net: Move check for multiple vlans to drivers
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
1da177e4 138
342709ef
PE
139#include "net-sysfs.h"
140
d565b0a1
HX
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
5d38a079
HX
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
1da177e4 147static DEFINE_SPINLOCK(ptype_lock);
62532da9 148static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
62532da9 151static struct list_head offload_base __read_mostly;
1da177e4 152
ae78dbfa 153static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
ae78dbfa 157
1da177e4 158/*
7562f876 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
160 * semaphore.
161 *
c6d14c84 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
7562f876 165 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
1da177e4 177DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
178EXPORT_SYMBOL(dev_base_lock);
179
af12fa6e
ET
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
18afa4b0 186static seqcount_t devnet_rename_seq;
c91f6df2 187
4e985ada
TG
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
881d966b 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 194{
95c96174
ED
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
08e9897d 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
198}
199
881d966b 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 201{
7c28bd0b 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
203}
204
e36fa2f7 205static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
206{
207#ifdef CONFIG_RPS
e36fa2f7 208 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
209#endif
210}
211
e36fa2f7 212static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
213{
214#ifdef CONFIG_RPS
e36fa2f7 215 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
216#endif
217}
218
ce286d32 219/* Device list insertion */
53759be9 220static void list_netdevice(struct net_device *dev)
ce286d32 221{
c346dca1 222 struct net *net = dev_net(dev);
ce286d32
EB
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
c6d14c84 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
ce286d32 231 write_unlock_bh(&dev_base_lock);
4e985ada
TG
232
233 dev_base_seq_inc(net);
ce286d32
EB
234}
235
fb699dfd
ED
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
ce286d32
EB
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
c6d14c84 245 list_del_rcu(&dev->dev_list);
72c9528b 246 hlist_del_rcu(&dev->name_hlist);
fb699dfd 247 hlist_del_rcu(&dev->index_hlist);
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
251}
252
1da177e4
LT
253/*
254 * Our notifier list
255 */
256
f07d5b94 257static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
bea3348e 263
9958da05 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 265EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 266
cf508b12 267#ifdef CONFIG_LOCKDEP
723e98b7 268/*
c773e847 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 288
36cbd3dc 289static const char *const netdev_lock_name[] =
723e98b7
JP
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
cf508b12
DM
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
723e98b7
JP
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
cf508b12
DM
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
723e98b7 339#else
cf508b12
DM
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
345{
346}
347#endif
1da177e4
LT
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
1da177e4
LT
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
c07b68e8
ED
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
7866a621 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 375 else
7866a621
SN
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
378}
379
1da177e4
LT
380/**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
4ec93edb 388 * This call does not sleep therefore it can not
1da177e4
LT
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
c07b68e8 395 struct list_head *head = ptype_head(pt);
1da177e4 396
c07b68e8
ED
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
1da177e4 400}
d1b19dff 401EXPORT_SYMBOL(dev_add_pack);
1da177e4 402
1da177e4
LT
403/**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
4ec93edb 410 * returns.
1da177e4
LT
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
c07b68e8 418 struct list_head *head = ptype_head(pt);
1da177e4
LT
419 struct packet_type *pt1;
420
c07b68e8 421 spin_lock(&ptype_lock);
1da177e4
LT
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
7b6cd1ce 430 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 431out:
c07b68e8 432 spin_unlock(&ptype_lock);
1da177e4 433}
d1b19dff
ED
434EXPORT_SYMBOL(__dev_remove_pack);
435
1da177e4
LT
436/**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450 __dev_remove_pack(pt);
4ec93edb 451
1da177e4
LT
452 synchronize_net();
453}
d1b19dff 454EXPORT_SYMBOL(dev_remove_pack);
1da177e4 455
62532da9
VY
456
457/**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
1d143d9f 492static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
493{
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
c53aa505 497 spin_lock(&offload_lock);
62532da9
VY
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507out:
c53aa505 508 spin_unlock(&offload_lock);
62532da9 509}
62532da9
VY
510
511/**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525 __dev_remove_offload(po);
526
527 synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
1da177e4
LT
531/******************************************************************************
532
533 Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 558 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 583 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592}
d1b19dff 593EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
594
595
596/**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
881d966b 618 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658 Device Interface Subroutines
659
660*******************************************************************************/
661
662/**
663 * __dev_get_by_name - find a device by its name
c4ea43c5 664 * @net: the applicable net namespace
1da177e4
LT
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
881d966b 674struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 675{
0bd8d536
ED
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 678
b67bfe0d 679 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
0bd8d536 682
1da177e4
LT
683 return NULL;
684}
d1b19dff 685EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 686
72c9528b
ED
687/**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700{
72c9528b
ED
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
b67bfe0d 704 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709}
710EXPORT_SYMBOL(dev_get_by_name_rcu);
711
1da177e4
LT
712/**
713 * dev_get_by_name - find a device by its name
c4ea43c5 714 * @net: the applicable net namespace
1da177e4
LT
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
881d966b 724struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
725{
726 struct net_device *dev;
727
72c9528b
ED
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
730 if (dev)
731 dev_hold(dev);
72c9528b 732 rcu_read_unlock();
1da177e4
LT
733 return dev;
734}
d1b19dff 735EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
736
737/**
738 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 739 * @net: the applicable net namespace
1da177e4
LT
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
881d966b 749struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 750{
0bd8d536
ED
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 753
b67bfe0d 754 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
755 if (dev->ifindex == ifindex)
756 return dev;
0bd8d536 757
1da177e4
LT
758 return NULL;
759}
d1b19dff 760EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 761
fb699dfd
ED
762/**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774{
fb699dfd
ED
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
b67bfe0d 778 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783}
784EXPORT_SYMBOL(dev_get_by_index_rcu);
785
1da177e4
LT
786
787/**
788 * dev_get_by_index - find a device by its ifindex
c4ea43c5 789 * @net: the applicable net namespace
1da177e4
LT
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
881d966b 798struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
799{
800 struct net_device *dev;
801
fb699dfd
ED
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
804 if (dev)
805 dev_hold(dev);
fb699dfd 806 rcu_read_unlock();
1da177e4
LT
807 return dev;
808}
d1b19dff 809EXPORT_SYMBOL(dev_get_by_index);
1da177e4 810
5dbe7c17
NS
811/**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821int netdev_get_name(struct net *net, char *name, int ifindex)
822{
823 struct net_device *dev;
824 unsigned int seq;
825
826retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843}
844
1da177e4 845/**
941666c2 846 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 847 * @net: the applicable net namespace
1da177e4
LT
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
941666c2 854 * The returned device has not had its ref count increased
1da177e4
LT
855 * and the caller must therefore be careful about locking
856 *
1da177e4
LT
857 */
858
941666c2
ED
859struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
1da177e4
LT
861{
862 struct net_device *dev;
863
941666c2 864 for_each_netdev_rcu(net, dev)
1da177e4
LT
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
867 return dev;
868
869 return NULL;
1da177e4 870}
941666c2 871EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 872
881d966b 873struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
874{
875 struct net_device *dev;
876
4e9cac2b 877 ASSERT_RTNL();
881d966b 878 for_each_netdev(net, dev)
4e9cac2b 879 if (dev->type == type)
7562f876
PE
880 return dev;
881
882 return NULL;
4e9cac2b 883}
4e9cac2b
PM
884EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
881d966b 886struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 887{
99fe3c39 888 struct net_device *dev, *ret = NULL;
4e9cac2b 889
99fe3c39
ED
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
1da177e4 899}
1da177e4
LT
900EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902/**
6c555490 903 * __dev_get_by_flags - find any device with given flags
c4ea43c5 904 * @net: the applicable net namespace
1da177e4
LT
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 909 * is not found or a pointer to the device. Must be called inside
6c555490 910 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
911 */
912
6c555490
WC
913struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
1da177e4 915{
7562f876 916 struct net_device *dev, *ret;
1da177e4 917
6c555490
WC
918 ASSERT_RTNL();
919
7562f876 920 ret = NULL;
6c555490 921 for_each_netdev(net, dev) {
1da177e4 922 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 923 ret = dev;
1da177e4
LT
924 break;
925 }
926 }
7562f876 927 return ret;
1da177e4 928}
6c555490 929EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
930
931/**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
c7fa9d18
DM
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
1da177e4 938 */
95f050bf 939bool dev_valid_name(const char *name)
1da177e4 940{
c7fa9d18 941 if (*name == '\0')
95f050bf 942 return false;
b6fe17d6 943 if (strlen(name) >= IFNAMSIZ)
95f050bf 944 return false;
c7fa9d18 945 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 946 return false;
c7fa9d18
DM
947
948 while (*name) {
a4176a93 949 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 950 return false;
c7fa9d18
DM
951 name++;
952 }
95f050bf 953 return true;
1da177e4 954}
d1b19dff 955EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
956
957/**
b267b179
EB
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
1da177e4 960 * @name: name format string
b267b179 961 * @buf: scratch buffer and result name string
1da177e4
LT
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
970 */
971
b267b179 972static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
973{
974 int i = 0;
1da177e4
LT
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 977 unsigned long *inuse;
1da177e4
LT
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
cfcabdcc 991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
992 if (!inuse)
993 return -ENOMEM;
994
881d966b 995 for_each_netdev(net, d) {
1da177e4
LT
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1002 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
d9031024
OP
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1013 if (!__dev_get_by_name(net, buf))
1da177e4 1014 return i;
1da177e4
LT
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021}
1022
b267b179
EB
1023/**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037int dev_alloc_name(struct net_device *dev, const char *name)
1038{
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
c346dca1
YH
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
b267b179
EB
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049}
d1b19dff 1050EXPORT_SYMBOL(dev_alloc_name);
b267b179 1051
828de4f6
G
1052static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
d9031024 1055{
828de4f6
G
1056 char buf[IFNAMSIZ];
1057 int ret;
8ce6cebc 1058
828de4f6
G
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063}
1064
1065static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068{
1069 BUG_ON(!net);
8ce6cebc 1070
d9031024
OP
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1c5cae81 1074 if (strchr(name, '%'))
828de4f6 1075 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
8ce6cebc
DL
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1080
1081 return 0;
1082}
1da177e4
LT
1083
1084/**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
cf04a4c7 1092int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1093{
238fa362 1094 unsigned char old_assign_type;
fcc5a03a 1095 char oldname[IFNAMSIZ];
1da177e4 1096 int err = 0;
fcc5a03a 1097 int ret;
881d966b 1098 struct net *net;
1da177e4
LT
1099
1100 ASSERT_RTNL();
c346dca1 1101 BUG_ON(!dev_net(dev));
1da177e4 1102
c346dca1 1103 net = dev_net(dev);
1da177e4
LT
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
30e6c9fa 1107 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1110 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1111 return 0;
c91f6df2 1112 }
c8d90dca 1113
fcc5a03a
HX
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
828de4f6 1116 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1117 if (err < 0) {
30e6c9fa 1118 write_seqcount_end(&devnet_rename_seq);
d9031024 1119 return err;
c91f6df2 1120 }
1da177e4 1121
6fe82a39
VF
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
238fa362
TG
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
fcc5a03a 1128rollback:
a1b3f594
EB
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1132 dev->name_assign_type = old_assign_type;
30e6c9fa 1133 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1134 return ret;
dcc99773 1135 }
7f988eab 1136
30e6c9fa 1137 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1138
5bb025fa
VF
1139 netdev_adjacent_rename_links(dev, oldname);
1140
7f988eab 1141 write_lock_bh(&dev_base_lock);
372b2312 1142 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1149 write_unlock_bh(&dev_base_lock);
1150
056925ab 1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
91e9c07b
ED
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
fcc5a03a 1157 err = ret;
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1159 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1160 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1163 goto rollback;
91e9c07b 1164 } else {
7b6cd1ce 1165 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1166 dev->name, ret);
fcc5a03a
HX
1167 }
1168 }
1da177e4
LT
1169
1170 return err;
1171}
1172
0b815a1a
SH
1173/**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
f0db275a 1177 * @len: limit of bytes to copy from info
0b815a1a
SH
1178 *
1179 * Set ifalias for a device,
1180 */
1181int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182{
7364e445
AK
1183 char *new_ifalias;
1184
0b815a1a
SH
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
96ca4a2c 1190 if (!len) {
388dfc2d
SK
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
96ca4a2c
OH
1193 return 0;
1194 }
1195
7364e445
AK
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
0b815a1a 1198 return -ENOMEM;
7364e445 1199 dev->ifalias = new_ifalias;
0b815a1a
SH
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203}
1204
1205
d8a33ac4 1206/**
3041a069 1207 * netdev_features_change - device changes features
d8a33ac4
SH
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212void netdev_features_change(struct net_device *dev)
1213{
056925ab 1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1215}
1216EXPORT_SYMBOL(netdev_features_change);
1217
1da177e4
LT
1218/**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226void netdev_state_change(struct net_device *dev)
1227{
1228 if (dev->flags & IFF_UP) {
54951194
LP
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
7f294054 1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1235 }
1236}
d1b19dff 1237EXPORT_SYMBOL(netdev_state_change);
1da177e4 1238
ee89bab1
AW
1239/**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1250{
ee89bab1
AW
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
c1da4ac7 1254}
ee89bab1 1255EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1256
bd380811 1257static int __dev_open(struct net_device *dev)
1da177e4 1258{
d314774c 1259 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1260 int ret;
1da177e4 1261
e46b66bc
BH
1262 ASSERT_RTNL();
1263
1da177e4
LT
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
ca99ca14
NH
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
66b5552f 1271 netpoll_poll_disable(dev);
ca99ca14 1272
3b8bcfd5
JB
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1da177e4 1278 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1279
d314774c
SH
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
bada339b 1282
d314774c
SH
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1da177e4 1285
66b5552f 1286 netpoll_poll_enable(dev);
ca99ca14 1287
bada339b
JG
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1da177e4 1291 dev->flags |= IFF_UP;
4417da66 1292 dev_set_rx_mode(dev);
1da177e4 1293 dev_activate(dev);
7bf23575 1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1295 }
bada339b 1296
1da177e4
LT
1297 return ret;
1298}
1299
1300/**
bd380811
PM
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1da177e4 1303 *
bd380811
PM
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1da177e4 1311 */
bd380811
PM
1312int dev_open(struct net_device *dev)
1313{
1314 int ret;
1315
bd380811
PM
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
bd380811
PM
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
7f294054 1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327}
1328EXPORT_SYMBOL(dev_open);
1329
44345724 1330static int __dev_close_many(struct list_head *head)
1da177e4 1331{
44345724 1332 struct net_device *dev;
e46b66bc 1333
bd380811 1334 ASSERT_RTNL();
9d5010db
DM
1335 might_sleep();
1336
5cde2829 1337 list_for_each_entry(dev, head, close_list) {
3f4df206 1338 /* Temporarily disable netpoll until the interface is down */
66b5552f 1339 netpoll_poll_disable(dev);
3f4df206 1340
44345724 1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1342
44345724 1343 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1344
44345724
OP
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
4e857c58 1351 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1352 }
1da177e4 1353
44345724 1354 dev_deactivate_many(head);
d8b2a4d2 1355
5cde2829 1356 list_for_each_entry(dev, head, close_list) {
44345724 1357 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1358
44345724
OP
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
44345724 1369 dev->flags &= ~IFF_UP;
66b5552f 1370 netpoll_poll_enable(dev);
44345724
OP
1371 }
1372
1373 return 0;
1374}
1375
1376static int __dev_close(struct net_device *dev)
1377{
f87e6f47 1378 int retval;
44345724
OP
1379 LIST_HEAD(single);
1380
5cde2829 1381 list_add(&dev->close_list, &single);
f87e6f47
LT
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
ca99ca14 1384
f87e6f47 1385 return retval;
44345724
OP
1386}
1387
99c4a26a 1388int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1389{
1390 struct net_device *dev, *tmp;
1da177e4 1391
5cde2829
EB
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1394 if (!(dev->flags & IFF_UP))
5cde2829 1395 list_del_init(&dev->close_list);
44345724
OP
1396
1397 __dev_close_many(head);
1da177e4 1398
5cde2829 1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1402 if (unlink)
1403 list_del_init(&dev->close_list);
44345724 1404 }
bd380811
PM
1405
1406 return 0;
1407}
99c4a26a 1408EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1409
1410/**
1411 * dev_close - shutdown an interface.
1412 * @dev: device to shutdown
1413 *
1414 * This function moves an active device into down state. A
1415 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1416 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1417 * chain.
1418 */
1419int dev_close(struct net_device *dev)
1420{
e14a5993
ED
1421 if (dev->flags & IFF_UP) {
1422 LIST_HEAD(single);
1da177e4 1423
5cde2829 1424 list_add(&dev->close_list, &single);
99c4a26a 1425 dev_close_many(&single, true);
e14a5993
ED
1426 list_del(&single);
1427 }
da6e378b 1428 return 0;
1da177e4 1429}
d1b19dff 1430EXPORT_SYMBOL(dev_close);
1da177e4
LT
1431
1432
0187bdfb
BH
1433/**
1434 * dev_disable_lro - disable Large Receive Offload on a device
1435 * @dev: device
1436 *
1437 * Disable Large Receive Offload (LRO) on a net device. Must be
1438 * called under RTNL. This is needed if received packets may be
1439 * forwarded to another interface.
1440 */
1441void dev_disable_lro(struct net_device *dev)
1442{
fbe168ba
MK
1443 struct net_device *lower_dev;
1444 struct list_head *iter;
529d0489 1445
bc5787c6
MM
1446 dev->wanted_features &= ~NETIF_F_LRO;
1447 netdev_update_features(dev);
27660515 1448
22d5969f
MM
1449 if (unlikely(dev->features & NETIF_F_LRO))
1450 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1451
1452 netdev_for_each_lower_dev(dev, lower_dev, iter)
1453 dev_disable_lro(lower_dev);
0187bdfb
BH
1454}
1455EXPORT_SYMBOL(dev_disable_lro);
1456
351638e7
JP
1457static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459{
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464}
0187bdfb 1465
881d966b
EB
1466static int dev_boot_phase = 1;
1467
1da177e4
LT
1468/**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
4ec93edb 1478 * to the new notifier to allow device to have a race free
1da177e4
LT
1479 * view of the network device list.
1480 */
1481
1482int register_netdevice_notifier(struct notifier_block *nb)
1483{
1484 struct net_device *dev;
fcc5a03a 1485 struct net_device *last;
881d966b 1486 struct net *net;
1da177e4
LT
1487 int err;
1488
1489 rtnl_lock();
f07d5b94 1490 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1491 if (err)
1492 goto unlock;
881d966b
EB
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
351638e7 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1da177e4 1504
351638e7 1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1506 }
1da177e4 1507 }
fcc5a03a
HX
1508
1509unlock:
1da177e4
LT
1510 rtnl_unlock();
1511 return err;
fcc5a03a
HX
1512
1513rollback:
1514 last = dev;
881d966b
EB
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
8f891489 1518 goto outroll;
fcc5a03a 1519
881d966b 1520 if (dev->flags & IFF_UP) {
351638e7
JP
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1524 }
351638e7 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1526 }
fcc5a03a 1527 }
c67625a1 1528
8f891489 1529outroll:
c67625a1 1530 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1531 goto unlock;
1da177e4 1532}
d1b19dff 1533EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1534
1535/**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
7d3d43da
EB
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1da177e4
LT
1547 */
1548
1549int unregister_netdevice_notifier(struct notifier_block *nb)
1550{
7d3d43da
EB
1551 struct net_device *dev;
1552 struct net *net;
9f514950
HX
1553 int err;
1554
1555 rtnl_lock();
f07d5b94 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
351638e7
JP
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1566 }
351638e7 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1568 }
1569 }
1570unlock:
9f514950
HX
1571 rtnl_unlock();
1572 return err;
1da177e4 1573}
d1b19dff 1574EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1575
351638e7
JP
1576/**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1d143d9f 1586static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
351638e7
JP
1589{
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593}
351638e7 1594
1da177e4
LT
1595/**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
c4ea43c5 1598 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1599 *
1600 * Call all network notifier blocks. Parameters and return value
f07d5b94 1601 * are as for raw_notifier_call_chain().
1da177e4
LT
1602 */
1603
ad7379d4 1604int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1605{
351638e7
JP
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1609}
edf947f1 1610EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1611
c5905afb 1612static struct static_key netstamp_needed __read_mostly;
b90e5794 1613#ifdef HAVE_JUMP_LABEL
c5905afb 1614/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1615 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1616 * static_key_slow_dec() calls.
b90e5794
ED
1617 */
1618static atomic_t netstamp_needed_deferred;
1619#endif
1da177e4
LT
1620
1621void net_enable_timestamp(void)
1622{
b90e5794
ED
1623#ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
c5905afb 1628 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1629 return;
1630 }
1631#endif
c5905afb 1632 static_key_slow_inc(&netstamp_needed);
1da177e4 1633}
d1b19dff 1634EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1635
1636void net_disable_timestamp(void)
1637{
b90e5794
ED
1638#ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643#endif
c5905afb 1644 static_key_slow_dec(&netstamp_needed);
1da177e4 1645}
d1b19dff 1646EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1647
3b098e2d 1648static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1649{
588f0330 1650 skb->tstamp.tv64 = 0;
c5905afb 1651 if (static_key_false(&netstamp_needed))
a61bbcf2 1652 __net_timestamp(skb);
1da177e4
LT
1653}
1654
588f0330 1655#define net_timestamp_check(COND, SKB) \
c5905afb 1656 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
3b098e2d 1660
1ee481fb 1661bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1662{
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679}
1ee481fb 1680EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1681
a0265d28
HX
1682int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
08b4b8ea 1699 skb->priority = 0;
a0265d28 1700 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1701 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1702
1703 return 0;
1704}
1705EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
44540960
AB
1707/**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
6ec82562 1715 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726{
a0265d28 1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1728}
1729EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
71d9dec2
CG
1731static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734{
1080e512
MT
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
71d9dec2
CG
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739}
1740
7866a621
SN
1741static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1742 struct packet_type **pt,
1743 struct net_device *dev, __be16 type,
1744 struct list_head *ptype_list)
1745{
1746 struct packet_type *ptype, *pt_prev = *pt;
1747
1748 list_for_each_entry_rcu(ptype, ptype_list, list) {
1749 if (ptype->type != type)
1750 continue;
1751 if (pt_prev)
1752 deliver_skb(skb, pt_prev, dev);
1753 pt_prev = ptype;
1754 }
1755 *pt = pt_prev;
1756}
1757
c0de08d0
EL
1758static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1759{
a3d744e9 1760 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1761 return false;
1762
1763 if (ptype->id_match)
1764 return ptype->id_match(ptype, skb->sk);
1765 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1766 return true;
1767
1768 return false;
1769}
1770
1da177e4
LT
1771/*
1772 * Support routine. Sends outgoing frames to any network
1773 * taps currently in use.
1774 */
1775
f6a78bfc 1776static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1777{
1778 struct packet_type *ptype;
71d9dec2
CG
1779 struct sk_buff *skb2 = NULL;
1780 struct packet_type *pt_prev = NULL;
7866a621 1781 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1782
1da177e4 1783 rcu_read_lock();
7866a621
SN
1784again:
1785 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1786 /* Never send packets back to the socket
1787 * they originated from - MvS (miquels@drinkel.ow.org)
1788 */
7866a621
SN
1789 if (skb_loop_sk(ptype, skb))
1790 continue;
71d9dec2 1791
7866a621
SN
1792 if (pt_prev) {
1793 deliver_skb(skb2, pt_prev, skb->dev);
1794 pt_prev = ptype;
1795 continue;
1796 }
1da177e4 1797
7866a621
SN
1798 /* need to clone skb, done only once */
1799 skb2 = skb_clone(skb, GFP_ATOMIC);
1800 if (!skb2)
1801 goto out_unlock;
70978182 1802
7866a621 1803 net_timestamp_set(skb2);
1da177e4 1804
7866a621
SN
1805 /* skb->nh should be correctly
1806 * set by sender, so that the second statement is
1807 * just protection against buggy protocols.
1808 */
1809 skb_reset_mac_header(skb2);
1810
1811 if (skb_network_header(skb2) < skb2->data ||
1812 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1813 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1814 ntohs(skb2->protocol),
1815 dev->name);
1816 skb_reset_network_header(skb2);
1da177e4 1817 }
7866a621
SN
1818
1819 skb2->transport_header = skb2->network_header;
1820 skb2->pkt_type = PACKET_OUTGOING;
1821 pt_prev = ptype;
1822 }
1823
1824 if (ptype_list == &ptype_all) {
1825 ptype_list = &dev->ptype_all;
1826 goto again;
1da177e4 1827 }
7866a621 1828out_unlock:
71d9dec2
CG
1829 if (pt_prev)
1830 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1831 rcu_read_unlock();
1832}
1833
2c53040f
BH
1834/**
1835 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1836 * @dev: Network device
1837 * @txq: number of queues available
1838 *
1839 * If real_num_tx_queues is changed the tc mappings may no longer be
1840 * valid. To resolve this verify the tc mapping remains valid and if
1841 * not NULL the mapping. With no priorities mapping to this
1842 * offset/count pair it will no longer be used. In the worst case TC0
1843 * is invalid nothing can be done so disable priority mappings. If is
1844 * expected that drivers will fix this mapping if they can before
1845 * calling netif_set_real_num_tx_queues.
1846 */
bb134d22 1847static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1848{
1849 int i;
1850 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1851
1852 /* If TC0 is invalidated disable TC mapping */
1853 if (tc->offset + tc->count > txq) {
7b6cd1ce 1854 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1855 dev->num_tc = 0;
1856 return;
1857 }
1858
1859 /* Invalidated prio to tc mappings set to TC0 */
1860 for (i = 1; i < TC_BITMASK + 1; i++) {
1861 int q = netdev_get_prio_tc_map(dev, i);
1862
1863 tc = &dev->tc_to_txq[q];
1864 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1865 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1866 i, q);
4f57c087
JF
1867 netdev_set_prio_tc_map(dev, i, 0);
1868 }
1869 }
1870}
1871
537c00de
AD
1872#ifdef CONFIG_XPS
1873static DEFINE_MUTEX(xps_map_mutex);
1874#define xmap_dereference(P) \
1875 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1876
10cdc3f3
AD
1877static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1878 int cpu, u16 index)
537c00de 1879{
10cdc3f3
AD
1880 struct xps_map *map = NULL;
1881 int pos;
537c00de 1882
10cdc3f3
AD
1883 if (dev_maps)
1884 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1885
10cdc3f3
AD
1886 for (pos = 0; map && pos < map->len; pos++) {
1887 if (map->queues[pos] == index) {
537c00de
AD
1888 if (map->len > 1) {
1889 map->queues[pos] = map->queues[--map->len];
1890 } else {
10cdc3f3 1891 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1892 kfree_rcu(map, rcu);
1893 map = NULL;
1894 }
10cdc3f3 1895 break;
537c00de 1896 }
537c00de
AD
1897 }
1898
10cdc3f3
AD
1899 return map;
1900}
1901
024e9679 1902static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1903{
1904 struct xps_dev_maps *dev_maps;
024e9679 1905 int cpu, i;
10cdc3f3
AD
1906 bool active = false;
1907
1908 mutex_lock(&xps_map_mutex);
1909 dev_maps = xmap_dereference(dev->xps_maps);
1910
1911 if (!dev_maps)
1912 goto out_no_maps;
1913
1914 for_each_possible_cpu(cpu) {
024e9679
AD
1915 for (i = index; i < dev->num_tx_queues; i++) {
1916 if (!remove_xps_queue(dev_maps, cpu, i))
1917 break;
1918 }
1919 if (i == dev->num_tx_queues)
10cdc3f3
AD
1920 active = true;
1921 }
1922
1923 if (!active) {
537c00de
AD
1924 RCU_INIT_POINTER(dev->xps_maps, NULL);
1925 kfree_rcu(dev_maps, rcu);
1926 }
1927
024e9679
AD
1928 for (i = index; i < dev->num_tx_queues; i++)
1929 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1930 NUMA_NO_NODE);
1931
537c00de
AD
1932out_no_maps:
1933 mutex_unlock(&xps_map_mutex);
1934}
1935
01c5f864
AD
1936static struct xps_map *expand_xps_map(struct xps_map *map,
1937 int cpu, u16 index)
1938{
1939 struct xps_map *new_map;
1940 int alloc_len = XPS_MIN_MAP_ALLOC;
1941 int i, pos;
1942
1943 for (pos = 0; map && pos < map->len; pos++) {
1944 if (map->queues[pos] != index)
1945 continue;
1946 return map;
1947 }
1948
1949 /* Need to add queue to this CPU's existing map */
1950 if (map) {
1951 if (pos < map->alloc_len)
1952 return map;
1953
1954 alloc_len = map->alloc_len * 2;
1955 }
1956
1957 /* Need to allocate new map to store queue on this CPU's map */
1958 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1959 cpu_to_node(cpu));
1960 if (!new_map)
1961 return NULL;
1962
1963 for (i = 0; i < pos; i++)
1964 new_map->queues[i] = map->queues[i];
1965 new_map->alloc_len = alloc_len;
1966 new_map->len = pos;
1967
1968 return new_map;
1969}
1970
3573540c
MT
1971int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1972 u16 index)
537c00de 1973{
01c5f864 1974 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1975 struct xps_map *map, *new_map;
537c00de 1976 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1977 int cpu, numa_node_id = -2;
1978 bool active = false;
537c00de
AD
1979
1980 mutex_lock(&xps_map_mutex);
1981
1982 dev_maps = xmap_dereference(dev->xps_maps);
1983
01c5f864
AD
1984 /* allocate memory for queue storage */
1985 for_each_online_cpu(cpu) {
1986 if (!cpumask_test_cpu(cpu, mask))
1987 continue;
1988
1989 if (!new_dev_maps)
1990 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1991 if (!new_dev_maps) {
1992 mutex_unlock(&xps_map_mutex);
01c5f864 1993 return -ENOMEM;
2bb60cb9 1994 }
01c5f864
AD
1995
1996 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1997 NULL;
1998
1999 map = expand_xps_map(map, cpu, index);
2000 if (!map)
2001 goto error;
2002
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 }
2005
2006 if (!new_dev_maps)
2007 goto out_no_new_maps;
2008
537c00de 2009 for_each_possible_cpu(cpu) {
01c5f864
AD
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2011 /* add queue to CPU maps */
2012 int pos = 0;
2013
2014 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2015 while ((pos < map->len) && (map->queues[pos] != index))
2016 pos++;
2017
2018 if (pos == map->len)
2019 map->queues[map->len++] = index;
537c00de 2020#ifdef CONFIG_NUMA
537c00de
AD
2021 if (numa_node_id == -2)
2022 numa_node_id = cpu_to_node(cpu);
2023 else if (numa_node_id != cpu_to_node(cpu))
2024 numa_node_id = -1;
537c00de 2025#endif
01c5f864
AD
2026 } else if (dev_maps) {
2027 /* fill in the new device map from the old device map */
2028 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2029 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2030 }
01c5f864 2031
537c00de
AD
2032 }
2033
01c5f864
AD
2034 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2035
537c00de 2036 /* Cleanup old maps */
01c5f864
AD
2037 if (dev_maps) {
2038 for_each_possible_cpu(cpu) {
2039 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2040 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2041 if (map && map != new_map)
2042 kfree_rcu(map, rcu);
2043 }
537c00de 2044
01c5f864 2045 kfree_rcu(dev_maps, rcu);
537c00de
AD
2046 }
2047
01c5f864
AD
2048 dev_maps = new_dev_maps;
2049 active = true;
537c00de 2050
01c5f864
AD
2051out_no_new_maps:
2052 /* update Tx queue numa node */
537c00de
AD
2053 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2054 (numa_node_id >= 0) ? numa_node_id :
2055 NUMA_NO_NODE);
2056
01c5f864
AD
2057 if (!dev_maps)
2058 goto out_no_maps;
2059
2060 /* removes queue from unused CPUs */
2061 for_each_possible_cpu(cpu) {
2062 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2063 continue;
2064
2065 if (remove_xps_queue(dev_maps, cpu, index))
2066 active = true;
2067 }
2068
2069 /* free map if not active */
2070 if (!active) {
2071 RCU_INIT_POINTER(dev->xps_maps, NULL);
2072 kfree_rcu(dev_maps, rcu);
2073 }
2074
2075out_no_maps:
537c00de
AD
2076 mutex_unlock(&xps_map_mutex);
2077
2078 return 0;
2079error:
01c5f864
AD
2080 /* remove any maps that we added */
2081 for_each_possible_cpu(cpu) {
2082 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2083 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2084 NULL;
2085 if (new_map && new_map != map)
2086 kfree(new_map);
2087 }
2088
537c00de
AD
2089 mutex_unlock(&xps_map_mutex);
2090
537c00de
AD
2091 kfree(new_dev_maps);
2092 return -ENOMEM;
2093}
2094EXPORT_SYMBOL(netif_set_xps_queue);
2095
2096#endif
f0796d5c
JF
2097/*
2098 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2099 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2100 */
e6484930 2101int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2102{
1d24eb48
TH
2103 int rc;
2104
e6484930
TH
2105 if (txq < 1 || txq > dev->num_tx_queues)
2106 return -EINVAL;
f0796d5c 2107
5c56580b
BH
2108 if (dev->reg_state == NETREG_REGISTERED ||
2109 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2110 ASSERT_RTNL();
2111
1d24eb48
TH
2112 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2113 txq);
bf264145
TH
2114 if (rc)
2115 return rc;
2116
4f57c087
JF
2117 if (dev->num_tc)
2118 netif_setup_tc(dev, txq);
2119
024e9679 2120 if (txq < dev->real_num_tx_queues) {
e6484930 2121 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2122#ifdef CONFIG_XPS
2123 netif_reset_xps_queues_gt(dev, txq);
2124#endif
2125 }
f0796d5c 2126 }
e6484930
TH
2127
2128 dev->real_num_tx_queues = txq;
2129 return 0;
f0796d5c
JF
2130}
2131EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2132
a953be53 2133#ifdef CONFIG_SYSFS
62fe0b40
BH
2134/**
2135 * netif_set_real_num_rx_queues - set actual number of RX queues used
2136 * @dev: Network device
2137 * @rxq: Actual number of RX queues
2138 *
2139 * This must be called either with the rtnl_lock held or before
2140 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2141 * negative error code. If called before registration, it always
2142 * succeeds.
62fe0b40
BH
2143 */
2144int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2145{
2146 int rc;
2147
bd25fa7b
TH
2148 if (rxq < 1 || rxq > dev->num_rx_queues)
2149 return -EINVAL;
2150
62fe0b40
BH
2151 if (dev->reg_state == NETREG_REGISTERED) {
2152 ASSERT_RTNL();
2153
62fe0b40
BH
2154 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2155 rxq);
2156 if (rc)
2157 return rc;
62fe0b40
BH
2158 }
2159
2160 dev->real_num_rx_queues = rxq;
2161 return 0;
2162}
2163EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2164#endif
2165
2c53040f
BH
2166/**
2167 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2168 *
2169 * This routine should set an upper limit on the number of RSS queues
2170 * used by default by multiqueue devices.
2171 */
a55b138b 2172int netif_get_num_default_rss_queues(void)
16917b87
YM
2173{
2174 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2175}
2176EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2177
def82a1d 2178static inline void __netif_reschedule(struct Qdisc *q)
56079431 2179{
def82a1d
JP
2180 struct softnet_data *sd;
2181 unsigned long flags;
56079431 2182
def82a1d 2183 local_irq_save(flags);
903ceff7 2184 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2185 q->next_sched = NULL;
2186 *sd->output_queue_tailp = q;
2187 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2188 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2189 local_irq_restore(flags);
2190}
2191
2192void __netif_schedule(struct Qdisc *q)
2193{
2194 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2195 __netif_reschedule(q);
56079431
DV
2196}
2197EXPORT_SYMBOL(__netif_schedule);
2198
e6247027
ED
2199struct dev_kfree_skb_cb {
2200 enum skb_free_reason reason;
2201};
2202
2203static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2204{
e6247027
ED
2205 return (struct dev_kfree_skb_cb *)skb->cb;
2206}
2207
46e5da40
JF
2208void netif_schedule_queue(struct netdev_queue *txq)
2209{
2210 rcu_read_lock();
2211 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2212 struct Qdisc *q = rcu_dereference(txq->qdisc);
2213
2214 __netif_schedule(q);
2215 }
2216 rcu_read_unlock();
2217}
2218EXPORT_SYMBOL(netif_schedule_queue);
2219
2220/**
2221 * netif_wake_subqueue - allow sending packets on subqueue
2222 * @dev: network device
2223 * @queue_index: sub queue index
2224 *
2225 * Resume individual transmit queue of a device with multiple transmit queues.
2226 */
2227void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2228{
2229 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2230
2231 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2232 struct Qdisc *q;
2233
2234 rcu_read_lock();
2235 q = rcu_dereference(txq->qdisc);
2236 __netif_schedule(q);
2237 rcu_read_unlock();
2238 }
2239}
2240EXPORT_SYMBOL(netif_wake_subqueue);
2241
2242void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2243{
2244 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2245 struct Qdisc *q;
2246
2247 rcu_read_lock();
2248 q = rcu_dereference(dev_queue->qdisc);
2249 __netif_schedule(q);
2250 rcu_read_unlock();
2251 }
2252}
2253EXPORT_SYMBOL(netif_tx_wake_queue);
2254
e6247027 2255void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2256{
e6247027 2257 unsigned long flags;
56079431 2258
e6247027
ED
2259 if (likely(atomic_read(&skb->users) == 1)) {
2260 smp_rmb();
2261 atomic_set(&skb->users, 0);
2262 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2263 return;
bea3348e 2264 }
e6247027
ED
2265 get_kfree_skb_cb(skb)->reason = reason;
2266 local_irq_save(flags);
2267 skb->next = __this_cpu_read(softnet_data.completion_queue);
2268 __this_cpu_write(softnet_data.completion_queue, skb);
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
56079431 2271}
e6247027 2272EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2273
e6247027 2274void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2275{
2276 if (in_irq() || irqs_disabled())
e6247027 2277 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2278 else
2279 dev_kfree_skb(skb);
2280}
e6247027 2281EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2282
2283
bea3348e
SH
2284/**
2285 * netif_device_detach - mark device as removed
2286 * @dev: network device
2287 *
2288 * Mark device as removed from system and therefore no longer available.
2289 */
56079431
DV
2290void netif_device_detach(struct net_device *dev)
2291{
2292 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2293 netif_running(dev)) {
d543103a 2294 netif_tx_stop_all_queues(dev);
56079431
DV
2295 }
2296}
2297EXPORT_SYMBOL(netif_device_detach);
2298
bea3348e
SH
2299/**
2300 * netif_device_attach - mark device as attached
2301 * @dev: network device
2302 *
2303 * Mark device as attached from system and restart if needed.
2304 */
56079431
DV
2305void netif_device_attach(struct net_device *dev)
2306{
2307 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2308 netif_running(dev)) {
d543103a 2309 netif_tx_wake_all_queues(dev);
4ec93edb 2310 __netdev_watchdog_up(dev);
56079431
DV
2311 }
2312}
2313EXPORT_SYMBOL(netif_device_attach);
2314
36c92474
BH
2315static void skb_warn_bad_offload(const struct sk_buff *skb)
2316{
65e9d2fa 2317 static const netdev_features_t null_features = 0;
36c92474
BH
2318 struct net_device *dev = skb->dev;
2319 const char *driver = "";
2320
c846ad9b
BG
2321 if (!net_ratelimit())
2322 return;
2323
36c92474
BH
2324 if (dev && dev->dev.parent)
2325 driver = dev_driver_string(dev->dev.parent);
2326
2327 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2328 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2329 driver, dev ? &dev->features : &null_features,
2330 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2331 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2332 skb_shinfo(skb)->gso_type, skb->ip_summed);
2333}
2334
1da177e4
LT
2335/*
2336 * Invalidate hardware checksum when packet is to be mangled, and
2337 * complete checksum manually on outgoing path.
2338 */
84fa7933 2339int skb_checksum_help(struct sk_buff *skb)
1da177e4 2340{
d3bc23e7 2341 __wsum csum;
663ead3b 2342 int ret = 0, offset;
1da177e4 2343
84fa7933 2344 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2345 goto out_set_summed;
2346
2347 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2348 skb_warn_bad_offload(skb);
2349 return -EINVAL;
1da177e4
LT
2350 }
2351
cef401de
ED
2352 /* Before computing a checksum, we should make sure no frag could
2353 * be modified by an external entity : checksum could be wrong.
2354 */
2355 if (skb_has_shared_frag(skb)) {
2356 ret = __skb_linearize(skb);
2357 if (ret)
2358 goto out;
2359 }
2360
55508d60 2361 offset = skb_checksum_start_offset(skb);
a030847e
HX
2362 BUG_ON(offset >= skb_headlen(skb));
2363 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2364
2365 offset += skb->csum_offset;
2366 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2367
2368 if (skb_cloned(skb) &&
2369 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2370 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2371 if (ret)
2372 goto out;
2373 }
2374
a030847e 2375 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2376out_set_summed:
1da177e4 2377 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2378out:
1da177e4
LT
2379 return ret;
2380}
d1b19dff 2381EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2382
53d6471c 2383__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2384{
252e3346 2385 __be16 type = skb->protocol;
f6a78bfc 2386
19acc327
PS
2387 /* Tunnel gso handlers can set protocol to ethernet. */
2388 if (type == htons(ETH_P_TEB)) {
2389 struct ethhdr *eth;
2390
2391 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2392 return 0;
2393
2394 eth = (struct ethhdr *)skb_mac_header(skb);
2395 type = eth->h_proto;
2396 }
2397
d4bcef3f 2398 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2399}
2400
2401/**
2402 * skb_mac_gso_segment - mac layer segmentation handler.
2403 * @skb: buffer to segment
2404 * @features: features for the output path (see dev->features)
2405 */
2406struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2407 netdev_features_t features)
2408{
2409 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2410 struct packet_offload *ptype;
53d6471c
VY
2411 int vlan_depth = skb->mac_len;
2412 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2413
2414 if (unlikely(!type))
2415 return ERR_PTR(-EINVAL);
2416
53d6471c 2417 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2418
2419 rcu_read_lock();
22061d80 2420 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2421 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2422 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2423 break;
2424 }
2425 }
2426 rcu_read_unlock();
2427
98e399f8 2428 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2429
f6a78bfc
HX
2430 return segs;
2431}
05e8ef4a
PS
2432EXPORT_SYMBOL(skb_mac_gso_segment);
2433
2434
2435/* openvswitch calls this on rx path, so we need a different check.
2436 */
2437static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2438{
2439 if (tx_path)
2440 return skb->ip_summed != CHECKSUM_PARTIAL;
2441 else
2442 return skb->ip_summed == CHECKSUM_NONE;
2443}
2444
2445/**
2446 * __skb_gso_segment - Perform segmentation on skb.
2447 * @skb: buffer to segment
2448 * @features: features for the output path (see dev->features)
2449 * @tx_path: whether it is called in TX path
2450 *
2451 * This function segments the given skb and returns a list of segments.
2452 *
2453 * It may return NULL if the skb requires no segmentation. This is
2454 * only possible when GSO is used for verifying header integrity.
2455 */
2456struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2457 netdev_features_t features, bool tx_path)
2458{
2459 if (unlikely(skb_needs_check(skb, tx_path))) {
2460 int err;
2461
2462 skb_warn_bad_offload(skb);
2463
a40e0a66 2464 err = skb_cow_head(skb, 0);
2465 if (err < 0)
05e8ef4a
PS
2466 return ERR_PTR(err);
2467 }
2468
68c33163 2469 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2470 SKB_GSO_CB(skb)->encap_level = 0;
2471
05e8ef4a
PS
2472 skb_reset_mac_header(skb);
2473 skb_reset_mac_len(skb);
2474
2475 return skb_mac_gso_segment(skb, features);
2476}
12b0004d 2477EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2478
fb286bb2
HX
2479/* Take action when hardware reception checksum errors are detected. */
2480#ifdef CONFIG_BUG
2481void netdev_rx_csum_fault(struct net_device *dev)
2482{
2483 if (net_ratelimit()) {
7b6cd1ce 2484 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2485 dump_stack();
2486 }
2487}
2488EXPORT_SYMBOL(netdev_rx_csum_fault);
2489#endif
2490
1da177e4
LT
2491/* Actually, we should eliminate this check as soon as we know, that:
2492 * 1. IOMMU is present and allows to map all the memory.
2493 * 2. No high memory really exists on this machine.
2494 */
2495
c1e756bf 2496static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2497{
3d3a8533 2498#ifdef CONFIG_HIGHMEM
1da177e4 2499 int i;
5acbbd42 2500 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2501 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2502 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2503 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2504 return 1;
ea2ab693 2505 }
5acbbd42 2506 }
1da177e4 2507
5acbbd42
FT
2508 if (PCI_DMA_BUS_IS_PHYS) {
2509 struct device *pdev = dev->dev.parent;
1da177e4 2510
9092c658
ED
2511 if (!pdev)
2512 return 0;
5acbbd42 2513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2514 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2515 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2516 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2517 return 1;
2518 }
2519 }
3d3a8533 2520#endif
1da177e4
LT
2521 return 0;
2522}
1da177e4 2523
3b392ddb
SH
2524/* If MPLS offload request, verify we are testing hardware MPLS features
2525 * instead of standard features for the netdev.
2526 */
d0edc7bf 2527#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2528static netdev_features_t net_mpls_features(struct sk_buff *skb,
2529 netdev_features_t features,
2530 __be16 type)
2531{
25cd9ba0 2532 if (eth_p_mpls(type))
3b392ddb
SH
2533 features &= skb->dev->mpls_features;
2534
2535 return features;
2536}
2537#else
2538static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541{
2542 return features;
2543}
2544#endif
2545
c8f44aff 2546static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2547 netdev_features_t features)
f01a5236 2548{
53d6471c 2549 int tmp;
3b392ddb
SH
2550 __be16 type;
2551
2552 type = skb_network_protocol(skb, &tmp);
2553 features = net_mpls_features(skb, features, type);
53d6471c 2554
c0d680e5 2555 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2556 !can_checksum_protocol(features, type)) {
f01a5236 2557 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2558 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2559 features &= ~NETIF_F_SG;
2560 }
2561
2562 return features;
2563}
2564
8cb65d00
TM
2565static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2566 struct net_device *dev,
2567 netdev_features_t features)
2568{
2569 return vlan_features_check(skb, features);
2570}
2571
c1e756bf 2572netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2573{
5f35227e 2574 struct net_device *dev = skb->dev;
fcbeb976
ED
2575 netdev_features_t features = dev->features;
2576 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2577
fcbeb976 2578 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2579 features &= ~NETIF_F_GSO_MASK;
2580
5f35227e
JG
2581 /* If encapsulation offload request, verify we are testing
2582 * hardware encapsulation features instead of standard
2583 * features for the netdev
2584 */
2585 if (skb->encapsulation)
2586 features &= dev->hw_enc_features;
2587
f5a7fb88
TM
2588 if (skb_vlan_tagged(skb))
2589 features = netdev_intersect_features(features,
2590 dev->vlan_features |
2591 NETIF_F_HW_VLAN_CTAG_TX |
2592 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2593
5f35227e
JG
2594 if (dev->netdev_ops->ndo_features_check)
2595 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2596 features);
8cb65d00
TM
2597 else
2598 features &= dflt_features_check(skb, dev, features);
5f35227e 2599
c1e756bf 2600 return harmonize_features(skb, features);
58e998c6 2601}
c1e756bf 2602EXPORT_SYMBOL(netif_skb_features);
58e998c6 2603
2ea25513 2604static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2605 struct netdev_queue *txq, bool more)
f6a78bfc 2606{
2ea25513
DM
2607 unsigned int len;
2608 int rc;
00829823 2609
7866a621 2610 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2611 dev_queue_xmit_nit(skb, dev);
fc741216 2612
2ea25513
DM
2613 len = skb->len;
2614 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2615 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2616 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2617
2ea25513
DM
2618 return rc;
2619}
7b9c6090 2620
8dcda22a
DM
2621struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2622 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2623{
2624 struct sk_buff *skb = first;
2625 int rc = NETDEV_TX_OK;
7b9c6090 2626
7f2e870f
DM
2627 while (skb) {
2628 struct sk_buff *next = skb->next;
fc70fb64 2629
7f2e870f 2630 skb->next = NULL;
95f6b3dd 2631 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2632 if (unlikely(!dev_xmit_complete(rc))) {
2633 skb->next = next;
2634 goto out;
2635 }
6afff0ca 2636
7f2e870f
DM
2637 skb = next;
2638 if (netif_xmit_stopped(txq) && skb) {
2639 rc = NETDEV_TX_BUSY;
2640 break;
9ccb8975 2641 }
7f2e870f 2642 }
9ccb8975 2643
7f2e870f
DM
2644out:
2645 *ret = rc;
2646 return skb;
2647}
b40863c6 2648
1ff0dc94
ED
2649static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2650 netdev_features_t features)
f6a78bfc 2651{
df8a39de 2652 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2653 !vlan_hw_offload_capable(features, skb->vlan_proto))
2654 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2655 return skb;
2656}
f6a78bfc 2657
55a93b3e 2658static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2659{
2660 netdev_features_t features;
f6a78bfc 2661
eae3f88e
DM
2662 if (skb->next)
2663 return skb;
068a2de5 2664
eae3f88e
DM
2665 features = netif_skb_features(skb);
2666 skb = validate_xmit_vlan(skb, features);
2667 if (unlikely(!skb))
2668 goto out_null;
7b9c6090 2669
04ffcb25 2670 if (netif_needs_gso(dev, skb, features)) {
ce93718f
DM
2671 struct sk_buff *segs;
2672
2673 segs = skb_gso_segment(skb, features);
cecda693 2674 if (IS_ERR(segs)) {
af6dabc9 2675 goto out_kfree_skb;
cecda693
JW
2676 } else if (segs) {
2677 consume_skb(skb);
2678 skb = segs;
f6a78bfc 2679 }
eae3f88e
DM
2680 } else {
2681 if (skb_needs_linearize(skb, features) &&
2682 __skb_linearize(skb))
2683 goto out_kfree_skb;
4ec93edb 2684
eae3f88e
DM
2685 /* If packet is not checksummed and device does not
2686 * support checksumming for this protocol, complete
2687 * checksumming here.
2688 */
2689 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2690 if (skb->encapsulation)
2691 skb_set_inner_transport_header(skb,
2692 skb_checksum_start_offset(skb));
2693 else
2694 skb_set_transport_header(skb,
2695 skb_checksum_start_offset(skb));
2696 if (!(features & NETIF_F_ALL_CSUM) &&
2697 skb_checksum_help(skb))
2698 goto out_kfree_skb;
7b9c6090 2699 }
0c772159 2700 }
7b9c6090 2701
eae3f88e 2702 return skb;
fc70fb64 2703
f6a78bfc
HX
2704out_kfree_skb:
2705 kfree_skb(skb);
eae3f88e
DM
2706out_null:
2707 return NULL;
2708}
6afff0ca 2709
55a93b3e
ED
2710struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2711{
2712 struct sk_buff *next, *head = NULL, *tail;
2713
bec3cfdc 2714 for (; skb != NULL; skb = next) {
55a93b3e
ED
2715 next = skb->next;
2716 skb->next = NULL;
bec3cfdc
ED
2717
2718 /* in case skb wont be segmented, point to itself */
2719 skb->prev = skb;
2720
55a93b3e 2721 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2722 if (!skb)
2723 continue;
55a93b3e 2724
bec3cfdc
ED
2725 if (!head)
2726 head = skb;
2727 else
2728 tail->next = skb;
2729 /* If skb was segmented, skb->prev points to
2730 * the last segment. If not, it still contains skb.
2731 */
2732 tail = skb->prev;
55a93b3e
ED
2733 }
2734 return head;
f6a78bfc
HX
2735}
2736
1def9238
ED
2737static void qdisc_pkt_len_init(struct sk_buff *skb)
2738{
2739 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2740
2741 qdisc_skb_cb(skb)->pkt_len = skb->len;
2742
2743 /* To get more precise estimation of bytes sent on wire,
2744 * we add to pkt_len the headers size of all segments
2745 */
2746 if (shinfo->gso_size) {
757b8b1d 2747 unsigned int hdr_len;
15e5a030 2748 u16 gso_segs = shinfo->gso_segs;
1def9238 2749
757b8b1d
ED
2750 /* mac layer + network layer */
2751 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2752
2753 /* + transport layer */
1def9238
ED
2754 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2755 hdr_len += tcp_hdrlen(skb);
2756 else
2757 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2758
2759 if (shinfo->gso_type & SKB_GSO_DODGY)
2760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2761 shinfo->gso_size);
2762
2763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2764 }
2765}
2766
bbd8a0d3
KK
2767static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2768 struct net_device *dev,
2769 struct netdev_queue *txq)
2770{
2771 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2772 bool contended;
bbd8a0d3
KK
2773 int rc;
2774
1def9238 2775 qdisc_pkt_len_init(skb);
a2da570d 2776 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2777 /*
2778 * Heuristic to force contended enqueues to serialize on a
2779 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2780 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2781 * often and dequeue packets faster.
79640a4c 2782 */
a2da570d 2783 contended = qdisc_is_running(q);
79640a4c
ED
2784 if (unlikely(contended))
2785 spin_lock(&q->busylock);
2786
bbd8a0d3
KK
2787 spin_lock(root_lock);
2788 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2789 kfree_skb(skb);
2790 rc = NET_XMIT_DROP;
2791 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2792 qdisc_run_begin(q)) {
bbd8a0d3
KK
2793 /*
2794 * This is a work-conserving queue; there are no old skbs
2795 * waiting to be sent out; and the qdisc is not running -
2796 * xmit the skb directly.
2797 */
bfe0d029 2798
bfe0d029
ED
2799 qdisc_bstats_update(q, skb);
2800
55a93b3e 2801 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2802 if (unlikely(contended)) {
2803 spin_unlock(&q->busylock);
2804 contended = false;
2805 }
bbd8a0d3 2806 __qdisc_run(q);
79640a4c 2807 } else
bc135b23 2808 qdisc_run_end(q);
bbd8a0d3
KK
2809
2810 rc = NET_XMIT_SUCCESS;
2811 } else {
a2da570d 2812 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2813 if (qdisc_run_begin(q)) {
2814 if (unlikely(contended)) {
2815 spin_unlock(&q->busylock);
2816 contended = false;
2817 }
2818 __qdisc_run(q);
2819 }
bbd8a0d3
KK
2820 }
2821 spin_unlock(root_lock);
79640a4c
ED
2822 if (unlikely(contended))
2823 spin_unlock(&q->busylock);
bbd8a0d3
KK
2824 return rc;
2825}
2826
86f8515f 2827#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2828static void skb_update_prio(struct sk_buff *skb)
2829{
6977a79d 2830 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2831
91c68ce2
ED
2832 if (!skb->priority && skb->sk && map) {
2833 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2834
2835 if (prioidx < map->priomap_len)
2836 skb->priority = map->priomap[prioidx];
2837 }
5bc1421e
NH
2838}
2839#else
2840#define skb_update_prio(skb)
2841#endif
2842
745e20f1 2843static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2844#define RECURSION_LIMIT 10
745e20f1 2845
95603e22
MM
2846/**
2847 * dev_loopback_xmit - loop back @skb
2848 * @skb: buffer to transmit
2849 */
2850int dev_loopback_xmit(struct sk_buff *skb)
2851{
2852 skb_reset_mac_header(skb);
2853 __skb_pull(skb, skb_network_offset(skb));
2854 skb->pkt_type = PACKET_LOOPBACK;
2855 skb->ip_summed = CHECKSUM_UNNECESSARY;
2856 WARN_ON(!skb_dst(skb));
2857 skb_dst_force(skb);
2858 netif_rx_ni(skb);
2859 return 0;
2860}
2861EXPORT_SYMBOL(dev_loopback_xmit);
2862
d29f749e 2863/**
9d08dd3d 2864 * __dev_queue_xmit - transmit a buffer
d29f749e 2865 * @skb: buffer to transmit
9d08dd3d 2866 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2867 *
2868 * Queue a buffer for transmission to a network device. The caller must
2869 * have set the device and priority and built the buffer before calling
2870 * this function. The function can be called from an interrupt.
2871 *
2872 * A negative errno code is returned on a failure. A success does not
2873 * guarantee the frame will be transmitted as it may be dropped due
2874 * to congestion or traffic shaping.
2875 *
2876 * -----------------------------------------------------------------------------------
2877 * I notice this method can also return errors from the queue disciplines,
2878 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2879 * be positive.
2880 *
2881 * Regardless of the return value, the skb is consumed, so it is currently
2882 * difficult to retry a send to this method. (You can bump the ref count
2883 * before sending to hold a reference for retry if you are careful.)
2884 *
2885 * When calling this method, interrupts MUST be enabled. This is because
2886 * the BH enable code must have IRQs enabled so that it will not deadlock.
2887 * --BLG
2888 */
0a59f3a9 2889static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2890{
2891 struct net_device *dev = skb->dev;
dc2b4847 2892 struct netdev_queue *txq;
1da177e4
LT
2893 struct Qdisc *q;
2894 int rc = -ENOMEM;
2895
6d1ccff6
ED
2896 skb_reset_mac_header(skb);
2897
e7fd2885
WB
2898 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2899 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2900
4ec93edb
YH
2901 /* Disable soft irqs for various locks below. Also
2902 * stops preemption for RCU.
1da177e4 2903 */
4ec93edb 2904 rcu_read_lock_bh();
1da177e4 2905
5bc1421e
NH
2906 skb_update_prio(skb);
2907
02875878
ED
2908 /* If device/qdisc don't need skb->dst, release it right now while
2909 * its hot in this cpu cache.
2910 */
2911 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2912 skb_dst_drop(skb);
2913 else
2914 skb_dst_force(skb);
2915
f663dd9a 2916 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2917 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2918
1da177e4 2919#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2920 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2921#endif
cf66ba58 2922 trace_net_dev_queue(skb);
1da177e4 2923 if (q->enqueue) {
bbd8a0d3 2924 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2925 goto out;
1da177e4
LT
2926 }
2927
2928 /* The device has no queue. Common case for software devices:
2929 loopback, all the sorts of tunnels...
2930
932ff279
HX
2931 Really, it is unlikely that netif_tx_lock protection is necessary
2932 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2933 counters.)
2934 However, it is possible, that they rely on protection
2935 made by us here.
2936
2937 Check this and shot the lock. It is not prone from deadlocks.
2938 Either shot noqueue qdisc, it is even simpler 8)
2939 */
2940 if (dev->flags & IFF_UP) {
2941 int cpu = smp_processor_id(); /* ok because BHs are off */
2942
c773e847 2943 if (txq->xmit_lock_owner != cpu) {
1da177e4 2944
745e20f1
ED
2945 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2946 goto recursion_alert;
2947
1f59533f
JDB
2948 skb = validate_xmit_skb(skb, dev);
2949 if (!skb)
2950 goto drop;
2951
c773e847 2952 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2953
73466498 2954 if (!netif_xmit_stopped(txq)) {
745e20f1 2955 __this_cpu_inc(xmit_recursion);
ce93718f 2956 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2957 __this_cpu_dec(xmit_recursion);
572a9d7b 2958 if (dev_xmit_complete(rc)) {
c773e847 2959 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2960 goto out;
2961 }
2962 }
c773e847 2963 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2964 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2965 dev->name);
1da177e4
LT
2966 } else {
2967 /* Recursion is detected! It is possible,
745e20f1
ED
2968 * unfortunately
2969 */
2970recursion_alert:
e87cc472
JP
2971 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2972 dev->name);
1da177e4
LT
2973 }
2974 }
2975
2976 rc = -ENETDOWN;
1f59533f 2977drop:
d4828d85 2978 rcu_read_unlock_bh();
1da177e4 2979
015f0688 2980 atomic_long_inc(&dev->tx_dropped);
1f59533f 2981 kfree_skb_list(skb);
1da177e4
LT
2982 return rc;
2983out:
d4828d85 2984 rcu_read_unlock_bh();
1da177e4
LT
2985 return rc;
2986}
f663dd9a
JW
2987
2988int dev_queue_xmit(struct sk_buff *skb)
2989{
2990 return __dev_queue_xmit(skb, NULL);
2991}
d1b19dff 2992EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 2993
f663dd9a
JW
2994int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2995{
2996 return __dev_queue_xmit(skb, accel_priv);
2997}
2998EXPORT_SYMBOL(dev_queue_xmit_accel);
2999
1da177e4
LT
3000
3001/*=======================================================================
3002 Receiver routines
3003 =======================================================================*/
3004
6b2bedc3 3005int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3006EXPORT_SYMBOL(netdev_max_backlog);
3007
3b098e2d 3008int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3009int netdev_budget __read_mostly = 300;
3010int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3011
eecfd7c4
ED
3012/* Called with irq disabled */
3013static inline void ____napi_schedule(struct softnet_data *sd,
3014 struct napi_struct *napi)
3015{
3016 list_add_tail(&napi->poll_list, &sd->poll_list);
3017 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3018}
3019
bfb564e7
KK
3020#ifdef CONFIG_RPS
3021
3022/* One global table that all flow-based protocols share. */
6e3f7faf 3023struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3024EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3025u32 rps_cpu_mask __read_mostly;
3026EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3027
c5905afb 3028struct static_key rps_needed __read_mostly;
adc9300e 3029
c445477d
BH
3030static struct rps_dev_flow *
3031set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3032 struct rps_dev_flow *rflow, u16 next_cpu)
3033{
09994d1b 3034 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3035#ifdef CONFIG_RFS_ACCEL
3036 struct netdev_rx_queue *rxqueue;
3037 struct rps_dev_flow_table *flow_table;
3038 struct rps_dev_flow *old_rflow;
3039 u32 flow_id;
3040 u16 rxq_index;
3041 int rc;
3042
3043 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3044 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3045 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3046 goto out;
3047 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3048 if (rxq_index == skb_get_rx_queue(skb))
3049 goto out;
3050
3051 rxqueue = dev->_rx + rxq_index;
3052 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3053 if (!flow_table)
3054 goto out;
61b905da 3055 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3056 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3057 rxq_index, flow_id);
3058 if (rc < 0)
3059 goto out;
3060 old_rflow = rflow;
3061 rflow = &flow_table->flows[flow_id];
c445477d
BH
3062 rflow->filter = rc;
3063 if (old_rflow->filter == rflow->filter)
3064 old_rflow->filter = RPS_NO_FILTER;
3065 out:
3066#endif
3067 rflow->last_qtail =
09994d1b 3068 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3069 }
3070
09994d1b 3071 rflow->cpu = next_cpu;
c445477d
BH
3072 return rflow;
3073}
3074
bfb564e7
KK
3075/*
3076 * get_rps_cpu is called from netif_receive_skb and returns the target
3077 * CPU from the RPS map of the receiving queue for a given skb.
3078 * rcu_read_lock must be held on entry.
3079 */
3080static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3081 struct rps_dev_flow **rflowp)
3082{
567e4b79
ED
3083 const struct rps_sock_flow_table *sock_flow_table;
3084 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3085 struct rps_dev_flow_table *flow_table;
567e4b79 3086 struct rps_map *map;
bfb564e7 3087 int cpu = -1;
567e4b79 3088 u32 tcpu;
61b905da 3089 u32 hash;
bfb564e7
KK
3090
3091 if (skb_rx_queue_recorded(skb)) {
3092 u16 index = skb_get_rx_queue(skb);
567e4b79 3093
62fe0b40
BH
3094 if (unlikely(index >= dev->real_num_rx_queues)) {
3095 WARN_ONCE(dev->real_num_rx_queues > 1,
3096 "%s received packet on queue %u, but number "
3097 "of RX queues is %u\n",
3098 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3099 goto done;
3100 }
567e4b79
ED
3101 rxqueue += index;
3102 }
bfb564e7 3103
567e4b79
ED
3104 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3105
3106 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3107 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3108 if (!flow_table && !map)
bfb564e7
KK
3109 goto done;
3110
2d47b459 3111 skb_reset_network_header(skb);
61b905da
TH
3112 hash = skb_get_hash(skb);
3113 if (!hash)
bfb564e7
KK
3114 goto done;
3115
fec5e652
TH
3116 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3117 if (flow_table && sock_flow_table) {
fec5e652 3118 struct rps_dev_flow *rflow;
567e4b79
ED
3119 u32 next_cpu;
3120 u32 ident;
3121
3122 /* First check into global flow table if there is a match */
3123 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3124 if ((ident ^ hash) & ~rps_cpu_mask)
3125 goto try_rps;
fec5e652 3126
567e4b79
ED
3127 next_cpu = ident & rps_cpu_mask;
3128
3129 /* OK, now we know there is a match,
3130 * we can look at the local (per receive queue) flow table
3131 */
61b905da 3132 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3133 tcpu = rflow->cpu;
3134
fec5e652
TH
3135 /*
3136 * If the desired CPU (where last recvmsg was done) is
3137 * different from current CPU (one in the rx-queue flow
3138 * table entry), switch if one of the following holds:
3139 * - Current CPU is unset (equal to RPS_NO_CPU).
3140 * - Current CPU is offline.
3141 * - The current CPU's queue tail has advanced beyond the
3142 * last packet that was enqueued using this table entry.
3143 * This guarantees that all previous packets for the flow
3144 * have been dequeued, thus preserving in order delivery.
3145 */
3146 if (unlikely(tcpu != next_cpu) &&
3147 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3148 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3149 rflow->last_qtail)) >= 0)) {
3150 tcpu = next_cpu;
c445477d 3151 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3152 }
c445477d 3153
fec5e652
TH
3154 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3155 *rflowp = rflow;
3156 cpu = tcpu;
3157 goto done;
3158 }
3159 }
3160
567e4b79
ED
3161try_rps:
3162
0a9627f2 3163 if (map) {
8fc54f68 3164 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3165 if (cpu_online(tcpu)) {
3166 cpu = tcpu;
3167 goto done;
3168 }
3169 }
3170
3171done:
0a9627f2
TH
3172 return cpu;
3173}
3174
c445477d
BH
3175#ifdef CONFIG_RFS_ACCEL
3176
3177/**
3178 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3179 * @dev: Device on which the filter was set
3180 * @rxq_index: RX queue index
3181 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3182 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3183 *
3184 * Drivers that implement ndo_rx_flow_steer() should periodically call
3185 * this function for each installed filter and remove the filters for
3186 * which it returns %true.
3187 */
3188bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3189 u32 flow_id, u16 filter_id)
3190{
3191 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3192 struct rps_dev_flow_table *flow_table;
3193 struct rps_dev_flow *rflow;
3194 bool expire = true;
3195 int cpu;
3196
3197 rcu_read_lock();
3198 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3199 if (flow_table && flow_id <= flow_table->mask) {
3200 rflow = &flow_table->flows[flow_id];
3201 cpu = ACCESS_ONCE(rflow->cpu);
3202 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3203 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3204 rflow->last_qtail) <
3205 (int)(10 * flow_table->mask)))
3206 expire = false;
3207 }
3208 rcu_read_unlock();
3209 return expire;
3210}
3211EXPORT_SYMBOL(rps_may_expire_flow);
3212
3213#endif /* CONFIG_RFS_ACCEL */
3214
0a9627f2 3215/* Called from hardirq (IPI) context */
e36fa2f7 3216static void rps_trigger_softirq(void *data)
0a9627f2 3217{
e36fa2f7
ED
3218 struct softnet_data *sd = data;
3219
eecfd7c4 3220 ____napi_schedule(sd, &sd->backlog);
dee42870 3221 sd->received_rps++;
0a9627f2 3222}
e36fa2f7 3223
fec5e652 3224#endif /* CONFIG_RPS */
0a9627f2 3225
e36fa2f7
ED
3226/*
3227 * Check if this softnet_data structure is another cpu one
3228 * If yes, queue it to our IPI list and return 1
3229 * If no, return 0
3230 */
3231static int rps_ipi_queued(struct softnet_data *sd)
3232{
3233#ifdef CONFIG_RPS
903ceff7 3234 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3235
3236 if (sd != mysd) {
3237 sd->rps_ipi_next = mysd->rps_ipi_list;
3238 mysd->rps_ipi_list = sd;
3239
3240 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3241 return 1;
3242 }
3243#endif /* CONFIG_RPS */
3244 return 0;
3245}
3246
99bbc707
WB
3247#ifdef CONFIG_NET_FLOW_LIMIT
3248int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3249#endif
3250
3251static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3252{
3253#ifdef CONFIG_NET_FLOW_LIMIT
3254 struct sd_flow_limit *fl;
3255 struct softnet_data *sd;
3256 unsigned int old_flow, new_flow;
3257
3258 if (qlen < (netdev_max_backlog >> 1))
3259 return false;
3260
903ceff7 3261 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3262
3263 rcu_read_lock();
3264 fl = rcu_dereference(sd->flow_limit);
3265 if (fl) {
3958afa1 3266 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3267 old_flow = fl->history[fl->history_head];
3268 fl->history[fl->history_head] = new_flow;
3269
3270 fl->history_head++;
3271 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3272
3273 if (likely(fl->buckets[old_flow]))
3274 fl->buckets[old_flow]--;
3275
3276 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3277 fl->count++;
3278 rcu_read_unlock();
3279 return true;
3280 }
3281 }
3282 rcu_read_unlock();
3283#endif
3284 return false;
3285}
3286
0a9627f2
TH
3287/*
3288 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3289 * queue (may be a remote CPU queue).
3290 */
fec5e652
TH
3291static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3292 unsigned int *qtail)
0a9627f2 3293{
e36fa2f7 3294 struct softnet_data *sd;
0a9627f2 3295 unsigned long flags;
99bbc707 3296 unsigned int qlen;
0a9627f2 3297
e36fa2f7 3298 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3299
3300 local_irq_save(flags);
0a9627f2 3301
e36fa2f7 3302 rps_lock(sd);
99bbc707
WB
3303 qlen = skb_queue_len(&sd->input_pkt_queue);
3304 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3305 if (qlen) {
0a9627f2 3306enqueue:
e36fa2f7 3307 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3308 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3309 rps_unlock(sd);
152102c7 3310 local_irq_restore(flags);
0a9627f2
TH
3311 return NET_RX_SUCCESS;
3312 }
3313
ebda37c2
ED
3314 /* Schedule NAPI for backlog device
3315 * We can use non atomic operation since we own the queue lock
3316 */
3317 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3318 if (!rps_ipi_queued(sd))
eecfd7c4 3319 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3320 }
3321 goto enqueue;
3322 }
3323
dee42870 3324 sd->dropped++;
e36fa2f7 3325 rps_unlock(sd);
0a9627f2 3326
0a9627f2
TH
3327 local_irq_restore(flags);
3328
caf586e5 3329 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3330 kfree_skb(skb);
3331 return NET_RX_DROP;
3332}
1da177e4 3333
ae78dbfa 3334static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3335{
b0e28f1e 3336 int ret;
1da177e4 3337
588f0330 3338 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3339
cf66ba58 3340 trace_netif_rx(skb);
df334545 3341#ifdef CONFIG_RPS
c5905afb 3342 if (static_key_false(&rps_needed)) {
fec5e652 3343 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3344 int cpu;
3345
cece1945 3346 preempt_disable();
b0e28f1e 3347 rcu_read_lock();
fec5e652
TH
3348
3349 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3350 if (cpu < 0)
3351 cpu = smp_processor_id();
fec5e652
TH
3352
3353 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3354
b0e28f1e 3355 rcu_read_unlock();
cece1945 3356 preempt_enable();
adc9300e
ED
3357 } else
3358#endif
fec5e652
TH
3359 {
3360 unsigned int qtail;
3361 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3362 put_cpu();
3363 }
b0e28f1e 3364 return ret;
1da177e4 3365}
ae78dbfa
BH
3366
3367/**
3368 * netif_rx - post buffer to the network code
3369 * @skb: buffer to post
3370 *
3371 * This function receives a packet from a device driver and queues it for
3372 * the upper (protocol) levels to process. It always succeeds. The buffer
3373 * may be dropped during processing for congestion control or by the
3374 * protocol layers.
3375 *
3376 * return values:
3377 * NET_RX_SUCCESS (no congestion)
3378 * NET_RX_DROP (packet was dropped)
3379 *
3380 */
3381
3382int netif_rx(struct sk_buff *skb)
3383{
3384 trace_netif_rx_entry(skb);
3385
3386 return netif_rx_internal(skb);
3387}
d1b19dff 3388EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3389
3390int netif_rx_ni(struct sk_buff *skb)
3391{
3392 int err;
3393
ae78dbfa
BH
3394 trace_netif_rx_ni_entry(skb);
3395
1da177e4 3396 preempt_disable();
ae78dbfa 3397 err = netif_rx_internal(skb);
1da177e4
LT
3398 if (local_softirq_pending())
3399 do_softirq();
3400 preempt_enable();
3401
3402 return err;
3403}
1da177e4
LT
3404EXPORT_SYMBOL(netif_rx_ni);
3405
1da177e4
LT
3406static void net_tx_action(struct softirq_action *h)
3407{
903ceff7 3408 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3409
3410 if (sd->completion_queue) {
3411 struct sk_buff *clist;
3412
3413 local_irq_disable();
3414 clist = sd->completion_queue;
3415 sd->completion_queue = NULL;
3416 local_irq_enable();
3417
3418 while (clist) {
3419 struct sk_buff *skb = clist;
3420 clist = clist->next;
3421
547b792c 3422 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3423 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3424 trace_consume_skb(skb);
3425 else
3426 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3427 __kfree_skb(skb);
3428 }
3429 }
3430
3431 if (sd->output_queue) {
37437bb2 3432 struct Qdisc *head;
1da177e4
LT
3433
3434 local_irq_disable();
3435 head = sd->output_queue;
3436 sd->output_queue = NULL;
a9cbd588 3437 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3438 local_irq_enable();
3439
3440 while (head) {
37437bb2
DM
3441 struct Qdisc *q = head;
3442 spinlock_t *root_lock;
3443
1da177e4
LT
3444 head = head->next_sched;
3445
5fb66229 3446 root_lock = qdisc_lock(q);
37437bb2 3447 if (spin_trylock(root_lock)) {
4e857c58 3448 smp_mb__before_atomic();
def82a1d
JP
3449 clear_bit(__QDISC_STATE_SCHED,
3450 &q->state);
37437bb2
DM
3451 qdisc_run(q);
3452 spin_unlock(root_lock);
1da177e4 3453 } else {
195648bb 3454 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3455 &q->state)) {
195648bb 3456 __netif_reschedule(q);
e8a83e10 3457 } else {
4e857c58 3458 smp_mb__before_atomic();
e8a83e10
JP
3459 clear_bit(__QDISC_STATE_SCHED,
3460 &q->state);
3461 }
1da177e4
LT
3462 }
3463 }
3464 }
3465}
3466
ab95bfe0
JP
3467#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3468 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3469/* This hook is defined here for ATM LANE */
3470int (*br_fdb_test_addr_hook)(struct net_device *dev,
3471 unsigned char *addr) __read_mostly;
4fb019a0 3472EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3473#endif
1da177e4 3474
1da177e4
LT
3475#ifdef CONFIG_NET_CLS_ACT
3476/* TODO: Maybe we should just force sch_ingress to be compiled in
3477 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3478 * a compare and 2 stores extra right now if we dont have it on
3479 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3480 * NOTE: This doesn't stop any functionality; if you dont have
3481 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3482 *
3483 */
24824a09 3484static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3485{
1da177e4 3486 struct net_device *dev = skb->dev;
f697c3e8 3487 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3488 int result = TC_ACT_OK;
3489 struct Qdisc *q;
4ec93edb 3490
de384830 3491 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3492 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3493 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3494 return TC_ACT_SHOT;
3495 }
1da177e4 3496
f697c3e8
HX
3497 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3498 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3499
46e5da40 3500 q = rcu_dereference(rxq->qdisc);
8d50b53d 3501 if (q != &noop_qdisc) {
83874000 3502 spin_lock(qdisc_lock(q));
a9312ae8
DM
3503 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3504 result = qdisc_enqueue_root(skb, q);
83874000
DM
3505 spin_unlock(qdisc_lock(q));
3506 }
f697c3e8
HX
3507
3508 return result;
3509}
86e65da9 3510
f697c3e8
HX
3511static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3512 struct packet_type **pt_prev,
3513 int *ret, struct net_device *orig_dev)
3514{
24824a09
ED
3515 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3516
46e5da40 3517 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
f697c3e8 3518 goto out;
1da177e4 3519
f697c3e8
HX
3520 if (*pt_prev) {
3521 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3522 *pt_prev = NULL;
1da177e4
LT
3523 }
3524
24824a09 3525 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3526 case TC_ACT_SHOT:
3527 case TC_ACT_STOLEN:
3528 kfree_skb(skb);
3529 return NULL;
3530 }
3531
3532out:
3533 skb->tc_verd = 0;
3534 return skb;
1da177e4
LT
3535}
3536#endif
3537
ab95bfe0
JP
3538/**
3539 * netdev_rx_handler_register - register receive handler
3540 * @dev: device to register a handler for
3541 * @rx_handler: receive handler to register
93e2c32b 3542 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3543 *
e227867f 3544 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3545 * called from __netif_receive_skb. A negative errno code is returned
3546 * on a failure.
3547 *
3548 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3549 *
3550 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3551 */
3552int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3553 rx_handler_func_t *rx_handler,
3554 void *rx_handler_data)
ab95bfe0
JP
3555{
3556 ASSERT_RTNL();
3557
3558 if (dev->rx_handler)
3559 return -EBUSY;
3560
00cfec37 3561 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3562 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3563 rcu_assign_pointer(dev->rx_handler, rx_handler);
3564
3565 return 0;
3566}
3567EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3568
3569/**
3570 * netdev_rx_handler_unregister - unregister receive handler
3571 * @dev: device to unregister a handler from
3572 *
166ec369 3573 * Unregister a receive handler from a device.
ab95bfe0
JP
3574 *
3575 * The caller must hold the rtnl_mutex.
3576 */
3577void netdev_rx_handler_unregister(struct net_device *dev)
3578{
3579
3580 ASSERT_RTNL();
a9b3cd7f 3581 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3582 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3583 * section has a guarantee to see a non NULL rx_handler_data
3584 * as well.
3585 */
3586 synchronize_net();
a9b3cd7f 3587 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3588}
3589EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3590
b4b9e355
MG
3591/*
3592 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3593 * the special handling of PFMEMALLOC skbs.
3594 */
3595static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3596{
3597 switch (skb->protocol) {
2b8837ae
JP
3598 case htons(ETH_P_ARP):
3599 case htons(ETH_P_IP):
3600 case htons(ETH_P_IPV6):
3601 case htons(ETH_P_8021Q):
3602 case htons(ETH_P_8021AD):
b4b9e355
MG
3603 return true;
3604 default:
3605 return false;
3606 }
3607}
3608
9754e293 3609static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3610{
3611 struct packet_type *ptype, *pt_prev;
ab95bfe0 3612 rx_handler_func_t *rx_handler;
f2ccd8fa 3613 struct net_device *orig_dev;
8a4eb573 3614 bool deliver_exact = false;
1da177e4 3615 int ret = NET_RX_DROP;
252e3346 3616 __be16 type;
1da177e4 3617
588f0330 3618 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3619
cf66ba58 3620 trace_netif_receive_skb(skb);
9b22ea56 3621
cc9bd5ce 3622 orig_dev = skb->dev;
8f903c70 3623
c1d2bbe1 3624 skb_reset_network_header(skb);
fda55eca
ED
3625 if (!skb_transport_header_was_set(skb))
3626 skb_reset_transport_header(skb);
0b5c9db1 3627 skb_reset_mac_len(skb);
1da177e4
LT
3628
3629 pt_prev = NULL;
3630
3631 rcu_read_lock();
3632
63d8ea7f 3633another_round:
b6858177 3634 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3635
3636 __this_cpu_inc(softnet_data.processed);
3637
8ad227ff
PM
3638 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3639 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3640 skb = skb_vlan_untag(skb);
bcc6d479 3641 if (unlikely(!skb))
b4b9e355 3642 goto unlock;
bcc6d479
JP
3643 }
3644
1da177e4
LT
3645#ifdef CONFIG_NET_CLS_ACT
3646 if (skb->tc_verd & TC_NCLS) {
3647 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3648 goto ncls;
3649 }
3650#endif
3651
9754e293 3652 if (pfmemalloc)
b4b9e355
MG
3653 goto skip_taps;
3654
1da177e4 3655 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3656 if (pt_prev)
3657 ret = deliver_skb(skb, pt_prev, orig_dev);
3658 pt_prev = ptype;
3659 }
3660
3661 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3662 if (pt_prev)
3663 ret = deliver_skb(skb, pt_prev, orig_dev);
3664 pt_prev = ptype;
1da177e4
LT
3665 }
3666
b4b9e355 3667skip_taps:
1da177e4 3668#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3669 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3670 if (!skb)
b4b9e355 3671 goto unlock;
1da177e4
LT
3672ncls:
3673#endif
3674
9754e293 3675 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3676 goto drop;
3677
df8a39de 3678 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3679 if (pt_prev) {
3680 ret = deliver_skb(skb, pt_prev, orig_dev);
3681 pt_prev = NULL;
3682 }
48cc32d3 3683 if (vlan_do_receive(&skb))
2425717b
JF
3684 goto another_round;
3685 else if (unlikely(!skb))
b4b9e355 3686 goto unlock;
2425717b
JF
3687 }
3688
48cc32d3 3689 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3690 if (rx_handler) {
3691 if (pt_prev) {
3692 ret = deliver_skb(skb, pt_prev, orig_dev);
3693 pt_prev = NULL;
3694 }
8a4eb573
JP
3695 switch (rx_handler(&skb)) {
3696 case RX_HANDLER_CONSUMED:
3bc1b1ad 3697 ret = NET_RX_SUCCESS;
b4b9e355 3698 goto unlock;
8a4eb573 3699 case RX_HANDLER_ANOTHER:
63d8ea7f 3700 goto another_round;
8a4eb573
JP
3701 case RX_HANDLER_EXACT:
3702 deliver_exact = true;
3703 case RX_HANDLER_PASS:
3704 break;
3705 default:
3706 BUG();
3707 }
ab95bfe0 3708 }
1da177e4 3709
df8a39de
JP
3710 if (unlikely(skb_vlan_tag_present(skb))) {
3711 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3712 skb->pkt_type = PACKET_OTHERHOST;
3713 /* Note: we might in the future use prio bits
3714 * and set skb->priority like in vlan_do_receive()
3715 * For the time being, just ignore Priority Code Point
3716 */
3717 skb->vlan_tci = 0;
3718 }
48cc32d3 3719
7866a621
SN
3720 type = skb->protocol;
3721
63d8ea7f 3722 /* deliver only exact match when indicated */
7866a621
SN
3723 if (likely(!deliver_exact)) {
3724 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3725 &ptype_base[ntohs(type) &
3726 PTYPE_HASH_MASK]);
3727 }
1f3c8804 3728
7866a621
SN
3729 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3730 &orig_dev->ptype_specific);
3731
3732 if (unlikely(skb->dev != orig_dev)) {
3733 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3734 &skb->dev->ptype_specific);
1da177e4
LT
3735 }
3736
3737 if (pt_prev) {
1080e512 3738 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3739 goto drop;
1080e512
MT
3740 else
3741 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3742 } else {
b4b9e355 3743drop:
caf586e5 3744 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3745 kfree_skb(skb);
3746 /* Jamal, now you will not able to escape explaining
3747 * me how you were going to use this. :-)
3748 */
3749 ret = NET_RX_DROP;
3750 }
3751
b4b9e355 3752unlock:
1da177e4 3753 rcu_read_unlock();
9754e293
DM
3754 return ret;
3755}
3756
3757static int __netif_receive_skb(struct sk_buff *skb)
3758{
3759 int ret;
3760
3761 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3762 unsigned long pflags = current->flags;
3763
3764 /*
3765 * PFMEMALLOC skbs are special, they should
3766 * - be delivered to SOCK_MEMALLOC sockets only
3767 * - stay away from userspace
3768 * - have bounded memory usage
3769 *
3770 * Use PF_MEMALLOC as this saves us from propagating the allocation
3771 * context down to all allocation sites.
3772 */
3773 current->flags |= PF_MEMALLOC;
3774 ret = __netif_receive_skb_core(skb, true);
3775 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3776 } else
3777 ret = __netif_receive_skb_core(skb, false);
3778
1da177e4
LT
3779 return ret;
3780}
0a9627f2 3781
ae78dbfa 3782static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3783{
588f0330 3784 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3785
c1f19b51
RC
3786 if (skb_defer_rx_timestamp(skb))
3787 return NET_RX_SUCCESS;
3788
df334545 3789#ifdef CONFIG_RPS
c5905afb 3790 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3791 struct rps_dev_flow voidflow, *rflow = &voidflow;
3792 int cpu, ret;
fec5e652 3793
3b098e2d
ED
3794 rcu_read_lock();
3795
3796 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3797
3b098e2d
ED
3798 if (cpu >= 0) {
3799 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3800 rcu_read_unlock();
adc9300e 3801 return ret;
3b098e2d 3802 }
adc9300e 3803 rcu_read_unlock();
fec5e652 3804 }
1e94d72f 3805#endif
adc9300e 3806 return __netif_receive_skb(skb);
0a9627f2 3807}
ae78dbfa
BH
3808
3809/**
3810 * netif_receive_skb - process receive buffer from network
3811 * @skb: buffer to process
3812 *
3813 * netif_receive_skb() is the main receive data processing function.
3814 * It always succeeds. The buffer may be dropped during processing
3815 * for congestion control or by the protocol layers.
3816 *
3817 * This function may only be called from softirq context and interrupts
3818 * should be enabled.
3819 *
3820 * Return values (usually ignored):
3821 * NET_RX_SUCCESS: no congestion
3822 * NET_RX_DROP: packet was dropped
3823 */
3824int netif_receive_skb(struct sk_buff *skb)
3825{
3826 trace_netif_receive_skb_entry(skb);
3827
3828 return netif_receive_skb_internal(skb);
3829}
d1b19dff 3830EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3831
88751275
ED
3832/* Network device is going away, flush any packets still pending
3833 * Called with irqs disabled.
3834 */
152102c7 3835static void flush_backlog(void *arg)
6e583ce5 3836{
152102c7 3837 struct net_device *dev = arg;
903ceff7 3838 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
3839 struct sk_buff *skb, *tmp;
3840
e36fa2f7 3841 rps_lock(sd);
6e7676c1 3842 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3843 if (skb->dev == dev) {
e36fa2f7 3844 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3845 kfree_skb(skb);
76cc8b13 3846 input_queue_head_incr(sd);
6e583ce5 3847 }
6e7676c1 3848 }
e36fa2f7 3849 rps_unlock(sd);
6e7676c1
CG
3850
3851 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3852 if (skb->dev == dev) {
3853 __skb_unlink(skb, &sd->process_queue);
3854 kfree_skb(skb);
76cc8b13 3855 input_queue_head_incr(sd);
6e7676c1
CG
3856 }
3857 }
6e583ce5
SH
3858}
3859
d565b0a1
HX
3860static int napi_gro_complete(struct sk_buff *skb)
3861{
22061d80 3862 struct packet_offload *ptype;
d565b0a1 3863 __be16 type = skb->protocol;
22061d80 3864 struct list_head *head = &offload_base;
d565b0a1
HX
3865 int err = -ENOENT;
3866
c3c7c254
ED
3867 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3868
fc59f9a3
HX
3869 if (NAPI_GRO_CB(skb)->count == 1) {
3870 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3871 goto out;
fc59f9a3 3872 }
d565b0a1
HX
3873
3874 rcu_read_lock();
3875 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3876 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3877 continue;
3878
299603e8 3879 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3880 break;
3881 }
3882 rcu_read_unlock();
3883
3884 if (err) {
3885 WARN_ON(&ptype->list == head);
3886 kfree_skb(skb);
3887 return NET_RX_SUCCESS;
3888 }
3889
3890out:
ae78dbfa 3891 return netif_receive_skb_internal(skb);
d565b0a1
HX
3892}
3893
2e71a6f8
ED
3894/* napi->gro_list contains packets ordered by age.
3895 * youngest packets at the head of it.
3896 * Complete skbs in reverse order to reduce latencies.
3897 */
3898void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3899{
2e71a6f8 3900 struct sk_buff *skb, *prev = NULL;
d565b0a1 3901
2e71a6f8
ED
3902 /* scan list and build reverse chain */
3903 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3904 skb->prev = prev;
3905 prev = skb;
3906 }
3907
3908 for (skb = prev; skb; skb = prev) {
d565b0a1 3909 skb->next = NULL;
2e71a6f8
ED
3910
3911 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3912 return;
3913
3914 prev = skb->prev;
d565b0a1 3915 napi_gro_complete(skb);
2e71a6f8 3916 napi->gro_count--;
d565b0a1
HX
3917 }
3918
3919 napi->gro_list = NULL;
3920}
86cac58b 3921EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3922
89c5fa33
ED
3923static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3924{
3925 struct sk_buff *p;
3926 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3927 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3928
3929 for (p = napi->gro_list; p; p = p->next) {
3930 unsigned long diffs;
3931
0b4cec8c
TH
3932 NAPI_GRO_CB(p)->flush = 0;
3933
3934 if (hash != skb_get_hash_raw(p)) {
3935 NAPI_GRO_CB(p)->same_flow = 0;
3936 continue;
3937 }
3938
89c5fa33
ED
3939 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3940 diffs |= p->vlan_tci ^ skb->vlan_tci;
3941 if (maclen == ETH_HLEN)
3942 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3943 skb_mac_header(skb));
89c5fa33
ED
3944 else if (!diffs)
3945 diffs = memcmp(skb_mac_header(p),
a50e233c 3946 skb_mac_header(skb),
89c5fa33
ED
3947 maclen);
3948 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3949 }
3950}
3951
299603e8
JC
3952static void skb_gro_reset_offset(struct sk_buff *skb)
3953{
3954 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3955 const skb_frag_t *frag0 = &pinfo->frags[0];
3956
3957 NAPI_GRO_CB(skb)->data_offset = 0;
3958 NAPI_GRO_CB(skb)->frag0 = NULL;
3959 NAPI_GRO_CB(skb)->frag0_len = 0;
3960
3961 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3962 pinfo->nr_frags &&
3963 !PageHighMem(skb_frag_page(frag0))) {
3964 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3965 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3966 }
3967}
3968
a50e233c
ED
3969static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3970{
3971 struct skb_shared_info *pinfo = skb_shinfo(skb);
3972
3973 BUG_ON(skb->end - skb->tail < grow);
3974
3975 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3976
3977 skb->data_len -= grow;
3978 skb->tail += grow;
3979
3980 pinfo->frags[0].page_offset += grow;
3981 skb_frag_size_sub(&pinfo->frags[0], grow);
3982
3983 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3984 skb_frag_unref(skb, 0);
3985 memmove(pinfo->frags, pinfo->frags + 1,
3986 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3987 }
3988}
3989
bb728820 3990static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3991{
3992 struct sk_buff **pp = NULL;
22061d80 3993 struct packet_offload *ptype;
d565b0a1 3994 __be16 type = skb->protocol;
22061d80 3995 struct list_head *head = &offload_base;
0da2afd5 3996 int same_flow;
5b252f0c 3997 enum gro_result ret;
a50e233c 3998 int grow;
d565b0a1 3999
9c62a68d 4000 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4001 goto normal;
4002
5a212329 4003 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4004 goto normal;
4005
89c5fa33
ED
4006 gro_list_prepare(napi, skb);
4007
d565b0a1
HX
4008 rcu_read_lock();
4009 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4010 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4011 continue;
4012
86911732 4013 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4014 skb_reset_mac_len(skb);
d565b0a1
HX
4015 NAPI_GRO_CB(skb)->same_flow = 0;
4016 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4017 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4018 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4019 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4020
662880f4
TH
4021 /* Setup for GRO checksum validation */
4022 switch (skb->ip_summed) {
4023 case CHECKSUM_COMPLETE:
4024 NAPI_GRO_CB(skb)->csum = skb->csum;
4025 NAPI_GRO_CB(skb)->csum_valid = 1;
4026 NAPI_GRO_CB(skb)->csum_cnt = 0;
4027 break;
4028 case CHECKSUM_UNNECESSARY:
4029 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4030 NAPI_GRO_CB(skb)->csum_valid = 0;
4031 break;
4032 default:
4033 NAPI_GRO_CB(skb)->csum_cnt = 0;
4034 NAPI_GRO_CB(skb)->csum_valid = 0;
4035 }
d565b0a1 4036
f191a1d1 4037 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4038 break;
4039 }
4040 rcu_read_unlock();
4041
4042 if (&ptype->list == head)
4043 goto normal;
4044
0da2afd5 4045 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4046 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4047
d565b0a1
HX
4048 if (pp) {
4049 struct sk_buff *nskb = *pp;
4050
4051 *pp = nskb->next;
4052 nskb->next = NULL;
4053 napi_gro_complete(nskb);
4ae5544f 4054 napi->gro_count--;
d565b0a1
HX
4055 }
4056
0da2afd5 4057 if (same_flow)
d565b0a1
HX
4058 goto ok;
4059
600adc18 4060 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4061 goto normal;
d565b0a1 4062
600adc18
ED
4063 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4064 struct sk_buff *nskb = napi->gro_list;
4065
4066 /* locate the end of the list to select the 'oldest' flow */
4067 while (nskb->next) {
4068 pp = &nskb->next;
4069 nskb = *pp;
4070 }
4071 *pp = NULL;
4072 nskb->next = NULL;
4073 napi_gro_complete(nskb);
4074 } else {
4075 napi->gro_count++;
4076 }
d565b0a1 4077 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4078 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4079 NAPI_GRO_CB(skb)->last = skb;
86911732 4080 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4081 skb->next = napi->gro_list;
4082 napi->gro_list = skb;
5d0d9be8 4083 ret = GRO_HELD;
d565b0a1 4084
ad0f9904 4085pull:
a50e233c
ED
4086 grow = skb_gro_offset(skb) - skb_headlen(skb);
4087 if (grow > 0)
4088 gro_pull_from_frag0(skb, grow);
d565b0a1 4089ok:
5d0d9be8 4090 return ret;
d565b0a1
HX
4091
4092normal:
ad0f9904
HX
4093 ret = GRO_NORMAL;
4094 goto pull;
5d38a079 4095}
96e93eab 4096
bf5a755f
JC
4097struct packet_offload *gro_find_receive_by_type(__be16 type)
4098{
4099 struct list_head *offload_head = &offload_base;
4100 struct packet_offload *ptype;
4101
4102 list_for_each_entry_rcu(ptype, offload_head, list) {
4103 if (ptype->type != type || !ptype->callbacks.gro_receive)
4104 continue;
4105 return ptype;
4106 }
4107 return NULL;
4108}
e27a2f83 4109EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4110
4111struct packet_offload *gro_find_complete_by_type(__be16 type)
4112{
4113 struct list_head *offload_head = &offload_base;
4114 struct packet_offload *ptype;
4115
4116 list_for_each_entry_rcu(ptype, offload_head, list) {
4117 if (ptype->type != type || !ptype->callbacks.gro_complete)
4118 continue;
4119 return ptype;
4120 }
4121 return NULL;
4122}
e27a2f83 4123EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4124
bb728820 4125static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4126{
5d0d9be8
HX
4127 switch (ret) {
4128 case GRO_NORMAL:
ae78dbfa 4129 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4130 ret = GRO_DROP;
4131 break;
5d38a079 4132
5d0d9be8 4133 case GRO_DROP:
5d38a079
HX
4134 kfree_skb(skb);
4135 break;
5b252f0c 4136
daa86548 4137 case GRO_MERGED_FREE:
d7e8883c
ED
4138 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4139 kmem_cache_free(skbuff_head_cache, skb);
4140 else
4141 __kfree_skb(skb);
daa86548
ED
4142 break;
4143
5b252f0c
BH
4144 case GRO_HELD:
4145 case GRO_MERGED:
4146 break;
5d38a079
HX
4147 }
4148
c7c4b3b6 4149 return ret;
5d0d9be8 4150}
5d0d9be8 4151
c7c4b3b6 4152gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4153{
ae78dbfa 4154 trace_napi_gro_receive_entry(skb);
86911732 4155
a50e233c
ED
4156 skb_gro_reset_offset(skb);
4157
89c5fa33 4158 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4159}
4160EXPORT_SYMBOL(napi_gro_receive);
4161
d0c2b0d2 4162static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4163{
93a35f59
ED
4164 if (unlikely(skb->pfmemalloc)) {
4165 consume_skb(skb);
4166 return;
4167 }
96e93eab 4168 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4169 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4170 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4171 skb->vlan_tci = 0;
66c46d74 4172 skb->dev = napi->dev;
6d152e23 4173 skb->skb_iif = 0;
c3caf119
JC
4174 skb->encapsulation = 0;
4175 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4176 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4177
4178 napi->skb = skb;
4179}
96e93eab 4180
76620aaf 4181struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4182{
5d38a079 4183 struct sk_buff *skb = napi->skb;
5d38a079
HX
4184
4185 if (!skb) {
fd11a83d 4186 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4187 napi->skb = skb;
80595d59 4188 }
96e93eab
HX
4189 return skb;
4190}
76620aaf 4191EXPORT_SYMBOL(napi_get_frags);
96e93eab 4192
a50e233c
ED
4193static gro_result_t napi_frags_finish(struct napi_struct *napi,
4194 struct sk_buff *skb,
4195 gro_result_t ret)
96e93eab 4196{
5d0d9be8
HX
4197 switch (ret) {
4198 case GRO_NORMAL:
a50e233c
ED
4199 case GRO_HELD:
4200 __skb_push(skb, ETH_HLEN);
4201 skb->protocol = eth_type_trans(skb, skb->dev);
4202 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4203 ret = GRO_DROP;
86911732 4204 break;
5d38a079 4205
5d0d9be8 4206 case GRO_DROP:
5d0d9be8
HX
4207 case GRO_MERGED_FREE:
4208 napi_reuse_skb(napi, skb);
4209 break;
5b252f0c
BH
4210
4211 case GRO_MERGED:
4212 break;
5d0d9be8 4213 }
5d38a079 4214
c7c4b3b6 4215 return ret;
5d38a079 4216}
5d0d9be8 4217
a50e233c
ED
4218/* Upper GRO stack assumes network header starts at gro_offset=0
4219 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4220 * We copy ethernet header into skb->data to have a common layout.
4221 */
4adb9c4a 4222static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4223{
4224 struct sk_buff *skb = napi->skb;
a50e233c
ED
4225 const struct ethhdr *eth;
4226 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4227
4228 napi->skb = NULL;
4229
a50e233c
ED
4230 skb_reset_mac_header(skb);
4231 skb_gro_reset_offset(skb);
4232
4233 eth = skb_gro_header_fast(skb, 0);
4234 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4235 eth = skb_gro_header_slow(skb, hlen, 0);
4236 if (unlikely(!eth)) {
4237 napi_reuse_skb(napi, skb);
4238 return NULL;
4239 }
4240 } else {
4241 gro_pull_from_frag0(skb, hlen);
4242 NAPI_GRO_CB(skb)->frag0 += hlen;
4243 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4244 }
a50e233c
ED
4245 __skb_pull(skb, hlen);
4246
4247 /*
4248 * This works because the only protocols we care about don't require
4249 * special handling.
4250 * We'll fix it up properly in napi_frags_finish()
4251 */
4252 skb->protocol = eth->h_proto;
76620aaf 4253
76620aaf
HX
4254 return skb;
4255}
76620aaf 4256
c7c4b3b6 4257gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4258{
76620aaf 4259 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4260
4261 if (!skb)
c7c4b3b6 4262 return GRO_DROP;
5d0d9be8 4263
ae78dbfa
BH
4264 trace_napi_gro_frags_entry(skb);
4265
89c5fa33 4266 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4267}
5d38a079
HX
4268EXPORT_SYMBOL(napi_gro_frags);
4269
573e8fca
TH
4270/* Compute the checksum from gro_offset and return the folded value
4271 * after adding in any pseudo checksum.
4272 */
4273__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4274{
4275 __wsum wsum;
4276 __sum16 sum;
4277
4278 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4279
4280 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4281 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4282 if (likely(!sum)) {
4283 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4284 !skb->csum_complete_sw)
4285 netdev_rx_csum_fault(skb->dev);
4286 }
4287
4288 NAPI_GRO_CB(skb)->csum = wsum;
4289 NAPI_GRO_CB(skb)->csum_valid = 1;
4290
4291 return sum;
4292}
4293EXPORT_SYMBOL(__skb_gro_checksum_complete);
4294
e326bed2 4295/*
855abcf0 4296 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4297 * Note: called with local irq disabled, but exits with local irq enabled.
4298 */
4299static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4300{
4301#ifdef CONFIG_RPS
4302 struct softnet_data *remsd = sd->rps_ipi_list;
4303
4304 if (remsd) {
4305 sd->rps_ipi_list = NULL;
4306
4307 local_irq_enable();
4308
4309 /* Send pending IPI's to kick RPS processing on remote cpus. */
4310 while (remsd) {
4311 struct softnet_data *next = remsd->rps_ipi_next;
4312
4313 if (cpu_online(remsd->cpu))
c46fff2a 4314 smp_call_function_single_async(remsd->cpu,
fce8ad15 4315 &remsd->csd);
e326bed2
ED
4316 remsd = next;
4317 }
4318 } else
4319#endif
4320 local_irq_enable();
4321}
4322
d75b1ade
ED
4323static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4324{
4325#ifdef CONFIG_RPS
4326 return sd->rps_ipi_list != NULL;
4327#else
4328 return false;
4329#endif
4330}
4331
bea3348e 4332static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4333{
4334 int work = 0;
eecfd7c4 4335 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4336
e326bed2
ED
4337 /* Check if we have pending ipi, its better to send them now,
4338 * not waiting net_rx_action() end.
4339 */
d75b1ade 4340 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4341 local_irq_disable();
4342 net_rps_action_and_irq_enable(sd);
4343 }
d75b1ade 4344
bea3348e 4345 napi->weight = weight_p;
6e7676c1 4346 local_irq_disable();
11ef7a89 4347 while (1) {
1da177e4 4348 struct sk_buff *skb;
6e7676c1
CG
4349
4350 while ((skb = __skb_dequeue(&sd->process_queue))) {
4351 local_irq_enable();
4352 __netif_receive_skb(skb);
6e7676c1 4353 local_irq_disable();
76cc8b13
TH
4354 input_queue_head_incr(sd);
4355 if (++work >= quota) {
4356 local_irq_enable();
4357 return work;
4358 }
6e7676c1 4359 }
1da177e4 4360
e36fa2f7 4361 rps_lock(sd);
11ef7a89 4362 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4363 /*
4364 * Inline a custom version of __napi_complete().
4365 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4366 * and NAPI_STATE_SCHED is the only possible flag set
4367 * on backlog.
4368 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4369 * and we dont need an smp_mb() memory barrier.
4370 */
eecfd7c4 4371 napi->state = 0;
11ef7a89 4372 rps_unlock(sd);
eecfd7c4 4373
11ef7a89 4374 break;
bea3348e 4375 }
11ef7a89
TH
4376
4377 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4378 &sd->process_queue);
e36fa2f7 4379 rps_unlock(sd);
6e7676c1
CG
4380 }
4381 local_irq_enable();
1da177e4 4382
bea3348e
SH
4383 return work;
4384}
1da177e4 4385
bea3348e
SH
4386/**
4387 * __napi_schedule - schedule for receive
c4ea43c5 4388 * @n: entry to schedule
bea3348e 4389 *
bc9ad166
ED
4390 * The entry's receive function will be scheduled to run.
4391 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4392 */
b5606c2d 4393void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4394{
4395 unsigned long flags;
1da177e4 4396
bea3348e 4397 local_irq_save(flags);
903ceff7 4398 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4399 local_irq_restore(flags);
1da177e4 4400}
bea3348e
SH
4401EXPORT_SYMBOL(__napi_schedule);
4402
bc9ad166
ED
4403/**
4404 * __napi_schedule_irqoff - schedule for receive
4405 * @n: entry to schedule
4406 *
4407 * Variant of __napi_schedule() assuming hard irqs are masked
4408 */
4409void __napi_schedule_irqoff(struct napi_struct *n)
4410{
4411 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4412}
4413EXPORT_SYMBOL(__napi_schedule_irqoff);
4414
d565b0a1
HX
4415void __napi_complete(struct napi_struct *n)
4416{
4417 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4418
d75b1ade 4419 list_del_init(&n->poll_list);
4e857c58 4420 smp_mb__before_atomic();
d565b0a1
HX
4421 clear_bit(NAPI_STATE_SCHED, &n->state);
4422}
4423EXPORT_SYMBOL(__napi_complete);
4424
3b47d303 4425void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4426{
4427 unsigned long flags;
4428
4429 /*
4430 * don't let napi dequeue from the cpu poll list
4431 * just in case its running on a different cpu
4432 */
4433 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4434 return;
4435
3b47d303
ED
4436 if (n->gro_list) {
4437 unsigned long timeout = 0;
d75b1ade 4438
3b47d303
ED
4439 if (work_done)
4440 timeout = n->dev->gro_flush_timeout;
4441
4442 if (timeout)
4443 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4444 HRTIMER_MODE_REL_PINNED);
4445 else
4446 napi_gro_flush(n, false);
4447 }
d75b1ade
ED
4448 if (likely(list_empty(&n->poll_list))) {
4449 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4450 } else {
4451 /* If n->poll_list is not empty, we need to mask irqs */
4452 local_irq_save(flags);
4453 __napi_complete(n);
4454 local_irq_restore(flags);
4455 }
d565b0a1 4456}
3b47d303 4457EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4458
af12fa6e
ET
4459/* must be called under rcu_read_lock(), as we dont take a reference */
4460struct napi_struct *napi_by_id(unsigned int napi_id)
4461{
4462 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4463 struct napi_struct *napi;
4464
4465 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4466 if (napi->napi_id == napi_id)
4467 return napi;
4468
4469 return NULL;
4470}
4471EXPORT_SYMBOL_GPL(napi_by_id);
4472
4473void napi_hash_add(struct napi_struct *napi)
4474{
4475 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4476
4477 spin_lock(&napi_hash_lock);
4478
4479 /* 0 is not a valid id, we also skip an id that is taken
4480 * we expect both events to be extremely rare
4481 */
4482 napi->napi_id = 0;
4483 while (!napi->napi_id) {
4484 napi->napi_id = ++napi_gen_id;
4485 if (napi_by_id(napi->napi_id))
4486 napi->napi_id = 0;
4487 }
4488
4489 hlist_add_head_rcu(&napi->napi_hash_node,
4490 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4491
4492 spin_unlock(&napi_hash_lock);
4493 }
4494}
4495EXPORT_SYMBOL_GPL(napi_hash_add);
4496
4497/* Warning : caller is responsible to make sure rcu grace period
4498 * is respected before freeing memory containing @napi
4499 */
4500void napi_hash_del(struct napi_struct *napi)
4501{
4502 spin_lock(&napi_hash_lock);
4503
4504 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4505 hlist_del_rcu(&napi->napi_hash_node);
4506
4507 spin_unlock(&napi_hash_lock);
4508}
4509EXPORT_SYMBOL_GPL(napi_hash_del);
4510
3b47d303
ED
4511static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4512{
4513 struct napi_struct *napi;
4514
4515 napi = container_of(timer, struct napi_struct, timer);
4516 if (napi->gro_list)
4517 napi_schedule(napi);
4518
4519 return HRTIMER_NORESTART;
4520}
4521
d565b0a1
HX
4522void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4523 int (*poll)(struct napi_struct *, int), int weight)
4524{
4525 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4526 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4527 napi->timer.function = napi_watchdog;
4ae5544f 4528 napi->gro_count = 0;
d565b0a1 4529 napi->gro_list = NULL;
5d38a079 4530 napi->skb = NULL;
d565b0a1 4531 napi->poll = poll;
82dc3c63
ED
4532 if (weight > NAPI_POLL_WEIGHT)
4533 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4534 weight, dev->name);
d565b0a1
HX
4535 napi->weight = weight;
4536 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4537 napi->dev = dev;
5d38a079 4538#ifdef CONFIG_NETPOLL
d565b0a1
HX
4539 spin_lock_init(&napi->poll_lock);
4540 napi->poll_owner = -1;
4541#endif
4542 set_bit(NAPI_STATE_SCHED, &napi->state);
4543}
4544EXPORT_SYMBOL(netif_napi_add);
4545
3b47d303
ED
4546void napi_disable(struct napi_struct *n)
4547{
4548 might_sleep();
4549 set_bit(NAPI_STATE_DISABLE, &n->state);
4550
4551 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4552 msleep(1);
4553
4554 hrtimer_cancel(&n->timer);
4555
4556 clear_bit(NAPI_STATE_DISABLE, &n->state);
4557}
4558EXPORT_SYMBOL(napi_disable);
4559
d565b0a1
HX
4560void netif_napi_del(struct napi_struct *napi)
4561{
d7b06636 4562 list_del_init(&napi->dev_list);
76620aaf 4563 napi_free_frags(napi);
d565b0a1 4564
289dccbe 4565 kfree_skb_list(napi->gro_list);
d565b0a1 4566 napi->gro_list = NULL;
4ae5544f 4567 napi->gro_count = 0;
d565b0a1
HX
4568}
4569EXPORT_SYMBOL(netif_napi_del);
4570
726ce70e
HX
4571static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4572{
4573 void *have;
4574 int work, weight;
4575
4576 list_del_init(&n->poll_list);
4577
4578 have = netpoll_poll_lock(n);
4579
4580 weight = n->weight;
4581
4582 /* This NAPI_STATE_SCHED test is for avoiding a race
4583 * with netpoll's poll_napi(). Only the entity which
4584 * obtains the lock and sees NAPI_STATE_SCHED set will
4585 * actually make the ->poll() call. Therefore we avoid
4586 * accidentally calling ->poll() when NAPI is not scheduled.
4587 */
4588 work = 0;
4589 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4590 work = n->poll(n, weight);
4591 trace_napi_poll(n);
4592 }
4593
4594 WARN_ON_ONCE(work > weight);
4595
4596 if (likely(work < weight))
4597 goto out_unlock;
4598
4599 /* Drivers must not modify the NAPI state if they
4600 * consume the entire weight. In such cases this code
4601 * still "owns" the NAPI instance and therefore can
4602 * move the instance around on the list at-will.
4603 */
4604 if (unlikely(napi_disable_pending(n))) {
4605 napi_complete(n);
4606 goto out_unlock;
4607 }
4608
4609 if (n->gro_list) {
4610 /* flush too old packets
4611 * If HZ < 1000, flush all packets.
4612 */
4613 napi_gro_flush(n, HZ >= 1000);
4614 }
4615
001ce546
HX
4616 /* Some drivers may have called napi_schedule
4617 * prior to exhausting their budget.
4618 */
4619 if (unlikely(!list_empty(&n->poll_list))) {
4620 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4621 n->dev ? n->dev->name : "backlog");
4622 goto out_unlock;
4623 }
4624
726ce70e
HX
4625 list_add_tail(&n->poll_list, repoll);
4626
4627out_unlock:
4628 netpoll_poll_unlock(have);
4629
4630 return work;
4631}
4632
1da177e4
LT
4633static void net_rx_action(struct softirq_action *h)
4634{
903ceff7 4635 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4636 unsigned long time_limit = jiffies + 2;
51b0bded 4637 int budget = netdev_budget;
d75b1ade
ED
4638 LIST_HEAD(list);
4639 LIST_HEAD(repoll);
53fb95d3 4640
1da177e4 4641 local_irq_disable();
d75b1ade
ED
4642 list_splice_init(&sd->poll_list, &list);
4643 local_irq_enable();
1da177e4 4644
ceb8d5bf 4645 for (;;) {
bea3348e 4646 struct napi_struct *n;
1da177e4 4647
ceb8d5bf
HX
4648 if (list_empty(&list)) {
4649 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4650 return;
4651 break;
4652 }
4653
6bd373eb
HX
4654 n = list_first_entry(&list, struct napi_struct, poll_list);
4655 budget -= napi_poll(n, &repoll);
4656
d75b1ade 4657 /* If softirq window is exhausted then punt.
24f8b238
SH
4658 * Allow this to run for 2 jiffies since which will allow
4659 * an average latency of 1.5/HZ.
bea3348e 4660 */
ceb8d5bf
HX
4661 if (unlikely(budget <= 0 ||
4662 time_after_eq(jiffies, time_limit))) {
4663 sd->time_squeeze++;
4664 break;
4665 }
1da177e4 4666 }
d75b1ade 4667
d75b1ade
ED
4668 local_irq_disable();
4669
4670 list_splice_tail_init(&sd->poll_list, &list);
4671 list_splice_tail(&repoll, &list);
4672 list_splice(&list, &sd->poll_list);
4673 if (!list_empty(&sd->poll_list))
4674 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4675
e326bed2 4676 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4677}
4678
aa9d8560 4679struct netdev_adjacent {
9ff162a8 4680 struct net_device *dev;
5d261913
VF
4681
4682 /* upper master flag, there can only be one master device per list */
9ff162a8 4683 bool master;
5d261913 4684
5d261913
VF
4685 /* counter for the number of times this device was added to us */
4686 u16 ref_nr;
4687
402dae96
VF
4688 /* private field for the users */
4689 void *private;
4690
9ff162a8
JP
4691 struct list_head list;
4692 struct rcu_head rcu;
9ff162a8
JP
4693};
4694
5d261913
VF
4695static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4696 struct net_device *adj_dev,
2f268f12 4697 struct list_head *adj_list)
9ff162a8 4698{
5d261913 4699 struct netdev_adjacent *adj;
5d261913 4700
2f268f12 4701 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4702 if (adj->dev == adj_dev)
4703 return adj;
9ff162a8
JP
4704 }
4705 return NULL;
4706}
4707
4708/**
4709 * netdev_has_upper_dev - Check if device is linked to an upper device
4710 * @dev: device
4711 * @upper_dev: upper device to check
4712 *
4713 * Find out if a device is linked to specified upper device and return true
4714 * in case it is. Note that this checks only immediate upper device,
4715 * not through a complete stack of devices. The caller must hold the RTNL lock.
4716 */
4717bool netdev_has_upper_dev(struct net_device *dev,
4718 struct net_device *upper_dev)
4719{
4720 ASSERT_RTNL();
4721
2f268f12 4722 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4723}
4724EXPORT_SYMBOL(netdev_has_upper_dev);
4725
4726/**
4727 * netdev_has_any_upper_dev - Check if device is linked to some device
4728 * @dev: device
4729 *
4730 * Find out if a device is linked to an upper device and return true in case
4731 * it is. The caller must hold the RTNL lock.
4732 */
1d143d9f 4733static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4734{
4735 ASSERT_RTNL();
4736
2f268f12 4737 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4738}
9ff162a8
JP
4739
4740/**
4741 * netdev_master_upper_dev_get - Get master upper device
4742 * @dev: device
4743 *
4744 * Find a master upper device and return pointer to it or NULL in case
4745 * it's not there. The caller must hold the RTNL lock.
4746 */
4747struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4748{
aa9d8560 4749 struct netdev_adjacent *upper;
9ff162a8
JP
4750
4751 ASSERT_RTNL();
4752
2f268f12 4753 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4754 return NULL;
4755
2f268f12 4756 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4757 struct netdev_adjacent, list);
9ff162a8
JP
4758 if (likely(upper->master))
4759 return upper->dev;
4760 return NULL;
4761}
4762EXPORT_SYMBOL(netdev_master_upper_dev_get);
4763
b6ccba4c
VF
4764void *netdev_adjacent_get_private(struct list_head *adj_list)
4765{
4766 struct netdev_adjacent *adj;
4767
4768 adj = list_entry(adj_list, struct netdev_adjacent, list);
4769
4770 return adj->private;
4771}
4772EXPORT_SYMBOL(netdev_adjacent_get_private);
4773
44a40855
VY
4774/**
4775 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4776 * @dev: device
4777 * @iter: list_head ** of the current position
4778 *
4779 * Gets the next device from the dev's upper list, starting from iter
4780 * position. The caller must hold RCU read lock.
4781 */
4782struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4783 struct list_head **iter)
4784{
4785 struct netdev_adjacent *upper;
4786
4787 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4788
4789 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4790
4791 if (&upper->list == &dev->adj_list.upper)
4792 return NULL;
4793
4794 *iter = &upper->list;
4795
4796 return upper->dev;
4797}
4798EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4799
31088a11
VF
4800/**
4801 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4802 * @dev: device
4803 * @iter: list_head ** of the current position
4804 *
4805 * Gets the next device from the dev's upper list, starting from iter
4806 * position. The caller must hold RCU read lock.
4807 */
2f268f12
VF
4808struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4809 struct list_head **iter)
48311f46
VF
4810{
4811 struct netdev_adjacent *upper;
4812
85328240 4813 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4814
4815 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4816
2f268f12 4817 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4818 return NULL;
4819
4820 *iter = &upper->list;
4821
4822 return upper->dev;
4823}
2f268f12 4824EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4825
31088a11
VF
4826/**
4827 * netdev_lower_get_next_private - Get the next ->private from the
4828 * lower neighbour list
4829 * @dev: device
4830 * @iter: list_head ** of the current position
4831 *
4832 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4833 * list, starting from iter position. The caller must hold either hold the
4834 * RTNL lock or its own locking that guarantees that the neighbour lower
4835 * list will remain unchainged.
4836 */
4837void *netdev_lower_get_next_private(struct net_device *dev,
4838 struct list_head **iter)
4839{
4840 struct netdev_adjacent *lower;
4841
4842 lower = list_entry(*iter, struct netdev_adjacent, list);
4843
4844 if (&lower->list == &dev->adj_list.lower)
4845 return NULL;
4846
6859e7df 4847 *iter = lower->list.next;
31088a11
VF
4848
4849 return lower->private;
4850}
4851EXPORT_SYMBOL(netdev_lower_get_next_private);
4852
4853/**
4854 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4855 * lower neighbour list, RCU
4856 * variant
4857 * @dev: device
4858 * @iter: list_head ** of the current position
4859 *
4860 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4861 * list, starting from iter position. The caller must hold RCU read lock.
4862 */
4863void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4864 struct list_head **iter)
4865{
4866 struct netdev_adjacent *lower;
4867
4868 WARN_ON_ONCE(!rcu_read_lock_held());
4869
4870 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4871
4872 if (&lower->list == &dev->adj_list.lower)
4873 return NULL;
4874
6859e7df 4875 *iter = &lower->list;
31088a11
VF
4876
4877 return lower->private;
4878}
4879EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4880
4085ebe8
VY
4881/**
4882 * netdev_lower_get_next - Get the next device from the lower neighbour
4883 * list
4884 * @dev: device
4885 * @iter: list_head ** of the current position
4886 *
4887 * Gets the next netdev_adjacent from the dev's lower neighbour
4888 * list, starting from iter position. The caller must hold RTNL lock or
4889 * its own locking that guarantees that the neighbour lower
4890 * list will remain unchainged.
4891 */
4892void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4893{
4894 struct netdev_adjacent *lower;
4895
4896 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4897
4898 if (&lower->list == &dev->adj_list.lower)
4899 return NULL;
4900
4901 *iter = &lower->list;
4902
4903 return lower->dev;
4904}
4905EXPORT_SYMBOL(netdev_lower_get_next);
4906
e001bfad 4907/**
4908 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4909 * lower neighbour list, RCU
4910 * variant
4911 * @dev: device
4912 *
4913 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4914 * list. The caller must hold RCU read lock.
4915 */
4916void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4917{
4918 struct netdev_adjacent *lower;
4919
4920 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4921 struct netdev_adjacent, list);
4922 if (lower)
4923 return lower->private;
4924 return NULL;
4925}
4926EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4927
9ff162a8
JP
4928/**
4929 * netdev_master_upper_dev_get_rcu - Get master upper device
4930 * @dev: device
4931 *
4932 * Find a master upper device and return pointer to it or NULL in case
4933 * it's not there. The caller must hold the RCU read lock.
4934 */
4935struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4936{
aa9d8560 4937 struct netdev_adjacent *upper;
9ff162a8 4938
2f268f12 4939 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4940 struct netdev_adjacent, list);
9ff162a8
JP
4941 if (upper && likely(upper->master))
4942 return upper->dev;
4943 return NULL;
4944}
4945EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4946
0a59f3a9 4947static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4948 struct net_device *adj_dev,
4949 struct list_head *dev_list)
4950{
4951 char linkname[IFNAMSIZ+7];
4952 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4953 "upper_%s" : "lower_%s", adj_dev->name);
4954 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4955 linkname);
4956}
0a59f3a9 4957static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4958 char *name,
4959 struct list_head *dev_list)
4960{
4961 char linkname[IFNAMSIZ+7];
4962 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4963 "upper_%s" : "lower_%s", name);
4964 sysfs_remove_link(&(dev->dev.kobj), linkname);
4965}
4966
7ce64c79
AF
4967static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4968 struct net_device *adj_dev,
4969 struct list_head *dev_list)
4970{
4971 return (dev_list == &dev->adj_list.upper ||
4972 dev_list == &dev->adj_list.lower) &&
4973 net_eq(dev_net(dev), dev_net(adj_dev));
4974}
3ee32707 4975
5d261913
VF
4976static int __netdev_adjacent_dev_insert(struct net_device *dev,
4977 struct net_device *adj_dev,
7863c054 4978 struct list_head *dev_list,
402dae96 4979 void *private, bool master)
5d261913
VF
4980{
4981 struct netdev_adjacent *adj;
842d67a7 4982 int ret;
5d261913 4983
7863c054 4984 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4985
4986 if (adj) {
5d261913
VF
4987 adj->ref_nr++;
4988 return 0;
4989 }
4990
4991 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4992 if (!adj)
4993 return -ENOMEM;
4994
4995 adj->dev = adj_dev;
4996 adj->master = master;
5d261913 4997 adj->ref_nr = 1;
402dae96 4998 adj->private = private;
5d261913 4999 dev_hold(adj_dev);
2f268f12
VF
5000
5001 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5002 adj_dev->name, dev->name, adj_dev->name);
5d261913 5003
7ce64c79 5004 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5005 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5006 if (ret)
5007 goto free_adj;
5008 }
5009
7863c054 5010 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5011 if (master) {
5012 ret = sysfs_create_link(&(dev->dev.kobj),
5013 &(adj_dev->dev.kobj), "master");
5014 if (ret)
5831d66e 5015 goto remove_symlinks;
842d67a7 5016
7863c054 5017 list_add_rcu(&adj->list, dev_list);
842d67a7 5018 } else {
7863c054 5019 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5020 }
5d261913
VF
5021
5022 return 0;
842d67a7 5023
5831d66e 5024remove_symlinks:
7ce64c79 5025 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5026 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5027free_adj:
5028 kfree(adj);
974daef7 5029 dev_put(adj_dev);
842d67a7
VF
5030
5031 return ret;
5d261913
VF
5032}
5033
1d143d9f 5034static void __netdev_adjacent_dev_remove(struct net_device *dev,
5035 struct net_device *adj_dev,
5036 struct list_head *dev_list)
5d261913
VF
5037{
5038 struct netdev_adjacent *adj;
5039
7863c054 5040 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5041
2f268f12
VF
5042 if (!adj) {
5043 pr_err("tried to remove device %s from %s\n",
5044 dev->name, adj_dev->name);
5d261913 5045 BUG();
2f268f12 5046 }
5d261913
VF
5047
5048 if (adj->ref_nr > 1) {
2f268f12
VF
5049 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5050 adj->ref_nr-1);
5d261913
VF
5051 adj->ref_nr--;
5052 return;
5053 }
5054
842d67a7
VF
5055 if (adj->master)
5056 sysfs_remove_link(&(dev->dev.kobj), "master");
5057
7ce64c79 5058 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5059 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5060
5d261913 5061 list_del_rcu(&adj->list);
2f268f12
VF
5062 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5063 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5064 dev_put(adj_dev);
5065 kfree_rcu(adj, rcu);
5066}
5067
1d143d9f 5068static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5069 struct net_device *upper_dev,
5070 struct list_head *up_list,
5071 struct list_head *down_list,
5072 void *private, bool master)
5d261913
VF
5073{
5074 int ret;
5075
402dae96
VF
5076 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5077 master);
5d261913
VF
5078 if (ret)
5079 return ret;
5080
402dae96
VF
5081 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5082 false);
5d261913 5083 if (ret) {
2f268f12 5084 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5085 return ret;
5086 }
5087
5088 return 0;
5089}
5090
1d143d9f 5091static int __netdev_adjacent_dev_link(struct net_device *dev,
5092 struct net_device *upper_dev)
5d261913 5093{
2f268f12
VF
5094 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5095 &dev->all_adj_list.upper,
5096 &upper_dev->all_adj_list.lower,
402dae96 5097 NULL, false);
5d261913
VF
5098}
5099
1d143d9f 5100static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5101 struct net_device *upper_dev,
5102 struct list_head *up_list,
5103 struct list_head *down_list)
5d261913 5104{
2f268f12
VF
5105 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5106 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5107}
5108
1d143d9f 5109static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5110 struct net_device *upper_dev)
5d261913 5111{
2f268f12
VF
5112 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5113 &dev->all_adj_list.upper,
5114 &upper_dev->all_adj_list.lower);
5115}
5116
1d143d9f 5117static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5118 struct net_device *upper_dev,
5119 void *private, bool master)
2f268f12
VF
5120{
5121 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5122
5123 if (ret)
5124 return ret;
5125
5126 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5127 &dev->adj_list.upper,
5128 &upper_dev->adj_list.lower,
402dae96 5129 private, master);
2f268f12
VF
5130 if (ret) {
5131 __netdev_adjacent_dev_unlink(dev, upper_dev);
5132 return ret;
5133 }
5134
5135 return 0;
5d261913
VF
5136}
5137
1d143d9f 5138static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5139 struct net_device *upper_dev)
2f268f12
VF
5140{
5141 __netdev_adjacent_dev_unlink(dev, upper_dev);
5142 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5143 &dev->adj_list.upper,
5144 &upper_dev->adj_list.lower);
5145}
5d261913 5146
9ff162a8 5147static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5148 struct net_device *upper_dev, bool master,
5149 void *private)
9ff162a8 5150{
5d261913
VF
5151 struct netdev_adjacent *i, *j, *to_i, *to_j;
5152 int ret = 0;
9ff162a8
JP
5153
5154 ASSERT_RTNL();
5155
5156 if (dev == upper_dev)
5157 return -EBUSY;
5158
5159 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5160 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5161 return -EBUSY;
5162
2f268f12 5163 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5164 return -EEXIST;
5165
5166 if (master && netdev_master_upper_dev_get(dev))
5167 return -EBUSY;
5168
402dae96
VF
5169 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5170 master);
5d261913
VF
5171 if (ret)
5172 return ret;
9ff162a8 5173
5d261913 5174 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5175 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5176 * versa, and don't forget the devices itself. All of these
5177 * links are non-neighbours.
5178 */
2f268f12
VF
5179 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5180 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5181 pr_debug("Interlinking %s with %s, non-neighbour\n",
5182 i->dev->name, j->dev->name);
5d261913
VF
5183 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5184 if (ret)
5185 goto rollback_mesh;
5186 }
5187 }
5188
5189 /* add dev to every upper_dev's upper device */
2f268f12
VF
5190 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5191 pr_debug("linking %s's upper device %s with %s\n",
5192 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5193 ret = __netdev_adjacent_dev_link(dev, i->dev);
5194 if (ret)
5195 goto rollback_upper_mesh;
5196 }
5197
5198 /* add upper_dev to every dev's lower device */
2f268f12
VF
5199 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5200 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5201 i->dev->name, upper_dev->name);
5d261913
VF
5202 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5203 if (ret)
5204 goto rollback_lower_mesh;
5205 }
9ff162a8 5206
42e52bf9 5207 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5208 return 0;
5d261913
VF
5209
5210rollback_lower_mesh:
5211 to_i = i;
2f268f12 5212 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5213 if (i == to_i)
5214 break;
5215 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5216 }
5217
5218 i = NULL;
5219
5220rollback_upper_mesh:
5221 to_i = i;
2f268f12 5222 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5223 if (i == to_i)
5224 break;
5225 __netdev_adjacent_dev_unlink(dev, i->dev);
5226 }
5227
5228 i = j = NULL;
5229
5230rollback_mesh:
5231 to_i = i;
5232 to_j = j;
2f268f12
VF
5233 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5234 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5235 if (i == to_i && j == to_j)
5236 break;
5237 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5238 }
5239 if (i == to_i)
5240 break;
5241 }
5242
2f268f12 5243 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5244
5245 return ret;
9ff162a8
JP
5246}
5247
5248/**
5249 * netdev_upper_dev_link - Add a link to the upper device
5250 * @dev: device
5251 * @upper_dev: new upper device
5252 *
5253 * Adds a link to device which is upper to this one. The caller must hold
5254 * the RTNL lock. On a failure a negative errno code is returned.
5255 * On success the reference counts are adjusted and the function
5256 * returns zero.
5257 */
5258int netdev_upper_dev_link(struct net_device *dev,
5259 struct net_device *upper_dev)
5260{
402dae96 5261 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5262}
5263EXPORT_SYMBOL(netdev_upper_dev_link);
5264
5265/**
5266 * netdev_master_upper_dev_link - Add a master link to the upper device
5267 * @dev: device
5268 * @upper_dev: new upper device
5269 *
5270 * Adds a link to device which is upper to this one. In this case, only
5271 * one master upper device can be linked, although other non-master devices
5272 * might be linked as well. The caller must hold the RTNL lock.
5273 * On a failure a negative errno code is returned. On success the reference
5274 * counts are adjusted and the function returns zero.
5275 */
5276int netdev_master_upper_dev_link(struct net_device *dev,
5277 struct net_device *upper_dev)
5278{
402dae96 5279 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5280}
5281EXPORT_SYMBOL(netdev_master_upper_dev_link);
5282
402dae96
VF
5283int netdev_master_upper_dev_link_private(struct net_device *dev,
5284 struct net_device *upper_dev,
5285 void *private)
5286{
5287 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5288}
5289EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5290
9ff162a8
JP
5291/**
5292 * netdev_upper_dev_unlink - Removes a link to upper device
5293 * @dev: device
5294 * @upper_dev: new upper device
5295 *
5296 * Removes a link to device which is upper to this one. The caller must hold
5297 * the RTNL lock.
5298 */
5299void netdev_upper_dev_unlink(struct net_device *dev,
5300 struct net_device *upper_dev)
5301{
5d261913 5302 struct netdev_adjacent *i, *j;
9ff162a8
JP
5303 ASSERT_RTNL();
5304
2f268f12 5305 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5306
5307 /* Here is the tricky part. We must remove all dev's lower
5308 * devices from all upper_dev's upper devices and vice
5309 * versa, to maintain the graph relationship.
5310 */
2f268f12
VF
5311 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5312 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5313 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5314
5315 /* remove also the devices itself from lower/upper device
5316 * list
5317 */
2f268f12 5318 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5319 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5320
2f268f12 5321 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5322 __netdev_adjacent_dev_unlink(dev, i->dev);
5323
42e52bf9 5324 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5325}
5326EXPORT_SYMBOL(netdev_upper_dev_unlink);
5327
61bd3857
MS
5328/**
5329 * netdev_bonding_info_change - Dispatch event about slave change
5330 * @dev: device
4a26e453 5331 * @bonding_info: info to dispatch
61bd3857
MS
5332 *
5333 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5334 * The caller must hold the RTNL lock.
5335 */
5336void netdev_bonding_info_change(struct net_device *dev,
5337 struct netdev_bonding_info *bonding_info)
5338{
5339 struct netdev_notifier_bonding_info info;
5340
5341 memcpy(&info.bonding_info, bonding_info,
5342 sizeof(struct netdev_bonding_info));
5343 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5344 &info.info);
5345}
5346EXPORT_SYMBOL(netdev_bonding_info_change);
5347
2ce1ee17 5348static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5349{
5350 struct netdev_adjacent *iter;
5351
5352 struct net *net = dev_net(dev);
5353
5354 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5355 if (!net_eq(net,dev_net(iter->dev)))
5356 continue;
5357 netdev_adjacent_sysfs_add(iter->dev, dev,
5358 &iter->dev->adj_list.lower);
5359 netdev_adjacent_sysfs_add(dev, iter->dev,
5360 &dev->adj_list.upper);
5361 }
5362
5363 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5364 if (!net_eq(net,dev_net(iter->dev)))
5365 continue;
5366 netdev_adjacent_sysfs_add(iter->dev, dev,
5367 &iter->dev->adj_list.upper);
5368 netdev_adjacent_sysfs_add(dev, iter->dev,
5369 &dev->adj_list.lower);
5370 }
5371}
5372
2ce1ee17 5373static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5374{
5375 struct netdev_adjacent *iter;
5376
5377 struct net *net = dev_net(dev);
5378
5379 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5380 if (!net_eq(net,dev_net(iter->dev)))
5381 continue;
5382 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5383 &iter->dev->adj_list.lower);
5384 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5385 &dev->adj_list.upper);
5386 }
5387
5388 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5389 if (!net_eq(net,dev_net(iter->dev)))
5390 continue;
5391 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5392 &iter->dev->adj_list.upper);
5393 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5394 &dev->adj_list.lower);
5395 }
5396}
5397
5bb025fa 5398void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5399{
5bb025fa 5400 struct netdev_adjacent *iter;
402dae96 5401
4c75431a
AF
5402 struct net *net = dev_net(dev);
5403
5bb025fa 5404 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5405 if (!net_eq(net,dev_net(iter->dev)))
5406 continue;
5bb025fa
VF
5407 netdev_adjacent_sysfs_del(iter->dev, oldname,
5408 &iter->dev->adj_list.lower);
5409 netdev_adjacent_sysfs_add(iter->dev, dev,
5410 &iter->dev->adj_list.lower);
5411 }
402dae96 5412
5bb025fa 5413 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5414 if (!net_eq(net,dev_net(iter->dev)))
5415 continue;
5bb025fa
VF
5416 netdev_adjacent_sysfs_del(iter->dev, oldname,
5417 &iter->dev->adj_list.upper);
5418 netdev_adjacent_sysfs_add(iter->dev, dev,
5419 &iter->dev->adj_list.upper);
5420 }
402dae96 5421}
402dae96
VF
5422
5423void *netdev_lower_dev_get_private(struct net_device *dev,
5424 struct net_device *lower_dev)
5425{
5426 struct netdev_adjacent *lower;
5427
5428 if (!lower_dev)
5429 return NULL;
5430 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5431 if (!lower)
5432 return NULL;
5433
5434 return lower->private;
5435}
5436EXPORT_SYMBOL(netdev_lower_dev_get_private);
5437
4085ebe8
VY
5438
5439int dev_get_nest_level(struct net_device *dev,
5440 bool (*type_check)(struct net_device *dev))
5441{
5442 struct net_device *lower = NULL;
5443 struct list_head *iter;
5444 int max_nest = -1;
5445 int nest;
5446
5447 ASSERT_RTNL();
5448
5449 netdev_for_each_lower_dev(dev, lower, iter) {
5450 nest = dev_get_nest_level(lower, type_check);
5451 if (max_nest < nest)
5452 max_nest = nest;
5453 }
5454
5455 if (type_check(dev))
5456 max_nest++;
5457
5458 return max_nest;
5459}
5460EXPORT_SYMBOL(dev_get_nest_level);
5461
b6c40d68
PM
5462static void dev_change_rx_flags(struct net_device *dev, int flags)
5463{
d314774c
SH
5464 const struct net_device_ops *ops = dev->netdev_ops;
5465
d2615bf4 5466 if (ops->ndo_change_rx_flags)
d314774c 5467 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5468}
5469
991fb3f7 5470static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5471{
b536db93 5472 unsigned int old_flags = dev->flags;
d04a48b0
EB
5473 kuid_t uid;
5474 kgid_t gid;
1da177e4 5475
24023451
PM
5476 ASSERT_RTNL();
5477
dad9b335
WC
5478 dev->flags |= IFF_PROMISC;
5479 dev->promiscuity += inc;
5480 if (dev->promiscuity == 0) {
5481 /*
5482 * Avoid overflow.
5483 * If inc causes overflow, untouch promisc and return error.
5484 */
5485 if (inc < 0)
5486 dev->flags &= ~IFF_PROMISC;
5487 else {
5488 dev->promiscuity -= inc;
7b6cd1ce
JP
5489 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5490 dev->name);
dad9b335
WC
5491 return -EOVERFLOW;
5492 }
5493 }
52609c0b 5494 if (dev->flags != old_flags) {
7b6cd1ce
JP
5495 pr_info("device %s %s promiscuous mode\n",
5496 dev->name,
5497 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5498 if (audit_enabled) {
5499 current_uid_gid(&uid, &gid);
7759db82
KHK
5500 audit_log(current->audit_context, GFP_ATOMIC,
5501 AUDIT_ANOM_PROMISCUOUS,
5502 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5503 dev->name, (dev->flags & IFF_PROMISC),
5504 (old_flags & IFF_PROMISC),
e1760bd5 5505 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5506 from_kuid(&init_user_ns, uid),
5507 from_kgid(&init_user_ns, gid),
7759db82 5508 audit_get_sessionid(current));
8192b0c4 5509 }
24023451 5510
b6c40d68 5511 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5512 }
991fb3f7
ND
5513 if (notify)
5514 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5515 return 0;
1da177e4
LT
5516}
5517
4417da66
PM
5518/**
5519 * dev_set_promiscuity - update promiscuity count on a device
5520 * @dev: device
5521 * @inc: modifier
5522 *
5523 * Add or remove promiscuity from a device. While the count in the device
5524 * remains above zero the interface remains promiscuous. Once it hits zero
5525 * the device reverts back to normal filtering operation. A negative inc
5526 * value is used to drop promiscuity on the device.
dad9b335 5527 * Return 0 if successful or a negative errno code on error.
4417da66 5528 */
dad9b335 5529int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5530{
b536db93 5531 unsigned int old_flags = dev->flags;
dad9b335 5532 int err;
4417da66 5533
991fb3f7 5534 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5535 if (err < 0)
dad9b335 5536 return err;
4417da66
PM
5537 if (dev->flags != old_flags)
5538 dev_set_rx_mode(dev);
dad9b335 5539 return err;
4417da66 5540}
d1b19dff 5541EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5542
991fb3f7 5543static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5544{
991fb3f7 5545 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5546
24023451
PM
5547 ASSERT_RTNL();
5548
1da177e4 5549 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5550 dev->allmulti += inc;
5551 if (dev->allmulti == 0) {
5552 /*
5553 * Avoid overflow.
5554 * If inc causes overflow, untouch allmulti and return error.
5555 */
5556 if (inc < 0)
5557 dev->flags &= ~IFF_ALLMULTI;
5558 else {
5559 dev->allmulti -= inc;
7b6cd1ce
JP
5560 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5561 dev->name);
dad9b335
WC
5562 return -EOVERFLOW;
5563 }
5564 }
24023451 5565 if (dev->flags ^ old_flags) {
b6c40d68 5566 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5567 dev_set_rx_mode(dev);
991fb3f7
ND
5568 if (notify)
5569 __dev_notify_flags(dev, old_flags,
5570 dev->gflags ^ old_gflags);
24023451 5571 }
dad9b335 5572 return 0;
4417da66 5573}
991fb3f7
ND
5574
5575/**
5576 * dev_set_allmulti - update allmulti count on a device
5577 * @dev: device
5578 * @inc: modifier
5579 *
5580 * Add or remove reception of all multicast frames to a device. While the
5581 * count in the device remains above zero the interface remains listening
5582 * to all interfaces. Once it hits zero the device reverts back to normal
5583 * filtering operation. A negative @inc value is used to drop the counter
5584 * when releasing a resource needing all multicasts.
5585 * Return 0 if successful or a negative errno code on error.
5586 */
5587
5588int dev_set_allmulti(struct net_device *dev, int inc)
5589{
5590 return __dev_set_allmulti(dev, inc, true);
5591}
d1b19dff 5592EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5593
5594/*
5595 * Upload unicast and multicast address lists to device and
5596 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5597 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5598 * are present.
5599 */
5600void __dev_set_rx_mode(struct net_device *dev)
5601{
d314774c
SH
5602 const struct net_device_ops *ops = dev->netdev_ops;
5603
4417da66
PM
5604 /* dev_open will call this function so the list will stay sane. */
5605 if (!(dev->flags&IFF_UP))
5606 return;
5607
5608 if (!netif_device_present(dev))
40b77c94 5609 return;
4417da66 5610
01789349 5611 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5612 /* Unicast addresses changes may only happen under the rtnl,
5613 * therefore calling __dev_set_promiscuity here is safe.
5614 */
32e7bfc4 5615 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5616 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5617 dev->uc_promisc = true;
32e7bfc4 5618 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5619 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5620 dev->uc_promisc = false;
4417da66 5621 }
4417da66 5622 }
01789349
JP
5623
5624 if (ops->ndo_set_rx_mode)
5625 ops->ndo_set_rx_mode(dev);
4417da66
PM
5626}
5627
5628void dev_set_rx_mode(struct net_device *dev)
5629{
b9e40857 5630 netif_addr_lock_bh(dev);
4417da66 5631 __dev_set_rx_mode(dev);
b9e40857 5632 netif_addr_unlock_bh(dev);
1da177e4
LT
5633}
5634
f0db275a
SH
5635/**
5636 * dev_get_flags - get flags reported to userspace
5637 * @dev: device
5638 *
5639 * Get the combination of flag bits exported through APIs to userspace.
5640 */
95c96174 5641unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5642{
95c96174 5643 unsigned int flags;
1da177e4
LT
5644
5645 flags = (dev->flags & ~(IFF_PROMISC |
5646 IFF_ALLMULTI |
b00055aa
SR
5647 IFF_RUNNING |
5648 IFF_LOWER_UP |
5649 IFF_DORMANT)) |
1da177e4
LT
5650 (dev->gflags & (IFF_PROMISC |
5651 IFF_ALLMULTI));
5652
b00055aa
SR
5653 if (netif_running(dev)) {
5654 if (netif_oper_up(dev))
5655 flags |= IFF_RUNNING;
5656 if (netif_carrier_ok(dev))
5657 flags |= IFF_LOWER_UP;
5658 if (netif_dormant(dev))
5659 flags |= IFF_DORMANT;
5660 }
1da177e4
LT
5661
5662 return flags;
5663}
d1b19dff 5664EXPORT_SYMBOL(dev_get_flags);
1da177e4 5665
bd380811 5666int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5667{
b536db93 5668 unsigned int old_flags = dev->flags;
bd380811 5669 int ret;
1da177e4 5670
24023451
PM
5671 ASSERT_RTNL();
5672
1da177e4
LT
5673 /*
5674 * Set the flags on our device.
5675 */
5676
5677 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5678 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5679 IFF_AUTOMEDIA)) |
5680 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5681 IFF_ALLMULTI));
5682
5683 /*
5684 * Load in the correct multicast list now the flags have changed.
5685 */
5686
b6c40d68
PM
5687 if ((old_flags ^ flags) & IFF_MULTICAST)
5688 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5689
4417da66 5690 dev_set_rx_mode(dev);
1da177e4
LT
5691
5692 /*
5693 * Have we downed the interface. We handle IFF_UP ourselves
5694 * according to user attempts to set it, rather than blindly
5695 * setting it.
5696 */
5697
5698 ret = 0;
d215d10f 5699 if ((old_flags ^ flags) & IFF_UP)
bd380811 5700 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5701
1da177e4 5702 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5703 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5704 unsigned int old_flags = dev->flags;
d1b19dff 5705
1da177e4 5706 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5707
5708 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5709 if (dev->flags != old_flags)
5710 dev_set_rx_mode(dev);
1da177e4
LT
5711 }
5712
5713 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5714 is important. Some (broken) drivers set IFF_PROMISC, when
5715 IFF_ALLMULTI is requested not asking us and not reporting.
5716 */
5717 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5718 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5719
1da177e4 5720 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5721 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5722 }
5723
bd380811
PM
5724 return ret;
5725}
5726
a528c219
ND
5727void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5728 unsigned int gchanges)
bd380811
PM
5729{
5730 unsigned int changes = dev->flags ^ old_flags;
5731
a528c219 5732 if (gchanges)
7f294054 5733 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5734
bd380811
PM
5735 if (changes & IFF_UP) {
5736 if (dev->flags & IFF_UP)
5737 call_netdevice_notifiers(NETDEV_UP, dev);
5738 else
5739 call_netdevice_notifiers(NETDEV_DOWN, dev);
5740 }
5741
5742 if (dev->flags & IFF_UP &&
be9efd36
JP
5743 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5744 struct netdev_notifier_change_info change_info;
5745
5746 change_info.flags_changed = changes;
5747 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5748 &change_info.info);
5749 }
bd380811
PM
5750}
5751
5752/**
5753 * dev_change_flags - change device settings
5754 * @dev: device
5755 * @flags: device state flags
5756 *
5757 * Change settings on device based state flags. The flags are
5758 * in the userspace exported format.
5759 */
b536db93 5760int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5761{
b536db93 5762 int ret;
991fb3f7 5763 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5764
5765 ret = __dev_change_flags(dev, flags);
5766 if (ret < 0)
5767 return ret;
5768
991fb3f7 5769 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5770 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5771 return ret;
5772}
d1b19dff 5773EXPORT_SYMBOL(dev_change_flags);
1da177e4 5774
2315dc91
VF
5775static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5776{
5777 const struct net_device_ops *ops = dev->netdev_ops;
5778
5779 if (ops->ndo_change_mtu)
5780 return ops->ndo_change_mtu(dev, new_mtu);
5781
5782 dev->mtu = new_mtu;
5783 return 0;
5784}
5785
f0db275a
SH
5786/**
5787 * dev_set_mtu - Change maximum transfer unit
5788 * @dev: device
5789 * @new_mtu: new transfer unit
5790 *
5791 * Change the maximum transfer size of the network device.
5792 */
1da177e4
LT
5793int dev_set_mtu(struct net_device *dev, int new_mtu)
5794{
2315dc91 5795 int err, orig_mtu;
1da177e4
LT
5796
5797 if (new_mtu == dev->mtu)
5798 return 0;
5799
5800 /* MTU must be positive. */
5801 if (new_mtu < 0)
5802 return -EINVAL;
5803
5804 if (!netif_device_present(dev))
5805 return -ENODEV;
5806
1d486bfb
VF
5807 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5808 err = notifier_to_errno(err);
5809 if (err)
5810 return err;
d314774c 5811
2315dc91
VF
5812 orig_mtu = dev->mtu;
5813 err = __dev_set_mtu(dev, new_mtu);
d314774c 5814
2315dc91
VF
5815 if (!err) {
5816 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5817 err = notifier_to_errno(err);
5818 if (err) {
5819 /* setting mtu back and notifying everyone again,
5820 * so that they have a chance to revert changes.
5821 */
5822 __dev_set_mtu(dev, orig_mtu);
5823 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5824 }
5825 }
1da177e4
LT
5826 return err;
5827}
d1b19dff 5828EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5829
cbda10fa
VD
5830/**
5831 * dev_set_group - Change group this device belongs to
5832 * @dev: device
5833 * @new_group: group this device should belong to
5834 */
5835void dev_set_group(struct net_device *dev, int new_group)
5836{
5837 dev->group = new_group;
5838}
5839EXPORT_SYMBOL(dev_set_group);
5840
f0db275a
SH
5841/**
5842 * dev_set_mac_address - Change Media Access Control Address
5843 * @dev: device
5844 * @sa: new address
5845 *
5846 * Change the hardware (MAC) address of the device
5847 */
1da177e4
LT
5848int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5849{
d314774c 5850 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5851 int err;
5852
d314774c 5853 if (!ops->ndo_set_mac_address)
1da177e4
LT
5854 return -EOPNOTSUPP;
5855 if (sa->sa_family != dev->type)
5856 return -EINVAL;
5857 if (!netif_device_present(dev))
5858 return -ENODEV;
d314774c 5859 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5860 if (err)
5861 return err;
fbdeca2d 5862 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5863 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5864 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5865 return 0;
1da177e4 5866}
d1b19dff 5867EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5868
4bf84c35
JP
5869/**
5870 * dev_change_carrier - Change device carrier
5871 * @dev: device
691b3b7e 5872 * @new_carrier: new value
4bf84c35
JP
5873 *
5874 * Change device carrier
5875 */
5876int dev_change_carrier(struct net_device *dev, bool new_carrier)
5877{
5878 const struct net_device_ops *ops = dev->netdev_ops;
5879
5880 if (!ops->ndo_change_carrier)
5881 return -EOPNOTSUPP;
5882 if (!netif_device_present(dev))
5883 return -ENODEV;
5884 return ops->ndo_change_carrier(dev, new_carrier);
5885}
5886EXPORT_SYMBOL(dev_change_carrier);
5887
66b52b0d
JP
5888/**
5889 * dev_get_phys_port_id - Get device physical port ID
5890 * @dev: device
5891 * @ppid: port ID
5892 *
5893 * Get device physical port ID
5894 */
5895int dev_get_phys_port_id(struct net_device *dev,
02637fce 5896 struct netdev_phys_item_id *ppid)
66b52b0d
JP
5897{
5898 const struct net_device_ops *ops = dev->netdev_ops;
5899
5900 if (!ops->ndo_get_phys_port_id)
5901 return -EOPNOTSUPP;
5902 return ops->ndo_get_phys_port_id(dev, ppid);
5903}
5904EXPORT_SYMBOL(dev_get_phys_port_id);
5905
db24a904
DA
5906/**
5907 * dev_get_phys_port_name - Get device physical port name
5908 * @dev: device
5909 * @name: port name
5910 *
5911 * Get device physical port name
5912 */
5913int dev_get_phys_port_name(struct net_device *dev,
5914 char *name, size_t len)
5915{
5916 const struct net_device_ops *ops = dev->netdev_ops;
5917
5918 if (!ops->ndo_get_phys_port_name)
5919 return -EOPNOTSUPP;
5920 return ops->ndo_get_phys_port_name(dev, name, len);
5921}
5922EXPORT_SYMBOL(dev_get_phys_port_name);
5923
1da177e4
LT
5924/**
5925 * dev_new_index - allocate an ifindex
c4ea43c5 5926 * @net: the applicable net namespace
1da177e4
LT
5927 *
5928 * Returns a suitable unique value for a new device interface
5929 * number. The caller must hold the rtnl semaphore or the
5930 * dev_base_lock to be sure it remains unique.
5931 */
881d966b 5932static int dev_new_index(struct net *net)
1da177e4 5933{
aa79e66e 5934 int ifindex = net->ifindex;
1da177e4
LT
5935 for (;;) {
5936 if (++ifindex <= 0)
5937 ifindex = 1;
881d966b 5938 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5939 return net->ifindex = ifindex;
1da177e4
LT
5940 }
5941}
5942
1da177e4 5943/* Delayed registration/unregisteration */
3b5b34fd 5944static LIST_HEAD(net_todo_list);
200b916f 5945DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5946
6f05f629 5947static void net_set_todo(struct net_device *dev)
1da177e4 5948{
1da177e4 5949 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5950 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5951}
5952
9b5e383c 5953static void rollback_registered_many(struct list_head *head)
93ee31f1 5954{
e93737b0 5955 struct net_device *dev, *tmp;
5cde2829 5956 LIST_HEAD(close_head);
9b5e383c 5957
93ee31f1
DL
5958 BUG_ON(dev_boot_phase);
5959 ASSERT_RTNL();
5960
e93737b0 5961 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5962 /* Some devices call without registering
e93737b0
KK
5963 * for initialization unwind. Remove those
5964 * devices and proceed with the remaining.
9b5e383c
ED
5965 */
5966 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5967 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5968 dev->name, dev);
93ee31f1 5969
9b5e383c 5970 WARN_ON(1);
e93737b0
KK
5971 list_del(&dev->unreg_list);
5972 continue;
9b5e383c 5973 }
449f4544 5974 dev->dismantle = true;
9b5e383c 5975 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5976 }
93ee31f1 5977
44345724 5978 /* If device is running, close it first. */
5cde2829
EB
5979 list_for_each_entry(dev, head, unreg_list)
5980 list_add_tail(&dev->close_list, &close_head);
99c4a26a 5981 dev_close_many(&close_head, true);
93ee31f1 5982
44345724 5983 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5984 /* And unlink it from device chain. */
5985 unlist_netdevice(dev);
93ee31f1 5986
9b5e383c
ED
5987 dev->reg_state = NETREG_UNREGISTERING;
5988 }
93ee31f1
DL
5989
5990 synchronize_net();
5991
9b5e383c 5992 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
5993 struct sk_buff *skb = NULL;
5994
9b5e383c
ED
5995 /* Shutdown queueing discipline. */
5996 dev_shutdown(dev);
93ee31f1
DL
5997
5998
9b5e383c
ED
5999 /* Notify protocols, that we are about to destroy
6000 this device. They should clean all the things.
6001 */
6002 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6003
395eea6c
MB
6004 if (!dev->rtnl_link_ops ||
6005 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6006 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6007 GFP_KERNEL);
6008
9b5e383c
ED
6009 /*
6010 * Flush the unicast and multicast chains
6011 */
a748ee24 6012 dev_uc_flush(dev);
22bedad3 6013 dev_mc_flush(dev);
93ee31f1 6014
9b5e383c
ED
6015 if (dev->netdev_ops->ndo_uninit)
6016 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6017
395eea6c
MB
6018 if (skb)
6019 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6020
9ff162a8
JP
6021 /* Notifier chain MUST detach us all upper devices. */
6022 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6023
9b5e383c
ED
6024 /* Remove entries from kobject tree */
6025 netdev_unregister_kobject(dev);
024e9679
AD
6026#ifdef CONFIG_XPS
6027 /* Remove XPS queueing entries */
6028 netif_reset_xps_queues_gt(dev, 0);
6029#endif
9b5e383c 6030 }
93ee31f1 6031
850a545b 6032 synchronize_net();
395264d5 6033
a5ee1551 6034 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6035 dev_put(dev);
6036}
6037
6038static void rollback_registered(struct net_device *dev)
6039{
6040 LIST_HEAD(single);
6041
6042 list_add(&dev->unreg_list, &single);
6043 rollback_registered_many(&single);
ceaaec98 6044 list_del(&single);
93ee31f1
DL
6045}
6046
c8f44aff
MM
6047static netdev_features_t netdev_fix_features(struct net_device *dev,
6048 netdev_features_t features)
b63365a2 6049{
57422dc5
MM
6050 /* Fix illegal checksum combinations */
6051 if ((features & NETIF_F_HW_CSUM) &&
6052 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6053 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6054 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6055 }
6056
b63365a2 6057 /* TSO requires that SG is present as well. */
ea2d3688 6058 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6059 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6060 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6061 }
6062
ec5f0615
PS
6063 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6064 !(features & NETIF_F_IP_CSUM)) {
6065 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6066 features &= ~NETIF_F_TSO;
6067 features &= ~NETIF_F_TSO_ECN;
6068 }
6069
6070 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6071 !(features & NETIF_F_IPV6_CSUM)) {
6072 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6073 features &= ~NETIF_F_TSO6;
6074 }
6075
31d8b9e0
BH
6076 /* TSO ECN requires that TSO is present as well. */
6077 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6078 features &= ~NETIF_F_TSO_ECN;
6079
212b573f
MM
6080 /* Software GSO depends on SG. */
6081 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6082 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6083 features &= ~NETIF_F_GSO;
6084 }
6085
acd1130e 6086 /* UFO needs SG and checksumming */
b63365a2 6087 if (features & NETIF_F_UFO) {
79032644
MM
6088 /* maybe split UFO into V4 and V6? */
6089 if (!((features & NETIF_F_GEN_CSUM) ||
6090 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6091 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6092 netdev_dbg(dev,
acd1130e 6093 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6094 features &= ~NETIF_F_UFO;
6095 }
6096
6097 if (!(features & NETIF_F_SG)) {
6f404e44 6098 netdev_dbg(dev,
acd1130e 6099 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6100 features &= ~NETIF_F_UFO;
6101 }
6102 }
6103
d0290214
JP
6104#ifdef CONFIG_NET_RX_BUSY_POLL
6105 if (dev->netdev_ops->ndo_busy_poll)
6106 features |= NETIF_F_BUSY_POLL;
6107 else
6108#endif
6109 features &= ~NETIF_F_BUSY_POLL;
6110
b63365a2
HX
6111 return features;
6112}
b63365a2 6113
6cb6a27c 6114int __netdev_update_features(struct net_device *dev)
5455c699 6115{
c8f44aff 6116 netdev_features_t features;
5455c699
MM
6117 int err = 0;
6118
87267485
MM
6119 ASSERT_RTNL();
6120
5455c699
MM
6121 features = netdev_get_wanted_features(dev);
6122
6123 if (dev->netdev_ops->ndo_fix_features)
6124 features = dev->netdev_ops->ndo_fix_features(dev, features);
6125
6126 /* driver might be less strict about feature dependencies */
6127 features = netdev_fix_features(dev, features);
6128
6129 if (dev->features == features)
6cb6a27c 6130 return 0;
5455c699 6131
c8f44aff
MM
6132 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6133 &dev->features, &features);
5455c699
MM
6134
6135 if (dev->netdev_ops->ndo_set_features)
6136 err = dev->netdev_ops->ndo_set_features(dev, features);
6137
6cb6a27c 6138 if (unlikely(err < 0)) {
5455c699 6139 netdev_err(dev,
c8f44aff
MM
6140 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6141 err, &features, &dev->features);
6cb6a27c
MM
6142 return -1;
6143 }
6144
6145 if (!err)
6146 dev->features = features;
6147
6148 return 1;
6149}
6150
afe12cc8
MM
6151/**
6152 * netdev_update_features - recalculate device features
6153 * @dev: the device to check
6154 *
6155 * Recalculate dev->features set and send notifications if it
6156 * has changed. Should be called after driver or hardware dependent
6157 * conditions might have changed that influence the features.
6158 */
6cb6a27c
MM
6159void netdev_update_features(struct net_device *dev)
6160{
6161 if (__netdev_update_features(dev))
6162 netdev_features_change(dev);
5455c699
MM
6163}
6164EXPORT_SYMBOL(netdev_update_features);
6165
afe12cc8
MM
6166/**
6167 * netdev_change_features - recalculate device features
6168 * @dev: the device to check
6169 *
6170 * Recalculate dev->features set and send notifications even
6171 * if they have not changed. Should be called instead of
6172 * netdev_update_features() if also dev->vlan_features might
6173 * have changed to allow the changes to be propagated to stacked
6174 * VLAN devices.
6175 */
6176void netdev_change_features(struct net_device *dev)
6177{
6178 __netdev_update_features(dev);
6179 netdev_features_change(dev);
6180}
6181EXPORT_SYMBOL(netdev_change_features);
6182
fc4a7489
PM
6183/**
6184 * netif_stacked_transfer_operstate - transfer operstate
6185 * @rootdev: the root or lower level device to transfer state from
6186 * @dev: the device to transfer operstate to
6187 *
6188 * Transfer operational state from root to device. This is normally
6189 * called when a stacking relationship exists between the root
6190 * device and the device(a leaf device).
6191 */
6192void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6193 struct net_device *dev)
6194{
6195 if (rootdev->operstate == IF_OPER_DORMANT)
6196 netif_dormant_on(dev);
6197 else
6198 netif_dormant_off(dev);
6199
6200 if (netif_carrier_ok(rootdev)) {
6201 if (!netif_carrier_ok(dev))
6202 netif_carrier_on(dev);
6203 } else {
6204 if (netif_carrier_ok(dev))
6205 netif_carrier_off(dev);
6206 }
6207}
6208EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6209
a953be53 6210#ifdef CONFIG_SYSFS
1b4bf461
ED
6211static int netif_alloc_rx_queues(struct net_device *dev)
6212{
1b4bf461 6213 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6214 struct netdev_rx_queue *rx;
10595902 6215 size_t sz = count * sizeof(*rx);
1b4bf461 6216
bd25fa7b 6217 BUG_ON(count < 1);
1b4bf461 6218
10595902
PG
6219 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6220 if (!rx) {
6221 rx = vzalloc(sz);
6222 if (!rx)
6223 return -ENOMEM;
6224 }
bd25fa7b
TH
6225 dev->_rx = rx;
6226
bd25fa7b 6227 for (i = 0; i < count; i++)
fe822240 6228 rx[i].dev = dev;
1b4bf461
ED
6229 return 0;
6230}
bf264145 6231#endif
1b4bf461 6232
aa942104
CG
6233static void netdev_init_one_queue(struct net_device *dev,
6234 struct netdev_queue *queue, void *_unused)
6235{
6236 /* Initialize queue lock */
6237 spin_lock_init(&queue->_xmit_lock);
6238 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6239 queue->xmit_lock_owner = -1;
b236da69 6240 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6241 queue->dev = dev;
114cf580
TH
6242#ifdef CONFIG_BQL
6243 dql_init(&queue->dql, HZ);
6244#endif
aa942104
CG
6245}
6246
60877a32
ED
6247static void netif_free_tx_queues(struct net_device *dev)
6248{
4cb28970 6249 kvfree(dev->_tx);
60877a32
ED
6250}
6251
e6484930
TH
6252static int netif_alloc_netdev_queues(struct net_device *dev)
6253{
6254 unsigned int count = dev->num_tx_queues;
6255 struct netdev_queue *tx;
60877a32 6256 size_t sz = count * sizeof(*tx);
e6484930 6257
60877a32 6258 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6259
60877a32
ED
6260 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6261 if (!tx) {
6262 tx = vzalloc(sz);
6263 if (!tx)
6264 return -ENOMEM;
6265 }
e6484930 6266 dev->_tx = tx;
1d24eb48 6267
e6484930
TH
6268 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6269 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6270
6271 return 0;
e6484930
TH
6272}
6273
1da177e4
LT
6274/**
6275 * register_netdevice - register a network device
6276 * @dev: device to register
6277 *
6278 * Take a completed network device structure and add it to the kernel
6279 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6280 * chain. 0 is returned on success. A negative errno code is returned
6281 * on a failure to set up the device, or if the name is a duplicate.
6282 *
6283 * Callers must hold the rtnl semaphore. You may want
6284 * register_netdev() instead of this.
6285 *
6286 * BUGS:
6287 * The locking appears insufficient to guarantee two parallel registers
6288 * will not get the same name.
6289 */
6290
6291int register_netdevice(struct net_device *dev)
6292{
1da177e4 6293 int ret;
d314774c 6294 struct net *net = dev_net(dev);
1da177e4
LT
6295
6296 BUG_ON(dev_boot_phase);
6297 ASSERT_RTNL();
6298
b17a7c17
SH
6299 might_sleep();
6300
1da177e4
LT
6301 /* When net_device's are persistent, this will be fatal. */
6302 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6303 BUG_ON(!net);
1da177e4 6304
f1f28aa3 6305 spin_lock_init(&dev->addr_list_lock);
cf508b12 6306 netdev_set_addr_lockdep_class(dev);
1da177e4 6307
1da177e4
LT
6308 dev->iflink = -1;
6309
828de4f6 6310 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6311 if (ret < 0)
6312 goto out;
6313
1da177e4 6314 /* Init, if this function is available */
d314774c
SH
6315 if (dev->netdev_ops->ndo_init) {
6316 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6317 if (ret) {
6318 if (ret > 0)
6319 ret = -EIO;
90833aa4 6320 goto out;
1da177e4
LT
6321 }
6322 }
4ec93edb 6323
f646968f
PM
6324 if (((dev->hw_features | dev->features) &
6325 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6326 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6327 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6328 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6329 ret = -EINVAL;
6330 goto err_uninit;
6331 }
6332
9c7dafbf
PE
6333 ret = -EBUSY;
6334 if (!dev->ifindex)
6335 dev->ifindex = dev_new_index(net);
6336 else if (__dev_get_by_index(net, dev->ifindex))
6337 goto err_uninit;
6338
1da177e4
LT
6339 if (dev->iflink == -1)
6340 dev->iflink = dev->ifindex;
6341
5455c699
MM
6342 /* Transfer changeable features to wanted_features and enable
6343 * software offloads (GSO and GRO).
6344 */
6345 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6346 dev->features |= NETIF_F_SOFT_FEATURES;
6347 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6348
34324dc2
MM
6349 if (!(dev->flags & IFF_LOOPBACK)) {
6350 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6351 }
6352
1180e7d6 6353 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6354 */
1180e7d6 6355 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6356
ee579677
PS
6357 /* Make NETIF_F_SG inheritable to tunnel devices.
6358 */
6359 dev->hw_enc_features |= NETIF_F_SG;
6360
0d89d203
SH
6361 /* Make NETIF_F_SG inheritable to MPLS.
6362 */
6363 dev->mpls_features |= NETIF_F_SG;
6364
7ffbe3fd
JB
6365 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6366 ret = notifier_to_errno(ret);
6367 if (ret)
6368 goto err_uninit;
6369
8b41d188 6370 ret = netdev_register_kobject(dev);
b17a7c17 6371 if (ret)
7ce1b0ed 6372 goto err_uninit;
b17a7c17
SH
6373 dev->reg_state = NETREG_REGISTERED;
6374
6cb6a27c 6375 __netdev_update_features(dev);
8e9b59b2 6376
1da177e4
LT
6377 /*
6378 * Default initial state at registry is that the
6379 * device is present.
6380 */
6381
6382 set_bit(__LINK_STATE_PRESENT, &dev->state);
6383
8f4cccbb
BH
6384 linkwatch_init_dev(dev);
6385
1da177e4 6386 dev_init_scheduler(dev);
1da177e4 6387 dev_hold(dev);
ce286d32 6388 list_netdevice(dev);
7bf23575 6389 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6390
948b337e
JP
6391 /* If the device has permanent device address, driver should
6392 * set dev_addr and also addr_assign_type should be set to
6393 * NET_ADDR_PERM (default value).
6394 */
6395 if (dev->addr_assign_type == NET_ADDR_PERM)
6396 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6397
1da177e4 6398 /* Notify protocols, that a new device appeared. */
056925ab 6399 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6400 ret = notifier_to_errno(ret);
93ee31f1
DL
6401 if (ret) {
6402 rollback_registered(dev);
6403 dev->reg_state = NETREG_UNREGISTERED;
6404 }
d90a909e
EB
6405 /*
6406 * Prevent userspace races by waiting until the network
6407 * device is fully setup before sending notifications.
6408 */
a2835763
PM
6409 if (!dev->rtnl_link_ops ||
6410 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6411 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6412
6413out:
6414 return ret;
7ce1b0ed
HX
6415
6416err_uninit:
d314774c
SH
6417 if (dev->netdev_ops->ndo_uninit)
6418 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6419 goto out;
1da177e4 6420}
d1b19dff 6421EXPORT_SYMBOL(register_netdevice);
1da177e4 6422
937f1ba5
BH
6423/**
6424 * init_dummy_netdev - init a dummy network device for NAPI
6425 * @dev: device to init
6426 *
6427 * This takes a network device structure and initialize the minimum
6428 * amount of fields so it can be used to schedule NAPI polls without
6429 * registering a full blown interface. This is to be used by drivers
6430 * that need to tie several hardware interfaces to a single NAPI
6431 * poll scheduler due to HW limitations.
6432 */
6433int init_dummy_netdev(struct net_device *dev)
6434{
6435 /* Clear everything. Note we don't initialize spinlocks
6436 * are they aren't supposed to be taken by any of the
6437 * NAPI code and this dummy netdev is supposed to be
6438 * only ever used for NAPI polls
6439 */
6440 memset(dev, 0, sizeof(struct net_device));
6441
6442 /* make sure we BUG if trying to hit standard
6443 * register/unregister code path
6444 */
6445 dev->reg_state = NETREG_DUMMY;
6446
937f1ba5
BH
6447 /* NAPI wants this */
6448 INIT_LIST_HEAD(&dev->napi_list);
6449
6450 /* a dummy interface is started by default */
6451 set_bit(__LINK_STATE_PRESENT, &dev->state);
6452 set_bit(__LINK_STATE_START, &dev->state);
6453
29b4433d
ED
6454 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6455 * because users of this 'device' dont need to change
6456 * its refcount.
6457 */
6458
937f1ba5
BH
6459 return 0;
6460}
6461EXPORT_SYMBOL_GPL(init_dummy_netdev);
6462
6463
1da177e4
LT
6464/**
6465 * register_netdev - register a network device
6466 * @dev: device to register
6467 *
6468 * Take a completed network device structure and add it to the kernel
6469 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6470 * chain. 0 is returned on success. A negative errno code is returned
6471 * on a failure to set up the device, or if the name is a duplicate.
6472 *
38b4da38 6473 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6474 * and expands the device name if you passed a format string to
6475 * alloc_netdev.
6476 */
6477int register_netdev(struct net_device *dev)
6478{
6479 int err;
6480
6481 rtnl_lock();
1da177e4 6482 err = register_netdevice(dev);
1da177e4
LT
6483 rtnl_unlock();
6484 return err;
6485}
6486EXPORT_SYMBOL(register_netdev);
6487
29b4433d
ED
6488int netdev_refcnt_read(const struct net_device *dev)
6489{
6490 int i, refcnt = 0;
6491
6492 for_each_possible_cpu(i)
6493 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6494 return refcnt;
6495}
6496EXPORT_SYMBOL(netdev_refcnt_read);
6497
2c53040f 6498/**
1da177e4 6499 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6500 * @dev: target net_device
1da177e4
LT
6501 *
6502 * This is called when unregistering network devices.
6503 *
6504 * Any protocol or device that holds a reference should register
6505 * for netdevice notification, and cleanup and put back the
6506 * reference if they receive an UNREGISTER event.
6507 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6508 * call dev_put.
1da177e4
LT
6509 */
6510static void netdev_wait_allrefs(struct net_device *dev)
6511{
6512 unsigned long rebroadcast_time, warning_time;
29b4433d 6513 int refcnt;
1da177e4 6514
e014debe
ED
6515 linkwatch_forget_dev(dev);
6516
1da177e4 6517 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6518 refcnt = netdev_refcnt_read(dev);
6519
6520 while (refcnt != 0) {
1da177e4 6521 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6522 rtnl_lock();
1da177e4
LT
6523
6524 /* Rebroadcast unregister notification */
056925ab 6525 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6526
748e2d93 6527 __rtnl_unlock();
0115e8e3 6528 rcu_barrier();
748e2d93
ED
6529 rtnl_lock();
6530
0115e8e3 6531 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6532 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6533 &dev->state)) {
6534 /* We must not have linkwatch events
6535 * pending on unregister. If this
6536 * happens, we simply run the queue
6537 * unscheduled, resulting in a noop
6538 * for this device.
6539 */
6540 linkwatch_run_queue();
6541 }
6542
6756ae4b 6543 __rtnl_unlock();
1da177e4
LT
6544
6545 rebroadcast_time = jiffies;
6546 }
6547
6548 msleep(250);
6549
29b4433d
ED
6550 refcnt = netdev_refcnt_read(dev);
6551
1da177e4 6552 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6553 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6554 dev->name, refcnt);
1da177e4
LT
6555 warning_time = jiffies;
6556 }
6557 }
6558}
6559
6560/* The sequence is:
6561 *
6562 * rtnl_lock();
6563 * ...
6564 * register_netdevice(x1);
6565 * register_netdevice(x2);
6566 * ...
6567 * unregister_netdevice(y1);
6568 * unregister_netdevice(y2);
6569 * ...
6570 * rtnl_unlock();
6571 * free_netdev(y1);
6572 * free_netdev(y2);
6573 *
58ec3b4d 6574 * We are invoked by rtnl_unlock().
1da177e4 6575 * This allows us to deal with problems:
b17a7c17 6576 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6577 * without deadlocking with linkwatch via keventd.
6578 * 2) Since we run with the RTNL semaphore not held, we can sleep
6579 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6580 *
6581 * We must not return until all unregister events added during
6582 * the interval the lock was held have been completed.
1da177e4 6583 */
1da177e4
LT
6584void netdev_run_todo(void)
6585{
626ab0e6 6586 struct list_head list;
1da177e4 6587
1da177e4 6588 /* Snapshot list, allow later requests */
626ab0e6 6589 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6590
6591 __rtnl_unlock();
626ab0e6 6592
0115e8e3
ED
6593
6594 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6595 if (!list_empty(&list))
6596 rcu_barrier();
6597
1da177e4
LT
6598 while (!list_empty(&list)) {
6599 struct net_device *dev
e5e26d75 6600 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6601 list_del(&dev->todo_list);
6602
748e2d93 6603 rtnl_lock();
0115e8e3 6604 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6605 __rtnl_unlock();
0115e8e3 6606
b17a7c17 6607 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6608 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6609 dev->name, dev->reg_state);
6610 dump_stack();
6611 continue;
6612 }
1da177e4 6613
b17a7c17 6614 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6615
152102c7 6616 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6617
b17a7c17 6618 netdev_wait_allrefs(dev);
1da177e4 6619
b17a7c17 6620 /* paranoia */
29b4433d 6621 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6622 BUG_ON(!list_empty(&dev->ptype_all));
6623 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6624 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6625 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6626 WARN_ON(dev->dn_ptr);
1da177e4 6627
b17a7c17
SH
6628 if (dev->destructor)
6629 dev->destructor(dev);
9093bbb2 6630
50624c93
EB
6631 /* Report a network device has been unregistered */
6632 rtnl_lock();
6633 dev_net(dev)->dev_unreg_count--;
6634 __rtnl_unlock();
6635 wake_up(&netdev_unregistering_wq);
6636
9093bbb2
SH
6637 /* Free network device */
6638 kobject_put(&dev->dev.kobj);
1da177e4 6639 }
1da177e4
LT
6640}
6641
3cfde79c
BH
6642/* Convert net_device_stats to rtnl_link_stats64. They have the same
6643 * fields in the same order, with only the type differing.
6644 */
77a1abf5
ED
6645void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6646 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6647{
6648#if BITS_PER_LONG == 64
77a1abf5
ED
6649 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6650 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6651#else
6652 size_t i, n = sizeof(*stats64) / sizeof(u64);
6653 const unsigned long *src = (const unsigned long *)netdev_stats;
6654 u64 *dst = (u64 *)stats64;
6655
6656 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6657 sizeof(*stats64) / sizeof(u64));
6658 for (i = 0; i < n; i++)
6659 dst[i] = src[i];
6660#endif
6661}
77a1abf5 6662EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6663
eeda3fd6
SH
6664/**
6665 * dev_get_stats - get network device statistics
6666 * @dev: device to get statistics from
28172739 6667 * @storage: place to store stats
eeda3fd6 6668 *
d7753516
BH
6669 * Get network statistics from device. Return @storage.
6670 * The device driver may provide its own method by setting
6671 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6672 * otherwise the internal statistics structure is used.
eeda3fd6 6673 */
d7753516
BH
6674struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6675 struct rtnl_link_stats64 *storage)
7004bf25 6676{
eeda3fd6
SH
6677 const struct net_device_ops *ops = dev->netdev_ops;
6678
28172739
ED
6679 if (ops->ndo_get_stats64) {
6680 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6681 ops->ndo_get_stats64(dev, storage);
6682 } else if (ops->ndo_get_stats) {
3cfde79c 6683 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6684 } else {
6685 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6686 }
caf586e5 6687 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6688 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6689 return storage;
c45d286e 6690}
eeda3fd6 6691EXPORT_SYMBOL(dev_get_stats);
c45d286e 6692
24824a09 6693struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6694{
24824a09 6695 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6696
24824a09
ED
6697#ifdef CONFIG_NET_CLS_ACT
6698 if (queue)
6699 return queue;
6700 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6701 if (!queue)
6702 return NULL;
6703 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6704 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6705 queue->qdisc_sleeping = &noop_qdisc;
6706 rcu_assign_pointer(dev->ingress_queue, queue);
6707#endif
6708 return queue;
bb949fbd
DM
6709}
6710
2c60db03
ED
6711static const struct ethtool_ops default_ethtool_ops;
6712
d07d7507
SG
6713void netdev_set_default_ethtool_ops(struct net_device *dev,
6714 const struct ethtool_ops *ops)
6715{
6716 if (dev->ethtool_ops == &default_ethtool_ops)
6717 dev->ethtool_ops = ops;
6718}
6719EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6720
74d332c1
ED
6721void netdev_freemem(struct net_device *dev)
6722{
6723 char *addr = (char *)dev - dev->padded;
6724
4cb28970 6725 kvfree(addr);
74d332c1
ED
6726}
6727
1da177e4 6728/**
36909ea4 6729 * alloc_netdev_mqs - allocate network device
c835a677
TG
6730 * @sizeof_priv: size of private data to allocate space for
6731 * @name: device name format string
6732 * @name_assign_type: origin of device name
6733 * @setup: callback to initialize device
6734 * @txqs: the number of TX subqueues to allocate
6735 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6736 *
6737 * Allocates a struct net_device with private data area for driver use
90e51adf 6738 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6739 * for each queue on the device.
1da177e4 6740 */
36909ea4 6741struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6742 unsigned char name_assign_type,
36909ea4
TH
6743 void (*setup)(struct net_device *),
6744 unsigned int txqs, unsigned int rxqs)
1da177e4 6745{
1da177e4 6746 struct net_device *dev;
7943986c 6747 size_t alloc_size;
1ce8e7b5 6748 struct net_device *p;
1da177e4 6749
b6fe17d6
SH
6750 BUG_ON(strlen(name) >= sizeof(dev->name));
6751
36909ea4 6752 if (txqs < 1) {
7b6cd1ce 6753 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6754 return NULL;
6755 }
6756
a953be53 6757#ifdef CONFIG_SYSFS
36909ea4 6758 if (rxqs < 1) {
7b6cd1ce 6759 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6760 return NULL;
6761 }
6762#endif
6763
fd2ea0a7 6764 alloc_size = sizeof(struct net_device);
d1643d24
AD
6765 if (sizeof_priv) {
6766 /* ensure 32-byte alignment of private area */
1ce8e7b5 6767 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6768 alloc_size += sizeof_priv;
6769 }
6770 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6771 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6772
74d332c1
ED
6773 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6774 if (!p)
6775 p = vzalloc(alloc_size);
62b5942a 6776 if (!p)
1da177e4 6777 return NULL;
1da177e4 6778
1ce8e7b5 6779 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6780 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6781
29b4433d
ED
6782 dev->pcpu_refcnt = alloc_percpu(int);
6783 if (!dev->pcpu_refcnt)
74d332c1 6784 goto free_dev;
ab9c73cc 6785
ab9c73cc 6786 if (dev_addr_init(dev))
29b4433d 6787 goto free_pcpu;
ab9c73cc 6788
22bedad3 6789 dev_mc_init(dev);
a748ee24 6790 dev_uc_init(dev);
ccffad25 6791
c346dca1 6792 dev_net_set(dev, &init_net);
1da177e4 6793
8d3bdbd5 6794 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6795 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6796 dev->gso_min_segs = 0;
8d3bdbd5 6797
8d3bdbd5
DM
6798 INIT_LIST_HEAD(&dev->napi_list);
6799 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6800 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6801 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6802 INIT_LIST_HEAD(&dev->adj_list.upper);
6803 INIT_LIST_HEAD(&dev->adj_list.lower);
6804 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6805 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
6806 INIT_LIST_HEAD(&dev->ptype_all);
6807 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 6808 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
6809 setup(dev);
6810
36909ea4
TH
6811 dev->num_tx_queues = txqs;
6812 dev->real_num_tx_queues = txqs;
ed9af2e8 6813 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6814 goto free_all;
e8a0464c 6815
a953be53 6816#ifdef CONFIG_SYSFS
36909ea4
TH
6817 dev->num_rx_queues = rxqs;
6818 dev->real_num_rx_queues = rxqs;
fe822240 6819 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6820 goto free_all;
df334545 6821#endif
0a9627f2 6822
1da177e4 6823 strcpy(dev->name, name);
c835a677 6824 dev->name_assign_type = name_assign_type;
cbda10fa 6825 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6826 if (!dev->ethtool_ops)
6827 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6828 return dev;
ab9c73cc 6829
8d3bdbd5
DM
6830free_all:
6831 free_netdev(dev);
6832 return NULL;
6833
29b4433d
ED
6834free_pcpu:
6835 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6836free_dev:
6837 netdev_freemem(dev);
ab9c73cc 6838 return NULL;
1da177e4 6839}
36909ea4 6840EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6841
6842/**
6843 * free_netdev - free network device
6844 * @dev: device
6845 *
4ec93edb
YH
6846 * This function does the last stage of destroying an allocated device
6847 * interface. The reference to the device object is released.
1da177e4
LT
6848 * If this is the last reference then it will be freed.
6849 */
6850void free_netdev(struct net_device *dev)
6851{
d565b0a1
HX
6852 struct napi_struct *p, *n;
6853
60877a32 6854 netif_free_tx_queues(dev);
a953be53 6855#ifdef CONFIG_SYSFS
10595902 6856 kvfree(dev->_rx);
fe822240 6857#endif
e8a0464c 6858
33d480ce 6859 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6860
f001fde5
JP
6861 /* Flush device addresses */
6862 dev_addr_flush(dev);
6863
d565b0a1
HX
6864 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6865 netif_napi_del(p);
6866
29b4433d
ED
6867 free_percpu(dev->pcpu_refcnt);
6868 dev->pcpu_refcnt = NULL;
6869
3041a069 6870 /* Compatibility with error handling in drivers */
1da177e4 6871 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6872 netdev_freemem(dev);
1da177e4
LT
6873 return;
6874 }
6875
6876 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6877 dev->reg_state = NETREG_RELEASED;
6878
43cb76d9
GKH
6879 /* will free via device release */
6880 put_device(&dev->dev);
1da177e4 6881}
d1b19dff 6882EXPORT_SYMBOL(free_netdev);
4ec93edb 6883
f0db275a
SH
6884/**
6885 * synchronize_net - Synchronize with packet receive processing
6886 *
6887 * Wait for packets currently being received to be done.
6888 * Does not block later packets from starting.
6889 */
4ec93edb 6890void synchronize_net(void)
1da177e4
LT
6891{
6892 might_sleep();
be3fc413
ED
6893 if (rtnl_is_locked())
6894 synchronize_rcu_expedited();
6895 else
6896 synchronize_rcu();
1da177e4 6897}
d1b19dff 6898EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6899
6900/**
44a0873d 6901 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6902 * @dev: device
44a0873d 6903 * @head: list
6ebfbc06 6904 *
1da177e4 6905 * This function shuts down a device interface and removes it
d59b54b1 6906 * from the kernel tables.
44a0873d 6907 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6908 *
6909 * Callers must hold the rtnl semaphore. You may want
6910 * unregister_netdev() instead of this.
6911 */
6912
44a0873d 6913void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6914{
a6620712
HX
6915 ASSERT_RTNL();
6916
44a0873d 6917 if (head) {
9fdce099 6918 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6919 } else {
6920 rollback_registered(dev);
6921 /* Finish processing unregister after unlock */
6922 net_set_todo(dev);
6923 }
1da177e4 6924}
44a0873d 6925EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6926
9b5e383c
ED
6927/**
6928 * unregister_netdevice_many - unregister many devices
6929 * @head: list of devices
87757a91
ED
6930 *
6931 * Note: As most callers use a stack allocated list_head,
6932 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6933 */
6934void unregister_netdevice_many(struct list_head *head)
6935{
6936 struct net_device *dev;
6937
6938 if (!list_empty(head)) {
6939 rollback_registered_many(head);
6940 list_for_each_entry(dev, head, unreg_list)
6941 net_set_todo(dev);
87757a91 6942 list_del(head);
9b5e383c
ED
6943 }
6944}
63c8099d 6945EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6946
1da177e4
LT
6947/**
6948 * unregister_netdev - remove device from the kernel
6949 * @dev: device
6950 *
6951 * This function shuts down a device interface and removes it
d59b54b1 6952 * from the kernel tables.
1da177e4
LT
6953 *
6954 * This is just a wrapper for unregister_netdevice that takes
6955 * the rtnl semaphore. In general you want to use this and not
6956 * unregister_netdevice.
6957 */
6958void unregister_netdev(struct net_device *dev)
6959{
6960 rtnl_lock();
6961 unregister_netdevice(dev);
6962 rtnl_unlock();
6963}
1da177e4
LT
6964EXPORT_SYMBOL(unregister_netdev);
6965
ce286d32
EB
6966/**
6967 * dev_change_net_namespace - move device to different nethost namespace
6968 * @dev: device
6969 * @net: network namespace
6970 * @pat: If not NULL name pattern to try if the current device name
6971 * is already taken in the destination network namespace.
6972 *
6973 * This function shuts down a device interface and moves it
6974 * to a new network namespace. On success 0 is returned, on
6975 * a failure a netagive errno code is returned.
6976 *
6977 * Callers must hold the rtnl semaphore.
6978 */
6979
6980int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6981{
ce286d32
EB
6982 int err;
6983
6984 ASSERT_RTNL();
6985
6986 /* Don't allow namespace local devices to be moved. */
6987 err = -EINVAL;
6988 if (dev->features & NETIF_F_NETNS_LOCAL)
6989 goto out;
6990
6991 /* Ensure the device has been registrered */
ce286d32
EB
6992 if (dev->reg_state != NETREG_REGISTERED)
6993 goto out;
6994
6995 /* Get out if there is nothing todo */
6996 err = 0;
878628fb 6997 if (net_eq(dev_net(dev), net))
ce286d32
EB
6998 goto out;
6999
7000 /* Pick the destination device name, and ensure
7001 * we can use it in the destination network namespace.
7002 */
7003 err = -EEXIST;
d9031024 7004 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7005 /* We get here if we can't use the current device name */
7006 if (!pat)
7007 goto out;
828de4f6 7008 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7009 goto out;
7010 }
7011
7012 /*
7013 * And now a mini version of register_netdevice unregister_netdevice.
7014 */
7015
7016 /* If device is running close it first. */
9b772652 7017 dev_close(dev);
ce286d32
EB
7018
7019 /* And unlink it from device chain */
7020 err = -ENODEV;
7021 unlist_netdevice(dev);
7022
7023 synchronize_net();
7024
7025 /* Shutdown queueing discipline. */
7026 dev_shutdown(dev);
7027
7028 /* Notify protocols, that we are about to destroy
7029 this device. They should clean all the things.
3b27e105
DL
7030
7031 Note that dev->reg_state stays at NETREG_REGISTERED.
7032 This is wanted because this way 8021q and macvlan know
7033 the device is just moving and can keep their slaves up.
ce286d32
EB
7034 */
7035 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7036 rcu_barrier();
7037 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7038 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7039
7040 /*
7041 * Flush the unicast and multicast chains
7042 */
a748ee24 7043 dev_uc_flush(dev);
22bedad3 7044 dev_mc_flush(dev);
ce286d32 7045
4e66ae2e
SH
7046 /* Send a netdev-removed uevent to the old namespace */
7047 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7048 netdev_adjacent_del_links(dev);
4e66ae2e 7049
ce286d32 7050 /* Actually switch the network namespace */
c346dca1 7051 dev_net_set(dev, net);
ce286d32 7052
ce286d32
EB
7053 /* If there is an ifindex conflict assign a new one */
7054 if (__dev_get_by_index(net, dev->ifindex)) {
7055 int iflink = (dev->iflink == dev->ifindex);
7056 dev->ifindex = dev_new_index(net);
7057 if (iflink)
7058 dev->iflink = dev->ifindex;
7059 }
7060
4e66ae2e
SH
7061 /* Send a netdev-add uevent to the new namespace */
7062 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7063 netdev_adjacent_add_links(dev);
4e66ae2e 7064
8b41d188 7065 /* Fixup kobjects */
a1b3f594 7066 err = device_rename(&dev->dev, dev->name);
8b41d188 7067 WARN_ON(err);
ce286d32
EB
7068
7069 /* Add the device back in the hashes */
7070 list_netdevice(dev);
7071
7072 /* Notify protocols, that a new device appeared. */
7073 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7074
d90a909e
EB
7075 /*
7076 * Prevent userspace races by waiting until the network
7077 * device is fully setup before sending notifications.
7078 */
7f294054 7079 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7080
ce286d32
EB
7081 synchronize_net();
7082 err = 0;
7083out:
7084 return err;
7085}
463d0183 7086EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7087
1da177e4
LT
7088static int dev_cpu_callback(struct notifier_block *nfb,
7089 unsigned long action,
7090 void *ocpu)
7091{
7092 struct sk_buff **list_skb;
1da177e4
LT
7093 struct sk_buff *skb;
7094 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7095 struct softnet_data *sd, *oldsd;
7096
8bb78442 7097 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7098 return NOTIFY_OK;
7099
7100 local_irq_disable();
7101 cpu = smp_processor_id();
7102 sd = &per_cpu(softnet_data, cpu);
7103 oldsd = &per_cpu(softnet_data, oldcpu);
7104
7105 /* Find end of our completion_queue. */
7106 list_skb = &sd->completion_queue;
7107 while (*list_skb)
7108 list_skb = &(*list_skb)->next;
7109 /* Append completion queue from offline CPU. */
7110 *list_skb = oldsd->completion_queue;
7111 oldsd->completion_queue = NULL;
7112
1da177e4 7113 /* Append output queue from offline CPU. */
a9cbd588
CG
7114 if (oldsd->output_queue) {
7115 *sd->output_queue_tailp = oldsd->output_queue;
7116 sd->output_queue_tailp = oldsd->output_queue_tailp;
7117 oldsd->output_queue = NULL;
7118 oldsd->output_queue_tailp = &oldsd->output_queue;
7119 }
ac64da0b
ED
7120 /* Append NAPI poll list from offline CPU, with one exception :
7121 * process_backlog() must be called by cpu owning percpu backlog.
7122 * We properly handle process_queue & input_pkt_queue later.
7123 */
7124 while (!list_empty(&oldsd->poll_list)) {
7125 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7126 struct napi_struct,
7127 poll_list);
7128
7129 list_del_init(&napi->poll_list);
7130 if (napi->poll == process_backlog)
7131 napi->state = 0;
7132 else
7133 ____napi_schedule(sd, napi);
264524d5 7134 }
1da177e4
LT
7135
7136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7137 local_irq_enable();
7138
7139 /* Process offline CPU's input_pkt_queue */
76cc8b13 7140 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7141 netif_rx_ni(skb);
76cc8b13 7142 input_queue_head_incr(oldsd);
fec5e652 7143 }
ac64da0b 7144 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7145 netif_rx_ni(skb);
76cc8b13
TH
7146 input_queue_head_incr(oldsd);
7147 }
1da177e4
LT
7148
7149 return NOTIFY_OK;
7150}
1da177e4
LT
7151
7152
7f353bf2 7153/**
b63365a2
HX
7154 * netdev_increment_features - increment feature set by one
7155 * @all: current feature set
7156 * @one: new feature set
7157 * @mask: mask feature set
7f353bf2
HX
7158 *
7159 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7160 * @one to the master device with current feature set @all. Will not
7161 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7162 */
c8f44aff
MM
7163netdev_features_t netdev_increment_features(netdev_features_t all,
7164 netdev_features_t one, netdev_features_t mask)
b63365a2 7165{
1742f183
MM
7166 if (mask & NETIF_F_GEN_CSUM)
7167 mask |= NETIF_F_ALL_CSUM;
7168 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7169
1742f183
MM
7170 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7171 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7172
1742f183
MM
7173 /* If one device supports hw checksumming, set for all. */
7174 if (all & NETIF_F_GEN_CSUM)
7175 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7176
7177 return all;
7178}
b63365a2 7179EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7180
430f03cd 7181static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7182{
7183 int i;
7184 struct hlist_head *hash;
7185
7186 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7187 if (hash != NULL)
7188 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7189 INIT_HLIST_HEAD(&hash[i]);
7190
7191 return hash;
7192}
7193
881d966b 7194/* Initialize per network namespace state */
4665079c 7195static int __net_init netdev_init(struct net *net)
881d966b 7196{
734b6541
RM
7197 if (net != &init_net)
7198 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7199
30d97d35
PE
7200 net->dev_name_head = netdev_create_hash();
7201 if (net->dev_name_head == NULL)
7202 goto err_name;
881d966b 7203
30d97d35
PE
7204 net->dev_index_head = netdev_create_hash();
7205 if (net->dev_index_head == NULL)
7206 goto err_idx;
881d966b
EB
7207
7208 return 0;
30d97d35
PE
7209
7210err_idx:
7211 kfree(net->dev_name_head);
7212err_name:
7213 return -ENOMEM;
881d966b
EB
7214}
7215
f0db275a
SH
7216/**
7217 * netdev_drivername - network driver for the device
7218 * @dev: network device
f0db275a
SH
7219 *
7220 * Determine network driver for device.
7221 */
3019de12 7222const char *netdev_drivername(const struct net_device *dev)
6579e57b 7223{
cf04a4c7
SH
7224 const struct device_driver *driver;
7225 const struct device *parent;
3019de12 7226 const char *empty = "";
6579e57b
AV
7227
7228 parent = dev->dev.parent;
6579e57b 7229 if (!parent)
3019de12 7230 return empty;
6579e57b
AV
7231
7232 driver = parent->driver;
7233 if (driver && driver->name)
3019de12
DM
7234 return driver->name;
7235 return empty;
6579e57b
AV
7236}
7237
6ea754eb
JP
7238static void __netdev_printk(const char *level, const struct net_device *dev,
7239 struct va_format *vaf)
256df2f3 7240{
b004ff49 7241 if (dev && dev->dev.parent) {
6ea754eb
JP
7242 dev_printk_emit(level[1] - '0',
7243 dev->dev.parent,
7244 "%s %s %s%s: %pV",
7245 dev_driver_string(dev->dev.parent),
7246 dev_name(dev->dev.parent),
7247 netdev_name(dev), netdev_reg_state(dev),
7248 vaf);
b004ff49 7249 } else if (dev) {
6ea754eb
JP
7250 printk("%s%s%s: %pV",
7251 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7252 } else {
6ea754eb 7253 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7254 }
256df2f3
JP
7255}
7256
6ea754eb
JP
7257void netdev_printk(const char *level, const struct net_device *dev,
7258 const char *format, ...)
256df2f3
JP
7259{
7260 struct va_format vaf;
7261 va_list args;
256df2f3
JP
7262
7263 va_start(args, format);
7264
7265 vaf.fmt = format;
7266 vaf.va = &args;
7267
6ea754eb 7268 __netdev_printk(level, dev, &vaf);
b004ff49 7269
256df2f3 7270 va_end(args);
256df2f3
JP
7271}
7272EXPORT_SYMBOL(netdev_printk);
7273
7274#define define_netdev_printk_level(func, level) \
6ea754eb 7275void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7276{ \
256df2f3
JP
7277 struct va_format vaf; \
7278 va_list args; \
7279 \
7280 va_start(args, fmt); \
7281 \
7282 vaf.fmt = fmt; \
7283 vaf.va = &args; \
7284 \
6ea754eb 7285 __netdev_printk(level, dev, &vaf); \
b004ff49 7286 \
256df2f3 7287 va_end(args); \
256df2f3
JP
7288} \
7289EXPORT_SYMBOL(func);
7290
7291define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7292define_netdev_printk_level(netdev_alert, KERN_ALERT);
7293define_netdev_printk_level(netdev_crit, KERN_CRIT);
7294define_netdev_printk_level(netdev_err, KERN_ERR);
7295define_netdev_printk_level(netdev_warn, KERN_WARNING);
7296define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7297define_netdev_printk_level(netdev_info, KERN_INFO);
7298
4665079c 7299static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7300{
7301 kfree(net->dev_name_head);
7302 kfree(net->dev_index_head);
7303}
7304
022cbae6 7305static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7306 .init = netdev_init,
7307 .exit = netdev_exit,
7308};
7309
4665079c 7310static void __net_exit default_device_exit(struct net *net)
ce286d32 7311{
e008b5fc 7312 struct net_device *dev, *aux;
ce286d32 7313 /*
e008b5fc 7314 * Push all migratable network devices back to the
ce286d32
EB
7315 * initial network namespace
7316 */
7317 rtnl_lock();
e008b5fc 7318 for_each_netdev_safe(net, dev, aux) {
ce286d32 7319 int err;
aca51397 7320 char fb_name[IFNAMSIZ];
ce286d32
EB
7321
7322 /* Ignore unmoveable devices (i.e. loopback) */
7323 if (dev->features & NETIF_F_NETNS_LOCAL)
7324 continue;
7325
e008b5fc
EB
7326 /* Leave virtual devices for the generic cleanup */
7327 if (dev->rtnl_link_ops)
7328 continue;
d0c082ce 7329
25985edc 7330 /* Push remaining network devices to init_net */
aca51397
PE
7331 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7332 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7333 if (err) {
7b6cd1ce
JP
7334 pr_emerg("%s: failed to move %s to init_net: %d\n",
7335 __func__, dev->name, err);
aca51397 7336 BUG();
ce286d32
EB
7337 }
7338 }
7339 rtnl_unlock();
7340}
7341
50624c93
EB
7342static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7343{
7344 /* Return with the rtnl_lock held when there are no network
7345 * devices unregistering in any network namespace in net_list.
7346 */
7347 struct net *net;
7348 bool unregistering;
ff960a73 7349 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7350
ff960a73 7351 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7352 for (;;) {
50624c93
EB
7353 unregistering = false;
7354 rtnl_lock();
7355 list_for_each_entry(net, net_list, exit_list) {
7356 if (net->dev_unreg_count > 0) {
7357 unregistering = true;
7358 break;
7359 }
7360 }
7361 if (!unregistering)
7362 break;
7363 __rtnl_unlock();
ff960a73
PZ
7364
7365 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7366 }
ff960a73 7367 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7368}
7369
04dc7f6b
EB
7370static void __net_exit default_device_exit_batch(struct list_head *net_list)
7371{
7372 /* At exit all network devices most be removed from a network
b595076a 7373 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7374 * Do this across as many network namespaces as possible to
7375 * improve batching efficiency.
7376 */
7377 struct net_device *dev;
7378 struct net *net;
7379 LIST_HEAD(dev_kill_list);
7380
50624c93
EB
7381 /* To prevent network device cleanup code from dereferencing
7382 * loopback devices or network devices that have been freed
7383 * wait here for all pending unregistrations to complete,
7384 * before unregistring the loopback device and allowing the
7385 * network namespace be freed.
7386 *
7387 * The netdev todo list containing all network devices
7388 * unregistrations that happen in default_device_exit_batch
7389 * will run in the rtnl_unlock() at the end of
7390 * default_device_exit_batch.
7391 */
7392 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7393 list_for_each_entry(net, net_list, exit_list) {
7394 for_each_netdev_reverse(net, dev) {
b0ab2fab 7395 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7396 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7397 else
7398 unregister_netdevice_queue(dev, &dev_kill_list);
7399 }
7400 }
7401 unregister_netdevice_many(&dev_kill_list);
7402 rtnl_unlock();
7403}
7404
022cbae6 7405static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7406 .exit = default_device_exit,
04dc7f6b 7407 .exit_batch = default_device_exit_batch,
ce286d32
EB
7408};
7409
1da177e4
LT
7410/*
7411 * Initialize the DEV module. At boot time this walks the device list and
7412 * unhooks any devices that fail to initialise (normally hardware not
7413 * present) and leaves us with a valid list of present and active devices.
7414 *
7415 */
7416
7417/*
7418 * This is called single threaded during boot, so no need
7419 * to take the rtnl semaphore.
7420 */
7421static int __init net_dev_init(void)
7422{
7423 int i, rc = -ENOMEM;
7424
7425 BUG_ON(!dev_boot_phase);
7426
1da177e4
LT
7427 if (dev_proc_init())
7428 goto out;
7429
8b41d188 7430 if (netdev_kobject_init())
1da177e4
LT
7431 goto out;
7432
7433 INIT_LIST_HEAD(&ptype_all);
82d8a867 7434 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7435 INIT_LIST_HEAD(&ptype_base[i]);
7436
62532da9
VY
7437 INIT_LIST_HEAD(&offload_base);
7438
881d966b
EB
7439 if (register_pernet_subsys(&netdev_net_ops))
7440 goto out;
1da177e4
LT
7441
7442 /*
7443 * Initialise the packet receive queues.
7444 */
7445
6f912042 7446 for_each_possible_cpu(i) {
e36fa2f7 7447 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7448
e36fa2f7 7449 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7450 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7451 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7452 sd->output_queue_tailp = &sd->output_queue;
df334545 7453#ifdef CONFIG_RPS
e36fa2f7
ED
7454 sd->csd.func = rps_trigger_softirq;
7455 sd->csd.info = sd;
e36fa2f7 7456 sd->cpu = i;
1e94d72f 7457#endif
0a9627f2 7458
e36fa2f7
ED
7459 sd->backlog.poll = process_backlog;
7460 sd->backlog.weight = weight_p;
1da177e4
LT
7461 }
7462
1da177e4
LT
7463 dev_boot_phase = 0;
7464
505d4f73
EB
7465 /* The loopback device is special if any other network devices
7466 * is present in a network namespace the loopback device must
7467 * be present. Since we now dynamically allocate and free the
7468 * loopback device ensure this invariant is maintained by
7469 * keeping the loopback device as the first device on the
7470 * list of network devices. Ensuring the loopback devices
7471 * is the first device that appears and the last network device
7472 * that disappears.
7473 */
7474 if (register_pernet_device(&loopback_net_ops))
7475 goto out;
7476
7477 if (register_pernet_device(&default_device_ops))
7478 goto out;
7479
962cf36c
CM
7480 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7481 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7482
7483 hotcpu_notifier(dev_cpu_callback, 0);
7484 dst_init();
1da177e4
LT
7485 rc = 0;
7486out:
7487 return rc;
7488}
7489
7490subsys_initcall(net_dev_init);
This page took 2.611747 seconds and 5 git commands to generate.