
3121 /* The device has no queue. Common case for software devices:
3122 loopback, all the sorts of tunnels...
3123
932ff279
HX
3124 Really, it is unlikely that netif_tx_lock protection is necessary
3125 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3126 counters.)
3127 However, it is possible, that they rely on protection
3128 made by us here.
3129
3130 Check this and shot the lock. It is not prone from deadlocks.
3131 Either shot noqueue qdisc, it is even simpler 8)
3132 */
3133 if (dev->flags & IFF_UP) {
3134 int cpu = smp_processor_id(); /* ok because BHs are off */
3135
c773e847 3136 if (txq->xmit_lock_owner != cpu) {
1da177e4 3137
745e20f1
ED
3138 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3139 goto recursion_alert;
3140
1f59533f
JDB
3141 skb = validate_xmit_skb(skb, dev);
3142 if (!skb)
3143 goto drop;
3144
c773e847 3145 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3146
73466498 3147 if (!netif_xmit_stopped(txq)) {
745e20f1 3148 __this_cpu_inc(xmit_recursion);
ce93718f 3149 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3150 __this_cpu_dec(xmit_recursion);
572a9d7b 3151 if (dev_xmit_complete(rc)) {
c773e847 3152 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3153 goto out;
3154 }
3155 }
c773e847 3156 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3157 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3158 dev->name);
1da177e4
LT
3159 } else {
3160 /* Recursion is detected! It is possible,
745e20f1
ED
3161 * unfortunately
3162 */
3163recursion_alert:
e87cc472
JP
3164 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3165 dev->name);
1da177e4
LT
3166 }
3167 }
3168
3169 rc = -ENETDOWN;
1f59533f 3170drop:
d4828d85 3171 rcu_read_unlock_bh();
1da177e4 3172
015f0688 3173 atomic_long_inc(&dev->tx_dropped);
1f59533f 3174 kfree_skb_list(skb);
1da177e4
LT
3175 return rc;
3176out:
d4828d85 3177 rcu_read_unlock_bh();
1da177e4
LT
3178 return rc;
3179}
f663dd9a 3180
2b4aa3ce 3181int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3182{
3183 return __dev_queue_xmit(skb, NULL);
3184}
2b4aa3ce 3185EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3186
f663dd9a
JW
3187int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3188{
3189 return __dev_queue_xmit(skb, accel_priv);
3190}
3191EXPORT_SYMBOL(dev_queue_xmit_accel);
3192
1da177e4
LT
3193
3194/*=======================================================================
3195 Receiver routines
3196 =======================================================================*/
3197
6b2bedc3 3198int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3199EXPORT_SYMBOL(netdev_max_backlog);
3200
3b098e2d 3201int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3202int netdev_budget __read_mostly = 300;
3203int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3204
eecfd7c4
ED
3205/* Called with irq disabled */
3206static inline void ____napi_schedule(struct softnet_data *sd,
3207 struct napi_struct *napi)
3208{
3209 list_add_tail(&napi->poll_list, &sd->poll_list);
3210 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3211}
3212
bfb564e7
KK
3213#ifdef CONFIG_RPS
3214
3215/* One global table that all flow-based protocols share. */
6e3f7faf 3216struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3217EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3218u32 rps_cpu_mask __read_mostly;
3219EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3220
c5905afb 3221struct static_key rps_needed __read_mostly;
adc9300e 3222
c445477d
BH
3223static struct rps_dev_flow *
3224set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3225 struct rps_dev_flow *rflow, u16 next_cpu)
3226{
a31196b0 3227 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3228#ifdef CONFIG_RFS_ACCEL
3229 struct netdev_rx_queue *rxqueue;
3230 struct rps_dev_flow_table *flow_table;
3231 struct rps_dev_flow *old_rflow;
3232 u32 flow_id;
3233 u16 rxq_index;
3234 int rc;
3235
3236 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3237 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3238 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3239 goto out;
3240 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3241 if (rxq_index == skb_get_rx_queue(skb))
3242 goto out;
3243
3244 rxqueue = dev->_rx + rxq_index;
3245 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3246 if (!flow_table)
3247 goto out;
61b905da 3248 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3249 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3250 rxq_index, flow_id);
3251 if (rc < 0)
3252 goto out;
3253 old_rflow = rflow;
3254 rflow = &flow_table->flows[flow_id];
c445477d
BH
3255 rflow->filter = rc;
3256 if (old_rflow->filter == rflow->filter)
3257 old_rflow->filter = RPS_NO_FILTER;
3258 out:
3259#endif
3260 rflow->last_qtail =
09994d1b 3261 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3262 }
3263
09994d1b 3264 rflow->cpu = next_cpu;
c445477d
BH
3265 return rflow;
3266}
3267
bfb564e7
KK
3268/*
3269 * get_rps_cpu is called from netif_receive_skb and returns the target
3270 * CPU from the RPS map of the receiving queue for a given skb.
3271 * rcu_read_lock must be held on entry.
3272 */
3273static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3274 struct rps_dev_flow **rflowp)
3275{
567e4b79
ED
3276 const struct rps_sock_flow_table *sock_flow_table;
3277 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3278 struct rps_dev_flow_table *flow_table;
567e4b79 3279 struct rps_map *map;
bfb564e7 3280 int cpu = -1;
567e4b79 3281 u32 tcpu;
61b905da 3282 u32 hash;
bfb564e7
KK
3283
3284 if (skb_rx_queue_recorded(skb)) {
3285 u16 index = skb_get_rx_queue(skb);
567e4b79 3286
62fe0b40
BH
3287 if (unlikely(index >= dev->real_num_rx_queues)) {
3288 WARN_ONCE(dev->real_num_rx_queues > 1,
3289 "%s received packet on queue %u, but number "
3290 "of RX queues is %u\n",
3291 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3292 goto done;
3293 }
567e4b79
ED
3294 rxqueue += index;
3295 }
bfb564e7 3296
567e4b79
ED
3297 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3298
3299 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3300 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3301 if (!flow_table && !map)
bfb564e7
KK
3302 goto done;
3303
2d47b459 3304 skb_reset_network_header(skb);
61b905da
TH
3305 hash = skb_get_hash(skb);
3306 if (!hash)
bfb564e7
KK
3307 goto done;
3308
fec5e652
TH
3309 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3310 if (flow_table && sock_flow_table) {
fec5e652 3311 struct rps_dev_flow *rflow;
567e4b79
ED
3312 u32 next_cpu;
3313 u32 ident;
3314
3315 /* First check into global flow table if there is a match */
3316 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3317 if ((ident ^ hash) & ~rps_cpu_mask)
3318 goto try_rps;
fec5e652 3319
567e4b79
ED
3320 next_cpu = ident & rps_cpu_mask;
3321
3322 /* OK, now we know there is a match,
3323 * we can look at the local (per receive queue) flow table
3324 */
61b905da 3325 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3326 tcpu = rflow->cpu;
3327
fec5e652
TH
3328 /*
3329 * If the desired CPU (where last recvmsg was done) is
3330 * different from current CPU (one in the rx-queue flow
3331 * table entry), switch if one of the following holds:
a31196b0 3332 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3333 * - Current CPU is offline.
3334 * - The current CPU's queue tail has advanced beyond the
3335 * last packet that was enqueued using this table entry.
3336 * This guarantees that all previous packets for the flow
3337 * have been dequeued, thus preserving in order delivery.
3338 */
3339 if (unlikely(tcpu != next_cpu) &&
a31196b0 3340 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3341 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3342 rflow->last_qtail)) >= 0)) {
3343 tcpu = next_cpu;
c445477d 3344 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3345 }
c445477d 3346
a31196b0 3347 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3348 *rflowp = rflow;
3349 cpu = tcpu;
3350 goto done;
3351 }
3352 }
3353
567e4b79
ED
3354try_rps:
3355
0a9627f2 3356 if (map) {
8fc54f68 3357 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3358 if (cpu_online(tcpu)) {
3359 cpu = tcpu;
3360 goto done;
3361 }
3362 }
3363
3364done:
0a9627f2
TH
3365 return cpu;
3366}
3367
c445477d
BH
3368#ifdef CONFIG_RFS_ACCEL
3369
3370/**
3371 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3372 * @dev: Device on which the filter was set
3373 * @rxq_index: RX queue index
3374 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3375 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3376 *
3377 * Drivers that implement ndo_rx_flow_steer() should periodically call
3378 * this function for each installed filter and remove the filters for
3379 * which it returns %true.
3380 */
3381bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3382 u32 flow_id, u16 filter_id)
3383{
3384 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3385 struct rps_dev_flow_table *flow_table;
3386 struct rps_dev_flow *rflow;
3387 bool expire = true;
a31196b0 3388 unsigned int cpu;
c445477d
BH
3389
3390 rcu_read_lock();
3391 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3392 if (flow_table && flow_id <= flow_table->mask) {
3393 rflow = &flow_table->flows[flow_id];
3394 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3395 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3396 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3397 rflow->last_qtail) <
3398 (int)(10 * flow_table->mask)))
3399 expire = false;
3400 }
3401 rcu_read_unlock();
3402 return expire;
3403}
3404EXPORT_SYMBOL(rps_may_expire_flow);
3405
3406#endif /* CONFIG_RFS_ACCEL */
3407
0a9627f2 3408/* Called from hardirq (IPI) context */
e36fa2f7 3409static void rps_trigger_softirq(void *data)
0a9627f2 3410{
e36fa2f7
ED
3411 struct softnet_data *sd = data;
3412
eecfd7c4 3413 ____napi_schedule(sd, &sd->backlog);
dee42870 3414 sd->received_rps++;
0a9627f2 3415}
e36fa2f7 3416
fec5e652 3417#endif /* CONFIG_RPS */
0a9627f2 3418
e36fa2f7
ED
3419/*
3420 * Check if this softnet_data structure is another cpu one
3421 * If yes, queue it to our IPI list and return 1
3422 * If no, return 0
3423 */
3424static int rps_ipi_queued(struct softnet_data *sd)
3425{
3426#ifdef CONFIG_RPS
903ceff7 3427 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3428
3429 if (sd != mysd) {
3430 sd->rps_ipi_next = mysd->rps_ipi_list;
3431 mysd->rps_ipi_list = sd;
3432
3433 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3434 return 1;
3435 }
3436#endif /* CONFIG_RPS */
3437 return 0;
3438}
3439
99bbc707
WB
3440#ifdef CONFIG_NET_FLOW_LIMIT
3441int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3442#endif
3443
3444static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3445{
3446#ifdef CONFIG_NET_FLOW_LIMIT
3447 struct sd_flow_limit *fl;
3448 struct softnet_data *sd;
3449 unsigned int old_flow, new_flow;
3450
3451 if (qlen < (netdev_max_backlog >> 1))
3452 return false;
3453
903ceff7 3454 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3455
3456 rcu_read_lock();
3457 fl = rcu_dereference(sd->flow_limit);
3458 if (fl) {
3958afa1 3459 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3460 old_flow = fl->history[fl->history_head];
3461 fl->history[fl->history_head] = new_flow;
3462
3463 fl->history_head++;
3464 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3465
3466 if (likely(fl->buckets[old_flow]))
3467 fl->buckets[old_flow]--;
3468
3469 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3470 fl->count++;
3471 rcu_read_unlock();
3472 return true;
3473 }
3474 }
3475 rcu_read_unlock();
3476#endif
3477 return false;
3478}
3479
0a9627f2
TH
3480/*
3481 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3482 * queue (may be a remote CPU queue).
3483 */
fec5e652
TH
3484static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3485 unsigned int *qtail)
0a9627f2 3486{
e36fa2f7 3487 struct softnet_data *sd;
0a9627f2 3488 unsigned long flags;
99bbc707 3489 unsigned int qlen;
0a9627f2 3490
e36fa2f7 3491 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3492
3493 local_irq_save(flags);
0a9627f2 3494
e36fa2f7 3495 rps_lock(sd);
e9e4dd32
JA
3496 if (!netif_running(skb->dev))
3497 goto drop;
99bbc707
WB
3498 qlen = skb_queue_len(&sd->input_pkt_queue);
3499 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3500 if (qlen) {
0a9627f2 3501enqueue:
e36fa2f7 3502 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3503 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3504 rps_unlock(sd);
152102c7 3505 local_irq_restore(flags);
0a9627f2
TH
3506 return NET_RX_SUCCESS;
3507 }
3508
ebda37c2
ED
3509 /* Schedule NAPI for backlog device
3510 * We can use non atomic operation since we own the queue lock
3511 */
3512 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3513 if (!rps_ipi_queued(sd))
eecfd7c4 3514 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3515 }
3516 goto enqueue;
3517 }
3518
e9e4dd32 3519drop:
dee42870 3520 sd->dropped++;
e36fa2f7 3521 rps_unlock(sd);
0a9627f2 3522
0a9627f2
TH
3523 local_irq_restore(flags);
3524
caf586e5 3525 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3526 kfree_skb(skb);
3527 return NET_RX_DROP;
3528}
1da177e4 3529
ae78dbfa 3530static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3531{
b0e28f1e 3532 int ret;
1da177e4 3533
588f0330 3534 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3535
cf66ba58 3536 trace_netif_rx(skb);
df334545 3537#ifdef CONFIG_RPS
c5905afb 3538 if (static_key_false(&rps_needed)) {
fec5e652 3539 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3540 int cpu;
3541
cece1945 3542 preempt_disable();
b0e28f1e 3543 rcu_read_lock();
fec5e652
TH
3544
3545 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3546 if (cpu < 0)
3547 cpu = smp_processor_id();
fec5e652
TH
3548
3549 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3550
b0e28f1e 3551 rcu_read_unlock();
cece1945 3552 preempt_enable();
adc9300e
ED
3553 } else
3554#endif
fec5e652
TH
3555 {
3556 unsigned int qtail;
3557 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3558 put_cpu();
3559 }
b0e28f1e 3560 return ret;
1da177e4 3561}
ae78dbfa
BH
3562
3563/**
3564 * netif_rx - post buffer to the network code
3565 * @skb: buffer to post
3566 *
3567 * This function receives a packet from a device driver and queues it for
3568 * the upper (protocol) levels to process. It always succeeds. The buffer
3569 * may be dropped during processing for congestion control or by the
3570 * protocol layers.
3571 *
3572 * return values:
3573 * NET_RX_SUCCESS (no congestion)
3574 * NET_RX_DROP (packet was dropped)
3575 *
3576 */
3577
3578int netif_rx(struct sk_buff *skb)
3579{
3580 trace_netif_rx_entry(skb);
3581
3582 return netif_rx_internal(skb);
3583}
d1b19dff 3584EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3585
3586int netif_rx_ni(struct sk_buff *skb)
3587{
3588 int err;
3589
ae78dbfa
BH
3590 trace_netif_rx_ni_entry(skb);
3591
1da177e4 3592 preempt_disable();
ae78dbfa 3593 err = netif_rx_internal(skb);
1da177e4
LT
3594 if (local_softirq_pending())
3595 do_softirq();
3596 preempt_enable();
3597
3598 return err;
3599}
1da177e4
LT
3600EXPORT_SYMBOL(netif_rx_ni);
3601
1da177e4
LT
3602static void net_tx_action(struct softirq_action *h)
3603{
903ceff7 3604 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3605
3606 if (sd->completion_queue) {
3607 struct sk_buff *clist;
3608
3609 local_irq_disable();
3610 clist = sd->completion_queue;
3611 sd->completion_queue = NULL;
3612 local_irq_enable();
3613
3614 while (clist) {
3615 struct sk_buff *skb = clist;
3616 clist = clist->next;
3617
547b792c 3618 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3619 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3620 trace_consume_skb(skb);
3621 else
3622 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3623 __kfree_skb(skb);
3624 }
3625 }
3626
3627 if (sd->output_queue) {
37437bb2 3628 struct Qdisc *head;
1da177e4
LT
3629
3630 local_irq_disable();
3631 head = sd->output_queue;
3632 sd->output_queue = NULL;
a9cbd588 3633 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3634 local_irq_enable();
3635
3636 while (head) {
37437bb2
DM
3637 struct Qdisc *q = head;
3638 spinlock_t *root_lock;
3639
1da177e4
LT
3640 head = head->next_sched;
3641
5fb66229 3642 root_lock = qdisc_lock(q);
37437bb2 3643 if (spin_trylock(root_lock)) {
4e857c58 3644 smp_mb__before_atomic();
def82a1d
JP
3645 clear_bit(__QDISC_STATE_SCHED,
3646 &q->state);
37437bb2
DM
3647 qdisc_run(q);
3648 spin_unlock(root_lock);
1da177e4 3649 } else {
195648bb 3650 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3651 &q->state)) {
195648bb 3652 __netif_reschedule(q);
e8a83e10 3653 } else {
4e857c58 3654 smp_mb__before_atomic();
e8a83e10
JP
3655 clear_bit(__QDISC_STATE_SCHED,
3656 &q->state);
3657 }
1da177e4
LT
3658 }
3659 }
3660 }
3661}
3662
ab95bfe0
JP
3663#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3664 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3665/* This hook is defined here for ATM LANE */
3666int (*br_fdb_test_addr_hook)(struct net_device *dev,
3667 unsigned char *addr) __read_mostly;
4fb019a0 3668EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3669#endif
1da177e4 3670
f697c3e8
HX
3671static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3672 struct packet_type **pt_prev,
3673 int *ret, struct net_device *orig_dev)
3674{
e7582bab 3675#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3676 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3677 struct tcf_result cl_res;
24824a09 3678
c9e99fd0
DB
3679 /* If there's at least one ingress present somewhere (so
3680 * we get here via enabled static key), remaining devices
3681 * that are not configured with an ingress qdisc will bail
d2788d34 3682 * out here.
c9e99fd0 3683 */
d2788d34 3684 if (!cl)
4577139b 3685 return skb;
f697c3e8
HX
3686 if (*pt_prev) {
3687 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3688 *pt_prev = NULL;
1da177e4
LT
3689 }
3690
3365495c 3691 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3692 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3693 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3694
3b3ae880 3695 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3696 case TC_ACT_OK:
3697 case TC_ACT_RECLASSIFY:
3698 skb->tc_index = TC_H_MIN(cl_res.classid);
3699 break;
3700 case TC_ACT_SHOT:
24ea591d 3701 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3702 case TC_ACT_STOLEN:
3703 case TC_ACT_QUEUED:
3704 kfree_skb(skb);
3705 return NULL;
27b29f63
AS
3706 case TC_ACT_REDIRECT:
3707 /* skb_mac_header check was done by cls/act_bpf, so
3708 * we can safely push the L2 header back before
3709 * redirecting to another netdev
3710 */
3711 __skb_push(skb, skb->mac_len);
3712 skb_do_redirect(skb);
3713 return NULL;
d2788d34
DB
3714 default:
3715 break;
f697c3e8 3716 }
e7582bab 3717#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3718 return skb;
3719}
1da177e4 3720
ab95bfe0
JP
3721/**
3722 * netdev_rx_handler_register - register receive handler
3723 * @dev: device to register a handler for
3724 * @rx_handler: receive handler to register
93e2c32b 3725 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3726 *
e227867f 3727 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3728 * called from __netif_receive_skb. A negative errno code is returned
3729 * on a failure.
3730 *
3731 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3732 *
3733 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3734 */
3735int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3736 rx_handler_func_t *rx_handler,
3737 void *rx_handler_data)
ab95bfe0
JP
3738{
3739 ASSERT_RTNL();
3740
3741 if (dev->rx_handler)
3742 return -EBUSY;
3743
00cfec37 3744 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3745 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3746 rcu_assign_pointer(dev->rx_handler, rx_handler);
3747
3748 return 0;
3749}
3750EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3751
3752/**
3753 * netdev_rx_handler_unregister - unregister receive handler
3754 * @dev: device to unregister a handler from
3755 *
166ec369 3756 * Unregister a receive handler from a device.
ab95bfe0
JP
3757 *
3758 * The caller must hold the rtnl_mutex.
3759 */
3760void netdev_rx_handler_unregister(struct net_device *dev)
3761{
3762
3763 ASSERT_RTNL();
a9b3cd7f 3764 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3765 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3766 * section has a guarantee to see a non NULL rx_handler_data
3767 * as well.
3768 */
3769 synchronize_net();
a9b3cd7f 3770 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3771}
3772EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3773
b4b9e355
MG
3774/*
3775 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3776 * the special handling of PFMEMALLOC skbs.
3777 */
3778static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3779{
3780 switch (skb->protocol) {
2b8837ae
JP
3781 case htons(ETH_P_ARP):
3782 case htons(ETH_P_IP):
3783 case htons(ETH_P_IPV6):
3784 case htons(ETH_P_8021Q):
3785 case htons(ETH_P_8021AD):
b4b9e355
MG
3786 return true;
3787 default:
3788 return false;
3789 }
3790}
3791
e687ad60
PN
3792static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3793 int *ret, struct net_device *orig_dev)
3794{
e7582bab 3795#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
3796 if (nf_hook_ingress_active(skb)) {
3797 if (*pt_prev) {
3798 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3799 *pt_prev = NULL;
3800 }
3801
3802 return nf_hook_ingress(skb);
3803 }
e7582bab 3804#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3805 return 0;
3806}
e687ad60 3807
9754e293 3808static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3809{
3810 struct packet_type *ptype, *pt_prev;
ab95bfe0 3811 rx_handler_func_t *rx_handler;
f2ccd8fa 3812 struct net_device *orig_dev;
8a4eb573 3813 bool deliver_exact = false;
1da177e4 3814 int ret = NET_RX_DROP;
252e3346 3815 __be16 type;
1da177e4 3816
588f0330 3817 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3818
cf66ba58 3819 trace_netif_receive_skb(skb);
9b22ea56 3820
cc9bd5ce 3821 orig_dev = skb->dev;
8f903c70 3822
c1d2bbe1 3823 skb_reset_network_header(skb);
fda55eca
ED
3824 if (!skb_transport_header_was_set(skb))
3825 skb_reset_transport_header(skb);
0b5c9db1 3826 skb_reset_mac_len(skb);
1da177e4
LT
3827
3828 pt_prev = NULL;
3829
63d8ea7f 3830another_round:
b6858177 3831 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3832
3833 __this_cpu_inc(softnet_data.processed);
3834
8ad227ff
PM
3835 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3836 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3837 skb = skb_vlan_untag(skb);
bcc6d479 3838 if (unlikely(!skb))
2c17d27c 3839 goto out;
bcc6d479
JP
3840 }
3841
1da177e4
LT
3842#ifdef CONFIG_NET_CLS_ACT
3843 if (skb->tc_verd & TC_NCLS) {
3844 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3845 goto ncls;
3846 }
3847#endif
3848
9754e293 3849 if (pfmemalloc)
b4b9e355
MG
3850 goto skip_taps;
3851
1da177e4 3852 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3853 if (pt_prev)
3854 ret = deliver_skb(skb, pt_prev, orig_dev);
3855 pt_prev = ptype;
3856 }
3857
3858 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3859 if (pt_prev)
3860 ret = deliver_skb(skb, pt_prev, orig_dev);
3861 pt_prev = ptype;
1da177e4
LT
3862 }
3863
b4b9e355 3864skip_taps:
1cf51900 3865#ifdef CONFIG_NET_INGRESS
4577139b
DB
3866 if (static_key_false(&ingress_needed)) {
3867 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3868 if (!skb)
2c17d27c 3869 goto out;
e687ad60
PN
3870
3871 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 3872 goto out;
4577139b 3873 }
1cf51900
PN
3874#endif
3875#ifdef CONFIG_NET_CLS_ACT
4577139b 3876 skb->tc_verd = 0;
1da177e4
LT
3877ncls:
3878#endif
9754e293 3879 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3880 goto drop;
3881
df8a39de 3882 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3883 if (pt_prev) {
3884 ret = deliver_skb(skb, pt_prev, orig_dev);
3885 pt_prev = NULL;
3886 }
48cc32d3 3887 if (vlan_do_receive(&skb))
2425717b
JF
3888 goto another_round;
3889 else if (unlikely(!skb))
2c17d27c 3890 goto out;
2425717b
JF
3891 }
3892
48cc32d3 3893 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3894 if (rx_handler) {
3895 if (pt_prev) {
3896 ret = deliver_skb(skb, pt_prev, orig_dev);
3897 pt_prev = NULL;
3898 }
8a4eb573
JP
3899 switch (rx_handler(&skb)) {
3900 case RX_HANDLER_CONSUMED:
3bc1b1ad 3901 ret = NET_RX_SUCCESS;
2c17d27c 3902 goto out;
8a4eb573 3903 case RX_HANDLER_ANOTHER:
63d8ea7f 3904 goto another_round;
8a4eb573
JP
3905 case RX_HANDLER_EXACT:
3906 deliver_exact = true;
3907 case RX_HANDLER_PASS:
3908 break;
3909 default:
3910 BUG();
3911 }
ab95bfe0 3912 }
1da177e4 3913
df8a39de
JP
3914 if (unlikely(skb_vlan_tag_present(skb))) {
3915 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3916 skb->pkt_type = PACKET_OTHERHOST;
3917 /* Note: we might in the future use prio bits
3918 * and set skb->priority like in vlan_do_receive()
3919 * For the time being, just ignore Priority Code Point
3920 */
3921 skb->vlan_tci = 0;
3922 }
48cc32d3 3923
7866a621
SN
3924 type = skb->protocol;
3925
63d8ea7f 3926 /* deliver only exact match when indicated */
7866a621
SN
3927 if (likely(!deliver_exact)) {
3928 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3929 &ptype_base[ntohs(type) &
3930 PTYPE_HASH_MASK]);
3931 }
1f3c8804 3932
7866a621
SN
3933 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3934 &orig_dev->ptype_specific);
3935
3936 if (unlikely(skb->dev != orig_dev)) {
3937 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3938 &skb->dev->ptype_specific);
1da177e4
LT
3939 }
3940
3941 if (pt_prev) {
1080e512 3942 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3943 goto drop;
1080e512
MT
3944 else
3945 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3946 } else {
b4b9e355 3947drop:
caf586e5 3948 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3949 kfree_skb(skb);
3950 /* Jamal, now you will not able to escape explaining
3951 * me how you were going to use this. :-)
3952 */
3953 ret = NET_RX_DROP;
3954 }
3955
2c17d27c 3956out:
9754e293
DM
3957 return ret;
3958}
3959
3960static int __netif_receive_skb(struct sk_buff *skb)
3961{
3962 int ret;
3963
3964 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3965 unsigned long pflags = current->flags;
3966
3967 /*
3968 * PFMEMALLOC skbs are special, they should
3969 * - be delivered to SOCK_MEMALLOC sockets only
3970 * - stay away from userspace
3971 * - have bounded memory usage
3972 *
3973 * Use PF_MEMALLOC as this saves us from propagating the allocation
3974 * context down to all allocation sites.
3975 */
3976 current->flags |= PF_MEMALLOC;
3977 ret = __netif_receive_skb_core(skb, true);
3978 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3979 } else
3980 ret = __netif_receive_skb_core(skb, false);
3981
1da177e4
LT
3982 return ret;
3983}
0a9627f2 3984
ae78dbfa 3985static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3986{
2c17d27c
JA
3987 int ret;
3988
588f0330 3989 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3990
c1f19b51
RC
3991 if (skb_defer_rx_timestamp(skb))
3992 return NET_RX_SUCCESS;
3993
2c17d27c
JA
3994 rcu_read_lock();
3995
df334545 3996#ifdef CONFIG_RPS
c5905afb 3997 if (static_key_false(&rps_needed)) {
3b098e2d 3998 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 3999 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4000
3b098e2d
ED
4001 if (cpu >= 0) {
4002 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4003 rcu_read_unlock();
adc9300e 4004 return ret;
3b098e2d 4005 }
fec5e652 4006 }
1e94d72f 4007#endif
2c17d27c
JA
4008 ret = __netif_receive_skb(skb);
4009 rcu_read_unlock();
4010 return ret;
0a9627f2 4011}
ae78dbfa
BH
4012
4013/**
4014 * netif_receive_skb - process receive buffer from network
4015 * @skb: buffer to process
4016 *
4017 * netif_receive_skb() is the main receive data processing function.
4018 * It always succeeds. The buffer may be dropped during processing
4019 * for congestion control or by the protocol layers.
4020 *
4021 * This function may only be called from softirq context and interrupts
4022 * should be enabled.
4023 *
4024 * Return values (usually ignored):
4025 * NET_RX_SUCCESS: no congestion
4026 * NET_RX_DROP: packet was dropped
4027 */
04eb4489 4028int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4029{
4030 trace_netif_receive_skb_entry(skb);
4031
4032 return netif_receive_skb_internal(skb);
4033}
04eb4489 4034EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4035
88751275
ED
4036/* Network device is going away, flush any packets still pending
4037 * Called with irqs disabled.
4038 */
152102c7 4039static void flush_backlog(void *arg)
6e583ce5 4040{
152102c7 4041 struct net_device *dev = arg;
903ceff7 4042 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4043 struct sk_buff *skb, *tmp;
4044
e36fa2f7 4045 rps_lock(sd);
6e7676c1 4046 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4047 if (skb->dev == dev) {
e36fa2f7 4048 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4049 kfree_skb(skb);
76cc8b13 4050 input_queue_head_incr(sd);
6e583ce5 4051 }
6e7676c1 4052 }
e36fa2f7 4053 rps_unlock(sd);
6e7676c1
CG
4054
4055 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4056 if (skb->dev == dev) {
4057 __skb_unlink(skb, &sd->process_queue);
4058 kfree_skb(skb);
76cc8b13 4059 input_queue_head_incr(sd);
6e7676c1
CG
4060 }
4061 }
6e583ce5
SH
4062}
4063
d565b0a1
HX
4064static int napi_gro_complete(struct sk_buff *skb)
4065{
22061d80 4066 struct packet_offload *ptype;
d565b0a1 4067 __be16 type = skb->protocol;
22061d80 4068 struct list_head *head = &offload_base;
d565b0a1
HX
4069 int err = -ENOENT;
4070
c3c7c254
ED
4071 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4072
fc59f9a3
HX
4073 if (NAPI_GRO_CB(skb)->count == 1) {
4074 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4075 goto out;
fc59f9a3 4076 }
d565b0a1
HX
4077
4078 rcu_read_lock();
4079 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4080 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4081 continue;
4082
299603e8 4083 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4084 break;
4085 }
4086 rcu_read_unlock();
4087
4088 if (err) {
4089 WARN_ON(&ptype->list == head);
4090 kfree_skb(skb);
4091 return NET_RX_SUCCESS;
4092 }
4093
4094out:
ae78dbfa 4095 return netif_receive_skb_internal(skb);
d565b0a1
HX
4096}
4097
2e71a6f8
ED
4098/* napi->gro_list contains packets ordered by age.
4099 * youngest packets at the head of it.
4100 * Complete skbs in reverse order to reduce latencies.
4101 */
4102void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4103{
2e71a6f8 4104 struct sk_buff *skb, *prev = NULL;
d565b0a1 4105
2e71a6f8
ED
4106 /* scan list and build reverse chain */
4107 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4108 skb->prev = prev;
4109 prev = skb;
4110 }
4111
4112 for (skb = prev; skb; skb = prev) {
d565b0a1 4113 skb->next = NULL;
2e71a6f8
ED
4114
4115 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4116 return;
4117
4118 prev = skb->prev;
d565b0a1 4119 napi_gro_complete(skb);
2e71a6f8 4120 napi->gro_count--;
d565b0a1
HX
4121 }
4122
4123 napi->gro_list = NULL;
4124}
86cac58b 4125EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4126
89c5fa33
ED
4127static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4128{
4129 struct sk_buff *p;
4130 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4131 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4132
4133 for (p = napi->gro_list; p; p = p->next) {
4134 unsigned long diffs;
4135
0b4cec8c
TH
4136 NAPI_GRO_CB(p)->flush = 0;
4137
4138 if (hash != skb_get_hash_raw(p)) {
4139 NAPI_GRO_CB(p)->same_flow = 0;
4140 continue;
4141 }
4142
89c5fa33
ED
4143 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4144 diffs |= p->vlan_tci ^ skb->vlan_tci;
4145 if (maclen == ETH_HLEN)
4146 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4147 skb_mac_header(skb));
89c5fa33
ED
4148 else if (!diffs)
4149 diffs = memcmp(skb_mac_header(p),
a50e233c 4150 skb_mac_header(skb),
89c5fa33
ED
4151 maclen);
4152 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4153 }
4154}
4155
299603e8
JC
4156static void skb_gro_reset_offset(struct sk_buff *skb)
4157{
4158 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4159 const skb_frag_t *frag0 = &pinfo->frags[0];
4160
4161 NAPI_GRO_CB(skb)->data_offset = 0;
4162 NAPI_GRO_CB(skb)->frag0 = NULL;
4163 NAPI_GRO_CB(skb)->frag0_len = 0;
4164
4165 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4166 pinfo->nr_frags &&
4167 !PageHighMem(skb_frag_page(frag0))) {
4168 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4169 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4170 }
4171}
4172
a50e233c
ED
4173static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4174{
4175 struct skb_shared_info *pinfo = skb_shinfo(skb);
4176
4177 BUG_ON(skb->end - skb->tail < grow);
4178
4179 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4180
4181 skb->data_len -= grow;
4182 skb->tail += grow;
4183
4184 pinfo->frags[0].page_offset += grow;
4185 skb_frag_size_sub(&pinfo->frags[0], grow);
4186
4187 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4188 skb_frag_unref(skb, 0);
4189 memmove(pinfo->frags, pinfo->frags + 1,
4190 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4191 }
4192}
4193
bb728820 4194static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4195{
4196 struct sk_buff **pp = NULL;
22061d80 4197 struct packet_offload *ptype;
d565b0a1 4198 __be16 type = skb->protocol;
22061d80 4199 struct list_head *head = &offload_base;
0da2afd5 4200 int same_flow;
5b252f0c 4201 enum gro_result ret;
a50e233c 4202 int grow;
d565b0a1 4203
9c62a68d 4204 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4205 goto normal;
4206
5a212329 4207 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4208 goto normal;
4209
89c5fa33
ED
4210 gro_list_prepare(napi, skb);
4211
d565b0a1
HX
4212 rcu_read_lock();
4213 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4214 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4215 continue;
4216
86911732 4217 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4218 skb_reset_mac_len(skb);
d565b0a1
HX
4219 NAPI_GRO_CB(skb)->same_flow = 0;
4220 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4221 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4222 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4223 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4224
662880f4
TH
4225 /* Setup for GRO checksum validation */
4226 switch (skb->ip_summed) {
4227 case CHECKSUM_COMPLETE:
4228 NAPI_GRO_CB(skb)->csum = skb->csum;
4229 NAPI_GRO_CB(skb)->csum_valid = 1;
4230 NAPI_GRO_CB(skb)->csum_cnt = 0;
4231 break;
4232 case CHECKSUM_UNNECESSARY:
4233 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4234 NAPI_GRO_CB(skb)->csum_valid = 0;
4235 break;
4236 default:
4237 NAPI_GRO_CB(skb)->csum_cnt = 0;
4238 NAPI_GRO_CB(skb)->csum_valid = 0;
4239 }
d565b0a1 4240
f191a1d1 4241 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4242 break;
4243 }
4244 rcu_read_unlock();
4245
4246 if (&ptype->list == head)
4247 goto normal;
4248
0da2afd5 4249 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4250 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4251
d565b0a1
HX
4252 if (pp) {
4253 struct sk_buff *nskb = *pp;
4254
4255 *pp = nskb->next;
4256 nskb->next = NULL;
4257 napi_gro_complete(nskb);
4ae5544f 4258 napi->gro_count--;
d565b0a1
HX
4259 }
4260
0da2afd5 4261 if (same_flow)
d565b0a1
HX
4262 goto ok;
4263
600adc18 4264 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4265 goto normal;
d565b0a1 4266
600adc18
ED
4267 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4268 struct sk_buff *nskb = napi->gro_list;
4269
4270 /* locate the end of the list to select the 'oldest' flow */
4271 while (nskb->next) {
4272 pp = &nskb->next;
4273 nskb = *pp;
4274 }
4275 *pp = NULL;
4276 nskb->next = NULL;
4277 napi_gro_complete(nskb);
4278 } else {
4279 napi->gro_count++;
4280 }
d565b0a1 4281 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4282 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4283 NAPI_GRO_CB(skb)->last = skb;
86911732 4284 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4285 skb->next = napi->gro_list;
4286 napi->gro_list = skb;
5d0d9be8 4287 ret = GRO_HELD;
d565b0a1 4288
ad0f9904 4289pull:
a50e233c
ED
4290 grow = skb_gro_offset(skb) - skb_headlen(skb);
4291 if (grow > 0)
4292 gro_pull_from_frag0(skb, grow);
d565b0a1 4293ok:
5d0d9be8 4294 return ret;
d565b0a1
HX
4295
4296normal:
ad0f9904
HX
4297 ret = GRO_NORMAL;
4298 goto pull;
5d38a079 4299}
96e93eab 4300
bf5a755f
JC
4301struct packet_offload *gro_find_receive_by_type(__be16 type)
4302{
4303 struct list_head *offload_head = &offload_base;
4304 struct packet_offload *ptype;
4305
4306 list_for_each_entry_rcu(ptype, offload_head, list) {
4307 if (ptype->type != type || !ptype->callbacks.gro_receive)
4308 continue;
4309 return ptype;
4310 }
4311 return NULL;
4312}
e27a2f83 4313EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4314
4315struct packet_offload *gro_find_complete_by_type(__be16 type)
4316{
4317 struct list_head *offload_head = &offload_base;
4318 struct packet_offload *ptype;
4319
4320 list_for_each_entry_rcu(ptype, offload_head, list) {
4321 if (ptype->type != type || !ptype->callbacks.gro_complete)
4322 continue;
4323 return ptype;
4324 }
4325 return NULL;
4326}
e27a2f83 4327EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4328
bb728820 4329static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4330{
5d0d9be8
HX
4331 switch (ret) {
4332 case GRO_NORMAL:
ae78dbfa 4333 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4334 ret = GRO_DROP;
4335 break;
5d38a079 4336
5d0d9be8 4337 case GRO_DROP:
5d38a079
HX
4338 kfree_skb(skb);
4339 break;
5b252f0c 4340
daa86548 4341 case GRO_MERGED_FREE:
d7e8883c
ED
4342 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4343 kmem_cache_free(skbuff_head_cache, skb);
4344 else
4345 __kfree_skb(skb);
daa86548
ED
4346 break;
4347
5b252f0c
BH
4348 case GRO_HELD:
4349 case GRO_MERGED:
4350 break;
5d38a079
HX
4351 }
4352
c7c4b3b6 4353 return ret;
5d0d9be8 4354}
5d0d9be8 4355
c7c4b3b6 4356gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4357{
ae78dbfa 4358 trace_napi_gro_receive_entry(skb);
86911732 4359
a50e233c
ED
4360 skb_gro_reset_offset(skb);
4361
89c5fa33 4362 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4363}
4364EXPORT_SYMBOL(napi_gro_receive);
4365
d0c2b0d2 4366static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4367{
93a35f59
ED
4368 if (unlikely(skb->pfmemalloc)) {
4369 consume_skb(skb);
4370 return;
4371 }
96e93eab 4372 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4373 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4374 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4375 skb->vlan_tci = 0;
66c46d74 4376 skb->dev = napi->dev;
6d152e23 4377 skb->skb_iif = 0;
c3caf119
JC
4378 skb->encapsulation = 0;
4379 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4380 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4381
4382 napi->skb = skb;
4383}
96e93eab 4384
76620aaf 4385struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4386{
5d38a079 4387 struct sk_buff *skb = napi->skb;
5d38a079
HX
4388
4389 if (!skb) {
fd11a83d 4390 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4391 napi->skb = skb;
80595d59 4392 }
96e93eab
HX
4393 return skb;
4394}
76620aaf 4395EXPORT_SYMBOL(napi_get_frags);
96e93eab 4396
a50e233c
ED
4397static gro_result_t napi_frags_finish(struct napi_struct *napi,
4398 struct sk_buff *skb,
4399 gro_result_t ret)
96e93eab 4400{
5d0d9be8
HX
4401 switch (ret) {
4402 case GRO_NORMAL:
a50e233c
ED
4403 case GRO_HELD:
4404 __skb_push(skb, ETH_HLEN);
4405 skb->protocol = eth_type_trans(skb, skb->dev);
4406 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4407 ret = GRO_DROP;
86911732 4408 break;
5d38a079 4409
5d0d9be8 4410 case GRO_DROP:
5d0d9be8
HX
4411 case GRO_MERGED_FREE:
4412 napi_reuse_skb(napi, skb);
4413 break;
5b252f0c
BH
4414
4415 case GRO_MERGED:
4416 break;
5d0d9be8 4417 }
5d38a079 4418
c7c4b3b6 4419 return ret;
5d38a079 4420}
5d0d9be8 4421
a50e233c
ED
4422/* Upper GRO stack assumes network header starts at gro_offset=0
4423 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4424 * We copy ethernet header into skb->data to have a common layout.
4425 */
4adb9c4a 4426static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4427{
4428 struct sk_buff *skb = napi->skb;
a50e233c
ED
4429 const struct ethhdr *eth;
4430 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4431
4432 napi->skb = NULL;
4433
a50e233c
ED
4434 skb_reset_mac_header(skb);
4435 skb_gro_reset_offset(skb);
4436
4437 eth = skb_gro_header_fast(skb, 0);
4438 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4439 eth = skb_gro_header_slow(skb, hlen, 0);
4440 if (unlikely(!eth)) {
4441 napi_reuse_skb(napi, skb);
4442 return NULL;
4443 }
4444 } else {
4445 gro_pull_from_frag0(skb, hlen);
4446 NAPI_GRO_CB(skb)->frag0 += hlen;
4447 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4448 }
a50e233c
ED
4449 __skb_pull(skb, hlen);
4450
4451 /*
4452 * This works because the only protocols we care about don't require
4453 * special handling.
4454 * We'll fix it up properly in napi_frags_finish()
4455 */
4456 skb->protocol = eth->h_proto;
76620aaf 4457
76620aaf
HX
4458 return skb;
4459}
76620aaf 4460
c7c4b3b6 4461gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4462{
76620aaf 4463 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4464
4465 if (!skb)
c7c4b3b6 4466 return GRO_DROP;
5d0d9be8 4467
ae78dbfa
BH
4468 trace_napi_gro_frags_entry(skb);
4469
89c5fa33 4470 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4471}
5d38a079
HX
4472EXPORT_SYMBOL(napi_gro_frags);
4473
573e8fca
TH
4474/* Compute the checksum from gro_offset and return the folded value
4475 * after adding in any pseudo checksum.
4476 */
4477__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4478{
4479 __wsum wsum;
4480 __sum16 sum;
4481
4482 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4483
4484 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4485 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4486 if (likely(!sum)) {
4487 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4488 !skb->csum_complete_sw)
4489 netdev_rx_csum_fault(skb->dev);
4490 }
4491
4492 NAPI_GRO_CB(skb)->csum = wsum;
4493 NAPI_GRO_CB(skb)->csum_valid = 1;
4494
4495 return sum;
4496}
4497EXPORT_SYMBOL(__skb_gro_checksum_complete);
4498
e326bed2 4499/*
855abcf0 4500 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4501 * Note: called with local irq disabled, but exits with local irq enabled.
4502 */
4503static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4504{
4505#ifdef CONFIG_RPS
4506 struct softnet_data *remsd = sd->rps_ipi_list;
4507
4508 if (remsd) {
4509 sd->rps_ipi_list = NULL;
4510
4511 local_irq_enable();
4512
4513 /* Send pending IPI's to kick RPS processing on remote cpus. */
4514 while (remsd) {
4515 struct softnet_data *next = remsd->rps_ipi_next;
4516
4517 if (cpu_online(remsd->cpu))
c46fff2a 4518 smp_call_function_single_async(remsd->cpu,
fce8ad15 4519 &remsd->csd);
e326bed2
ED
4520 remsd = next;
4521 }
4522 } else
4523#endif
4524 local_irq_enable();
4525}
4526
d75b1ade
ED
4527static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4528{
4529#ifdef CONFIG_RPS
4530 return sd->rps_ipi_list != NULL;
4531#else
4532 return false;
4533#endif
4534}
4535
bea3348e 4536static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4537{
4538 int work = 0;
eecfd7c4 4539 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4540
e326bed2
ED
4541 /* Check if we have pending ipi, its better to send them now,
4542 * not waiting net_rx_action() end.
4543 */
d75b1ade 4544 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4545 local_irq_disable();
4546 net_rps_action_and_irq_enable(sd);
4547 }
d75b1ade 4548
bea3348e 4549 napi->weight = weight_p;
6e7676c1 4550 local_irq_disable();
11ef7a89 4551 while (1) {
1da177e4 4552 struct sk_buff *skb;
6e7676c1
CG
4553
4554 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4555 rcu_read_lock();
6e7676c1
CG
4556 local_irq_enable();
4557 __netif_receive_skb(skb);
2c17d27c 4558 rcu_read_unlock();
6e7676c1 4559 local_irq_disable();
76cc8b13
TH
4560 input_queue_head_incr(sd);
4561 if (++work >= quota) {
4562 local_irq_enable();
4563 return work;
4564 }
6e7676c1 4565 }
1da177e4 4566
e36fa2f7 4567 rps_lock(sd);
11ef7a89 4568 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4569 /*
4570 * Inline a custom version of __napi_complete().
4571 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4572 * and NAPI_STATE_SCHED is the only possible flag set
4573 * on backlog.
4574 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4575 * and we dont need an smp_mb() memory barrier.
4576 */
eecfd7c4 4577 napi->state = 0;
11ef7a89 4578 rps_unlock(sd);
eecfd7c4 4579
11ef7a89 4580 break;
bea3348e 4581 }
11ef7a89
TH
4582
4583 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4584 &sd->process_queue);
e36fa2f7 4585 rps_unlock(sd);
6e7676c1
CG
4586 }
4587 local_irq_enable();
1da177e4 4588
bea3348e
SH
4589 return work;
4590}
1da177e4 4591
bea3348e
SH
4592/**
4593 * __napi_schedule - schedule for receive
c4ea43c5 4594 * @n: entry to schedule
bea3348e 4595 *
bc9ad166
ED
4596 * The entry's receive function will be scheduled to run.
4597 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4598 */
b5606c2d 4599void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4600{
4601 unsigned long flags;
1da177e4 4602
bea3348e 4603 local_irq_save(flags);
903ceff7 4604 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4605 local_irq_restore(flags);
1da177e4 4606}
bea3348e
SH
4607EXPORT_SYMBOL(__napi_schedule);
4608
bc9ad166
ED
4609/**
4610 * __napi_schedule_irqoff - schedule for receive
4611 * @n: entry to schedule
4612 *
4613 * Variant of __napi_schedule() assuming hard irqs are masked
4614 */
4615void __napi_schedule_irqoff(struct napi_struct *n)
4616{
4617 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4618}
4619EXPORT_SYMBOL(__napi_schedule_irqoff);
4620
d565b0a1
HX
4621void __napi_complete(struct napi_struct *n)
4622{
4623 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4624
d75b1ade 4625 list_del_init(&n->poll_list);
4e857c58 4626 smp_mb__before_atomic();
d565b0a1
HX
4627 clear_bit(NAPI_STATE_SCHED, &n->state);
4628}
4629EXPORT_SYMBOL(__napi_complete);
4630
3b47d303 4631void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4632{
4633 unsigned long flags;
4634
4635 /*
4636 * don't let napi dequeue from the cpu poll list
4637 * just in case its running on a different cpu
4638 */
4639 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4640 return;
4641
3b47d303
ED
4642 if (n->gro_list) {
4643 unsigned long timeout = 0;
d75b1ade 4644
3b47d303
ED
4645 if (work_done)
4646 timeout = n->dev->gro_flush_timeout;
4647
4648 if (timeout)
4649 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4650 HRTIMER_MODE_REL_PINNED);
4651 else
4652 napi_gro_flush(n, false);
4653 }
d75b1ade
ED
4654 if (likely(list_empty(&n->poll_list))) {
4655 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4656 } else {
4657 /* If n->poll_list is not empty, we need to mask irqs */
4658 local_irq_save(flags);
4659 __napi_complete(n);
4660 local_irq_restore(flags);
4661 }
d565b0a1 4662}
3b47d303 4663EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4664
af12fa6e
ET
4665/* must be called under rcu_read_lock(), as we dont take a reference */
4666struct napi_struct *napi_by_id(unsigned int napi_id)
4667{
4668 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4669 struct napi_struct *napi;
4670
4671 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4672 if (napi->napi_id == napi_id)
4673 return napi;
4674
4675 return NULL;
4676}
4677EXPORT_SYMBOL_GPL(napi_by_id);
4678
4679void napi_hash_add(struct napi_struct *napi)
4680{
52bd2d62
ED
4681 if (test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4682 return;
af12fa6e 4683
52bd2d62 4684 spin_lock(&napi_hash_lock);
af12fa6e 4685
52bd2d62
ED
4686 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4687 do {
4688 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4689 napi_gen_id = NR_CPUS + 1;
4690 } while (napi_by_id(napi_gen_id));
4691 napi->napi_id = napi_gen_id;
af12fa6e 4692
52bd2d62
ED
4693 hlist_add_head_rcu(&napi->napi_hash_node,
4694 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 4695
52bd2d62 4696 spin_unlock(&napi_hash_lock);
af12fa6e
ET
4697}
4698EXPORT_SYMBOL_GPL(napi_hash_add);
4699
4700/* Warning : caller is responsible to make sure rcu grace period
4701 * is respected before freeing memory containing @napi
4702 */
4703void napi_hash_del(struct napi_struct *napi)
4704{
4705 spin_lock(&napi_hash_lock);
4706
4707 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4708 hlist_del_rcu(&napi->napi_hash_node);
4709
4710 spin_unlock(&napi_hash_lock);
4711}
4712EXPORT_SYMBOL_GPL(napi_hash_del);
4713
3b47d303
ED
4714static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4715{
4716 struct napi_struct *napi;
4717
4718 napi = container_of(timer, struct napi_struct, timer);
4719 if (napi->gro_list)
4720 napi_schedule(napi);
4721
4722 return HRTIMER_NORESTART;
4723}
4724
d565b0a1
HX
4725void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4726 int (*poll)(struct napi_struct *, int), int weight)
4727{
4728 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4729 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4730 napi->timer.function = napi_watchdog;
4ae5544f 4731 napi->gro_count = 0;
d565b0a1 4732 napi->gro_list = NULL;
5d38a079 4733 napi->skb = NULL;
d565b0a1 4734 napi->poll = poll;
82dc3c63
ED
4735 if (weight > NAPI_POLL_WEIGHT)
4736 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4737 weight, dev->name);
d565b0a1
HX
4738 napi->weight = weight;
4739 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4740 napi->dev = dev;
5d38a079 4741#ifdef CONFIG_NETPOLL
d565b0a1
HX
4742 spin_lock_init(&napi->poll_lock);
4743 napi->poll_owner = -1;
4744#endif
4745 set_bit(NAPI_STATE_SCHED, &napi->state);
4746}
4747EXPORT_SYMBOL(netif_napi_add);
4748
3b47d303
ED
4749void napi_disable(struct napi_struct *n)
4750{
4751 might_sleep();
4752 set_bit(NAPI_STATE_DISABLE, &n->state);
4753
4754 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4755 msleep(1);
2d8bff12
NH
4756 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4757 msleep(1);
3b47d303
ED
4758
4759 hrtimer_cancel(&n->timer);
4760
4761 clear_bit(NAPI_STATE_DISABLE, &n->state);
4762}
4763EXPORT_SYMBOL(napi_disable);
4764
d565b0a1
HX
4765void netif_napi_del(struct napi_struct *napi)
4766{
d7b06636 4767 list_del_init(&napi->dev_list);
76620aaf 4768 napi_free_frags(napi);
d565b0a1 4769
289dccbe 4770 kfree_skb_list(napi->gro_list);
d565b0a1 4771 napi->gro_list = NULL;
4ae5544f 4772 napi->gro_count = 0;
d565b0a1
HX
4773}
4774EXPORT_SYMBOL(netif_napi_del);
4775
726ce70e
HX
4776static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4777{
4778 void *have;
4779 int work, weight;
4780
4781 list_del_init(&n->poll_list);
4782
4783 have = netpoll_poll_lock(n);
4784
4785 weight = n->weight;
4786
4787 /* This NAPI_STATE_SCHED test is for avoiding a race
4788 * with netpoll's poll_napi(). Only the entity which
4789 * obtains the lock and sees NAPI_STATE_SCHED set will
4790 * actually make the ->poll() call. Therefore we avoid
4791 * accidentally calling ->poll() when NAPI is not scheduled.
4792 */
4793 work = 0;
4794 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4795 work = n->poll(n, weight);
4796 trace_napi_poll(n);
4797 }
4798
4799 WARN_ON_ONCE(work > weight);
4800
4801 if (likely(work < weight))
4802 goto out_unlock;
4803
4804 /* Drivers must not modify the NAPI state if they
4805 * consume the entire weight. In such cases this code
4806 * still "owns" the NAPI instance and therefore can
4807 * move the instance around on the list at-will.
4808 */
4809 if (unlikely(napi_disable_pending(n))) {
4810 napi_complete(n);
4811 goto out_unlock;
4812 }
4813
4814 if (n->gro_list) {
4815 /* flush too old packets
4816 * If HZ < 1000, flush all packets.
4817 */
4818 napi_gro_flush(n, HZ >= 1000);
4819 }
4820
001ce546
HX
4821 /* Some drivers may have called napi_schedule
4822 * prior to exhausting their budget.
4823 */
4824 if (unlikely(!list_empty(&n->poll_list))) {
4825 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4826 n->dev ? n->dev->name : "backlog");
4827 goto out_unlock;
4828 }
4829
726ce70e
HX
4830 list_add_tail(&n->poll_list, repoll);
4831
4832out_unlock:
4833 netpoll_poll_unlock(have);
4834
4835 return work;
4836}
4837
1da177e4
LT
4838static void net_rx_action(struct softirq_action *h)
4839{
903ceff7 4840 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4841 unsigned long time_limit = jiffies + 2;
51b0bded 4842 int budget = netdev_budget;
d75b1ade
ED
4843 LIST_HEAD(list);
4844 LIST_HEAD(repoll);
53fb95d3 4845
1da177e4 4846 local_irq_disable();
d75b1ade
ED
4847 list_splice_init(&sd->poll_list, &list);
4848 local_irq_enable();
1da177e4 4849
ceb8d5bf 4850 for (;;) {
bea3348e 4851 struct napi_struct *n;
1da177e4 4852
ceb8d5bf
HX
4853 if (list_empty(&list)) {
4854 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4855 return;
4856 break;
4857 }
4858
6bd373eb
HX
4859 n = list_first_entry(&list, struct napi_struct, poll_list);
4860 budget -= napi_poll(n, &repoll);
4861
d75b1ade 4862 /* If softirq window is exhausted then punt.
24f8b238
SH
4863 * Allow this to run for 2 jiffies since which will allow
4864 * an average latency of 1.5/HZ.
bea3348e 4865 */
ceb8d5bf
HX
4866 if (unlikely(budget <= 0 ||
4867 time_after_eq(jiffies, time_limit))) {
4868 sd->time_squeeze++;
4869 break;
4870 }
1da177e4 4871 }
d75b1ade 4872
d75b1ade
ED
4873 local_irq_disable();
4874
4875 list_splice_tail_init(&sd->poll_list, &list);
4876 list_splice_tail(&repoll, &list);
4877 list_splice(&list, &sd->poll_list);
4878 if (!list_empty(&sd->poll_list))
4879 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4880
e326bed2 4881 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4882}
4883
aa9d8560 4884struct netdev_adjacent {
9ff162a8 4885 struct net_device *dev;
5d261913
VF
4886
4887 /* upper master flag, there can only be one master device per list */
9ff162a8 4888 bool master;
5d261913 4889
5d261913
VF
4890 /* counter for the number of times this device was added to us */
4891 u16 ref_nr;
4892
402dae96
VF
4893 /* private field for the users */
4894 void *private;
4895
9ff162a8
JP
4896 struct list_head list;
4897 struct rcu_head rcu;
9ff162a8
JP
4898};
4899
6ea29da1 4900static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 4901 struct list_head *adj_list)
9ff162a8 4902{
5d261913 4903 struct netdev_adjacent *adj;
5d261913 4904
2f268f12 4905 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4906 if (adj->dev == adj_dev)
4907 return adj;
9ff162a8
JP
4908 }
4909 return NULL;
4910}
4911
4912/**
4913 * netdev_has_upper_dev - Check if device is linked to an upper device
4914 * @dev: device
4915 * @upper_dev: upper device to check
4916 *
4917 * Find out if a device is linked to specified upper device and return true
4918 * in case it is. Note that this checks only immediate upper device,
4919 * not through a complete stack of devices. The caller must hold the RTNL lock.
4920 */
4921bool netdev_has_upper_dev(struct net_device *dev,
4922 struct net_device *upper_dev)
4923{
4924 ASSERT_RTNL();
4925
6ea29da1 4926 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4927}
4928EXPORT_SYMBOL(netdev_has_upper_dev);
4929
4930/**
4931 * netdev_has_any_upper_dev - Check if device is linked to some device
4932 * @dev: device
4933 *
4934 * Find out if a device is linked to an upper device and return true in case
4935 * it is. The caller must hold the RTNL lock.
4936 */
1d143d9f 4937static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4938{
4939 ASSERT_RTNL();
4940
2f268f12 4941 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4942}
9ff162a8
JP
4943
4944/**
4945 * netdev_master_upper_dev_get - Get master upper device
4946 * @dev: device
4947 *
4948 * Find a master upper device and return pointer to it or NULL in case
4949 * it's not there. The caller must hold the RTNL lock.
4950 */
4951struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4952{
aa9d8560 4953 struct netdev_adjacent *upper;
9ff162a8
JP
4954
4955 ASSERT_RTNL();
4956
2f268f12 4957 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4958 return NULL;
4959
2f268f12 4960 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4961 struct netdev_adjacent, list);
9ff162a8
JP
4962 if (likely(upper->master))
4963 return upper->dev;
4964 return NULL;
4965}
4966EXPORT_SYMBOL(netdev_master_upper_dev_get);
4967
b6ccba4c
VF
4968void *netdev_adjacent_get_private(struct list_head *adj_list)
4969{
4970 struct netdev_adjacent *adj;
4971
4972 adj = list_entry(adj_list, struct netdev_adjacent, list);
4973
4974 return adj->private;
4975}
4976EXPORT_SYMBOL(netdev_adjacent_get_private);
4977
44a40855
VY
4978/**
4979 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4980 * @dev: device
4981 * @iter: list_head ** of the current position
4982 *
4983 * Gets the next device from the dev's upper list, starting from iter
4984 * position. The caller must hold RCU read lock.
4985 */
4986struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4987 struct list_head **iter)
4988{
4989 struct netdev_adjacent *upper;
4990
4991 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4992
4993 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4994
4995 if (&upper->list == &dev->adj_list.upper)
4996 return NULL;
4997
4998 *iter = &upper->list;
4999
5000 return upper->dev;
5001}
5002EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5003
31088a11
VF
5004/**
5005 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5006 * @dev: device
5007 * @iter: list_head ** of the current position
5008 *
5009 * Gets the next device from the dev's upper list, starting from iter
5010 * position. The caller must hold RCU read lock.
5011 */
2f268f12
VF
5012struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5013 struct list_head **iter)
48311f46
VF
5014{
5015 struct netdev_adjacent *upper;
5016
85328240 5017 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5018
5019 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5020
2f268f12 5021 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5022 return NULL;
5023
5024 *iter = &upper->list;
5025
5026 return upper->dev;
5027}
2f268f12 5028EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5029
31088a11
VF
5030/**
5031 * netdev_lower_get_next_private - Get the next ->private from the
5032 * lower neighbour list
5033 * @dev: device
5034 * @iter: list_head ** of the current position
5035 *
5036 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5037 * list, starting from iter position. The caller must hold either hold the
5038 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5039 * list will remain unchanged.
31088a11
VF
5040 */
5041void *netdev_lower_get_next_private(struct net_device *dev,
5042 struct list_head **iter)
5043{
5044 struct netdev_adjacent *lower;
5045
5046 lower = list_entry(*iter, struct netdev_adjacent, list);
5047
5048 if (&lower->list == &dev->adj_list.lower)
5049 return NULL;
5050
6859e7df 5051 *iter = lower->list.next;
31088a11
VF
5052
5053 return lower->private;
5054}
5055EXPORT_SYMBOL(netdev_lower_get_next_private);
5056
5057/**
5058 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5059 * lower neighbour list, RCU
5060 * variant
5061 * @dev: device
5062 * @iter: list_head ** of the current position
5063 *
5064 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5065 * list, starting from iter position. The caller must hold RCU read lock.
5066 */
5067void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5068 struct list_head **iter)
5069{
5070 struct netdev_adjacent *lower;
5071
5072 WARN_ON_ONCE(!rcu_read_lock_held());
5073
5074 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5075
5076 if (&lower->list == &dev->adj_list.lower)
5077 return NULL;
5078
6859e7df 5079 *iter = &lower->list;
31088a11
VF
5080
5081 return lower->private;
5082}
5083EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5084
4085ebe8
VY
5085/**
5086 * netdev_lower_get_next - Get the next device from the lower neighbour
5087 * list
5088 * @dev: device
5089 * @iter: list_head ** of the current position
5090 *
5091 * Gets the next netdev_adjacent from the dev's lower neighbour
5092 * list, starting from iter position. The caller must hold RTNL lock or
5093 * its own locking that guarantees that the neighbour lower
b469139e 5094 * list will remain unchanged.
4085ebe8
VY
5095 */
5096void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5097{
5098 struct netdev_adjacent *lower;
5099
5100 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5101
5102 if (&lower->list == &dev->adj_list.lower)
5103 return NULL;
5104
5105 *iter = &lower->list;
5106
5107 return lower->dev;
5108}
5109EXPORT_SYMBOL(netdev_lower_get_next);
5110
e001bfad 5111/**
5112 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5113 * lower neighbour list, RCU
5114 * variant
5115 * @dev: device
5116 *
5117 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5118 * list. The caller must hold RCU read lock.
5119 */
5120void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5121{
5122 struct netdev_adjacent *lower;
5123
5124 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5125 struct netdev_adjacent, list);
5126 if (lower)
5127 return lower->private;
5128 return NULL;
5129}
5130EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5131
9ff162a8
JP
5132/**
5133 * netdev_master_upper_dev_get_rcu - Get master upper device
5134 * @dev: device
5135 *
5136 * Find a master upper device and return pointer to it or NULL in case
5137 * it's not there. The caller must hold the RCU read lock.
5138 */
5139struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5140{
aa9d8560 5141 struct netdev_adjacent *upper;
9ff162a8 5142
2f268f12 5143 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5144 struct netdev_adjacent, list);
9ff162a8
JP
5145 if (upper && likely(upper->master))
5146 return upper->dev;
5147 return NULL;
5148}
5149EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5150
0a59f3a9 5151static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5152 struct net_device *adj_dev,
5153 struct list_head *dev_list)
5154{
5155 char linkname[IFNAMSIZ+7];
5156 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5157 "upper_%s" : "lower_%s", adj_dev->name);
5158 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5159 linkname);
5160}
0a59f3a9 5161static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5162 char *name,
5163 struct list_head *dev_list)
5164{
5165 char linkname[IFNAMSIZ+7];
5166 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5167 "upper_%s" : "lower_%s", name);
5168 sysfs_remove_link(&(dev->dev.kobj), linkname);
5169}
5170
7ce64c79
AF
5171static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5172 struct net_device *adj_dev,
5173 struct list_head *dev_list)
5174{
5175 return (dev_list == &dev->adj_list.upper ||
5176 dev_list == &dev->adj_list.lower) &&
5177 net_eq(dev_net(dev), dev_net(adj_dev));
5178}
3ee32707 5179
5d261913
VF
5180static int __netdev_adjacent_dev_insert(struct net_device *dev,
5181 struct net_device *adj_dev,
7863c054 5182 struct list_head *dev_list,
402dae96 5183 void *private, bool master)
5d261913
VF
5184{
5185 struct netdev_adjacent *adj;
842d67a7 5186 int ret;
5d261913 5187
6ea29da1 5188 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5189
5190 if (adj) {
5d261913
VF
5191 adj->ref_nr++;
5192 return 0;
5193 }
5194
5195 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5196 if (!adj)
5197 return -ENOMEM;
5198
5199 adj->dev = adj_dev;
5200 adj->master = master;
5d261913 5201 adj->ref_nr = 1;
402dae96 5202 adj->private = private;
5d261913 5203 dev_hold(adj_dev);
2f268f12
VF
5204
5205 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5206 adj_dev->name, dev->name, adj_dev->name);
5d261913 5207
7ce64c79 5208 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5209 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5210 if (ret)
5211 goto free_adj;
5212 }
5213
7863c054 5214 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5215 if (master) {
5216 ret = sysfs_create_link(&(dev->dev.kobj),
5217 &(adj_dev->dev.kobj), "master");
5218 if (ret)
5831d66e 5219 goto remove_symlinks;
842d67a7 5220
7863c054 5221 list_add_rcu(&adj->list, dev_list);
842d67a7 5222 } else {
7863c054 5223 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5224 }
5d261913
VF
5225
5226 return 0;
842d67a7 5227
5831d66e 5228remove_symlinks:
7ce64c79 5229 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5230 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5231free_adj:
5232 kfree(adj);
974daef7 5233 dev_put(adj_dev);
842d67a7
VF
5234
5235 return ret;
5d261913
VF
5236}
5237
1d143d9f 5238static void __netdev_adjacent_dev_remove(struct net_device *dev,
5239 struct net_device *adj_dev,
5240 struct list_head *dev_list)
5d261913
VF
5241{
5242 struct netdev_adjacent *adj;
5243
6ea29da1 5244 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5245
2f268f12
VF
5246 if (!adj) {
5247 pr_err("tried to remove device %s from %s\n",
5248 dev->name, adj_dev->name);
5d261913 5249 BUG();
2f268f12 5250 }
5d261913
VF
5251
5252 if (adj->ref_nr > 1) {
2f268f12
VF
5253 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5254 adj->ref_nr-1);
5d261913
VF
5255 adj->ref_nr--;
5256 return;
5257 }
5258
842d67a7
VF
5259 if (adj->master)
5260 sysfs_remove_link(&(dev->dev.kobj), "master");
5261
7ce64c79 5262 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5263 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5264
5d261913 5265 list_del_rcu(&adj->list);
2f268f12
VF
5266 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5267 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5268 dev_put(adj_dev);
5269 kfree_rcu(adj, rcu);
5270}
5271
1d143d9f 5272static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5273 struct net_device *upper_dev,
5274 struct list_head *up_list,
5275 struct list_head *down_list,
5276 void *private, bool master)
5d261913
VF
5277{
5278 int ret;
5279
402dae96
VF
5280 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5281 master);
5d261913
VF
5282 if (ret)
5283 return ret;
5284
402dae96
VF
5285 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5286 false);
5d261913 5287 if (ret) {
2f268f12 5288 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5289 return ret;
5290 }
5291
5292 return 0;
5293}
5294
1d143d9f 5295static int __netdev_adjacent_dev_link(struct net_device *dev,
5296 struct net_device *upper_dev)
5d261913 5297{
2f268f12
VF
5298 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5299 &dev->all_adj_list.upper,
5300 &upper_dev->all_adj_list.lower,
402dae96 5301 NULL, false);
5d261913
VF
5302}
5303
1d143d9f 5304static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5305 struct net_device *upper_dev,
5306 struct list_head *up_list,
5307 struct list_head *down_list)
5d261913 5308{
2f268f12
VF
5309 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5310 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5311}
5312
1d143d9f 5313static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5314 struct net_device *upper_dev)
5d261913 5315{
2f268f12
VF
5316 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5317 &dev->all_adj_list.upper,
5318 &upper_dev->all_adj_list.lower);
5319}
5320
1d143d9f 5321static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5322 struct net_device *upper_dev,
5323 void *private, bool master)
2f268f12
VF
5324{
5325 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5326
5327 if (ret)
5328 return ret;
5329
5330 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5331 &dev->adj_list.upper,
5332 &upper_dev->adj_list.lower,
402dae96 5333 private, master);
2f268f12
VF
5334 if (ret) {
5335 __netdev_adjacent_dev_unlink(dev, upper_dev);
5336 return ret;
5337 }
5338
5339 return 0;
5d261913
VF
5340}
5341
1d143d9f 5342static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5343 struct net_device *upper_dev)
2f268f12
VF
5344{
5345 __netdev_adjacent_dev_unlink(dev, upper_dev);
5346 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5347 &dev->adj_list.upper,
5348 &upper_dev->adj_list.lower);
5349}
5d261913 5350
9ff162a8 5351static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5352 struct net_device *upper_dev, bool master,
5353 void *private)
9ff162a8 5354{
0e4ead9d 5355 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5356 struct netdev_adjacent *i, *j, *to_i, *to_j;
5357 int ret = 0;
9ff162a8
JP
5358
5359 ASSERT_RTNL();
5360
5361 if (dev == upper_dev)
5362 return -EBUSY;
5363
5364 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5365 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5366 return -EBUSY;
5367
6ea29da1 5368 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5369 return -EEXIST;
5370
5371 if (master && netdev_master_upper_dev_get(dev))
5372 return -EBUSY;
5373
0e4ead9d
JP
5374 changeupper_info.upper_dev = upper_dev;
5375 changeupper_info.master = master;
5376 changeupper_info.linking = true;
5377
573c7ba0
JP
5378 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5379 &changeupper_info.info);
5380 ret = notifier_to_errno(ret);
5381 if (ret)
5382 return ret;
5383
402dae96
VF
5384 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5385 master);
5d261913
VF
5386 if (ret)
5387 return ret;
9ff162a8 5388
5d261913 5389 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5390 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5391 * versa, and don't forget the devices itself. All of these
5392 * links are non-neighbours.
5393 */
2f268f12
VF
5394 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5395 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5396 pr_debug("Interlinking %s with %s, non-neighbour\n",
5397 i->dev->name, j->dev->name);
5d261913
VF
5398 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5399 if (ret)
5400 goto rollback_mesh;
5401 }
5402 }
5403
5404 /* add dev to every upper_dev's upper device */
2f268f12
VF
5405 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5406 pr_debug("linking %s's upper device %s with %s\n",
5407 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5408 ret = __netdev_adjacent_dev_link(dev, i->dev);
5409 if (ret)
5410 goto rollback_upper_mesh;
5411 }
5412
5413 /* add upper_dev to every dev's lower device */
2f268f12
VF
5414 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5415 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5416 i->dev->name, upper_dev->name);
5d261913
VF
5417 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5418 if (ret)
5419 goto rollback_lower_mesh;
5420 }
9ff162a8 5421
0e4ead9d
JP
5422 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5423 &changeupper_info.info);
9ff162a8 5424 return 0;
5d261913
VF
5425
5426rollback_lower_mesh:
5427 to_i = i;
2f268f12 5428 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5429 if (i == to_i)
5430 break;
5431 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5432 }
5433
5434 i = NULL;
5435
5436rollback_upper_mesh:
5437 to_i = i;
2f268f12 5438 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5439 if (i == to_i)
5440 break;
5441 __netdev_adjacent_dev_unlink(dev, i->dev);
5442 }
5443
5444 i = j = NULL;
5445
5446rollback_mesh:
5447 to_i = i;
5448 to_j = j;
2f268f12
VF
5449 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5450 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5451 if (i == to_i && j == to_j)
5452 break;
5453 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5454 }
5455 if (i == to_i)
5456 break;
5457 }
5458
2f268f12 5459 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5460
5461 return ret;
9ff162a8
JP
5462}
5463
5464/**
5465 * netdev_upper_dev_link - Add a link to the upper device
5466 * @dev: device
5467 * @upper_dev: new upper device
5468 *
5469 * Adds a link to device which is upper to this one. The caller must hold
5470 * the RTNL lock. On a failure a negative errno code is returned.
5471 * On success the reference counts are adjusted and the function
5472 * returns zero.
5473 */
5474int netdev_upper_dev_link(struct net_device *dev,
5475 struct net_device *upper_dev)
5476{
402dae96 5477 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5478}
5479EXPORT_SYMBOL(netdev_upper_dev_link);
5480
5481/**
5482 * netdev_master_upper_dev_link - Add a master link to the upper device
5483 * @dev: device
5484 * @upper_dev: new upper device
5485 *
5486 * Adds a link to device which is upper to this one. In this case, only
5487 * one master upper device can be linked, although other non-master devices
5488 * might be linked as well. The caller must hold the RTNL lock.
5489 * On a failure a negative errno code is returned. On success the reference
5490 * counts are adjusted and the function returns zero.
5491 */
5492int netdev_master_upper_dev_link(struct net_device *dev,
5493 struct net_device *upper_dev)
5494{
402dae96 5495 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5496}
5497EXPORT_SYMBOL(netdev_master_upper_dev_link);
5498
402dae96
VF
5499int netdev_master_upper_dev_link_private(struct net_device *dev,
5500 struct net_device *upper_dev,
5501 void *private)
5502{
5503 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5504}
5505EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5506
9ff162a8
JP
5507/**
5508 * netdev_upper_dev_unlink - Removes a link to upper device
5509 * @dev: device
5510 * @upper_dev: new upper device
5511 *
5512 * Removes a link to device which is upper to this one. The caller must hold
5513 * the RTNL lock.
5514 */
5515void netdev_upper_dev_unlink(struct net_device *dev,
5516 struct net_device *upper_dev)
5517{
0e4ead9d 5518 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5519 struct netdev_adjacent *i, *j;
9ff162a8
JP
5520 ASSERT_RTNL();
5521
0e4ead9d
JP
5522 changeupper_info.upper_dev = upper_dev;
5523 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5524 changeupper_info.linking = false;
5525
573c7ba0
JP
5526 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5527 &changeupper_info.info);
5528
2f268f12 5529 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5530
5531 /* Here is the tricky part. We must remove all dev's lower
5532 * devices from all upper_dev's upper devices and vice
5533 * versa, to maintain the graph relationship.
5534 */
2f268f12
VF
5535 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5536 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5537 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5538
5539 /* remove also the devices itself from lower/upper device
5540 * list
5541 */
2f268f12 5542 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5543 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5544
2f268f12 5545 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5546 __netdev_adjacent_dev_unlink(dev, i->dev);
5547
0e4ead9d
JP
5548 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5549 &changeupper_info.info);
9ff162a8
JP
5550}
5551EXPORT_SYMBOL(netdev_upper_dev_unlink);
5552
61bd3857
MS
5553/**
5554 * netdev_bonding_info_change - Dispatch event about slave change
5555 * @dev: device
4a26e453 5556 * @bonding_info: info to dispatch
61bd3857
MS
5557 *
5558 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5559 * The caller must hold the RTNL lock.
5560 */
5561void netdev_bonding_info_change(struct net_device *dev,
5562 struct netdev_bonding_info *bonding_info)
5563{
5564 struct netdev_notifier_bonding_info info;
5565
5566 memcpy(&info.bonding_info, bonding_info,
5567 sizeof(struct netdev_bonding_info));
5568 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5569 &info.info);
5570}
5571EXPORT_SYMBOL(netdev_bonding_info_change);
5572
2ce1ee17 5573static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5574{
5575 struct netdev_adjacent *iter;
5576
5577 struct net *net = dev_net(dev);
5578
5579 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5580 if (!net_eq(net,dev_net(iter->dev)))
5581 continue;
5582 netdev_adjacent_sysfs_add(iter->dev, dev,
5583 &iter->dev->adj_list.lower);
5584 netdev_adjacent_sysfs_add(dev, iter->dev,
5585 &dev->adj_list.upper);
5586 }
5587
5588 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5589 if (!net_eq(net,dev_net(iter->dev)))
5590 continue;
5591 netdev_adjacent_sysfs_add(iter->dev, dev,
5592 &iter->dev->adj_list.upper);
5593 netdev_adjacent_sysfs_add(dev, iter->dev,
5594 &dev->adj_list.lower);
5595 }
5596}
5597
2ce1ee17 5598static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5599{
5600 struct netdev_adjacent *iter;
5601
5602 struct net *net = dev_net(dev);
5603
5604 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5605 if (!net_eq(net,dev_net(iter->dev)))
5606 continue;
5607 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5608 &iter->dev->adj_list.lower);
5609 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5610 &dev->adj_list.upper);
5611 }
5612
5613 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5614 if (!net_eq(net,dev_net(iter->dev)))
5615 continue;
5616 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5617 &iter->dev->adj_list.upper);
5618 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5619 &dev->adj_list.lower);
5620 }
5621}
5622
5bb025fa 5623void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5624{
5bb025fa 5625 struct netdev_adjacent *iter;
402dae96 5626
4c75431a
AF
5627 struct net *net = dev_net(dev);
5628
5bb025fa 5629 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5630 if (!net_eq(net,dev_net(iter->dev)))
5631 continue;
5bb025fa
VF
5632 netdev_adjacent_sysfs_del(iter->dev, oldname,
5633 &iter->dev->adj_list.lower);
5634 netdev_adjacent_sysfs_add(iter->dev, dev,
5635 &iter->dev->adj_list.lower);
5636 }
402dae96 5637
5bb025fa 5638 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5639 if (!net_eq(net,dev_net(iter->dev)))
5640 continue;
5bb025fa
VF
5641 netdev_adjacent_sysfs_del(iter->dev, oldname,
5642 &iter->dev->adj_list.upper);
5643 netdev_adjacent_sysfs_add(iter->dev, dev,
5644 &iter->dev->adj_list.upper);
5645 }
402dae96 5646}
402dae96
VF
5647
5648void *netdev_lower_dev_get_private(struct net_device *dev,
5649 struct net_device *lower_dev)
5650{
5651 struct netdev_adjacent *lower;
5652
5653 if (!lower_dev)
5654 return NULL;
6ea29da1 5655 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5656 if (!lower)
5657 return NULL;
5658
5659 return lower->private;
5660}
5661EXPORT_SYMBOL(netdev_lower_dev_get_private);
5662
4085ebe8
VY
5663
5664int dev_get_nest_level(struct net_device *dev,
5665 bool (*type_check)(struct net_device *dev))
5666{
5667 struct net_device *lower = NULL;
5668 struct list_head *iter;
5669 int max_nest = -1;
5670 int nest;
5671
5672 ASSERT_RTNL();
5673
5674 netdev_for_each_lower_dev(dev, lower, iter) {
5675 nest = dev_get_nest_level(lower, type_check);
5676 if (max_nest < nest)
5677 max_nest = nest;
5678 }
5679
5680 if (type_check(dev))
5681 max_nest++;
5682
5683 return max_nest;
5684}
5685EXPORT_SYMBOL(dev_get_nest_level);
5686
b6c40d68
PM
5687static void dev_change_rx_flags(struct net_device *dev, int flags)
5688{
d314774c
SH
5689 const struct net_device_ops *ops = dev->netdev_ops;
5690
d2615bf4 5691 if (ops->ndo_change_rx_flags)
d314774c 5692 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5693}
5694
991fb3f7 5695static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5696{
b536db93 5697 unsigned int old_flags = dev->flags;
d04a48b0
EB
5698 kuid_t uid;
5699 kgid_t gid;
1da177e4 5700
24023451
PM
5701 ASSERT_RTNL();
5702
dad9b335
WC
5703 dev->flags |= IFF_PROMISC;
5704 dev->promiscuity += inc;
5705 if (dev->promiscuity == 0) {
5706 /*
5707 * Avoid overflow.
5708 * If inc causes overflow, untouch promisc and return error.
5709 */
5710 if (inc < 0)
5711 dev->flags &= ~IFF_PROMISC;
5712 else {
5713 dev->promiscuity -= inc;
7b6cd1ce
JP
5714 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5715 dev->name);
dad9b335
WC
5716 return -EOVERFLOW;
5717 }
5718 }
52609c0b 5719 if (dev->flags != old_flags) {
7b6cd1ce
JP
5720 pr_info("device %s %s promiscuous mode\n",
5721 dev->name,
5722 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5723 if (audit_enabled) {
5724 current_uid_gid(&uid, &gid);
7759db82
KHK
5725 audit_log(current->audit_context, GFP_ATOMIC,
5726 AUDIT_ANOM_PROMISCUOUS,
5727 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5728 dev->name, (dev->flags & IFF_PROMISC),
5729 (old_flags & IFF_PROMISC),
e1760bd5 5730 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5731 from_kuid(&init_user_ns, uid),
5732 from_kgid(&init_user_ns, gid),
7759db82 5733 audit_get_sessionid(current));
8192b0c4 5734 }
24023451 5735
b6c40d68 5736 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5737 }
991fb3f7
ND
5738 if (notify)
5739 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5740 return 0;
1da177e4
LT
5741}
5742
4417da66
PM
5743/**
5744 * dev_set_promiscuity - update promiscuity count on a device
5745 * @dev: device
5746 * @inc: modifier
5747 *
5748 * Add or remove promiscuity from a device. While the count in the device
5749 * remains above zero the interface remains promiscuous. Once it hits zero
5750 * the device reverts back to normal filtering operation. A negative inc
5751 * value is used to drop promiscuity on the device.
dad9b335 5752 * Return 0 if successful or a negative errno code on error.
4417da66 5753 */
dad9b335 5754int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5755{
b536db93 5756 unsigned int old_flags = dev->flags;
dad9b335 5757 int err;
4417da66 5758
991fb3f7 5759 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5760 if (err < 0)
dad9b335 5761 return err;
4417da66
PM
5762 if (dev->flags != old_flags)
5763 dev_set_rx_mode(dev);
dad9b335 5764 return err;
4417da66 5765}
d1b19dff 5766EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5767
991fb3f7 5768static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5769{
991fb3f7 5770 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5771
24023451
PM
5772 ASSERT_RTNL();
5773
1da177e4 5774 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5775 dev->allmulti += inc;
5776 if (dev->allmulti == 0) {
5777 /*
5778 * Avoid overflow.
5779 * If inc causes overflow, untouch allmulti and return error.
5780 */
5781 if (inc < 0)
5782 dev->flags &= ~IFF_ALLMULTI;
5783 else {
5784 dev->allmulti -= inc;
7b6cd1ce
JP
5785 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5786 dev->name);
dad9b335
WC
5787 return -EOVERFLOW;
5788 }
5789 }
24023451 5790 if (dev->flags ^ old_flags) {
b6c40d68 5791 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5792 dev_set_rx_mode(dev);
991fb3f7
ND
5793 if (notify)
5794 __dev_notify_flags(dev, old_flags,
5795 dev->gflags ^ old_gflags);
24023451 5796 }
dad9b335 5797 return 0;
4417da66 5798}
991fb3f7
ND
5799
5800/**
5801 * dev_set_allmulti - update allmulti count on a device
5802 * @dev: device
5803 * @inc: modifier
5804 *
5805 * Add or remove reception of all multicast frames to a device. While the
5806 * count in the device remains above zero the interface remains listening
5807 * to all interfaces. Once it hits zero the device reverts back to normal
5808 * filtering operation. A negative @inc value is used to drop the counter
5809 * when releasing a resource needing all multicasts.
5810 * Return 0 if successful or a negative errno code on error.
5811 */
5812
5813int dev_set_allmulti(struct net_device *dev, int inc)
5814{
5815 return __dev_set_allmulti(dev, inc, true);
5816}
d1b19dff 5817EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5818
5819/*
5820 * Upload unicast and multicast address lists to device and
5821 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5822 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5823 * are present.
5824 */
5825void __dev_set_rx_mode(struct net_device *dev)
5826{
d314774c
SH
5827 const struct net_device_ops *ops = dev->netdev_ops;
5828
4417da66
PM
5829 /* dev_open will call this function so the list will stay sane. */
5830 if (!(dev->flags&IFF_UP))
5831 return;
5832
5833 if (!netif_device_present(dev))
40b77c94 5834 return;
4417da66 5835
01789349 5836 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5837 /* Unicast addresses changes may only happen under the rtnl,
5838 * therefore calling __dev_set_promiscuity here is safe.
5839 */
32e7bfc4 5840 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5841 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5842 dev->uc_promisc = true;
32e7bfc4 5843 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5844 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5845 dev->uc_promisc = false;
4417da66 5846 }
4417da66 5847 }
01789349
JP
5848
5849 if (ops->ndo_set_rx_mode)
5850 ops->ndo_set_rx_mode(dev);
4417da66
PM
5851}
5852
5853void dev_set_rx_mode(struct net_device *dev)
5854{
b9e40857 5855 netif_addr_lock_bh(dev);
4417da66 5856 __dev_set_rx_mode(dev);
b9e40857 5857 netif_addr_unlock_bh(dev);
1da177e4
LT
5858}
5859
f0db275a
SH
5860/**
5861 * dev_get_flags - get flags reported to userspace
5862 * @dev: device
5863 *
5864 * Get the combination of flag bits exported through APIs to userspace.
5865 */
95c96174 5866unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5867{
95c96174 5868 unsigned int flags;
1da177e4
LT
5869
5870 flags = (dev->flags & ~(IFF_PROMISC |
5871 IFF_ALLMULTI |
b00055aa
SR
5872 IFF_RUNNING |
5873 IFF_LOWER_UP |
5874 IFF_DORMANT)) |
1da177e4
LT
5875 (dev->gflags & (IFF_PROMISC |
5876 IFF_ALLMULTI));
5877
b00055aa
SR
5878 if (netif_running(dev)) {
5879 if (netif_oper_up(dev))
5880 flags |= IFF_RUNNING;
5881 if (netif_carrier_ok(dev))
5882 flags |= IFF_LOWER_UP;
5883 if (netif_dormant(dev))
5884 flags |= IFF_DORMANT;
5885 }
1da177e4
LT
5886
5887 return flags;
5888}
d1b19dff 5889EXPORT_SYMBOL(dev_get_flags);
1da177e4 5890
bd380811 5891int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5892{
b536db93 5893 unsigned int old_flags = dev->flags;
bd380811 5894 int ret;
1da177e4 5895
24023451
PM
5896 ASSERT_RTNL();
5897
1da177e4
LT
5898 /*
5899 * Set the flags on our device.
5900 */
5901
5902 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5903 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5904 IFF_AUTOMEDIA)) |
5905 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5906 IFF_ALLMULTI));
5907
5908 /*
5909 * Load in the correct multicast list now the flags have changed.
5910 */
5911
b6c40d68
PM
5912 if ((old_flags ^ flags) & IFF_MULTICAST)
5913 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5914
4417da66 5915 dev_set_rx_mode(dev);
1da177e4
LT
5916
5917 /*
5918 * Have we downed the interface. We handle IFF_UP ourselves
5919 * according to user attempts to set it, rather than blindly
5920 * setting it.
5921 */
5922
5923 ret = 0;
d215d10f 5924 if ((old_flags ^ flags) & IFF_UP)
bd380811 5925 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5926
1da177e4 5927 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5928 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5929 unsigned int old_flags = dev->flags;
d1b19dff 5930
1da177e4 5931 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5932
5933 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5934 if (dev->flags != old_flags)
5935 dev_set_rx_mode(dev);
1da177e4
LT
5936 }
5937
5938 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5939 is important. Some (broken) drivers set IFF_PROMISC, when
5940 IFF_ALLMULTI is requested not asking us and not reporting.
5941 */
5942 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5943 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5944
1da177e4 5945 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5946 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5947 }
5948
bd380811
PM
5949 return ret;
5950}
5951
a528c219
ND
5952void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5953 unsigned int gchanges)
bd380811
PM
5954{
5955 unsigned int changes = dev->flags ^ old_flags;
5956
a528c219 5957 if (gchanges)
7f294054 5958 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5959
bd380811
PM
5960 if (changes & IFF_UP) {
5961 if (dev->flags & IFF_UP)
5962 call_netdevice_notifiers(NETDEV_UP, dev);
5963 else
5964 call_netdevice_notifiers(NETDEV_DOWN, dev);
5965 }
5966
5967 if (dev->flags & IFF_UP &&
be9efd36
JP
5968 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5969 struct netdev_notifier_change_info change_info;
5970
5971 change_info.flags_changed = changes;
5972 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5973 &change_info.info);
5974 }
bd380811
PM
5975}
5976
5977/**
5978 * dev_change_flags - change device settings
5979 * @dev: device
5980 * @flags: device state flags
5981 *
5982 * Change settings on device based state flags. The flags are
5983 * in the userspace exported format.
5984 */
b536db93 5985int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5986{
b536db93 5987 int ret;
991fb3f7 5988 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5989
5990 ret = __dev_change_flags(dev, flags);
5991 if (ret < 0)
5992 return ret;
5993
991fb3f7 5994 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5995 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5996 return ret;
5997}
d1b19dff 5998EXPORT_SYMBOL(dev_change_flags);
1da177e4 5999
2315dc91
VF
6000static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6001{
6002 const struct net_device_ops *ops = dev->netdev_ops;
6003
6004 if (ops->ndo_change_mtu)
6005 return ops->ndo_change_mtu(dev, new_mtu);
6006
6007 dev->mtu = new_mtu;
6008 return 0;
6009}
6010
f0db275a
SH
6011/**
6012 * dev_set_mtu - Change maximum transfer unit
6013 * @dev: device
6014 * @new_mtu: new transfer unit
6015 *
6016 * Change the maximum transfer size of the network device.
6017 */
1da177e4
LT
6018int dev_set_mtu(struct net_device *dev, int new_mtu)
6019{
2315dc91 6020 int err, orig_mtu;
1da177e4
LT
6021
6022 if (new_mtu == dev->mtu)
6023 return 0;
6024
6025 /* MTU must be positive. */
6026 if (new_mtu < 0)
6027 return -EINVAL;
6028
6029 if (!netif_device_present(dev))
6030 return -ENODEV;
6031
1d486bfb
VF
6032 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6033 err = notifier_to_errno(err);
6034 if (err)
6035 return err;
d314774c 6036
2315dc91
VF
6037 orig_mtu = dev->mtu;
6038 err = __dev_set_mtu(dev, new_mtu);
d314774c 6039
2315dc91
VF
6040 if (!err) {
6041 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6042 err = notifier_to_errno(err);
6043 if (err) {
6044 /* setting mtu back and notifying everyone again,
6045 * so that they have a chance to revert changes.
6046 */
6047 __dev_set_mtu(dev, orig_mtu);
6048 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6049 }
6050 }
1da177e4
LT
6051 return err;
6052}
d1b19dff 6053EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6054
cbda10fa
VD
6055/**
6056 * dev_set_group - Change group this device belongs to
6057 * @dev: device
6058 * @new_group: group this device should belong to
6059 */
6060void dev_set_group(struct net_device *dev, int new_group)
6061{
6062 dev->group = new_group;
6063}
6064EXPORT_SYMBOL(dev_set_group);
6065
f0db275a
SH
6066/**
6067 * dev_set_mac_address - Change Media Access Control Address
6068 * @dev: device
6069 * @sa: new address
6070 *
6071 * Change the hardware (MAC) address of the device
6072 */
1da177e4
LT
6073int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6074{
d314774c 6075 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6076 int err;
6077
d314774c 6078 if (!ops->ndo_set_mac_address)
1da177e4
LT
6079 return -EOPNOTSUPP;
6080 if (sa->sa_family != dev->type)
6081 return -EINVAL;
6082 if (!netif_device_present(dev))
6083 return -ENODEV;
d314774c 6084 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6085 if (err)
6086 return err;
fbdeca2d 6087 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6088 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6089 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6090 return 0;
1da177e4 6091}
d1b19dff 6092EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6093
4bf84c35
JP
6094/**
6095 * dev_change_carrier - Change device carrier
6096 * @dev: device
691b3b7e 6097 * @new_carrier: new value
4bf84c35
JP
6098 *
6099 * Change device carrier
6100 */
6101int dev_change_carrier(struct net_device *dev, bool new_carrier)
6102{
6103 const struct net_device_ops *ops = dev->netdev_ops;
6104
6105 if (!ops->ndo_change_carrier)
6106 return -EOPNOTSUPP;
6107 if (!netif_device_present(dev))
6108 return -ENODEV;
6109 return ops->ndo_change_carrier(dev, new_carrier);
6110}
6111EXPORT_SYMBOL(dev_change_carrier);
6112
66b52b0d
JP
6113/**
6114 * dev_get_phys_port_id - Get device physical port ID
6115 * @dev: device
6116 * @ppid: port ID
6117 *
6118 * Get device physical port ID
6119 */
6120int dev_get_phys_port_id(struct net_device *dev,
02637fce 6121 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6122{
6123 const struct net_device_ops *ops = dev->netdev_ops;
6124
6125 if (!ops->ndo_get_phys_port_id)
6126 return -EOPNOTSUPP;
6127 return ops->ndo_get_phys_port_id(dev, ppid);
6128}
6129EXPORT_SYMBOL(dev_get_phys_port_id);
6130
db24a904
DA
6131/**
6132 * dev_get_phys_port_name - Get device physical port name
6133 * @dev: device
6134 * @name: port name
6135 *
6136 * Get device physical port name
6137 */
6138int dev_get_phys_port_name(struct net_device *dev,
6139 char *name, size_t len)
6140{
6141 const struct net_device_ops *ops = dev->netdev_ops;
6142
6143 if (!ops->ndo_get_phys_port_name)
6144 return -EOPNOTSUPP;
6145 return ops->ndo_get_phys_port_name(dev, name, len);
6146}
6147EXPORT_SYMBOL(dev_get_phys_port_name);
6148
d746d707
AK
6149/**
6150 * dev_change_proto_down - update protocol port state information
6151 * @dev: device
6152 * @proto_down: new value
6153 *
6154 * This info can be used by switch drivers to set the phys state of the
6155 * port.
6156 */
6157int dev_change_proto_down(struct net_device *dev, bool proto_down)
6158{
6159 const struct net_device_ops *ops = dev->netdev_ops;
6160
6161 if (!ops->ndo_change_proto_down)
6162 return -EOPNOTSUPP;
6163 if (!netif_device_present(dev))
6164 return -ENODEV;
6165 return ops->ndo_change_proto_down(dev, proto_down);
6166}
6167EXPORT_SYMBOL(dev_change_proto_down);
6168
1da177e4
LT
6169/**
6170 * dev_new_index - allocate an ifindex
c4ea43c5 6171 * @net: the applicable net namespace
1da177e4
LT
6172 *
6173 * Returns a suitable unique value for a new device interface
6174 * number. The caller must hold the rtnl semaphore or the
6175 * dev_base_lock to be sure it remains unique.
6176 */
881d966b 6177static int dev_new_index(struct net *net)
1da177e4 6178{
aa79e66e 6179 int ifindex = net->ifindex;
1da177e4
LT
6180 for (;;) {
6181 if (++ifindex <= 0)
6182 ifindex = 1;
881d966b 6183 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6184 return net->ifindex = ifindex;
1da177e4
LT
6185 }
6186}
6187
1da177e4 6188/* Delayed registration/unregisteration */
3b5b34fd 6189static LIST_HEAD(net_todo_list);
200b916f 6190DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6191
6f05f629 6192static void net_set_todo(struct net_device *dev)
1da177e4 6193{
1da177e4 6194 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6195 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6196}
6197
9b5e383c 6198static void rollback_registered_many(struct list_head *head)
93ee31f1 6199{
e93737b0 6200 struct net_device *dev, *tmp;
5cde2829 6201 LIST_HEAD(close_head);
9b5e383c 6202
93ee31f1
DL
6203 BUG_ON(dev_boot_phase);
6204 ASSERT_RTNL();
6205
e93737b0 6206 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6207 /* Some devices call without registering
e93737b0
KK
6208 * for initialization unwind. Remove those
6209 * devices and proceed with the remaining.
9b5e383c
ED
6210 */
6211 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6212 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6213 dev->name, dev);
93ee31f1 6214
9b5e383c 6215 WARN_ON(1);
e93737b0
KK
6216 list_del(&dev->unreg_list);
6217 continue;
9b5e383c 6218 }
449f4544 6219 dev->dismantle = true;
9b5e383c 6220 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6221 }
93ee31f1 6222
44345724 6223 /* If device is running, close it first. */
5cde2829
EB
6224 list_for_each_entry(dev, head, unreg_list)
6225 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6226 dev_close_many(&close_head, true);
93ee31f1 6227
44345724 6228 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6229 /* And unlink it from device chain. */
6230 unlist_netdevice(dev);
93ee31f1 6231
9b5e383c 6232 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6233 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6234 }
93ee31f1
DL
6235
6236 synchronize_net();
6237
9b5e383c 6238 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6239 struct sk_buff *skb = NULL;
6240
9b5e383c
ED
6241 /* Shutdown queueing discipline. */
6242 dev_shutdown(dev);
93ee31f1
DL
6243
6244
9b5e383c
ED
6245 /* Notify protocols, that we are about to destroy
6246 this device. They should clean all the things.
6247 */
6248 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6249
395eea6c
MB
6250 if (!dev->rtnl_link_ops ||
6251 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6252 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6253 GFP_KERNEL);
6254
9b5e383c
ED
6255 /*
6256 * Flush the unicast and multicast chains
6257 */
a748ee24 6258 dev_uc_flush(dev);
22bedad3 6259 dev_mc_flush(dev);
93ee31f1 6260
9b5e383c
ED
6261 if (dev->netdev_ops->ndo_uninit)
6262 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6263
395eea6c
MB
6264 if (skb)
6265 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6266
9ff162a8
JP
6267 /* Notifier chain MUST detach us all upper devices. */
6268 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6269
9b5e383c
ED
6270 /* Remove entries from kobject tree */
6271 netdev_unregister_kobject(dev);
024e9679
AD
6272#ifdef CONFIG_XPS
6273 /* Remove XPS queueing entries */
6274 netif_reset_xps_queues_gt(dev, 0);
6275#endif
9b5e383c 6276 }
93ee31f1 6277
850a545b 6278 synchronize_net();
395264d5 6279
a5ee1551 6280 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6281 dev_put(dev);
6282}
6283
6284static void rollback_registered(struct net_device *dev)
6285{
6286 LIST_HEAD(single);
6287
6288 list_add(&dev->unreg_list, &single);
6289 rollback_registered_many(&single);
ceaaec98 6290 list_del(&single);
93ee31f1
DL
6291}
6292
fd867d51
JW
6293static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6294 struct net_device *upper, netdev_features_t features)
6295{
6296 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6297 netdev_features_t feature;
5ba3f7d6 6298 int feature_bit;
fd867d51 6299
5ba3f7d6
JW
6300 for_each_netdev_feature(&upper_disables, feature_bit) {
6301 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6302 if (!(upper->wanted_features & feature)
6303 && (features & feature)) {
6304 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6305 &feature, upper->name);
6306 features &= ~feature;
6307 }
6308 }
6309
6310 return features;
6311}
6312
6313static void netdev_sync_lower_features(struct net_device *upper,
6314 struct net_device *lower, netdev_features_t features)
6315{
6316 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6317 netdev_features_t feature;
5ba3f7d6 6318 int feature_bit;
fd867d51 6319
5ba3f7d6
JW
6320 for_each_netdev_feature(&upper_disables, feature_bit) {
6321 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6322 if (!(features & feature) && (lower->features & feature)) {
6323 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6324 &feature, lower->name);
6325 lower->wanted_features &= ~feature;
6326 netdev_update_features(lower);
6327
6328 if (unlikely(lower->features & feature))
6329 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6330 &feature, lower->name);
6331 }
6332 }
6333}
6334
c8f44aff
MM
6335static netdev_features_t netdev_fix_features(struct net_device *dev,
6336 netdev_features_t features)
b63365a2 6337{
57422dc5
MM
6338 /* Fix illegal checksum combinations */
6339 if ((features & NETIF_F_HW_CSUM) &&
6340 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6341 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6342 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6343 }
6344
b63365a2 6345 /* TSO requires that SG is present as well. */
ea2d3688 6346 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6347 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6348 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6349 }
6350
ec5f0615
PS
6351 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6352 !(features & NETIF_F_IP_CSUM)) {
6353 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6354 features &= ~NETIF_F_TSO;
6355 features &= ~NETIF_F_TSO_ECN;
6356 }
6357
6358 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6359 !(features & NETIF_F_IPV6_CSUM)) {
6360 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6361 features &= ~NETIF_F_TSO6;
6362 }
6363
31d8b9e0
BH
6364 /* TSO ECN requires that TSO is present as well. */
6365 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6366 features &= ~NETIF_F_TSO_ECN;
6367
212b573f
MM
6368 /* Software GSO depends on SG. */
6369 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6370 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6371 features &= ~NETIF_F_GSO;
6372 }
6373
acd1130e 6374 /* UFO needs SG and checksumming */
b63365a2 6375 if (features & NETIF_F_UFO) {
79032644
MM
6376 /* maybe split UFO into V4 and V6? */
6377 if (!((features & NETIF_F_GEN_CSUM) ||
6378 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6379 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6380 netdev_dbg(dev,
acd1130e 6381 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6382 features &= ~NETIF_F_UFO;
6383 }
6384
6385 if (!(features & NETIF_F_SG)) {
6f404e44 6386 netdev_dbg(dev,
acd1130e 6387 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6388 features &= ~NETIF_F_UFO;
6389 }
6390 }
6391
d0290214
JP
6392#ifdef CONFIG_NET_RX_BUSY_POLL
6393 if (dev->netdev_ops->ndo_busy_poll)
6394 features |= NETIF_F_BUSY_POLL;
6395 else
6396#endif
6397 features &= ~NETIF_F_BUSY_POLL;
6398
b63365a2
HX
6399 return features;
6400}
b63365a2 6401
6cb6a27c 6402int __netdev_update_features(struct net_device *dev)
5455c699 6403{
fd867d51 6404 struct net_device *upper, *lower;
c8f44aff 6405 netdev_features_t features;
fd867d51 6406 struct list_head *iter;
e7868a85 6407 int err = -1;
5455c699 6408
87267485
MM
6409 ASSERT_RTNL();
6410
5455c699
MM
6411 features = netdev_get_wanted_features(dev);
6412
6413 if (dev->netdev_ops->ndo_fix_features)
6414 features = dev->netdev_ops->ndo_fix_features(dev, features);
6415
6416 /* driver might be less strict about feature dependencies */
6417 features = netdev_fix_features(dev, features);
6418
fd867d51
JW
6419 /* some features can't be enabled if they're off an an upper device */
6420 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6421 features = netdev_sync_upper_features(dev, upper, features);
6422
5455c699 6423 if (dev->features == features)
e7868a85 6424 goto sync_lower;
5455c699 6425
c8f44aff
MM
6426 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6427 &dev->features, &features);
5455c699
MM
6428
6429 if (dev->netdev_ops->ndo_set_features)
6430 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6431 else
6432 err = 0;
5455c699 6433
6cb6a27c 6434 if (unlikely(err < 0)) {
5455c699 6435 netdev_err(dev,
c8f44aff
MM
6436 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6437 err, &features, &dev->features);
17b85d29
NA
6438 /* return non-0 since some features might have changed and
6439 * it's better to fire a spurious notification than miss it
6440 */
6441 return -1;
6cb6a27c
MM
6442 }
6443
e7868a85 6444sync_lower:
fd867d51
JW
6445 /* some features must be disabled on lower devices when disabled
6446 * on an upper device (think: bonding master or bridge)
6447 */
6448 netdev_for_each_lower_dev(dev, lower, iter)
6449 netdev_sync_lower_features(dev, lower, features);
6450
6cb6a27c
MM
6451 if (!err)
6452 dev->features = features;
6453
e7868a85 6454 return err < 0 ? 0 : 1;
6cb6a27c
MM
6455}
6456
afe12cc8
MM
6457/**
6458 * netdev_update_features - recalculate device features
6459 * @dev: the device to check
6460 *
6461 * Recalculate dev->features set and send notifications if it
6462 * has changed. Should be called after driver or hardware dependent
6463 * conditions might have changed that influence the features.
6464 */
6cb6a27c
MM
6465void netdev_update_features(struct net_device *dev)
6466{
6467 if (__netdev_update_features(dev))
6468 netdev_features_change(dev);
5455c699
MM
6469}
6470EXPORT_SYMBOL(netdev_update_features);
6471
afe12cc8
MM
6472/**
6473 * netdev_change_features - recalculate device features
6474 * @dev: the device to check
6475 *
6476 * Recalculate dev->features set and send notifications even
6477 * if they have not changed. Should be called instead of
6478 * netdev_update_features() if also dev->vlan_features might
6479 * have changed to allow the changes to be propagated to stacked
6480 * VLAN devices.
6481 */
6482void netdev_change_features(struct net_device *dev)
6483{
6484 __netdev_update_features(dev);
6485 netdev_features_change(dev);
6486}
6487EXPORT_SYMBOL(netdev_change_features);
6488
fc4a7489
PM
6489/**
6490 * netif_stacked_transfer_operstate - transfer operstate
6491 * @rootdev: the root or lower level device to transfer state from
6492 * @dev: the device to transfer operstate to
6493 *
6494 * Transfer operational state from root to device. This is normally
6495 * called when a stacking relationship exists between the root
6496 * device and the device(a leaf device).
6497 */
6498void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6499 struct net_device *dev)
6500{
6501 if (rootdev->operstate == IF_OPER_DORMANT)
6502 netif_dormant_on(dev);
6503 else
6504 netif_dormant_off(dev);
6505
6506 if (netif_carrier_ok(rootdev)) {
6507 if (!netif_carrier_ok(dev))
6508 netif_carrier_on(dev);
6509 } else {
6510 if (netif_carrier_ok(dev))
6511 netif_carrier_off(dev);
6512 }
6513}
6514EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6515
a953be53 6516#ifdef CONFIG_SYSFS
1b4bf461
ED
6517static int netif_alloc_rx_queues(struct net_device *dev)
6518{
1b4bf461 6519 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6520 struct netdev_rx_queue *rx;
10595902 6521 size_t sz = count * sizeof(*rx);
1b4bf461 6522
bd25fa7b 6523 BUG_ON(count < 1);
1b4bf461 6524
10595902
PG
6525 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6526 if (!rx) {
6527 rx = vzalloc(sz);
6528 if (!rx)
6529 return -ENOMEM;
6530 }
bd25fa7b
TH
6531 dev->_rx = rx;
6532
bd25fa7b 6533 for (i = 0; i < count; i++)
fe822240 6534 rx[i].dev = dev;
1b4bf461
ED
6535 return 0;
6536}
bf264145 6537#endif
1b4bf461 6538
aa942104
CG
6539static void netdev_init_one_queue(struct net_device *dev,
6540 struct netdev_queue *queue, void *_unused)
6541{
6542 /* Initialize queue lock */
6543 spin_lock_init(&queue->_xmit_lock);
6544 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6545 queue->xmit_lock_owner = -1;
b236da69 6546 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6547 queue->dev = dev;
114cf580
TH
6548#ifdef CONFIG_BQL
6549 dql_init(&queue->dql, HZ);
6550#endif
aa942104
CG
6551}
6552
60877a32
ED
6553static void netif_free_tx_queues(struct net_device *dev)
6554{
4cb28970 6555 kvfree(dev->_tx);
60877a32
ED
6556}
6557
e6484930
TH
6558static int netif_alloc_netdev_queues(struct net_device *dev)
6559{
6560 unsigned int count = dev->num_tx_queues;
6561 struct netdev_queue *tx;
60877a32 6562 size_t sz = count * sizeof(*tx);
e6484930 6563
d339727c
ED
6564 if (count < 1 || count > 0xffff)
6565 return -EINVAL;
62b5942a 6566
60877a32
ED
6567 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6568 if (!tx) {
6569 tx = vzalloc(sz);
6570 if (!tx)
6571 return -ENOMEM;
6572 }
e6484930 6573 dev->_tx = tx;
1d24eb48 6574
e6484930
TH
6575 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6576 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6577
6578 return 0;
e6484930
TH
6579}
6580
a2029240
DV
6581void netif_tx_stop_all_queues(struct net_device *dev)
6582{
6583 unsigned int i;
6584
6585 for (i = 0; i < dev->num_tx_queues; i++) {
6586 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6587 netif_tx_stop_queue(txq);
6588 }
6589}
6590EXPORT_SYMBOL(netif_tx_stop_all_queues);
6591
1da177e4
LT
6592/**
6593 * register_netdevice - register a network device
6594 * @dev: device to register
6595 *
6596 * Take a completed network device structure and add it to the kernel
6597 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6598 * chain. 0 is returned on success. A negative errno code is returned
6599 * on a failure to set up the device, or if the name is a duplicate.
6600 *
6601 * Callers must hold the rtnl semaphore. You may want
6602 * register_netdev() instead of this.
6603 *
6604 * BUGS:
6605 * The locking appears insufficient to guarantee two parallel registers
6606 * will not get the same name.
6607 */
6608
6609int register_netdevice(struct net_device *dev)
6610{
1da177e4 6611 int ret;
d314774c 6612 struct net *net = dev_net(dev);
1da177e4
LT
6613
6614 BUG_ON(dev_boot_phase);
6615 ASSERT_RTNL();
6616
b17a7c17
SH
6617 might_sleep();
6618
1da177e4
LT
6619 /* When net_device's are persistent, this will be fatal. */
6620 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6621 BUG_ON(!net);
1da177e4 6622
f1f28aa3 6623 spin_lock_init(&dev->addr_list_lock);
cf508b12 6624 netdev_set_addr_lockdep_class(dev);
1da177e4 6625
828de4f6 6626 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6627 if (ret < 0)
6628 goto out;
6629
1da177e4 6630 /* Init, if this function is available */
d314774c
SH
6631 if (dev->netdev_ops->ndo_init) {
6632 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6633 if (ret) {
6634 if (ret > 0)
6635 ret = -EIO;
90833aa4 6636 goto out;
1da177e4
LT
6637 }
6638 }
4ec93edb 6639
f646968f
PM
6640 if (((dev->hw_features | dev->features) &
6641 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6642 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6643 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6644 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6645 ret = -EINVAL;
6646 goto err_uninit;
6647 }
6648
9c7dafbf
PE
6649 ret = -EBUSY;
6650 if (!dev->ifindex)
6651 dev->ifindex = dev_new_index(net);
6652 else if (__dev_get_by_index(net, dev->ifindex))
6653 goto err_uninit;
6654
5455c699
MM
6655 /* Transfer changeable features to wanted_features and enable
6656 * software offloads (GSO and GRO).
6657 */
6658 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6659 dev->features |= NETIF_F_SOFT_FEATURES;
6660 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6661
34324dc2
MM
6662 if (!(dev->flags & IFF_LOOPBACK)) {
6663 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6664 }
6665
1180e7d6 6666 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6667 */
1180e7d6 6668 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6669
ee579677
PS
6670 /* Make NETIF_F_SG inheritable to tunnel devices.
6671 */
6672 dev->hw_enc_features |= NETIF_F_SG;
6673
0d89d203
SH
6674 /* Make NETIF_F_SG inheritable to MPLS.
6675 */
6676 dev->mpls_features |= NETIF_F_SG;
6677
7ffbe3fd
JB
6678 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6679 ret = notifier_to_errno(ret);
6680 if (ret)
6681 goto err_uninit;
6682
8b41d188 6683 ret = netdev_register_kobject(dev);
b17a7c17 6684 if (ret)
7ce1b0ed 6685 goto err_uninit;
b17a7c17
SH
6686 dev->reg_state = NETREG_REGISTERED;
6687
6cb6a27c 6688 __netdev_update_features(dev);
8e9b59b2 6689
1da177e4
LT
6690 /*
6691 * Default initial state at registry is that the
6692 * device is present.
6693 */
6694
6695 set_bit(__LINK_STATE_PRESENT, &dev->state);
6696
8f4cccbb
BH
6697 linkwatch_init_dev(dev);
6698
1da177e4 6699 dev_init_scheduler(dev);
1da177e4 6700 dev_hold(dev);
ce286d32 6701 list_netdevice(dev);
7bf23575 6702 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6703
948b337e
JP
6704 /* If the device has permanent device address, driver should
6705 * set dev_addr and also addr_assign_type should be set to
6706 * NET_ADDR_PERM (default value).
6707 */
6708 if (dev->addr_assign_type == NET_ADDR_PERM)
6709 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6710
1da177e4 6711 /* Notify protocols, that a new device appeared. */
056925ab 6712 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6713 ret = notifier_to_errno(ret);
93ee31f1
DL
6714 if (ret) {
6715 rollback_registered(dev);
6716 dev->reg_state = NETREG_UNREGISTERED;
6717 }
d90a909e
EB
6718 /*
6719 * Prevent userspace races by waiting until the network
6720 * device is fully setup before sending notifications.
6721 */
a2835763
PM
6722 if (!dev->rtnl_link_ops ||
6723 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6724 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6725
6726out:
6727 return ret;
7ce1b0ed
HX
6728
6729err_uninit:
d314774c
SH
6730 if (dev->netdev_ops->ndo_uninit)
6731 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6732 goto out;
1da177e4 6733}
d1b19dff 6734EXPORT_SYMBOL(register_netdevice);
1da177e4 6735
937f1ba5
BH
6736/**
6737 * init_dummy_netdev - init a dummy network device for NAPI
6738 * @dev: device to init
6739 *
6740 * This takes a network device structure and initialize the minimum
6741 * amount of fields so it can be used to schedule NAPI polls without
6742 * registering a full blown interface. This is to be used by drivers
6743 * that need to tie several hardware interfaces to a single NAPI
6744 * poll scheduler due to HW limitations.
6745 */
6746int init_dummy_netdev(struct net_device *dev)
6747{
6748 /* Clear everything. Note we don't initialize spinlocks
6749 * are they aren't supposed to be taken by any of the
6750 * NAPI code and this dummy netdev is supposed to be
6751 * only ever used for NAPI polls
6752 */
6753 memset(dev, 0, sizeof(struct net_device));
6754
6755 /* make sure we BUG if trying to hit standard
6756 * register/unregister code path
6757 */
6758 dev->reg_state = NETREG_DUMMY;
6759
937f1ba5
BH
6760 /* NAPI wants this */
6761 INIT_LIST_HEAD(&dev->napi_list);
6762
6763 /* a dummy interface is started by default */
6764 set_bit(__LINK_STATE_PRESENT, &dev->state);
6765 set_bit(__LINK_STATE_START, &dev->state);
6766
29b4433d
ED
6767 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6768 * because users of this 'device' dont need to change
6769 * its refcount.
6770 */
6771
937f1ba5
BH
6772 return 0;
6773}
6774EXPORT_SYMBOL_GPL(init_dummy_netdev);
6775
6776
1da177e4
LT
6777/**
6778 * register_netdev - register a network device
6779 * @dev: device to register
6780 *
6781 * Take a completed network device structure and add it to the kernel
6782 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6783 * chain. 0 is returned on success. A negative errno code is returned
6784 * on a failure to set up the device, or if the name is a duplicate.
6785 *
38b4da38 6786 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6787 * and expands the device name if you passed a format string to
6788 * alloc_netdev.
6789 */
6790int register_netdev(struct net_device *dev)
6791{
6792 int err;
6793
6794 rtnl_lock();
1da177e4 6795 err = register_netdevice(dev);
1da177e4
LT
6796 rtnl_unlock();
6797 return err;
6798}
6799EXPORT_SYMBOL(register_netdev);
6800
29b4433d
ED
6801int netdev_refcnt_read(const struct net_device *dev)
6802{
6803 int i, refcnt = 0;
6804
6805 for_each_possible_cpu(i)
6806 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6807 return refcnt;
6808}
6809EXPORT_SYMBOL(netdev_refcnt_read);
6810
2c53040f 6811/**
1da177e4 6812 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6813 * @dev: target net_device
1da177e4
LT
6814 *
6815 * This is called when unregistering network devices.
6816 *
6817 * Any protocol or device that holds a reference should register
6818 * for netdevice notification, and cleanup and put back the
6819 * reference if they receive an UNREGISTER event.
6820 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6821 * call dev_put.
1da177e4
LT
6822 */
6823static void netdev_wait_allrefs(struct net_device *dev)
6824{
6825 unsigned long rebroadcast_time, warning_time;
29b4433d 6826 int refcnt;
1da177e4 6827
e014debe
ED
6828 linkwatch_forget_dev(dev);
6829
1da177e4 6830 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6831 refcnt = netdev_refcnt_read(dev);
6832
6833 while (refcnt != 0) {
1da177e4 6834 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6835 rtnl_lock();
1da177e4
LT
6836
6837 /* Rebroadcast unregister notification */
056925ab 6838 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6839
748e2d93 6840 __rtnl_unlock();
0115e8e3 6841 rcu_barrier();
748e2d93
ED
6842 rtnl_lock();
6843
0115e8e3 6844 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6845 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6846 &dev->state)) {
6847 /* We must not have linkwatch events
6848 * pending on unregister. If this
6849 * happens, we simply run the queue
6850 * unscheduled, resulting in a noop
6851 * for this device.
6852 */
6853 linkwatch_run_queue();
6854 }
6855
6756ae4b 6856 __rtnl_unlock();
1da177e4
LT
6857
6858 rebroadcast_time = jiffies;
6859 }
6860
6861 msleep(250);
6862
29b4433d
ED
6863 refcnt = netdev_refcnt_read(dev);
6864
1da177e4 6865 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6866 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6867 dev->name, refcnt);
1da177e4
LT
6868 warning_time = jiffies;
6869 }
6870 }
6871}
6872
6873/* The sequence is:
6874 *
6875 * rtnl_lock();
6876 * ...
6877 * register_netdevice(x1);
6878 * register_netdevice(x2);
6879 * ...
6880 * unregister_netdevice(y1);
6881 * unregister_netdevice(y2);
6882 * ...
6883 * rtnl_unlock();
6884 * free_netdev(y1);
6885 * free_netdev(y2);
6886 *
58ec3b4d 6887 * We are invoked by rtnl_unlock().
1da177e4 6888 * This allows us to deal with problems:
b17a7c17 6889 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6890 * without deadlocking with linkwatch via keventd.
6891 * 2) Since we run with the RTNL semaphore not held, we can sleep
6892 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6893 *
6894 * We must not return until all unregister events added during
6895 * the interval the lock was held have been completed.
1da177e4 6896 */
1da177e4
LT
6897void netdev_run_todo(void)
6898{
626ab0e6 6899 struct list_head list;
1da177e4 6900
1da177e4 6901 /* Snapshot list, allow later requests */
626ab0e6 6902 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6903
6904 __rtnl_unlock();
626ab0e6 6905
0115e8e3
ED
6906
6907 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6908 if (!list_empty(&list))
6909 rcu_barrier();
6910
1da177e4
LT
6911 while (!list_empty(&list)) {
6912 struct net_device *dev
e5e26d75 6913 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6914 list_del(&dev->todo_list);
6915
748e2d93 6916 rtnl_lock();
0115e8e3 6917 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6918 __rtnl_unlock();
0115e8e3 6919
b17a7c17 6920 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6921 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6922 dev->name, dev->reg_state);
6923 dump_stack();
6924 continue;
6925 }
1da177e4 6926
b17a7c17 6927 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6928
b17a7c17 6929 netdev_wait_allrefs(dev);
1da177e4 6930
b17a7c17 6931 /* paranoia */
29b4433d 6932 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6933 BUG_ON(!list_empty(&dev->ptype_all));
6934 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6935 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6936 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6937 WARN_ON(dev->dn_ptr);
1da177e4 6938
b17a7c17
SH
6939 if (dev->destructor)
6940 dev->destructor(dev);
9093bbb2 6941
50624c93
EB
6942 /* Report a network device has been unregistered */
6943 rtnl_lock();
6944 dev_net(dev)->dev_unreg_count--;
6945 __rtnl_unlock();
6946 wake_up(&netdev_unregistering_wq);
6947
9093bbb2
SH
6948 /* Free network device */
6949 kobject_put(&dev->dev.kobj);
1da177e4 6950 }
1da177e4
LT
6951}
6952
3cfde79c
BH
6953/* Convert net_device_stats to rtnl_link_stats64. They have the same
6954 * fields in the same order, with only the type differing.
6955 */
77a1abf5
ED
6956void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6957 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6958{
6959#if BITS_PER_LONG == 64
77a1abf5
ED
6960 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6961 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6962#else
6963 size_t i, n = sizeof(*stats64) / sizeof(u64);
6964 const unsigned long *src = (const unsigned long *)netdev_stats;
6965 u64 *dst = (u64 *)stats64;
6966
6967 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6968 sizeof(*stats64) / sizeof(u64));
6969 for (i = 0; i < n; i++)
6970 dst[i] = src[i];
6971#endif
6972}
77a1abf5 6973EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6974
eeda3fd6
SH
6975/**
6976 * dev_get_stats - get network device statistics
6977 * @dev: device to get statistics from
28172739 6978 * @storage: place to store stats
eeda3fd6 6979 *
d7753516
BH
6980 * Get network statistics from device. Return @storage.
6981 * The device driver may provide its own method by setting
6982 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6983 * otherwise the internal statistics structure is used.
eeda3fd6 6984 */
d7753516
BH
6985struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6986 struct rtnl_link_stats64 *storage)
7004bf25 6987{
eeda3fd6
SH
6988 const struct net_device_ops *ops = dev->netdev_ops;
6989
28172739
ED
6990 if (ops->ndo_get_stats64) {
6991 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6992 ops->ndo_get_stats64(dev, storage);
6993 } else if (ops->ndo_get_stats) {
3cfde79c 6994 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6995 } else {
6996 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6997 }
caf586e5 6998 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6999 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 7000 return storage;
c45d286e 7001}
eeda3fd6 7002EXPORT_SYMBOL(dev_get_stats);
c45d286e 7003
24824a09 7004struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7005{
24824a09 7006 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7007
24824a09
ED
7008#ifdef CONFIG_NET_CLS_ACT
7009 if (queue)
7010 return queue;
7011 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7012 if (!queue)
7013 return NULL;
7014 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7015 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7016 queue->qdisc_sleeping = &noop_qdisc;
7017 rcu_assign_pointer(dev->ingress_queue, queue);
7018#endif
7019 return queue;
bb949fbd
DM
7020}
7021
2c60db03
ED
7022static const struct ethtool_ops default_ethtool_ops;
7023
d07d7507
SG
7024void netdev_set_default_ethtool_ops(struct net_device *dev,
7025 const struct ethtool_ops *ops)
7026{
7027 if (dev->ethtool_ops == &default_ethtool_ops)
7028 dev->ethtool_ops = ops;
7029}
7030EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7031
74d332c1
ED
7032void netdev_freemem(struct net_device *dev)
7033{
7034 char *addr = (char *)dev - dev->padded;
7035
4cb28970 7036 kvfree(addr);
74d332c1
ED
7037}
7038
1da177e4 7039/**
36909ea4 7040 * alloc_netdev_mqs - allocate network device
c835a677
TG
7041 * @sizeof_priv: size of private data to allocate space for
7042 * @name: device name format string
7043 * @name_assign_type: origin of device name
7044 * @setup: callback to initialize device
7045 * @txqs: the number of TX subqueues to allocate
7046 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7047 *
7048 * Allocates a struct net_device with private data area for driver use
90e51adf 7049 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7050 * for each queue on the device.
1da177e4 7051 */
36909ea4 7052struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7053 unsigned char name_assign_type,
36909ea4
TH
7054 void (*setup)(struct net_device *),
7055 unsigned int txqs, unsigned int rxqs)
1da177e4 7056{
1da177e4 7057 struct net_device *dev;
7943986c 7058 size_t alloc_size;
1ce8e7b5 7059 struct net_device *p;
1da177e4 7060
b6fe17d6
SH
7061 BUG_ON(strlen(name) >= sizeof(dev->name));
7062
36909ea4 7063 if (txqs < 1) {
7b6cd1ce 7064 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7065 return NULL;
7066 }
7067
a953be53 7068#ifdef CONFIG_SYSFS
36909ea4 7069 if (rxqs < 1) {
7b6cd1ce 7070 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7071 return NULL;
7072 }
7073#endif
7074
fd2ea0a7 7075 alloc_size = sizeof(struct net_device);
d1643d24
AD
7076 if (sizeof_priv) {
7077 /* ensure 32-byte alignment of private area */
1ce8e7b5 7078 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7079 alloc_size += sizeof_priv;
7080 }
7081 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7082 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7083
74d332c1
ED
7084 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7085 if (!p)
7086 p = vzalloc(alloc_size);
62b5942a 7087 if (!p)
1da177e4 7088 return NULL;
1da177e4 7089
1ce8e7b5 7090 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7091 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7092
29b4433d
ED
7093 dev->pcpu_refcnt = alloc_percpu(int);
7094 if (!dev->pcpu_refcnt)
74d332c1 7095 goto free_dev;
ab9c73cc 7096
ab9c73cc 7097 if (dev_addr_init(dev))
29b4433d 7098 goto free_pcpu;
ab9c73cc 7099
22bedad3 7100 dev_mc_init(dev);
a748ee24 7101 dev_uc_init(dev);
ccffad25 7102
c346dca1 7103 dev_net_set(dev, &init_net);
1da177e4 7104
8d3bdbd5 7105 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7106 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 7107 dev->gso_min_segs = 0;
8d3bdbd5 7108
8d3bdbd5
DM
7109 INIT_LIST_HEAD(&dev->napi_list);
7110 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7111 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7112 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7113 INIT_LIST_HEAD(&dev->adj_list.upper);
7114 INIT_LIST_HEAD(&dev->adj_list.lower);
7115 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7116 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7117 INIT_LIST_HEAD(&dev->ptype_all);
7118 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7119 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7120 setup(dev);
7121
906470c1 7122 if (!dev->tx_queue_len)
f84bb1ea 7123 dev->priv_flags |= IFF_NO_QUEUE;
906470c1 7124
36909ea4
TH
7125 dev->num_tx_queues = txqs;
7126 dev->real_num_tx_queues = txqs;
ed9af2e8 7127 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7128 goto free_all;
e8a0464c 7129
a953be53 7130#ifdef CONFIG_SYSFS
36909ea4
TH
7131 dev->num_rx_queues = rxqs;
7132 dev->real_num_rx_queues = rxqs;
fe822240 7133 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7134 goto free_all;
df334545 7135#endif
0a9627f2 7136
1da177e4 7137 strcpy(dev->name, name);
c835a677 7138 dev->name_assign_type = name_assign_type;
cbda10fa 7139 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7140 if (!dev->ethtool_ops)
7141 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7142
7143 nf_hook_ingress_init(dev);
7144
1da177e4 7145 return dev;
ab9c73cc 7146
8d3bdbd5
DM
7147free_all:
7148 free_netdev(dev);
7149 return NULL;
7150
29b4433d
ED
7151free_pcpu:
7152 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7153free_dev:
7154 netdev_freemem(dev);
ab9c73cc 7155 return NULL;
1da177e4 7156}
36909ea4 7157EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7158
7159/**
7160 * free_netdev - free network device
7161 * @dev: device
7162 *
4ec93edb
YH
7163 * This function does the last stage of destroying an allocated device
7164 * interface. The reference to the device object is released.
1da177e4
LT
7165 * If this is the last reference then it will be freed.
7166 */
7167void free_netdev(struct net_device *dev)
7168{
d565b0a1
HX
7169 struct napi_struct *p, *n;
7170
60877a32 7171 netif_free_tx_queues(dev);
a953be53 7172#ifdef CONFIG_SYSFS
10595902 7173 kvfree(dev->_rx);
fe822240 7174#endif
e8a0464c 7175
33d480ce 7176 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7177
f001fde5
JP
7178 /* Flush device addresses */
7179 dev_addr_flush(dev);
7180
d565b0a1
HX
7181 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7182 netif_napi_del(p);
7183
29b4433d
ED
7184 free_percpu(dev->pcpu_refcnt);
7185 dev->pcpu_refcnt = NULL;
7186
3041a069 7187 /* Compatibility with error handling in drivers */
1da177e4 7188 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7189 netdev_freemem(dev);
1da177e4
LT
7190 return;
7191 }
7192
7193 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7194 dev->reg_state = NETREG_RELEASED;
7195
43cb76d9
GKH
7196 /* will free via device release */
7197 put_device(&dev->dev);
1da177e4 7198}
d1b19dff 7199EXPORT_SYMBOL(free_netdev);
4ec93edb 7200
f0db275a
SH
7201/**
7202 * synchronize_net - Synchronize with packet receive processing
7203 *
7204 * Wait for packets currently being received to be done.
7205 * Does not block later packets from starting.
7206 */
4ec93edb 7207void synchronize_net(void)
1da177e4
LT
7208{
7209 might_sleep();
be3fc413
ED
7210 if (rtnl_is_locked())
7211 synchronize_rcu_expedited();
7212 else
7213 synchronize_rcu();
1da177e4 7214}
d1b19dff 7215EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7216
7217/**
44a0873d 7218 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7219 * @dev: device
44a0873d 7220 * @head: list
6ebfbc06 7221 *
1da177e4 7222 * This function shuts down a device interface and removes it
d59b54b1 7223 * from the kernel tables.
44a0873d 7224 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7225 *
7226 * Callers must hold the rtnl semaphore. You may want
7227 * unregister_netdev() instead of this.
7228 */
7229
44a0873d 7230void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7231{
a6620712
HX
7232 ASSERT_RTNL();
7233
44a0873d 7234 if (head) {
9fdce099 7235 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7236 } else {
7237 rollback_registered(dev);
7238 /* Finish processing unregister after unlock */
7239 net_set_todo(dev);
7240 }
1da177e4 7241}
44a0873d 7242EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7243
9b5e383c
ED
7244/**
7245 * unregister_netdevice_many - unregister many devices
7246 * @head: list of devices
87757a91
ED
7247 *
7248 * Note: As most callers use a stack allocated list_head,
7249 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7250 */
7251void unregister_netdevice_many(struct list_head *head)
7252{
7253 struct net_device *dev;
7254
7255 if (!list_empty(head)) {
7256 rollback_registered_many(head);
7257 list_for_each_entry(dev, head, unreg_list)
7258 net_set_todo(dev);
87757a91 7259 list_del(head);
9b5e383c
ED
7260 }
7261}
63c8099d 7262EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7263
1da177e4
LT
7264/**
7265 * unregister_netdev - remove device from the kernel
7266 * @dev: device
7267 *
7268 * This function shuts down a device interface and removes it
d59b54b1 7269 * from the kernel tables.
1da177e4
LT
7270 *
7271 * This is just a wrapper for unregister_netdevice that takes
7272 * the rtnl semaphore. In general you want to use this and not
7273 * unregister_netdevice.
7274 */
7275void unregister_netdev(struct net_device *dev)
7276{
7277 rtnl_lock();
7278 unregister_netdevice(dev);
7279 rtnl_unlock();
7280}
1da177e4
LT
7281EXPORT_SYMBOL(unregister_netdev);
7282
ce286d32
EB
7283/**
7284 * dev_change_net_namespace - move device to different nethost namespace
7285 * @dev: device
7286 * @net: network namespace
7287 * @pat: If not NULL name pattern to try if the current device name
7288 * is already taken in the destination network namespace.
7289 *
7290 * This function shuts down a device interface and moves it
7291 * to a new network namespace. On success 0 is returned, on
7292 * a failure a netagive errno code is returned.
7293 *
7294 * Callers must hold the rtnl semaphore.
7295 */
7296
7297int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7298{
ce286d32
EB
7299 int err;
7300
7301 ASSERT_RTNL();
7302
7303 /* Don't allow namespace local devices to be moved. */
7304 err = -EINVAL;
7305 if (dev->features & NETIF_F_NETNS_LOCAL)
7306 goto out;
7307
7308 /* Ensure the device has been registrered */
ce286d32
EB
7309 if (dev->reg_state != NETREG_REGISTERED)
7310 goto out;
7311
7312 /* Get out if there is nothing todo */
7313 err = 0;
878628fb 7314 if (net_eq(dev_net(dev), net))
ce286d32
EB
7315 goto out;
7316
7317 /* Pick the destination device name, and ensure
7318 * we can use it in the destination network namespace.
7319 */
7320 err = -EEXIST;
d9031024 7321 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7322 /* We get here if we can't use the current device name */
7323 if (!pat)
7324 goto out;
828de4f6 7325 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7326 goto out;
7327 }
7328
7329 /*
7330 * And now a mini version of register_netdevice unregister_netdevice.
7331 */
7332
7333 /* If device is running close it first. */
9b772652 7334 dev_close(dev);
ce286d32
EB
7335
7336 /* And unlink it from device chain */
7337 err = -ENODEV;
7338 unlist_netdevice(dev);
7339
7340 synchronize_net();
7341
7342 /* Shutdown queueing discipline. */
7343 dev_shutdown(dev);
7344
7345 /* Notify protocols, that we are about to destroy
7346 this device. They should clean all the things.
3b27e105
DL
7347
7348 Note that dev->reg_state stays at NETREG_REGISTERED.
7349 This is wanted because this way 8021q and macvlan know
7350 the device is just moving and can keep their slaves up.
ce286d32
EB
7351 */
7352 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7353 rcu_barrier();
7354 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7355 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7356
7357 /*
7358 * Flush the unicast and multicast chains
7359 */
a748ee24 7360 dev_uc_flush(dev);
22bedad3 7361 dev_mc_flush(dev);
ce286d32 7362
4e66ae2e
SH
7363 /* Send a netdev-removed uevent to the old namespace */
7364 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7365 netdev_adjacent_del_links(dev);
4e66ae2e 7366
ce286d32 7367 /* Actually switch the network namespace */
c346dca1 7368 dev_net_set(dev, net);
ce286d32 7369
ce286d32 7370 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7371 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7372 dev->ifindex = dev_new_index(net);
ce286d32 7373
4e66ae2e
SH
7374 /* Send a netdev-add uevent to the new namespace */
7375 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7376 netdev_adjacent_add_links(dev);
4e66ae2e 7377
8b41d188 7378 /* Fixup kobjects */
a1b3f594 7379 err = device_rename(&dev->dev, dev->name);
8b41d188 7380 WARN_ON(err);
ce286d32
EB
7381
7382 /* Add the device back in the hashes */
7383 list_netdevice(dev);
7384
7385 /* Notify protocols, that a new device appeared. */
7386 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7387
d90a909e
EB
7388 /*
7389 * Prevent userspace races by waiting until the network
7390 * device is fully setup before sending notifications.
7391 */
7f294054 7392 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7393
ce286d32
EB
7394 synchronize_net();
7395 err = 0;
7396out:
7397 return err;
7398}
463d0183 7399EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7400
1da177e4
LT
7401static int dev_cpu_callback(struct notifier_block *nfb,
7402 unsigned long action,
7403 void *ocpu)
7404{
7405 struct sk_buff **list_skb;
1da177e4
LT
7406 struct sk_buff *skb;
7407 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7408 struct softnet_data *sd, *oldsd;
7409
8bb78442 7410 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7411 return NOTIFY_OK;
7412
7413 local_irq_disable();
7414 cpu = smp_processor_id();
7415 sd = &per_cpu(softnet_data, cpu);
7416 oldsd = &per_cpu(softnet_data, oldcpu);
7417
7418 /* Find end of our completion_queue. */
7419 list_skb = &sd->completion_queue;
7420 while (*list_skb)
7421 list_skb = &(*list_skb)->next;
7422 /* Append completion queue from offline CPU. */
7423 *list_skb = oldsd->completion_queue;
7424 oldsd->completion_queue = NULL;
7425
1da177e4 7426 /* Append output queue from offline CPU. */
a9cbd588
CG
7427 if (oldsd->output_queue) {
7428 *sd->output_queue_tailp = oldsd->output_queue;
7429 sd->output_queue_tailp = oldsd->output_queue_tailp;
7430 oldsd->output_queue = NULL;
7431 oldsd->output_queue_tailp = &oldsd->output_queue;
7432 }
ac64da0b
ED
7433 /* Append NAPI poll list from offline CPU, with one exception :
7434 * process_backlog() must be called by cpu owning percpu backlog.
7435 * We properly handle process_queue & input_pkt_queue later.
7436 */
7437 while (!list_empty(&oldsd->poll_list)) {
7438 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7439 struct napi_struct,
7440 poll_list);
7441
7442 list_del_init(&napi->poll_list);
7443 if (napi->poll == process_backlog)
7444 napi->state = 0;
7445 else
7446 ____napi_schedule(sd, napi);
264524d5 7447 }
1da177e4
LT
7448
7449 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7450 local_irq_enable();
7451
7452 /* Process offline CPU's input_pkt_queue */
76cc8b13 7453 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7454 netif_rx_ni(skb);
76cc8b13 7455 input_queue_head_incr(oldsd);
fec5e652 7456 }
ac64da0b 7457 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7458 netif_rx_ni(skb);
76cc8b13
TH
7459 input_queue_head_incr(oldsd);
7460 }
1da177e4
LT
7461
7462 return NOTIFY_OK;
7463}
1da177e4
LT
7464
7465
7f353bf2 7466/**
b63365a2
HX
7467 * netdev_increment_features - increment feature set by one
7468 * @all: current feature set
7469 * @one: new feature set
7470 * @mask: mask feature set
7f353bf2
HX
7471 *
7472 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7473 * @one to the master device with current feature set @all. Will not
7474 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7475 */
c8f44aff
MM
7476netdev_features_t netdev_increment_features(netdev_features_t all,
7477 netdev_features_t one, netdev_features_t mask)
b63365a2 7478{
1742f183
MM
7479 if (mask & NETIF_F_GEN_CSUM)
7480 mask |= NETIF_F_ALL_CSUM;
7481 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7482
1742f183
MM
7483 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7484 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7485
1742f183
MM
7486 /* If one device supports hw checksumming, set for all. */
7487 if (all & NETIF_F_GEN_CSUM)
7488 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7489
7490 return all;
7491}
b63365a2 7492EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7493
430f03cd 7494static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7495{
7496 int i;
7497 struct hlist_head *hash;
7498
7499 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7500 if (hash != NULL)
7501 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7502 INIT_HLIST_HEAD(&hash[i]);
7503
7504 return hash;
7505}
7506
881d966b 7507/* Initialize per network namespace state */
4665079c 7508static int __net_init netdev_init(struct net *net)
881d966b 7509{
734b6541
RM
7510 if (net != &init_net)
7511 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7512
30d97d35
PE
7513 net->dev_name_head = netdev_create_hash();
7514 if (net->dev_name_head == NULL)
7515 goto err_name;
881d966b 7516
30d97d35
PE
7517 net->dev_index_head = netdev_create_hash();
7518 if (net->dev_index_head == NULL)
7519 goto err_idx;
881d966b
EB
7520
7521 return 0;
30d97d35
PE
7522
7523err_idx:
7524 kfree(net->dev_name_head);
7525err_name:
7526 return -ENOMEM;
881d966b
EB
7527}
7528
f0db275a
SH
7529/**
7530 * netdev_drivername - network driver for the device
7531 * @dev: network device
f0db275a
SH
7532 *
7533 * Determine network driver for device.
7534 */
3019de12 7535const char *netdev_drivername(const struct net_device *dev)
6579e57b 7536{
cf04a4c7
SH
7537 const struct device_driver *driver;
7538 const struct device *parent;
3019de12 7539 const char *empty = "";
6579e57b
AV
7540
7541 parent = dev->dev.parent;
6579e57b 7542 if (!parent)
3019de12 7543 return empty;
6579e57b
AV
7544
7545 driver = parent->driver;
7546 if (driver && driver->name)
3019de12
DM
7547 return driver->name;
7548 return empty;
6579e57b
AV
7549}
7550
6ea754eb
JP
7551static void __netdev_printk(const char *level, const struct net_device *dev,
7552 struct va_format *vaf)
256df2f3 7553{
b004ff49 7554 if (dev && dev->dev.parent) {
6ea754eb
JP
7555 dev_printk_emit(level[1] - '0',
7556 dev->dev.parent,
7557 "%s %s %s%s: %pV",
7558 dev_driver_string(dev->dev.parent),
7559 dev_name(dev->dev.parent),
7560 netdev_name(dev), netdev_reg_state(dev),
7561 vaf);
b004ff49 7562 } else if (dev) {
6ea754eb
JP
7563 printk("%s%s%s: %pV",
7564 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7565 } else {
6ea754eb 7566 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7567 }
256df2f3
JP
7568}
7569
6ea754eb
JP
7570void netdev_printk(const char *level, const struct net_device *dev,
7571 const char *format, ...)
256df2f3
JP
7572{
7573 struct va_format vaf;
7574 va_list args;
256df2f3
JP
7575
7576 va_start(args, format);
7577
7578 vaf.fmt = format;
7579 vaf.va = &args;
7580
6ea754eb 7581 __netdev_printk(level, dev, &vaf);
b004ff49 7582
256df2f3 7583 va_end(args);
256df2f3
JP
7584}
7585EXPORT_SYMBOL(netdev_printk);
7586
7587#define define_netdev_printk_level(func, level) \
6ea754eb 7588void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7589{ \
256df2f3
JP
7590 struct va_format vaf; \
7591 va_list args; \
7592 \
7593 va_start(args, fmt); \
7594 \
7595 vaf.fmt = fmt; \
7596 vaf.va = &args; \
7597 \
6ea754eb 7598 __netdev_printk(level, dev, &vaf); \
b004ff49 7599 \
256df2f3 7600 va_end(args); \
256df2f3
JP
7601} \
7602EXPORT_SYMBOL(func);
7603
7604define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7605define_netdev_printk_level(netdev_alert, KERN_ALERT);
7606define_netdev_printk_level(netdev_crit, KERN_CRIT);
7607define_netdev_printk_level(netdev_err, KERN_ERR);
7608define_netdev_printk_level(netdev_warn, KERN_WARNING);
7609define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7610define_netdev_printk_level(netdev_info, KERN_INFO);
7611
4665079c 7612static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7613{
7614 kfree(net->dev_name_head);
7615 kfree(net->dev_index_head);
7616}
7617
022cbae6 7618static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7619 .init = netdev_init,
7620 .exit = netdev_exit,
7621};
7622
4665079c 7623static void __net_exit default_device_exit(struct net *net)
ce286d32 7624{
e008b5fc 7625 struct net_device *dev, *aux;
ce286d32 7626 /*
e008b5fc 7627 * Push all migratable network devices back to the
ce286d32
EB
7628 * initial network namespace
7629 */
7630 rtnl_lock();
e008b5fc 7631 for_each_netdev_safe(net, dev, aux) {
ce286d32 7632 int err;
aca51397 7633 char fb_name[IFNAMSIZ];
ce286d32
EB
7634
7635 /* Ignore unmoveable devices (i.e. loopback) */
7636 if (dev->features & NETIF_F_NETNS_LOCAL)
7637 continue;
7638
e008b5fc
EB
7639 /* Leave virtual devices for the generic cleanup */
7640 if (dev->rtnl_link_ops)
7641 continue;
d0c082ce 7642
25985edc 7643 /* Push remaining network devices to init_net */
aca51397
PE
7644 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7645 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7646 if (err) {
7b6cd1ce
JP
7647 pr_emerg("%s: failed to move %s to init_net: %d\n",
7648 __func__, dev->name, err);
aca51397 7649 BUG();
ce286d32
EB
7650 }
7651 }
7652 rtnl_unlock();
7653}
7654
50624c93
EB
7655static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7656{
7657 /* Return with the rtnl_lock held when there are no network
7658 * devices unregistering in any network namespace in net_list.
7659 */
7660 struct net *net;
7661 bool unregistering;
ff960a73 7662 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7663
ff960a73 7664 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7665 for (;;) {
50624c93
EB
7666 unregistering = false;
7667 rtnl_lock();
7668 list_for_each_entry(net, net_list, exit_list) {
7669 if (net->dev_unreg_count > 0) {
7670 unregistering = true;
7671 break;
7672 }
7673 }
7674 if (!unregistering)
7675 break;
7676 __rtnl_unlock();
ff960a73
PZ
7677
7678 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7679 }
ff960a73 7680 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7681}
7682
04dc7f6b
EB
7683static void __net_exit default_device_exit_batch(struct list_head *net_list)
7684{
7685 /* At exit all network devices most be removed from a network
b595076a 7686 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7687 * Do this across as many network namespaces as possible to
7688 * improve batching efficiency.
7689 */
7690 struct net_device *dev;
7691 struct net *net;
7692 LIST_HEAD(dev_kill_list);
7693
50624c93
EB
7694 /* To prevent network device cleanup code from dereferencing
7695 * loopback devices or network devices that have been freed
7696 * wait here for all pending unregistrations to complete,
7697 * before unregistring the loopback device and allowing the
7698 * network namespace be freed.
7699 *
7700 * The netdev todo list containing all network devices
7701 * unregistrations that happen in default_device_exit_batch
7702 * will run in the rtnl_unlock() at the end of
7703 * default_device_exit_batch.
7704 */
7705 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7706 list_for_each_entry(net, net_list, exit_list) {
7707 for_each_netdev_reverse(net, dev) {
b0ab2fab 7708 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7709 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7710 else
7711 unregister_netdevice_queue(dev, &dev_kill_list);
7712 }
7713 }
7714 unregister_netdevice_many(&dev_kill_list);
7715 rtnl_unlock();
7716}
7717
022cbae6 7718static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7719 .exit = default_device_exit,
04dc7f6b 7720 .exit_batch = default_device_exit_batch,
ce286d32
EB
7721};
7722
1da177e4
LT
7723/*
7724 * Initialize the DEV module. At boot time this walks the device list and
7725 * unhooks any devices that fail to initialise (normally hardware not
7726 * present) and leaves us with a valid list of present and active devices.
7727 *
7728 */
7729
7730/*
7731 * This is called single threaded during boot, so no need
7732 * to take the rtnl semaphore.
7733 */
7734static int __init net_dev_init(void)
7735{
7736 int i, rc = -ENOMEM;
7737
7738 BUG_ON(!dev_boot_phase);
7739
1da177e4
LT
7740 if (dev_proc_init())
7741 goto out;
7742
8b41d188 7743 if (netdev_kobject_init())
1da177e4
LT
7744 goto out;
7745
7746 INIT_LIST_HEAD(&ptype_all);
82d8a867 7747 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7748 INIT_LIST_HEAD(&ptype_base[i]);
7749
62532da9
VY
7750 INIT_LIST_HEAD(&offload_base);
7751
881d966b
EB
7752 if (register_pernet_subsys(&netdev_net_ops))
7753 goto out;
1da177e4
LT
7754
7755 /*
7756 * Initialise the packet receive queues.
7757 */
7758
6f912042 7759 for_each_possible_cpu(i) {
e36fa2f7 7760 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7761
e36fa2f7 7762 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7763 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7764 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7765 sd->output_queue_tailp = &sd->output_queue;
df334545 7766#ifdef CONFIG_RPS
e36fa2f7
ED
7767 sd->csd.func = rps_trigger_softirq;
7768 sd->csd.info = sd;
e36fa2f7 7769 sd->cpu = i;
1e94d72f 7770#endif
0a9627f2 7771
e36fa2f7
ED
7772 sd->backlog.poll = process_backlog;
7773 sd->backlog.weight = weight_p;
1da177e4
LT
7774 }
7775
1da177e4
LT
7776 dev_boot_phase = 0;
7777
505d4f73
EB
7778 /* The loopback device is special if any other network devices
7779 * is present in a network namespace the loopback device must
7780 * be present. Since we now dynamically allocate and free the
7781 * loopback device ensure this invariant is maintained by
7782 * keeping the loopback device as the first device on the
7783 * list of network devices. Ensuring the loopback devices
7784 * is the first device that appears and the last network device
7785 * that disappears.
7786 */
7787 if (register_pernet_device(&loopback_net_ops))
7788 goto out;
7789
7790 if (register_pernet_device(&default_device_ops))
7791 goto out;
7792
962cf36c
CM
7793 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7794 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7795
7796 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 7797 dst_subsys_init();
1da177e4
LT
7798 rc = 0;
7799out:
7800 return rc;
7801}
7802
7803subsys_initcall(net_dev_init);
This page took 1.992911 seconds and 5 git commands to generate.