GSO: Support partial segmentation offload
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4
LT
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
5acbbd42 131#include <linux/pci.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
e687ad60 140#include <linux/netfilter_ingress.h>
6ae23ad3 141#include <linux/sctp.h>
1da177e4 142
342709ef
PE
143#include "net-sysfs.h"
144
d565b0a1
HX
145/* Instead of increasing this, you should create a hash table. */
146#define MAX_GRO_SKBS 8
147
5d38a079
HX
148/* This should be increased if a protocol with a bigger head is added. */
149#define GRO_MAX_HEAD (MAX_HEADER + 128)
150
1da177e4 151static DEFINE_SPINLOCK(ptype_lock);
62532da9 152static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
153struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154struct list_head ptype_all __read_mostly; /* Taps */
62532da9 155static struct list_head offload_base __read_mostly;
1da177e4 156
ae78dbfa 157static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
158static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
ae78dbfa 161
1da177e4 162/*
7562f876 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
164 * semaphore.
165 *
c6d14c84 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
7562f876 169 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
1da177e4 181DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
182EXPORT_SYMBOL(dev_base_lock);
183
af12fa6e
ET
184/* protects napi_hash addition/deletion and napi_gen_id */
185static DEFINE_SPINLOCK(napi_hash_lock);
186
52bd2d62 187static unsigned int napi_gen_id = NR_CPUS;
6180d9de 188static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 189
18afa4b0 190static seqcount_t devnet_rename_seq;
c91f6df2 191
4e985ada
TG
192static inline void dev_base_seq_inc(struct net *net)
193{
194 while (++net->dev_base_seq == 0);
195}
196
881d966b 197static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 198{
95c96174
ED
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
e36fa2f7 209static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
210{
211#ifdef CONFIG_RPS
e36fa2f7 212 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
213#endif
214}
215
e36fa2f7 216static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
ce286d32 223/* Device list insertion */
53759be9 224static void list_netdevice(struct net_device *dev)
ce286d32 225{
c346dca1 226 struct net *net = dev_net(dev);
ce286d32
EB
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
c6d14c84 231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
ce286d32 235 write_unlock_bh(&dev_base_lock);
4e985ada
TG
236
237 dev_base_seq_inc(net);
ce286d32
EB
238}
239
fb699dfd
ED
240/* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
ce286d32
EB
243static void unlist_netdevice(struct net_device *dev)
244{
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
c6d14c84 249 list_del_rcu(&dev->dev_list);
72c9528b 250 hlist_del_rcu(&dev->name_hlist);
fb699dfd 251 hlist_del_rcu(&dev->index_hlist);
ce286d32 252 write_unlock_bh(&dev_base_lock);
4e985ada
TG
253
254 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
255}
256
1da177e4
LT
257/*
258 * Our notifier list
259 */
260
f07d5b94 261static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
262
263/*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
bea3348e 267
9958da05 268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 269EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 270
cf508b12 271#ifdef CONFIG_LOCKDEP
723e98b7 272/*
c773e847 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
274 * according to dev->type
275 */
276static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 292
36cbd3dc 293static const char *const netdev_lock_name[] =
723e98b7
JP
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
309
310static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 311static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
312
313static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314{
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322}
323
cf508b12
DM
324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
723e98b7
JP
326{
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332}
cf508b12
DM
333
334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335{
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342}
723e98b7 343#else
cf508b12
DM
344static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346{
347}
348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
349{
350}
351#endif
1da177e4
LT
352
353/*******************************************************************************
354
355 Protocol management and registration routines
356
357*******************************************************************************/
358
1da177e4
LT
359/*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
c07b68e8
ED
375static inline struct list_head *ptype_head(const struct packet_type *pt)
376{
377 if (pt->type == htons(ETH_P_ALL))
7866a621 378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 379 else
7866a621
SN
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
382}
383
1da177e4
LT
384/**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
4ec93edb 392 * This call does not sleep therefore it can not
1da177e4
LT
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397void dev_add_pack(struct packet_type *pt)
398{
c07b68e8 399 struct list_head *head = ptype_head(pt);
1da177e4 400
c07b68e8
ED
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
1da177e4 404}
d1b19dff 405EXPORT_SYMBOL(dev_add_pack);
1da177e4 406
1da177e4
LT
407/**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
4ec93edb 414 * returns.
1da177e4
LT
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420void __dev_remove_pack(struct packet_type *pt)
421{
c07b68e8 422 struct list_head *head = ptype_head(pt);
1da177e4
LT
423 struct packet_type *pt1;
424
c07b68e8 425 spin_lock(&ptype_lock);
1da177e4
LT
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
7b6cd1ce 434 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 435out:
c07b68e8 436 spin_unlock(&ptype_lock);
1da177e4 437}
d1b19dff
ED
438EXPORT_SYMBOL(__dev_remove_pack);
439
1da177e4
LT
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
4ec93edb 455
1da177e4
LT
456 synchronize_net();
457}
d1b19dff 458EXPORT_SYMBOL(dev_remove_pack);
1da177e4 459
62532da9
VY
460
461/**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473void dev_add_offload(struct packet_offload *po)
474{
bdef7de4 475 struct packet_offload *elem;
62532da9
VY
476
477 spin_lock(&offload_lock);
bdef7de4
DM
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
483 spin_unlock(&offload_lock);
484}
485EXPORT_SYMBOL(dev_add_offload);
486
487/**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
1d143d9f 500static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
501{
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
c53aa505 505 spin_lock(&offload_lock);
62532da9
VY
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515out:
c53aa505 516 spin_unlock(&offload_lock);
62532da9 517}
62532da9
VY
518
519/**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531void dev_remove_offload(struct packet_offload *po)
532{
533 __dev_remove_offload(po);
534
535 synchronize_net();
536}
537EXPORT_SYMBOL(dev_remove_offload);
538
1da177e4
LT
539/******************************************************************************
540
541 Device Boot-time Settings Routines
542
543*******************************************************************************/
544
545/* Boot time configuration table */
546static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548/**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557static int netdev_boot_setup_add(char *name, struct ifmap *map)
558{
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 566 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573}
574
575/**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584int netdev_boot_setup_check(struct net_device *dev)
585{
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 591 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600}
d1b19dff 601EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
602
603
604/**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614unsigned long netdev_boot_base(const char *prefix, int unit)
615{
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
881d966b 626 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633}
634
635/*
636 * Saves at boot time configured settings for any netdevice.
637 */
638int __init netdev_boot_setup(char *str)
639{
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660}
661
662__setup("netdev=", netdev_boot_setup);
663
664/*******************************************************************************
665
666 Device Interface Subroutines
667
668*******************************************************************************/
669
a54acb3a
ND
670/**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678int dev_get_iflink(const struct net_device *dev)
679{
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
7a66bbc9 683 return dev->ifindex;
a54acb3a
ND
684}
685EXPORT_SYMBOL(dev_get_iflink);
686
fc4099f1
PS
687/**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697{
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710}
711EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
1da177e4
LT
713/**
714 * __dev_get_by_name - find a device by its name
c4ea43c5 715 * @net: the applicable net namespace
1da177e4
LT
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
881d966b 725struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 726{
0bd8d536
ED
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 729
b67bfe0d 730 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
0bd8d536 733
1da177e4
LT
734 return NULL;
735}
d1b19dff 736EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 737
72c9528b
ED
738/**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751{
72c9528b
ED
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
b67bfe0d 755 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
1da177e4
LT
763/**
764 * dev_get_by_name - find a device by its name
c4ea43c5 765 * @net: the applicable net namespace
1da177e4
LT
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
881d966b 775struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
776{
777 struct net_device *dev;
778
72c9528b
ED
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
781 if (dev)
782 dev_hold(dev);
72c9528b 783 rcu_read_unlock();
1da177e4
LT
784 return dev;
785}
d1b19dff 786EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
787
788/**
789 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 790 * @net: the applicable net namespace
1da177e4
LT
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
881d966b 800struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 801{
0bd8d536
ED
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 804
b67bfe0d 805 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
806 if (dev->ifindex == ifindex)
807 return dev;
0bd8d536 808
1da177e4
LT
809 return NULL;
810}
d1b19dff 811EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 812
fb699dfd
ED
813/**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825{
fb699dfd
ED
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
b67bfe0d 829 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(dev_get_by_index_rcu);
836
1da177e4
LT
837
838/**
839 * dev_get_by_index - find a device by its ifindex
c4ea43c5 840 * @net: the applicable net namespace
1da177e4
LT
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
881d966b 849struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
850{
851 struct net_device *dev;
852
fb699dfd
ED
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
855 if (dev)
856 dev_hold(dev);
fb699dfd 857 rcu_read_unlock();
1da177e4
LT
858 return dev;
859}
d1b19dff 860EXPORT_SYMBOL(dev_get_by_index);
1da177e4 861
5dbe7c17
NS
862/**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872int netdev_get_name(struct net *net, char *name, int ifindex)
873{
874 struct net_device *dev;
875 unsigned int seq;
876
877retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894}
895
1da177e4 896/**
941666c2 897 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 898 * @net: the applicable net namespace
1da177e4
LT
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
941666c2 905 * The returned device has not had its ref count increased
1da177e4
LT
906 * and the caller must therefore be careful about locking
907 *
1da177e4
LT
908 */
909
941666c2
ED
910struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
1da177e4
LT
912{
913 struct net_device *dev;
914
941666c2 915 for_each_netdev_rcu(net, dev)
1da177e4
LT
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
918 return dev;
919
920 return NULL;
1da177e4 921}
941666c2 922EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 923
881d966b 924struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
925{
926 struct net_device *dev;
927
4e9cac2b 928 ASSERT_RTNL();
881d966b 929 for_each_netdev(net, dev)
4e9cac2b 930 if (dev->type == type)
7562f876
PE
931 return dev;
932
933 return NULL;
4e9cac2b 934}
4e9cac2b
PM
935EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
881d966b 937struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 938{
99fe3c39 939 struct net_device *dev, *ret = NULL;
4e9cac2b 940
99fe3c39
ED
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
1da177e4 950}
1da177e4
LT
951EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953/**
6c555490 954 * __dev_get_by_flags - find any device with given flags
c4ea43c5 955 * @net: the applicable net namespace
1da177e4
LT
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 960 * is not found or a pointer to the device. Must be called inside
6c555490 961 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
962 */
963
6c555490
WC
964struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
1da177e4 966{
7562f876 967 struct net_device *dev, *ret;
1da177e4 968
6c555490
WC
969 ASSERT_RTNL();
970
7562f876 971 ret = NULL;
6c555490 972 for_each_netdev(net, dev) {
1da177e4 973 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 974 ret = dev;
1da177e4
LT
975 break;
976 }
977 }
7562f876 978 return ret;
1da177e4 979}
6c555490 980EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
981
982/**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
c7fa9d18
DM
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
1da177e4 989 */
95f050bf 990bool dev_valid_name(const char *name)
1da177e4 991{
c7fa9d18 992 if (*name == '\0')
95f050bf 993 return false;
b6fe17d6 994 if (strlen(name) >= IFNAMSIZ)
95f050bf 995 return false;
c7fa9d18 996 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 997 return false;
c7fa9d18
DM
998
999 while (*name) {
a4176a93 1000 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1001 return false;
c7fa9d18
DM
1002 name++;
1003 }
95f050bf 1004 return true;
1da177e4 1005}
d1b19dff 1006EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1007
1008/**
b267b179
EB
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1da177e4 1011 * @name: name format string
b267b179 1012 * @buf: scratch buffer and result name string
1da177e4
LT
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1021 */
1022
b267b179 1023static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1024{
1025 int i = 0;
1da177e4
LT
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1028 unsigned long *inuse;
1da177e4
LT
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
cfcabdcc 1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1043 if (!inuse)
1044 return -ENOMEM;
1045
881d966b 1046 for_each_netdev(net, d) {
1da177e4
LT
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1053 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
d9031024
OP
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1064 if (!__dev_get_by_name(net, buf))
1da177e4 1065 return i;
1da177e4
LT
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072}
1073
b267b179
EB
1074/**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088int dev_alloc_name(struct net_device *dev, const char *name)
1089{
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
c346dca1
YH
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
b267b179
EB
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100}
d1b19dff 1101EXPORT_SYMBOL(dev_alloc_name);
b267b179 1102
828de4f6
G
1103static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
d9031024 1106{
828de4f6
G
1107 char buf[IFNAMSIZ];
1108 int ret;
8ce6cebc 1109
828de4f6
G
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114}
1115
1116static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119{
1120 BUG_ON(!net);
8ce6cebc 1121
d9031024
OP
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1c5cae81 1125 if (strchr(name, '%'))
828de4f6 1126 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
8ce6cebc
DL
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1131
1132 return 0;
1133}
1da177e4
LT
1134
1135/**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
cf04a4c7 1143int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1144{
238fa362 1145 unsigned char old_assign_type;
fcc5a03a 1146 char oldname[IFNAMSIZ];
1da177e4 1147 int err = 0;
fcc5a03a 1148 int ret;
881d966b 1149 struct net *net;
1da177e4
LT
1150
1151 ASSERT_RTNL();
c346dca1 1152 BUG_ON(!dev_net(dev));
1da177e4 1153
c346dca1 1154 net = dev_net(dev);
1da177e4
LT
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1161 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1162 return 0;
c91f6df2 1163 }
c8d90dca 1164
fcc5a03a
HX
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
828de4f6 1167 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1168 if (err < 0) {
30e6c9fa 1169 write_seqcount_end(&devnet_rename_seq);
d9031024 1170 return err;
c91f6df2 1171 }
1da177e4 1172
6fe82a39
VF
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
238fa362
TG
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
fcc5a03a 1179rollback:
a1b3f594
EB
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1183 dev->name_assign_type = old_assign_type;
30e6c9fa 1184 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1185 return ret;
dcc99773 1186 }
7f988eab 1187
30e6c9fa 1188 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1189
5bb025fa
VF
1190 netdev_adjacent_rename_links(dev, oldname);
1191
7f988eab 1192 write_lock_bh(&dev_base_lock);
372b2312 1193 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1200 write_unlock_bh(&dev_base_lock);
1201
056925ab 1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
91e9c07b
ED
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
fcc5a03a 1208 err = ret;
30e6c9fa 1209 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1210 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1211 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1214 goto rollback;
91e9c07b 1215 } else {
7b6cd1ce 1216 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1217 dev->name, ret);
fcc5a03a
HX
1218 }
1219 }
1da177e4
LT
1220
1221 return err;
1222}
1223
0b815a1a
SH
1224/**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
f0db275a 1228 * @len: limit of bytes to copy from info
0b815a1a
SH
1229 *
1230 * Set ifalias for a device,
1231 */
1232int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233{
7364e445
AK
1234 char *new_ifalias;
1235
0b815a1a
SH
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
96ca4a2c 1241 if (!len) {
388dfc2d
SK
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
96ca4a2c
OH
1244 return 0;
1245 }
1246
7364e445
AK
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
0b815a1a 1249 return -ENOMEM;
7364e445 1250 dev->ifalias = new_ifalias;
0b815a1a
SH
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254}
1255
1256
d8a33ac4 1257/**
3041a069 1258 * netdev_features_change - device changes features
d8a33ac4
SH
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263void netdev_features_change(struct net_device *dev)
1264{
056925ab 1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1266}
1267EXPORT_SYMBOL(netdev_features_change);
1268
1da177e4
LT
1269/**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277void netdev_state_change(struct net_device *dev)
1278{
1279 if (dev->flags & IFF_UP) {
54951194
LP
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
7f294054 1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1286 }
1287}
d1b19dff 1288EXPORT_SYMBOL(netdev_state_change);
1da177e4 1289
ee89bab1
AW
1290/**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1301{
ee89bab1
AW
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
c1da4ac7 1305}
ee89bab1 1306EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1307
bd380811 1308static int __dev_open(struct net_device *dev)
1da177e4 1309{
d314774c 1310 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1311 int ret;
1da177e4 1312
e46b66bc
BH
1313 ASSERT_RTNL();
1314
1da177e4
LT
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
ca99ca14
NH
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
66b5552f 1322 netpoll_poll_disable(dev);
ca99ca14 1323
3b8bcfd5
JB
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1da177e4 1329 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1330
d314774c
SH
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
bada339b 1333
d314774c
SH
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1da177e4 1336
66b5552f 1337 netpoll_poll_enable(dev);
ca99ca14 1338
bada339b
JG
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1da177e4 1342 dev->flags |= IFF_UP;
4417da66 1343 dev_set_rx_mode(dev);
1da177e4 1344 dev_activate(dev);
7bf23575 1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1346 }
bada339b 1347
1da177e4
LT
1348 return ret;
1349}
1350
1351/**
bd380811
PM
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1da177e4 1354 *
bd380811
PM
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1da177e4 1362 */
bd380811
PM
1363int dev_open(struct net_device *dev)
1364{
1365 int ret;
1366
bd380811
PM
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
bd380811
PM
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
7f294054 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378}
1379EXPORT_SYMBOL(dev_open);
1380
44345724 1381static int __dev_close_many(struct list_head *head)
1da177e4 1382{
44345724 1383 struct net_device *dev;
e46b66bc 1384
bd380811 1385 ASSERT_RTNL();
9d5010db
DM
1386 might_sleep();
1387
5cde2829 1388 list_for_each_entry(dev, head, close_list) {
3f4df206 1389 /* Temporarily disable netpoll until the interface is down */
66b5552f 1390 netpoll_poll_disable(dev);
3f4df206 1391
44345724 1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1393
44345724 1394 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1395
44345724
OP
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
4e857c58 1402 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1403 }
1da177e4 1404
44345724 1405 dev_deactivate_many(head);
d8b2a4d2 1406
5cde2829 1407 list_for_each_entry(dev, head, close_list) {
44345724 1408 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1409
44345724
OP
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
44345724 1420 dev->flags &= ~IFF_UP;
66b5552f 1421 netpoll_poll_enable(dev);
44345724
OP
1422 }
1423
1424 return 0;
1425}
1426
1427static int __dev_close(struct net_device *dev)
1428{
f87e6f47 1429 int retval;
44345724
OP
1430 LIST_HEAD(single);
1431
5cde2829 1432 list_add(&dev->close_list, &single);
f87e6f47
LT
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
ca99ca14 1435
f87e6f47 1436 return retval;
44345724
OP
1437}
1438
99c4a26a 1439int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1440{
1441 struct net_device *dev, *tmp;
1da177e4 1442
5cde2829
EB
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1445 if (!(dev->flags & IFF_UP))
5cde2829 1446 list_del_init(&dev->close_list);
44345724
OP
1447
1448 __dev_close_many(head);
1da177e4 1449
5cde2829 1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1453 if (unlink)
1454 list_del_init(&dev->close_list);
44345724 1455 }
bd380811
PM
1456
1457 return 0;
1458}
99c4a26a 1459EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1460
1461/**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470int dev_close(struct net_device *dev)
1471{
e14a5993
ED
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1da177e4 1474
5cde2829 1475 list_add(&dev->close_list, &single);
99c4a26a 1476 dev_close_many(&single, true);
e14a5993
ED
1477 list_del(&single);
1478 }
da6e378b 1479 return 0;
1da177e4 1480}
d1b19dff 1481EXPORT_SYMBOL(dev_close);
1da177e4
LT
1482
1483
0187bdfb
BH
1484/**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492void dev_disable_lro(struct net_device *dev)
1493{
fbe168ba
MK
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
529d0489 1496
bc5787c6
MM
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
27660515 1499
22d5969f
MM
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
0187bdfb
BH
1505}
1506EXPORT_SYMBOL(dev_disable_lro);
1507
351638e7
JP
1508static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510{
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515}
0187bdfb 1516
881d966b
EB
1517static int dev_boot_phase = 1;
1518
1da177e4
LT
1519/**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
4ec93edb 1529 * to the new notifier to allow device to have a race free
1da177e4
LT
1530 * view of the network device list.
1531 */
1532
1533int register_netdevice_notifier(struct notifier_block *nb)
1534{
1535 struct net_device *dev;
fcc5a03a 1536 struct net_device *last;
881d966b 1537 struct net *net;
1da177e4
LT
1538 int err;
1539
1540 rtnl_lock();
f07d5b94 1541 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1542 if (err)
1543 goto unlock;
881d966b
EB
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
351638e7 1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1da177e4 1555
351638e7 1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1557 }
1da177e4 1558 }
fcc5a03a
HX
1559
1560unlock:
1da177e4
LT
1561 rtnl_unlock();
1562 return err;
fcc5a03a
HX
1563
1564rollback:
1565 last = dev;
881d966b
EB
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
8f891489 1569 goto outroll;
fcc5a03a 1570
881d966b 1571 if (dev->flags & IFF_UP) {
351638e7
JP
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1575 }
351638e7 1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1577 }
fcc5a03a 1578 }
c67625a1 1579
8f891489 1580outroll:
c67625a1 1581 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1582 goto unlock;
1da177e4 1583}
d1b19dff 1584EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1585
1586/**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
7d3d43da
EB
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1da177e4
LT
1598 */
1599
1600int unregister_netdevice_notifier(struct notifier_block *nb)
1601{
7d3d43da
EB
1602 struct net_device *dev;
1603 struct net *net;
9f514950
HX
1604 int err;
1605
1606 rtnl_lock();
f07d5b94 1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
351638e7
JP
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1617 }
351638e7 1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1619 }
1620 }
1621unlock:
9f514950
HX
1622 rtnl_unlock();
1623 return err;
1da177e4 1624}
d1b19dff 1625EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1626
351638e7
JP
1627/**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1d143d9f 1637static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
351638e7
JP
1640{
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644}
351638e7 1645
1da177e4
LT
1646/**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
c4ea43c5 1649 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1650 *
1651 * Call all network notifier blocks. Parameters and return value
f07d5b94 1652 * are as for raw_notifier_call_chain().
1da177e4
LT
1653 */
1654
ad7379d4 1655int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1656{
351638e7
JP
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1660}
edf947f1 1661EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1662
1cf51900 1663#ifdef CONFIG_NET_INGRESS
4577139b
DB
1664static struct static_key ingress_needed __read_mostly;
1665
1666void net_inc_ingress_queue(void)
1667{
1668 static_key_slow_inc(&ingress_needed);
1669}
1670EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672void net_dec_ingress_queue(void)
1673{
1674 static_key_slow_dec(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677#endif
1678
1f211a1b
DB
1679#ifdef CONFIG_NET_EGRESS
1680static struct static_key egress_needed __read_mostly;
1681
1682void net_inc_egress_queue(void)
1683{
1684 static_key_slow_inc(&egress_needed);
1685}
1686EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688void net_dec_egress_queue(void)
1689{
1690 static_key_slow_dec(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693#endif
1694
c5905afb 1695static struct static_key netstamp_needed __read_mostly;
b90e5794 1696#ifdef HAVE_JUMP_LABEL
c5905afb 1697/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1698 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1699 * static_key_slow_dec() calls.
b90e5794
ED
1700 */
1701static atomic_t netstamp_needed_deferred;
1702#endif
1da177e4
LT
1703
1704void net_enable_timestamp(void)
1705{
b90e5794
ED
1706#ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
c5905afb 1711 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1712 return;
1713 }
1714#endif
c5905afb 1715 static_key_slow_inc(&netstamp_needed);
1da177e4 1716}
d1b19dff 1717EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1718
1719void net_disable_timestamp(void)
1720{
b90e5794
ED
1721#ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726#endif
c5905afb 1727 static_key_slow_dec(&netstamp_needed);
1da177e4 1728}
d1b19dff 1729EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1730
3b098e2d 1731static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1732{
588f0330 1733 skb->tstamp.tv64 = 0;
c5905afb 1734 if (static_key_false(&netstamp_needed))
a61bbcf2 1735 __net_timestamp(skb);
1da177e4
LT
1736}
1737
588f0330 1738#define net_timestamp_check(COND, SKB) \
c5905afb 1739 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
3b098e2d 1743
1ee481fb 1744bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1745{
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762}
1ee481fb 1763EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1764
a0265d28
HX
1765int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766{
bbbf2df0
WB
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
08b4b8ea 1775 skb->priority = 0;
a0265d28 1776 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1778
1779 return 0;
1780}
1781EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
44540960
AB
1783/**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
6ec82562 1791 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802{
a0265d28 1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1804}
1805EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
71d9dec2
CG
1807static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810{
1080e512
MT
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
71d9dec2
CG
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815}
1816
7866a621
SN
1817static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
fbcb2170
JP
1819 struct net_device *orig_dev,
1820 __be16 type,
7866a621
SN
1821 struct list_head *ptype_list)
1822{
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
fbcb2170 1829 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833}
1834
c0de08d0
EL
1835static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836{
a3d744e9 1837 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846}
1847
1da177e4
LT
1848/*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
f6a78bfc 1853static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1854{
1855 struct packet_type *ptype;
71d9dec2
CG
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
7866a621 1858 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1859
1da177e4 1860 rcu_read_lock();
7866a621
SN
1861again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
7866a621
SN
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
71d9dec2 1868
7866a621
SN
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1da177e4 1874
7866a621
SN
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
70978182 1879
7866a621 1880 net_timestamp_set(skb2);
1da177e4 1881
7866a621
SN
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1da177e4 1894 }
7866a621
SN
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1da177e4 1904 }
7866a621 1905out_unlock:
71d9dec2
CG
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1908 rcu_read_unlock();
1909}
1910
2c53040f
BH
1911/**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
bb134d22 1924static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1925{
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
7b6cd1ce 1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
4f57c087
JF
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947}
1948
537c00de
AD
1949#ifdef CONFIG_XPS
1950static DEFINE_MUTEX(xps_map_mutex);
1951#define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
10cdc3f3
AD
1954static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
537c00de 1956{
10cdc3f3
AD
1957 struct xps_map *map = NULL;
1958 int pos;
537c00de 1959
10cdc3f3
AD
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1962
10cdc3f3
AD
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
537c00de
AD
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
10cdc3f3 1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
10cdc3f3 1972 break;
537c00de 1973 }
537c00de
AD
1974 }
1975
10cdc3f3
AD
1976 return map;
1977}
1978
024e9679 1979static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1980{
1981 struct xps_dev_maps *dev_maps;
024e9679 1982 int cpu, i;
10cdc3f3
AD
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
024e9679
AD
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
10cdc3f3
AD
1997 active = true;
1998 }
1999
2000 if (!active) {
537c00de
AD
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
024e9679
AD
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
537c00de
AD
2009out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011}
2012
01c5f864
AD
2013static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015{
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046}
2047
3573540c
MT
2048int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
537c00de 2050{
01c5f864 2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2052 struct xps_map *map, *new_map;
537c00de 2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
537c00de
AD
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
01c5f864
AD
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
01c5f864 2070 return -ENOMEM;
2bb60cb9 2071 }
01c5f864
AD
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
537c00de 2086 for_each_possible_cpu(cpu) {
01c5f864
AD
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
537c00de 2097#ifdef CONFIG_NUMA
537c00de
AD
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
537c00de 2102#endif
01c5f864
AD
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2107 }
01c5f864 2108
537c00de
AD
2109 }
2110
01c5f864
AD
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
537c00de 2113 /* Cleanup old maps */
01c5f864
AD
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
537c00de 2121
01c5f864 2122 kfree_rcu(dev_maps, rcu);
537c00de
AD
2123 }
2124
01c5f864
AD
2125 dev_maps = new_dev_maps;
2126 active = true;
537c00de 2127
01c5f864
AD
2128out_no_new_maps:
2129 /* update Tx queue numa node */
537c00de
AD
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
01c5f864
AD
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152out_no_maps:
537c00de
AD
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156error:
01c5f864
AD
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
537c00de
AD
2166 mutex_unlock(&xps_map_mutex);
2167
537c00de
AD
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170}
2171EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173#endif
f0796d5c
JF
2174/*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
e6484930 2178int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2179{
1d24eb48
TH
2180 int rc;
2181
e6484930
TH
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
f0796d5c 2184
5c56580b
BH
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2187 ASSERT_RTNL();
2188
1d24eb48
TH
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
bf264145
TH
2191 if (rc)
2192 return rc;
2193
4f57c087
JF
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
024e9679 2197 if (txq < dev->real_num_tx_queues) {
e6484930 2198 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2199#ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201#endif
2202 }
f0796d5c 2203 }
e6484930
TH
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
f0796d5c
JF
2207}
2208EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2209
a953be53 2210#ifdef CONFIG_SYSFS
62fe0b40
BH
2211/**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2218 * negative error code. If called before registration, it always
2219 * succeeds.
62fe0b40
BH
2220 */
2221int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222{
2223 int rc;
2224
bd25fa7b
TH
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
62fe0b40
BH
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
62fe0b40
BH
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
62fe0b40
BH
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239}
2240EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241#endif
2242
2c53040f
BH
2243/**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
a55b138b 2249int netif_get_num_default_rss_queues(void)
16917b87
YM
2250{
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252}
2253EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
def82a1d 2255static inline void __netif_reschedule(struct Qdisc *q)
56079431 2256{
def82a1d
JP
2257 struct softnet_data *sd;
2258 unsigned long flags;
56079431 2259
def82a1d 2260 local_irq_save(flags);
903ceff7 2261 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267}
2268
2269void __netif_schedule(struct Qdisc *q)
2270{
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
56079431
DV
2273}
2274EXPORT_SYMBOL(__netif_schedule);
2275
e6247027
ED
2276struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278};
2279
2280static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2281{
e6247027
ED
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283}
2284
46e5da40
JF
2285void netif_schedule_queue(struct netdev_queue *txq)
2286{
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294}
2295EXPORT_SYMBOL(netif_schedule_queue);
2296
2297/**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305{
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316}
2317EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320{
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329}
2330EXPORT_SYMBOL(netif_tx_wake_queue);
2331
e6247027 2332void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2333{
e6247027 2334 unsigned long flags;
56079431 2335
e6247027
ED
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
bea3348e 2341 }
e6247027
ED
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
56079431 2348}
e6247027 2349EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2350
e6247027 2351void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2352{
2353 if (in_irq() || irqs_disabled())
e6247027 2354 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2355 else
2356 dev_kfree_skb(skb);
2357}
e6247027 2358EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2359
2360
bea3348e
SH
2361/**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
56079431
DV
2367void netif_device_detach(struct net_device *dev)
2368{
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
d543103a 2371 netif_tx_stop_all_queues(dev);
56079431
DV
2372 }
2373}
2374EXPORT_SYMBOL(netif_device_detach);
2375
bea3348e
SH
2376/**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
56079431
DV
2382void netif_device_attach(struct net_device *dev)
2383{
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
d543103a 2386 netif_tx_wake_all_queues(dev);
4ec93edb 2387 __netdev_watchdog_up(dev);
56079431
DV
2388 }
2389}
2390EXPORT_SYMBOL(netif_device_attach);
2391
5605c762
JP
2392/*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398{
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417}
2418EXPORT_SYMBOL(__skb_tx_hash);
2419
36c92474
BH
2420static void skb_warn_bad_offload(const struct sk_buff *skb)
2421{
65e9d2fa 2422 static const netdev_features_t null_features = 0;
36c92474 2423 struct net_device *dev = skb->dev;
88ad4175 2424 const char *name = "";
36c92474 2425
c846ad9b
BG
2426 if (!net_ratelimit())
2427 return;
2428
88ad4175
BM
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
36c92474
BH
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
88ad4175 2437 name, dev ? &dev->features : &null_features,
65e9d2fa 2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441}
2442
1da177e4
LT
2443/*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
84fa7933 2447int skb_checksum_help(struct sk_buff *skb)
1da177e4 2448{
d3bc23e7 2449 __wsum csum;
663ead3b 2450 int ret = 0, offset;
1da177e4 2451
84fa7933 2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
1da177e4
LT
2458 }
2459
cef401de
ED
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
55508d60 2469 offset = skb_checksum_start_offset(skb);
a030847e
HX
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
a030847e 2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2484out_set_summed:
1da177e4 2485 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2486out:
1da177e4
LT
2487 return ret;
2488}
d1b19dff 2489EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2490
6ae23ad3
TH
2491/* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516{
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621cant_help:
2622 return false;
2623}
2624EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
53d6471c 2626__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2627{
252e3346 2628 __be16 type = skb->protocol;
f6a78bfc 2629
19acc327
PS
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
d4bcef3f 2641 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2642}
2643
2644/**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651{
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
53d6471c
VY
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
53d6471c 2660 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2661
2662 rcu_read_lock();
22061d80 2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2665 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
98e399f8 2671 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2672
f6a78bfc
HX
2673 return segs;
2674}
05e8ef4a
PS
2675EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678/* openvswitch calls this on rx path, so we need a different check.
2679 */
2680static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681{
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686}
2687
2688/**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2700 */
2701struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703{
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
a40e0a66 2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
05e8ef4a
PS
2711 return ERR_PTR(err);
2712 }
2713
802ab55a
AD
2714 /* Only report GSO partial support if it will enable us to
2715 * support segmentation on this frame without needing additional
2716 * work.
2717 */
2718 if (features & NETIF_F_GSO_PARTIAL) {
2719 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2720 struct net_device *dev = skb->dev;
2721
2722 partial_features |= dev->features & dev->gso_partial_features;
2723 if (!skb_gso_ok(skb, features | partial_features))
2724 features &= ~NETIF_F_GSO_PARTIAL;
2725 }
2726
9207f9d4
KK
2727 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2728 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2729
68c33163 2730 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2731 SKB_GSO_CB(skb)->encap_level = 0;
2732
05e8ef4a
PS
2733 skb_reset_mac_header(skb);
2734 skb_reset_mac_len(skb);
2735
2736 return skb_mac_gso_segment(skb, features);
2737}
12b0004d 2738EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2739
fb286bb2
HX
2740/* Take action when hardware reception checksum errors are detected. */
2741#ifdef CONFIG_BUG
2742void netdev_rx_csum_fault(struct net_device *dev)
2743{
2744 if (net_ratelimit()) {
7b6cd1ce 2745 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2746 dump_stack();
2747 }
2748}
2749EXPORT_SYMBOL(netdev_rx_csum_fault);
2750#endif
2751
1da177e4
LT
2752/* Actually, we should eliminate this check as soon as we know, that:
2753 * 1. IOMMU is present and allows to map all the memory.
2754 * 2. No high memory really exists on this machine.
2755 */
2756
c1e756bf 2757static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2758{
3d3a8533 2759#ifdef CONFIG_HIGHMEM
1da177e4 2760 int i;
5acbbd42 2761 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2764 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2765 return 1;
ea2ab693 2766 }
5acbbd42 2767 }
1da177e4 2768
5acbbd42
FT
2769 if (PCI_DMA_BUS_IS_PHYS) {
2770 struct device *pdev = dev->dev.parent;
1da177e4 2771
9092c658
ED
2772 if (!pdev)
2773 return 0;
5acbbd42 2774 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2775 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2776 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2777 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2778 return 1;
2779 }
2780 }
3d3a8533 2781#endif
1da177e4
LT
2782 return 0;
2783}
1da177e4 2784
3b392ddb
SH
2785/* If MPLS offload request, verify we are testing hardware MPLS features
2786 * instead of standard features for the netdev.
2787 */
d0edc7bf 2788#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2789static netdev_features_t net_mpls_features(struct sk_buff *skb,
2790 netdev_features_t features,
2791 __be16 type)
2792{
25cd9ba0 2793 if (eth_p_mpls(type))
3b392ddb
SH
2794 features &= skb->dev->mpls_features;
2795
2796 return features;
2797}
2798#else
2799static netdev_features_t net_mpls_features(struct sk_buff *skb,
2800 netdev_features_t features,
2801 __be16 type)
2802{
2803 return features;
2804}
2805#endif
2806
c8f44aff 2807static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2808 netdev_features_t features)
f01a5236 2809{
53d6471c 2810 int tmp;
3b392ddb
SH
2811 __be16 type;
2812
2813 type = skb_network_protocol(skb, &tmp);
2814 features = net_mpls_features(skb, features, type);
53d6471c 2815
c0d680e5 2816 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2817 !can_checksum_protocol(features, type)) {
a188222b 2818 features &= ~NETIF_F_CSUM_MASK;
c1e756bf 2819 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2820 features &= ~NETIF_F_SG;
2821 }
2822
2823 return features;
2824}
2825
e38f3025
TM
2826netdev_features_t passthru_features_check(struct sk_buff *skb,
2827 struct net_device *dev,
2828 netdev_features_t features)
2829{
2830 return features;
2831}
2832EXPORT_SYMBOL(passthru_features_check);
2833
8cb65d00
TM
2834static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837{
2838 return vlan_features_check(skb, features);
2839}
2840
cbc53e08
AD
2841static netdev_features_t gso_features_check(const struct sk_buff *skb,
2842 struct net_device *dev,
2843 netdev_features_t features)
2844{
2845 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2846
2847 if (gso_segs > dev->gso_max_segs)
2848 return features & ~NETIF_F_GSO_MASK;
2849
802ab55a
AD
2850 /* Support for GSO partial features requires software
2851 * intervention before we can actually process the packets
2852 * so we need to strip support for any partial features now
2853 * and we can pull them back in after we have partially
2854 * segmented the frame.
2855 */
2856 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2857 features &= ~dev->gso_partial_features;
2858
2859 /* Make sure to clear the IPv4 ID mangling feature if the
2860 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2861 */
2862 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2863 struct iphdr *iph = skb->encapsulation ?
2864 inner_ip_hdr(skb) : ip_hdr(skb);
2865
2866 if (!(iph->frag_off & htons(IP_DF)))
2867 features &= ~NETIF_F_TSO_MANGLEID;
2868 }
2869
2870 return features;
2871}
2872
c1e756bf 2873netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2874{
5f35227e 2875 struct net_device *dev = skb->dev;
fcbeb976 2876 netdev_features_t features = dev->features;
58e998c6 2877
cbc53e08
AD
2878 if (skb_is_gso(skb))
2879 features = gso_features_check(skb, dev, features);
30b678d8 2880
5f35227e
JG
2881 /* If encapsulation offload request, verify we are testing
2882 * hardware encapsulation features instead of standard
2883 * features for the netdev
2884 */
2885 if (skb->encapsulation)
2886 features &= dev->hw_enc_features;
2887
f5a7fb88
TM
2888 if (skb_vlan_tagged(skb))
2889 features = netdev_intersect_features(features,
2890 dev->vlan_features |
2891 NETIF_F_HW_VLAN_CTAG_TX |
2892 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2893
5f35227e
JG
2894 if (dev->netdev_ops->ndo_features_check)
2895 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2896 features);
8cb65d00
TM
2897 else
2898 features &= dflt_features_check(skb, dev, features);
5f35227e 2899
c1e756bf 2900 return harmonize_features(skb, features);
58e998c6 2901}
c1e756bf 2902EXPORT_SYMBOL(netif_skb_features);
58e998c6 2903
2ea25513 2904static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2905 struct netdev_queue *txq, bool more)
f6a78bfc 2906{
2ea25513
DM
2907 unsigned int len;
2908 int rc;
00829823 2909
7866a621 2910 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2911 dev_queue_xmit_nit(skb, dev);
fc741216 2912
2ea25513
DM
2913 len = skb->len;
2914 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2915 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2916 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2917
2ea25513
DM
2918 return rc;
2919}
7b9c6090 2920
8dcda22a
DM
2921struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2922 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2923{
2924 struct sk_buff *skb = first;
2925 int rc = NETDEV_TX_OK;
7b9c6090 2926
7f2e870f
DM
2927 while (skb) {
2928 struct sk_buff *next = skb->next;
fc70fb64 2929
7f2e870f 2930 skb->next = NULL;
95f6b3dd 2931 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2932 if (unlikely(!dev_xmit_complete(rc))) {
2933 skb->next = next;
2934 goto out;
2935 }
6afff0ca 2936
7f2e870f
DM
2937 skb = next;
2938 if (netif_xmit_stopped(txq) && skb) {
2939 rc = NETDEV_TX_BUSY;
2940 break;
9ccb8975 2941 }
7f2e870f 2942 }
9ccb8975 2943
7f2e870f
DM
2944out:
2945 *ret = rc;
2946 return skb;
2947}
b40863c6 2948
1ff0dc94
ED
2949static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2950 netdev_features_t features)
f6a78bfc 2951{
df8a39de 2952 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2953 !vlan_hw_offload_capable(features, skb->vlan_proto))
2954 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2955 return skb;
2956}
f6a78bfc 2957
55a93b3e 2958static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2959{
2960 netdev_features_t features;
f6a78bfc 2961
eae3f88e
DM
2962 if (skb->next)
2963 return skb;
068a2de5 2964
eae3f88e
DM
2965 features = netif_skb_features(skb);
2966 skb = validate_xmit_vlan(skb, features);
2967 if (unlikely(!skb))
2968 goto out_null;
7b9c6090 2969
8b86a61d 2970 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2971 struct sk_buff *segs;
2972
2973 segs = skb_gso_segment(skb, features);
cecda693 2974 if (IS_ERR(segs)) {
af6dabc9 2975 goto out_kfree_skb;
cecda693
JW
2976 } else if (segs) {
2977 consume_skb(skb);
2978 skb = segs;
f6a78bfc 2979 }
eae3f88e
DM
2980 } else {
2981 if (skb_needs_linearize(skb, features) &&
2982 __skb_linearize(skb))
2983 goto out_kfree_skb;
4ec93edb 2984
eae3f88e
DM
2985 /* If packet is not checksummed and device does not
2986 * support checksumming for this protocol, complete
2987 * checksumming here.
2988 */
2989 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2990 if (skb->encapsulation)
2991 skb_set_inner_transport_header(skb,
2992 skb_checksum_start_offset(skb));
2993 else
2994 skb_set_transport_header(skb,
2995 skb_checksum_start_offset(skb));
a188222b 2996 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2997 skb_checksum_help(skb))
2998 goto out_kfree_skb;
7b9c6090 2999 }
0c772159 3000 }
7b9c6090 3001
eae3f88e 3002 return skb;
fc70fb64 3003
f6a78bfc
HX
3004out_kfree_skb:
3005 kfree_skb(skb);
eae3f88e
DM
3006out_null:
3007 return NULL;
3008}
6afff0ca 3009
55a93b3e
ED
3010struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011{
3012 struct sk_buff *next, *head = NULL, *tail;
3013
bec3cfdc 3014 for (; skb != NULL; skb = next) {
55a93b3e
ED
3015 next = skb->next;
3016 skb->next = NULL;
bec3cfdc
ED
3017
3018 /* in case skb wont be segmented, point to itself */
3019 skb->prev = skb;
3020
55a93b3e 3021 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3022 if (!skb)
3023 continue;
55a93b3e 3024
bec3cfdc
ED
3025 if (!head)
3026 head = skb;
3027 else
3028 tail->next = skb;
3029 /* If skb was segmented, skb->prev points to
3030 * the last segment. If not, it still contains skb.
3031 */
3032 tail = skb->prev;
55a93b3e
ED
3033 }
3034 return head;
f6a78bfc
HX
3035}
3036
1def9238
ED
3037static void qdisc_pkt_len_init(struct sk_buff *skb)
3038{
3039 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3040
3041 qdisc_skb_cb(skb)->pkt_len = skb->len;
3042
3043 /* To get more precise estimation of bytes sent on wire,
3044 * we add to pkt_len the headers size of all segments
3045 */
3046 if (shinfo->gso_size) {
757b8b1d 3047 unsigned int hdr_len;
15e5a030 3048 u16 gso_segs = shinfo->gso_segs;
1def9238 3049
757b8b1d
ED
3050 /* mac layer + network layer */
3051 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3052
3053 /* + transport layer */
1def9238
ED
3054 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3055 hdr_len += tcp_hdrlen(skb);
3056 else
3057 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3058
3059 if (shinfo->gso_type & SKB_GSO_DODGY)
3060 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3061 shinfo->gso_size);
3062
3063 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3064 }
3065}
3066
bbd8a0d3
KK
3067static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3068 struct net_device *dev,
3069 struct netdev_queue *txq)
3070{
3071 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 3072 bool contended;
bbd8a0d3
KK
3073 int rc;
3074
a2da570d 3075 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3076 /*
3077 * Heuristic to force contended enqueues to serialize on a
3078 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
3079 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3080 * often and dequeue packets faster.
79640a4c 3081 */
a2da570d 3082 contended = qdisc_is_running(q);
79640a4c
ED
3083 if (unlikely(contended))
3084 spin_lock(&q->busylock);
3085
bbd8a0d3
KK
3086 spin_lock(root_lock);
3087 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3088 kfree_skb(skb);
3089 rc = NET_XMIT_DROP;
3090 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3091 qdisc_run_begin(q)) {
bbd8a0d3
KK
3092 /*
3093 * This is a work-conserving queue; there are no old skbs
3094 * waiting to be sent out; and the qdisc is not running -
3095 * xmit the skb directly.
3096 */
bfe0d029 3097
bfe0d029
ED
3098 qdisc_bstats_update(q, skb);
3099
55a93b3e 3100 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3101 if (unlikely(contended)) {
3102 spin_unlock(&q->busylock);
3103 contended = false;
3104 }
bbd8a0d3 3105 __qdisc_run(q);
79640a4c 3106 } else
bc135b23 3107 qdisc_run_end(q);
bbd8a0d3
KK
3108
3109 rc = NET_XMIT_SUCCESS;
3110 } else {
a2da570d 3111 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
3112 if (qdisc_run_begin(q)) {
3113 if (unlikely(contended)) {
3114 spin_unlock(&q->busylock);
3115 contended = false;
3116 }
3117 __qdisc_run(q);
3118 }
bbd8a0d3
KK
3119 }
3120 spin_unlock(root_lock);
79640a4c
ED
3121 if (unlikely(contended))
3122 spin_unlock(&q->busylock);
bbd8a0d3
KK
3123 return rc;
3124}
3125
86f8515f 3126#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3127static void skb_update_prio(struct sk_buff *skb)
3128{
6977a79d 3129 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3130
91c68ce2 3131 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3132 unsigned int prioidx =
3133 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3134
3135 if (prioidx < map->priomap_len)
3136 skb->priority = map->priomap[prioidx];
3137 }
5bc1421e
NH
3138}
3139#else
3140#define skb_update_prio(skb)
3141#endif
3142
f60e5990 3143DEFINE_PER_CPU(int, xmit_recursion);
3144EXPORT_SYMBOL(xmit_recursion);
3145
11a766ce 3146#define RECURSION_LIMIT 10
745e20f1 3147
95603e22
MM
3148/**
3149 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3150 * @net: network namespace this loopback is happening in
3151 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3152 * @skb: buffer to transmit
3153 */
0c4b51f0 3154int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3155{
3156 skb_reset_mac_header(skb);
3157 __skb_pull(skb, skb_network_offset(skb));
3158 skb->pkt_type = PACKET_LOOPBACK;
3159 skb->ip_summed = CHECKSUM_UNNECESSARY;
3160 WARN_ON(!skb_dst(skb));
3161 skb_dst_force(skb);
3162 netif_rx_ni(skb);
3163 return 0;
3164}
3165EXPORT_SYMBOL(dev_loopback_xmit);
3166
1f211a1b
DB
3167#ifdef CONFIG_NET_EGRESS
3168static struct sk_buff *
3169sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3170{
3171 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3172 struct tcf_result cl_res;
3173
3174 if (!cl)
3175 return skb;
3176
3177 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3178 * earlier by the caller.
3179 */
3180 qdisc_bstats_cpu_update(cl->q, skb);
3181
3182 switch (tc_classify(skb, cl, &cl_res, false)) {
3183 case TC_ACT_OK:
3184 case TC_ACT_RECLASSIFY:
3185 skb->tc_index = TC_H_MIN(cl_res.classid);
3186 break;
3187 case TC_ACT_SHOT:
3188 qdisc_qstats_cpu_drop(cl->q);
3189 *ret = NET_XMIT_DROP;
3190 goto drop;
3191 case TC_ACT_STOLEN:
3192 case TC_ACT_QUEUED:
3193 *ret = NET_XMIT_SUCCESS;
3194drop:
3195 kfree_skb(skb);
3196 return NULL;
3197 case TC_ACT_REDIRECT:
3198 /* No need to push/pop skb's mac_header here on egress! */
3199 skb_do_redirect(skb);
3200 *ret = NET_XMIT_SUCCESS;
3201 return NULL;
3202 default:
3203 break;
3204 }
3205
3206 return skb;
3207}
3208#endif /* CONFIG_NET_EGRESS */
3209
638b2a69
JP
3210static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211{
3212#ifdef CONFIG_XPS
3213 struct xps_dev_maps *dev_maps;
3214 struct xps_map *map;
3215 int queue_index = -1;
3216
3217 rcu_read_lock();
3218 dev_maps = rcu_dereference(dev->xps_maps);
3219 if (dev_maps) {
3220 map = rcu_dereference(
3221 dev_maps->cpu_map[skb->sender_cpu - 1]);
3222 if (map) {
3223 if (map->len == 1)
3224 queue_index = map->queues[0];
3225 else
3226 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3227 map->len)];
3228 if (unlikely(queue_index >= dev->real_num_tx_queues))
3229 queue_index = -1;
3230 }
3231 }
3232 rcu_read_unlock();
3233
3234 return queue_index;
3235#else
3236 return -1;
3237#endif
3238}
3239
3240static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3241{
3242 struct sock *sk = skb->sk;
3243 int queue_index = sk_tx_queue_get(sk);
3244
3245 if (queue_index < 0 || skb->ooo_okay ||
3246 queue_index >= dev->real_num_tx_queues) {
3247 int new_index = get_xps_queue(dev, skb);
3248 if (new_index < 0)
3249 new_index = skb_tx_hash(dev, skb);
3250
3251 if (queue_index != new_index && sk &&
004a5d01 3252 sk_fullsock(sk) &&
638b2a69
JP
3253 rcu_access_pointer(sk->sk_dst_cache))
3254 sk_tx_queue_set(sk, new_index);
3255
3256 queue_index = new_index;
3257 }
3258
3259 return queue_index;
3260}
3261
3262struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3263 struct sk_buff *skb,
3264 void *accel_priv)
3265{
3266 int queue_index = 0;
3267
3268#ifdef CONFIG_XPS
52bd2d62
ED
3269 u32 sender_cpu = skb->sender_cpu - 1;
3270
3271 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3272 skb->sender_cpu = raw_smp_processor_id() + 1;
3273#endif
3274
3275 if (dev->real_num_tx_queues != 1) {
3276 const struct net_device_ops *ops = dev->netdev_ops;
3277 if (ops->ndo_select_queue)
3278 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3279 __netdev_pick_tx);
3280 else
3281 queue_index = __netdev_pick_tx(dev, skb);
3282
3283 if (!accel_priv)
3284 queue_index = netdev_cap_txqueue(dev, queue_index);
3285 }
3286
3287 skb_set_queue_mapping(skb, queue_index);
3288 return netdev_get_tx_queue(dev, queue_index);
3289}
3290
d29f749e 3291/**
9d08dd3d 3292 * __dev_queue_xmit - transmit a buffer
d29f749e 3293 * @skb: buffer to transmit
9d08dd3d 3294 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3295 *
3296 * Queue a buffer for transmission to a network device. The caller must
3297 * have set the device and priority and built the buffer before calling
3298 * this function. The function can be called from an interrupt.
3299 *
3300 * A negative errno code is returned on a failure. A success does not
3301 * guarantee the frame will be transmitted as it may be dropped due
3302 * to congestion or traffic shaping.
3303 *
3304 * -----------------------------------------------------------------------------------
3305 * I notice this method can also return errors from the queue disciplines,
3306 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3307 * be positive.
3308 *
3309 * Regardless of the return value, the skb is consumed, so it is currently
3310 * difficult to retry a send to this method. (You can bump the ref count
3311 * before sending to hold a reference for retry if you are careful.)
3312 *
3313 * When calling this method, interrupts MUST be enabled. This is because
3314 * the BH enable code must have IRQs enabled so that it will not deadlock.
3315 * --BLG
3316 */
0a59f3a9 3317static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3318{
3319 struct net_device *dev = skb->dev;
dc2b4847 3320 struct netdev_queue *txq;
1da177e4
LT
3321 struct Qdisc *q;
3322 int rc = -ENOMEM;
3323
6d1ccff6
ED
3324 skb_reset_mac_header(skb);
3325
e7fd2885
WB
3326 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3327 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3328
4ec93edb
YH
3329 /* Disable soft irqs for various locks below. Also
3330 * stops preemption for RCU.
1da177e4 3331 */
4ec93edb 3332 rcu_read_lock_bh();
1da177e4 3333
5bc1421e
NH
3334 skb_update_prio(skb);
3335
1f211a1b
DB
3336 qdisc_pkt_len_init(skb);
3337#ifdef CONFIG_NET_CLS_ACT
3338 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3339# ifdef CONFIG_NET_EGRESS
3340 if (static_key_false(&egress_needed)) {
3341 skb = sch_handle_egress(skb, &rc, dev);
3342 if (!skb)
3343 goto out;
3344 }
3345# endif
3346#endif
02875878
ED
3347 /* If device/qdisc don't need skb->dst, release it right now while
3348 * its hot in this cpu cache.
3349 */
3350 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3351 skb_dst_drop(skb);
3352 else
3353 skb_dst_force(skb);
3354
0c4f691f
SF
3355#ifdef CONFIG_NET_SWITCHDEV
3356 /* Don't forward if offload device already forwarded */
3357 if (skb->offload_fwd_mark &&
3358 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3359 consume_skb(skb);
3360 rc = NET_XMIT_SUCCESS;
3361 goto out;
3362 }
3363#endif
3364
f663dd9a 3365 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3366 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3367
cf66ba58 3368 trace_net_dev_queue(skb);
1da177e4 3369 if (q->enqueue) {
bbd8a0d3 3370 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3371 goto out;
1da177e4
LT
3372 }
3373
3374 /* The device has no queue. Common case for software devices:
3375 loopback, all the sorts of tunnels...
3376
932ff279
HX
3377 Really, it is unlikely that netif_tx_lock protection is necessary
3378 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3379 counters.)
3380 However, it is possible, that they rely on protection
3381 made by us here.
3382
3383 Check this and shot the lock. It is not prone from deadlocks.
3384 Either shot noqueue qdisc, it is even simpler 8)
3385 */
3386 if (dev->flags & IFF_UP) {
3387 int cpu = smp_processor_id(); /* ok because BHs are off */
3388
c773e847 3389 if (txq->xmit_lock_owner != cpu) {
1da177e4 3390
745e20f1
ED
3391 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3392 goto recursion_alert;
3393
1f59533f
JDB
3394 skb = validate_xmit_skb(skb, dev);
3395 if (!skb)
3396 goto drop;
3397
c773e847 3398 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3399
73466498 3400 if (!netif_xmit_stopped(txq)) {
745e20f1 3401 __this_cpu_inc(xmit_recursion);
ce93718f 3402 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3403 __this_cpu_dec(xmit_recursion);
572a9d7b 3404 if (dev_xmit_complete(rc)) {
c773e847 3405 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3406 goto out;
3407 }
3408 }
c773e847 3409 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3410 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3411 dev->name);
1da177e4
LT
3412 } else {
3413 /* Recursion is detected! It is possible,
745e20f1
ED
3414 * unfortunately
3415 */
3416recursion_alert:
e87cc472
JP
3417 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3418 dev->name);
1da177e4
LT
3419 }
3420 }
3421
3422 rc = -ENETDOWN;
1f59533f 3423drop:
d4828d85 3424 rcu_read_unlock_bh();
1da177e4 3425
015f0688 3426 atomic_long_inc(&dev->tx_dropped);
1f59533f 3427 kfree_skb_list(skb);
1da177e4
LT
3428 return rc;
3429out:
d4828d85 3430 rcu_read_unlock_bh();
1da177e4
LT
3431 return rc;
3432}
f663dd9a 3433
2b4aa3ce 3434int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3435{
3436 return __dev_queue_xmit(skb, NULL);
3437}
2b4aa3ce 3438EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3439
f663dd9a
JW
3440int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3441{
3442 return __dev_queue_xmit(skb, accel_priv);
3443}
3444EXPORT_SYMBOL(dev_queue_xmit_accel);
3445
1da177e4
LT
3446
3447/*=======================================================================
3448 Receiver routines
3449 =======================================================================*/
3450
6b2bedc3 3451int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3452EXPORT_SYMBOL(netdev_max_backlog);
3453
3b098e2d 3454int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3455int netdev_budget __read_mostly = 300;
3456int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3457
eecfd7c4
ED
3458/* Called with irq disabled */
3459static inline void ____napi_schedule(struct softnet_data *sd,
3460 struct napi_struct *napi)
3461{
3462 list_add_tail(&napi->poll_list, &sd->poll_list);
3463 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3464}
3465
bfb564e7
KK
3466#ifdef CONFIG_RPS
3467
3468/* One global table that all flow-based protocols share. */
6e3f7faf 3469struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3470EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3471u32 rps_cpu_mask __read_mostly;
3472EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3473
c5905afb 3474struct static_key rps_needed __read_mostly;
adc9300e 3475
c445477d
BH
3476static struct rps_dev_flow *
3477set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3478 struct rps_dev_flow *rflow, u16 next_cpu)
3479{
a31196b0 3480 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3481#ifdef CONFIG_RFS_ACCEL
3482 struct netdev_rx_queue *rxqueue;
3483 struct rps_dev_flow_table *flow_table;
3484 struct rps_dev_flow *old_rflow;
3485 u32 flow_id;
3486 u16 rxq_index;
3487 int rc;
3488
3489 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3490 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3491 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3492 goto out;
3493 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3494 if (rxq_index == skb_get_rx_queue(skb))
3495 goto out;
3496
3497 rxqueue = dev->_rx + rxq_index;
3498 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3499 if (!flow_table)
3500 goto out;
61b905da 3501 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3502 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3503 rxq_index, flow_id);
3504 if (rc < 0)
3505 goto out;
3506 old_rflow = rflow;
3507 rflow = &flow_table->flows[flow_id];
c445477d
BH
3508 rflow->filter = rc;
3509 if (old_rflow->filter == rflow->filter)
3510 old_rflow->filter = RPS_NO_FILTER;
3511 out:
3512#endif
3513 rflow->last_qtail =
09994d1b 3514 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3515 }
3516
09994d1b 3517 rflow->cpu = next_cpu;
c445477d
BH
3518 return rflow;
3519}
3520
bfb564e7
KK
3521/*
3522 * get_rps_cpu is called from netif_receive_skb and returns the target
3523 * CPU from the RPS map of the receiving queue for a given skb.
3524 * rcu_read_lock must be held on entry.
3525 */
3526static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3527 struct rps_dev_flow **rflowp)
3528{
567e4b79
ED
3529 const struct rps_sock_flow_table *sock_flow_table;
3530 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3531 struct rps_dev_flow_table *flow_table;
567e4b79 3532 struct rps_map *map;
bfb564e7 3533 int cpu = -1;
567e4b79 3534 u32 tcpu;
61b905da 3535 u32 hash;
bfb564e7
KK
3536
3537 if (skb_rx_queue_recorded(skb)) {
3538 u16 index = skb_get_rx_queue(skb);
567e4b79 3539
62fe0b40
BH
3540 if (unlikely(index >= dev->real_num_rx_queues)) {
3541 WARN_ONCE(dev->real_num_rx_queues > 1,
3542 "%s received packet on queue %u, but number "
3543 "of RX queues is %u\n",
3544 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3545 goto done;
3546 }
567e4b79
ED
3547 rxqueue += index;
3548 }
bfb564e7 3549
567e4b79
ED
3550 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3551
3552 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3553 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3554 if (!flow_table && !map)
bfb564e7
KK
3555 goto done;
3556
2d47b459 3557 skb_reset_network_header(skb);
61b905da
TH
3558 hash = skb_get_hash(skb);
3559 if (!hash)
bfb564e7
KK
3560 goto done;
3561
fec5e652
TH
3562 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3563 if (flow_table && sock_flow_table) {
fec5e652 3564 struct rps_dev_flow *rflow;
567e4b79
ED
3565 u32 next_cpu;
3566 u32 ident;
3567
3568 /* First check into global flow table if there is a match */
3569 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3570 if ((ident ^ hash) & ~rps_cpu_mask)
3571 goto try_rps;
fec5e652 3572
567e4b79
ED
3573 next_cpu = ident & rps_cpu_mask;
3574
3575 /* OK, now we know there is a match,
3576 * we can look at the local (per receive queue) flow table
3577 */
61b905da 3578 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3579 tcpu = rflow->cpu;
3580
fec5e652
TH
3581 /*
3582 * If the desired CPU (where last recvmsg was done) is
3583 * different from current CPU (one in the rx-queue flow
3584 * table entry), switch if one of the following holds:
a31196b0 3585 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3586 * - Current CPU is offline.
3587 * - The current CPU's queue tail has advanced beyond the
3588 * last packet that was enqueued using this table entry.
3589 * This guarantees that all previous packets for the flow
3590 * have been dequeued, thus preserving in order delivery.
3591 */
3592 if (unlikely(tcpu != next_cpu) &&
a31196b0 3593 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3594 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3595 rflow->last_qtail)) >= 0)) {
3596 tcpu = next_cpu;
c445477d 3597 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3598 }
c445477d 3599
a31196b0 3600 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3601 *rflowp = rflow;
3602 cpu = tcpu;
3603 goto done;
3604 }
3605 }
3606
567e4b79
ED
3607try_rps:
3608
0a9627f2 3609 if (map) {
8fc54f68 3610 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3611 if (cpu_online(tcpu)) {
3612 cpu = tcpu;
3613 goto done;
3614 }
3615 }
3616
3617done:
0a9627f2
TH
3618 return cpu;
3619}
3620
c445477d
BH
3621#ifdef CONFIG_RFS_ACCEL
3622
3623/**
3624 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3625 * @dev: Device on which the filter was set
3626 * @rxq_index: RX queue index
3627 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3628 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3629 *
3630 * Drivers that implement ndo_rx_flow_steer() should periodically call
3631 * this function for each installed filter and remove the filters for
3632 * which it returns %true.
3633 */
3634bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3635 u32 flow_id, u16 filter_id)
3636{
3637 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3638 struct rps_dev_flow_table *flow_table;
3639 struct rps_dev_flow *rflow;
3640 bool expire = true;
a31196b0 3641 unsigned int cpu;
c445477d
BH
3642
3643 rcu_read_lock();
3644 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3645 if (flow_table && flow_id <= flow_table->mask) {
3646 rflow = &flow_table->flows[flow_id];
3647 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3648 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3649 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3650 rflow->last_qtail) <
3651 (int)(10 * flow_table->mask)))
3652 expire = false;
3653 }
3654 rcu_read_unlock();
3655 return expire;
3656}
3657EXPORT_SYMBOL(rps_may_expire_flow);
3658
3659#endif /* CONFIG_RFS_ACCEL */
3660
0a9627f2 3661/* Called from hardirq (IPI) context */
e36fa2f7 3662static void rps_trigger_softirq(void *data)
0a9627f2 3663{
e36fa2f7
ED
3664 struct softnet_data *sd = data;
3665
eecfd7c4 3666 ____napi_schedule(sd, &sd->backlog);
dee42870 3667 sd->received_rps++;
0a9627f2 3668}
e36fa2f7 3669
fec5e652 3670#endif /* CONFIG_RPS */
0a9627f2 3671
e36fa2f7
ED
3672/*
3673 * Check if this softnet_data structure is another cpu one
3674 * If yes, queue it to our IPI list and return 1
3675 * If no, return 0
3676 */
3677static int rps_ipi_queued(struct softnet_data *sd)
3678{
3679#ifdef CONFIG_RPS
903ceff7 3680 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3681
3682 if (sd != mysd) {
3683 sd->rps_ipi_next = mysd->rps_ipi_list;
3684 mysd->rps_ipi_list = sd;
3685
3686 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3687 return 1;
3688 }
3689#endif /* CONFIG_RPS */
3690 return 0;
3691}
3692
99bbc707
WB
3693#ifdef CONFIG_NET_FLOW_LIMIT
3694int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3695#endif
3696
3697static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3698{
3699#ifdef CONFIG_NET_FLOW_LIMIT
3700 struct sd_flow_limit *fl;
3701 struct softnet_data *sd;
3702 unsigned int old_flow, new_flow;
3703
3704 if (qlen < (netdev_max_backlog >> 1))
3705 return false;
3706
903ceff7 3707 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3708
3709 rcu_read_lock();
3710 fl = rcu_dereference(sd->flow_limit);
3711 if (fl) {
3958afa1 3712 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3713 old_flow = fl->history[fl->history_head];
3714 fl->history[fl->history_head] = new_flow;
3715
3716 fl->history_head++;
3717 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3718
3719 if (likely(fl->buckets[old_flow]))
3720 fl->buckets[old_flow]--;
3721
3722 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3723 fl->count++;
3724 rcu_read_unlock();
3725 return true;
3726 }
3727 }
3728 rcu_read_unlock();
3729#endif
3730 return false;
3731}
3732
0a9627f2
TH
3733/*
3734 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3735 * queue (may be a remote CPU queue).
3736 */
fec5e652
TH
3737static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3738 unsigned int *qtail)
0a9627f2 3739{
e36fa2f7 3740 struct softnet_data *sd;
0a9627f2 3741 unsigned long flags;
99bbc707 3742 unsigned int qlen;
0a9627f2 3743
e36fa2f7 3744 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3745
3746 local_irq_save(flags);
0a9627f2 3747
e36fa2f7 3748 rps_lock(sd);
e9e4dd32
JA
3749 if (!netif_running(skb->dev))
3750 goto drop;
99bbc707
WB
3751 qlen = skb_queue_len(&sd->input_pkt_queue);
3752 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3753 if (qlen) {
0a9627f2 3754enqueue:
e36fa2f7 3755 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3756 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3757 rps_unlock(sd);
152102c7 3758 local_irq_restore(flags);
0a9627f2
TH
3759 return NET_RX_SUCCESS;
3760 }
3761
ebda37c2
ED
3762 /* Schedule NAPI for backlog device
3763 * We can use non atomic operation since we own the queue lock
3764 */
3765 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3766 if (!rps_ipi_queued(sd))
eecfd7c4 3767 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3768 }
3769 goto enqueue;
3770 }
3771
e9e4dd32 3772drop:
dee42870 3773 sd->dropped++;
e36fa2f7 3774 rps_unlock(sd);
0a9627f2 3775
0a9627f2
TH
3776 local_irq_restore(flags);
3777
caf586e5 3778 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3779 kfree_skb(skb);
3780 return NET_RX_DROP;
3781}
1da177e4 3782
ae78dbfa 3783static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3784{
b0e28f1e 3785 int ret;
1da177e4 3786
588f0330 3787 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3788
cf66ba58 3789 trace_netif_rx(skb);
df334545 3790#ifdef CONFIG_RPS
c5905afb 3791 if (static_key_false(&rps_needed)) {
fec5e652 3792 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3793 int cpu;
3794
cece1945 3795 preempt_disable();
b0e28f1e 3796 rcu_read_lock();
fec5e652
TH
3797
3798 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3799 if (cpu < 0)
3800 cpu = smp_processor_id();
fec5e652
TH
3801
3802 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3803
b0e28f1e 3804 rcu_read_unlock();
cece1945 3805 preempt_enable();
adc9300e
ED
3806 } else
3807#endif
fec5e652
TH
3808 {
3809 unsigned int qtail;
3810 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3811 put_cpu();
3812 }
b0e28f1e 3813 return ret;
1da177e4 3814}
ae78dbfa
BH
3815
3816/**
3817 * netif_rx - post buffer to the network code
3818 * @skb: buffer to post
3819 *
3820 * This function receives a packet from a device driver and queues it for
3821 * the upper (protocol) levels to process. It always succeeds. The buffer
3822 * may be dropped during processing for congestion control or by the
3823 * protocol layers.
3824 *
3825 * return values:
3826 * NET_RX_SUCCESS (no congestion)
3827 * NET_RX_DROP (packet was dropped)
3828 *
3829 */
3830
3831int netif_rx(struct sk_buff *skb)
3832{
3833 trace_netif_rx_entry(skb);
3834
3835 return netif_rx_internal(skb);
3836}
d1b19dff 3837EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3838
3839int netif_rx_ni(struct sk_buff *skb)
3840{
3841 int err;
3842
ae78dbfa
BH
3843 trace_netif_rx_ni_entry(skb);
3844
1da177e4 3845 preempt_disable();
ae78dbfa 3846 err = netif_rx_internal(skb);
1da177e4
LT
3847 if (local_softirq_pending())
3848 do_softirq();
3849 preempt_enable();
3850
3851 return err;
3852}
1da177e4
LT
3853EXPORT_SYMBOL(netif_rx_ni);
3854
1da177e4
LT
3855static void net_tx_action(struct softirq_action *h)
3856{
903ceff7 3857 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3858
3859 if (sd->completion_queue) {
3860 struct sk_buff *clist;
3861
3862 local_irq_disable();
3863 clist = sd->completion_queue;
3864 sd->completion_queue = NULL;
3865 local_irq_enable();
3866
3867 while (clist) {
3868 struct sk_buff *skb = clist;
3869 clist = clist->next;
3870
547b792c 3871 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3872 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3873 trace_consume_skb(skb);
3874 else
3875 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3876
3877 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3878 __kfree_skb(skb);
3879 else
3880 __kfree_skb_defer(skb);
1da177e4 3881 }
15fad714
JDB
3882
3883 __kfree_skb_flush();
1da177e4
LT
3884 }
3885
3886 if (sd->output_queue) {
37437bb2 3887 struct Qdisc *head;
1da177e4
LT
3888
3889 local_irq_disable();
3890 head = sd->output_queue;
3891 sd->output_queue = NULL;
a9cbd588 3892 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3893 local_irq_enable();
3894
3895 while (head) {
37437bb2
DM
3896 struct Qdisc *q = head;
3897 spinlock_t *root_lock;
3898
1da177e4
LT
3899 head = head->next_sched;
3900
5fb66229 3901 root_lock = qdisc_lock(q);
37437bb2 3902 if (spin_trylock(root_lock)) {
4e857c58 3903 smp_mb__before_atomic();
def82a1d
JP
3904 clear_bit(__QDISC_STATE_SCHED,
3905 &q->state);
37437bb2
DM
3906 qdisc_run(q);
3907 spin_unlock(root_lock);
1da177e4 3908 } else {
195648bb 3909 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3910 &q->state)) {
195648bb 3911 __netif_reschedule(q);
e8a83e10 3912 } else {
4e857c58 3913 smp_mb__before_atomic();
e8a83e10
JP
3914 clear_bit(__QDISC_STATE_SCHED,
3915 &q->state);
3916 }
1da177e4
LT
3917 }
3918 }
3919 }
3920}
3921
ab95bfe0
JP
3922#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3923 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3924/* This hook is defined here for ATM LANE */
3925int (*br_fdb_test_addr_hook)(struct net_device *dev,
3926 unsigned char *addr) __read_mostly;
4fb019a0 3927EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3928#endif
1da177e4 3929
1f211a1b
DB
3930static inline struct sk_buff *
3931sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3932 struct net_device *orig_dev)
f697c3e8 3933{
e7582bab 3934#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3935 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3936 struct tcf_result cl_res;
24824a09 3937
c9e99fd0
DB
3938 /* If there's at least one ingress present somewhere (so
3939 * we get here via enabled static key), remaining devices
3940 * that are not configured with an ingress qdisc will bail
d2788d34 3941 * out here.
c9e99fd0 3942 */
d2788d34 3943 if (!cl)
4577139b 3944 return skb;
f697c3e8
HX
3945 if (*pt_prev) {
3946 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3947 *pt_prev = NULL;
1da177e4
LT
3948 }
3949
3365495c 3950 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3951 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3952 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3953
3b3ae880 3954 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3955 case TC_ACT_OK:
3956 case TC_ACT_RECLASSIFY:
3957 skb->tc_index = TC_H_MIN(cl_res.classid);
3958 break;
3959 case TC_ACT_SHOT:
24ea591d 3960 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3961 case TC_ACT_STOLEN:
3962 case TC_ACT_QUEUED:
3963 kfree_skb(skb);
3964 return NULL;
27b29f63
AS
3965 case TC_ACT_REDIRECT:
3966 /* skb_mac_header check was done by cls/act_bpf, so
3967 * we can safely push the L2 header back before
3968 * redirecting to another netdev
3969 */
3970 __skb_push(skb, skb->mac_len);
3971 skb_do_redirect(skb);
3972 return NULL;
d2788d34
DB
3973 default:
3974 break;
f697c3e8 3975 }
e7582bab 3976#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3977 return skb;
3978}
1da177e4 3979
ab95bfe0
JP
3980/**
3981 * netdev_rx_handler_register - register receive handler
3982 * @dev: device to register a handler for
3983 * @rx_handler: receive handler to register
93e2c32b 3984 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3985 *
e227867f 3986 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3987 * called from __netif_receive_skb. A negative errno code is returned
3988 * on a failure.
3989 *
3990 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3991 *
3992 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3993 */
3994int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3995 rx_handler_func_t *rx_handler,
3996 void *rx_handler_data)
ab95bfe0
JP
3997{
3998 ASSERT_RTNL();
3999
4000 if (dev->rx_handler)
4001 return -EBUSY;
4002
00cfec37 4003 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4004 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4005 rcu_assign_pointer(dev->rx_handler, rx_handler);
4006
4007 return 0;
4008}
4009EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4010
4011/**
4012 * netdev_rx_handler_unregister - unregister receive handler
4013 * @dev: device to unregister a handler from
4014 *
166ec369 4015 * Unregister a receive handler from a device.
ab95bfe0
JP
4016 *
4017 * The caller must hold the rtnl_mutex.
4018 */
4019void netdev_rx_handler_unregister(struct net_device *dev)
4020{
4021
4022 ASSERT_RTNL();
a9b3cd7f 4023 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4024 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4025 * section has a guarantee to see a non NULL rx_handler_data
4026 * as well.
4027 */
4028 synchronize_net();
a9b3cd7f 4029 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4030}
4031EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4032
b4b9e355
MG
4033/*
4034 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4035 * the special handling of PFMEMALLOC skbs.
4036 */
4037static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4038{
4039 switch (skb->protocol) {
2b8837ae
JP
4040 case htons(ETH_P_ARP):
4041 case htons(ETH_P_IP):
4042 case htons(ETH_P_IPV6):
4043 case htons(ETH_P_8021Q):
4044 case htons(ETH_P_8021AD):
b4b9e355
MG
4045 return true;
4046 default:
4047 return false;
4048 }
4049}
4050
e687ad60
PN
4051static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4052 int *ret, struct net_device *orig_dev)
4053{
e7582bab 4054#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4055 if (nf_hook_ingress_active(skb)) {
4056 if (*pt_prev) {
4057 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4058 *pt_prev = NULL;
4059 }
4060
4061 return nf_hook_ingress(skb);
4062 }
e7582bab 4063#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4064 return 0;
4065}
e687ad60 4066
9754e293 4067static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4068{
4069 struct packet_type *ptype, *pt_prev;
ab95bfe0 4070 rx_handler_func_t *rx_handler;
f2ccd8fa 4071 struct net_device *orig_dev;
8a4eb573 4072 bool deliver_exact = false;
1da177e4 4073 int ret = NET_RX_DROP;
252e3346 4074 __be16 type;
1da177e4 4075
588f0330 4076 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4077
cf66ba58 4078 trace_netif_receive_skb(skb);
9b22ea56 4079
cc9bd5ce 4080 orig_dev = skb->dev;
8f903c70 4081
c1d2bbe1 4082 skb_reset_network_header(skb);
fda55eca
ED
4083 if (!skb_transport_header_was_set(skb))
4084 skb_reset_transport_header(skb);
0b5c9db1 4085 skb_reset_mac_len(skb);
1da177e4
LT
4086
4087 pt_prev = NULL;
4088
63d8ea7f 4089another_round:
b6858177 4090 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4091
4092 __this_cpu_inc(softnet_data.processed);
4093
8ad227ff
PM
4094 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4095 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4096 skb = skb_vlan_untag(skb);
bcc6d479 4097 if (unlikely(!skb))
2c17d27c 4098 goto out;
bcc6d479
JP
4099 }
4100
1da177e4
LT
4101#ifdef CONFIG_NET_CLS_ACT
4102 if (skb->tc_verd & TC_NCLS) {
4103 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4104 goto ncls;
4105 }
4106#endif
4107
9754e293 4108 if (pfmemalloc)
b4b9e355
MG
4109 goto skip_taps;
4110
1da177e4 4111 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4112 if (pt_prev)
4113 ret = deliver_skb(skb, pt_prev, orig_dev);
4114 pt_prev = ptype;
4115 }
4116
4117 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4118 if (pt_prev)
4119 ret = deliver_skb(skb, pt_prev, orig_dev);
4120 pt_prev = ptype;
1da177e4
LT
4121 }
4122
b4b9e355 4123skip_taps:
1cf51900 4124#ifdef CONFIG_NET_INGRESS
4577139b 4125 if (static_key_false(&ingress_needed)) {
1f211a1b 4126 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4127 if (!skb)
2c17d27c 4128 goto out;
e687ad60
PN
4129
4130 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4131 goto out;
4577139b 4132 }
1cf51900
PN
4133#endif
4134#ifdef CONFIG_NET_CLS_ACT
4577139b 4135 skb->tc_verd = 0;
1da177e4
LT
4136ncls:
4137#endif
9754e293 4138 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4139 goto drop;
4140
df8a39de 4141 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4142 if (pt_prev) {
4143 ret = deliver_skb(skb, pt_prev, orig_dev);
4144 pt_prev = NULL;
4145 }
48cc32d3 4146 if (vlan_do_receive(&skb))
2425717b
JF
4147 goto another_round;
4148 else if (unlikely(!skb))
2c17d27c 4149 goto out;
2425717b
JF
4150 }
4151
48cc32d3 4152 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4153 if (rx_handler) {
4154 if (pt_prev) {
4155 ret = deliver_skb(skb, pt_prev, orig_dev);
4156 pt_prev = NULL;
4157 }
8a4eb573
JP
4158 switch (rx_handler(&skb)) {
4159 case RX_HANDLER_CONSUMED:
3bc1b1ad 4160 ret = NET_RX_SUCCESS;
2c17d27c 4161 goto out;
8a4eb573 4162 case RX_HANDLER_ANOTHER:
63d8ea7f 4163 goto another_round;
8a4eb573
JP
4164 case RX_HANDLER_EXACT:
4165 deliver_exact = true;
4166 case RX_HANDLER_PASS:
4167 break;
4168 default:
4169 BUG();
4170 }
ab95bfe0 4171 }
1da177e4 4172
df8a39de
JP
4173 if (unlikely(skb_vlan_tag_present(skb))) {
4174 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4175 skb->pkt_type = PACKET_OTHERHOST;
4176 /* Note: we might in the future use prio bits
4177 * and set skb->priority like in vlan_do_receive()
4178 * For the time being, just ignore Priority Code Point
4179 */
4180 skb->vlan_tci = 0;
4181 }
48cc32d3 4182
7866a621
SN
4183 type = skb->protocol;
4184
63d8ea7f 4185 /* deliver only exact match when indicated */
7866a621
SN
4186 if (likely(!deliver_exact)) {
4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 &ptype_base[ntohs(type) &
4189 PTYPE_HASH_MASK]);
4190 }
1f3c8804 4191
7866a621
SN
4192 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4193 &orig_dev->ptype_specific);
4194
4195 if (unlikely(skb->dev != orig_dev)) {
4196 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4197 &skb->dev->ptype_specific);
1da177e4
LT
4198 }
4199
4200 if (pt_prev) {
1080e512 4201 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4202 goto drop;
1080e512
MT
4203 else
4204 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4205 } else {
b4b9e355 4206drop:
6e7333d3
JW
4207 if (!deliver_exact)
4208 atomic_long_inc(&skb->dev->rx_dropped);
4209 else
4210 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4211 kfree_skb(skb);
4212 /* Jamal, now you will not able to escape explaining
4213 * me how you were going to use this. :-)
4214 */
4215 ret = NET_RX_DROP;
4216 }
4217
2c17d27c 4218out:
9754e293
DM
4219 return ret;
4220}
4221
4222static int __netif_receive_skb(struct sk_buff *skb)
4223{
4224 int ret;
4225
4226 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4227 unsigned long pflags = current->flags;
4228
4229 /*
4230 * PFMEMALLOC skbs are special, they should
4231 * - be delivered to SOCK_MEMALLOC sockets only
4232 * - stay away from userspace
4233 * - have bounded memory usage
4234 *
4235 * Use PF_MEMALLOC as this saves us from propagating the allocation
4236 * context down to all allocation sites.
4237 */
4238 current->flags |= PF_MEMALLOC;
4239 ret = __netif_receive_skb_core(skb, true);
4240 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4241 } else
4242 ret = __netif_receive_skb_core(skb, false);
4243
1da177e4
LT
4244 return ret;
4245}
0a9627f2 4246
ae78dbfa 4247static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4248{
2c17d27c
JA
4249 int ret;
4250
588f0330 4251 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4252
c1f19b51
RC
4253 if (skb_defer_rx_timestamp(skb))
4254 return NET_RX_SUCCESS;
4255
2c17d27c
JA
4256 rcu_read_lock();
4257
df334545 4258#ifdef CONFIG_RPS
c5905afb 4259 if (static_key_false(&rps_needed)) {
3b098e2d 4260 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4261 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4262
3b098e2d
ED
4263 if (cpu >= 0) {
4264 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4265 rcu_read_unlock();
adc9300e 4266 return ret;
3b098e2d 4267 }
fec5e652 4268 }
1e94d72f 4269#endif
2c17d27c
JA
4270 ret = __netif_receive_skb(skb);
4271 rcu_read_unlock();
4272 return ret;
0a9627f2 4273}
ae78dbfa
BH
4274
4275/**
4276 * netif_receive_skb - process receive buffer from network
4277 * @skb: buffer to process
4278 *
4279 * netif_receive_skb() is the main receive data processing function.
4280 * It always succeeds. The buffer may be dropped during processing
4281 * for congestion control or by the protocol layers.
4282 *
4283 * This function may only be called from softirq context and interrupts
4284 * should be enabled.
4285 *
4286 * Return values (usually ignored):
4287 * NET_RX_SUCCESS: no congestion
4288 * NET_RX_DROP: packet was dropped
4289 */
04eb4489 4290int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4291{
4292 trace_netif_receive_skb_entry(skb);
4293
4294 return netif_receive_skb_internal(skb);
4295}
04eb4489 4296EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4297
88751275
ED
4298/* Network device is going away, flush any packets still pending
4299 * Called with irqs disabled.
4300 */
152102c7 4301static void flush_backlog(void *arg)
6e583ce5 4302{
152102c7 4303 struct net_device *dev = arg;
903ceff7 4304 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4305 struct sk_buff *skb, *tmp;
4306
e36fa2f7 4307 rps_lock(sd);
6e7676c1 4308 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4309 if (skb->dev == dev) {
e36fa2f7 4310 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4311 kfree_skb(skb);
76cc8b13 4312 input_queue_head_incr(sd);
6e583ce5 4313 }
6e7676c1 4314 }
e36fa2f7 4315 rps_unlock(sd);
6e7676c1
CG
4316
4317 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4318 if (skb->dev == dev) {
4319 __skb_unlink(skb, &sd->process_queue);
4320 kfree_skb(skb);
76cc8b13 4321 input_queue_head_incr(sd);
6e7676c1
CG
4322 }
4323 }
6e583ce5
SH
4324}
4325
d565b0a1
HX
4326static int napi_gro_complete(struct sk_buff *skb)
4327{
22061d80 4328 struct packet_offload *ptype;
d565b0a1 4329 __be16 type = skb->protocol;
22061d80 4330 struct list_head *head = &offload_base;
d565b0a1
HX
4331 int err = -ENOENT;
4332
c3c7c254
ED
4333 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4334
fc59f9a3
HX
4335 if (NAPI_GRO_CB(skb)->count == 1) {
4336 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4337 goto out;
fc59f9a3 4338 }
d565b0a1
HX
4339
4340 rcu_read_lock();
4341 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4342 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4343 continue;
4344
299603e8 4345 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4346 break;
4347 }
4348 rcu_read_unlock();
4349
4350 if (err) {
4351 WARN_ON(&ptype->list == head);
4352 kfree_skb(skb);
4353 return NET_RX_SUCCESS;
4354 }
4355
4356out:
ae78dbfa 4357 return netif_receive_skb_internal(skb);
d565b0a1
HX
4358}
4359
2e71a6f8
ED
4360/* napi->gro_list contains packets ordered by age.
4361 * youngest packets at the head of it.
4362 * Complete skbs in reverse order to reduce latencies.
4363 */
4364void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4365{
2e71a6f8 4366 struct sk_buff *skb, *prev = NULL;
d565b0a1 4367
2e71a6f8
ED
4368 /* scan list and build reverse chain */
4369 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4370 skb->prev = prev;
4371 prev = skb;
4372 }
4373
4374 for (skb = prev; skb; skb = prev) {
d565b0a1 4375 skb->next = NULL;
2e71a6f8
ED
4376
4377 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4378 return;
4379
4380 prev = skb->prev;
d565b0a1 4381 napi_gro_complete(skb);
2e71a6f8 4382 napi->gro_count--;
d565b0a1
HX
4383 }
4384
4385 napi->gro_list = NULL;
4386}
86cac58b 4387EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4388
89c5fa33
ED
4389static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4390{
4391 struct sk_buff *p;
4392 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4393 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4394
4395 for (p = napi->gro_list; p; p = p->next) {
4396 unsigned long diffs;
4397
0b4cec8c
TH
4398 NAPI_GRO_CB(p)->flush = 0;
4399
4400 if (hash != skb_get_hash_raw(p)) {
4401 NAPI_GRO_CB(p)->same_flow = 0;
4402 continue;
4403 }
4404
89c5fa33
ED
4405 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4406 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4407 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4408 if (maclen == ETH_HLEN)
4409 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4410 skb_mac_header(skb));
89c5fa33
ED
4411 else if (!diffs)
4412 diffs = memcmp(skb_mac_header(p),
a50e233c 4413 skb_mac_header(skb),
89c5fa33
ED
4414 maclen);
4415 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4416 }
4417}
4418
299603e8
JC
4419static void skb_gro_reset_offset(struct sk_buff *skb)
4420{
4421 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4422 const skb_frag_t *frag0 = &pinfo->frags[0];
4423
4424 NAPI_GRO_CB(skb)->data_offset = 0;
4425 NAPI_GRO_CB(skb)->frag0 = NULL;
4426 NAPI_GRO_CB(skb)->frag0_len = 0;
4427
4428 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4429 pinfo->nr_frags &&
4430 !PageHighMem(skb_frag_page(frag0))) {
4431 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4432 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4433 }
4434}
4435
a50e233c
ED
4436static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4437{
4438 struct skb_shared_info *pinfo = skb_shinfo(skb);
4439
4440 BUG_ON(skb->end - skb->tail < grow);
4441
4442 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4443
4444 skb->data_len -= grow;
4445 skb->tail += grow;
4446
4447 pinfo->frags[0].page_offset += grow;
4448 skb_frag_size_sub(&pinfo->frags[0], grow);
4449
4450 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4451 skb_frag_unref(skb, 0);
4452 memmove(pinfo->frags, pinfo->frags + 1,
4453 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4454 }
4455}
4456
bb728820 4457static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4458{
4459 struct sk_buff **pp = NULL;
22061d80 4460 struct packet_offload *ptype;
d565b0a1 4461 __be16 type = skb->protocol;
22061d80 4462 struct list_head *head = &offload_base;
0da2afd5 4463 int same_flow;
5b252f0c 4464 enum gro_result ret;
a50e233c 4465 int grow;
d565b0a1 4466
9c62a68d 4467 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4468 goto normal;
4469
5a212329 4470 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4471 goto normal;
4472
89c5fa33
ED
4473 gro_list_prepare(napi, skb);
4474
d565b0a1
HX
4475 rcu_read_lock();
4476 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4477 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4478 continue;
4479
86911732 4480 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4481 skb_reset_mac_len(skb);
d565b0a1
HX
4482 NAPI_GRO_CB(skb)->same_flow = 0;
4483 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4484 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4485 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4486 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4487 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4488 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4489
662880f4
TH
4490 /* Setup for GRO checksum validation */
4491 switch (skb->ip_summed) {
4492 case CHECKSUM_COMPLETE:
4493 NAPI_GRO_CB(skb)->csum = skb->csum;
4494 NAPI_GRO_CB(skb)->csum_valid = 1;
4495 NAPI_GRO_CB(skb)->csum_cnt = 0;
4496 break;
4497 case CHECKSUM_UNNECESSARY:
4498 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4499 NAPI_GRO_CB(skb)->csum_valid = 0;
4500 break;
4501 default:
4502 NAPI_GRO_CB(skb)->csum_cnt = 0;
4503 NAPI_GRO_CB(skb)->csum_valid = 0;
4504 }
d565b0a1 4505
f191a1d1 4506 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4507 break;
4508 }
4509 rcu_read_unlock();
4510
4511 if (&ptype->list == head)
4512 goto normal;
4513
0da2afd5 4514 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4515 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4516
d565b0a1
HX
4517 if (pp) {
4518 struct sk_buff *nskb = *pp;
4519
4520 *pp = nskb->next;
4521 nskb->next = NULL;
4522 napi_gro_complete(nskb);
4ae5544f 4523 napi->gro_count--;
d565b0a1
HX
4524 }
4525
0da2afd5 4526 if (same_flow)
d565b0a1
HX
4527 goto ok;
4528
600adc18 4529 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4530 goto normal;
d565b0a1 4531
600adc18
ED
4532 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4533 struct sk_buff *nskb = napi->gro_list;
4534
4535 /* locate the end of the list to select the 'oldest' flow */
4536 while (nskb->next) {
4537 pp = &nskb->next;
4538 nskb = *pp;
4539 }
4540 *pp = NULL;
4541 nskb->next = NULL;
4542 napi_gro_complete(nskb);
4543 } else {
4544 napi->gro_count++;
4545 }
d565b0a1 4546 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4547 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4548 NAPI_GRO_CB(skb)->last = skb;
86911732 4549 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4550 skb->next = napi->gro_list;
4551 napi->gro_list = skb;
5d0d9be8 4552 ret = GRO_HELD;
d565b0a1 4553
ad0f9904 4554pull:
a50e233c
ED
4555 grow = skb_gro_offset(skb) - skb_headlen(skb);
4556 if (grow > 0)
4557 gro_pull_from_frag0(skb, grow);
d565b0a1 4558ok:
5d0d9be8 4559 return ret;
d565b0a1
HX
4560
4561normal:
ad0f9904
HX
4562 ret = GRO_NORMAL;
4563 goto pull;
5d38a079 4564}
96e93eab 4565
bf5a755f
JC
4566struct packet_offload *gro_find_receive_by_type(__be16 type)
4567{
4568 struct list_head *offload_head = &offload_base;
4569 struct packet_offload *ptype;
4570
4571 list_for_each_entry_rcu(ptype, offload_head, list) {
4572 if (ptype->type != type || !ptype->callbacks.gro_receive)
4573 continue;
4574 return ptype;
4575 }
4576 return NULL;
4577}
e27a2f83 4578EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4579
4580struct packet_offload *gro_find_complete_by_type(__be16 type)
4581{
4582 struct list_head *offload_head = &offload_base;
4583 struct packet_offload *ptype;
4584
4585 list_for_each_entry_rcu(ptype, offload_head, list) {
4586 if (ptype->type != type || !ptype->callbacks.gro_complete)
4587 continue;
4588 return ptype;
4589 }
4590 return NULL;
4591}
e27a2f83 4592EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4593
bb728820 4594static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4595{
5d0d9be8
HX
4596 switch (ret) {
4597 case GRO_NORMAL:
ae78dbfa 4598 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4599 ret = GRO_DROP;
4600 break;
5d38a079 4601
5d0d9be8 4602 case GRO_DROP:
5d38a079
HX
4603 kfree_skb(skb);
4604 break;
5b252f0c 4605
daa86548 4606 case GRO_MERGED_FREE:
ce87fc6c
JG
4607 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4608 skb_dst_drop(skb);
d7e8883c 4609 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4610 } else {
d7e8883c 4611 __kfree_skb(skb);
ce87fc6c 4612 }
daa86548
ED
4613 break;
4614
5b252f0c
BH
4615 case GRO_HELD:
4616 case GRO_MERGED:
4617 break;
5d38a079
HX
4618 }
4619
c7c4b3b6 4620 return ret;
5d0d9be8 4621}
5d0d9be8 4622
c7c4b3b6 4623gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4624{
93f93a44 4625 skb_mark_napi_id(skb, napi);
ae78dbfa 4626 trace_napi_gro_receive_entry(skb);
86911732 4627
a50e233c
ED
4628 skb_gro_reset_offset(skb);
4629
89c5fa33 4630 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4631}
4632EXPORT_SYMBOL(napi_gro_receive);
4633
d0c2b0d2 4634static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4635{
93a35f59
ED
4636 if (unlikely(skb->pfmemalloc)) {
4637 consume_skb(skb);
4638 return;
4639 }
96e93eab 4640 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4641 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4642 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4643 skb->vlan_tci = 0;
66c46d74 4644 skb->dev = napi->dev;
6d152e23 4645 skb->skb_iif = 0;
c3caf119
JC
4646 skb->encapsulation = 0;
4647 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4648 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4649
4650 napi->skb = skb;
4651}
96e93eab 4652
76620aaf 4653struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4654{
5d38a079 4655 struct sk_buff *skb = napi->skb;
5d38a079
HX
4656
4657 if (!skb) {
fd11a83d 4658 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4659 if (skb) {
4660 napi->skb = skb;
4661 skb_mark_napi_id(skb, napi);
4662 }
80595d59 4663 }
96e93eab
HX
4664 return skb;
4665}
76620aaf 4666EXPORT_SYMBOL(napi_get_frags);
96e93eab 4667
a50e233c
ED
4668static gro_result_t napi_frags_finish(struct napi_struct *napi,
4669 struct sk_buff *skb,
4670 gro_result_t ret)
96e93eab 4671{
5d0d9be8
HX
4672 switch (ret) {
4673 case GRO_NORMAL:
a50e233c
ED
4674 case GRO_HELD:
4675 __skb_push(skb, ETH_HLEN);
4676 skb->protocol = eth_type_trans(skb, skb->dev);
4677 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4678 ret = GRO_DROP;
86911732 4679 break;
5d38a079 4680
5d0d9be8 4681 case GRO_DROP:
5d0d9be8
HX
4682 case GRO_MERGED_FREE:
4683 napi_reuse_skb(napi, skb);
4684 break;
5b252f0c
BH
4685
4686 case GRO_MERGED:
4687 break;
5d0d9be8 4688 }
5d38a079 4689
c7c4b3b6 4690 return ret;
5d38a079 4691}
5d0d9be8 4692
a50e233c
ED
4693/* Upper GRO stack assumes network header starts at gro_offset=0
4694 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4695 * We copy ethernet header into skb->data to have a common layout.
4696 */
4adb9c4a 4697static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4698{
4699 struct sk_buff *skb = napi->skb;
a50e233c
ED
4700 const struct ethhdr *eth;
4701 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4702
4703 napi->skb = NULL;
4704
a50e233c
ED
4705 skb_reset_mac_header(skb);
4706 skb_gro_reset_offset(skb);
4707
4708 eth = skb_gro_header_fast(skb, 0);
4709 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4710 eth = skb_gro_header_slow(skb, hlen, 0);
4711 if (unlikely(!eth)) {
4da46ceb
AC
4712 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4713 __func__, napi->dev->name);
a50e233c
ED
4714 napi_reuse_skb(napi, skb);
4715 return NULL;
4716 }
4717 } else {
4718 gro_pull_from_frag0(skb, hlen);
4719 NAPI_GRO_CB(skb)->frag0 += hlen;
4720 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4721 }
a50e233c
ED
4722 __skb_pull(skb, hlen);
4723
4724 /*
4725 * This works because the only protocols we care about don't require
4726 * special handling.
4727 * We'll fix it up properly in napi_frags_finish()
4728 */
4729 skb->protocol = eth->h_proto;
76620aaf 4730
76620aaf
HX
4731 return skb;
4732}
76620aaf 4733
c7c4b3b6 4734gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4735{
76620aaf 4736 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4737
4738 if (!skb)
c7c4b3b6 4739 return GRO_DROP;
5d0d9be8 4740
ae78dbfa
BH
4741 trace_napi_gro_frags_entry(skb);
4742
89c5fa33 4743 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4744}
5d38a079
HX
4745EXPORT_SYMBOL(napi_gro_frags);
4746
573e8fca
TH
4747/* Compute the checksum from gro_offset and return the folded value
4748 * after adding in any pseudo checksum.
4749 */
4750__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4751{
4752 __wsum wsum;
4753 __sum16 sum;
4754
4755 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4756
4757 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4758 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4759 if (likely(!sum)) {
4760 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4761 !skb->csum_complete_sw)
4762 netdev_rx_csum_fault(skb->dev);
4763 }
4764
4765 NAPI_GRO_CB(skb)->csum = wsum;
4766 NAPI_GRO_CB(skb)->csum_valid = 1;
4767
4768 return sum;
4769}
4770EXPORT_SYMBOL(__skb_gro_checksum_complete);
4771
e326bed2 4772/*
855abcf0 4773 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4774 * Note: called with local irq disabled, but exits with local irq enabled.
4775 */
4776static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4777{
4778#ifdef CONFIG_RPS
4779 struct softnet_data *remsd = sd->rps_ipi_list;
4780
4781 if (remsd) {
4782 sd->rps_ipi_list = NULL;
4783
4784 local_irq_enable();
4785
4786 /* Send pending IPI's to kick RPS processing on remote cpus. */
4787 while (remsd) {
4788 struct softnet_data *next = remsd->rps_ipi_next;
4789
4790 if (cpu_online(remsd->cpu))
c46fff2a 4791 smp_call_function_single_async(remsd->cpu,
fce8ad15 4792 &remsd->csd);
e326bed2
ED
4793 remsd = next;
4794 }
4795 } else
4796#endif
4797 local_irq_enable();
4798}
4799
d75b1ade
ED
4800static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4801{
4802#ifdef CONFIG_RPS
4803 return sd->rps_ipi_list != NULL;
4804#else
4805 return false;
4806#endif
4807}
4808
bea3348e 4809static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4810{
4811 int work = 0;
eecfd7c4 4812 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4813
e326bed2
ED
4814 /* Check if we have pending ipi, its better to send them now,
4815 * not waiting net_rx_action() end.
4816 */
d75b1ade 4817 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4818 local_irq_disable();
4819 net_rps_action_and_irq_enable(sd);
4820 }
d75b1ade 4821
bea3348e 4822 napi->weight = weight_p;
6e7676c1 4823 local_irq_disable();
11ef7a89 4824 while (1) {
1da177e4 4825 struct sk_buff *skb;
6e7676c1
CG
4826
4827 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4828 rcu_read_lock();
6e7676c1
CG
4829 local_irq_enable();
4830 __netif_receive_skb(skb);
2c17d27c 4831 rcu_read_unlock();
6e7676c1 4832 local_irq_disable();
76cc8b13
TH
4833 input_queue_head_incr(sd);
4834 if (++work >= quota) {
4835 local_irq_enable();
4836 return work;
4837 }
6e7676c1 4838 }
1da177e4 4839
e36fa2f7 4840 rps_lock(sd);
11ef7a89 4841 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4842 /*
4843 * Inline a custom version of __napi_complete().
4844 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4845 * and NAPI_STATE_SCHED is the only possible flag set
4846 * on backlog.
4847 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4848 * and we dont need an smp_mb() memory barrier.
4849 */
eecfd7c4 4850 napi->state = 0;
11ef7a89 4851 rps_unlock(sd);
eecfd7c4 4852
11ef7a89 4853 break;
bea3348e 4854 }
11ef7a89
TH
4855
4856 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4857 &sd->process_queue);
e36fa2f7 4858 rps_unlock(sd);
6e7676c1
CG
4859 }
4860 local_irq_enable();
1da177e4 4861
bea3348e
SH
4862 return work;
4863}
1da177e4 4864
bea3348e
SH
4865/**
4866 * __napi_schedule - schedule for receive
c4ea43c5 4867 * @n: entry to schedule
bea3348e 4868 *
bc9ad166
ED
4869 * The entry's receive function will be scheduled to run.
4870 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4871 */
b5606c2d 4872void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4873{
4874 unsigned long flags;
1da177e4 4875
bea3348e 4876 local_irq_save(flags);
903ceff7 4877 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4878 local_irq_restore(flags);
1da177e4 4879}
bea3348e
SH
4880EXPORT_SYMBOL(__napi_schedule);
4881
bc9ad166
ED
4882/**
4883 * __napi_schedule_irqoff - schedule for receive
4884 * @n: entry to schedule
4885 *
4886 * Variant of __napi_schedule() assuming hard irqs are masked
4887 */
4888void __napi_schedule_irqoff(struct napi_struct *n)
4889{
4890 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4891}
4892EXPORT_SYMBOL(__napi_schedule_irqoff);
4893
d565b0a1
HX
4894void __napi_complete(struct napi_struct *n)
4895{
4896 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4897
d75b1ade 4898 list_del_init(&n->poll_list);
4e857c58 4899 smp_mb__before_atomic();
d565b0a1
HX
4900 clear_bit(NAPI_STATE_SCHED, &n->state);
4901}
4902EXPORT_SYMBOL(__napi_complete);
4903
3b47d303 4904void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4905{
4906 unsigned long flags;
4907
4908 /*
4909 * don't let napi dequeue from the cpu poll list
4910 * just in case its running on a different cpu
4911 */
4912 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4913 return;
4914
3b47d303
ED
4915 if (n->gro_list) {
4916 unsigned long timeout = 0;
d75b1ade 4917
3b47d303
ED
4918 if (work_done)
4919 timeout = n->dev->gro_flush_timeout;
4920
4921 if (timeout)
4922 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4923 HRTIMER_MODE_REL_PINNED);
4924 else
4925 napi_gro_flush(n, false);
4926 }
d75b1ade
ED
4927 if (likely(list_empty(&n->poll_list))) {
4928 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4929 } else {
4930 /* If n->poll_list is not empty, we need to mask irqs */
4931 local_irq_save(flags);
4932 __napi_complete(n);
4933 local_irq_restore(flags);
4934 }
d565b0a1 4935}
3b47d303 4936EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4937
af12fa6e 4938/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4939static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4940{
4941 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4942 struct napi_struct *napi;
4943
4944 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4945 if (napi->napi_id == napi_id)
4946 return napi;
4947
4948 return NULL;
4949}
02d62e86
ED
4950
4951#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4952#define BUSY_POLL_BUDGET 8
02d62e86
ED
4953bool sk_busy_loop(struct sock *sk, int nonblock)
4954{
4955 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4956 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4957 struct napi_struct *napi;
4958 int rc = false;
4959
2a028ecb 4960 rcu_read_lock();
02d62e86
ED
4961
4962 napi = napi_by_id(sk->sk_napi_id);
4963 if (!napi)
4964 goto out;
4965
ce6aea93
ED
4966 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4967 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4968
4969 do {
ce6aea93 4970 rc = 0;
2a028ecb 4971 local_bh_disable();
ce6aea93
ED
4972 if (busy_poll) {
4973 rc = busy_poll(napi);
4974 } else if (napi_schedule_prep(napi)) {
4975 void *have = netpoll_poll_lock(napi);
4976
4977 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4978 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4979 trace_napi_poll(napi);
4980 if (rc == BUSY_POLL_BUDGET) {
4981 napi_complete_done(napi, rc);
4982 napi_schedule(napi);
4983 }
4984 }
4985 netpoll_poll_unlock(have);
4986 }
2a028ecb
ED
4987 if (rc > 0)
4988 NET_ADD_STATS_BH(sock_net(sk),
4989 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4990 local_bh_enable();
02d62e86
ED
4991
4992 if (rc == LL_FLUSH_FAILED)
4993 break; /* permanent failure */
4994
02d62e86 4995 cpu_relax();
02d62e86
ED
4996 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4997 !need_resched() && !busy_loop_timeout(end_time));
4998
4999 rc = !skb_queue_empty(&sk->sk_receive_queue);
5000out:
2a028ecb 5001 rcu_read_unlock();
02d62e86
ED
5002 return rc;
5003}
5004EXPORT_SYMBOL(sk_busy_loop);
5005
5006#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5007
5008void napi_hash_add(struct napi_struct *napi)
5009{
d64b5e85
ED
5010 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5011 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5012 return;
af12fa6e 5013
52bd2d62 5014 spin_lock(&napi_hash_lock);
af12fa6e 5015
52bd2d62
ED
5016 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5017 do {
5018 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5019 napi_gen_id = NR_CPUS + 1;
5020 } while (napi_by_id(napi_gen_id));
5021 napi->napi_id = napi_gen_id;
af12fa6e 5022
52bd2d62
ED
5023 hlist_add_head_rcu(&napi->napi_hash_node,
5024 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5025
52bd2d62 5026 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5027}
5028EXPORT_SYMBOL_GPL(napi_hash_add);
5029
5030/* Warning : caller is responsible to make sure rcu grace period
5031 * is respected before freeing memory containing @napi
5032 */
34cbe27e 5033bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5034{
34cbe27e
ED
5035 bool rcu_sync_needed = false;
5036
af12fa6e
ET
5037 spin_lock(&napi_hash_lock);
5038
34cbe27e
ED
5039 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5040 rcu_sync_needed = true;
af12fa6e 5041 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5042 }
af12fa6e 5043 spin_unlock(&napi_hash_lock);
34cbe27e 5044 return rcu_sync_needed;
af12fa6e
ET
5045}
5046EXPORT_SYMBOL_GPL(napi_hash_del);
5047
3b47d303
ED
5048static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5049{
5050 struct napi_struct *napi;
5051
5052 napi = container_of(timer, struct napi_struct, timer);
5053 if (napi->gro_list)
5054 napi_schedule(napi);
5055
5056 return HRTIMER_NORESTART;
5057}
5058
d565b0a1
HX
5059void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5060 int (*poll)(struct napi_struct *, int), int weight)
5061{
5062 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5063 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5064 napi->timer.function = napi_watchdog;
4ae5544f 5065 napi->gro_count = 0;
d565b0a1 5066 napi->gro_list = NULL;
5d38a079 5067 napi->skb = NULL;
d565b0a1 5068 napi->poll = poll;
82dc3c63
ED
5069 if (weight > NAPI_POLL_WEIGHT)
5070 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5071 weight, dev->name);
d565b0a1
HX
5072 napi->weight = weight;
5073 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5074 napi->dev = dev;
5d38a079 5075#ifdef CONFIG_NETPOLL
d565b0a1
HX
5076 spin_lock_init(&napi->poll_lock);
5077 napi->poll_owner = -1;
5078#endif
5079 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5080 napi_hash_add(napi);
d565b0a1
HX
5081}
5082EXPORT_SYMBOL(netif_napi_add);
5083
3b47d303
ED
5084void napi_disable(struct napi_struct *n)
5085{
5086 might_sleep();
5087 set_bit(NAPI_STATE_DISABLE, &n->state);
5088
5089 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5090 msleep(1);
2d8bff12
NH
5091 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5092 msleep(1);
3b47d303
ED
5093
5094 hrtimer_cancel(&n->timer);
5095
5096 clear_bit(NAPI_STATE_DISABLE, &n->state);
5097}
5098EXPORT_SYMBOL(napi_disable);
5099
93d05d4a 5100/* Must be called in process context */
d565b0a1
HX
5101void netif_napi_del(struct napi_struct *napi)
5102{
93d05d4a
ED
5103 might_sleep();
5104 if (napi_hash_del(napi))
5105 synchronize_net();
d7b06636 5106 list_del_init(&napi->dev_list);
76620aaf 5107 napi_free_frags(napi);
d565b0a1 5108
289dccbe 5109 kfree_skb_list(napi->gro_list);
d565b0a1 5110 napi->gro_list = NULL;
4ae5544f 5111 napi->gro_count = 0;
d565b0a1
HX
5112}
5113EXPORT_SYMBOL(netif_napi_del);
5114
726ce70e
HX
5115static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5116{
5117 void *have;
5118 int work, weight;
5119
5120 list_del_init(&n->poll_list);
5121
5122 have = netpoll_poll_lock(n);
5123
5124 weight = n->weight;
5125
5126 /* This NAPI_STATE_SCHED test is for avoiding a race
5127 * with netpoll's poll_napi(). Only the entity which
5128 * obtains the lock and sees NAPI_STATE_SCHED set will
5129 * actually make the ->poll() call. Therefore we avoid
5130 * accidentally calling ->poll() when NAPI is not scheduled.
5131 */
5132 work = 0;
5133 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5134 work = n->poll(n, weight);
5135 trace_napi_poll(n);
5136 }
5137
5138 WARN_ON_ONCE(work > weight);
5139
5140 if (likely(work < weight))
5141 goto out_unlock;
5142
5143 /* Drivers must not modify the NAPI state if they
5144 * consume the entire weight. In such cases this code
5145 * still "owns" the NAPI instance and therefore can
5146 * move the instance around on the list at-will.
5147 */
5148 if (unlikely(napi_disable_pending(n))) {
5149 napi_complete(n);
5150 goto out_unlock;
5151 }
5152
5153 if (n->gro_list) {
5154 /* flush too old packets
5155 * If HZ < 1000, flush all packets.
5156 */
5157 napi_gro_flush(n, HZ >= 1000);
5158 }
5159
001ce546
HX
5160 /* Some drivers may have called napi_schedule
5161 * prior to exhausting their budget.
5162 */
5163 if (unlikely(!list_empty(&n->poll_list))) {
5164 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5165 n->dev ? n->dev->name : "backlog");
5166 goto out_unlock;
5167 }
5168
726ce70e
HX
5169 list_add_tail(&n->poll_list, repoll);
5170
5171out_unlock:
5172 netpoll_poll_unlock(have);
5173
5174 return work;
5175}
5176
1da177e4
LT
5177static void net_rx_action(struct softirq_action *h)
5178{
903ceff7 5179 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5180 unsigned long time_limit = jiffies + 2;
51b0bded 5181 int budget = netdev_budget;
d75b1ade
ED
5182 LIST_HEAD(list);
5183 LIST_HEAD(repoll);
53fb95d3 5184
1da177e4 5185 local_irq_disable();
d75b1ade
ED
5186 list_splice_init(&sd->poll_list, &list);
5187 local_irq_enable();
1da177e4 5188
ceb8d5bf 5189 for (;;) {
bea3348e 5190 struct napi_struct *n;
1da177e4 5191
ceb8d5bf
HX
5192 if (list_empty(&list)) {
5193 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5194 return;
5195 break;
5196 }
5197
6bd373eb
HX
5198 n = list_first_entry(&list, struct napi_struct, poll_list);
5199 budget -= napi_poll(n, &repoll);
5200
d75b1ade 5201 /* If softirq window is exhausted then punt.
24f8b238
SH
5202 * Allow this to run for 2 jiffies since which will allow
5203 * an average latency of 1.5/HZ.
bea3348e 5204 */
ceb8d5bf
HX
5205 if (unlikely(budget <= 0 ||
5206 time_after_eq(jiffies, time_limit))) {
5207 sd->time_squeeze++;
5208 break;
5209 }
1da177e4 5210 }
d75b1ade 5211
795bb1c0 5212 __kfree_skb_flush();
d75b1ade
ED
5213 local_irq_disable();
5214
5215 list_splice_tail_init(&sd->poll_list, &list);
5216 list_splice_tail(&repoll, &list);
5217 list_splice(&list, &sd->poll_list);
5218 if (!list_empty(&sd->poll_list))
5219 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5220
e326bed2 5221 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5222}
5223
aa9d8560 5224struct netdev_adjacent {
9ff162a8 5225 struct net_device *dev;
5d261913
VF
5226
5227 /* upper master flag, there can only be one master device per list */
9ff162a8 5228 bool master;
5d261913 5229
5d261913
VF
5230 /* counter for the number of times this device was added to us */
5231 u16 ref_nr;
5232
402dae96
VF
5233 /* private field for the users */
5234 void *private;
5235
9ff162a8
JP
5236 struct list_head list;
5237 struct rcu_head rcu;
9ff162a8
JP
5238};
5239
6ea29da1 5240static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5241 struct list_head *adj_list)
9ff162a8 5242{
5d261913 5243 struct netdev_adjacent *adj;
5d261913 5244
2f268f12 5245 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5246 if (adj->dev == adj_dev)
5247 return adj;
9ff162a8
JP
5248 }
5249 return NULL;
5250}
5251
5252/**
5253 * netdev_has_upper_dev - Check if device is linked to an upper device
5254 * @dev: device
5255 * @upper_dev: upper device to check
5256 *
5257 * Find out if a device is linked to specified upper device and return true
5258 * in case it is. Note that this checks only immediate upper device,
5259 * not through a complete stack of devices. The caller must hold the RTNL lock.
5260 */
5261bool netdev_has_upper_dev(struct net_device *dev,
5262 struct net_device *upper_dev)
5263{
5264 ASSERT_RTNL();
5265
6ea29da1 5266 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5267}
5268EXPORT_SYMBOL(netdev_has_upper_dev);
5269
5270/**
5271 * netdev_has_any_upper_dev - Check if device is linked to some device
5272 * @dev: device
5273 *
5274 * Find out if a device is linked to an upper device and return true in case
5275 * it is. The caller must hold the RTNL lock.
5276 */
1d143d9f 5277static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5278{
5279 ASSERT_RTNL();
5280
2f268f12 5281 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5282}
9ff162a8
JP
5283
5284/**
5285 * netdev_master_upper_dev_get - Get master upper device
5286 * @dev: device
5287 *
5288 * Find a master upper device and return pointer to it or NULL in case
5289 * it's not there. The caller must hold the RTNL lock.
5290 */
5291struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5292{
aa9d8560 5293 struct netdev_adjacent *upper;
9ff162a8
JP
5294
5295 ASSERT_RTNL();
5296
2f268f12 5297 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5298 return NULL;
5299
2f268f12 5300 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5301 struct netdev_adjacent, list);
9ff162a8
JP
5302 if (likely(upper->master))
5303 return upper->dev;
5304 return NULL;
5305}
5306EXPORT_SYMBOL(netdev_master_upper_dev_get);
5307
b6ccba4c
VF
5308void *netdev_adjacent_get_private(struct list_head *adj_list)
5309{
5310 struct netdev_adjacent *adj;
5311
5312 adj = list_entry(adj_list, struct netdev_adjacent, list);
5313
5314 return adj->private;
5315}
5316EXPORT_SYMBOL(netdev_adjacent_get_private);
5317
44a40855
VY
5318/**
5319 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5320 * @dev: device
5321 * @iter: list_head ** of the current position
5322 *
5323 * Gets the next device from the dev's upper list, starting from iter
5324 * position. The caller must hold RCU read lock.
5325 */
5326struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5327 struct list_head **iter)
5328{
5329 struct netdev_adjacent *upper;
5330
5331 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5332
5333 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5334
5335 if (&upper->list == &dev->adj_list.upper)
5336 return NULL;
5337
5338 *iter = &upper->list;
5339
5340 return upper->dev;
5341}
5342EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5343
31088a11
VF
5344/**
5345 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5346 * @dev: device
5347 * @iter: list_head ** of the current position
5348 *
5349 * Gets the next device from the dev's upper list, starting from iter
5350 * position. The caller must hold RCU read lock.
5351 */
2f268f12
VF
5352struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5353 struct list_head **iter)
48311f46
VF
5354{
5355 struct netdev_adjacent *upper;
5356
85328240 5357 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5358
5359 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360
2f268f12 5361 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5362 return NULL;
5363
5364 *iter = &upper->list;
5365
5366 return upper->dev;
5367}
2f268f12 5368EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5369
31088a11
VF
5370/**
5371 * netdev_lower_get_next_private - Get the next ->private from the
5372 * lower neighbour list
5373 * @dev: device
5374 * @iter: list_head ** of the current position
5375 *
5376 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5377 * list, starting from iter position. The caller must hold either hold the
5378 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5379 * list will remain unchanged.
31088a11
VF
5380 */
5381void *netdev_lower_get_next_private(struct net_device *dev,
5382 struct list_head **iter)
5383{
5384 struct netdev_adjacent *lower;
5385
5386 lower = list_entry(*iter, struct netdev_adjacent, list);
5387
5388 if (&lower->list == &dev->adj_list.lower)
5389 return NULL;
5390
6859e7df 5391 *iter = lower->list.next;
31088a11
VF
5392
5393 return lower->private;
5394}
5395EXPORT_SYMBOL(netdev_lower_get_next_private);
5396
5397/**
5398 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5399 * lower neighbour list, RCU
5400 * variant
5401 * @dev: device
5402 * @iter: list_head ** of the current position
5403 *
5404 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5405 * list, starting from iter position. The caller must hold RCU read lock.
5406 */
5407void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5408 struct list_head **iter)
5409{
5410 struct netdev_adjacent *lower;
5411
5412 WARN_ON_ONCE(!rcu_read_lock_held());
5413
5414 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5415
5416 if (&lower->list == &dev->adj_list.lower)
5417 return NULL;
5418
6859e7df 5419 *iter = &lower->list;
31088a11
VF
5420
5421 return lower->private;
5422}
5423EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5424
4085ebe8
VY
5425/**
5426 * netdev_lower_get_next - Get the next device from the lower neighbour
5427 * list
5428 * @dev: device
5429 * @iter: list_head ** of the current position
5430 *
5431 * Gets the next netdev_adjacent from the dev's lower neighbour
5432 * list, starting from iter position. The caller must hold RTNL lock or
5433 * its own locking that guarantees that the neighbour lower
b469139e 5434 * list will remain unchanged.
4085ebe8
VY
5435 */
5436void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5437{
5438 struct netdev_adjacent *lower;
5439
cfdd28be 5440 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5441
5442 if (&lower->list == &dev->adj_list.lower)
5443 return NULL;
5444
cfdd28be 5445 *iter = lower->list.next;
4085ebe8
VY
5446
5447 return lower->dev;
5448}
5449EXPORT_SYMBOL(netdev_lower_get_next);
5450
e001bfad 5451/**
5452 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5453 * lower neighbour list, RCU
5454 * variant
5455 * @dev: device
5456 *
5457 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5458 * list. The caller must hold RCU read lock.
5459 */
5460void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5461{
5462 struct netdev_adjacent *lower;
5463
5464 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5465 struct netdev_adjacent, list);
5466 if (lower)
5467 return lower->private;
5468 return NULL;
5469}
5470EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5471
9ff162a8
JP
5472/**
5473 * netdev_master_upper_dev_get_rcu - Get master upper device
5474 * @dev: device
5475 *
5476 * Find a master upper device and return pointer to it or NULL in case
5477 * it's not there. The caller must hold the RCU read lock.
5478 */
5479struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5480{
aa9d8560 5481 struct netdev_adjacent *upper;
9ff162a8 5482
2f268f12 5483 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5484 struct netdev_adjacent, list);
9ff162a8
JP
5485 if (upper && likely(upper->master))
5486 return upper->dev;
5487 return NULL;
5488}
5489EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5490
0a59f3a9 5491static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5492 struct net_device *adj_dev,
5493 struct list_head *dev_list)
5494{
5495 char linkname[IFNAMSIZ+7];
5496 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5497 "upper_%s" : "lower_%s", adj_dev->name);
5498 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5499 linkname);
5500}
0a59f3a9 5501static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5502 char *name,
5503 struct list_head *dev_list)
5504{
5505 char linkname[IFNAMSIZ+7];
5506 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5507 "upper_%s" : "lower_%s", name);
5508 sysfs_remove_link(&(dev->dev.kobj), linkname);
5509}
5510
7ce64c79
AF
5511static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5512 struct net_device *adj_dev,
5513 struct list_head *dev_list)
5514{
5515 return (dev_list == &dev->adj_list.upper ||
5516 dev_list == &dev->adj_list.lower) &&
5517 net_eq(dev_net(dev), dev_net(adj_dev));
5518}
3ee32707 5519
5d261913
VF
5520static int __netdev_adjacent_dev_insert(struct net_device *dev,
5521 struct net_device *adj_dev,
7863c054 5522 struct list_head *dev_list,
402dae96 5523 void *private, bool master)
5d261913
VF
5524{
5525 struct netdev_adjacent *adj;
842d67a7 5526 int ret;
5d261913 5527
6ea29da1 5528 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5529
5530 if (adj) {
5d261913
VF
5531 adj->ref_nr++;
5532 return 0;
5533 }
5534
5535 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5536 if (!adj)
5537 return -ENOMEM;
5538
5539 adj->dev = adj_dev;
5540 adj->master = master;
5d261913 5541 adj->ref_nr = 1;
402dae96 5542 adj->private = private;
5d261913 5543 dev_hold(adj_dev);
2f268f12
VF
5544
5545 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5546 adj_dev->name, dev->name, adj_dev->name);
5d261913 5547
7ce64c79 5548 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5549 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5550 if (ret)
5551 goto free_adj;
5552 }
5553
7863c054 5554 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5555 if (master) {
5556 ret = sysfs_create_link(&(dev->dev.kobj),
5557 &(adj_dev->dev.kobj), "master");
5558 if (ret)
5831d66e 5559 goto remove_symlinks;
842d67a7 5560
7863c054 5561 list_add_rcu(&adj->list, dev_list);
842d67a7 5562 } else {
7863c054 5563 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5564 }
5d261913
VF
5565
5566 return 0;
842d67a7 5567
5831d66e 5568remove_symlinks:
7ce64c79 5569 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5570 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5571free_adj:
5572 kfree(adj);
974daef7 5573 dev_put(adj_dev);
842d67a7
VF
5574
5575 return ret;
5d261913
VF
5576}
5577
1d143d9f 5578static void __netdev_adjacent_dev_remove(struct net_device *dev,
5579 struct net_device *adj_dev,
5580 struct list_head *dev_list)
5d261913
VF
5581{
5582 struct netdev_adjacent *adj;
5583
6ea29da1 5584 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5585
2f268f12
VF
5586 if (!adj) {
5587 pr_err("tried to remove device %s from %s\n",
5588 dev->name, adj_dev->name);
5d261913 5589 BUG();
2f268f12 5590 }
5d261913
VF
5591
5592 if (adj->ref_nr > 1) {
2f268f12
VF
5593 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5594 adj->ref_nr-1);
5d261913
VF
5595 adj->ref_nr--;
5596 return;
5597 }
5598
842d67a7
VF
5599 if (adj->master)
5600 sysfs_remove_link(&(dev->dev.kobj), "master");
5601
7ce64c79 5602 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5603 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5604
5d261913 5605 list_del_rcu(&adj->list);
2f268f12
VF
5606 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5607 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5608 dev_put(adj_dev);
5609 kfree_rcu(adj, rcu);
5610}
5611
1d143d9f 5612static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5613 struct net_device *upper_dev,
5614 struct list_head *up_list,
5615 struct list_head *down_list,
5616 void *private, bool master)
5d261913
VF
5617{
5618 int ret;
5619
402dae96
VF
5620 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5621 master);
5d261913
VF
5622 if (ret)
5623 return ret;
5624
402dae96
VF
5625 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5626 false);
5d261913 5627 if (ret) {
2f268f12 5628 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5629 return ret;
5630 }
5631
5632 return 0;
5633}
5634
1d143d9f 5635static int __netdev_adjacent_dev_link(struct net_device *dev,
5636 struct net_device *upper_dev)
5d261913 5637{
2f268f12
VF
5638 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5639 &dev->all_adj_list.upper,
5640 &upper_dev->all_adj_list.lower,
402dae96 5641 NULL, false);
5d261913
VF
5642}
5643
1d143d9f 5644static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5645 struct net_device *upper_dev,
5646 struct list_head *up_list,
5647 struct list_head *down_list)
5d261913 5648{
2f268f12
VF
5649 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5650 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5651}
5652
1d143d9f 5653static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5654 struct net_device *upper_dev)
5d261913 5655{
2f268f12
VF
5656 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5657 &dev->all_adj_list.upper,
5658 &upper_dev->all_adj_list.lower);
5659}
5660
1d143d9f 5661static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5662 struct net_device *upper_dev,
5663 void *private, bool master)
2f268f12
VF
5664{
5665 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5666
5667 if (ret)
5668 return ret;
5669
5670 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5671 &dev->adj_list.upper,
5672 &upper_dev->adj_list.lower,
402dae96 5673 private, master);
2f268f12
VF
5674 if (ret) {
5675 __netdev_adjacent_dev_unlink(dev, upper_dev);
5676 return ret;
5677 }
5678
5679 return 0;
5d261913
VF
5680}
5681
1d143d9f 5682static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5683 struct net_device *upper_dev)
2f268f12
VF
5684{
5685 __netdev_adjacent_dev_unlink(dev, upper_dev);
5686 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5687 &dev->adj_list.upper,
5688 &upper_dev->adj_list.lower);
5689}
5d261913 5690
9ff162a8 5691static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5692 struct net_device *upper_dev, bool master,
29bf24af 5693 void *upper_priv, void *upper_info)
9ff162a8 5694{
0e4ead9d 5695 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5696 struct netdev_adjacent *i, *j, *to_i, *to_j;
5697 int ret = 0;
9ff162a8
JP
5698
5699 ASSERT_RTNL();
5700
5701 if (dev == upper_dev)
5702 return -EBUSY;
5703
5704 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5705 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5706 return -EBUSY;
5707
6ea29da1 5708 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5709 return -EEXIST;
5710
5711 if (master && netdev_master_upper_dev_get(dev))
5712 return -EBUSY;
5713
0e4ead9d
JP
5714 changeupper_info.upper_dev = upper_dev;
5715 changeupper_info.master = master;
5716 changeupper_info.linking = true;
29bf24af 5717 changeupper_info.upper_info = upper_info;
0e4ead9d 5718
573c7ba0
JP
5719 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5720 &changeupper_info.info);
5721 ret = notifier_to_errno(ret);
5722 if (ret)
5723 return ret;
5724
6dffb044 5725 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5726 master);
5d261913
VF
5727 if (ret)
5728 return ret;
9ff162a8 5729
5d261913 5730 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5731 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5732 * versa, and don't forget the devices itself. All of these
5733 * links are non-neighbours.
5734 */
2f268f12
VF
5735 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5736 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5737 pr_debug("Interlinking %s with %s, non-neighbour\n",
5738 i->dev->name, j->dev->name);
5d261913
VF
5739 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5740 if (ret)
5741 goto rollback_mesh;
5742 }
5743 }
5744
5745 /* add dev to every upper_dev's upper device */
2f268f12
VF
5746 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5747 pr_debug("linking %s's upper device %s with %s\n",
5748 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5749 ret = __netdev_adjacent_dev_link(dev, i->dev);
5750 if (ret)
5751 goto rollback_upper_mesh;
5752 }
5753
5754 /* add upper_dev to every dev's lower device */
2f268f12
VF
5755 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5756 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5757 i->dev->name, upper_dev->name);
5d261913
VF
5758 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5759 if (ret)
5760 goto rollback_lower_mesh;
5761 }
9ff162a8 5762
b03804e7
IS
5763 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5764 &changeupper_info.info);
5765 ret = notifier_to_errno(ret);
5766 if (ret)
5767 goto rollback_lower_mesh;
5768
9ff162a8 5769 return 0;
5d261913
VF
5770
5771rollback_lower_mesh:
5772 to_i = i;
2f268f12 5773 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5774 if (i == to_i)
5775 break;
5776 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5777 }
5778
5779 i = NULL;
5780
5781rollback_upper_mesh:
5782 to_i = i;
2f268f12 5783 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5784 if (i == to_i)
5785 break;
5786 __netdev_adjacent_dev_unlink(dev, i->dev);
5787 }
5788
5789 i = j = NULL;
5790
5791rollback_mesh:
5792 to_i = i;
5793 to_j = j;
2f268f12
VF
5794 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5795 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5796 if (i == to_i && j == to_j)
5797 break;
5798 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5799 }
5800 if (i == to_i)
5801 break;
5802 }
5803
2f268f12 5804 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5805
5806 return ret;
9ff162a8
JP
5807}
5808
5809/**
5810 * netdev_upper_dev_link - Add a link to the upper device
5811 * @dev: device
5812 * @upper_dev: new upper device
5813 *
5814 * Adds a link to device which is upper to this one. The caller must hold
5815 * the RTNL lock. On a failure a negative errno code is returned.
5816 * On success the reference counts are adjusted and the function
5817 * returns zero.
5818 */
5819int netdev_upper_dev_link(struct net_device *dev,
5820 struct net_device *upper_dev)
5821{
29bf24af 5822 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5823}
5824EXPORT_SYMBOL(netdev_upper_dev_link);
5825
5826/**
5827 * netdev_master_upper_dev_link - Add a master link to the upper device
5828 * @dev: device
5829 * @upper_dev: new upper device
6dffb044 5830 * @upper_priv: upper device private
29bf24af 5831 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5832 *
5833 * Adds a link to device which is upper to this one. In this case, only
5834 * one master upper device can be linked, although other non-master devices
5835 * might be linked as well. The caller must hold the RTNL lock.
5836 * On a failure a negative errno code is returned. On success the reference
5837 * counts are adjusted and the function returns zero.
5838 */
5839int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5840 struct net_device *upper_dev,
29bf24af 5841 void *upper_priv, void *upper_info)
9ff162a8 5842{
29bf24af
JP
5843 return __netdev_upper_dev_link(dev, upper_dev, true,
5844 upper_priv, upper_info);
9ff162a8
JP
5845}
5846EXPORT_SYMBOL(netdev_master_upper_dev_link);
5847
5848/**
5849 * netdev_upper_dev_unlink - Removes a link to upper device
5850 * @dev: device
5851 * @upper_dev: new upper device
5852 *
5853 * Removes a link to device which is upper to this one. The caller must hold
5854 * the RTNL lock.
5855 */
5856void netdev_upper_dev_unlink(struct net_device *dev,
5857 struct net_device *upper_dev)
5858{
0e4ead9d 5859 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5860 struct netdev_adjacent *i, *j;
9ff162a8
JP
5861 ASSERT_RTNL();
5862
0e4ead9d
JP
5863 changeupper_info.upper_dev = upper_dev;
5864 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5865 changeupper_info.linking = false;
5866
573c7ba0
JP
5867 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5868 &changeupper_info.info);
5869
2f268f12 5870 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5871
5872 /* Here is the tricky part. We must remove all dev's lower
5873 * devices from all upper_dev's upper devices and vice
5874 * versa, to maintain the graph relationship.
5875 */
2f268f12
VF
5876 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5877 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5878 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5879
5880 /* remove also the devices itself from lower/upper device
5881 * list
5882 */
2f268f12 5883 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5884 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5885
2f268f12 5886 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5887 __netdev_adjacent_dev_unlink(dev, i->dev);
5888
0e4ead9d
JP
5889 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5890 &changeupper_info.info);
9ff162a8
JP
5891}
5892EXPORT_SYMBOL(netdev_upper_dev_unlink);
5893
61bd3857
MS
5894/**
5895 * netdev_bonding_info_change - Dispatch event about slave change
5896 * @dev: device
4a26e453 5897 * @bonding_info: info to dispatch
61bd3857
MS
5898 *
5899 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5900 * The caller must hold the RTNL lock.
5901 */
5902void netdev_bonding_info_change(struct net_device *dev,
5903 struct netdev_bonding_info *bonding_info)
5904{
5905 struct netdev_notifier_bonding_info info;
5906
5907 memcpy(&info.bonding_info, bonding_info,
5908 sizeof(struct netdev_bonding_info));
5909 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5910 &info.info);
5911}
5912EXPORT_SYMBOL(netdev_bonding_info_change);
5913
2ce1ee17 5914static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5915{
5916 struct netdev_adjacent *iter;
5917
5918 struct net *net = dev_net(dev);
5919
5920 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5921 if (!net_eq(net,dev_net(iter->dev)))
5922 continue;
5923 netdev_adjacent_sysfs_add(iter->dev, dev,
5924 &iter->dev->adj_list.lower);
5925 netdev_adjacent_sysfs_add(dev, iter->dev,
5926 &dev->adj_list.upper);
5927 }
5928
5929 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5930 if (!net_eq(net,dev_net(iter->dev)))
5931 continue;
5932 netdev_adjacent_sysfs_add(iter->dev, dev,
5933 &iter->dev->adj_list.upper);
5934 netdev_adjacent_sysfs_add(dev, iter->dev,
5935 &dev->adj_list.lower);
5936 }
5937}
5938
2ce1ee17 5939static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5940{
5941 struct netdev_adjacent *iter;
5942
5943 struct net *net = dev_net(dev);
5944
5945 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5946 if (!net_eq(net,dev_net(iter->dev)))
5947 continue;
5948 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5949 &iter->dev->adj_list.lower);
5950 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5951 &dev->adj_list.upper);
5952 }
5953
5954 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5955 if (!net_eq(net,dev_net(iter->dev)))
5956 continue;
5957 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5958 &iter->dev->adj_list.upper);
5959 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5960 &dev->adj_list.lower);
5961 }
5962}
5963
5bb025fa 5964void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5965{
5bb025fa 5966 struct netdev_adjacent *iter;
402dae96 5967
4c75431a
AF
5968 struct net *net = dev_net(dev);
5969
5bb025fa 5970 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5971 if (!net_eq(net,dev_net(iter->dev)))
5972 continue;
5bb025fa
VF
5973 netdev_adjacent_sysfs_del(iter->dev, oldname,
5974 &iter->dev->adj_list.lower);
5975 netdev_adjacent_sysfs_add(iter->dev, dev,
5976 &iter->dev->adj_list.lower);
5977 }
402dae96 5978
5bb025fa 5979 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5980 if (!net_eq(net,dev_net(iter->dev)))
5981 continue;
5bb025fa
VF
5982 netdev_adjacent_sysfs_del(iter->dev, oldname,
5983 &iter->dev->adj_list.upper);
5984 netdev_adjacent_sysfs_add(iter->dev, dev,
5985 &iter->dev->adj_list.upper);
5986 }
402dae96 5987}
402dae96
VF
5988
5989void *netdev_lower_dev_get_private(struct net_device *dev,
5990 struct net_device *lower_dev)
5991{
5992 struct netdev_adjacent *lower;
5993
5994 if (!lower_dev)
5995 return NULL;
6ea29da1 5996 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5997 if (!lower)
5998 return NULL;
5999
6000 return lower->private;
6001}
6002EXPORT_SYMBOL(netdev_lower_dev_get_private);
6003
4085ebe8
VY
6004
6005int dev_get_nest_level(struct net_device *dev,
b618aaa9 6006 bool (*type_check)(const struct net_device *dev))
4085ebe8
VY
6007{
6008 struct net_device *lower = NULL;
6009 struct list_head *iter;
6010 int max_nest = -1;
6011 int nest;
6012
6013 ASSERT_RTNL();
6014
6015 netdev_for_each_lower_dev(dev, lower, iter) {
6016 nest = dev_get_nest_level(lower, type_check);
6017 if (max_nest < nest)
6018 max_nest = nest;
6019 }
6020
6021 if (type_check(dev))
6022 max_nest++;
6023
6024 return max_nest;
6025}
6026EXPORT_SYMBOL(dev_get_nest_level);
6027
04d48266
JP
6028/**
6029 * netdev_lower_change - Dispatch event about lower device state change
6030 * @lower_dev: device
6031 * @lower_state_info: state to dispatch
6032 *
6033 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6034 * The caller must hold the RTNL lock.
6035 */
6036void netdev_lower_state_changed(struct net_device *lower_dev,
6037 void *lower_state_info)
6038{
6039 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6040
6041 ASSERT_RTNL();
6042 changelowerstate_info.lower_state_info = lower_state_info;
6043 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6044 &changelowerstate_info.info);
6045}
6046EXPORT_SYMBOL(netdev_lower_state_changed);
6047
b6c40d68
PM
6048static void dev_change_rx_flags(struct net_device *dev, int flags)
6049{
d314774c
SH
6050 const struct net_device_ops *ops = dev->netdev_ops;
6051
d2615bf4 6052 if (ops->ndo_change_rx_flags)
d314774c 6053 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6054}
6055
991fb3f7 6056static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6057{
b536db93 6058 unsigned int old_flags = dev->flags;
d04a48b0
EB
6059 kuid_t uid;
6060 kgid_t gid;
1da177e4 6061
24023451
PM
6062 ASSERT_RTNL();
6063
dad9b335
WC
6064 dev->flags |= IFF_PROMISC;
6065 dev->promiscuity += inc;
6066 if (dev->promiscuity == 0) {
6067 /*
6068 * Avoid overflow.
6069 * If inc causes overflow, untouch promisc and return error.
6070 */
6071 if (inc < 0)
6072 dev->flags &= ~IFF_PROMISC;
6073 else {
6074 dev->promiscuity -= inc;
7b6cd1ce
JP
6075 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6076 dev->name);
dad9b335
WC
6077 return -EOVERFLOW;
6078 }
6079 }
52609c0b 6080 if (dev->flags != old_flags) {
7b6cd1ce
JP
6081 pr_info("device %s %s promiscuous mode\n",
6082 dev->name,
6083 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6084 if (audit_enabled) {
6085 current_uid_gid(&uid, &gid);
7759db82
KHK
6086 audit_log(current->audit_context, GFP_ATOMIC,
6087 AUDIT_ANOM_PROMISCUOUS,
6088 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6089 dev->name, (dev->flags & IFF_PROMISC),
6090 (old_flags & IFF_PROMISC),
e1760bd5 6091 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6092 from_kuid(&init_user_ns, uid),
6093 from_kgid(&init_user_ns, gid),
7759db82 6094 audit_get_sessionid(current));
8192b0c4 6095 }
24023451 6096
b6c40d68 6097 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6098 }
991fb3f7
ND
6099 if (notify)
6100 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6101 return 0;
1da177e4
LT
6102}
6103
4417da66
PM
6104/**
6105 * dev_set_promiscuity - update promiscuity count on a device
6106 * @dev: device
6107 * @inc: modifier
6108 *
6109 * Add or remove promiscuity from a device. While the count in the device
6110 * remains above zero the interface remains promiscuous. Once it hits zero
6111 * the device reverts back to normal filtering operation. A negative inc
6112 * value is used to drop promiscuity on the device.
dad9b335 6113 * Return 0 if successful or a negative errno code on error.
4417da66 6114 */
dad9b335 6115int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6116{
b536db93 6117 unsigned int old_flags = dev->flags;
dad9b335 6118 int err;
4417da66 6119
991fb3f7 6120 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6121 if (err < 0)
dad9b335 6122 return err;
4417da66
PM
6123 if (dev->flags != old_flags)
6124 dev_set_rx_mode(dev);
dad9b335 6125 return err;
4417da66 6126}
d1b19dff 6127EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6128
991fb3f7 6129static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6130{
991fb3f7 6131 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6132
24023451
PM
6133 ASSERT_RTNL();
6134
1da177e4 6135 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6136 dev->allmulti += inc;
6137 if (dev->allmulti == 0) {
6138 /*
6139 * Avoid overflow.
6140 * If inc causes overflow, untouch allmulti and return error.
6141 */
6142 if (inc < 0)
6143 dev->flags &= ~IFF_ALLMULTI;
6144 else {
6145 dev->allmulti -= inc;
7b6cd1ce
JP
6146 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6147 dev->name);
dad9b335
WC
6148 return -EOVERFLOW;
6149 }
6150 }
24023451 6151 if (dev->flags ^ old_flags) {
b6c40d68 6152 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6153 dev_set_rx_mode(dev);
991fb3f7
ND
6154 if (notify)
6155 __dev_notify_flags(dev, old_flags,
6156 dev->gflags ^ old_gflags);
24023451 6157 }
dad9b335 6158 return 0;
4417da66 6159}
991fb3f7
ND
6160
6161/**
6162 * dev_set_allmulti - update allmulti count on a device
6163 * @dev: device
6164 * @inc: modifier
6165 *
6166 * Add or remove reception of all multicast frames to a device. While the
6167 * count in the device remains above zero the interface remains listening
6168 * to all interfaces. Once it hits zero the device reverts back to normal
6169 * filtering operation. A negative @inc value is used to drop the counter
6170 * when releasing a resource needing all multicasts.
6171 * Return 0 if successful or a negative errno code on error.
6172 */
6173
6174int dev_set_allmulti(struct net_device *dev, int inc)
6175{
6176 return __dev_set_allmulti(dev, inc, true);
6177}
d1b19dff 6178EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6179
6180/*
6181 * Upload unicast and multicast address lists to device and
6182 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6183 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6184 * are present.
6185 */
6186void __dev_set_rx_mode(struct net_device *dev)
6187{
d314774c
SH
6188 const struct net_device_ops *ops = dev->netdev_ops;
6189
4417da66
PM
6190 /* dev_open will call this function so the list will stay sane. */
6191 if (!(dev->flags&IFF_UP))
6192 return;
6193
6194 if (!netif_device_present(dev))
40b77c94 6195 return;
4417da66 6196
01789349 6197 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6198 /* Unicast addresses changes may only happen under the rtnl,
6199 * therefore calling __dev_set_promiscuity here is safe.
6200 */
32e7bfc4 6201 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6202 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6203 dev->uc_promisc = true;
32e7bfc4 6204 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6205 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6206 dev->uc_promisc = false;
4417da66 6207 }
4417da66 6208 }
01789349
JP
6209
6210 if (ops->ndo_set_rx_mode)
6211 ops->ndo_set_rx_mode(dev);
4417da66
PM
6212}
6213
6214void dev_set_rx_mode(struct net_device *dev)
6215{
b9e40857 6216 netif_addr_lock_bh(dev);
4417da66 6217 __dev_set_rx_mode(dev);
b9e40857 6218 netif_addr_unlock_bh(dev);
1da177e4
LT
6219}
6220
f0db275a
SH
6221/**
6222 * dev_get_flags - get flags reported to userspace
6223 * @dev: device
6224 *
6225 * Get the combination of flag bits exported through APIs to userspace.
6226 */
95c96174 6227unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6228{
95c96174 6229 unsigned int flags;
1da177e4
LT
6230
6231 flags = (dev->flags & ~(IFF_PROMISC |
6232 IFF_ALLMULTI |
b00055aa
SR
6233 IFF_RUNNING |
6234 IFF_LOWER_UP |
6235 IFF_DORMANT)) |
1da177e4
LT
6236 (dev->gflags & (IFF_PROMISC |
6237 IFF_ALLMULTI));
6238
b00055aa
SR
6239 if (netif_running(dev)) {
6240 if (netif_oper_up(dev))
6241 flags |= IFF_RUNNING;
6242 if (netif_carrier_ok(dev))
6243 flags |= IFF_LOWER_UP;
6244 if (netif_dormant(dev))
6245 flags |= IFF_DORMANT;
6246 }
1da177e4
LT
6247
6248 return flags;
6249}
d1b19dff 6250EXPORT_SYMBOL(dev_get_flags);
1da177e4 6251
bd380811 6252int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6253{
b536db93 6254 unsigned int old_flags = dev->flags;
bd380811 6255 int ret;
1da177e4 6256
24023451
PM
6257 ASSERT_RTNL();
6258
1da177e4
LT
6259 /*
6260 * Set the flags on our device.
6261 */
6262
6263 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6264 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6265 IFF_AUTOMEDIA)) |
6266 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6267 IFF_ALLMULTI));
6268
6269 /*
6270 * Load in the correct multicast list now the flags have changed.
6271 */
6272
b6c40d68
PM
6273 if ((old_flags ^ flags) & IFF_MULTICAST)
6274 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6275
4417da66 6276 dev_set_rx_mode(dev);
1da177e4
LT
6277
6278 /*
6279 * Have we downed the interface. We handle IFF_UP ourselves
6280 * according to user attempts to set it, rather than blindly
6281 * setting it.
6282 */
6283
6284 ret = 0;
d215d10f 6285 if ((old_flags ^ flags) & IFF_UP)
bd380811 6286 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6287
1da177e4 6288 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6289 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6290 unsigned int old_flags = dev->flags;
d1b19dff 6291
1da177e4 6292 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6293
6294 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6295 if (dev->flags != old_flags)
6296 dev_set_rx_mode(dev);
1da177e4
LT
6297 }
6298
6299 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6300 is important. Some (broken) drivers set IFF_PROMISC, when
6301 IFF_ALLMULTI is requested not asking us and not reporting.
6302 */
6303 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6304 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6305
1da177e4 6306 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6307 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6308 }
6309
bd380811
PM
6310 return ret;
6311}
6312
a528c219
ND
6313void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6314 unsigned int gchanges)
bd380811
PM
6315{
6316 unsigned int changes = dev->flags ^ old_flags;
6317
a528c219 6318 if (gchanges)
7f294054 6319 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6320
bd380811
PM
6321 if (changes & IFF_UP) {
6322 if (dev->flags & IFF_UP)
6323 call_netdevice_notifiers(NETDEV_UP, dev);
6324 else
6325 call_netdevice_notifiers(NETDEV_DOWN, dev);
6326 }
6327
6328 if (dev->flags & IFF_UP &&
be9efd36
JP
6329 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6330 struct netdev_notifier_change_info change_info;
6331
6332 change_info.flags_changed = changes;
6333 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6334 &change_info.info);
6335 }
bd380811
PM
6336}
6337
6338/**
6339 * dev_change_flags - change device settings
6340 * @dev: device
6341 * @flags: device state flags
6342 *
6343 * Change settings on device based state flags. The flags are
6344 * in the userspace exported format.
6345 */
b536db93 6346int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6347{
b536db93 6348 int ret;
991fb3f7 6349 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6350
6351 ret = __dev_change_flags(dev, flags);
6352 if (ret < 0)
6353 return ret;
6354
991fb3f7 6355 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6356 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6357 return ret;
6358}
d1b19dff 6359EXPORT_SYMBOL(dev_change_flags);
1da177e4 6360
2315dc91
VF
6361static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6362{
6363 const struct net_device_ops *ops = dev->netdev_ops;
6364
6365 if (ops->ndo_change_mtu)
6366 return ops->ndo_change_mtu(dev, new_mtu);
6367
6368 dev->mtu = new_mtu;
6369 return 0;
6370}
6371
f0db275a
SH
6372/**
6373 * dev_set_mtu - Change maximum transfer unit
6374 * @dev: device
6375 * @new_mtu: new transfer unit
6376 *
6377 * Change the maximum transfer size of the network device.
6378 */
1da177e4
LT
6379int dev_set_mtu(struct net_device *dev, int new_mtu)
6380{
2315dc91 6381 int err, orig_mtu;
1da177e4
LT
6382
6383 if (new_mtu == dev->mtu)
6384 return 0;
6385
6386 /* MTU must be positive. */
6387 if (new_mtu < 0)
6388 return -EINVAL;
6389
6390 if (!netif_device_present(dev))
6391 return -ENODEV;
6392
1d486bfb
VF
6393 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6394 err = notifier_to_errno(err);
6395 if (err)
6396 return err;
d314774c 6397
2315dc91
VF
6398 orig_mtu = dev->mtu;
6399 err = __dev_set_mtu(dev, new_mtu);
d314774c 6400
2315dc91
VF
6401 if (!err) {
6402 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6403 err = notifier_to_errno(err);
6404 if (err) {
6405 /* setting mtu back and notifying everyone again,
6406 * so that they have a chance to revert changes.
6407 */
6408 __dev_set_mtu(dev, orig_mtu);
6409 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6410 }
6411 }
1da177e4
LT
6412 return err;
6413}
d1b19dff 6414EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6415
cbda10fa
VD
6416/**
6417 * dev_set_group - Change group this device belongs to
6418 * @dev: device
6419 * @new_group: group this device should belong to
6420 */
6421void dev_set_group(struct net_device *dev, int new_group)
6422{
6423 dev->group = new_group;
6424}
6425EXPORT_SYMBOL(dev_set_group);
6426
f0db275a
SH
6427/**
6428 * dev_set_mac_address - Change Media Access Control Address
6429 * @dev: device
6430 * @sa: new address
6431 *
6432 * Change the hardware (MAC) address of the device
6433 */
1da177e4
LT
6434int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6435{
d314774c 6436 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6437 int err;
6438
d314774c 6439 if (!ops->ndo_set_mac_address)
1da177e4
LT
6440 return -EOPNOTSUPP;
6441 if (sa->sa_family != dev->type)
6442 return -EINVAL;
6443 if (!netif_device_present(dev))
6444 return -ENODEV;
d314774c 6445 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6446 if (err)
6447 return err;
fbdeca2d 6448 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6449 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6450 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6451 return 0;
1da177e4 6452}
d1b19dff 6453EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6454
4bf84c35
JP
6455/**
6456 * dev_change_carrier - Change device carrier
6457 * @dev: device
691b3b7e 6458 * @new_carrier: new value
4bf84c35
JP
6459 *
6460 * Change device carrier
6461 */
6462int dev_change_carrier(struct net_device *dev, bool new_carrier)
6463{
6464 const struct net_device_ops *ops = dev->netdev_ops;
6465
6466 if (!ops->ndo_change_carrier)
6467 return -EOPNOTSUPP;
6468 if (!netif_device_present(dev))
6469 return -ENODEV;
6470 return ops->ndo_change_carrier(dev, new_carrier);
6471}
6472EXPORT_SYMBOL(dev_change_carrier);
6473
66b52b0d
JP
6474/**
6475 * dev_get_phys_port_id - Get device physical port ID
6476 * @dev: device
6477 * @ppid: port ID
6478 *
6479 * Get device physical port ID
6480 */
6481int dev_get_phys_port_id(struct net_device *dev,
02637fce 6482 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6483{
6484 const struct net_device_ops *ops = dev->netdev_ops;
6485
6486 if (!ops->ndo_get_phys_port_id)
6487 return -EOPNOTSUPP;
6488 return ops->ndo_get_phys_port_id(dev, ppid);
6489}
6490EXPORT_SYMBOL(dev_get_phys_port_id);
6491
db24a904
DA
6492/**
6493 * dev_get_phys_port_name - Get device physical port name
6494 * @dev: device
6495 * @name: port name
ed49e650 6496 * @len: limit of bytes to copy to name
db24a904
DA
6497 *
6498 * Get device physical port name
6499 */
6500int dev_get_phys_port_name(struct net_device *dev,
6501 char *name, size_t len)
6502{
6503 const struct net_device_ops *ops = dev->netdev_ops;
6504
6505 if (!ops->ndo_get_phys_port_name)
6506 return -EOPNOTSUPP;
6507 return ops->ndo_get_phys_port_name(dev, name, len);
6508}
6509EXPORT_SYMBOL(dev_get_phys_port_name);
6510
d746d707
AK
6511/**
6512 * dev_change_proto_down - update protocol port state information
6513 * @dev: device
6514 * @proto_down: new value
6515 *
6516 * This info can be used by switch drivers to set the phys state of the
6517 * port.
6518 */
6519int dev_change_proto_down(struct net_device *dev, bool proto_down)
6520{
6521 const struct net_device_ops *ops = dev->netdev_ops;
6522
6523 if (!ops->ndo_change_proto_down)
6524 return -EOPNOTSUPP;
6525 if (!netif_device_present(dev))
6526 return -ENODEV;
6527 return ops->ndo_change_proto_down(dev, proto_down);
6528}
6529EXPORT_SYMBOL(dev_change_proto_down);
6530
1da177e4
LT
6531/**
6532 * dev_new_index - allocate an ifindex
c4ea43c5 6533 * @net: the applicable net namespace
1da177e4
LT
6534 *
6535 * Returns a suitable unique value for a new device interface
6536 * number. The caller must hold the rtnl semaphore or the
6537 * dev_base_lock to be sure it remains unique.
6538 */
881d966b 6539static int dev_new_index(struct net *net)
1da177e4 6540{
aa79e66e 6541 int ifindex = net->ifindex;
1da177e4
LT
6542 for (;;) {
6543 if (++ifindex <= 0)
6544 ifindex = 1;
881d966b 6545 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6546 return net->ifindex = ifindex;
1da177e4
LT
6547 }
6548}
6549
1da177e4 6550/* Delayed registration/unregisteration */
3b5b34fd 6551static LIST_HEAD(net_todo_list);
200b916f 6552DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6553
6f05f629 6554static void net_set_todo(struct net_device *dev)
1da177e4 6555{
1da177e4 6556 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6557 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6558}
6559
9b5e383c 6560static void rollback_registered_many(struct list_head *head)
93ee31f1 6561{
e93737b0 6562 struct net_device *dev, *tmp;
5cde2829 6563 LIST_HEAD(close_head);
9b5e383c 6564
93ee31f1
DL
6565 BUG_ON(dev_boot_phase);
6566 ASSERT_RTNL();
6567
e93737b0 6568 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6569 /* Some devices call without registering
e93737b0
KK
6570 * for initialization unwind. Remove those
6571 * devices and proceed with the remaining.
9b5e383c
ED
6572 */
6573 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6574 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6575 dev->name, dev);
93ee31f1 6576
9b5e383c 6577 WARN_ON(1);
e93737b0
KK
6578 list_del(&dev->unreg_list);
6579 continue;
9b5e383c 6580 }
449f4544 6581 dev->dismantle = true;
9b5e383c 6582 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6583 }
93ee31f1 6584
44345724 6585 /* If device is running, close it first. */
5cde2829
EB
6586 list_for_each_entry(dev, head, unreg_list)
6587 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6588 dev_close_many(&close_head, true);
93ee31f1 6589
44345724 6590 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6591 /* And unlink it from device chain. */
6592 unlist_netdevice(dev);
93ee31f1 6593
9b5e383c 6594 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6595 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6596 }
93ee31f1
DL
6597
6598 synchronize_net();
6599
9b5e383c 6600 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6601 struct sk_buff *skb = NULL;
6602
9b5e383c
ED
6603 /* Shutdown queueing discipline. */
6604 dev_shutdown(dev);
93ee31f1
DL
6605
6606
9b5e383c
ED
6607 /* Notify protocols, that we are about to destroy
6608 this device. They should clean all the things.
6609 */
6610 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6611
395eea6c
MB
6612 if (!dev->rtnl_link_ops ||
6613 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6614 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6615 GFP_KERNEL);
6616
9b5e383c
ED
6617 /*
6618 * Flush the unicast and multicast chains
6619 */
a748ee24 6620 dev_uc_flush(dev);
22bedad3 6621 dev_mc_flush(dev);
93ee31f1 6622
9b5e383c
ED
6623 if (dev->netdev_ops->ndo_uninit)
6624 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6625
395eea6c
MB
6626 if (skb)
6627 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6628
9ff162a8
JP
6629 /* Notifier chain MUST detach us all upper devices. */
6630 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6631
9b5e383c
ED
6632 /* Remove entries from kobject tree */
6633 netdev_unregister_kobject(dev);
024e9679
AD
6634#ifdef CONFIG_XPS
6635 /* Remove XPS queueing entries */
6636 netif_reset_xps_queues_gt(dev, 0);
6637#endif
9b5e383c 6638 }
93ee31f1 6639
850a545b 6640 synchronize_net();
395264d5 6641
a5ee1551 6642 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6643 dev_put(dev);
6644}
6645
6646static void rollback_registered(struct net_device *dev)
6647{
6648 LIST_HEAD(single);
6649
6650 list_add(&dev->unreg_list, &single);
6651 rollback_registered_many(&single);
ceaaec98 6652 list_del(&single);
93ee31f1
DL
6653}
6654
fd867d51
JW
6655static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6656 struct net_device *upper, netdev_features_t features)
6657{
6658 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6659 netdev_features_t feature;
5ba3f7d6 6660 int feature_bit;
fd867d51 6661
5ba3f7d6
JW
6662 for_each_netdev_feature(&upper_disables, feature_bit) {
6663 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6664 if (!(upper->wanted_features & feature)
6665 && (features & feature)) {
6666 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6667 &feature, upper->name);
6668 features &= ~feature;
6669 }
6670 }
6671
6672 return features;
6673}
6674
6675static void netdev_sync_lower_features(struct net_device *upper,
6676 struct net_device *lower, netdev_features_t features)
6677{
6678 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6679 netdev_features_t feature;
5ba3f7d6 6680 int feature_bit;
fd867d51 6681
5ba3f7d6
JW
6682 for_each_netdev_feature(&upper_disables, feature_bit) {
6683 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6684 if (!(features & feature) && (lower->features & feature)) {
6685 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6686 &feature, lower->name);
6687 lower->wanted_features &= ~feature;
6688 netdev_update_features(lower);
6689
6690 if (unlikely(lower->features & feature))
6691 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6692 &feature, lower->name);
6693 }
6694 }
6695}
6696
c8f44aff
MM
6697static netdev_features_t netdev_fix_features(struct net_device *dev,
6698 netdev_features_t features)
b63365a2 6699{
57422dc5
MM
6700 /* Fix illegal checksum combinations */
6701 if ((features & NETIF_F_HW_CSUM) &&
6702 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6703 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6704 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6705 }
6706
b63365a2 6707 /* TSO requires that SG is present as well. */
ea2d3688 6708 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6709 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6710 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6711 }
6712
ec5f0615
PS
6713 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6714 !(features & NETIF_F_IP_CSUM)) {
6715 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6716 features &= ~NETIF_F_TSO;
6717 features &= ~NETIF_F_TSO_ECN;
6718 }
6719
6720 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6721 !(features & NETIF_F_IPV6_CSUM)) {
6722 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6723 features &= ~NETIF_F_TSO6;
6724 }
6725
31d8b9e0
BH
6726 /* TSO ECN requires that TSO is present as well. */
6727 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6728 features &= ~NETIF_F_TSO_ECN;
6729
212b573f
MM
6730 /* Software GSO depends on SG. */
6731 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6732 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6733 features &= ~NETIF_F_GSO;
6734 }
6735
acd1130e 6736 /* UFO needs SG and checksumming */
b63365a2 6737 if (features & NETIF_F_UFO) {
79032644 6738 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6739 if (!(features & NETIF_F_HW_CSUM) &&
6740 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6741 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6742 netdev_dbg(dev,
acd1130e 6743 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6744 features &= ~NETIF_F_UFO;
6745 }
6746
6747 if (!(features & NETIF_F_SG)) {
6f404e44 6748 netdev_dbg(dev,
acd1130e 6749 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6750 features &= ~NETIF_F_UFO;
6751 }
6752 }
6753
802ab55a
AD
6754 /* GSO partial features require GSO partial be set */
6755 if ((features & dev->gso_partial_features) &&
6756 !(features & NETIF_F_GSO_PARTIAL)) {
6757 netdev_dbg(dev,
6758 "Dropping partially supported GSO features since no GSO partial.\n");
6759 features &= ~dev->gso_partial_features;
6760 }
6761
d0290214
JP
6762#ifdef CONFIG_NET_RX_BUSY_POLL
6763 if (dev->netdev_ops->ndo_busy_poll)
6764 features |= NETIF_F_BUSY_POLL;
6765 else
6766#endif
6767 features &= ~NETIF_F_BUSY_POLL;
6768
b63365a2
HX
6769 return features;
6770}
b63365a2 6771
6cb6a27c 6772int __netdev_update_features(struct net_device *dev)
5455c699 6773{
fd867d51 6774 struct net_device *upper, *lower;
c8f44aff 6775 netdev_features_t features;
fd867d51 6776 struct list_head *iter;
e7868a85 6777 int err = -1;
5455c699 6778
87267485
MM
6779 ASSERT_RTNL();
6780
5455c699
MM
6781 features = netdev_get_wanted_features(dev);
6782
6783 if (dev->netdev_ops->ndo_fix_features)
6784 features = dev->netdev_ops->ndo_fix_features(dev, features);
6785
6786 /* driver might be less strict about feature dependencies */
6787 features = netdev_fix_features(dev, features);
6788
fd867d51
JW
6789 /* some features can't be enabled if they're off an an upper device */
6790 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6791 features = netdev_sync_upper_features(dev, upper, features);
6792
5455c699 6793 if (dev->features == features)
e7868a85 6794 goto sync_lower;
5455c699 6795
c8f44aff
MM
6796 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6797 &dev->features, &features);
5455c699
MM
6798
6799 if (dev->netdev_ops->ndo_set_features)
6800 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6801 else
6802 err = 0;
5455c699 6803
6cb6a27c 6804 if (unlikely(err < 0)) {
5455c699 6805 netdev_err(dev,
c8f44aff
MM
6806 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6807 err, &features, &dev->features);
17b85d29
NA
6808 /* return non-0 since some features might have changed and
6809 * it's better to fire a spurious notification than miss it
6810 */
6811 return -1;
6cb6a27c
MM
6812 }
6813
e7868a85 6814sync_lower:
fd867d51
JW
6815 /* some features must be disabled on lower devices when disabled
6816 * on an upper device (think: bonding master or bridge)
6817 */
6818 netdev_for_each_lower_dev(dev, lower, iter)
6819 netdev_sync_lower_features(dev, lower, features);
6820
6cb6a27c
MM
6821 if (!err)
6822 dev->features = features;
6823
e7868a85 6824 return err < 0 ? 0 : 1;
6cb6a27c
MM
6825}
6826
afe12cc8
MM
6827/**
6828 * netdev_update_features - recalculate device features
6829 * @dev: the device to check
6830 *
6831 * Recalculate dev->features set and send notifications if it
6832 * has changed. Should be called after driver or hardware dependent
6833 * conditions might have changed that influence the features.
6834 */
6cb6a27c
MM
6835void netdev_update_features(struct net_device *dev)
6836{
6837 if (__netdev_update_features(dev))
6838 netdev_features_change(dev);
5455c699
MM
6839}
6840EXPORT_SYMBOL(netdev_update_features);
6841
afe12cc8
MM
6842/**
6843 * netdev_change_features - recalculate device features
6844 * @dev: the device to check
6845 *
6846 * Recalculate dev->features set and send notifications even
6847 * if they have not changed. Should be called instead of
6848 * netdev_update_features() if also dev->vlan_features might
6849 * have changed to allow the changes to be propagated to stacked
6850 * VLAN devices.
6851 */
6852void netdev_change_features(struct net_device *dev)
6853{
6854 __netdev_update_features(dev);
6855 netdev_features_change(dev);
6856}
6857EXPORT_SYMBOL(netdev_change_features);
6858
fc4a7489
PM
6859/**
6860 * netif_stacked_transfer_operstate - transfer operstate
6861 * @rootdev: the root or lower level device to transfer state from
6862 * @dev: the device to transfer operstate to
6863 *
6864 * Transfer operational state from root to device. This is normally
6865 * called when a stacking relationship exists between the root
6866 * device and the device(a leaf device).
6867 */
6868void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6869 struct net_device *dev)
6870{
6871 if (rootdev->operstate == IF_OPER_DORMANT)
6872 netif_dormant_on(dev);
6873 else
6874 netif_dormant_off(dev);
6875
6876 if (netif_carrier_ok(rootdev)) {
6877 if (!netif_carrier_ok(dev))
6878 netif_carrier_on(dev);
6879 } else {
6880 if (netif_carrier_ok(dev))
6881 netif_carrier_off(dev);
6882 }
6883}
6884EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6885
a953be53 6886#ifdef CONFIG_SYSFS
1b4bf461
ED
6887static int netif_alloc_rx_queues(struct net_device *dev)
6888{
1b4bf461 6889 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6890 struct netdev_rx_queue *rx;
10595902 6891 size_t sz = count * sizeof(*rx);
1b4bf461 6892
bd25fa7b 6893 BUG_ON(count < 1);
1b4bf461 6894
10595902
PG
6895 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6896 if (!rx) {
6897 rx = vzalloc(sz);
6898 if (!rx)
6899 return -ENOMEM;
6900 }
bd25fa7b
TH
6901 dev->_rx = rx;
6902
bd25fa7b 6903 for (i = 0; i < count; i++)
fe822240 6904 rx[i].dev = dev;
1b4bf461
ED
6905 return 0;
6906}
bf264145 6907#endif
1b4bf461 6908
aa942104
CG
6909static void netdev_init_one_queue(struct net_device *dev,
6910 struct netdev_queue *queue, void *_unused)
6911{
6912 /* Initialize queue lock */
6913 spin_lock_init(&queue->_xmit_lock);
6914 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6915 queue->xmit_lock_owner = -1;
b236da69 6916 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6917 queue->dev = dev;
114cf580
TH
6918#ifdef CONFIG_BQL
6919 dql_init(&queue->dql, HZ);
6920#endif
aa942104
CG
6921}
6922
60877a32
ED
6923static void netif_free_tx_queues(struct net_device *dev)
6924{
4cb28970 6925 kvfree(dev->_tx);
60877a32
ED
6926}
6927
e6484930
TH
6928static int netif_alloc_netdev_queues(struct net_device *dev)
6929{
6930 unsigned int count = dev->num_tx_queues;
6931 struct netdev_queue *tx;
60877a32 6932 size_t sz = count * sizeof(*tx);
e6484930 6933
d339727c
ED
6934 if (count < 1 || count > 0xffff)
6935 return -EINVAL;
62b5942a 6936
60877a32
ED
6937 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6938 if (!tx) {
6939 tx = vzalloc(sz);
6940 if (!tx)
6941 return -ENOMEM;
6942 }
e6484930 6943 dev->_tx = tx;
1d24eb48 6944
e6484930
TH
6945 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6946 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6947
6948 return 0;
e6484930
TH
6949}
6950
a2029240
DV
6951void netif_tx_stop_all_queues(struct net_device *dev)
6952{
6953 unsigned int i;
6954
6955 for (i = 0; i < dev->num_tx_queues; i++) {
6956 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6957 netif_tx_stop_queue(txq);
6958 }
6959}
6960EXPORT_SYMBOL(netif_tx_stop_all_queues);
6961
1da177e4
LT
6962/**
6963 * register_netdevice - register a network device
6964 * @dev: device to register
6965 *
6966 * Take a completed network device structure and add it to the kernel
6967 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6968 * chain. 0 is returned on success. A negative errno code is returned
6969 * on a failure to set up the device, or if the name is a duplicate.
6970 *
6971 * Callers must hold the rtnl semaphore. You may want
6972 * register_netdev() instead of this.
6973 *
6974 * BUGS:
6975 * The locking appears insufficient to guarantee two parallel registers
6976 * will not get the same name.
6977 */
6978
6979int register_netdevice(struct net_device *dev)
6980{
1da177e4 6981 int ret;
d314774c 6982 struct net *net = dev_net(dev);
1da177e4
LT
6983
6984 BUG_ON(dev_boot_phase);
6985 ASSERT_RTNL();
6986
b17a7c17
SH
6987 might_sleep();
6988
1da177e4
LT
6989 /* When net_device's are persistent, this will be fatal. */
6990 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6991 BUG_ON(!net);
1da177e4 6992
f1f28aa3 6993 spin_lock_init(&dev->addr_list_lock);
cf508b12 6994 netdev_set_addr_lockdep_class(dev);
1da177e4 6995
828de4f6 6996 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6997 if (ret < 0)
6998 goto out;
6999
1da177e4 7000 /* Init, if this function is available */
d314774c
SH
7001 if (dev->netdev_ops->ndo_init) {
7002 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7003 if (ret) {
7004 if (ret > 0)
7005 ret = -EIO;
90833aa4 7006 goto out;
1da177e4
LT
7007 }
7008 }
4ec93edb 7009
f646968f
PM
7010 if (((dev->hw_features | dev->features) &
7011 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7012 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7013 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7014 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7015 ret = -EINVAL;
7016 goto err_uninit;
7017 }
7018
9c7dafbf
PE
7019 ret = -EBUSY;
7020 if (!dev->ifindex)
7021 dev->ifindex = dev_new_index(net);
7022 else if (__dev_get_by_index(net, dev->ifindex))
7023 goto err_uninit;
7024
5455c699
MM
7025 /* Transfer changeable features to wanted_features and enable
7026 * software offloads (GSO and GRO).
7027 */
7028 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7029 dev->features |= NETIF_F_SOFT_FEATURES;
7030 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7031
cbc53e08 7032 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7033 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08
AD
7034
7035 if (dev->hw_features & NETIF_F_TSO)
7036 dev->hw_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7037
1180e7d6 7038 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7039 */
1180e7d6 7040 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7041
ee579677
PS
7042 /* Make NETIF_F_SG inheritable to tunnel devices.
7043 */
802ab55a 7044 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7045
0d89d203
SH
7046 /* Make NETIF_F_SG inheritable to MPLS.
7047 */
7048 dev->mpls_features |= NETIF_F_SG;
7049
7ffbe3fd
JB
7050 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7051 ret = notifier_to_errno(ret);
7052 if (ret)
7053 goto err_uninit;
7054
8b41d188 7055 ret = netdev_register_kobject(dev);
b17a7c17 7056 if (ret)
7ce1b0ed 7057 goto err_uninit;
b17a7c17
SH
7058 dev->reg_state = NETREG_REGISTERED;
7059
6cb6a27c 7060 __netdev_update_features(dev);
8e9b59b2 7061
1da177e4
LT
7062 /*
7063 * Default initial state at registry is that the
7064 * device is present.
7065 */
7066
7067 set_bit(__LINK_STATE_PRESENT, &dev->state);
7068
8f4cccbb
BH
7069 linkwatch_init_dev(dev);
7070
1da177e4 7071 dev_init_scheduler(dev);
1da177e4 7072 dev_hold(dev);
ce286d32 7073 list_netdevice(dev);
7bf23575 7074 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7075
948b337e
JP
7076 /* If the device has permanent device address, driver should
7077 * set dev_addr and also addr_assign_type should be set to
7078 * NET_ADDR_PERM (default value).
7079 */
7080 if (dev->addr_assign_type == NET_ADDR_PERM)
7081 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7082
1da177e4 7083 /* Notify protocols, that a new device appeared. */
056925ab 7084 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7085 ret = notifier_to_errno(ret);
93ee31f1
DL
7086 if (ret) {
7087 rollback_registered(dev);
7088 dev->reg_state = NETREG_UNREGISTERED;
7089 }
d90a909e
EB
7090 /*
7091 * Prevent userspace races by waiting until the network
7092 * device is fully setup before sending notifications.
7093 */
a2835763
PM
7094 if (!dev->rtnl_link_ops ||
7095 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7096 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7097
7098out:
7099 return ret;
7ce1b0ed
HX
7100
7101err_uninit:
d314774c
SH
7102 if (dev->netdev_ops->ndo_uninit)
7103 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7104 goto out;
1da177e4 7105}
d1b19dff 7106EXPORT_SYMBOL(register_netdevice);
1da177e4 7107
937f1ba5
BH
7108/**
7109 * init_dummy_netdev - init a dummy network device for NAPI
7110 * @dev: device to init
7111 *
7112 * This takes a network device structure and initialize the minimum
7113 * amount of fields so it can be used to schedule NAPI polls without
7114 * registering a full blown interface. This is to be used by drivers
7115 * that need to tie several hardware interfaces to a single NAPI
7116 * poll scheduler due to HW limitations.
7117 */
7118int init_dummy_netdev(struct net_device *dev)
7119{
7120 /* Clear everything. Note we don't initialize spinlocks
7121 * are they aren't supposed to be taken by any of the
7122 * NAPI code and this dummy netdev is supposed to be
7123 * only ever used for NAPI polls
7124 */
7125 memset(dev, 0, sizeof(struct net_device));
7126
7127 /* make sure we BUG if trying to hit standard
7128 * register/unregister code path
7129 */
7130 dev->reg_state = NETREG_DUMMY;
7131
937f1ba5
BH
7132 /* NAPI wants this */
7133 INIT_LIST_HEAD(&dev->napi_list);
7134
7135 /* a dummy interface is started by default */
7136 set_bit(__LINK_STATE_PRESENT, &dev->state);
7137 set_bit(__LINK_STATE_START, &dev->state);
7138
29b4433d
ED
7139 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7140 * because users of this 'device' dont need to change
7141 * its refcount.
7142 */
7143
937f1ba5
BH
7144 return 0;
7145}
7146EXPORT_SYMBOL_GPL(init_dummy_netdev);
7147
7148
1da177e4
LT
7149/**
7150 * register_netdev - register a network device
7151 * @dev: device to register
7152 *
7153 * Take a completed network device structure and add it to the kernel
7154 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7155 * chain. 0 is returned on success. A negative errno code is returned
7156 * on a failure to set up the device, or if the name is a duplicate.
7157 *
38b4da38 7158 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7159 * and expands the device name if you passed a format string to
7160 * alloc_netdev.
7161 */
7162int register_netdev(struct net_device *dev)
7163{
7164 int err;
7165
7166 rtnl_lock();
1da177e4 7167 err = register_netdevice(dev);
1da177e4
LT
7168 rtnl_unlock();
7169 return err;
7170}
7171EXPORT_SYMBOL(register_netdev);
7172
29b4433d
ED
7173int netdev_refcnt_read(const struct net_device *dev)
7174{
7175 int i, refcnt = 0;
7176
7177 for_each_possible_cpu(i)
7178 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7179 return refcnt;
7180}
7181EXPORT_SYMBOL(netdev_refcnt_read);
7182
2c53040f 7183/**
1da177e4 7184 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7185 * @dev: target net_device
1da177e4
LT
7186 *
7187 * This is called when unregistering network devices.
7188 *
7189 * Any protocol or device that holds a reference should register
7190 * for netdevice notification, and cleanup and put back the
7191 * reference if they receive an UNREGISTER event.
7192 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7193 * call dev_put.
1da177e4
LT
7194 */
7195static void netdev_wait_allrefs(struct net_device *dev)
7196{
7197 unsigned long rebroadcast_time, warning_time;
29b4433d 7198 int refcnt;
1da177e4 7199
e014debe
ED
7200 linkwatch_forget_dev(dev);
7201
1da177e4 7202 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7203 refcnt = netdev_refcnt_read(dev);
7204
7205 while (refcnt != 0) {
1da177e4 7206 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7207 rtnl_lock();
1da177e4
LT
7208
7209 /* Rebroadcast unregister notification */
056925ab 7210 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7211
748e2d93 7212 __rtnl_unlock();
0115e8e3 7213 rcu_barrier();
748e2d93
ED
7214 rtnl_lock();
7215
0115e8e3 7216 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7217 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7218 &dev->state)) {
7219 /* We must not have linkwatch events
7220 * pending on unregister. If this
7221 * happens, we simply run the queue
7222 * unscheduled, resulting in a noop
7223 * for this device.
7224 */
7225 linkwatch_run_queue();
7226 }
7227
6756ae4b 7228 __rtnl_unlock();
1da177e4
LT
7229
7230 rebroadcast_time = jiffies;
7231 }
7232
7233 msleep(250);
7234
29b4433d
ED
7235 refcnt = netdev_refcnt_read(dev);
7236
1da177e4 7237 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7238 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7239 dev->name, refcnt);
1da177e4
LT
7240 warning_time = jiffies;
7241 }
7242 }
7243}
7244
7245/* The sequence is:
7246 *
7247 * rtnl_lock();
7248 * ...
7249 * register_netdevice(x1);
7250 * register_netdevice(x2);
7251 * ...
7252 * unregister_netdevice(y1);
7253 * unregister_netdevice(y2);
7254 * ...
7255 * rtnl_unlock();
7256 * free_netdev(y1);
7257 * free_netdev(y2);
7258 *
58ec3b4d 7259 * We are invoked by rtnl_unlock().
1da177e4 7260 * This allows us to deal with problems:
b17a7c17 7261 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7262 * without deadlocking with linkwatch via keventd.
7263 * 2) Since we run with the RTNL semaphore not held, we can sleep
7264 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7265 *
7266 * We must not return until all unregister events added during
7267 * the interval the lock was held have been completed.
1da177e4 7268 */
1da177e4
LT
7269void netdev_run_todo(void)
7270{
626ab0e6 7271 struct list_head list;
1da177e4 7272
1da177e4 7273 /* Snapshot list, allow later requests */
626ab0e6 7274 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7275
7276 __rtnl_unlock();
626ab0e6 7277
0115e8e3
ED
7278
7279 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7280 if (!list_empty(&list))
7281 rcu_barrier();
7282
1da177e4
LT
7283 while (!list_empty(&list)) {
7284 struct net_device *dev
e5e26d75 7285 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7286 list_del(&dev->todo_list);
7287
748e2d93 7288 rtnl_lock();
0115e8e3 7289 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7290 __rtnl_unlock();
0115e8e3 7291
b17a7c17 7292 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7293 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7294 dev->name, dev->reg_state);
7295 dump_stack();
7296 continue;
7297 }
1da177e4 7298
b17a7c17 7299 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7300
b17a7c17 7301 netdev_wait_allrefs(dev);
1da177e4 7302
b17a7c17 7303 /* paranoia */
29b4433d 7304 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7305 BUG_ON(!list_empty(&dev->ptype_all));
7306 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7307 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7308 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7309 WARN_ON(dev->dn_ptr);
1da177e4 7310
b17a7c17
SH
7311 if (dev->destructor)
7312 dev->destructor(dev);
9093bbb2 7313
50624c93
EB
7314 /* Report a network device has been unregistered */
7315 rtnl_lock();
7316 dev_net(dev)->dev_unreg_count--;
7317 __rtnl_unlock();
7318 wake_up(&netdev_unregistering_wq);
7319
9093bbb2
SH
7320 /* Free network device */
7321 kobject_put(&dev->dev.kobj);
1da177e4 7322 }
1da177e4
LT
7323}
7324
9256645a
JW
7325/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7326 * all the same fields in the same order as net_device_stats, with only
7327 * the type differing, but rtnl_link_stats64 may have additional fields
7328 * at the end for newer counters.
3cfde79c 7329 */
77a1abf5
ED
7330void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7331 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7332{
7333#if BITS_PER_LONG == 64
9256645a 7334 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7335 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7336 /* zero out counters that only exist in rtnl_link_stats64 */
7337 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7338 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7339#else
9256645a 7340 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7341 const unsigned long *src = (const unsigned long *)netdev_stats;
7342 u64 *dst = (u64 *)stats64;
7343
9256645a 7344 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7345 for (i = 0; i < n; i++)
7346 dst[i] = src[i];
9256645a
JW
7347 /* zero out counters that only exist in rtnl_link_stats64 */
7348 memset((char *)stats64 + n * sizeof(u64), 0,
7349 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7350#endif
7351}
77a1abf5 7352EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7353
eeda3fd6
SH
7354/**
7355 * dev_get_stats - get network device statistics
7356 * @dev: device to get statistics from
28172739 7357 * @storage: place to store stats
eeda3fd6 7358 *
d7753516
BH
7359 * Get network statistics from device. Return @storage.
7360 * The device driver may provide its own method by setting
7361 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7362 * otherwise the internal statistics structure is used.
eeda3fd6 7363 */
d7753516
BH
7364struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7365 struct rtnl_link_stats64 *storage)
7004bf25 7366{
eeda3fd6
SH
7367 const struct net_device_ops *ops = dev->netdev_ops;
7368
28172739
ED
7369 if (ops->ndo_get_stats64) {
7370 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7371 ops->ndo_get_stats64(dev, storage);
7372 } else if (ops->ndo_get_stats) {
3cfde79c 7373 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7374 } else {
7375 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7376 }
caf586e5 7377 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7378 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7379 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7380 return storage;
c45d286e 7381}
eeda3fd6 7382EXPORT_SYMBOL(dev_get_stats);
c45d286e 7383
24824a09 7384struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7385{
24824a09 7386 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7387
24824a09
ED
7388#ifdef CONFIG_NET_CLS_ACT
7389 if (queue)
7390 return queue;
7391 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7392 if (!queue)
7393 return NULL;
7394 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7395 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7396 queue->qdisc_sleeping = &noop_qdisc;
7397 rcu_assign_pointer(dev->ingress_queue, queue);
7398#endif
7399 return queue;
bb949fbd
DM
7400}
7401
2c60db03
ED
7402static const struct ethtool_ops default_ethtool_ops;
7403
d07d7507
SG
7404void netdev_set_default_ethtool_ops(struct net_device *dev,
7405 const struct ethtool_ops *ops)
7406{
7407 if (dev->ethtool_ops == &default_ethtool_ops)
7408 dev->ethtool_ops = ops;
7409}
7410EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7411
74d332c1
ED
7412void netdev_freemem(struct net_device *dev)
7413{
7414 char *addr = (char *)dev - dev->padded;
7415
4cb28970 7416 kvfree(addr);
74d332c1
ED
7417}
7418
1da177e4 7419/**
36909ea4 7420 * alloc_netdev_mqs - allocate network device
c835a677
TG
7421 * @sizeof_priv: size of private data to allocate space for
7422 * @name: device name format string
7423 * @name_assign_type: origin of device name
7424 * @setup: callback to initialize device
7425 * @txqs: the number of TX subqueues to allocate
7426 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7427 *
7428 * Allocates a struct net_device with private data area for driver use
90e51adf 7429 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7430 * for each queue on the device.
1da177e4 7431 */
36909ea4 7432struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7433 unsigned char name_assign_type,
36909ea4
TH
7434 void (*setup)(struct net_device *),
7435 unsigned int txqs, unsigned int rxqs)
1da177e4 7436{
1da177e4 7437 struct net_device *dev;
7943986c 7438 size_t alloc_size;
1ce8e7b5 7439 struct net_device *p;
1da177e4 7440
b6fe17d6
SH
7441 BUG_ON(strlen(name) >= sizeof(dev->name));
7442
36909ea4 7443 if (txqs < 1) {
7b6cd1ce 7444 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7445 return NULL;
7446 }
7447
a953be53 7448#ifdef CONFIG_SYSFS
36909ea4 7449 if (rxqs < 1) {
7b6cd1ce 7450 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7451 return NULL;
7452 }
7453#endif
7454
fd2ea0a7 7455 alloc_size = sizeof(struct net_device);
d1643d24
AD
7456 if (sizeof_priv) {
7457 /* ensure 32-byte alignment of private area */
1ce8e7b5 7458 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7459 alloc_size += sizeof_priv;
7460 }
7461 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7462 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7463
74d332c1
ED
7464 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7465 if (!p)
7466 p = vzalloc(alloc_size);
62b5942a 7467 if (!p)
1da177e4 7468 return NULL;
1da177e4 7469
1ce8e7b5 7470 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7471 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7472
29b4433d
ED
7473 dev->pcpu_refcnt = alloc_percpu(int);
7474 if (!dev->pcpu_refcnt)
74d332c1 7475 goto free_dev;
ab9c73cc 7476
ab9c73cc 7477 if (dev_addr_init(dev))
29b4433d 7478 goto free_pcpu;
ab9c73cc 7479
22bedad3 7480 dev_mc_init(dev);
a748ee24 7481 dev_uc_init(dev);
ccffad25 7482
c346dca1 7483 dev_net_set(dev, &init_net);
1da177e4 7484
8d3bdbd5 7485 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7486 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7487
8d3bdbd5
DM
7488 INIT_LIST_HEAD(&dev->napi_list);
7489 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7490 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7491 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7492 INIT_LIST_HEAD(&dev->adj_list.upper);
7493 INIT_LIST_HEAD(&dev->adj_list.lower);
7494 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7495 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7496 INIT_LIST_HEAD(&dev->ptype_all);
7497 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7498 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7499 setup(dev);
7500
a813104d 7501 if (!dev->tx_queue_len) {
f84bb1ea 7502 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7503 dev->tx_queue_len = 1;
7504 }
906470c1 7505
36909ea4
TH
7506 dev->num_tx_queues = txqs;
7507 dev->real_num_tx_queues = txqs;
ed9af2e8 7508 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7509 goto free_all;
e8a0464c 7510
a953be53 7511#ifdef CONFIG_SYSFS
36909ea4
TH
7512 dev->num_rx_queues = rxqs;
7513 dev->real_num_rx_queues = rxqs;
fe822240 7514 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7515 goto free_all;
df334545 7516#endif
0a9627f2 7517
1da177e4 7518 strcpy(dev->name, name);
c835a677 7519 dev->name_assign_type = name_assign_type;
cbda10fa 7520 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7521 if (!dev->ethtool_ops)
7522 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7523
7524 nf_hook_ingress_init(dev);
7525
1da177e4 7526 return dev;
ab9c73cc 7527
8d3bdbd5
DM
7528free_all:
7529 free_netdev(dev);
7530 return NULL;
7531
29b4433d
ED
7532free_pcpu:
7533 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7534free_dev:
7535 netdev_freemem(dev);
ab9c73cc 7536 return NULL;
1da177e4 7537}
36909ea4 7538EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7539
7540/**
7541 * free_netdev - free network device
7542 * @dev: device
7543 *
4ec93edb
YH
7544 * This function does the last stage of destroying an allocated device
7545 * interface. The reference to the device object is released.
1da177e4 7546 * If this is the last reference then it will be freed.
93d05d4a 7547 * Must be called in process context.
1da177e4
LT
7548 */
7549void free_netdev(struct net_device *dev)
7550{
d565b0a1
HX
7551 struct napi_struct *p, *n;
7552
93d05d4a 7553 might_sleep();
60877a32 7554 netif_free_tx_queues(dev);
a953be53 7555#ifdef CONFIG_SYSFS
10595902 7556 kvfree(dev->_rx);
fe822240 7557#endif
e8a0464c 7558
33d480ce 7559 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7560
f001fde5
JP
7561 /* Flush device addresses */
7562 dev_addr_flush(dev);
7563
d565b0a1
HX
7564 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7565 netif_napi_del(p);
7566
29b4433d
ED
7567 free_percpu(dev->pcpu_refcnt);
7568 dev->pcpu_refcnt = NULL;
7569
3041a069 7570 /* Compatibility with error handling in drivers */
1da177e4 7571 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7572 netdev_freemem(dev);
1da177e4
LT
7573 return;
7574 }
7575
7576 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7577 dev->reg_state = NETREG_RELEASED;
7578
43cb76d9
GKH
7579 /* will free via device release */
7580 put_device(&dev->dev);
1da177e4 7581}
d1b19dff 7582EXPORT_SYMBOL(free_netdev);
4ec93edb 7583
f0db275a
SH
7584/**
7585 * synchronize_net - Synchronize with packet receive processing
7586 *
7587 * Wait for packets currently being received to be done.
7588 * Does not block later packets from starting.
7589 */
4ec93edb 7590void synchronize_net(void)
1da177e4
LT
7591{
7592 might_sleep();
be3fc413
ED
7593 if (rtnl_is_locked())
7594 synchronize_rcu_expedited();
7595 else
7596 synchronize_rcu();
1da177e4 7597}
d1b19dff 7598EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7599
7600/**
44a0873d 7601 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7602 * @dev: device
44a0873d 7603 * @head: list
6ebfbc06 7604 *
1da177e4 7605 * This function shuts down a device interface and removes it
d59b54b1 7606 * from the kernel tables.
44a0873d 7607 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7608 *
7609 * Callers must hold the rtnl semaphore. You may want
7610 * unregister_netdev() instead of this.
7611 */
7612
44a0873d 7613void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7614{
a6620712
HX
7615 ASSERT_RTNL();
7616
44a0873d 7617 if (head) {
9fdce099 7618 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7619 } else {
7620 rollback_registered(dev);
7621 /* Finish processing unregister after unlock */
7622 net_set_todo(dev);
7623 }
1da177e4 7624}
44a0873d 7625EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7626
9b5e383c
ED
7627/**
7628 * unregister_netdevice_many - unregister many devices
7629 * @head: list of devices
87757a91
ED
7630 *
7631 * Note: As most callers use a stack allocated list_head,
7632 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7633 */
7634void unregister_netdevice_many(struct list_head *head)
7635{
7636 struct net_device *dev;
7637
7638 if (!list_empty(head)) {
7639 rollback_registered_many(head);
7640 list_for_each_entry(dev, head, unreg_list)
7641 net_set_todo(dev);
87757a91 7642 list_del(head);
9b5e383c
ED
7643 }
7644}
63c8099d 7645EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7646
1da177e4
LT
7647/**
7648 * unregister_netdev - remove device from the kernel
7649 * @dev: device
7650 *
7651 * This function shuts down a device interface and removes it
d59b54b1 7652 * from the kernel tables.
1da177e4
LT
7653 *
7654 * This is just a wrapper for unregister_netdevice that takes
7655 * the rtnl semaphore. In general you want to use this and not
7656 * unregister_netdevice.
7657 */
7658void unregister_netdev(struct net_device *dev)
7659{
7660 rtnl_lock();
7661 unregister_netdevice(dev);
7662 rtnl_unlock();
7663}
1da177e4
LT
7664EXPORT_SYMBOL(unregister_netdev);
7665
ce286d32
EB
7666/**
7667 * dev_change_net_namespace - move device to different nethost namespace
7668 * @dev: device
7669 * @net: network namespace
7670 * @pat: If not NULL name pattern to try if the current device name
7671 * is already taken in the destination network namespace.
7672 *
7673 * This function shuts down a device interface and moves it
7674 * to a new network namespace. On success 0 is returned, on
7675 * a failure a netagive errno code is returned.
7676 *
7677 * Callers must hold the rtnl semaphore.
7678 */
7679
7680int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7681{
ce286d32
EB
7682 int err;
7683
7684 ASSERT_RTNL();
7685
7686 /* Don't allow namespace local devices to be moved. */
7687 err = -EINVAL;
7688 if (dev->features & NETIF_F_NETNS_LOCAL)
7689 goto out;
7690
7691 /* Ensure the device has been registrered */
ce286d32
EB
7692 if (dev->reg_state != NETREG_REGISTERED)
7693 goto out;
7694
7695 /* Get out if there is nothing todo */
7696 err = 0;
878628fb 7697 if (net_eq(dev_net(dev), net))
ce286d32
EB
7698 goto out;
7699
7700 /* Pick the destination device name, and ensure
7701 * we can use it in the destination network namespace.
7702 */
7703 err = -EEXIST;
d9031024 7704 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7705 /* We get here if we can't use the current device name */
7706 if (!pat)
7707 goto out;
828de4f6 7708 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7709 goto out;
7710 }
7711
7712 /*
7713 * And now a mini version of register_netdevice unregister_netdevice.
7714 */
7715
7716 /* If device is running close it first. */
9b772652 7717 dev_close(dev);
ce286d32
EB
7718
7719 /* And unlink it from device chain */
7720 err = -ENODEV;
7721 unlist_netdevice(dev);
7722
7723 synchronize_net();
7724
7725 /* Shutdown queueing discipline. */
7726 dev_shutdown(dev);
7727
7728 /* Notify protocols, that we are about to destroy
7729 this device. They should clean all the things.
3b27e105
DL
7730
7731 Note that dev->reg_state stays at NETREG_REGISTERED.
7732 This is wanted because this way 8021q and macvlan know
7733 the device is just moving and can keep their slaves up.
ce286d32
EB
7734 */
7735 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7736 rcu_barrier();
7737 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7738 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7739
7740 /*
7741 * Flush the unicast and multicast chains
7742 */
a748ee24 7743 dev_uc_flush(dev);
22bedad3 7744 dev_mc_flush(dev);
ce286d32 7745
4e66ae2e
SH
7746 /* Send a netdev-removed uevent to the old namespace */
7747 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7748 netdev_adjacent_del_links(dev);
4e66ae2e 7749
ce286d32 7750 /* Actually switch the network namespace */
c346dca1 7751 dev_net_set(dev, net);
ce286d32 7752
ce286d32 7753 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7754 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7755 dev->ifindex = dev_new_index(net);
ce286d32 7756
4e66ae2e
SH
7757 /* Send a netdev-add uevent to the new namespace */
7758 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7759 netdev_adjacent_add_links(dev);
4e66ae2e 7760
8b41d188 7761 /* Fixup kobjects */
a1b3f594 7762 err = device_rename(&dev->dev, dev->name);
8b41d188 7763 WARN_ON(err);
ce286d32
EB
7764
7765 /* Add the device back in the hashes */
7766 list_netdevice(dev);
7767
7768 /* Notify protocols, that a new device appeared. */
7769 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7770
d90a909e
EB
7771 /*
7772 * Prevent userspace races by waiting until the network
7773 * device is fully setup before sending notifications.
7774 */
7f294054 7775 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7776
ce286d32
EB
7777 synchronize_net();
7778 err = 0;
7779out:
7780 return err;
7781}
463d0183 7782EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7783
1da177e4
LT
7784static int dev_cpu_callback(struct notifier_block *nfb,
7785 unsigned long action,
7786 void *ocpu)
7787{
7788 struct sk_buff **list_skb;
1da177e4
LT
7789 struct sk_buff *skb;
7790 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7791 struct softnet_data *sd, *oldsd;
7792
8bb78442 7793 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7794 return NOTIFY_OK;
7795
7796 local_irq_disable();
7797 cpu = smp_processor_id();
7798 sd = &per_cpu(softnet_data, cpu);
7799 oldsd = &per_cpu(softnet_data, oldcpu);
7800
7801 /* Find end of our completion_queue. */
7802 list_skb = &sd->completion_queue;
7803 while (*list_skb)
7804 list_skb = &(*list_skb)->next;
7805 /* Append completion queue from offline CPU. */
7806 *list_skb = oldsd->completion_queue;
7807 oldsd->completion_queue = NULL;
7808
1da177e4 7809 /* Append output queue from offline CPU. */
a9cbd588
CG
7810 if (oldsd->output_queue) {
7811 *sd->output_queue_tailp = oldsd->output_queue;
7812 sd->output_queue_tailp = oldsd->output_queue_tailp;
7813 oldsd->output_queue = NULL;
7814 oldsd->output_queue_tailp = &oldsd->output_queue;
7815 }
ac64da0b
ED
7816 /* Append NAPI poll list from offline CPU, with one exception :
7817 * process_backlog() must be called by cpu owning percpu backlog.
7818 * We properly handle process_queue & input_pkt_queue later.
7819 */
7820 while (!list_empty(&oldsd->poll_list)) {
7821 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7822 struct napi_struct,
7823 poll_list);
7824
7825 list_del_init(&napi->poll_list);
7826 if (napi->poll == process_backlog)
7827 napi->state = 0;
7828 else
7829 ____napi_schedule(sd, napi);
264524d5 7830 }
1da177e4
LT
7831
7832 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7833 local_irq_enable();
7834
7835 /* Process offline CPU's input_pkt_queue */
76cc8b13 7836 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7837 netif_rx_ni(skb);
76cc8b13 7838 input_queue_head_incr(oldsd);
fec5e652 7839 }
ac64da0b 7840 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7841 netif_rx_ni(skb);
76cc8b13
TH
7842 input_queue_head_incr(oldsd);
7843 }
1da177e4
LT
7844
7845 return NOTIFY_OK;
7846}
1da177e4
LT
7847
7848
7f353bf2 7849/**
b63365a2
HX
7850 * netdev_increment_features - increment feature set by one
7851 * @all: current feature set
7852 * @one: new feature set
7853 * @mask: mask feature set
7f353bf2
HX
7854 *
7855 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7856 * @one to the master device with current feature set @all. Will not
7857 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7858 */
c8f44aff
MM
7859netdev_features_t netdev_increment_features(netdev_features_t all,
7860 netdev_features_t one, netdev_features_t mask)
b63365a2 7861{
c8cd0989 7862 if (mask & NETIF_F_HW_CSUM)
a188222b 7863 mask |= NETIF_F_CSUM_MASK;
1742f183 7864 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7865
a188222b 7866 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7867 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7868
1742f183 7869 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7870 if (all & NETIF_F_HW_CSUM)
7871 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7872
7873 return all;
7874}
b63365a2 7875EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7876
430f03cd 7877static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7878{
7879 int i;
7880 struct hlist_head *hash;
7881
7882 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7883 if (hash != NULL)
7884 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7885 INIT_HLIST_HEAD(&hash[i]);
7886
7887 return hash;
7888}
7889
881d966b 7890/* Initialize per network namespace state */
4665079c 7891static int __net_init netdev_init(struct net *net)
881d966b 7892{
734b6541
RM
7893 if (net != &init_net)
7894 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7895
30d97d35
PE
7896 net->dev_name_head = netdev_create_hash();
7897 if (net->dev_name_head == NULL)
7898 goto err_name;
881d966b 7899
30d97d35
PE
7900 net->dev_index_head = netdev_create_hash();
7901 if (net->dev_index_head == NULL)
7902 goto err_idx;
881d966b
EB
7903
7904 return 0;
30d97d35
PE
7905
7906err_idx:
7907 kfree(net->dev_name_head);
7908err_name:
7909 return -ENOMEM;
881d966b
EB
7910}
7911
f0db275a
SH
7912/**
7913 * netdev_drivername - network driver for the device
7914 * @dev: network device
f0db275a
SH
7915 *
7916 * Determine network driver for device.
7917 */
3019de12 7918const char *netdev_drivername(const struct net_device *dev)
6579e57b 7919{
cf04a4c7
SH
7920 const struct device_driver *driver;
7921 const struct device *parent;
3019de12 7922 const char *empty = "";
6579e57b
AV
7923
7924 parent = dev->dev.parent;
6579e57b 7925 if (!parent)
3019de12 7926 return empty;
6579e57b
AV
7927
7928 driver = parent->driver;
7929 if (driver && driver->name)
3019de12
DM
7930 return driver->name;
7931 return empty;
6579e57b
AV
7932}
7933
6ea754eb
JP
7934static void __netdev_printk(const char *level, const struct net_device *dev,
7935 struct va_format *vaf)
256df2f3 7936{
b004ff49 7937 if (dev && dev->dev.parent) {
6ea754eb
JP
7938 dev_printk_emit(level[1] - '0',
7939 dev->dev.parent,
7940 "%s %s %s%s: %pV",
7941 dev_driver_string(dev->dev.parent),
7942 dev_name(dev->dev.parent),
7943 netdev_name(dev), netdev_reg_state(dev),
7944 vaf);
b004ff49 7945 } else if (dev) {
6ea754eb
JP
7946 printk("%s%s%s: %pV",
7947 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7948 } else {
6ea754eb 7949 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7950 }
256df2f3
JP
7951}
7952
6ea754eb
JP
7953void netdev_printk(const char *level, const struct net_device *dev,
7954 const char *format, ...)
256df2f3
JP
7955{
7956 struct va_format vaf;
7957 va_list args;
256df2f3
JP
7958
7959 va_start(args, format);
7960
7961 vaf.fmt = format;
7962 vaf.va = &args;
7963
6ea754eb 7964 __netdev_printk(level, dev, &vaf);
b004ff49 7965
256df2f3 7966 va_end(args);
256df2f3
JP
7967}
7968EXPORT_SYMBOL(netdev_printk);
7969
7970#define define_netdev_printk_level(func, level) \
6ea754eb 7971void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7972{ \
256df2f3
JP
7973 struct va_format vaf; \
7974 va_list args; \
7975 \
7976 va_start(args, fmt); \
7977 \
7978 vaf.fmt = fmt; \
7979 vaf.va = &args; \
7980 \
6ea754eb 7981 __netdev_printk(level, dev, &vaf); \
b004ff49 7982 \
256df2f3 7983 va_end(args); \
256df2f3
JP
7984} \
7985EXPORT_SYMBOL(func);
7986
7987define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7988define_netdev_printk_level(netdev_alert, KERN_ALERT);
7989define_netdev_printk_level(netdev_crit, KERN_CRIT);
7990define_netdev_printk_level(netdev_err, KERN_ERR);
7991define_netdev_printk_level(netdev_warn, KERN_WARNING);
7992define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7993define_netdev_printk_level(netdev_info, KERN_INFO);
7994
4665079c 7995static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7996{
7997 kfree(net->dev_name_head);
7998 kfree(net->dev_index_head);
7999}
8000
022cbae6 8001static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8002 .init = netdev_init,
8003 .exit = netdev_exit,
8004};
8005
4665079c 8006static void __net_exit default_device_exit(struct net *net)
ce286d32 8007{
e008b5fc 8008 struct net_device *dev, *aux;
ce286d32 8009 /*
e008b5fc 8010 * Push all migratable network devices back to the
ce286d32
EB
8011 * initial network namespace
8012 */
8013 rtnl_lock();
e008b5fc 8014 for_each_netdev_safe(net, dev, aux) {
ce286d32 8015 int err;
aca51397 8016 char fb_name[IFNAMSIZ];
ce286d32
EB
8017
8018 /* Ignore unmoveable devices (i.e. loopback) */
8019 if (dev->features & NETIF_F_NETNS_LOCAL)
8020 continue;
8021
e008b5fc
EB
8022 /* Leave virtual devices for the generic cleanup */
8023 if (dev->rtnl_link_ops)
8024 continue;
d0c082ce 8025
25985edc 8026 /* Push remaining network devices to init_net */
aca51397
PE
8027 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8028 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8029 if (err) {
7b6cd1ce
JP
8030 pr_emerg("%s: failed to move %s to init_net: %d\n",
8031 __func__, dev->name, err);
aca51397 8032 BUG();
ce286d32
EB
8033 }
8034 }
8035 rtnl_unlock();
8036}
8037
50624c93
EB
8038static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8039{
8040 /* Return with the rtnl_lock held when there are no network
8041 * devices unregistering in any network namespace in net_list.
8042 */
8043 struct net *net;
8044 bool unregistering;
ff960a73 8045 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8046
ff960a73 8047 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8048 for (;;) {
50624c93
EB
8049 unregistering = false;
8050 rtnl_lock();
8051 list_for_each_entry(net, net_list, exit_list) {
8052 if (net->dev_unreg_count > 0) {
8053 unregistering = true;
8054 break;
8055 }
8056 }
8057 if (!unregistering)
8058 break;
8059 __rtnl_unlock();
ff960a73
PZ
8060
8061 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8062 }
ff960a73 8063 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8064}
8065
04dc7f6b
EB
8066static void __net_exit default_device_exit_batch(struct list_head *net_list)
8067{
8068 /* At exit all network devices most be removed from a network
b595076a 8069 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8070 * Do this across as many network namespaces as possible to
8071 * improve batching efficiency.
8072 */
8073 struct net_device *dev;
8074 struct net *net;
8075 LIST_HEAD(dev_kill_list);
8076
50624c93
EB
8077 /* To prevent network device cleanup code from dereferencing
8078 * loopback devices or network devices that have been freed
8079 * wait here for all pending unregistrations to complete,
8080 * before unregistring the loopback device and allowing the
8081 * network namespace be freed.
8082 *
8083 * The netdev todo list containing all network devices
8084 * unregistrations that happen in default_device_exit_batch
8085 * will run in the rtnl_unlock() at the end of
8086 * default_device_exit_batch.
8087 */
8088 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8089 list_for_each_entry(net, net_list, exit_list) {
8090 for_each_netdev_reverse(net, dev) {
b0ab2fab 8091 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8092 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8093 else
8094 unregister_netdevice_queue(dev, &dev_kill_list);
8095 }
8096 }
8097 unregister_netdevice_many(&dev_kill_list);
8098 rtnl_unlock();
8099}
8100
022cbae6 8101static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8102 .exit = default_device_exit,
04dc7f6b 8103 .exit_batch = default_device_exit_batch,
ce286d32
EB
8104};
8105
1da177e4
LT
8106/*
8107 * Initialize the DEV module. At boot time this walks the device list and
8108 * unhooks any devices that fail to initialise (normally hardware not
8109 * present) and leaves us with a valid list of present and active devices.
8110 *
8111 */
8112
8113/*
8114 * This is called single threaded during boot, so no need
8115 * to take the rtnl semaphore.
8116 */
8117static int __init net_dev_init(void)
8118{
8119 int i, rc = -ENOMEM;
8120
8121 BUG_ON(!dev_boot_phase);
8122
1da177e4
LT
8123 if (dev_proc_init())
8124 goto out;
8125
8b41d188 8126 if (netdev_kobject_init())
1da177e4
LT
8127 goto out;
8128
8129 INIT_LIST_HEAD(&ptype_all);
82d8a867 8130 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8131 INIT_LIST_HEAD(&ptype_base[i]);
8132
62532da9
VY
8133 INIT_LIST_HEAD(&offload_base);
8134
881d966b
EB
8135 if (register_pernet_subsys(&netdev_net_ops))
8136 goto out;
1da177e4
LT
8137
8138 /*
8139 * Initialise the packet receive queues.
8140 */
8141
6f912042 8142 for_each_possible_cpu(i) {
e36fa2f7 8143 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8144
e36fa2f7 8145 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8146 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8147 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8148 sd->output_queue_tailp = &sd->output_queue;
df334545 8149#ifdef CONFIG_RPS
e36fa2f7
ED
8150 sd->csd.func = rps_trigger_softirq;
8151 sd->csd.info = sd;
e36fa2f7 8152 sd->cpu = i;
1e94d72f 8153#endif
0a9627f2 8154
e36fa2f7
ED
8155 sd->backlog.poll = process_backlog;
8156 sd->backlog.weight = weight_p;
1da177e4
LT
8157 }
8158
1da177e4
LT
8159 dev_boot_phase = 0;
8160
505d4f73
EB
8161 /* The loopback device is special if any other network devices
8162 * is present in a network namespace the loopback device must
8163 * be present. Since we now dynamically allocate and free the
8164 * loopback device ensure this invariant is maintained by
8165 * keeping the loopback device as the first device on the
8166 * list of network devices. Ensuring the loopback devices
8167 * is the first device that appears and the last network device
8168 * that disappears.
8169 */
8170 if (register_pernet_device(&loopback_net_ops))
8171 goto out;
8172
8173 if (register_pernet_device(&default_device_ops))
8174 goto out;
8175
962cf36c
CM
8176 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8177 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8178
8179 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8180 dst_subsys_init();
1da177e4
LT
8181 rc = 0;
8182out:
8183 return rc;
8184}
8185
8186subsys_initcall(net_dev_init);
This page took 2.774719 seconds and 5 git commands to generate.